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Abstract

Being aware of the internal anatomical prostate zones and their volumes can positively
affect and improve multiple clinical fields as prostate cancer staging and treatment selec-
tion. Hence, this study presents an fully-automated prostate zone segmentation algorithm
from in vivo T2-weighted MRI studies with subsequent volume estimation. The proposed
supervised machine learning algorithm constitute multi layer feed forward neural networks
in order to solve a multi-class classification problem. To achieve input data clustering,
multiple texture, distance, statistical, probabilistic as well as local neighborhood features
are extracted. 3D closed surface models are assessed via triangulation from predicted
prostate zones. Based on 3D closed surface models, prostate zones volumes are esti-
mated. Optimal neural network parameters have been established, which achieve on 25
3-Tesla studies mean Dice coefficient scores of 0.78 for the central gland and 0.47 for the
peripheral zone. The volumes estimated by the proposed algorithm had Person correlation
coefficients (r2 values) of 0.91 and 0.45 when compared to the ground truth. Furthermore,
a semi-automated version of the proposed algorithm produces mean Dice coefficient scores
on 100 MRI studies of 0.81 and 0.69. Subsequent volume estimation results in mean vol-
ume fractions of 1.19 and 0.9. Respectively, r2 values are 0.91, 0.64. Considering only
the prostate gland, the mean volume fraction averages to 1.01 and achieves a r2 value of
0.92. Summarized, the proposed algorithm enables real time prostate zone segmentation
as well as real time prostate zone volume estimation and outperforms state of the art
clinical volume estimation techniques as the Myschetzky, Ellipsoid and Prolate spheroid
techniques.

Key words: feed forward neural network, machine learning, supervised learning, MRI,
fully-automated, prostate zone segmentation, prostate zone volume estimation

Kurzfassung
Diese Arbeit befasst sich mit der automatischen Echtzeit Segmentierung der Prostatazo-
nen in MRT Bildern. Durch die bereitgestellte Segmentierung, kann klinisches Personal
bei Prostata relevanten Fragestellungen maßgeblich unterstützt werden. Der vorgestellte
Algorithmus basiert auf dem Prinzip des überwachten maschinellen Lernens und bein-
haltet künstliche neuronale Netzwerke, welche im verwendeten Algorithmus ein Pixel-
Klassifikationsproblem lösen. Zusätzlich ermöglicht das implementierte Programm die
Volumenschätzung der segmentieren Prostatazonen. In 100 Studien erzielt der implemen-
tierte Algorithmus im Verhältnis zur tatsächlichen Prostatazone eine mittlere Überlap-
pung von 0.81 für die zentrale Prostatazone und 0.69 für die periphere Prostatazone. Eine
nachfolgende Volumenschätzung der segmentierten Prostatazonen erreicht im Bezug zu
den tatsächlichen Prostatazonenvolumina Pearsonsche Korrelationskoeffizienten von 0.91
für die zentrale- und 0.64 für die periphere Prostatazone.

Suchbegriffe: künstliches neuronales Netzwerk, maschinelles Lernen, überwachtes Ler-
nen, MRT, Prostatazonensegmentierung, Prostatavolumenschätzung
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Chapter 1

Introduction

The human visual cortex (VC) is located in the back of the brain and is responsible for
processing visual information, which is received from the optic nerve. The VC enables
image understanding and object recognition and is part of the visual sensory system [1],
[2]. As the the lateral geniculate nucleus (LGN) in the brain consists of approximately
six hierarchical layers, theoretical models assume that visual perception also works in a
hierarchical manner [2], [3]. The task of recognizing objects and understanding images
is performed by our VC in milliseconds [4]. Humans have learned since their births the
ability to learn to recognize objects, e.g., faces. Everyday we are required to use this
easily executable and remarkable ability [5]. However, in contrast it is hard to transfer
the complex cognitive abilities and model-based knowledge, which are learned over years,
to a computer program [6]. Nowadays intense research, including this work, is attempting
to develop an automatic algorithm, which acts like the human visual cortex [7], [8], [9],
[10], [11], [12], [13].

According to the Organisation for Economic Co-operation and Development (OECD), the
number of imaging devices in each country worldwide is increasing steadily [14]. Thus,
the number of magnetic resonance imaging (MRI) devices increases to that effect and
correlates with the number of imaging exams [14]. It is likely that this trend will continue
in the next years due to the rising world population [15]. MRI exams are made to offer
medical doctors insight into internal structures of the human body to detect abnormalities
without going in vivo. In the early 90s physicians and medical personal started using
imaging devices broadly. This could be associated as a reason for the decrease of cancer
death rates over the last 20 years [16]. Detecting abnormalities in images is achieved by
visual observation of medical doctors. This plays a key role for the image interpretation
and is therefore a vital part of the diagnosis process [17].
As detecting or recognizing abnormalities in images is a high-level image processing step,
several former steps are necessary, e.g., segmentation [18]. The simplest way to obtain
a segmented image is a manual segmentation [6]. This time consuming manual task is
practically not feasible because of the high number of imaging exams [14].
Based on this and the fact that detecting abnormalities is important for diagnostic pro-
cesses, researchers are seeking automated algorithms for medical image segmentation,
which is performed by software programs [6], [13], [19], [20]. Solving this problem is the
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CHAPTER 1. INTRODUCTION 2

key to success in the automated detection of abnormalities [6].
Being aware and knowing the segmentation of a region of interest in an image leads to the
possibility of calculating properties out of the segmentation. If these properties differ from
their normal values (e.g. high eccentricity), abnormalities can be detected [18]. Therefore,
an accurate initial segmentation is necessary to achieve accurate results in further high
level image analysis [6]. The following Figure 1.1 represents the computer vision pipeline
and provides the basic processing steps to understand images [18]. Each step of Figure
1.1 forms what is called a domain:

Figure 1.1: Computer vision pipeline

With the exception of step 1, the remaining steps are usually performed intrinsically
by medical doctors through visual observation [17]. In order to develop an automated
solution for which no expert interaction is required, this work will focus on the domains
2, 3 and 4 with an in-depth look into step 4 (Segmentation). The domains and tasks
of points 5 and 6 are not covered, because they require accurate results in former steps.
Hence, this work focuses on accurate and reliable image segmentation in order to establish
a good initial image segmentation to form either a basis for high level image processing
tasks (domain 5 and 6) or to support medical doctors in recognizing abnormalities.
Segmentation of structures or tissues in medical images can affect and improve several
medical routines (e.g. diagnosis, evaluation, treatment planing/selection) positively if the
segmentation is accurate and reliable. Therefore, the main requirement for an automated
segmentation algorithm is that it needs to segment the organ of interest like an expert in
reasonable time. Only in this case, the algorithm is eligible for clinical usage [13], [21].
An automated segmentation algorithm, which is able to segment all kind of organs in
multi-modality images, currently does not exist for clinical usage due to the involving
complexity. Thus, current solutions concentrate on automated segmentation of one spe-
cific organ/tissue of interest [22], [23]. Because of MD Anderson’s participation at an
automated prostate zone segmentation challenge1 and the fact that prostate cancer is the
most frequently diagnosed cancer after skin cancer amongst men in the United States,
this approach focuses on the automated segmentation of prostate gland and consequently,
the prostate zones [16].

1Results of the NCI-ISBI 2013 Prostate Challenge, (accessed October 2013), http://challenge.
kitware.com/midas/community/

http://challenge.kitware.com/midas/community/
http://challenge.kitware.com/midas/community/


CHAPTER 1. INTRODUCTION 3

Due to the technical developments in MRI over the past ten years, MRI is accepted as
the best imaging modality to visualize anatomical prostate structures [21]. A reason for
this is that the MR technique enables the visualization of soft tissue and prostate tissue
consists of soft tissue [24]. Therefore, the proposed automated segmentation algorithm
was developed and tested on in vivo T2-weighted MRI studies.
This work is important for a number of reasons: automated prostate zone segmentation
provides information about the size, shape, position and volume of the prostate zones.
The prostate volume correlates with the presence of prostate cancer and is therefore
important for diagnostic issues as a predictor for prostate cancer [25], [26]. The provided
information (size, shape, etc.) increases the knowledge about the prostate, which could
affect and improve multiple clinical routines as for instance, prostate cancer staging,
prostate evaluation as well as treatment selection and planing. Furthermore, it could
also influence interventional techniques as MRI-guided biopsies. As a consequence, it can
reduce diagnostic uncertainties [21].
This research work concentrates on the automated segmentation of prostate zones by
utilizing artificial neural networks in a supervised manner. There are multiple studies
about artificial neural networks in general, but no corresponding literature can be found
for the proposed prostate zone segmentation utilizing neural networks. Hence, the next
section presents similar work.

1.1 Published Research in Prostate Segmentation
A considerable amount of literature has been published on prostate segmentation and on
prostate zone segmentation. Existing approaches differ from each other by the required
user interaction (automated, semi-automated and interactive) and the utilized methods.
This section presents related research work and points out the accuracy of each method
by citing the mean Dice coefficient (DC), which can be seen as the mutual overlap of the
segmentation and ground truth (see Section 4.7 for Dice coefficient).

The research team around G. Vincent et al have utilized an active appearance/shape
model to segment the entire prostate in T2 weighted magnetic resonance (MR) im-
ages automatically. They reported a mean DC score of 0.88 [27]. Toth R. et al [28]
presented a medial axis based statistical shape model for prostate segmentation and
reported a mean DC of 0.93. In a further research work Toth R. et al [29] combined
the existing semi-automated active shape model segmentation with subsequent volume
estimation of the prostate and reported a DC score of 0.84 and a Pearson correlation
coefficient of r2 = 0.82 for the corresponding volume estimation. Furthermore, S. Ghose
et al [30] presented a texture enhanced active appearance model in which Haar wavelet
approximation coefficients have been utilized to extract texture features. The texture
features have improved the segmentation results of the entire prostate gland. The
proposed method was tested on MR images and transrectal ultrasonography (TRUS)
images. They achieved mean DC scores of 0.95 on MRI studies and 0.81 on TRUS studies.
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Further approaches are atlas based segmentations. A prominent example of these was
reported by Geert Litjens et al [31]. They proposed a semi-automatic multi-atlas algo-
rithm and achieved a mean DC of 0.78. M. Rusu et al. [32] presented a semi-automatic
statistical atlas construction via anatomically constrained registration for the prostate
and utilized the atlas for segmenting the prostate zones. To generate the atlas, MR
image information was combined with corresponding histological images. Respectively,
the achieved mean DC scores are 0.89 and 0.77 for the two segmented prostate zones.

M. Yang et al [33] reported an automated prostate segmentation approach using dis-
criminant boundary features. Due to the variable shape of the prostates, their approach
included scale invariant features transformation. The DC score between the automated
segmentation and the ground truth is 0.94 for the entire prostate gland.

The described individual scores of each research team cannot be compared and evaluated
adequately because of three reasons. Firstly, they utilized different interaction modes;
secondly, results are based on different datasets; and thirdly, some segmented the prostate
gland and some segmented the prostate zones. To counteract this, the Prostate MR Image
Segmentation Challange 2013 2 and the NCI-ISBI Automated Prostate Segmentation of
Prostate Structure Challange 2013 3 was realized and presents a comparison of different
approaches by utilizing the same dataset, but different interaction modes. Not all previ-
ously described research teams have participated at these challenges.

1.2 Structure of the Work
Chapter 2 provides information about the prostate seen from a medical viewpoint. The
anatomy, function as well as prostate imaging and diagnosing prostate cancer are de-
scribed. Chapter 3 contains fundamental image processing basics to enable the reader to
better understand the upcoming sections and the proposed methods.
Chapter 4 describes methods in order to achieve automated prostate structure segmenta-
tion. The utilized steps are presented in detail. Chapter 5 shows results and an evaluation
of the proposed algorithm. The thesis ends with a discussion in Chapter 6. In the discus-
sion chapter are encountered problems, limitations as well as an outlook given.

2MICCAI Grand Challange of Prostate MR Image Segmentation 2012, (accessed October 2013),
http://promise12.grand-challenge.org/

3NCI-ISBI 2013 Challenge - Automated Segmentation of Prostate Structures, (accessed October 2013),
http://goo.gl/OBdxpq

http://promise12.grand-challenge.org/
http://goo.gl/OBdxpq


Chapter 2

Medical Background of the Prostate

This chapter provides insight into the medical background of the prostate. Subsection
2.1 describes the anatomy and the function of the prostate. Afterwards, Subsection 2.2
explains the common medical imaging techniques to visualize the prostate. The last
Subsection 2.3 presents information on how prostate cancer is currently diagnosed.

2.1 About the Prostate
In 2013, the American Cancer Society estimates that there will be 238,590 new cases of
prostate cancer in the United States. Approximately 29,720 people will die of prostate
cancer in 2013. Moreover, prostate cancer is the most frequently diagnosed cancer in men
after skin cancer [16]. For unknown reasons, prostate cancer occurs 70% more often in
white people than in African Americans [16]. Similar to other types of cancer, prostate
cancer is most effectively treated when diagnosed early. Hence, special attention should
be directed to prostate cancer and its diagnosis [21].
Prostates can only be found in males and are part of the reproductive system. Each
male has normally one prostate located in the men’s abdomen. To be more specific, the
position of the prostate is below the urine bladder and in front of the rectum, as shown
in Figure 2.1(a). Figure 2.1(b) represents the different zones of the prostate, which will
be explained later in this section.
As the prostate is located near the rectum, it can be palpated from the rectum. This
procedure plays a role in diagnosing prostate cancer, which is explained in section 2.3. The
size of the prostate can show high variation during lifetime. In early ages the prostate has
usually the size of a walnut or chestnut. In men older than 50, the prostate can be much
larger. If the prostate increases its volume caused by illness, urinating and ejaculation
problems can occur. The prostate’s average weight is 30-40g. A prostate having a volume
> 40cm3 is considered large. As mentioned in the introduction, the prostate volume is a
predictor for prostate cancer [25], [26].
The prostate is an exocrine gland and is responsible for secreting a fluid during ejaculation
to extend the lifetime of sperm. This function is important for the fertilization process,
because the female’s vagina is acidic to protect herself for infection. Therefore, the secreted
fluid enables sperms longer lifetimes in the vagina by protecting them from the acidic

5



CHAPTER 2. MEDICAL BACKGROUND OF THE PROSTATE 6

(a) (b)

Figure 2.1: Anatomy of the prostate: (a) abdominal position of the prostate 4, (b) different
zones of the prostate [34]

environment. Furthermore, the prostate’s epithelial cells secrete a prostate specific antigen
(PSA), which is an important marker for prostate cancer diagnosis (see Section 2.3). The
secreted fluid and the sperm form together the semen, which is carried out of the body
through the urethra. The urethra is a tube, which ranges from the bladder to the end of
the genitals. The urethra goes through the center of the prostate and merges with the
ejaculatory ducts [34], [35], [36].
As shown in Figure 2.1(b) the prostate consists of three principle zones. In a healthy
prostate the central zone forms 25% of the prostate volume. The central zone and
transitional zone form together the inner part of the prostate, which is known as cen-
tral gland (CG). The peripheral zone (PZ) is the third zone of the prostate and lies
partly around the CG. The combined area of CG and PZ is known as prostate gland.
Over two-thirds of prostate carcinomas occur in the PZ. Thus, this work targets the
segmentation of CG and PZ. The yellow tube in Figure 2.1(b) represents the urethra [34].

Patients with early or mid-stage prostate cancer do not show any staginess symptoms.
Possible symptoms indicating prostate cancer are blood in the urine/semen and ejacula-
tion/urinating problems. Unfortunately, there are no typical prostate cancer symptoms
because the described symptoms can also be caused by other diseases. The only well-
known risk factor for prostate cancer is an increasing age. 97% prostate cancer cases are
diagnosed in men older than 50 years [16], [35].

4My Health Alberta, ©Healthwise, incorporated, (accessed October 2013), http://goo.gl/1cAch0

http://goo.gl/1cAch0
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2.2 Prostate Imaging
Currently, established modalities to visualize the prostate are ultrasonography (US), MRI,
magnetic resonance spectroscopy (MRS), computed tomography (CT) and positron emis-
sion tomography (PET). Due to rapid technical developments in imaging devices, prostate
cancer can be visualized better than ever before. There also exist several new techniques
such as dynamic contrast-enhanced MRI and diffuse-weighted imaging, which should be
evaluated over the next years [37], [38], [39].
1.Ultrasonography: The most common technique to visualize the prostate is TRUS,
which is simple and readily available. Echoes caused by emitted sound waves generate the
gray-scale image information. This technique can be used either for viewing the prostate
itself or for guided prostate biopsies. TRUS is commonly used to estimate the prostate’s
volume. [37]
2.Magnetic Resonance Imaging: MR images provide a clear look at the prostate [35].
Especially, T2 weighted MR images provide sufficient soft tissue resolution to visualize
the prostate structures. In contrast to T2 weighted images, appears the prostate in T1
weighted MR images as one homogenous region [38]. MR imaging is used for prostate
cancer localization and staging. Referring to the C. Tempany and F.Franco [21], MRI will
become more important for detecting and diagnosing prostate cancer [40]. Beyond that,
MR imaging has also been proposed successfully for MRI-guided prostate biopsy and has
shown promising results [41], [42].
3.Magnetic Resonance Spectroscopy: Tumor growth involves increasing cell
metabolism, which can be analyzed by MRS. For example, MR images provide infor-
mation about the location, size and position of the tumor and in contrast MRS provides
information about the cellular activity within tissues. MR is usually performed before
MRS to superimpose the T2 weighted MR with the MRS image. Several studies have dis-
covered that combining MR with MRS, which means combining anatomical and metabolic
information, leads to higher accuracy in diagnosing prostate cancer. [37], [38]
4.Computed Tomography: CT imaging plays a less important role in detecting and
staging prostate cancer due to poorly visualized intraprostatic anatomy. CT scans can
help to diagnose metastatic diseases (bone metastases and lymph node involvement), but
MRI should be used as it is superior to CT imaging. [37], [43]
5.Positron Emission Tomography: PET is a functional imaging technique and visu-
alizes glucose metabolism of cells. Due to the fact that cancer has increased metabolism
rates, it can be detected and staged by PET scans. But research results have shown
mediocre results, because of the difficulty to discriminate between benign and malign tis-
sue regions. Both regions present high metabolism rates. Researchers try to figure out
the best PET tracer for the optimal PET use for prostate cancer. [37], [44]
In conclusion MRI is accepted as best imaging modality to visualize the intraprostatic
anatomy [21]. Two examples of MR images of the prostate are illustrated in Figure 2.2.
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(a) (b)

Figure 2.2: T2-weighted prostate MR images seen from a axial view [21]: (a) despite
high soft tissue resolution it is still hard to distinguish between prostate zones, (b) expert
contours of prostate gland shown in yellow and CG is represented in red. The area between
these two boundaries represents PZ.

2.3 Diagnosis of Prostate Cancer
In patient cases with indications of prostate cancer, digital rectal exam (DRE) and PSA
blood tests are performed as a first step to detect prostate cancer [37]. During a DRE,
the examining doctor puts a gloved finger into the patient’s rectum to palpate prostate
abnormalities. A PSA test is understood to measure an enzyme produced by the prostate,
which allows drawing conclusions about abnormalities (see Section 2.1) [45]. Due to
the fact that solid pathological diagnoses can neither be made by DRE nor by PSA,
it is necessary to carry out biopsies, if either DRE or PSA shows abnormalities. A
TRUS-guided biospy is typically performed as a second step followed by pathological
examinations [21], [35]. To receive accurate results from pathological examinations, it is
important to extract tissue samples from the affected region(s). If tissue is extracted from
a non-affected, healthy region despite the fact the observed patient has actual prostate
cancer, false-negative results are the outcome. Thus, prostate biopsies play a key-role
in the diagnostic process of prostate cancer. Being aware of the internal anatomical
prostate zones brings advantages in performing diagnostic prostate biopsies. This issue
is addressed by segmenting the internal anatomical prostate zones. Recent results have
shown that MRI-guided biopsies have a higher detection rate of prostate cancer in patient
with suspected prostate cancer and previously negative TRUS-guided biopsies [21], [41],
[42]. Automated prostate zone segmentation in MR images, provides information about
the prostate, which could affect and improve multiple fields as evaluating prostate cancer,
treatment selection and reducing diagnose uncertainties. Furthermore, it can improve the
accuracy of MRI-guided biopsies or other interventional techniques.



Chapter 3

Image Processing Background

This chapter describes image processing basics, which are used in this thesis in order to
help the reader to understand utilized methods in Chapter 4. Section 3.1 concentrates on
object segmentation in images, which is part of the computer vision pipeline (see Figure
1.1). The following two sections address supervised learning and classification of image
pixels. Thus, Section 3.2 contains information about the proposed learning method to
train a classifier for segmentation. The last Section 3.3 explains the classification process
and the theory behind the implemented classifier in detail.

Most of the following information in this chapter is extracted from [46] and [47]. If further
information is used, corresponding sources are given.

3.1 Object Segmentation in Images
Dividing or partitioning a digital image I into disjoint regions with similar properties
(e.g. intensity or color) is understood as image segmentation [6], [48]. An image I is
segmented in K disjoint regions rk through:

K⋃
k=1

rk = I , for ∀k : rk ⊆ I and ∀k 6= j : rk ∩ rj = ∅ (3.1)

In literature, image segmentation is described as a low-level processing step within the
computer vision pipeline (see Figure 1.1). But in this work an advanced version of image
segmentation namely object segmentation is utilized. It is defined as the identification of
different objects in an image. For example, consider cell segmentation in a microscopic
image. The goal of object segmentation is to segment each cell in the image from the
background and distinguish it from other cells. Transferred to this approach, the goal
of object segmentation is to segment each zone of the prostate from the background and
distinguish them from other zones.

9
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In the following work i and j are discrete values in the range of the image dimensions N
and M and represent pixel position indices (see Equation 3.2).

S = {(i,j)|1 ≤ i ≤ N, 1 ≤ j ≤ M} (3.2)

The output of object segmentation is a label image L(i,j), whereby each pixel position
contains a discrete value k in the range from 0 to K that unambiguously belongs to one
of the K-objects in the image (see Equation 3.3):

L(i,j) = k, for L(i,j) ∈ {0, K} and ∀(i, j) ∈ S; (3.3)

L(i,j) = 0 usually determines background and L(i,j) = k for k = 1,...,K represents ob-
jects of interest (in this work different prostate zones) [49]. Consequently, I and L have
the same image dimensions. The simplest label image is represented by a binary label
image, containing 0 for background and 1 for foreground. In literature, several methods
exist to segment an image as for instance threshold, histogram, watershed, level sets and
clustering methods [6], [18], [48], [49]. Contrary to these methods this work utilizes a dif-
ferent approach to achieve object segmentation, which is particularly pixel classification
whereby, the input image is a MR image I (i, j) and the predicted output by the algorithm
L(i, j) represents the corresponding label image. The output label can contain up to three
discrete values, which are as follows: 1 represents PZ, 2 indicates central gland CG and 0
stands for background. Thus, object segmentation or in other words the identification of
different objects (in this case different prostate zones) is achieved through pixel classifi-
cation. Considered in more detail, object segmentation is accomplished in this work by a
supervised classification approach, which is described in detail in the next two sections.

3.2 Supervised Learning
Generally, there are three types of learning for pixel labeling in the fields of image pro-
cessing, pattern recognition and machine learning. The first one is called unsupervised
learning in which the learning algorithm learns mapping input to the correct output on
its own. Unsupervised learning can be seen as detecting structures or clusters in data.
The second type of learning is called reinforcement learning, which deals with learning
"what to do". An algorithm should learn how to map situations to actions in a way to
maximize a numerical reward [50]. For instance, consider pet obedience schools where
dogs learn to sit. Every time a dog sits on command, it will receive rewards. The third
type of learning is known in literature as supervised learning. Supervised learning is
understood to find a function which maps input to the correct output by telling the
algorithm during the training the correct output [6], [46].
Supervised learning methods can be divided into training and prediction phase. Hence,
these methods require training with expert selected labels, which are determined in the
following expert labels. The fact of having expert drawn labels available, it is hypoth-
esized that automated prostate zone segmentation would be amenable to a supervised
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machine learning approach. This means that a classifier is trained based on expert labels
in order to use it subsequently to process new images. At this point, definitions are
invented to explain how a classifier-model is trained and then in further consequence
utilized for prediction.

A set D is comprised of input vectors xw, as well as of output vectors yw and is defined
as follows:

D = {(xw,yw)}uw=1 with xw = (x1, x2, ..., xv−1, xv)T and yw = k for k ∈ {1, ..., K}
(3.4)

Whereby u in equation 3.4 represents the total number of in-output pairs. One in-output
pair is denoted by (xw,yw). The input vector xw is a v-dimensional vector. Where each
dimension represents one feature. Features are extracted from images in order to generate
xw. This procedure is described later in the feature extraction Section 4.3.
In most models the output y is a v-dimensional vector containing values k in the range
y ∈ {1, ..., K}. Furthermore, y is in literature also called target vector. If yw contains
discrete values, the problem is categorical and known as a classification problem (see
Section 3.3). If y contains real-valued or continuous values, the problem is determined to
be a regression problem.

As described in Equation 3.4 one in-output pair consists of one input vector xw contain-
ing v-features and one target value yw, which represents the corresponding class. yw is
denoted in vector notation because some models require the target vector in form of the
1 − of −K coding scheme. For instance consider six classes (K = 6), the target vector
for class 2 is either determined as yw = (2) (single target vector) or in the 1 − of − K
coding scheme as yw = (0, 1, 0, 0, 0, 0)T (multi target vector).
For more than one in-output pair – which is usually the case – the input for training a
classifier is a u× v dimensional matrix denoted as X. Matrix X is also called the design
matrix, because it is used to design the model. In this case the model is a classifier.
Depending on utilizing single or multi target vectors, the model’s output Y is either a
u-dimensional vector or a u× k dimensional matrix. X and Y are illustrated in Equation
3.5.

X =



xT1
xT2
...
xTu

 =



v features︷ ︸︸ ︷
x11 x12 x13 · · · x1v

x21 x22 x23 · · · x2v
... . . .

xu1 xu2 xu3 · · · xuv




u-items and Y =



y1

y2
...
yu

 (3.5)
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Note that X and Y must have the same u-dimension for the training phase. Combining
X and Y results in the training set D, which is in this work used to train a classifier:

D = {(xw,yw)}uw=1 =̂ D = (X,Y) (3.6)

The goal of the training phase is to learn a model h that maps the input to the correct
output or respectively directly into the decisions (see Section 3.3). The precise form of
model h is learned during the training phase (see Equation 3.7). Applying this method-
ology to the utilized approach means that the basic idea of this work can be described
as follows: the goal is to train a model based on MR images and expert labels and then
predict the prostate zones on new MR images. As it utilizes a supervised classifier, it
must be trained in order to process unlabeled data. Therefore, Equation 3.7 describes the
process of both phases:

training phase : D = (X,Y) −→ h prediction phase : Ŷ = h(X) (3.7)

The form of model h is assessed in the training phase based on D. Afterwards, model
h can be applied to novel unlabeled input for which no ground truth is available. This
procedure is called the prediction phase. The ability to predict output from novel input –
input seen for the first time – is enabled through generalization. Generalization is involved
through the fitted model and is a central goal of pattern recognition. Making predictions
on known data (training set) is easy because the answer just needs to be extracted from
the training set (look-up table).
Prediction with novel input is made with Ŷ = h(X), whereby the hat-symbol indicates
estimates because the goal is to predict or estimate output which is similar to the ground
truth. Finally, a different look at supervised learning is for instance the following: A
training set D is used to parameterize a model h for mapping xw to yw [6]. The more input
vectors xw that are assigned to the correct output yw by the model, the more accurate
segmentation results can be achieved. The next sections concentrate on assessing model
h.

3.3 Classification of Image Pixels
Classification is part of the decision theory and is about grouping objects together to
classes. Objects with similar properties or values should be assigned to the same class.
In the field of pattern recognition, this means that each input is assigned to a discrete
value or class. By dealing with discrete output values, this approach sets itself apart from
regression, in which the output consists continuous variables. Furthermore, combining
probability theory with decision theory enables optimal decision making and is therefore
a essential part of classification. Classification problems can be broken down into two
stages. The first stage is called inference stage and the second one is called decision
stage. In general, there are two different models to solve classification problems, which
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are namely generative models and discriminant models. For further understanding, it
is important to know that decision problems can be treated as classification problems.
The following section explains generative as well as discriminant models and provides a
transition to artificial neural networks:

1. Generative models: These models try to solve the inference stage by obtaining
the probability distributions p(x|y,D), p(y,D) and p(x,D). Then the posterior class
probabilities p(y|x,D, θ) using Bayes’ theorem (see Equation 3.8) are determined, whereby
θ are model parameter learned in the training phase. Given a new input feature vector x
and a training set D, the conditional probability distribution over all classes is denoted as
p(y|x,D). This notation points out, that the probability for class y is conditional on the
new input feature vector x and on the training set D, by writing them on the right side of
the conditional bar |. p(y,D) presents the class prior probability and p(x,D) represents
the likelihood of the data and is in literature also known as evidence. In order to form
Equation 3.8, generative models need to capture the joint probability p(x,y) in order to
derive p(x|y,D), p(y,D) and p(x,D) by marginalizing or summing out. This procedure
can be time consuming for large datasets.

p(y|x,D, θ) = p(x|y,D) p(y,D)
p(x,D) with p(x,D) =

∑
K

p(y|x,D) p(y,D)) (3.8)

The denominator in Bayes’ theorem can be seen as normalization to ensure the posterior
class probabilities sum to one. When the posterior probabilities are determined, the deci-
sion stage can be solved by assigning each input to the maximum a posteriori probability
utilizing Equation 3.9. This procedure corresponds to assigning input to the most prob-
able class or to the "best guess". Equation 3.9 is also known as maximum a posteriori
estimation (MAP).

ŷ = ĥ(x) = Karg max
k=1

p(y = k|x,D) (3.9)

These models are denoted as generative models because they are full probabilistic models
and form input as well as output distributions from any variable. Hence, sampling from
a model is possible, which enables consequently generation of synthetic input data. Gen-
erative models are usually trained by maximizing the joint likelihood

w∑
u=1

log p(yu,xu|θ),

whereby θ represents the model parameters.

2. Discriminative models: If classification is the task of interest, then it is some-
times (depending on the input) time wasting to compute the joint probabilities, when
just the posterior probabilities are needed. Therefore, discriminative models form in
contrast to generative models, class posteriori probabilities directly in order to solve
the inference stage. In the next stage an optimal class assignment using the learned
posterior probabilities is performed to realize classification (see Equation 3.9). A spe-
cial approach to accomplish classification is to find a function in the following called
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discriminant function, which maps an input vector x directly to an output class y.
This approach solves the inference stage by learning a function. Thus h in Equation
3.7 can be seen from now on as discriminative function: h : x −→ y. Discriminative
models are usually trained by maximizing the conditional log likelihood

w∑
u=1

log p(yu|xu,θ)

In addition, there is a further distinction between available pattern recognition models
for classification and pattern recognition models for regression. These models can be
subdivided into two groups called parametric models and non-parametric models. The
former models have a fixed number of parameters and can be used as a consequence fast.
The model’s drawback is, that it strongly relies on the input data distribution, which
results in stiffness if novel data needs to be processed. In contrast there are non-parametric
models, whereby the number of parameters increase with the amount of training data.
Non-parametric models are more flexible, but computational expensive for large datasets.
Table 3.1 represents an overview of existing pattern recognition models.

Table 3.1: List of classification and regression models
Model Classif/Regre Gen/Discr Param/NonParam

Naive Bayes Classifier Classif Gen Param

K-nearest Neighbor Classifier Classif Gen NonParam

Classification and Regression Trees both Discr NonParam

Support Vector Machine both Discr NonParam

Linear Regression Regre Discr Param

Logistic Regression Classif Discr Param

Neural Network both Discr Param

Deep Belief Network both Gen source

List of different classification and regression models. The columns are defined as follows: first col-
umn contains the model name; second column presents if the model can be used for classification,
regression or both; third column determines whether the model is a generative or discriminative
model; fourth column displays if the model is either a parametric or non-parametric model

This work utilizes primary neural networks for classification, which are discriminative
models as illustrated in Table 3.1. For this reason, the rest of the chapter is dedicated
to discriminative models and functions. However, this work also contains a deep belief
network approach to initialize a neural network, which is described afterwards in Section
3.3.2.
As the goal of classification is assigning each input vector (feature vector) x to a discrete
class k = 1, ...K (target), the input space has to be divided into decision regions by
discriminant functions when using discriminative models.
Unsupervised classification is related to density estimation and tries to cluster data
itself into classes during the training phase. Complete unsupervised classification does
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not provide satisfying segmentation results in this work. Opposite to this is supervised
classification, in which the models are not seeking to model distributions of the input
variables. Supervised classification is commonly used in the field of computer vision,
because current supervised classification models produce in general more precise results
compared to results obtained from unsupervised classification. Because of having valuable
expert labels available, supervised classification is utilized.
The simplest classification problem is represented by one-dimensional input, which is
comprised of two classes. A further assumption is that the input is linear separable.
Based on this, the input space can be separated by a simple threshold. Linear and
non-linear separable two-dimensional input data comprised of two classes is illustrated
in Figure 3.1. Two dimensional input data correspond to a feature set consisting of two
features (x1, x2). Therefore, the x-axis in Figure 3.1 can be seen as the first feature
(x1) and accordingly the y-axis can be seen as the second feature (x2). In conclusion, a
v-dimensional input corresponds to a v-dimensional feature vector.

(a) (b)

Figure 3.1: 2D Classification between two classes: (a) linear discriminative function, (b)
non-linear discriminative function

To explain how classification can be achieved, as exemplarily shown in Figure 3.1, linear
regression models are introduced and illustrated in Equation 3.10. A linear regression
model is a weighted linear combination of inputs and fits a linear discriminant function
to the input data.

y(x, θ) = hθ(x) = θ0 +
u∑

w=1
θwxw (3.10)

θ0 represents a bias and u indicates the total number of feature vectors (input vectors).
θw indicates the weight of feature xw. Adding to the existing feature vector, a feature
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x0 whose value equals one (x0 = 1) enables a more compact notation of linear regression
models (see Equation 3.11):

y(x, θ) = hθ(x) =
u∑

w=0
θwxw = θTx (3.11)

with the feature vector x = (x0, x1, ..., xu)T , the parameter vector θ = (θ0, θ1, ..., θu)T
and θTx, whereby θTx represent the inner scalar product of θT and x. Linear regression
models can be used to solve regression problems, but they are fairly limited in what they
can learn to do. To solve classification problems, logistic regression models should be
applied. Logistic regression models are derived from linear regression models by adding
an outer-function σ(.) to 3.11. Mostly, the outer function is represented by a sigmoid
function. In literature, the sigmoid function is also referred as logistic function. The
sigmoid function is defined as follows:

σ(a) = 1
1 + e(−a) (3.12)

Combing Equation 3.11 and 3.12 leads to the logistic regression model, which is illustrated
in Equation 3.13. These models can fit a linear discriminant function for classification
purposes (see Figure 3.1(a)). The sigmoid function in 3.13 maps the output of the linear
regression model to a number between 0 and 1. Therefore, the output can be treated as
posterior probability for the "positive" class, considering a single classification problem
for which two classes exist (k1 = 0 or k2 = 1).

p(yk=1|x,D, θ) = y(x, θ) = 1
1 + e(−θT x) = σ(θTx) (3.13)

Accordingly, the probability for class two is given by p(yk=2|x,D, θ) = 1−p(yk=1|x,D, θ).
Thus, the inference stage is solved using Equation 3.13. Afterwards the decision stage
can be solved by MAP (see Equation 3.9). Obviously, the input space in Figure 3.1(a)
is well separated and can be discriminated by a linear logistic regression function of the
following form: y(x,θ) = σ(θ0 + θ1x1 + θ2x2). Thereby, an input vector x is assigned to
the most likely class, which results in class 1 if y(x,θ) < 0 and to class 2 if y(x,θ) ≥ 0.
This notation automatically assigns an input vector to the most likely class, because the
sigmoid function outputs 0.5 for an input with value zero σ(0) = 0.5. Dealing with more
than two classes is in literature known as multi-class classification. As the label image
L(i, j) can contain three different values, this thesis addresses a multi-class classification
problem.
Despite the fact that logistic regression models include the word "regression", they just
can be used for classification. Linear regression and logistic regression models fit a linear
discriminant function or in other words they provide a linear decision boundary. If a linear
discriminative function cannot separate the input space, then a non-linear discriminative
function can be applied (see Figure 3.1(b)) to reduce the misclassification rate. Linear
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regression models have linear discriminative functions (e.g. line for 2D feature vectors)
and analogous have non-linear regression models non-linear discriminative functions (e.g.
polynomial function for 2D feature vectors). Considering a three dimensional linear sepa-
rable input space, the discriminative function is represented by a hyper-plain. Classifying
the input space into more than 2 classes results in more than one discriminative function
and leads to increased complexity.
Most of the real world data including the data utilized in this thesis are not linear sep-
arable. Hence, the goal is to fit a non-linear classification model. To solve non-linear
classification problems, as for instance the example illustrated in Figure 3.1(b), an adap-
tion of the existing logistic regression model is necessary. The input x in the logistic
regression model (3.13) is replaced with φ(x) to model non-linear relationships. φ(x) is
in literature known as basis function expansion. The form of logistic regression models
for non-linear classification problems looks then as follows:

y(x, θ) = σ

(
u−1∑
w=0

θwφw(x)
)

= σ
(
θTφ(x)

)
(3.14)

with φ = (φ0, φ1, ..., φu−1)T and θ = (θ0, θ1, ..., θu−1)T . x represents a feature vector.
Thus, φ(x) is a transformed feature vector by a linear or non-linear basis function. If the
basis function is simply the "identity" of φ(x) = x, then Equation 3.14 can be transferred
in Equation 3.13. Utilizing a non-linear basis function φ(.) leads to a non-linear model
in total.
Many machine learning algorithms as for instance neural networks, support vector ma-
chines, classification and regression trees concern about estimating the basis functions
φ(.) from input data to form Equation 3.14. All previously mentioned algorithms are
just different ways to estimate φ(.). Therefore, estimating φ(.) represents the core of this
work. Depending on the input x it is sometimes appropriate to fit a polynomial function
φ(x) = (1, x, x2, ..., xv) to the data to receive a non-linear logistic regression model. This
would result, e.g., when using 50 features and fitting a quadratic function to the data, in a
1250 dimensional feature vector in total. Furthermore, fitting a cubic model would end up
in a 20000 dimensional feature vector. Consequently, this approach can be computational
expensive for high dimensional feature vectors. Neural Networks overcome this limitation
and for that reason they are utilized. Neural Networks are derived from logistic regression
models and subsequently Equation 3.14 is considered to be a starting point to explain
Neural Networks in Section 3.3.1.
Classification can be applied in the field of image processing, on the one hand to the
whole image (image classification) or on the other hand to each pixel in an image (pixel
classification). The latter one is proposed in this thesis. Image classification and pixel
classification are utilizing different in- and outputs sets. Thus, both are described briefly
in the following to point out differences and to position this work in the field of pattern
recognition.

1.Image Classification: Image classification can also be seen as image recognition,
because images are recognized by classification. Thereby, usually one decision is made
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for the whole image, e.g., is a car in the image or not? Image recognition represents a
high-level image processing step (see Figure 1.1) within the computer vision pipeline. In
general, to achieve image recognition, it is firstly necessary to extract features in order
to reduce the feature set’s dimensionality, which represents the input for a classifier. If
features are not extracted, the input for a classifier is given by the raw gray values from the
image itself. Considering an 512×512 MR image, the feature set would consist of 262144
dimensions. Processing such a high dimensional feature set is not feasible. As previously
described to overcome this, features needs to be extracted to reduce dimensionality.
An example for image classification is the recognition of hand written digits5. Hence,
a classifier has to make a decision, which digit the image represents. Respectively, this
results in 10 classes, whereby each class outlines one digit. Images in the Mixed National
Institute of Standards and Technology database (MNIST) have a dimensionality of 28×28
pixel, which results in a total pixel number of 768. There exist several approaches to
handle this "low" 768-dimensional feature set. This means that in this special case the
whole image represents the classifier’s input. Thus, no former feature extraction needs to
be done because in this case features are basically given by the raw gray pixel values. This
procedure is only possible because of the low dimensional feature set, which is in turn
enabled by the small image size (28×28). In conclusion, using this approach for 512x512
MR images to segment the prostate zones is not feasible.
2.Pixel Classification: Using a classifier for pixel classification in a N×M dimensional
image, respectively N×M classifications have to be made in order to segment an image.
Using the gray value of the pixels in an image as a feature, results in an one dimensional
feature vector. Performing classification on just an one dimensional feature set leads to
poor segmentation results in this thesis. Therefore, similar to image classification, features
have to be extracted to enable achieving meaningful segmentations. In contrast, features
are not extracted from the entire image, features are extracted from each pixel itself in
order to cluster the input space.
An example for pixel classification is the work proposed by the research team around
Farabet et al in [51]. They trained an algorithm in a supervised fashion to enable full
scene labeling of new input images. Hence, multi scale features are extracted for each
pixel from a Laplacian pyramid, whose input is an image. The output is a label image
containing labels for each object. The basic methodology in [51] is similar to this work,
but differs in the feature extraction and classification process.
To recognize objects and abnormalities in images, it is essential to have a good initial
segmentation. In the next step, describing features can be calculated out of the segmenta-
tion (e.g. area, compactness, contrast) and on the basis of this, a classifier can recognize
abnormalities through classification. Applying this procedure on the prostate could be
as follows: Firstly, an initial segmentation of the prostate zones needs to be established
in order to decide on behalf of this in a subsequent step if the prostate is cancerous or
not. Summarized this work addresses establishing the initial prostate zone segmentations
for which pixel classification is utilized. This work does not cover the recognition of
abnormalities within the prostate.

5MNIST Database for Handwritten Digits, (accessed October 2013), http://yann.lecun.com/exdb/
mnist/

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
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3.3.1 Artifical Neural Networks

A way to implement a probabilistic classifier is to model the joint probability p(y,x),
condition on x and derive p(y|x). This procedure is called generative approach. Another
way to fit a model of form p(y|x) is to model p(y|x) directly. This approach is called the
discriminative approach and is described in detail in this section.
A artificial neural network (ANN) is inspired by the human brain, which is comprised
of about 100 billion neurons. Each neuron is connected to about 10,000 other neurons.
Neurons are emitting signals via their axons. If the total signal input received from other
neurons by its dendrites exceeds a certain threshold, the neuron itself is activated and
emits a signal. This ability enables neuron interaction and creates thereby intelligent
thoughts. An ANN is comprised of interconnected artificial neurons, which send acti-
vation signals to each other to fulfill a specific task as for instance classification. Other
available applications for ANNs are function approximation, data processing, clustering
and time series prediction [52], [53].

There are multiple types of neural networks as for instance Recurrent, Radial Basis ANNs
and Self Organizing Maps. Probably the most common type of ANNs are Feed Forward
Artificial Neural Network (FFANN), which are used for pixel classification in this work.
FFANNs can vary in their topology as they can consist of multiple layers, which are in
turn made up of multiple neurons. In literature FFANNs are also known as multi-layer
perceptron (MLP).
FFANNs are series of logistic regression models stacked on top of each other. Logistic
regression models are a generalized form of linear regression models and have already
been described in Equation 3.14. Logistic regression models are considered as a starting
point to explain FFANNs.

Equation 3.15 represents again logistic regression models for classification problems.
Whereby, the linear combination of fixed non-linear basis functions φw(x) enables model-
ing non-linear discriminant models. If the outer function σ(.) is removed, then Equation
3.15 can be used for regression. If the outer function σ(.) is taken into account, then
Equation 3.15 can be used for classification. From now on σ(.) is denoted as activation
function.

y(x,w) = σ

(
u∑

w=1
θwφw(x)

)
(3.15)

The goal of FFANNs is to extend the existing model in 3.15 in a way that the basis
functions φw(x) depend on parameters, which can be adjusted by the coefficients θw
during a training. In more detail, FFANNs are using non-linear basis functions, which
are itself generated by a linear combination of the inputs. Whereby, the parameters in
the linear combinations of the inputs are adaptive. Thus, the neural network model can
be characterized as a series of functional transformations.
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(a) (b)

Figure 3.2: Comparison of biological neuron and logistic artificial neuron; (a) structure
of biological neuron, (b) structure of artificial neuron 6, whereby x0, ..., xt corresponds to
dendrites and zw to the axon

To derive the neural network model several former steps are necessary. Firstly w = 1, ..., u
linear combinations of the input variables xs = x1, ..., xv have to be constructed as follows:

aw =
v∑
s=1

θ(2)
wsxs + θ

(2)
w0 with x0 = 1 ⇒ aw =

v∑
s=0

θ(2)
wsxs (3.16)

the superscript (2) indicates the parameters correspond to the second layer of the neural
network model, which is also seen as the first hidden layer. Furthermore, the parameters
θ(2)
ws are in literature also referred as weights and the parameters θ(2)

w0 as biases. Defining
an additional input variable x0 whose values is 1 results in a more compact notation of
Equation 3.16. The outputs of v-linear combinations are determined as activations aw. In
the second step, each linear combination aw is transformed by a differentiable, non-linear
activation function namely σ(.) which results in:

zw = σ(aw) (3.17)

The result of 3.17 corresponds to the non-linear basis functions φw(x) in 3.15. z1, ..., zu are
determined as hidden neurons, whereby zw represents the wth hidden neuron. In general
and in this work, the sigmoidal function is used as activation function. Another possible
activation function would be the ’tanh’ function, which is of course also differentiable and
non-linear. Possessing this property is important later on for the network training via
error backpropagation.
As described earlier in this section, FFANNs are comprised of neurons, which are "acti-
vated" when the total input reaches a threshold. Equation 3.17 represents such artificial
neurons. Hence, zw can be seen as artificial neuron or logistic artificial neuron and is

6National Cancer Institute, (accessed October 2013), http://training.seer.cancer.gov/brain/
tumors/anatomy/neurons.html

http://training.seer.cancer.gov/brain/tumors/anatomy/neurons.html
http://training.seer.cancer.gov/brain/tumors/anatomy/neurons.html
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shown in Figure 3.2(b). Furthermore, Figure 3.2(b) illustrates how logistic artificial neu-
rons work, whereby inputs x0, ..., xv can be seen as "dendrites" of an artificial neuron
and analogous the output zw of artificial neurons can be seen as the neuron’s axon. In
contrast, Figure 3.2(a) shows a biological neuron.
FFANNs are usually comprised of three layers namely input, hidden and output layer.
Sometimes in literature, the input is not referred as a layer, because it does not consist
of adaptive weights. But in this thesis the input layer is referred as a layer. To generate
the output layer, the values zw have to be again linearly combined as already shown in
3.15 to form the following equation:

a
(3)
k =

u∑
w=1

θ
(2)
kwzw + θ

(2)
k0 with z0 = 1 ⇒ a

(3)
k =

u∑
w=0

θ
(2)
kwzw (3.18)

whereby k = 1, ..., K represents the number of outputs. The parameter a(3)
k characterizes

the output-unit activation from w = 1, ..., v. Equation 3.18 corresponds to the third layer
of the FFANN model as indicated by the superscript (3). Again θ(2)

k0 are bias parameters
of the second layer. Defining z0 = 1 enables writing the bias parameters into the sum.
The first Equation (3.15) in this chapter presents non-linear models for classification,
considering an outer-function σ(.). This function is again an activation function and
is now applied to Equation 3.18. For classification purposes this function is again the
sigmoid function so that the outputs are finally determined as:

yk = σ(ak) with σ(ak) = 1
1 + exp (−ak)

(3.19)

whereby k = 0, ..., K represents the total number of outputs. It is necessary to apply
Equation 3.19 because the posterior probability for each class is desired. As dealing
with 3 different classes, each output neuron represents the posterior probability for each
class. y1 represents the posterior probability for background and analogous y2 and y3 the
posterior probability for CG and PZ. In conclusion, combining all previous steps to one
overall network function for a three layer feed forward neural network results in:

yk(x,y) = a
(3)
k = σ

(
u∑

w=0
θ

(2)
kw σ

(
v∑
s=0

θ(1)
wsxs

))
≡ σ

(
u∑

w=0
θ

(2)
kw φ

(
v∑
s=0

θ(1)
wsxs

))
(3.20)

Looked at simply, the network model in Equation 3.20 is a non-linear function from a set
of input variables x = (x0, x1, ..., xv)T to a set of output variables yk influenced by a vector
θ of adjustable parameters. This function is illustrated in form of a network diagram in
Figure 3.3. Because the information is flowing one way – from left to right without any
loops or cycles – this network model represents a FFANN.
In Figure 3.3 the 2nd layer is also called hidden layer because it is not connected to the
environment through inputs or outputs. If there are more than one hidden layers, the
network is determined as deep belief feed forward artificial neural network (DBFFANN).
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Figure 3.3: Feed forward neural network

Here, each hidden layer models a new representation of its input and consequently finds
a pattern from the former layer. For each added hidden layer, a weighted linear combina-
tion of form 3.18 has to be calculated. Afterwards, an element-wise transformation using
a non-linear activation function, is be applied to generate a DBFFANN.

To illustrate how a complete FFANN model looks like, Equation 3.21 provides exemplary
a 3× 3× 1 FFANN model for a non-linear single classification problem.

a
(2)
1 = σ

(
θ

(1)
10 x0 + θ

(1)
11 x1 + θ

(1)
12 x2 + θ

(1)
13 x3

)
a

(2)
2 = σ

(
θ

(1)
20 x0 + θ

(1)
21 x1 + θ
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Equation 3.21 represent the model’s hidden units: a(2)
1 ,a(2)

2 and a
(2)
3 . The input of each

hidden unit is formed by the input feature vector x = (x0, x1, x2, x3) weighted with θ and
transformed by the sigmoid function σ(.)
Once a neural network model of form 3.20 is generated, the next step is to find the
"best" model parameters/weights during a network training. "Best" model parameters are
understood as model parameters which are firstly found in a reasonable time and secondly
provide the lowest misclassification rate. To achieve this, a cost function has to be de-
fined, which is responsible for adjusting the model parameters θ during the training phase.

Seen logistic regression models (see Equation 3.14) from a much more general view is
given by the probabilistic framework. The probabilistic framework provides better inter-
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pretation of training a network. When mapping an input x to an output y, the output
implicitly contains an error.

y(x) = σ
(
θTφ(x)

)
+ ε = σ

(
u∑

w=1
θwφw(x)

)
+ ε (3.22)

θTφ(x) represents the inner scalar product of the φ-transferred input vector and the
model’s weight vector. ε is a residual error between the linear prediction and the true
response. In general, it is assumed that the underlaying distribution of y(x) is Gaussian
or normal distributed around the mean µ involving a certain variance σ2. This means,
every output yw arises from a Gaussian distribution around the mean µ and a certain
variance σ2. Combining the linear model and the Gaussian distribution leads to:

p(y|x, θ) = N (y|θTφ(x), σ2) (3.23)

Equation 3.23 points out that the model is a conditional probability density, whereby
θM = (θ, σ2) determines the complete model parameter from a probabilistic viewpoint.
Furthermore, it confirms the statement that discriminative models construct p(y|x) di-
rectly. Assuming the training set D = (X,Y) is independent and identically distributed,
the likelihood function can be constructed as follows:

p(Y|X,θM) =
u∏

w=1
p(yw|xw,θM) (3.24)

Maximizing the likelihood function is understood to be the same as minimizing the sum-of-
squared error function, which is illustrated in Equation 3.25. Therefore, a neural network
model can be trained by either maximizing the likelihood function or minimizing the sum-
of-squared error function. In this work, the sum-of-squared error function is minimized.
Hence, it must be minimized for given input vectors from x1, ...,xu and target vectors
from y1, ...yu as follows:

E(w) = 1
2

u∑
w=1
‖y(xw,θ)− yw‖2 (3.25)

The input and output size of neural networks is generally determined by the dimensions
of the dataset and is therefore fixed. Thus, the neural network model can be adjusted
by the number of hidden neurons and the number of hidden layers, which are therefore
representing free parameters. Beside training a neural network model, it is important to
determine the optimum values of these free parameters to achieve the best generalization
performance. Finding the optimum setting corresponds to find the optimum balance
between underfitting and overfitting.
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The most effective algorithm to train ANNs is known as error backpropagation or just
backpropagation. It is a supervised learning method, which uses gradient descent in
order to minimize a sum-of-squared error function. Furthermore, it can also be seen as
minimizing the error by adapting the weights. The algorithm can be divided into two
phases: propagation phase and weight-update phase. These two phases are repeated until
a certain error convergence is reached. The activation function of artificial neurons needs
to be differentiable in order to use the backpropagation algorithm. The backpropagation
algorithm represents a local optimization technique, whereby the algorithm stops when a
local minimum on the error surface is found. This can lead to acceptable solutions if the
local minimum is nearby the global minimum or the local minimum is itself the global
minimum. If none of these scenarios appear, the output is a poorly trained network. To
counteract against this, different weight initialisation techniques for FFANNs can be ap-
plied to reach local minimums nearby the global minimum considering the error surface. A
fast algorithm for error backpropagation for neural networks can be found in detail in [54].

How fast the backpropagation algorithm converge among other things depends on the
weight initialization. If the weights are initialized in a good manner, less iterations are
necessary because the convergence of the error is reached within less iterations. For
example two methods for weight initialization are either initialization with zeros or with
random numbers. Another third technique is to approximate the weights in a pre-training
step and then fine tune the weights in the training phase using backpropagation. Approx-
imating the weights in a pre-training step is achieved by utilizing a Restricted Boltzmann
Machine (RBM). Stacked RBMs are determined as deep belief network (DBN). DBNs
can be used, inter alia, for approximating the weights of a FFANN. Once the DBN has
approximated the weights, it can be transferred to a multi layer feed forward neural
network, which is then trained by backpropagation. The process of transferring DBNs to
FFANNs is in literature known as "unrolling", whereby the weights of a DBN are used as
initial weights for a FFANN.

In this work, weights of the FFANN are initialized by three methods: zero weight initial-
ization, random weight initialization and weight initialization using DBNs. Hence, DBNs
are explained next.

3.3.2 Deep Belief Networks
Stacking RBMs enables the formation of a DBN. DBNs are used in this work for learning
the weights of a FFANN. RBMs are parameterized generative stochastic models and
posses the ability to learn the probability distribution of unknown input. Hence, training
a RBM is understood as adjusting its parameter in a certain manner to form a probability
distribution, which fits the input data as well as possible. As a DBN is comprised of
stacked RBMs, each layer of a DBN corresponds to one RBM. In addition, unrolling a
n-layer DBN to a FFANN results in a n-layer FFANN. In general, the areas of application
of DBNs are image recognition, speech recognition and document classification [54].
RBMs are specific models derived from Boltzmann Machines with the restriction by being
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a bidirectionally graph model. RBMs are comprised of two layers namely input and hidden
layer. The input layer consists of visible units and analogous the output layer consists
of hidden units. Visible units correspond to observations as for instance each pixel in an
image represents one visible unit (see MNIST). In contrast, hidden units try to model
dependencies from visible units and can also be seen as non-linear feature detectors. Units
within a same layer do not have connection between each other [55], [56].

Figure 3.4: Restricted Boltzmann Machine with t visible units and k hidden units

Figure 3.4 represents a RBM, which consists of v visible units x = (x1, ..., xv) and u
hidden units z = (z1, .., zu). The undirected weights, which connect visible and hidden
units, are determined as θ = (θ11, θ12, ...θ1v, θ21, θ22, ..., θuv). Furthermore, each unit has
a bias, denoted as c = (c1, ..., cv) for visible and b = (b1, .., bu) for hidden units. RBMs
are trained in a unsupervised greedy wise fashion using a contrastive divergence learning
procedure, which is similar to the backpropagation algorithm. [55], [56]

A RBM models the joint probability distribution as follows:

p(x,y) = e−E(x,y))

Z
with E(x,y) = −

u∑
w=1

v∑
s=1

wwsywxs −
v∑
s=1

csxs −
u∑

w=1
bwyw (3.26)

whereby, E(x,y) represents the energy function and Z(x,y) is denoted as "partition
function". The partition function is defined as the sum over all possible configurations:

Z(x,y) =
∑

(x,y)
e−E(x,y) (3.27)

Hinton and Salakhutdinov have argued that a pre-training step utilizing RBMs to learn
the weights for a FFANN helps to overcome problems observed when training a FFANN
[57]. Therefore, a part of the work is dedicated to this approach.
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As multi layer artificial feed forward neural networks are utilized in this work; firstly a
multi layer DBN (each layer is one RBM) needs to be pre-trained to use the weights for
initialization. An example for a DBN is shown in Figure 3.5.

Figure 3.5: Example of a Deep Belief Network existing of 3 hidden layers and one input
and one output layer

The model in Figure 3.5 consists of one input layer, three hidden layers and one output
layer, whereby the output of a RBM is the input of the next RBM. The illustrated model
is in total comprised of four RBMs. Once the weights are learned in the pre-training step,
the weights in Figure 3.5 are then used to initialize a model of Figure 3.3.



Chapter 4

Materials and Methods

This chapter describes the appliance of the theory explained in Chapters 2 and 3 in order
to enable automated prostate zone segmentation in MR images by using artificial neural
networks. Hence, this chapter is structured similar to the computer vision pipeline, which
is illustrated in Figure 1.1. Firstly, Section 4.1 explains the image acquisition used in this
work and includes information about the utilized MR images. Next, the preprocessing
Section 4.2 encloses essential basic image processing steps to receive robust segmentation
results in reasonable time. Feature extraction is applied to the preprocessed MR images
to generate input space clustering. Thus, Section 4.3 describes the extracted features.
Section 4.4 concentrates on the decision making and classification process for the sake
of realizing object segmentation and explains the proposed algorithm in detail. Fur-
thermore, it accommodates information about, how FFANN-parameters are determined.
Section 4.5 focuses on post-processing, which is performed to receive subsequently the
object segmentation result. As the knowledge of the prostate’s volume affect diagnostic
processes positive, Section 4.6 describes the volume estimation out of the segmentation re-
sult. Lastly, for model evaluation purposes, Section 4.7 explains the utilized error metrics.

Algorithm development was done in MATLAB7 utilizing the Image Processing Toolbox.
Because MATLAB enables fast prototyping and provides a well developed image process-
ing environment.

4.1 Image Acquisition
The algorithm was developed and tested on MR images provided by the National Cancer
Institute via the public Cancer Imaging Archive8. Anonymized T2-weighted MR images
from 50 patient studies were utilized, whereby one half was acquired with a 1.5-Tesla
Philips Achieva device (from Boston Medical Center (BMC), United States) and the
other half was acquired with a 3-Tesla Siemens TIM device (from Radboud University

7MATLAB and Image Processing Toolbox Release 2013a, The MathWorks, Inc., Natick, Mas-
sachusetts, United States.

8Cancer Imaging Archive, (accessed October 2013), https://public.cancerimagingarchive.net/
ncia/
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Nijmegen Medical Centre (RUNMC), Netherlands). BMC used an endo-rectal receiver
coil whereas RUNMC utilized a surface coil for image acquisition. Each study represents
adjacent axial cross-section cuts and is comprised of a M × M × N Digital Imaging
and Communications in Medicine (DICOM)-image stack, whereby image dimensions are
M ∈ {400, 512}. The depth of the image stack N varies between 15 and 38. The xy-pixel
spacing of the image stacks ranges from 0.4 mm to 0.75 mm and the z-spacing (slice
thickness) is reported from 3 mm to 4 mm. Studies were imported into MATLAB using
the provided "DICOM-read" function by the Image Processing Toolbox.

In addition to the 50 studies, corresponding labels9 representing CG, PZ and background
were provided through the Automated Segmentation of Prostate Structures Challenge.
The challenge was hosted by the Cancer Imaging Program of the National Cancer Insti-
tute in collaboration with the International Society for Biomedical Imaging. The labels
were marked by Dr. Nicolas Bloch (at Boston University School of Medicine) / Mirabela
Rusu (Case Western U.) as well as by Dr. Henkjan Huisman / Geert Litjens / Futterer
from RUNMC Netherlands.

Labels were published in the nearly raw raster data (NRRD)10 file format. NRRD is
designed to support scientific image processing involving N-dimensional raster data. Each
NRRD-file is comprised of a header followed by the raw raster data. The header contains
meta information about the raw raster data as for instance dimensions, encoding, space
direction, spacing and type of the raw raster data. As a DICOM image stack of one
study has the dimension M ×M ×N , the corresponding label stack must have the same
dimensions. Therefore, a third dimension named l was added to the existing Equation for
labels in 3.3. This results in a label stack of form:

L(i,j,l) = k, for L(i,j,l) ∈ {0, 1, 2} and ∀(i, j, l) ∈ {(i,j,l)|1 ≤ i ≤ M, 1 ≤ j ≤ M, 1 ≤ l ≤ N}
(4.1)

The raw raster data of each NRRD-file is provided in 4.1, whereby k = 1 represents PZ,
k = 2 stands for CG and k = 0 corresponds to background. NRRD files are imported
into Matlab using a "NRRD-read" function provided by Jeff Mather11. The design matrix
X is generated out of the image stacks and analogous matrix Y is formed based on the
label stacks. X and Y represent together the dataset D whereby, D is the core of the
training phase.

After importing an image stack into Matlab, regardless of whether it is a training or
prediction study, a modality transformation and a gray value transformation in form of
a windowing function are applied. Parameters for these transformations are extracted

9NCI-ISBI 2013 Challenge - Automated Segmentation of Prostate Structures, (accessed October 2013),
http://goo.gl/OBdxpq

10NRRD Nearly Raw Raster Data, (accessed October 2013), http://teem.sourceforge.net/nrrd/
11NRRD Format File Reader, (accessed October 2013), http://goo.gl/IdQu65

http://goo.gl/OBdxpq
http://teem.sourceforge.net/nrrd/
http://goo.gl/IdQu65
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from the corresponding DICOM header. As values in the DICOM image represent stored
values (SV), they need to be transformed to receive real world values (RWV). Hence, each
pixel in a DICOM image is transformed through a modality transformation to obtain RWV
as follows:

RWV(i,j,l) = slope × SV(i,j,l) + intercept (4.2)

Whereby slope and intercept are two device specific tags from the DICOM header. The
modality transformation is necessary because values in the DICOM image can be stored
as device specific values so that only the device itself is able to interpret the values.
To overcome this, equation 4.2 is applied to transform the SV to meaningful RWV. In
the next step, a windowing function is applied in order to visualize the prostate zones
best possible for the human eye. Thus, RWVs are transferred to display values (DISP).
Window Center (Wincenter) and Window Width (Winwidth) are again two tags out of
the DICOM header and specify a gray value range, which should be visualized with
high contrast. Therefore, gray values inside the range are mapped between one and zero
according to Algorithm 1. In contrast, gray values outside the window are mapped either
to 0(black) or 1(white).

Algorithm 1 Windowing Function

Require: RWV (i, j, l), Winwidth, Wincenter

if RWV (i, j, l) ≤ Wincenter − (Winwidth ∗ 0.5) then
DISP (i, j, l) = 0

else if RWV (i, j, l) > Wincenter + (Winwidth ∗ 0.5) then
DISP (i, j, l) = 1

else
DISP (i, j, l) = ((RWV (i, j, l)− (Wincenter − 0.5))/(Winwidth − 1)) + 0.5

end if

As the prostate is the organ of interest, it is best visible for the observer after applying the
windowing function. The output values abbreviated as DISP in Algorithm 1 are called
display values and are representing gray values utilized for any further processing in this
work.

4.2 Preprocessing
The second step in the computer vision pipeline illustrated in Figure 1.1 is preprocessing.
Preprocessing is applied in this work because of three reasons. Firstly it is to obtain prior
knowledge from a training set, whereby mainly label stacks of the training set are utilized
for gaining prior knowledge. Preprocessing is applied secondly to reduce the amount
of input data. Reducing the amount of input data can also be seen as lowering the
computational complexity, which enables as a consequence segmentations in reasonable
time. The third reason for preprocessing is to normalize the input data in order to
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achieve subsequently robust segmentation results. This section describes how these three
preprocessing steps are realized.
Because the prostate is the organ of interest in the provided MR image stacks, it is
located in the middle of the image and in the middle of the image stack (approximately
at M/2 × M/2 × N/2). Thus, the image stack borders are not relevant for prostate
segmentation issues and hence, border pixels are not considered. To know which border
pixels can be rejected for prostate segmentation, a maximum bounding box is learned
based on the label stacks. For each case the bounding box, which includes the prostate
zones completely, is assessed. Next, the maximum bounding box over all label stacks
is determined. Moreover, a certain tolerance is added to ensure that large prostates
in the prediction set lie inside the learned maximum bounding box. The maximum
bounding box is then used to exclude unimportant border pixels in order to reduce the
number of pixels and respectively the number of inputs for the FFANN model. In a
further preprocessing step to reduce the amount of input data, the remaining cropped
image stacks are down-sampled by factor 2. To preserve edges and suppress noise, the
down-sampled image stacks are median filtered using a kernel size of 3×3. For example a
case with image stack dimensions of 500×500×20 is cropped with a bounding box, which
results in 300× 300× 14 dimensional image stack. Afterwards the stack is down-sampled
which yields to a image stack of dimensions 150× 150× 14. In this example the number
of pixels in the image stack is reduced from 5 000 000 to 315 000. Hence, 315 000
pixel-classifications have to be made in this example.

In addition to a learned maximum three dimensional bounding box, an average mass
point of the prostate gland is learned based on label stacks. Therefore, the mass point
from each label stack (from the training set D) is determined in order to assess finally the
average mass point. The average mass point is utilized as a reference point for feature
extraction, which is described in the next section.

Finally, two probability maps are learned from the training label stacks. This process can
also be seen as learning an average central gland (CG) and an average peripheral zone
PZ. Considering both prostate zones, two probability maps are learned. These maps
determine for every pixel position in a stack how probable it is that the current pixel is a
CG pixel or a PZ pixel. Because of dealing with different stack dimensions, the probability
maps are normalized through a mapping on a cube of sides 1.
Figure 4.1 represents the probability map of the CG on the left 4.1(a) an the PZ on the
right 4.1(b). Both maps are learned based on 20 label stacks out the training set. In
Figure 4.1, red indicates high probability and blue low probability.
The maximum bounding box, the average mass point, the probability maps and the
learned weights of the FFANN model through the training phase form together the ob-
tained prior knowledge utilized in this work to achieve more accurate segmentation results.
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(a) (b)

Figure 4.1: Probability map of the CG in (a) and of the PZ in (b) assessed from 20
training label stacks. Red indicates high probability and blue low probability.

4.3 Feature Extraction
Using just the raw gray values (DISP(i,j,l)-values) of the MR image stacks as a feature
results in poor classification and thus in poor prostate segmentation (see end of Section
3.3). This is because no prostatezone-specific gray value clustering appears in the in-
put space and accordingly a classifier cannot differentiate between prostatezones-pixels
or background-pixels. To overcome this issue, describing features for each pixel are ex-
tracted to generate input space clustering in order to enable a classifier partitioning the
image stack into meaningful regions. Feature extraction is mainly used for dimensionality
reduction, but in this work it is utilized to create a separable input space. Hence, rele-
vant information describing the prostate zones is extracted in order to segment the zones
through classification. If features would be extracted optimal, the classification process
would result in a trivial solvable linear decision problem.
In total are 28 describing features for each pixel extracted. Referring to Equation 3.5,
the design matrix X is therefore a 28 × number of pixels dimensional matrix. Features
are extracted utilizing a feature extraction function f I on each pixel in an image stack
Ip(i, j, l) as illustrated in Equation 4.3. The feature extraction function is applied to both
– training and prediction studies – to generate input data for a FFANN.

X = f I

 P∑
p=1

Ip(i, j, l)
 (4.3)

P represents the total number of training studies or prediction studies. Thus, feature
extraction is applied to every pixel in all image stacks. The 28 utilized features represent
hand-engineered low-level features. Each feature is extracted based on a different method.
All methods are combined in one overall feature extraction function f I in Equation 4.3.
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Consequently, the rest of this section is dedicated to the feature extraction in order to
generate input space clustering.
The first feature is basically device dependent and is called the magnetic field strength
feature. It determines whether the image stack was acquired with a 3 Tesla or 1.5 Tesla
device. Image stacks acquired with a 3-Tesla device receive a value of 1 and in contrast
image stacks acquired with a 1.5-Tesla device receive a value of 0. Accordingly, every
pixel in an image stack has the same magnetic field strength feature value. The next six
features determine different positions from the pixel of interest within the image stack.
These features are denoted as position features. The first three position features are the
x, y, and z positions of each pixel within the image stack. For instance, the first pixel in
the stack is assigned a value of (1,1,1) and the last pixel in the stack position is allocated
to (100,100,14), when considering an image stack of 100 × 100 × 14 dimensions. The
next three out of six position features determine the position from the pixel of interest
considering a spherical coordinate system. Thus, each pixel is described using (r, θ, ϕ)
radial distance r, polar angle θ and azimuthal angle ϕ. (r, θ, ϕ) are shown in Figure 4.2.
It is believed that position features are utilized to learn the shape and the position of the
prostate.

Figure 4.2: Three dimensional spherical coordinate system, whereby the position of a
point P is determined with (r, θ, ϕ)

The next six features are distance features considering xy-pixel spacing and slice thickness.
As explained in section 4.2 an average mass point is learned and used as reference point
for distance calculations. X, y and z distances from the pixel of interest to the average
mass point are respectively three features. The next three out of six distance features are
derived from the Minowski distance ϑ. The Minowski distance between two points P and
Q is defined as follows in 4.4:

ϑ(x, y) =
(

n∑
i=1
|xi − yi|p

) 1
p

with P = (x1, ..., xn) and Q = (y1, ..., yn) ∈ Rn (4.4)
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whereby p represents an integer value, which determines different distance metrics. Setting
p in Equation 4.4 to 1 results in the Manhattan Distance (City Block Distance) and
setting the value p to 2 provides the equation to calculate the Euclidean distance. Both
are utilized as features. The third and last distance feature is assessed by setting p
to 3, which yields in a cubical distance profile. Two-dimensional examples of all three
utilized Minowski distances are illustrated in Figure 4.3. According to that, distances are
calculated with respect to the image center. It is supposed, that the utilized distance
features have the highest impact on the decision making process.

(a) Minowski distance p=1 (b) )Minowski distance p=2 (c) Minowski distance p=3

Figure 4.3: Two dimensional examples of utilized distance metrics derived from Equation
4.4. For visualization purposes, iso-contours are added. (a) Minowski distance with p=1
results in the Manhattan distance; (b) Minowski distance with p=2 provides the Euclidian
distance; (c) Minowski distance with p = 3

Next, the first of the six gray value features contains basically the SV(i,j,l), before the
transformation functions (see Algorithm 1 and Equation 4.2) are applied. The remaining
five gray value features are different gray value features derived from each pixel DISP
value itself. Hence, the second gray value feature is a median filtered version derived
from DISP(i,j,l). The third feature contains the gray value of a contrast enhanced version
and the fourth feature is represented by a local standard deviated version. Next, the
fifth feature includes information about the global variance based on a specific three
dimensional neighborhood and ultimately the sixth feature comprises the local entropy.

The upcoming features are containing gray values, depending on a certain neighbor-
hood size (NHS). Possible NHSs are 1, 3, 5 and 7, which results in either 1(1×3×1),
27(3×3×3), 125(5×5×5) or 343(7×7×7) neighborhood gray values by taking the gray
value of the pixel of interest into account, too. Respectively, either 1, 27, 125 or 343
gray values are considered as features. For now a NHS of 1 is pre-assumed which means
that the display value of the pixel of interest is accounted as a feature. As previously
mentioned 28 features are extracted in total which is based on a pre-assumed NHS of 1.
For instance, considering a NHS of 3 would result in 27+27 = 52 features. Which NHS
value provides the best segmentation results is shown in the the result Chapter 5.
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The next six from the in total 28 features are mean gray value features deducted from
surrounding six-connected neighbor cubes. Hence, the just described pixel of interest is
surrounded by its neighbors, which are forming a cube with the pixel of interest as a
center. Each side of the cube is touched to another neighbor-cube of the same NHS. This
results in six neighbor cubes and corresponds to six mean gray values computed from
each neighbor cube. Consequently, the six mean gray values represent six features. By
utilizing these features, surrounding information is integrated into the decision making
process for each pixel decision. It is believed, that this procedure improves segmentation
results.
Once all of the above described features are extracted, each of these is mapped to values
in the range between 0 and 1 to treat them as possibilities and to make them invariant
to image resolution, image stack dimensions, image stack parameters (xy pixel spacing,
slice thickness). Afterwards, the bottom 1% of all feature values are mapped to 0 and
analogous the top 1% are mapped to 1. The rest of the feature values are stretched via
a mapping function to enhance feature clustering. This procedure improves classification
results. Two features are remaining to get to the total 28 describing features, consid-
ering a NHS of 1. These two features are probability features, describing how likely it
is, that the current pixel belongs either to CG or PZ. Therefore, the former learned
probability maps in the preprocessing step are utilized to form the two remaining features.

Figure 4.4: Distribution of the radial distance feature of one exemplary study, whereby
blue indicates the radial distance distribution of background pixels respectively, green
visualizes the radial distance distribution of CG pixels and red represents the radial dis-
tance distribution of PZ pixels. Radial distance feature is the range between 0 to 1 and
causes clustering. Furthermore, a normal density function is fitted to each distribution
for illustration purposes.
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To determine if the proposed feature extraction causes input space clustering, the radial
distance feature of one study is exemplarily illustrated in Figure 4.4. The x-axis in Figure
4.4 represents the radial distance in the range between 0 an 1. The y-axis shows the
incidence of the radial distance feature. In addition, a normal density function is fitted
to each distribution. The prostate’s mass point is denoted by 0. Therefore, close to 0
many green CG pixels can be found, because the mass point is surrounded by CG pixels.
Starting from the prostate’s mass point and going outwards to the CG border, blue
background pixels begin to appear in a certain distance. Red PZ pixels occur in between.
Deducted from Figure 4.4, CG pixels occur approximately as often as PZ pixels. Hence,
both zones have almost the same area in this study. The radial distance feature enables
a way to separate CG pixels from others. In contrast, the feature distribution of the PZ
does not reveal such clear clustering (see Figure 4.4). But it is supposed that the FFANN
model can capture PZ pixels in combination with other features, as for instance position
features.
After 28 features (pre-asuming a NHS of 1) from each pixel of all training studies are
extracted, matrices X and Y are formed to generate the training set D in order to train
a FFANN whereby, Y contains the corresponding labels (see Equation 3.4, 3.5 and 3.6
in Section 3.2). To predict a new study, matrix X is extracted from prediction studies
utilizing the gained prior knowledge. Then, X is fed into the trained FFANN model to
predict Ŷ. Thus, the next section describes the pixel decision making process in detail.

4.4 Decision Making
Decision making is performed through classification utilizing a FFANN model. Because
of fast prototyping reasons, the current DeepLearnToolbox version, developed and pro-
vided by R.B. Palm [9] on GitHub12, is utilized. The toolbox includes amongst other
things a framework about deep belief network and vanilla neural networks. The latter is
mainly used in this work, whereby ’vanilla’ indicates that once a network is trained, it
has fixed weights. This means that during the prediction phase, weights are not going
to be changed. By using more than one hidden layer, they can be treated as multi layer
FFANNs. Section 4.4.2 describes the proposed algorithm in detail.
In this work a FFANN model is trained in a supervised fashion using training data in-
cluding expert labels to enable subsequently the prediction of new input. To discover the
best FFANN setting, several experiments are carried out. Firstly, the focus is on finding
the optimum number of hidden layer and hidden neurons and secondly finding an opti-
mum weight initialization method. There are further FFANN parameters like batch size
and epochs, but they only become important when the previous parameters are found.
The next section 4.4.1 describes how the numbers of hidden layer and hidden neurons are
found.

12DeepLearnToolbox by R.B.Palm, (accessed October 2013), https://github.com/rasmusbergpalm

https://github.com/rasmusbergpalm
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4.4.1 Network Settings

The input and output size of neural networks are in general determined by the dimensions
of the dataset and consequently fixed. In this work, the output is fixed to three output
neurons because of three classes (CG, PZ and background). Respectively, the number of
input neurons is set to 28, because 28 features are utilized. Thus, a neural network model
can only be adjusted by the number of hidden neurons and the number of hidden layers,
which are therefore called free parameters. Apart from training a neural network model,
it is important to determine the optimum values of these "free parameters" in order to
achieve the best generalization performance. Unfortunately, there is no common rule on
how to initialize values of these "free parameters". Hence, they need to be established
experimentally. Finding the optimum parameters corresponds to finding the optimum
balance between underfitting and overfitting.
For instance, a 5 layer feed forward artificial neural network (FFANN) is considered in this
work to consist of one input layer, three hidden layers and one output layer. Whereby,
28-10-10-10-3 determines 28 input neurons in the first layer, 10 hidden neurons in the
second layer, 10 hidden neurons in the third layer, 10 hidden neurons in the fourth layer
and 3 output neurons in the fifth layer. As 28 features are extracted for each pixel, the
number of input neurons of the FFANN is fixed to 28, considering a NHS of 1. The second,
third and fourth layer form together the hidden layers. The output layer corresponds to
three classes (CG, PZ and background) and can also be seen as the posterior probabilities
for the corresponding class. In general, there are three different types of neural network
shapes for hidden layers:

• straight shape corresponds to 50-50-50

• linear shape corresponds to 50-30-10

• exponential shape corresponds to 50-10-5

To discover the optimal shape, three experiments are carried out. The first one is to
determine the optimal number of hidden neurons. The second experiment is to determine
the optimal number of hidden layers and lastly to find the optimal network shape. In
the next step, it is necessary to assess if random weight initialisation or weight initialisa-
tion using DBNs leads to more accurate results. After these experiments are performed,
optimal parameters for a FFANN model are found.
Furthermore, it is necessary to establish at which point the model is trained with enough
training cases to perform steadily reasonable on new data. Therefore, multiple training
iterations are proposed, whereby each iteration utilizes a increasing number of training
studies.
Once these parameters are specified, it is necessary to assess the number of epochs and the
batch size. The optimal batch size and optimal number of epochs are defined as tradeoff
between the mean squared error and the computation time. One epoch is understood
as one sweep through of the whole training set to the FFANN. It is supposed that
segmentation results improve when the model is trained with an increasing number of
epochs. As the chosen mode for backpropagation is batch learning, the input space is
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divided into batches. Each batch is fed into the FFANN, which means that the weights
will be updated by the backpropagation algorithm after every batch and not in comparison
to online training after every input vector. Moreover, an experiment to determine the
optimal NHS is performed as well.
Finally, the optimal parameterized FFANN model is tested on 25-3Tesla studies and on
25 1.5-Tesla studies. Furthermore, the FFANN model is trained and tested on 100 MD
Anderson Cancer Center13 studies. For this purpose, radiologists drew contours manually
using a provided Matlab framework.

4.4.2 Two Layer Topology

This section represents the proposed algorithm pipeline and describes therefore the core
of this work. Because the feature vector is comprised of six distance features (see Section
4.3), which strongly depend on the prior obtained average mass point and the fact that
prostates show high natural variability in shape and size, the classification output of one
FFANN model does not produce accurate results. It is considered that distance features
are important features, which have a higher impact on the decision making process than
others as for instance gray value neighborhood features. To overcome the inaccuracy, a
second FFANN model is attached to the first FFANN model, which results in a consecu-
tive two layer topology. The first FFANN is determined as localization layer because the
aim is to localize the prostate in the image stack. The second FFANN is denoted as the
labeling layer, whereas this model should label the prostate zones. Because two FFANN
models are utilized, each one needs to be trained. The main advantage of the two layer
topology is the improvement of precision concerning distance features in the second layer.
This fact especially affects studies containing either an abnormal large prostate or an
abnormal small prostate, because both are treated after the first layer as a normal sized
prostate. The proposed algorithm pipeline (see Figure4.5) contains the training as well
as the predication phase of the localization and labeling layer.
The following text explains the proposed algorithm, which is comprised in total of of
nine steps. In addition, each step is marked in Figure 4.5 for illustration purposes.
Steps 1-4 represent the algorithm’s training phase. In the first step, prior knowledge is
obtained from Y1st. This procedure involves acquiring the maximum bounding box, the
average mass point and the probability maps. Afterwards, in step 2 training studies are
preprocessed, which is associated with reducing the amount of input data and performing
gray value transformations. Hence, training studies are cropped by the previously learned
maximum bounding box. Then features including the probability maps are extracted.
Thereby, the average mass point is used as a reference point (see Equation 4.3) in order
to generate the training set DLocalization = (X1st,Y1st) for the first FFANN. The first
FFANN is also denoted as localization layer. Next, the first FFANN model (localization
layer) is trained utilizing DLocalization. Summarized, step 2 covers the training of the
localization layer. These just described steps are party analogous for the second FFANN.

13MD Anderson Cancer Center, (accessed October 2013), http://www.mdanderson.org/

http://www.mdanderson.org/
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Next, steps 3 and 4 illustrate the training of the second FFANN model. Whereby,
step 3 focuses on preprocessing. But during this step, the training studies are cropped
with their current bounding box. The current bounding box is assessed from each label
stack itself. Afterwards, features are extracted utilizing their current mass point as
a reference point for distance features. This procedure is different to the first layer,
in which training studies are cropped by the learned maximum bounding box over all
studies and distance features are computed using the average mass point over all studies.
Using from each predicted study its current bounding box and current mass point for
feature extraction represents therefore the main difference between the localization and
labeling layer. Adding the obtained probability maps in step 4 completes the training
set DLabeling = (X2st,Y2st) for the second FFANN. Then the second layer is trained with
DLabeling. Summarized, steps 1-4 describe the training phases of both layers.

Figure 4.5: Illustration of the algorithm pipeline, which consists of 9 steps. In the first
step prior knowledge including the maximal bounding box, the average mass point and the
probability maps are obtained. Step 2 covers preprocessing and training set generation
as well as the training of the first FFANN model (localization layer). Analogous, prior
knowledge is obtained from the same data set for the second layer. Afterwards, a training
set is generated for the second layer, which is different to the first layer. Then training
of the second FFANN model (labeling layer) is performed (step 4). The remaining steps
represent the processing of new input. Features are extracted from new input in step 5
and fed into the first FFANN. The predicted prostate zones are then cropped with the
current bounding box (step 6). Next, features are extracted utilizing the predicted mass
point and fed into the second FFANN (step 7). After applying postprocessing, the output
of the second FFANN, namely the final algorithm result is received (step 8).

Steps 5-8 in Figure 4.5 describe the algorithm’s prediction phase. The prediction phase
can only be executed after the training phase was performed successfully beforehand.
The following passage explains the prediction of one study. The algorithm is only able
to predict one study at a time. For predicting n-studies, steps 5-8 need to be repeated
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n-times.
A new study I(i, j, l) is cropped using the maximum bounding box learned from the
training studies in step 1. This results in an image stack of form: IMBB(i, j, l). Then,
preprocessing and feature extraction X1pred = f I (IMBB(i, j, l)) is performed in order to
generate the prediction set X1pred for the first FFANN. Thereby, distance features are
extracted with respect to the average mass point, which was assessed in step 1. Conse-
quently, the prediction set X1pred is fed into the first layer (step 5) as to predict a label
stack through Ŷ1st = h1st(X1pred). Thus, Ŷ1st represents the predicted label stack of the
first layer.
Utilizing the current bounding box based on Ŷ1st, the input image I(i, j, l) is cropped
again, which results in IBB(i, j, l). The image stack IBB(i, j, l) becomes usually smaller
than the image stack cropped with the maximum bounding box IMBB(i, j, l) from the
first layer. Furthermore, step 6 covers the establishment of the mass point from Ŷ1st.
The recently determined mass point and the cropped image stack IBB(i, j, l) are then
utilized for feature extraction. Step 7 covers extracting features of a prediction study
in order to generate the input set for the second FFANN, which has the following form:
X2pred = f I (IBB(i, j, l)). Next, X2pred is fed into the second layer. Finally, step 8
provides the predicted labels by the second FFANN Ŷ2st = h2st(X2pred). Subsequently,
postprocessing (see Section 4.5) is performed to receive the final segmentation result.

The proposed algorithm does not need any user interaction and represents consequently
a fully automated algorithm to achieve prostate zone segmentation. The algorithm
takes a special position compared to semi-automatic and manual approaches, which were
provided at the Automated Segmentation of Prostate Structures - challenge in April 2013.

The algorithm in Figure 4.5 is determined as A2-Mode, which stands for automated mode
using two layers. There are two more modes in the implemented version for comparison
purposes. However, the main focus is still on the A2-Mode. Considering only the result
of the first FFANN is denoted as A1-Mode, which stands for automated mode using the
first layer. The A1-Mode mode produces the most inaccurate results compared to the two
remaining modes, because of the natural variability of the prostate. Nevertheless, when
using the A2-Mode, the output of the first FFANN affects the performance of the second
FFANN massively. Hence, special attention is directed to the robustness of the first layer.
If the cropping between the first and the second layer is done imprecisely, the second layer
produces poor results. Finding parameters for the first layer can also be seen as finding
parameters for the second layer. The A2-Mode is used for experiments to determine the
optimal FFANN parameters.
The third and last mode is denoted as the I Mode, which stands for interactive mode and
represents therefore a semi-automated version. The I-Mode requires the determination
of the bounding box and the mass point manually through an user. Thus, the I Mode
does not represent an automated mode like the A1- and A2-Mode. Because of the user
interaction the I-Mode produces the most accurate segmentation results. Regarding to
Figure 4.5 the I-Mode only utilizes steps 3,4,7 and 8. Because the goal is to develop an
automated algorithm, the I-Mode is only used for comparison purposes.
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Looking at the A2-Mode mode from a different view, the goal of the first FFANN cor-
responds to the user interaction using the I-Mode, which is namely defining the current
bounding box and the current mass point from the prediction study. Accordingly, the
A2-Mode produces results, which lie, depending on the accuracy, between the A1-Mode
and the I-Mode.
In conclusion the algorithm’s aim is to train a FFANN based on training studies utilizing
expert labels and to predict afterwards new cases. Therefore, experiments are carried out
to capture the performance of different algorithm setups based on various training sets.

4.5 Postprocessing
Each slice in the predicted image stack is usually comprised of labels for CG and PZ.
Hence, the predicted image stack is split into two corresponding binary image stacks.
Afterwards, postprocessing is applied to them due to three reasons; firstly, to get rid of
prediction outliers, secondly to close wholes in the predicted prostate zones and thirdly to
smooth the prostate zone shape. The first two issues are solved by applying morphological
opening (erosion followed by dilation) on each slice of the two binary image stacks. The
third issue is addressed by applying a three dimensional Gaussian smoothing utilizing a
filter kernel of size [3 3 3]. Then both binary label stacks are merged to one and re-scaled
to the original label dimensions M ×M × N , which finally represents the output of the
proposed algorithm. Because of the participation on the NCI-ISBI prostate segmentation
challenge, the output label stack was saved as NRRD-file, for which a "NRRD-save"
function was implemented in Matlab.

4.6 Prostate Volume Estimation
Volume estimation of the CG and PZ are carried out in this work. Thus, surface points
are extracted from the predicted label stack and transformed to three-dimensional grid
points considering the xy-spacing and z-spacing. The resulting 3D surface point cloud is
triangulated using a Delaunay14-Triangulation. In the next step, tetrahedrons are created
by connecting the surface triangles with a reference point (for instance the object’s mass
point). Afterwards, the volume of each tetrahedron is computed and summed up, which
yields to the total volume of an object. By considering the triangles’ normal direction
(either points towards the reference point or not), the tetrahedrons’ volume is either taken
negative or positive into account. This consideration enables volume estimation of con-
cave three-dimensional objects like the peripheral zone. The proposed volume estimation
algorithm was developed during my bachelor thesis [58]. To test the volume estimation
algorithm on synthetic data, Figure 4.6 illustrates an example.
Figure 4.6(a) represents a synthetic three dimensional surface point cloud of an unit ball.
The volume of an unit ball is 4, 1887 VU. Triangulating the three dimensional surface
point cloud in 4.6(a) leads to figure 4.6(b). The subsequent volume estimation from a

14Boris Nikolajewitsch Delone, Russian Mathematician in 19th century
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(a) (b)

Figure 4.6: Delaunay Triangulation of a synthetic three dimensional point cloud with
subsequent volume estimation. (a) synthetic surface point cloud of a sphere with diameter
of 1; (b) Delaunay Triangulation of (a) with consequent volume estimation from a reference
point rp = (2, 2, 2). A unit ball has a volume of 3π/4 = 4, 1887 VU. The estimated volume
of (b) is 4, 1497 VU

reference point rp = (2, 2, 2) results in 4, 1497 VU. Increasing the surface point density
would yield to a approximation to the "ground truth" volume, which is 4, 1887 VU for
the unit ball. It is hypothesized that the accuracy of the proposed volume estimation
algorithm is precise enough for clinical usage. The proposed volume estimation algorithm
is compared to current clinical standard prostate volume estimation techniques, which
are namely the Ellipsoid [59], Myschetzky [60] and Prolate spheroid [59] technique.

4.7 Error Metrics
To evaluate the performance of a setup, five error metrics are taken into account. To each
of the two segmented prostate zones of a predicted label stack, error metrics calculations
are applied. Whereby, error metrics are determined in comparison to ground truth. The
utilized five error metrics are as follows:

1. Dice coefficient (DC)

2. Sensitivity

3. Specificity

4. positive predictive value (PPV)

5. Hausdorff Distance of Boundaries
(HdB)
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Because four out of the five error metrics are statistical parameters for binary classifier
evaluation, Figure 4.7 is introduced considering four possible cases for each predicted
pixel: false positive (FP), true positive (TP), false negative (FN) and true negative (TN).
Hence, the yellow result set in Figure 4.7 represents the predicted binary label of one
slice. The green circle in Figure 4.7 represents the corresponding ground truth slice.
The red zone indicates the amount of pixels, which are overlapping and thus correctly
classified through the FFANN. The surrounding white stands for the correctly classified
background pixels. Furthermore, the green pigmented "FN area" in 4.7 determines the
amount of pixels which are indeed ground truth pixels, but are not correctly classified as
prostate zone pixels through the FFANN. Accordingly, the yellow "FP area" in 4.7 points
out the amount of pixels which are classified through the FFANN as prostate zone pixels,
but actually are not prostate zone pixels.

Figure 4.7: Statistical classifier evaluation considering four cases: false positive (FP), true
positive (TP), false negative (FN) and true negative (TN)

The following paragraph describes the proposed error metrics calculation algorithm. As
shown in the first line in Algorithm 2, the predicted and post-processed output Ŷ2st is
separated into label stacks. q = (1, ..., Q) illustrates the total number of prediction studies
and l = (1, ..., l) represents the total number of slices of each prediction study.
Afterwards, each study is split into two binary label stacks – one represents the predic-
tion of the CG and the second one represents the prediction of the PZ. The division is
performed to evaluate CG and PZ separately. Then error metrics calculation is applied to
each slice to each of the two binary label stacks over all cases. Each column in the error
matrix ECG represents one metric. Next, the mean is calculated for each error metric over
all slices. Consequently, this procedure results in 5 error scores for the CG (ScoreCG)
and in 5 error scores for the PZ (ScorePZ). This means that a DC in the middle of
the prostate with e.g. 1000 correctly classified pixels has the same meaning/weight as a
DC from a slice at the beginning or the end of the prostate stack with e.g. 10 correctly
classified pixels. For instance, consider three slices: first slice contains in total 30 prostate
pixels, second slice contains 1000 prostate pixels and third slice contains 30 prostate
pixels. Next, suppose the proposed algorithm detects in the first slice 10 prostate pixels,
in the second 950 and in the third slice 10. DC scores are then suppositionally 0.3, 0.95
and 0.3 and the overall mean DC score averages to 0.52, despite the fact that 970 out of
1020 prostate pixels are correctly. This example illustrates the DC establishment of one



CHAPTER 4. MATERIALS AND METHODS 43

Algorithm 2 Error Metric Calculation

Require: Ŷ2st

separate cases: Ŷ2st ⇒
Q∑
q=1

L(i, j, l)

split into 2 binary label stacks:
Q∑
q=1

L(i, j, l) ⇒
Q∑
q=1

LCG(i, j, l)
⋃ Q∑

q=1
LPZ(i, j, l)

cnt = 1
for q=1 to q=Q do
for l=1 to l=N do

ECG(cnt)⇐ getAllErrorMetrics

 Q∑
q=1

LqCG(i, j, l)


EPZ(cnt)⇐ getAllErrorMetrics

 Q∑
q=1

LqPZ(i, j, l)


cnt+ +
end for

end for
ScoreCG = mean (ECG)
ScorePZ = mean (EPZ)

study comprised of three slices in order to point out the strict DC calculation.
Finally, a setup is described with 10 error scores. The rest of this chapter describes the
calculations of the error metrics itself.

1. Dice coefficient The calculation of the DC is defined in equation 4.5 and can be
understood as an area based segmentation metric.

DC = 2 ∗ TP
(FP + TP) + (FN + TP) (4.5)

The DC is the proportion of the mutual-overlap – the union of prediction and ground
truth. A DC of 1 represents perfect agreement of the prediction slice and ground
truth slice. In contrast to that, 0 indicates no overlap between the prediction and ground
truth. DC score is in the following considered to be the most important error metric score.

2. Sensitivity is known as the fraction of positives that are correctly assigned. Therefore,
sensitivity represents the ability to detect ground truth.

Sens = TP
TP + FN (4.6)

Sensitivity is in literature also known as recall and is defined and illustrated in Equation
4.6. As FP and TN are not taking into account, setting for instance the whole binary
label stack of the CG to 1, would result in a sensitivity of 1. For that reason specificity is
also incorporated, which would be 0 in this example. Thus, a sensitivity of 1 represents
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the best achievable score, but simultaneously specificity has also to be taken into account.

3. Specificity is defined as the ratio of TN to TN plus TP and is illustrated in Figure
4.7.

Speci = TN
TN + FP (4.7)

Specificity is also known as the ability to detect negative results which means in this work
the ability to detect background. Setting for instance the whole binary label stack of the
central gland to 0 would result in a specificity of 1 and a sensitivity of 0. Therefore, as
previously explained, sensitivity and specificity have to be considered combined.

4. Positive Predictive Value represents in this work how much of the predicted CG
pixels are truly CG pixels when considering the binary label stack of the CG. Therefore
the positive predictive value (PPV) is defined as follows:

PPV = TP
TP + FP (4.8)

The PPV determines how much from the assigned pixels are truly correct classified. The
optimal score would be 1.

5. Hausdorff Distance of Boundaries is defined as the furthest distance between
two boundary sets S1 and S2. S1 and S2 are basically represented by the predicted slice
and the ground truth slice. As the Hausdorff distance is the maximum distance between
the predicted binary slice to the nearest point in the binary ground truth slice, a lower
score is better. The calculation of the HdB is shown in Equation 4.9, whereby sup stands
for supremum and P1 is a point of S1 and accordingly is P2 a point of S2. In this work
the HdB is measured in milimeters. Different to literature, this work presents the 100th
percentile of the HdB and not the 95th percentile.

distH(S1,S2) = max
{

sup
P1∈S1

dist(P1, S2), sup
P2∈S2

dist(P2, S1),
}

(4.9)

For model evaluation purposes, statistical analysis utilizing cross-validation is carried
out. Therefore, the fraction of training cases is defined to 83%, respectively the fraction
of prediction cases is determined to 17%. For instance, a cross-validation on 25 studies
leads to a training set of 21 studies and a prediction set of 4 studies. To receive robust
results, 10 iterations are performed. In each iteration, studies for training and prediction
are picked randomly. Hence, during each iteration a new FFANN model is trained. Error
metrics, which are shown later on in Tables, are again one more time averaged over the
iterations to receive 5 overall error metric scores for the CG and 5 overall error metric
scores for the PZ. All calculations are performed on a machine comprised of an i7 core
processor and 16GB of RAM.
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Results

This chapter contain the results of this work structured and presented in three subsections.
The first Section 5.1 describes the results of different experiments, which were carried out
to determine the optimal parameters of the proposed FFANN model. Error metrics, pre-
viously described in Section 4.7 are calculated to enable a comparison of different setups.
Subsequently, Section 5.2 is about the evaluation of the proposed algorithm applied on
the prostate gland as well as on the prostate zones. In both cases the beforehand deter-
mined optimal parameters are utilized. Finally, subsection 5.3 shows an evaluation of the
algorithm based on 100 MD Anderson Cancer Center studies as well as an evaluation of
the proposed volume estimation (see Section 4.6).

5.1 Model Parameter Estimation
Optimal neural network model parameters are understood as parameters which achieve
the best error metrics scores in reasonable time. Thus, these parameters provide the
best pixel classification result and accordingly the best segmentation result. Because of
the involved generalization which is caused by the utilized neural network model, the
DC is considered to be the most important error metric. Furthermore, results state
that the sensitivity correlates with the DC and the average specificity achieves steadily
scores of >0.8. Consequently, the DC is used for illustration purposes further on in this
result chapter in order to present results clearly. This subchapter is about establishing
the optimal neural network parameters. Hence, the following parameters are considered
to be important to be determined:

• optimal number of hidden neurons and hidden layers (see 5.1.1)
• optimal number of training studies - best training performance (BTP) (see 5.1.2)
• optimal batchsize and epochs (see 5.1.3)
• optimal weight weight initialization method (WIM) (see 5.1.4)
• optimal neighborhood size (NHS) (see 5.1.5)

Each item of the above illustrated list forms in the following chapter its own subsection.
Each subsection explains the corresponding experiment and presents results in order to
find incremental the optimal neural network parameters.

45
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5.1.1 Neural Network Structure

As already described in section 4.4.1, a FFANN can basically consist of three different
network shapes (straight, linear and exponential). The experiment in this section focuses
on finding which of these shapes fits best for this purpose. The proposed experiment is
performed on 25 3-Tesla studies using the fully-automated A2-Mode. For each neural
network setup a cross-validation is carried out. One cross-validation consists of 10 cross-
validation steps. In each step 21 studies are randomly picked for training. Respectively,
the remaining 4 studies are used for prediction. In addition, in each step error metrics
are calculated in accordance to algorithm 2, except of the two last code lines. The two
last two code lines are just responsible to calculate the mean and median in order to
receive 10 error metrics for all prediction studies.
Considering now only the DC score and 10 cross-validation steps yield in total to 40 DC
scores for the CG and 40 DÇ scores for the PZ. Thus, one FFANN setup provides 80 DC
scores. All DC scores of several FFANN setups are visualized in boxplots in Figure 5.1.
In Figure 5.1 each red box represent 40 CG DC scores of one FFANN setup. Respectively,
each blue box indicates 40 DC scores of the PZ of one FFANN setup, whereby, the edges
of the boxes present the 25th and the 75th percentiles. Furthermore, the mean of 40 DC
scores is characterized by a dot and the median by a slash. Whiskers of each box extend
to the most extreme data points. The behaviour of the first FFANN is considered to be
similar to the second FFANN. Hence, it is believed that finding the optimal parameters
of the first FFANN corresponds to the optimal parameters of the second FFANN. In
addition, batchsize is set default to 20 utilizing 2 epochs.

Figure 5.1(a) shows the results of 11 different FFANN setups, whereby each is comprised
of one hidden layer which is in turn made up of an increasing number of hidden neurons.
The 11 setup configurations are as follows: 5, 10, 20, 40, 50, 100, 150, 200, 300, 400, 500.
For instance, 100 corresponds to 100 hidden neurons utilizing one hidden layer and yield
to neural network shape of 28×100×3, whereupon 28 is the number of features and 3 the
number of classes. The results show that the DC scores for the CG fluctuate steadily
around 0.78 using 5 to 300 hidden neurons. The same behaviour is captured for the PZ.
The DC score for the PZ shakily stays around 0.4. The best setup is indicated with arrows
and the corresponding mean and median DC scores are illustrated in Figure 5.1 in green
boxes. Utilizing 400 and 500 hidden neurons results in lower to zero DC scores for the CG
as well as for the PZ. Because there is firstly no specific optimal setup in Figure 5.1(a)
identifiable and secondly the behaviour of different shapes using multiple hidden layers
should be captured as well, four depth-experiments are carried out next.
Figure 5.1(b) illustrates one out of four depth-experiments from base 150 hidden neurons.
This means that 150 hidden neurons form the basis of a straight- linear-and exponentially
shaped FFANN model. The remaining three depth-experiments from bases 100, 200 and
400 are presented in the Appendix B.2. The x-values 150 150 and 150 150 150 in Figure
5.1(b) indicate a straight shaped neural network comprised of two and three hidden layers.
Next, boxes located at x-values 150 75 and 150 100 50 characterize a linear shaped FFANN
with two and three hidden layers. Lastly, exponentially shaped FFANN models with two
and three hidden layers are represented in Figure 5.1(b) by boxes around the x-values
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(a) A2-Mode with increasing number of hidden neurons in one hidden layer

(b) A2-Mode with various number of hidden neurons and hidden layers from base 150 hidden neurons

Figure 5.1: DC scores in boxplots of cross-validation using various numbers of hidden
neurons and hidden layers. The x-axis shows the number of hidden neurons and hidden
layers. For instance, 150 150 stands for 150 hidden neurons in the first hidden layer and
150 hidden neurons in the second hidden layer. The y-axis represents the DC score. Red
boxes indicate scores for the CG and blue boxes scores for the PZ. The edges of the boxes
present the 25th and 75th percentiles of each score. Slashes within the box represent the
median and points represent the mean. Whiskers extend to the most extreme data points.

150 10 and 150 30 10. Considering all four depth-experiments, straight shaped networks
provide the lowest DC scores. Furthermore, increasing the depth (adding hidden layers)
as well as increasing the number of neurons results in decreased DC scores. Depth-
experiments illustrated in the Appendix B.2 show their best setup, which is indicated
through green boxes, when utilizing an exponentially shaped FFANN. Regarding Figure
5.1(b) the best two setups are 150 75 and 150 10, whereby 150 75 is considered as best
setup of all experiments. Therefore, the linear shaped setup 150 75 provides to the most
accurate results utilizing the A2-Mode. Finally, the optimal number of hidden neurons
and hidden layers for further investigations are 28×150×75×3 for the first FFANN model
and 28×150×75×3 for the second FFANN model.
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5.1.2 Learning Curve Experiment

This experiment focuses on capturing the learning performance of the proposed algorithm
on 25 3-Tesla studies. Thus, the algorithm is set to the A2-Mode and is trained several
times, whereby each time an increasing number of training studies is utilized. The goal of
this experiment is to discover,if the algorithm performs more accurately when the FFANN
model is trained with more studies. The resulting learning curve is illustrated in Figure
5.2. The x-axis represents the increasing number of utilized training studies. As the
fraction of training is fixed to 0.83, the first x-value (5) indicate that the algorithm is
trained on 4 studies and tested on 1 study. Cross-validation is carried out, which yields
to 10 iterations in total for each setup. The training as well as the prediction studies
are randomly picked. The last x-value (25) results in a training set of 21 studies and a
prediction set of 4 studies. The number of hidden neurons and hidden layer is set to their
optimal value of 28×150×75×3 for both FFANN models. Batchsize is set default to 20
utilizing 2 epochs.

Figure 5.2: DC scores of cross-validation utilizing the A2 Mode in dependency of a in-
creasing number of training studies. The fraction of training studies is set to 0.83. The
x-axis represents the number of utilized studies from 5 to 25. The y-axis presents DC
score. Red boxes indicate scores for the CG and blue boxes indicate scores for the PZ.
The edges of the box present the 25th and 75th percentiles of each score. Slashes within
the box represent the median and dots represent the mean. Whiskers extend to the most
extreme data.

The y-axis in Figure 5.2 indicates DC scores. Red boxes indicate DC scores for the CG
and blue boxes characterize DC scores for the PZ. Edges outline the 25th and the 75th
percentile. Red dots symbolize mean DC scores for the CG and the red slashes mark the
median DC scores for the CG. Analogous, DC for the PZ are represented with blue dots
and blue slashes. Whiskers of each box extend to the most extreme data points.
Referring to Figure 5.2, one of the most obvious consequences of utilizing an increasing
number of training studies is that the the proposed algorithm performs more precisely.
The most precise results are captured using 21 studies for training and 4 studies for
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prediction. Hence, the mean DC score for the CG utilizing 25 studies in total is 0.81.
Accordingly, the median DC score is 0.84 for the CG. In addition, the mean and median
DC scores for the PZ using 25 studies are 0.47 and 0.52.
Derived from Figure 5.2 the learning behaviour of the proposed algorithm has not reached
its saturation. So far, the optimal number of training studies respectively, the best train-
ing performance (BTP) is reached utilizing 21 training studies. Moreover, the learning
characteristics is captured again later on in section 5.3 on a larger dataset with 100 studies.

5.1.3 Batchsize and Epochs Experiment
The batchsize parameter as well as the epochs parameter are defined as the tradeoff
between mean squared error and computational costs. Because weights of the FFANN
are updated after each batch, a lower batchsize is associated with high computational
costs and a higher batchsize corresponds to low computational costs. The goal of the
batchsize experiment is to establish, if the proposed algorithm performs more precisely
utilizing a decreased batchsize. An epoch is defined as one sweep through of the training
set throughout the FFANN model. Hence, the two FFANN models should perform
more precisely utilizing an increasing number of epochs. The aim is to discover the be-
haviour of FFANN models, when each of the models "sees" the training set multiple times.

Figure 5.3 represents the result of the batchsize experiment based on 25 3-Tesla studies.
Therefore, cross-validation utilizing the A2-Mode is carried out. In total five different
batchsizes (5000, 1000, 500, 100, 10) were tested. In Figure 5.3 the vertical axis represents
five different batchsizes in decreasing order. The horizontal axis shows the DC. Red boxes
in Figure 5.3 reveal scores for the CG and respectively, blue boxes specify scores for the
PZ. Edges of the boxes present the 25th and 75th percentiles of each score. Slashes
within the box indicate the median and dots characterize the mean. Whiskers extend to
the most extreme data points not considering outliers.
The declared batchsizes (5000, 1000, 500, 100, 10) are maximum batchsize values. The
actual batchsize size is less or equal the maximum batchsize because the number of pixels
in the training set divided by the maximum batchsize must be an integer value. Starting
from the maximum batchsize and decrement each time by one, the actual batchsize is
the first number, which divides the total number of pixels in the training set without
remainder. Figure 5.3 confirms the assumption that the algorithm is performing more
precisely using a decreased batchsize. Lowering the batchsize can be seen as increasing
the computational time. A batchsize of one would result in a weight adaption after each
feature vector, which is called online-learning. Figure 5.3 leads to the presumption that
the DC scores for both prostate zones would probable increase further, if the batchsize
would be set to a value smaller than 10. But this experiment would disrupt the com-
putation time of the utilized resources, which are a notebook comprised of an i7 core
processor and 16GB of RAM.

The next experiment is to determine how many epochs provide the most precise epochs
setting. Hence 1, 2, 3, and 4 epochs are tested and presented in Figure 5.4. Again cross-
validation utilizing 10 iteration is carried out. In each iteration 21 studies are randomly
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Figure 5.3: DC scores of cross-validation utilizing the A2-Mode in dependency of different
batchsizes. The fraction of training studies is set to 0.83 and 25 3-Tesla studies have
been used in total. The x-axis represents the decreasing batchsize from 5000 to 10. The
y-axis presents the DC. Red boxes illustrate scores for the CG and blue boxes symbolize
scores for the PZ. Edges of the boxes present the 25th and 75th percentiles of each score.
Slashes within the box represent the median and points represent the mean. Whiskers
extend to the most extreme data points.

picked for training and the remaining four studies are selected for prediction. The cross-
validation results using 1, 2, 3 and 4 epochs are shown in boxplots in Figure 5.4. The
x-axis indicates the number of epochs and the y-axis illustrates the DC. Red boxes identify
the DC scores for the CG. According to this, blue boxes highlight the DC scores for the
PZ. Edges of the boxes depict the 25th and 75th percentiles of each score. Slashes within
the box represent the median and dots represent the mean. Whiskers extend to the most
extreme data points.
Figure 5.4 points out that the overall algorithm preciseness shrinks using a increasing
number of epochs despite the fact that the mean squared error is dropping in each epoch.
Certainly, the reason for that phenomena could have its origin in the relatively small
batchsize, which yields in combination with multiple epochs as a consequence to overfit-
ting. Utilizing 21 randomly picked training studies results approximately in a training
set (design matrix) X of 3.000.000 × number of features. Thus, a batchsize of 10 is
relatively small and leads probably to overfitting when using multiple epochs. Increasing
the batchsize and number of epochs simultaneously could solve the problem of overfitting.
In conclusion, referring to Figure 5.4 using a batchsize of 10 yields to an optimal epochs
number of 1 or 2.

5.1.4 Weight Initialisation Experiment
This section is concerned with establishing the best weight initialization method in or-
der to avoid local minima on the error surface during the backpropagation algorithm.
Therefore, three different weight initialization method (WIM)s are carried out. The first
method is called zero weight initialization and as the name suggests all weights are strictly
initialized with zeros. The second weight initialization method is named random weight
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Figure 5.4: DC scores of cross-validation utilizing the A2 Mode in dependency of different
epochs. The fraction of training studies is set to 0.83 and 25 3-Tesla studies are used
in total. The x-axis represents the increasing number of epochs from 1 to 4. The y-axis
presents the DC. Red boxes indicate scores for the CG and blue boxes represent scores for
the PZ. Edges of the boxes present the 25th and 75th percentiles of each score. Slashes
within the box represent the median and dots represent the mean. Whiskers extend to
the most extreme data points.

initialization. Y. Lecun et al [61] recommended to draw the weights from a uniform ran-
dom distribution limited by the upper and lower bounds ±

√
6/(fin + fout). In particular,

considering the weights between the input layer and the first hidden layer, fin is the num-
ber of input neurons and fout is represented by the number of hidden neurons of the first
hidden layer. Hence, using the optimal FFANN structure 28 × 150 × ×75 × 3 results in
fin = 28 and fout = 150.
The third weight initialization method is truly the most complex computational one and
is entitled as weight initialization utilizing DBNs. Thus, a DBN is firstly trained based
on the training set X in an unsupervised manner. Subsequently, the learned weights of
the DBN are used as initial weights of a FFANN model. Lastly, the FFANN is trained or
in other words fine-tuned using backpropagation. However, for all three WIMs biases are
constantly initialized with zeros.
Figure 5.5 illustrates DC scores utilizing three different WIMs. The DC scores of each
setup are represented in boxplots. The higher the DC scores, the more precisely the
algorithm performs. On the one hand red boxes reveal DC scores for the CG and on
the other hand blue boxes show DC scores for the PZ. Edges of the boxes present the
25th and 75th percentiles of each score. Slashes within the box represent the median
and points represent the mean. Whiskers extend to the most extreme data points. Figure
5.5 clearly points out that zero weight initialization provides the lowest DC scores and
consequently, does not provide practical relevant results. In contrast, the two remaining
WIMs show almost equal DC scores. It was believed that learning the weights in a pre-
training step utilizing DBN leads to more accurate results than results achieved with
random weight initialization. Nevertheless, Figure 5.5 provides the evidence that random
weight initialization and weight initializing using DBNs leads in the proposed algorithm
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Figure 5.5: DC scores utilizing cross-validation and the A2-Mode in dependency of three
different weight initialization methods. The fraction of training studies is set to 0.83 and
25 3-Tesla studies are used in total. The x-axis represents three different WIM, namely
initialization with deep belief networks, random weight initialization and zero weight
initialization. The y-axis presents the DC for the CG in red and for PZ in blue. Edges
of the box present the 25th and 75th percentiles of each score. Slashes within the box
represent the median and dots represent the mean. Whiskers extend to the most extreme
data points.

to correlating results. However, considering the time consuming pre-training step utilizing
DBNs, random weight initialization is used superior for further investigations.

5.1.5 Neighborhood Size Experiment
This section is about discovering the optimal neighborhood size (NHS) for the feature ex-
traction process. As described in section 4.3, neighborhood gray values from the current
pixel of interest are taken into account as features. Thus, different NHSs yield to distinct
feature-vector sizes and consequently to a diverse FFANN classification behaviour. Fur-
thermore, filtered gray value features are part of the feature extraction for which the NHS
plays a decisive role in the filter process and effects as a consequence the classification
outcome, too.
In total four NHSs (1, 3, 5, 7) are experimentally tested. A NHS of 1 leads in a total feature
vector length of 28. Hence, for each pixel 28 features are extracted. The feature vector
has 52 dimensions using a NHS of 3 and 152 dimensions using a NHS of 5. Moreover,
a NHS of 7 yields to a total feature vector length of 370. Increasing the NHS results in
an increased computational time. Cross-validation on 25 3-Tesla studies utilizing the A2-
Mode and 10 iterations is carried out for each NHS experiment. The fraction of training
is steadily set to 0.83. Thus, 21 studies are used for training and 4 for prediction. The
result of the NHS experiment is illustrated in boxplots in Figure 5.6. The horizontal axis
shows the increasing NHSs and the vertical axis presents the DC scores for the CG in red
boxes and for the PZ in blue. Edges of the boxes present the 25th and 75th percentiles
of each score. Slashes within the box characterize the median and points within each box
indicates the mean. Whiskers extend to the most extreme data points.
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Figure 5.6: DC scores utilizing cross-validation and the A2-Mode in dependency of four
different NHSs. The NHS plays a key role in the feature extraction process and defines
mainly the feature vector dimension. The fraction of training studies is set to 0.83 and 25
3-Tesla studies are used in total. The x-axis represents various NHSs. The y-axis presents
the DC. Red boxes highlight scores for the CG and blue boxes mark scores for the PZ.
Edges of the boxes present the 25th and 75th percentiles of each score. Slashes within the
box outline the median and dots present the mean. Whiskers extend to the most extreme
data points.

Figure 5.6 reveals raising DC scores from NHS 1 to 5. Afterwards, the DC scores drop
down at NHS 7. Consequently, the most precise algorithm performance emerges at NHS
5. Accordingly, the mean DC scores are 0.78 for the CG and 0.47 for the PZ. In addition,
the median DC scores are 0.83 for the CG and 0.56 for the PZ.

The optimal FFANN parameters are presented in Table 5.1, whereby, each parameter is
equal for both layers. The best FFANN shape is 152× 150× 75× 3 for both layers. The
optimal batchsize and epochs are considered to be 10 and 1. In addition, the optimal NHS
is deemed to be 5. The best WIM is considered to be the random weight initialization.
Lastly, the best BTP revealed using 21 training studies. Finally, all optimal FFANN
model parameters are established and can be utilized for further investigations on different
datasets.

Table 5.1: Optimal FFANN parameters
FFANN shape batchsize epochs NHS WIM BTP

localization layer 152× 150× 75× 3 10 1 5 random 21

labeling layer 152× 150× 75× 3 10 1 5 random 21

Optimal FFANN parameters for the proposed algorithm; FFANN stands for feed forward ar-
tificial neural network; NHS stands for neighborhoodsize; WIM stands for weigh initialization
method and BTP stands for best training performance
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5.2 Comparison between Prostate Zone and Prostate
Gland Segmentation

This section provides a comparison between prostate zone segmentation and prostate
gland segmentation. The prostate gland is comprised of CG and PZ and is subsequently
treated as one region. Hence, Subsection 5.2.1 presents error metric scores based on
prostate gland segmentation on the 25 3-Tesla studies. Accordingly, outlines Subsection
5.2.2 the error metric scores for prostate zone segmentation based on 25 3-Tesla studies
and 25 1.5-Tesla studies. Additionally, the volume estimation algorithm is evaluated on 25
3-Tesla studies. For the established results in this section are the previously determined
optimal model parameters, which are shown in Table 5.1, utilized.

5.2.1 Automated Prostate Gland Segmentation

The error metric scores for prostate gland segmentation are illustrated in Figure 5.7 and
in Table 5.2. A red box in Figure 5.7 reveals the score for the corresponding error metric.
Edges of the boxes extend of the corresponding score to the 25th and 75th percentile.
Slashes within the box symbolize the median and dots indicate the mean. Mean and
median error metric scores are highlighted in Table 5.2. Whiskers in Figure 5.7 extend
to the most extreme data points. As the minimum DC score is 0.715, the algorithm
constantly achieves a DC score over 71.5% and half of the predicted prostate glands has
a DC score between 0.825 and 0.898.

Figure 5.7: The scores of four error metrics in boxplots. The four metrics are: DC,
sensitivity, specificity and PPV. Cross-validation on 25 3-Tesla studies utilizing the A2
Mode is carried out. The fraction of training studies is set to 0.83. Red boxes characterize
scores for the prostate gland. Edges of the boxes present the 25th and 75th percentiles
of each score. Slashes within the box represent the median and dots represent the mean.
Whiskers extend to the most extreme data points.

As already mentioned at the beginning of the result chapter, the sensitivity highly cor-
relates with the DC score. This characteristic is proofed in Table 5.2. Furthermore, an
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average specificity of 0.919 certifies that 91,9% of all pixels are correctly classified as back-
ground. The mean PPV is 0.854. Thus, 85.4% of the as prostate gland assigned pixels
are truly prostate gland pixels. The mean HdB amounts to 8.50 millimeters.

Table 5.2: Error metric scores for automated prostate gland segmentation on 25 3-Tesla
studies

DC Sens Spec PPV HdB

mean 0.853 0.863 0.913 0.854 8.50 mm

median 0.865 0.888 0.919 0.882 7.81 mm

(a) (b)

Figure 5.8: Figures (a) and (b) show segmentation results of the prostate gland of study
Prostate3T-01-0001 visualized in the software application 3D Slicer. The 3D prostate
gland is shown in red. The capitalised letters indicate the coordinate system: anterior (A),
posterior (P), left (L) and right (R).

Figure 5.8 represents the prediction result of study Prostate3T-01-0001. The algorithm is
trained on 21 studies and study Prostate3T-01-0001 is one of the four prediction studies.
The visualization is done in 3D Slicer. Figure 5.8(a) shows the transversal cut MR image
overlaid by the three dimensional segmentation result in red. Figure 5.8(b) illustrates
axial, sagittal and coronal MR images planes superimposed by the three dimensional
segmentation result of the prostate gland in red. The capitalised letters in figure 5.8
represent direction-abbreviations of the coordinate system: anterior (A), posterior (P),
left (L) and right (R).
In order to present a segmentation results in detail, Figures 5.9(a) and 5.9(b) show the
prostate gland segmentation results of two slices. The boundary of the predicted prostate
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(a) (b)

Figure 5.9: Figures (a) and (b) show transversal cuts of the segmented prostate gland of
study Prostate3T-01-0001. The green boundary characterizes ground truth and the red
boundary indicates the segmentation result.

gland is shown in red, whereas the green boundary indicates the ground truth. Because of
not utilizing an appearanced based segmentation method and not adding a high level post-
processing step, the shape of the predicted prostate gland looks squiggled in comparison to
the ground truth prostate gland. However, results are competitive compared to G.Vincent
et al [27] and M.Yang et al [33], which achieve mean dice scores of 0.88 and 0.93.

(a) (b) (c)

Figure 5.10: A set of three subfigures: (a) represents the three dimensional averaged
prediction error of the prostate gland; (b) shows the eighth slice of the averaged prediction
error; (c) illustrates the fifteenth slice of the averaged prediction error

Figure 5.10 represents plots of the averaged prediction error of the prostate gland. Uti-
lizing 10 cross-validation iterations and a prediction fraction of 0.17 leads to 40 predicted
studies in total. The false positive (FP) and false negative (FN) prediction areas of these
40 studies are averaged and shown in Figure 5.10(a). In addition, Figure 5.10(b) and
Figure 5.10(c) illustrate the eighth and the fifteenth slice of the averaged prediction error.
It is important to note that the algorithm is performing well around the prostate center
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with error rates close to zero (dark blue). This behaviour is the result of utilizing distance
features with respect to the center. Approaching the prostate gland border yields to the
fact that the algorithm starts performing poorly and produces an average error around
0.45 (see Figure (c)). The highest error rates with 0.76 occur at the beginning and at the
end of the averaged prediction error stack. There is a good match of an plot provided by
G.Vincent et al in [27] and Figure 5.10. The illustrated map of the mean distance error
plot in [27] reveals the same characteristic as shown in Figure 5.10.

5.2.2 Automated Prostate Zone Segmentation

This subsection describes error metrics and segmentation results of automated prostate
zone segmentation utilizing the optimal model parameters from Section 5.1. In comparison
to the previous Subsection 5.2.1 the two prostate zones namely CG and PZ are now
separately taken into account. As may be seen below, Figure 5.11 illustrates the error
metric scores in boxplots of cross-validation on 25 3-Tesla studies. The training fraction
is set to 0.83 respectively, the prediction fraction is 0.17. Hence, red boxes mark DC
scores for the CG and blue boxes symbolize scores of the PZ. Utilizing 10 cross-validation
iterations yield to 40 predicted studies in total. For each region in each study are error
metrics calculated. Thus, each error metric comprises 40 scores, which are accordingly
represented in boxes. Edges of the boxes present the 25th and 75th percentiles of each
score. Slashes within the box illustrate the median and dots indicate the mean. In
addition, extend whiskers to the most extreme data points.

Figure 5.11: The scores of four error metrics in boxplots of prostate zone segmentation.
The four metrics are: DC, sensitivity (Sens), specificity (Spec) and PPV. Each error
metric is provided twice - once for the CG in red and once for the PZ in blue. Cross-
validation on 25 3-Tesla studies utilizing the A2-Mode is carried out. The fraction of
training studies is set to 0.83. Edges of the box present the 25th and 75th percentiles
of each score. Slashes within the box highlight the median and dots indicate the mean.
Whiskers extend to the most extreme data points.

Figure 5.11 reveals, that whiskers of the blue DC box and the blue DC sensitivity
box extend to zero. This means that the algorithm predicted in some studies no PZ,
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despite the fact that there is truly a PZ. In total 4 out of 40 times was no PZ pre-
dicted. Furthermore, the mean DC scores and mean sensitivity scores for the PZ are
approximately 30% (0.47, 0.38) lower than mean DC scores and mean sensitivity scores
for the CG (0.78, 0.87). This characteristic is caused mainly due the variable shape
of the PZ, which is because of the generalization property of the FFANN model not
captured. This behaviour results in stiffness when it is necessary to predict an highly
abnormal or in other words a variable PZ. Another reason for lower DC scores for the
PZ could be associated with the different gray value distribution of the PZ over all
studies or the fact that distance features are extracted with respect to the prostate’s mass
point. Summarized, the extracted features describe the CG well but fail partly for the PZ.

Table 5.3: Error metric scores for automated prostate zone segmentation on 25 3-Tesla
studies

DC CG DC PZ Sens CG Sens PZ Spec CG

mean 0.789 0.476 0.877 0.387 0.894

median 0.833 0.569 0.897 0.409 0.913

Spec PZ PPV CG PPV PZ HdB CG HdB PZ

mean 0.986 0.741 0.690 8.25 mm 15.46 mm

median 0.986 0.836 0.773 8.13 mm 13.68 mm

(a) (b)

Figure 5.12: Figures (a) and (b) illustrate the segmentation result of the prostate zones
visualized in the software application 3D Slicer. The 3D CG is shown in red and the PZ is
represented in blue. The capitalised letters represent the coordinate system: anterior (A),
posterior (P), left (L) and right (R).
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All mean and median error metric scores for automated prostate zone segmentation are
shown in Table 5.3. It has been found that scores for the CG correlate with scores for
prostate gland segmentation. The mean values in Table 5.3 correspond to dots in Figure
5.11 and accordingly, correspond median values in Table 5.3 to slashes in Figure 5.11.
There is no corresponding comparably literature for fully-automated prostate zone seg-
mentation. Hence, table 5.3 presents the first fully automated prostate zone segmentation
results on open access data.
Figure 5.12 illustrates the segmentation result of study Prostate3T-01-0005. The algo-
rithm is trained on 21 studies and study Prostate3T-01-0005 is one out of four prediction
studies. The visualization is done via the software application 3D Slicer. Figure 5.12(a)
shows an adjacent axial cross-section MR image overlaid by the CG segmentation result
in red and the PZ segmentation result in blue. Figure 5.12(b) illustrates axial, sagit-
tal and coronal MR image planes combined with the prostate zone segmentation result.
The capitalised letters in Figure 5.12 represent direction-abbreviations of the coordinate
system: anterior (A), posterior (P), left (L) and right (R).

(a) (b) (c)

(d) (e) (f)

Figure 5.13: Figures (a), (b) and (c) illustrate the ground truth segmentation of the
prostate zones from three different viewpoints. The green region represents the ground
truth CG and the orange region indicates the ground truth PZ. Figures (d), (e) and
(f) illustrate the predicted segmentation result of the prostate zones from three different
viewpoints. The red region shows the predicted CG and the blue region indicates the
predicted PZ. The capitalised letters represent direction-abbreviations of the coordinate
system. anterior (A), posterior (P), superior (S), inferior (I), left (L) and right (R)

Next, Figure 5.13 shows a direct comparison of a predicted segmentation result to its
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ground truth from three different viewpoints. The upper row in Figure 5.13 represents the
ground truth and the lower row points out the prediction of the provided automated algo-
rithm. The DC score of study Prostate3T-01-0005 in Figure 5.13 is 0.80 for the PZ and
0.90 for the CG. Thus, case Prostate3T-01-0005 is representing a well segmented study.
The red circle in 5.13(e) indicates that the automated algorithm predicted PZ in two
slices, although there is truly no PZ. An explanation for this behaviour is explained below.

Figure 5.14 presents two adjacent axial cross-section cuts at different position super-
imposed by the predicted segmentation result and ground truth segmentation. Both
prostate zones show different gray value distributions and are therefore by the algorithm
well classified. Figure 5.14 is visualized in the same color scheme as 5.13. Hence, the red
boundary represents the predicted CG and the blue boundary indicates the predicted
PZ. The ground truth is illustrated by the green and orange boundaries. Whereby, the
green boundary indicates CG and PZ is marked by the orange boundary. The red circle
in Figure 5.13(e) indicates an error in the predicted PZ and outlines the limitations of the
proposed algorithm. The algorithm predicted PZ (blue region) despite the fact there is
truly no PZ. The reason for that is the light bright structure at the bottom on the right
of the CG. Exactly this structure is interpreted through the algorithm as PZ, because in
the slices below exists peripheral zone at the same place with almost the same gray value
distribution.

(a) (b)

Figure 5.14: Figures (a) and (b) show transversal cuts of the segmented prostate zones of
the study Prostate3T-01-0005. It is the same study as in figure 5.13 and as in figure 5.12.
The green boundary represents the ground truth CG and the red boundary indicates the
predicted CG of the proposed automated algorithm utilizing the A2-Mode. Accordingly
presents the orange boundary the ground truth of the PZ and the blue boundary the
corresponding prediction

For the sake of completeness, the proposed algorithm is tested on the 25 1.5-Tesla studies
to determine the performance and accuracy utilizing the optimal FFANN parameters.
Hence, the error metric scores of cross-validation using 10 iterations are illustrated in
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Figure 5.15. Again, the fraction of training was set to 0.83 and the utilized mode is the
fully-automated A2-Mode. Using 25 1.5-Tesla studies in total leads in each iteration to 21
training studies and 4 prediction studies. Red boxes in Figure 5.15 highlight DC scores
for the CG and blue boxes reveal corresponding scores for the PZ. Additionally, the mean
and median values of each error metric are shown in Table 5.4.

Figure 5.15: represents four error metrics scores in boxplots of prostate zone segmentation
utilizing 25 1.5-Tesla studies as well as the A2-Mode. Four metrics are: Dice coefficient
(DC), sensitivity (Sens), specificity (Spec) and positive predictive value (PPV). Each
error metric is provided twice - once for the CG in red and once for the PZ in blue.
The fraction of training studies is set to 0.83. Edges of the box present the 25th and
75th percentiles of each score. Slashes within the box characterize the median and dots
represent the mean. Whiskers extend to the most extreme data points.

Table 5.4: Error metric scores for automated prostate zone segmentation on 25 1.5-Tesla
studies

DC CG DC PZ Sens CG Sens PZ Spec CG

mean 0.757 0.520 0.853 0.498 0.859

median 0.743 0.599 0.867 0.539 0.871

Spec PZ PPV CG PPV PZ HdB CG HdB PZ

mean 0.925 0.666 0.587 7.99 mm 10.08 mm

median 0.926 0.655 0.657 6.34 mm 9.11 mm

The error metrics scores of Table 5.4 lie in the same range as error metric scores on 25
3-Tesla studies, which are illustrated in Table 5.3. The scores are considered to be in
the same range, because the deviation of the mean DC scores for the CG and for the PZ
are 0.03 and 0.05. The remaining error metric scores correlate as well. Due the fact, the
deviations differ at the second position behind the decimal point, it is considered that
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the proposed algorithm is independent to the magnetic field strength. This characteristic
is caused by the feature normalization in Section 4.3.

Additionally, a volume estimation evaluation of the 25 3-Tesla studies is employed. Each
study is predicted once without being in the training set simultaneously. Firstly, the accu-
racy of the described volume estimation algorithm in Section 4.6 is established. Therefore,
the volumes of the PZs and the CGs are estimated through the proposed algorithm based
on the ground truth labels. In addition, volumes of both zones are measured by the soft-
ware application 3D Slicer from the ground truth labels. The assessed volume of this mea-
surement is considered to be the ground truth volume. Hence, the fraction of the estimated
ground truth volume, assessed through the proposed algorithm and the volume measure-
ment by 3D Slicer is determined as FGT CG for the CG and as FGT PZ for the PZ. These
fractions determine how accurate the proposed volume estimation algorithm performs on
ground truth. Moreover, FGT Sum determines the volume fraction of both zones respec-
tively, the prostate gland. This fraction is derived from VGT CG FFANN + VGT PZ FFANN

and VGT CG 3DSlicer + VGT PZ 3DSlicer.

Table 5.5: Volume estimation evaluation on 25 3-Tesla studies

Fraction Mean Median SD STE r2

FGT CG = VGT CG FFANN/VGT CG 3DSlicer 0.940 0.943 0.027 0.005 0.999

FGT PZ = VGT PZ FFANN/VGT PZ 3DSlicer 1.321 1.314 0.246 0.048 0.910

FGT Sum 1,06 1.05 0.09 0.02 0,982

FP CG = VP CG FFANN/VGT CG 3DSlicer 1.05 1.006 0.274 0.054 0.912

FP PZ = VP PZ 3DSlicer/VGT PZ 3DSlicer 0.55 0.670 0.360 0.071 0.451

FP Sum 0.87 0.895 0.152 0.030 0,844

Volume estimation evaluation results based on 25 3-Tesla studies. Abbreviations are as follows:
standard deviation (SD), standard error (STE), Person correlation coefficient r2, ground truth
labels (GT), predicted labels (P), central gland (CG), peripheral zone (PZ), FFANN indicates
volumes are established by the proposed volume estimation algorithm in 4.6, 3DSlicer indicates
volumes are measured with 3DSlicer

The mean, median, standard deviation (SD) and standard error (STE) as well as the
Pearson correlation coefficient(r2) are illustrated in the upper half of Table 5.5. Detailed
results of the volume measurements as well as for FGT CG and FGT PZ are attached in the
Appendix B.1. A volume fraction of 1.00 indicates the estimated volume is equal to the
ground truth volume. Furthermore, indicates a volume fraction <1 an underestimated
predicted volume and in contrast means a volume fraction >1, that the predicted volume
is overestimated. A r2 value of 0.999 for FGT CG indicates the volume estimation for the
CG is almost superposable. Respectively, FGT PZ and FGT Sum achieve r2 values of 0.910
and 0,982. The lower have in table 5.5 shows the mean, median, SD, STE and r2 scores
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for FP CG, FP PZ and FP Sum, whereby, FP CG presents the fraction of the estimated
CG volume out of the prediction utilizing the proposed algorithm to the measured CG
volume by 3D Slicer based on the ground truth labels. Accordingly, FP PZ represents the
fraction of the estimated PZ to ground truth and FP Sum the fraction of the estimated
prostate gland to ground truth. Hence, FP CG and FP PZ determine for each zone the
volume estimation accuracy of the predicted labels in comparison to the volumes based
on the ground truth labels. The estimated volume of each zone logically depends strongly
on the predicted labels. FP CG and FP PZ achieve mean volume fraction scores of 1.05
and 0.55 and r2 values of 0.912 and 0.451. One of the most obvious consequences of a
mean fraction of 0.55 for FP PZ is that the PZ is strongly underestimated throughout the
proposed algorithm. FP Sum characterizes the fraction of the predicted prostate gland to
the ground truth prostate gland. FP Sum achieves a mean volume fraction of 0.87 and a
r2 value of 0.84. Fractions FP CG and FP PZ of each study are illustrated in detail in the
Appendix B.1. Volume estimation of the PZ provides the lowest score, which is caused
by the imprecise prediction.

5.3 Evaluation of 100 MD Anderson Cancer Center
Studies

This section reviews the performance of the proposed algorithm on a large dataset. Ex-
perts from the MD Anderson Cancer Center drew contours on 100 abdominal T2-weighted
MRI studies via an implemented DICOM-Viewer inMatlab. These contours contain labels
for the CG as well as for the PZ. Cross-validation utilizing 10 cross-validation iterations
as well as the optimal FFANN parameters shown in Table 5.1 are employed.
In contrast to previous experiments the I-Mode is now utilized instead of the A2-
Mode. The I-Mode or in other words the interactive mode requires a manually deter-
mined center point of the prostate as well as manually determined transverse(D1) length,
craniocaudal(D2) length and anteroposterior (D3) length of the prostate. Manual deter-
minations are carried out through MD Anderson Cancer Center experts as well. Hence,
the I-Mode presents a semi-automatic version of the proposed algorithm. Furthermore,
the fraction of training studies is determined to be 0.83. As the learning curve in Figure
5.2 reveals the learning behaviour did not reach its saturation, an experiment utilizing all
100 studies is carried out. Thus, the number of training studies is 83 and accordingly, the
number of prediction studies is 17. The results of the experiment utilizing the I-Mode on
100 MD Anderson Cancer Center studies are shown in Figure 5.16 and in table 5.6.
As shown in Table 5.6, all mean and median scores for the PZ increased significantly
utilizing the interactive mode. Thus, the mean DC score for the PZ amounts to 0.69 on
100 studies. Furthermore, the remaining mean and median scores for the CG improved
slightly, too. For instance, the mean DC scores for the CG are 0.81 on 100 studies. The
mean Hausdorff Distance of Boundaries (HdB) achieves a score for the CG of 3.40 mm
and 4.81 mm for the PZ. In summary, all mean and median error metric scores improved
compared to all previous experiments. This improvement is caused by the minimal user
interaction of about 20 seconds to determine the center point as well as the principle
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Figure 5.16: Four error metric scores in boxplots of prostate zone segmentation utilizing
100 MD Anderson Cancer Center studies and the I-mode. Four metrics are: DC, sensitiv-
ity (Sens), specificity (Spec) and PPV. Each error metric is provided twice - once for the
CG and once for the PZ. Cross-validation on 100 studies utilizing the I-Mode is carried
out. The fraction of training studies is set to 0.83. Red boxes highlight DC for the CG
and blue boxes mark DC scores for the PZ. Edges of the boxes present the 25th and 75th
percentiles of each score. Slashes within the box represent the median and dots represent
the mean. Whiskers extend to the most extreme data points.

lengths D1,D2 and D3. Consequently, the proposed algorithm is competitive to the work
presented by M.Rusu et.al [32]. The processing time of one study on a machine comprised
of an i7 core processor and 16GB of RAM averaged to 15 seconds. The segmentation
results of each slice of one MD Anderson Cancer Center study are shown in the Appendix
B.1. However, the characteristic of the averaged prediction error of the prostate gland
shown in Figure 5.10 is transferable to automated and semi-automated prostate zone
segmentation. This means that the proposed algorithm performs well in middle-slices.
But the algorithms begins performing poorly approaching the start or end of the utilized
image stack.

Because of having manually determined lengths D1, D2 and D3 for each study available,
volume estimation evaluation is carried out as well. The fraction of training studies is
set to 0.80 and randomly picking training studies and prediction studies are disabled.
This yields to 80 training and 20 prediction studies. In order to predict each study once
without being in the training set leads to five experiments in total. Each time training
and prediction studies are substituted in order to avoid using a study for training and
prediction simultaneously. This procedure is repeated five times until all studies are
predicted once.
Five prostate volume estimation techniques are proposed in total and shown in Table 5.7.
The Ellipsoid, Myschetzky and the Prolate spheroid techniques require D1, D2 and D3.
The proposed volume estimation algorithm does not need D1, D2 and D3 - it only requires
the predicted prostate zones in combination with the corresponding DICOM-header in
order to assess the xy-spacing as well as the z-spacing. The ground truth volume is
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Table 5.6: Error metric scores for semi-automated prostate zone segmentation on 100 MD
Anderson studies utilizing the I-mode

DC CG DC PZ Sens CG Sens PZ Spec CG

mean 0.81 0.69 0.87 0.66 0.94

median 0.83 0.72 0.88 0.68 0.93

Spec PZ PPV CG PPV PZ HdB CG HdB PZ

mean 0.96 0.78 0.76 3.40 mm 4.81 mm

median 0.97 0.80 0.79 2.99 mm 4.44 mm

established by measuring the volume in 3DSlicer based on the ground truth labels.

Each volume estimation technique is compared to the ground truth by building the frac-
tion of the estimated volume to the ground truth volume. This results for each study
to volume fractions as follows: FCube, FEll, FMys, FSph, VP CG, VP PZ and FSum, where
FSum is derived from (VCG + VPZ)/Vground truth. All D1, D2 and D3 measurements, esti-
mated volumes and volume fractions of all 100 MD Anderson studies are attached in the
Appendix in Table B.

Table 5.7: Enumeration of prostate volume estimation techniques with corresponding
formulas

model description volume estimation

Cube VCube D1 ∗D2 ∗D3

Ellipsoid VEll D1 ∗D2 ∗D3 ∗ π/6

Myschetzky VMys D1 ∗D2 ∗D3 ∗ 0.7

Prolate spheroid VSph (D1)2 ∗D2 ∗ π/6

FFANN VP CG, VP PZ , VP Sum see section 4.6

Expert Vground truth via 3DSlicer

For each volume fraction the mean, median, standard deviation (SD), standard er-
ror (STE) and the Pearson correlation coefficient r2 over 100 studies are assessed and
presented in Table 5.3. For better comparison, FCube is presented as well. Each following
fraction (FEll, FMys, FSph, FSum ) should have at least lower volume fraction scores
than FCube. Because VCube basically multiplies the three principle prostate length, which
results in the prostate’s bounding box volume.
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The proposed algorithm achieve mean volume fractions of 1.192 for the CG and 0.904
for the PZ. Associated standard deviations are 0.38 and 0.38. This implies that the CG
is on average over-estimated and the PZ is on average under-estimated. Combing both
regions leads to a compensation and results as a consequence in a mean volume fraction
of 1.019 with a standard deviation of 0.159.
In contrast, FEll, FMys and FSph achieve mean volume fractions of 1.315, 1.758 and
1.744. Respectively, standard deviations are 0.032, 0.043 and 0.077. This means that
each of these volume estimation technique over-estimates the prostate gland strongly.
Which is basically caused by the corresponding formulas of each technique. According
to the mean volume fraction of FSum, are the highest r2 values (0.912, 0.649, 0.922)
obtained using the proposed algorithm. Hence, clinical standard prostate volume esti-
mation techniques, which achieve r2 values of 0.761, 0.761 and 0.54 are far exceeded.
Furthermore, the achieved r2 value of 0.82, presented by R.Toth et al [29] is outperformed.

Table 5.8: Volume estimation evaluation on 100 MD Anderson studies

Fraction Mean Median SD STE r2

FCube 2.511 2.412 0.623 0.062 0.761

FEll 1.315 1.263 0.326 0.032 0.761

FMys 1.758 1.689 0.436 0.043 0.761

FSph 1.744 1.655 0.771 0.077 0.540

FCG 1.192 1.121 0.380 0.0038 0.912

FPZ 0.904 0.898 0.388 0.039 0.649

FSum 1.019 1.028 0.159 0.016 0.922

Volume evaluation results of 100 MD Anderson Cancer Center studies. Abbreviations are as
follows: standard deviation (SD), standard error (STE), Person correlation coefficient r2, ground
truth labels (GT), predicted labels (P), central gland (CG), peripheral zone (PZ)
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Discussion

Automated prostate structure segmentation in MR images provides information about
the size, shape, position and volume of the prostate gland and prostate zones. Thus, the
knowledge about the prostate increases, which can affect and improve as a consequence
multiple fields such as prostate cancer staging, treatment selection as well as prostate
biopsies. A fully-automated prostate zone and prostate gland segmentation algorithm
from in vivo T2-weighted MRI studies is presented. In addition, a semi automated
version of the proposed algorithm is carried out and tested on a large scale dataset.
Subsequently, volume estimation based on the segmentation results has been proposed.
The invented supervised machine learning algorithm constitutes multi layer feed forward
artificial neural networks (FFANN). Hence, the proposed multi layer FFANN is trained
by means of features in order to solve a multi-class classification problem. To achieve
input data clustering, several hand engineered low-level features are extracted for each
pixel from a pre-processed MR image stack. The proposed feature extraction incorporates
multiple texture, distance, statistical, probabilistic as well as local neighborhood features.
The fully-automated algorithm is comprised of two FFANN models, which are ordered
consecutively. In contrast, the semi-automatic version contains only one FFANN. Basic
postprocessing steps as morphological operations and Gaussian smoothing results in the
algorithm’s output. Building a three-dimensional surface point cloud from the algorithm’s
output in order to assess a closed surface model through triangulation represents the
core of the proposed volume estimation algorithm. Consequently, volumes are estimated
based on the closed surface models.

Multiple experiments have been proposed to establish the optimal FFANN parameters,
which are as follows: 152 × 150 × 75 × 3 hidden neurons, batchsize of 10, one epoch,
neighborhood size of 5, weight initialization method: random weight initialization, best
training performance obtained on 21 training studies. The reason for achieving equal
Dice coefficient (DC) scores with random weight initialization and deep belief network
weight initialization is unknown, but it has been suggested by Hinton and Salakhutdinov
[57] as a possible improvement.

Utilizing the optimal FFANN parameters as well as the strict error metric calculations,
especially the strict DC calculation leads to a mean DC score for the prostate gland on
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25-3 Tesla studies of 0.85. Hence, the presented results are competitive to others [33],[27].
Considering prostate zone segmentation on 25 3-Tesla and on 25 1.5-Tesla studies the
mean DC scores are 0.78/0.75 for the central gland (CG) and 0.47/0.52 for the peripheral
zone (PZ) without requesting any user interaction, whereby, the prediction time amounts
to 30 seconds per study. Based on the fully-automated segmentation yields a subsequent
volume estimation to mean volume fractions of 1.05 for the CG, 0.55 for the PZ and 0.87
for the prostate gland. Respectively, the Pearson correlation coefficients (r2) values are
0.91, 0.45 and 0.84. These results present the first complete fully-automated prostate
zone segmentation results in the literature based on in vivo T2-weighted MRI studies.
Hence, fully-automated segmentation with subsequent volume estimation for the central
gland as well as for the prostate gland achieves clinical relevant results. In contrast,
scores for the peripheral zone are too imprecise and needs further investigations.

Enabling minimal user interaction in order to determine the principle lengths as well as
the mass point of the prostate leads to a mean DC scores on 100 in vivo T2-weighted
MRI studies of 0.81 and 0.69. It is the first time that semi-automated prostate zone
segmentation is carried out on a large scale datasets like this. These scores are similar
to current results presented in the literature, which have utilized smaller datasets [32].
The processing time amounts to 15 seconds per study. Volume estimation achieved mean
volume fraction scores of 1.19 for the CG, 0.90 for the PZ and 1.01 for the prostate
gland. Respectively, the r2 values are 0.91, 0.64 and 0.92. This means that the proposed
semi-automated algorithm provides segmentation results which correlate higher with the
ground truth than traditional techniques, which are namely the Myschetzky (r2=0.761),
the Ellipsoid (r2=0.761) and the Prolate spheroid (r2=0.541) technique. Furthermore,
r2 values for the CG and prostate gland outperform current volume estimation methods
presented the literature [29]. While the initial findings are promising, this study has
highlighted existing problems for automated as well as semi-automated peripheral zone
segmentation. By reason of the natural variability of the peripheral zone, further research
is necessary to increase the segmentation for the peripheral zone in terms of accuracy.

In addition, this study raises a number of questions for future research by means of
applying the existing algorithm to other organs. The proposed algorithm is not limited
to learn just the prostate gland/zones from labels, it is able to learn any arbitrarily
shape. Moreover, the algorithm’s output can be utilized as basis for further high-level
postprocessing or could be used in combination with an appearance based segmentation
technique to achieve higher dice scores. Limitations of the proposed supervised algorithm
include the fact that it has to be trained on manual expert segmentations in order to use
it for fully-automated or semi-automated prostate zone segmentation. Concluding this
study, the proposed prostate zone segmentation algorithm combined with the proposed
volume estimation can save valuable time for clinicians by providing in realtime accurate
prostate zone segmentations and accurate prostate volume estimations.
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Table of Abbreviations

VC visual cortex

LGN lateral geniculate nucleus

OECD Organisation for Economic Co-operation and Development

MRI magnetic resonance imaging

MR magnetic resonance

DC Dice coefficient

TRUS transrectal ultrasonography

PSA prostate specific antigen

CG central gland

PZ peripheral zone

US ultrasonography

MRS magnetic resonance spectroscopy

CT computed tomography

PET positron emission tomography

DRE digital rectal exam

MAP maximum a posteriori estimation

MNIST Mixed National Institute of Standards and Technology database

ANN artificial neural network

FFANN Feed Forward Artificial Neural Network

DBFFANN deep belief feed forward artificial neural network

DBN deep belief network
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RBM Restricted Boltzmann Machine

BMC Boston Medical Center

RUNMC Radboud University Nijmegen Medical Centre

DICOM Digital Imaging and Communications in Medicine

NRRD nearly raw raster data

SV stored values

RWV real world values

DISP display values

NHS neighborhood size

VU volume units

HdB Hausdorff Distance of Boundaries

PPV positive predictive value

FP false positive

TP true positive

FN false negative

TN true negative

BTP best training performance

WIM weight initialization method

A anterior

P posterior

L left

R right

I inferior

S superior

SD standard deviation

STE standard error



Appendix A

Used Tools

A.1 Hardware
All calculations were performed on a machine comprised of a i7 core processor and 16GB
of RAM.

A.2 Software
Matlab: a high-level technical computing language and interactive environment for
algorithm development, data visualization, data analysis, and numerical computation.
MATLAB, allows us to solve technical computing problems faster than with traditional
programming languages, such as C, C++, and Fortran. (see http://www.matlab.com)

3D Slicer: a free, open source software package for image analysis and scientific visu-
alization. Slicer is used in a variety of medical applications, including autism, multiple
sclerosis, systemic lupus erythematosus, prostate cancer, schizophrenia, orthopedic biome-
chanics, COPD, cardiovascular disease and neurosurgery. ( see http://www.slicer.org/
and http://en.wikipedia.org/wiki/3DSlicer)
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Appendix B

Additional Figures and Tables

Figure B.1: Prostate zone segmentation result of one MD Anderson Cancer Center study.
The red boundary indicates the predicted central gland and the blue boundary represents
the predicted peripheral zone
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Table B.1: Volume estimations and volume fractions of 25 3-Tesla studies
FFANN FFANN 3D Slicer 3D Slicer Frac GT to GT Frac Pre to GT

VP CG VP P Z VGT CG VGT P Z VP CG VP P Z VGT CG VGT P Z FGT CG FGT P Z FP CG FP P Z

cm
3

cm
3

cm
3

cm
3

cm
3

cm
3

cm
3

cm
3

cm
3

cm
3

cm
3

cm
3

35,81 5,48 37,68 6,21 37,74 4,39 37,94 8,18 0,993 0,759 0,944 0,670
53,86 9,94 50,29 28,17 56,61 8,6 53,55 19,14 0,939 1,472 1,006 0,519
52,54 17,68 46,38 29,39 55,51 13,12 49,33 20,935 0,940 1,404 1,065 0,845
60,39 5,75 59,78 22,19 63,32 5,89 62,26 18,09 0,960 1,227 0,970 0,318
32,81 13,77 28,09 19,31 34,66 12,34 29,94 14,72 0,938 1,312 1,096 0,935
42,62 10,2 41,16 16,16 44,12 6,15 44,91 12,07 0,916 1,339 0,949 0,845
31,95 5,82 22,9 33,18 34,11 6,67 23,81 23,24 0,962 1,428 1,342 0,250
39,5 4,01 36,63 6,59 41,84 0,16 39,29 5,015 0,932 1,314 1,005 0,801

53,64 3,93 45,01 33,75 56,29 49,57 47,71 20,05 0,943 1,683 1,124 0,196
68,07 0,17 87,1 32,17 41,78 0,822 91,77 19,49 0,949 1,651 0,415 0,009
20,59 10,13 14,12 13,58 22,28 6,94 16,74 12,52 0,843 1,085 1,230 0,809
48,09 0,35 27,62 33,28 50,99 6,94 29,86 18,86 0,925 1,765 1,611 0,019
47,27 13,95 43,84 20,72 50,55 10,69 46,31 12,66 0,947 1,637 1,021 1,102
22,08 19,01 12,77 26,07 23,59 15,33 13,76 21,51 0,928 1,212 1,605 0,884
20,73 0,35 11,19 16,54 23,13 0,819 12,56 11,15 0,891 1,483 1,650 0,031
47,88 1,14 76,47 22,82 50,61 4,12 79,52 14,29 0,962 1,597 0,602 0,080
32,91 14,41 31,36 20,96 34,92 12,05 33,55 16,98 0,935 1,234 0,981 0,849
42,83 2,018 55,7 17,01 44 5,6 59,1 13,66 0,942 1,245 0,725 0,148
82,14 4,22 96,33 5,24 86,09 5,87 101 5,03 0,954 1,042 0,813 0,839
47,64 0,16 53,65 8,42 50,17 1,35 56,47 8,8 0,950 0,957 0,844 0,018
72,35 11,34 75,94 14,36 75,42 4,5 80,04 12,92 0,949 1,111 0,904 0,878
50,37 20,33 46,74 25,57 53,24 9,265 49,56 25,28 0,943 1,011 1,016 0,804
54,88 18,16 71,63 29,25 54,44 18,03 74,83 22,86 0,957 1,280 0,733 0,794
51,64 10,15 47,54 20,74 54,09 13,1 50,15 15,19 0,948 1,365 1,030 0,668
20,74 8,09 15,91 30,21 22,19 6,79 16,89 21,5 0,942 1,405 1,228 0,376

represents the volume measurements of 25 3-Tesla cases. The columns are defined as follows:
fist column - predicted CG volume VP CG based on the proposed algorithm; second column -
predicted PZ volume VP PZ based on the proposed algorithm; third column - ground truth CG
volume VGT CG based on the proposed algorithm; fourth column - ground truth PZ volume
VGT PZ based on the proposed algorithm; fifth column - predicted CG volume VP CG measured
with 3D Slicer; sixth column - predicted PZ volume VP PZ measured with 3D Slicer; seventh
column - ground truth CG volume VGT CG measured with 3D Slicer; eights column - ground
truth PZ volume VGT PZ measured with 3D Slicer; ninth column - fraction FGT CG of ground
truth CG volume based on the proposed algorithm and the ground truth volume of the CG
measured with 3D Slicer FGT CG = VGT CG FFANN/VGT CG 3DSlicer; tenth column - fraction
FGT PZ of the ground truth volume of the PZ based on the proposed algorithm and the ground
truth volume of the PZ measured with 3D Slicer FGT PZ = VGT PZ FFANN/VGT PZ 3DSlicer;
eleventh column - fraction FP CG of the predicted CG volume based on the proposed algorithm
and the predicted CG volume measured with 3D Slicer FP CG = VP CG FFANN/VGT CG 3DSlicer;
twelfth column - fraction FP PZ of the predicted PZ volume based on the proposed algorithm
and the predicted PZ volume measured with 3D Slicer FP PZ = VP PZ FFANN/VGT PZ 3DSlicer
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Table B.2: Volume estimations and volume fractions of MD Anderson studies 1-50
Case D1 D2 D3 VCube VEll VMys VSph FCube FEll FMys FSph FCG FP Z FSum

cm cm cm cm
3

cm
3

cm
3

cm
3 1 1 1 1 1 1 1

1 2,6 4,6 2,4 28,704 15,03 20,09 16,14 1,048 0,549 0,734 0,589 1,122 0,969 1,028
2 4,8 2,3 4,8 52,992 27,75 37,09 27,50 2,391 1,252 1,674 1,241 1,101 1,058 1,080
3 3,1 5,2 6,1 98,332 51,48 68,83 25,94 3,165 1,657 2,215 0,835 0,996 0,557 0,800
4 5,6 3,7 5,5 113,96 59,67 79,77 60,22 4,149 2,172 2,904 2,192 0,952 1,112 1,030
5 4,3 2,5 4,6 49,45 25,89 34,62 23,99 3,150 1,649 2,205 1,528 1,052 0,766 0,928
6 3 2,4 4,4 31,68 16,59 22,18 11,21 1,829 0,958 1,280 0,647 0,978 2,137 1,187
7 5,3 5 2,8 74,2 38,85 51,94 72,90 2,833 1,483 1,983 2,783 0,940 0,862 0,905
8 1,8 4,4 4,3 34,056 17,83 23,84 7,40 2,151 1,126 1,506 0,467 0,975 0,957 0,968
9 4,2 2,2 3,6 33,264 17,42 23,28 20,14 2,089 1,094 1,463 1,265 1,039 1,277 1,119

10 2,6 4,5 4,4 51,48 26,95 36,04 15,79 3,172 1,661 2,220 0,973 1,224 0,929 1,063
11 5,4 4,1 3,3 73,062 38,25 51,14 62,05 2,189 1,146 1,533 1,860 1,077 0,923 1,013
12 2,7 4,7 4,2 53,298 27,91 37,31 17,78 2,776 1,453 1,943 0,926 1,267 1,755 1,453
13 5,9 4,5 3,1 82,305 43,09 57,61 81,30 2,621 1,372 1,835 2,589 1,080 1,297 1,155
14 5 4,7 3,5 82,25 43,06 57,58 60,99 2,644 1,384 1,851 1,960 1,055 1,105 1,073
15 2,7 4,5 4,3 52,245 27,35 36,57 17,03 2,297 1,203 1,608 0,749 0,923 0,967 0,946
16 5,4 4,6 3,4 84,456 44,22 59,12 69,62 4,060 2,126 2,842 3,347 1,170 0,331 0,815
17 5,3 3,2 4,9 83,104 43,51 58,17 46,65 1,869 0,978 1,308 1,049 1,571 0,701 0,983
18 5,3 3,1 4,8 78,864 41,29 55,20 45,20 2,719 1,423 1,903 1,558 0,955 0,880 0,914
19 5 1,9 3,8 36,1 18,90 25,27 24,65 2,405 1,259 1,684 1,642 0,802 0,925 0,860
20 5,9 4,4 3,1 80,476 42,14 56,33 79,50 2,508 1,313 1,755 2,477 1,124 0,880 1,019
21 4,7 5 3,3 77,55 40,60 54,29 57,33 2,608 1,366 1,826 1,928 0,873 1,393 1,029
22 3,6 5,6 4,5 90,72 47,50 63,50 37,67 4,014 2,102 2,810 1,667 0,921 0,866 0,892
23 4,5 2,3 3,1 32,085 16,80 22,46 24,17 1,664 0,871 1,165 1,254 1,005 1,068 1,037
24 4,8 4,3 2,6 53,664 28,10 37,56 51,42 1,849 0,968 1,294 1,771 1,128 1,108 1,121
25 3,8 2,9 3,5 38,57 20,19 27,00 21,73 1,516 0,794 1,061 0,854 1,123 1,635 3,209
26 5,4 4,5 3,7 89,91 47,08 62,94 68,11 2,336 1,223 1,635 1,769 0,790 1,635 1,007
27 4,5 4,9 2,3 50,715 26,55 35,50 51,50 2,796 1,464 1,957 2,839 1,079 1,320 1,189
28 2,6 4,6 3,3 39,468 20,66 27,63 16,14 2,355 1,233 1,648 0,963 1,018 0,695 0,900
29 2,4 3 3,5 25,2 13,19 17,64 8,97 2,794 1,463 1,956 0,994 1,014 1,470 1,196
30 3,7 2,2 4,7 38,258 20,03 26,78 15,63 2,333 1,221 1,633 0,953 0,865 1,265 1,016
31 4,5 3,7 3 49,95 26,15 34,97 38,89 2,235 1,170 1,564 1,740 1,244 0,726 0,993
32 4,6 2,7 3,5 43,47 22,76 30,43 29,65 2,387 1,250 1,671 1,628 1,246 0,898 1,049
33 5,1 4,7 3,1 74,307 38,91 52,01 63,45 2,616 1,369 1,831 2,233 1,124 1,020 1,084
34 4,7 4,1 2,9 55,883 29,26 39,12 47,01 2,824 1,478 1,977 2,375 1,249 0,860 1,077
35 5,2 4,9 3,2 81,536 42,69 57,08 68,77 3,111 1,629 2,178 2,624 0,949 1,154 1,036
36 3,7 4,5 3 49,95 26,15 34,97 31,97 2,422 1,268 1,696 1,551 1,161 1,120 1,143
37 4,7 3,1 3,4 49,538 25,94 34,68 35,54 2,264 1,185 1,585 1,624 1,038 1,362 1,154
38 3,5 2,1 4,7 34,545 18,09 24,18 13,35 2,236 1,171 1,565 0,864 1,476 1,272 1,368
39 5 3,3 3 49,5 25,92 34,65 42,82 1,983 1,038 1,388 1,716 1,118 0,625 0,946
40 4,4 4,2 2,1 38,808 20,32 27,17 42,20 3,239 1,696 2,268 3,523 1,041 1,293 1,161
41 4,4 3,5 3 46,2 24,19 32,34 35,17 2,729 1,429 1,910 2,077 1,052 0,875 0,952
42 5,1 4,1 3 62,73 32,84 43,91 55,35 2,691 1,409 1,884 2,374 1,151 1,283 1,213
43 3,1 5,4 4,5 75,33 39,44 52,73 26,93 2,670 1,398 1,869 0,955 1,220 0,570 0,937
44 5,6 3,5 5,4 105,84 55,42 74,09 56,97 2,808 1,470 1,966 1,511 1,154 0,360 0,886
45 4,4 4,1 2,3 41,492 21,72 29,04 41,20 2,794 1,463 1,956 2,774 2,391 0,958 1,358
46 6 6 4,4 158,4 82,94 110,88 112,11 3,571 1,870 2,500 2,527 1,130 0,388 0,765
47 4,6 2,6 5,7 68,172 35,69 47,72 28,55 2,941 1,540 2,059 1,232 1,264 0,101 0,759
48 4,9 3,2 4,2 65,856 34,48 46,10 39,88 2,505 1,312 1,753 1,517 1,066 1,002 1,038
49 5,5 3 3,5 57,75 30,24 40,43 47,10 3,894 2,039 2,726 3,176 1,208 0,615 0,895
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Table B.3: Volume estimations and volume fractions of MD Anderson studies 51-100
Case D1 D2 D3 VCube VEll VMys VSph FCube FEll FMys FSph FCG FP Z FSum

cm cm cm cm
3

cm
3

cm
3

cm
3 1 1 1 1 1 1 1

51 5 4,5 2,6 58,5 30,63 40,95 58,39 3,351 1,754 2,345 3,344 1,161 1,300 1,229
52 4,7 4,5 2,5 52,875 27,68 37,01 51,59 3,862 2,022 2,704 3,769 1,096 0,037 0,754
53 5,4 5,5 3,3 98,01 51,32 68,61 83,24 3,390 1,775 2,373 2,879 1,038 1,417 1,157
54 4,2 5,5 2,2 50,82 26,61 35,57 50,36 1,875 0,982 1,313 1,858 1,118 1,341 1,209
55 4,6 2,5 4,2 48,3 25,29 33,81 27,46 2,360 1,235 1,652 1,341 1,055 1,829 1,286
56 3,5 6,3 3 66,15 34,64 46,31 40,06 1,488 0,779 1,041 0,901 1,224 1,498 1,342
57 4,4 5 3,1 68,2 35,71 47,74 50,24 2,313 1,211 1,619 1,704 1,054 0,428 0,925
58 4,9 4,9 3 72,03 37,71 50,42 61,06 2,289 1,198 1,602 1,940 1,122 1,070 1,096
59 4,5 3 4,7 63,45 33,22 44,42 31,53 2,880 1,508 2,016 1,431 0,902 1,427 1,137
60 5,5 2,8 3,4 52,36 27,41 36,65 43,96 1,870 0,979 1,309 1,570 1,362 0,796 1,184
61 5,5 2,5 4,6 63,25 33,12 44,28 39,25 2,191 1,147 1,534 1,360 1,562 0,812 1,088
62 4,6 2,9 2,7 36,018 18,86 25,21 31,85 2,569 1,345 1,798 2,272 1,057 1,052 1,055
63 3,2 4,9 4,7 73,696 38,59 51,59 26,04 2,191 1,147 1,534 0,774 0,980 0,870 0,950
64 4,5 2,5 3,9 43,875 22,97 30,71 26,28 2,339 1,225 1,637 1,401 1,626 0,835 1,131
65 4,6 3,1 4,8 68,448 35,84 47,91 34,05 2,798 1,465 1,959 1,392 1,027 1,384 1,145
66 4 2,2 4,3 37,84 19,81 26,49 18,27 2,015 1,055 1,410 0,973 1,222 0,898 1,055
67 2 3,3 2,8 18,48 9,68 12,94 6,85 2,293 1,200 1,605 0,850 1,175 0,297 0,822
68 5 4 2,6 52 27,23 36,40 51,90 2,231 1,168 1,562 2,227 1,185 0,547 0,904
69 4,1 5,2 2,8 59,696 31,26 41,79 45,37 2,618 1,371 1,833 1,990 1,568 0,494 1,107
70 5,6 5,5 3,1 95,48 49,99 66,84 89,52 2,784 1,457 1,949 2,610 1,343 0,912 1,119
71 5 2,8 4,1 57,4 30,05 40,18 36,33 2,678 1,402 1,875 1,695 1,183 0,043 0,665
72 4,4 3,6 2,4 38,016 19,90 26,61 36,17 2,733 1,431 1,913 2,601 1,121 0,446 0,790
73 5,1 4,2 3,4 72,828 38,13 50,98 56,70 2,982 1,561 2,088 2,322 1,541 0,924 1,162
74 5 4,3 3 64,5 33,77 45,15 55,80 2,978 1,559 2,084 2,576 1,524 0,409 0,915
75 2,7 5,1 4,4 60,588 31,72 42,41 19,30 2,420 1,267 1,694 0,771 1,419 0,987 1,174
76 2,8 3,2 2,5 22,4 11,73 15,68 13,02 3,829 2,005 2,680 2,226 1,201 0,174 0,763
77 4,5 3,1 4,9 68,355 35,79 47,85 32,58 2,043 1,070 1,430 0,974 1,003 1,068 1,027
78 4,7 3 3,2 45,12 23,62 31,58 34,40 1,704 0,892 1,193 1,299 1,658 0,783 1,078
79 5 4,8 2,5 60 31,42 42,00 62,28 3,023 1,583 2,116 3,138 1,414 0,473 0,971
80 4,4 1,4 3,5 21,56 11,29 15,09 14,07 1,642 0,860 1,149 1,071 1,414 0,421 0,713
81 4,9 5 3,5 85,75 44,90 60,03 62,31 3,105 1,626 2,173 2,256 1,207 1,038 2,294
82 5,5 3,3 5,1 92,565 48,47 64,80 51,81 1,651 0,865 1,156 0,924 0,928 0,490 0,720
83 5,5 5,6 3,5 107,8 56,44 75,46 87,92 2,051 1,074 1,436 1,673 0,743 1,749 0,911
84 4 4,3 2,8 48,16 25,22 33,71 35,71 2,362 1,237 1,653 1,751 1,066 0,745 1,034
85 5,4 3,9 2,4 50,544 26,46 35,38 59,03 2,224 1,164 1,557 2,597 1,157 1,019 1,092
86 4,1 5,5 3,2 72,16 37,78 50,51 47,99 2,259 1,183 1,581 1,502 0,965 0,530 0,797
87 4,7 2,2 4,2 43,428 22,74 30,40 25,22 2,363 1,237 1,654 1,372 0,847 0,657 0,750
88 4,7 3,3 3,9 60,489 31,67 42,34 37,84 1,951 1,021 1,365 1,220 1,248 0,517 0,805
89 5,5 4,5 2,8 69,3 36,28 48,51 70,65 1,763 0,923 1,234 1,798 1,096 0,668 0,847
90 3,7 4,5 3 49,95 26,15 34,97 31,97 1,595 0,835 1,117 1,021 1,075 0,865 0,968
91 5,4 4,8 3,4 88,128 46,14 61,69 72,65 2,716 1,422 1,901 2,239 0,922 0,814 0,877
92 5,1 4,5 6,3 144,585 75,70 101,21 60,75 2,253 1,180 1,577 0,947 1,392 0,714 1,072
93 5,9 3,5 4,3 88,795 46,49 62,16 63,24 2,464 1,290 1,725 1,755 0,983 0,681 1,460
94 3,8 2,3 3,8 33,212 17,39 23,25 17,24 1,733 0,908 1,213 0,900 1,140 0,923 1,018
95 5,2 3,6 2,3 43,056 22,54 30,14 50,52 2,089 1,094 1,462 2,451 1,106 0,704 0,855
96 4,5 2,6 4,5 52,65 27,57 36,86 27,33 3,459 1,811 2,421 1,795 1,099 0,681 0,930
97 4,7 4 2 37,6 19,69 26,32 45,86 2,684 1,405 1,879 3,273 1,562 0,640 0,947
98 5,7 4,3 2,3 56,373 29,52 39,46 72,51 2,397 1,255 1,678 3,083 1,648 0,672 1,027
99 2,9 4,8 3,9 54,288 28,42 38,00 20,95 2,381 1,247 1,667 0,919 1,507 0,731 1,031

100 3,2 2,4 3,6 27,648 14,48 19,35 12,76 0,748 0,392 0,523 0,345 4,133 0,747 1,419
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(a) A2-Mode with various number of hidden neurons and hidden layers from base 100 hidden neurons

(b) A2-Mode with various number of hidden neurons and hidden layers from base 200 hidden neurons

(c) A2-Mode with various number of hidden neurons and hidden layers from base 400 hidden neurons

Figure B.2: Cross-validation results using different number of hidden neurons and hidden
layers represented in boxplots. The x-axis represents the number of hidden neurons and
hidden layers. For instance 150 150 stands for 150 hidden neurons in the first hidden
layer and 150 hidden neurons in the second hidden layer. The y-axis represents the dice
score. This results have been produced by utilizing the A2-Mode. Red colored boxed
indicate scores for the central gland and respectively represent blue colored boxes scores
for the peripheral zone. The edges of the boxes present the 25th and 75th percentiles of
each score. Slashes within the box represent the median and dots represent the mean.
Whiskers extend to the most extreme data points.
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