
Muck Classi�cation Matrix

Research Results

Chair of Subsurface Engineering

University of Leoben

Department of Civil and Environmental Engineering

Massachusetts Institute of Technology

Julian Wiedorn

August 23, 2013

CONTENTS I

Contents

1 Introduction 2

1.1 Reuse of Tunnel Excavation Material - Current Situation, Application

and Reasons . 2

1.2 An Automated And Centralized Classi�cation 3

2 Classi�cation Basics 6

2.1 Material Requirements For Di�erent Reuse Scenarios 6

2.1.1 Concrete Production . 6

2.1.2 Minerals For Industrial Use 11

3 The Classi�cation System 12

3.1 Input Information . 12

3.2 Information Processing and Output 15

3.3 The Platform . 17

3.3.1 Classi�cation Interface . 17

3.3.2 Sale Interface . 22

3.3.3 Administration Interface . 23

4 Software Engineering Basics 24

4.1 Programming Principles . 26

4.1.1 Model - View - Controller . 26

4.1.2 The Template System . 27

4.2 Client - Server Interaction . 28

4.3 Programming Language, Database and Additions 31

4.3.1 PHP and Alternatives . 31

4.3.2 MySQL and Alternatives . 36

4.4 The Classi�cation System . 43

4.4.1 Client - Server Interaction . 43

4.4.2 The Database . 44

4.4.3 User Classes and Their Functions 46

4.4.4 The Main Routines . 47

5 Software Engineering Details 49

5.1 The Template System . 49

5.2 The MySQL Database Structure . 54

5.3 The Section Template and PHP File 57

5.4 Pages and their Functions . 61

5.4.1 Basis . 62

CONTENTS II

5.4.2 The "Log on" and "Log out" Procedures 62

5.4.3 The "Classi�cation" . 68

6 Example Classi�cation 82

7 Summary and Outlook 87

A Annex A-1

A.1 Tables for Material Requirements for Industrial Use A-1

A.1.1 End Product . A-1

A.1.2 Intermediate Product . A-8

CONTENTS 1

Abstract

The reuse of tunnel excavation material represents an outstanding possibility to

lower the environmental and economical impact of tunneling projects. The con-

templation of the material as a valuable asset, used as raw material in di�erent

industrial �elds, is just one of the many advantages. With a minimization of land�ll

areas and, therefore, optimization of the used capital, it could become mandatory for

both economical and environmental considerations. As future projects all over the

world promise a huge accumulation and handling of raw material, the overall bene-

�ts of reusing the material are remarkable. To use this potential and �nd a possible

application for excavated material a proper classi�cation has to be evaluated.

The �rst part of this thesis describes the basics of the classi�cation, the material

requirements for di�erent reuse scenarios. With this information the concept of the

classi�cation system, which uses the requirements and reorders the input information

is stated. The system is divided in three di�erent parts: a classi�cation interface, a

sale interface - a sales platform for the classi�ed material - and an administration

interface. The main focus of this work is the classi�cation interface, which is then

implemented as a web-based software.

Basics of software engineering are discussed to understand the essential structure of

the classi�cation system. A detailed explanation of the server-user interaction, the

decision for the system structure (programming language, database and program-

ming structure) is made.

On this basis the programming of the web-based platform, which uses the script

language PHP and a MySQL database for data management, is explained in more

detail. Source code extracts are commented to understand the programmed routines.

In the �nal part the system is used for a classi�cation of di�erent tunnel excavation

material to show the functionality of the development.

1 INTRODUCTION 2

1 Introduction

1.1 Reuse of Tunnel Excavation Material - Current Situation,

Application and Reasons

Global changes and the resulting demand for transportation routes signi�cantly

increase the number of tunneling projects.

Future infrastructure plans of the EU and Asia show more than 2100km of tunnels

on each continent to be built, with an increasing average diameter up to 15m and a

length of about 100km (EU). These projects consist of road-, railway, water tunnels

and big underground galleries. Considering only the length and the diameter of

these tunnels a total cubature of at least about 1.5 billion cubic meter of excavation

material has to be managed only in Europe.1

Nowadays most of the tunnel excavation material is hauled and transported to a

waste disposal facilty. Only a small percentage of the extracted material is supplied

to another use. Because of various reasons this only covers the internal reuse, i.e.

aggregates for concrete production or bulk material for di�erent foundations. There-

fore, cost savings exist but their extent is rather marginal. The major amount of

the material is disposed, which often requires the acquisition of estates. This makes

up, together with the maintenance of such land�lls, a considerable part of the total

costs of a project.2

Another interesting legal component shaped this development in Austria. Currently

excavated material is not only treated as waste, it is also legally de�ned as such. A

commercial, external use of muck material, i.e. as raw material for the processing

industry, would be accompanied by other regulations than raw minerals from the

mining industry.3

Beside those peculiarities with the reuse of muck material, other more problematic

and crucial regulations could be avoided. Special treatment of material and strict

environmental regulations impede or even prohibit the acquisition and use of surface

areas. Also long-term costs, such as renaturation of disposal areas, can be prevented.

In Istanbul, Turkey, for exanple the extension of the existing metro system with

1Tokgooez, �Use of TBM excavated materials as rock �lling material in an abandoned quarry

pit designed for water storage�.
2Zarai, Uromeihy, and Sharifzadeh, �A new tunnel in�ow classi�cation (TIC) system through

sedimentary rock masses�.
3Entacher, D. Resch, and R. Galler, �Abfall oder Rohsto�? Rechtsgrundlagen für die Wiederver-

wertung von Tunnelausbruchmaterial�.

1 INTRODUCTION 3

about 200km additional length of tunnel and calculated cubature of about 12 million

cubic meter would �ll nearly all of the legal storage areas around the city. The strict

environmental regulations would make the reuse "mandatory" to implement this

project.4

The most important point, however, is the fact that the raw material can be con-

sidered as available and sure capital or reserve. With the start of the project and

the excavation of the tunnel the revenue of selling the material lowers the overall

project costs and can even be booked as future income. Increasing the value of a

company or just lowering overall project costs decreases the economical latency.

Therefore, from an economic point of view, reusing excavated material has many

di�erent advantages. Next to the possible cost savings, involved companies could

participate in more projects or include other companies if this is already considered

during the �rst negotiations.

Thereby raw material supply shortages can be prevented and price �uctuations

balanced, since low prices are guaranteed by unsafe delivery conditions. This would

be easy adaptable for di�erent raw materials needed in the processing industry.

The reuse can even signify an economic boost and justify �nancially problematic

projects, as di�erent, also higher value raw materials, are going to be excavated.

The creation of new jobs supports this mode of development.

To use all those advantages the material has to perform a new purpose. The basis

for such a use enhancement is a su�cient classi�cation of the material.

1.2 An Automated And Centralized Classi�cation

The engineers of the Gotthard5 and Lötschberg6 base tunnels have done pioneering

work concerning their reuse policy. Their studies and consequent planning led to an

intensive reuse of tunnel excavation material as raw material for concrete production.

To make the reuse suitable for di�erent projects a general classi�cation matrix can

be introduced. With information about research of the past years and raw material

properties of several industry �elds a proper classi�cation system can be found. A

4Tokgooez, �Use of TBM excavated materials as rock �lling material in an abandoned quarry

pit designed for water storage�.
5Lieb, �Materials management at the Gotthard Base Tunnel � experience from 15 years of

construction�.
6Teuscher et al., �Alpenquerende Tunnel: Materialbewirtschaftung und Betontechnologie beim

Lötschberg-Basistunnel�.

1 INTRODUCTION 4

collection of reduced material parameters is the basis of the classi�cation.

Therefore, aim of this work is the development of a general classi�cation system for

the excavated material in di�erent tunneling projects.

This is done by establishing a web-based platform for muck material management.

As a �rst step basic information, i.e. name, geography, cubature and time, is entered

for a �rst distinction. Then, considering the required material information (proper-

ties) for di�erent use criterias a list of chemical (chemical composition), mineralogical

(mineralogy), technical properties (compressive strength and elastic modulus) and

aggregate distributions are added. Most of these data is obtained by standardized

tests, such as uniaxial tensile testing for technical, X-ray �uorescence spectroscopy

for chemical and X-ray di�raction for mineralogical properties.7

The platform then compares the properties to a list of prede�ned reuse scenarios and

states the possible reuse. These scenarios consist of internal, i.e. concrete produc-

tion, and external (industrial) use, both evaluated in intensive literature research.

The automated process of the classi�cation establishes a simple evaluation, which

takes a wide variety of applications into account.

Such a system helps companies to unleash this tremendous potential and may solve

associated problems. Gathered uniform information and the permanent development

and improvement support a centralized classi�cation.

In addition to an expansion in a variety of industry sectors, the uniform data struc-

ture can enable an automation of the classi�cation process. In case of a continuous

excavation this development can be implemented more easily.

Possible clients can be found on both sides: as sellers and buyers. Therefore building

contractors and sponsors are just as concerned as processing industries, material

producers, waste dealers and land�ll operaters.

Its use is not limited to the construction phase for quality control, even in the

planning, it may very well be considered.

The development of a system including all those features will change the common

way of reusing excavation material. In the future a classi�cation matrix could be

enlisted as standard planning tool for pricing and selling; the integration of a sales

platform would support this step. Furthermore, the enhancement to a raw material

stock market would allow prospective buyers to send requests for needed raw materi-

7Erben and Robert Galler, �Ressourcene�zienz im Tunnelbau � On-site Analysemöglichkeiten

für die Weiterverwertung von Tunnelausbruchmaterial�.

1 INTRODUCTION 5

als and receive information when it is available.8 This would expedite the utilization

and marketing of the tunnel excavation material and make it available immediately.

8Erben and Robert Galler, �Ressourcene�zienz im Tunnelbau � On-site Analysemöglichkeiten

für die Weiterverwertung von Tunnelausbruchmaterial�.

2 CLASSIFICATION BASICS 6

2 Classi�cation Basics

The following sections show the reuse criteria and the information which is needed

to obtain classi�cation results. This part is based on literature9 and provides the

basis for the classi�cation system, which is described after that.

2.1 Material Requirements For Di�erent Reuse Scenarios

This section covers possibilities of reuse and the needed information to classify the

material. Following constraints have to be in mind to economically reuse a material,

see Table 1.

Geology Technology Guidelines Demand

Geotechnics Excavation method Laws Construction site

Geochemistry Processing Standards External Use

Petrography Site Organization

Table 1: Reuse Constraints

Geotechnics, Geochemistry and Petrography describes the geological constraints,

which a�ect the classi�cation. Grain size distribution and contamination for exam-

ple is in�uenced by the excavation method, processing and site organization. The

classi�cation itself and the reuse criteria have to be chosen according to laws and

technical standards, which also a�ect the evaluation and testing. Additionally the

demand, both on-site and external, should be considered.

A classi�cation system, as described here, only considers few aspects of these con-

straints, mostly some of the geological information and di�erent industrial stan-

dards.10

2.1.1 Concrete Production

As these classi�cations consider tunneling excavation material, the main focus is the

on-site concrete production for tunneling purposes.11 Aggregates used for concrete

construction in�uence the characteristics of concrete, i.e. elastic modulus, tensile

strength, temperature expansion or processability. Speci�c requirements are written

in di�erent standards, i.e. the ÖNORM standard in Austria, which is published

9Daniel Resch, �Verwendung von Tunnelausbruchmaterial � Entscheidungsgrundlagen�.
10Ibid.
11Gertsch et al., �Use of TBM Muck as Construction Material�.

2 CLASSIFICATION BASICS 7

by the Austrian Standards Institute (ASI). The Following ÖNORM standards and

guidelines are used to specify a classi�cation12:

• ÖNORM EN 12620:2008 - Aggregates for concrete

• ÖNORM B 3131:2010 - Aggregates for concrete - Rules for implementation of

ÖNORM EN 12620

• ÖNORM B 4710-1:2007 - Concrete - Part 1: Speci�cation, production, use

and veri�cation of conformity (Rules for the implementation of ÖNORM EN

206-1 for normal and heavy concrete)

• ÖBV guideline for inner lining concrete

• ÖBV guideline for shotcrete

Inner lining concrete in Austria is divided in exposition classes which follow a system-

atic classi�cation according to the environmental conditions on site. The following

classes are distinguished:

• XC - carbonation and density of the concrete

• XD - Deicing Salt (chlorides, i.e. road salt)

• XF - frost attack

• XA - chemical attack

Shotcrete production is mainly needed during the process of excavation. The process

itself requires a smaller maximum aggregate size compared to inner lining concrete.

Shotcrete is categorized in shotcrete classes, which use following properties, next to

the already mentioned exposition classes:

• early strength classes - J1-J3

• strength classes

Concrete segments, which are mainly used during machine-assisted excavation, are

characterized by statics and safety needs of tunneling constructions and use similar

classi�cation criteria.

With consideration of the external in�uences, some testing has to be done to with-

stand their e�ects. Table 213 shows a summary of these requirements.

12Ayaydin, �Classi�cation of Excavation with Austrian Code B2203: Main aspects and experi-

ences�.
13Daniel Resch, �Verwendung von Tunnelausbruchmaterial � Entscheidungsgrundlagen�.

2 CLASSIFICATION BASICS 8

Requirements Symbol

grain density for concrete composition

aggregate distribution according to grain size dirtribution

compressive strength minimum between 60-70 N/mm2

elastic modulus minimum 30.000 N/mm2

grain shape SI25, SI40

mica content <30% or <25% amount of mass

wear resistance LA<40, BR<75

freeze-thaw resistance F1, F2 depending on in�uences

alcali-silicic reactivity strain < 1%

water-soluble chloride chloride free (<0.01%)

acid-soluble sulfate AS0,8 (<0.8%)

Table 2: Aggregate Requirements

Compressive Strength and Elastic Modulus14 Aggregates strongly in�uence

the compressive strength and elastic modulus of the concrete, but no limits are

de�ned for them. As the values are usually much higher than those of the concrete,

a strength of about 100N/m2, depending on the concrete, and an elastic modulus

of 30.000N/mm2 can be adopted. An evaluation of the strength can be done with a

point load test. The elastic modulus can be calculated on the basis of the measured

modulus of the concrete or by testing the intact rock.

Aggregate Distribution Aggregate distribution is determined by distribution

curves for di�erent grain sizes, usually between 0.063 - 2mmm and 4 - 62.5mm.

This is speci�ed stating the minimum and maximum grain size. The ÖNORM sets

the limits for oversize and undersize grains. Therefore the denomination GCXX/XX

de�nes coarse, GFXX �ne and GAXX a mixture of grain size distributions, where

XX is the range of the grain size in mm. The amount of required water and cement

has to be considered, when using di�erent grain distributions.

The grain distribution requirements for inner lining concrete is given by distribution

classes, which depend on the area of use i.e. heading, bench, ceiling, ... The range

of the maximum grain size is usually between 16, 22 and 32 mm.

Shotcrete uses a grain size distributions between 0/8 and 8/11 mm with the desig-

nation mentioned above.

The easiest and normal way to evaluate the grain distribution is by comparing the

14Daniel Resch, �Verwendung von Tunnelausbruchmaterial � Entscheidungsgrundlagen�.

2 CLASSIFICATION BASICS 9

actual distribution curve to the standard curves in the guidelines.

Tables 3 and 4 show the average arithmetic values of the distribution curves for

both, the inner lining concrete and shotcrete.

maximum grain size 0/4 mm 4/8 mm 8/16 mm 16/22 mm 16/32 mm

16 mm 54% 16% 30%

22 mm 47% 8% 26% 19%

32 mm 47% 7% 25% 21%

Table 3: Arithmetic mean of the mass fractions of the grain size distribution curves

sorted by the maximum grain size for inner lining cement

maximum grain size 0/4 mm 4/8 mm 8/11 mm

11 mm 70% 90% 10%

Table 4: Arithmetic mean of the mass fractions of the grain size distribution curves

sorted by the maximum grain size for shotcrete

Grain Shape To describe the grain shape both of the following indices can be

used:

• SIXX - the maximum amount of non cubic grains with a maximum of XX=40

mass percent for some exposition classes. The SI value describes the ratio of

the smallest and largest grain.

• FIXX - the ratio of �at grains sorted by distribution classes. The screening is

done by bar screens and the limit XX is chosen individually, according to lab

tests and guidelines.

Amount Of Muddy Fines The grain size of washable �nes is smaller than 0.063

mm and can by evaluated according to ÖNORM EN 933-1. The limits are stated in

the ÖNORM B 4710-1 and their values range from 4% for small (4 mm) down to 2%

for large grain sizes (32 mm). These limits can be exceeded by doing di�erent tests

concerning given regulations. In addition a minimum amount of all �nes <0.125

mm is set in the ÖBV guideline for inner lining concrete. These limits are set by

the fX.X value which states a allowerd deviataion of this minimum (X.X%).

Wear Resistance According to the �eld of application the following limits of

indices may have to be considered:

2 CLASSIFICATION BASICS 10

• Los Angeles Index LA < 40

• Refrangibility index BR < 75

• Point load index index ABR - ranges between >2.5 N/mm2 and >3.5N/mm2

as minimum

The evaluation is done according to the ÖNORM EN 1097-2 standard (LA Test),

the french AFNOR P 18-579 standard (LCPC Test for BR and ABR). As there is

a direct correlation between the BR and the LA value and the BR value needs less

material, it is preferred if the access to the material is limited.

Freeze Thaw Resistance The freeze-thaw resistance testing has to be done for

�ne and coarse grain sizes individually. Coarse material (4-63 mm) undergoes several

freeze and thaw procedures, according to ÖNORM EN 1367-1. Their mass loss has

to be less than 2% (F2). The limits for �ne grain sizes are similar, but the testing

is done by measuring the surface mass loss on a standardized concrete cube.

Alcali Silicate Reactivity The evaluation of the alcali slicate reactivity is done

by measuring the strains, according to ÖNORM B 3100. These e�ects occur because

of a chemical reaction and are not allowed to be higher than 0.1% after a 2-week

short test and 0-05% from the 2nd to the 52nd week (long term). For tunneling

projects experience showed that the short test is su�cient.15

Water Soluble Chloride For corrosion protection the amount of the chloride

should be less than 0.01%, according to ÖNORM EN 1744-1.

Acid Soluble Sulfate To prevent increases in volume through chemical reactions

the amount of acid soluble sulfates has to be less than 0.8% (AS0.8). ÖNORM EN

1744-1 describes the evaluation of the acid soluble sulfate content.

Aggregates With Mica The content of mica in aggregates has an e�ect on

• strength properties,

• water content

• processability

15Daniel Resch, �Verwendung von Tunnelausbruchmaterial � Entscheidungsgrundlagen�.

2 CLASSIFICATION BASICS 11

of concrete. Therefore it is important to evaluate the content. This can be done

with following methods:

• count method on a thin-sections

• shape separation

• speci�c gravity separation

• X-ray di�ractometry

Di�erent tests, which were done in research studies, determined a maximum content

of 25%. Because of a mass loss of about 5% caused by wet processing the �nal value

is 30%. The swiss SIA standard de�nes a maximum mica content of 2%.

2.1.2 Minerals For Industrial Use

This part shows the classi�cation criteria for industrial minerals. Both, so called

"intermediate raw material" - raw materials with lower limits, which are then pro-

cessed - and "end raw materials" - for direct industrial use, therefore higher limits

- are considered.

"Intermediate Products" are classi�ed by their mineralogy, i.e. category "Carbon-

ates" - material "Limestone", whereas "End Products" are classi�ed in two ways:

• First by the mineralogy and their use in the industry, i.e. category "Brick-

earth" - use "Wall Bricks".

• Second by industrial use and the required minerals, i.e. category "Steel Indus-

try" - use "Bauxite as Slagformer".

As the requirements only consist of tables of chemical composition, the details -

limits - of each use scenario can be found in the Annex section.

Table 5 and 6 state some reuse scenarios divided into "Intermediate Products" and

"End Products" and the mentioned categories. A complete list of the reuse scenarios

and its limits can be found in the Annex section.

3 THE CLASSIFICATION SYSTEM 12

category suggested raw material

Carbonates Limestone

Carbonates Dolomite

Carbonates Spat-Magnesite

Carbonates Gel-Magnesite

Carbonates Magnesite (RHI)

Clay kaoline (crude)

Quartz rock crystal

Sulfates Baryt

Vulcanic Stones Bims

Feldspar Feldspar

Al-Oxides Raw Alunite

Mg-Oxides Raw Talc

Phosphates, Sulfur, Salt Phosphate Minerals

Mica Biotite

Heavy Minerals Ilmenite

Beryllium Minerals, Bromine, Iodine Raw Graphite

Table 5: Reuse Scenarios for Intermediate Products

3 The Classi�cation System

This section summarizes the use criteria and arranges the information in a way

as it can be processed systematically. Properties, which should be evaluated, are

collected in the "Input Information", whereas the classi�cation itself is described in

"Information Processing and Output". The last part shows an automated platform

and the way it will be implemented.

3.1 Input Information

The Input Information contains of variables which describe the properties of the

materials needed for classi�cation. To introduce an economical a�ordable system

the input parameters are restricted to evaluations which are done anyway or could

be done very easily and cheaply. Parameters needed for special use or handling, i.e.

processing of contaminated material, are not considered.

The tested parameters range widely, i.e. from the compressive strength to di�erent

chemical compounds and elements, according to the use. To ensure a systematic

classi�cation all input parameters have to be considered and rearranged into di�erent

3 THE CLASSIFICATION SYSTEM 13

category suggested raw material

Brickearth Brickearth for Wall bricks

Steel Industry Bauxite as slagformer

Steel Industry Olivine for steel industry

Steel Industry Olivine for foundry industry

Steel Industry Fluorite for metallurgical grade �uorite

Steel Industry Limestone for metallurgy

Steel Industry Dolomite (uncalcined) for pig iron (direct use)

Steel Industry Dolomite (uncalcined) for steel production

Steel Industry Dolomite (calcined) for refractory industry

Steel Industry Dolomite (calcined) for steel production

Steel Industry Magnesite (calcined) for transformersteel-coating

Steel Industry Magnesite (calcined) for steel industry

Cement Industry Clay Cement

Cement Industry Nepheline Syenite

Cement Industry Nature Cement

Cement Industry Portland Cement

Cement Industry Gypsum Anhydrite

Paper Industry Limestone

Paper Industry Magnesite

Table 6: Reuse Scenarios for End Products

3 THE CLASSIFICATION SYSTEM 14

categories. Parameters which are needed for di�erent use scenarios are assembled

in groups, which should simplify the evaluation process.

The input parameters16 are mainly parted in following categories:

• Technical Parameters

• Chemical Parameters

• Mineralogical Parameters

Chemical Parameters The chemical parameters cover following elements, com-

pounds and properties.

For the eluate (liquid phase):

1. general: pH value, electrical conducticity, exhaust residues

2. anorganic parameters: Al, Sb, As, Ba, Be, Pb, B, Cd, Cr, Co, Fe, Cu, Mo,

Ni, Hg, Se, Ag, Zn, N, Cl, CN, F, Mn, nitrates, nitrites, P, SO4, Tl, V, DOC,

TDS

3. organic parameters: TOC, C-index, EOX, AOX, Tensides, Phenole, PAK,

PCP.

For solids:

1. chemical compounds: SiO2, CaO, MgO, K2O, Na2O3, CaCO3, Corg, S, loss

on ignition, MgCO3, SO3, P2O5

2. anorganic parameters: As, Pb, Cd, Cr, Co, Cu, Ni, Hg, Zn

3. organic parameters: TOC, C-index, PAK, PCB, BTEX.

4. other: alcali-silicate reactivity, water-soluble chloride, acid-soluble sulfate.

Mineralogical Parameters Those include the following minerals: mica, kaoli-

nite, sericite-illite, smectite, chlorite, quarz, feldspar, calcite, dolomite-ankerite,

goethite, hematite, siderite, pyrite, gypsum and hornblende.

Technical Parameters The group of technical parameters mainly contains input

information for the concrete reuse scenario.

• compressive strength

16Daniel Resch, �Verwendung von Tunnelausbruchmaterial � Entscheidungsgrundlagen�.

3 THE CLASSIFICATION SYSTEM 15

• wear resistance - LCPC Test and LA Test

• freeze-thaw resistance

• grain shape - percentage of the non-cubic grains

• �ne grain size distribution - <0.002mm to 0.063mm

• coarse grain size distribution - 0.063mm to 80mm

3.2 Information Processing and Output

The input parameters are the basis of di�erent output scenarios, which were dis-

cussed in Section 2.1.

With the help of the input information the output can be generated. Before this

result can be obtained, the information has to be processed, which is done by com-

paring di�erent usage possibilities.

Right now the following main �elds of usage (ouput) were considered:

• End Products:

� Concrete Production

� Cement Industry

� Paper Industry

� Lime as Industrial Mineral

� Brick Production

• Intermediate Products:

� Carbonates

� Clay

� Sulfate

� Quartz

� Vulcanic Stones

� Feldspar

� Al-Oxides

� Mg-Oxides

3 THE CLASSIFICATION SYSTEM 16

� Phosphates, Sulfur, Salt

� Mica

� Heavy Minerals

� Beryllium Minerals, Bromine, Iodine

All input parameters have to be in between the limits of one output scenario. The

limits can be reviewed in Section 2.1. If a given muck material is in between all of

these limits, it can be considered as potential raw material. This procedure has to

be repeated for all use scenarios.

Because of the fact that many input data is collected, the output scenarios can be

expanded as long as their classi�cation parameters are already evaluated.

3 THE CLASSIFICATION SYSTEM 17

3.3 The Platform

With the knowledge of the classi�cation concept, explained in Sections 3.1 and 3.2,

one can generate a platform with a systematic sequence and easy management of

the muck materials and their usage as raw material. Much e�ort and time can be

saved when using a prede�ned input system (frontend) with a built-in comparison

(processing) and an easily accessible ouput (backend). Furthermore such a platform

can be used as a resource for both the owner of the raw material and the prospective

consumer. This is very important, because the material immediately performs its

intended purpose (evaluated reuse).

Functions of the Classi�cation platform include

• easy management of di�erent raw materials,

• classi�cation according to prede�ned criteria,

• sale platform for the owner and

• resource for raw material buyers.

Next to the functional part the following basic prerequisites should be considered17:

• clarity

• comprehensibility

• customization

As the system should also be easily accessible, but protected from unauthorized

access, the optimal implementation of the classi�cation platform is as an admission

based system.

The entered input and the output are stored on a speci�c computer, which makes

remote use from every workstation possible and save due the fact that all data are

gathered on a single and secure computer. The admission is granted via a user-

password system, which prevents unauthorized access.

3.3.1 Classi�cation Interface

A �owchart of the classi�cation system can be seen on Figure 1.

The description of the system is done by a commented and reduced optical repre-

sentation with the help of an example classi�cation. The single steps are performed

17Welling and Thomson, PHP and MySQL.

3 THE CLASSIFICATION SYSTEM 18

Figure 1: Flowchart - Classi�cation

3 THE CLASSIFICATION SYSTEM 19

after the principle in Figure 1.

The following basic steps, which will be discussed in detail, have to be performed to

get a classi�cation result:

1. add a new or activate an existing material

2. enter technical, chemical and / or mineralogical input parameters

3. obtain the results, by using the di�erent output functions

The management of the muck materials is done with a simple user interface according

to Figure 2.

Figure 2: Interface - Main Menu

The control menu is divided into two sections, input and output, which ful�ll the

purpose of parameter input and usage (output), as discussed in Sections 3.1 and 3.2.

In addition to the technical, chemical and mineralogical parameters the function

"Muck Material" was added, see Figure 2. Within this category basic information

like name, geographic information, cubature can be saved. Also administrative

functions like selecting, editing or deleting muck material can be done there.

Adding New / Choose Existing Material According to Figure 1 the �rst step

of the classi�cation, after login, is adding a new material or choosing an existing

material. Figure 3 shows the "Add Material" function in detail.

If one chooses an existing material a list of already saved materials can be seen at

the bottom of the same page, see Figure 4.

Enter Technical, Chemical and / or Mineralogical Parameters The input

parameters can be entered by going back to the Main Menu and using the other

3 THE CLASSIFICATION SYSTEM 20

Figure 3: Interface - Add Material

Figure 4: Interface - Activate Material

3 THE CLASSIFICATION SYSTEM 21

control sections in the "Input" category, i.e. "Technical Parameters" see Figure 2.

A simple example of the input can be seen in Figure 5. The information, gathered

in preceding tests, i.e. X-ray analysis, can be inserted in the prede�ned forms. In

this example values for some chemical parameters - the percentage of SiO2, Al2O3,

Fe2O3 and TiO2 - are already �lled in the form.

Figure 5: Interface - Chemical Parameters

Obtain the Result After entering all the needed input parameters the ouput can

be obtained. One can get detailed information if the entered material can be reused

for one of the sections in the "Output" category by selecting the output of interest,

i.e. "Brickearth". If the material is not within the limits the exceeding values can

be seen easily.

Figure 6: Interface - Brickearth

The evaluation shows the measured values, which were entered in the "Input" cate-

gory, and the limits taken from industry standards. The "processing unit" compares

the values, e.g. Al2O3, and returns "not usable" because the input of 40% exceeds

the range of 10% - 20%.

3 THE CLASSIFICATION SYSTEM 22

This automated process should be easily adaptable to new / changed standards and

contains all the information needed for a proper classi�cation.

System Environment, Permission and Rights The entered data is stored in

a database - to make the material available at di�erent workspaces and let the user

redo the classi�cation as often as needed. The given data is saved for re-evaluation

or updating. In this special case a connection to the internet is required during the

use of the system.

The system is also designed for simultaneous work of multiple users. For multi-use

every user has to be registered in the system, which then grants access if one has the

permission. This is done by a simple login query when the software starts according

to Figure 7.

Figure 7: Interface - Login

The system itself is programmed to provide the users functions according to their

prede�ned rights. More importantly, the saved data are strictly seperated for each

user to avoid overlaps and ensure privacy.

3.3.2 Sale Interface

To gain access to the "Sale Interface" one has to be registered in the system. The

structure of this part is very simple and straight-forward. It will consist of a small

search engine, which provides the user with information about the available materi-

als, i.e. cubature, geographical area and, of course, parameters of the raw material.

The user is able to change the search settings according to his needs:

• location

• �eld of use

• cubature

3 THE CLASSIFICATION SYSTEM 23

• time frame

With a given location the user is able to delimit his search for materials which are

within the delivery area. The area of use de�nes the industrial use the material is

anticipated. The cubature acts as a restriction or a order criteria.

The result of the search should be a list of possible and available raw materials, see

Figure 8, which then can be selected for further information.

Figure 8: Interface - List Materials

3.3.3 Administration Interface

To ensure a functional and clear environment an administrative part is needed. The

main purpose of this interface is

• user management,

• right management (access granting),

• application support

• and quality management of the input data.

All these features can be carried out by using a control menu, see Figure 9. The han-

dling of this menu works just like the control menu of the "Classi�cation Interface"

- actions can be executed by using the preexisting functions, e.g. "Add User".

The user management, mentioned above, consists of registering, deleting and editing

users, see category "User" on Figure 9.

4 SOFTWARE ENGINEERING BASICS 24

Figure 9: Interface - Main Menu Admin

Figure 10. shows the "Add User" function in detail.

A sample register form is shown on Figure 10.

The di�erence between the "Add User" and "Edit User" function is a pre�lled form

and a selection menu for the user, who will be edited.

The application support is done by the "Material" category on Figure 9. There all

materials of all registered users can be seen, edited and deleted. Also the possible

reuse options can be evaluated, but with less information output data.

4 Software Engineering Basics

This section represents a basic introduction answering the following questions:

• How does a system communicate with the user?

• What is needed to implement it?

The �rst part, the "Programming Principles", explains how the internal structure

of the software looks like, what is needed for programming and how each part is

connected. Then "Client - Server Interaction" describes how the user, the client,

sees the system and how the communications with the software in the server works.

Finally, di�erent programming languages, databases and additional functions are

mentioned with their advantages and disadvantages. From this results a decision for

4 SOFTWARE ENGINEERING BASICS 25

Figure 10: Interface - Add User Admin

4 SOFTWARE ENGINEERING BASICS 26

a certain programming language and database.

4.1 Programming Principles

4.1.1 Model - View - Controller

Figure 11: Model - View - Controller

The Model - View - Controller principle, short MVC, is a software-architecture

pattern, which explains the basic principle, how the system deals with the users's

interaction. It is divided into three units, see Figure 1118:

1. Model

2. View

3. Controller

The goal of these programming principles is to introduce a �exible program design,

which allows subsequent amendments or extensions. To understand the principle

behind this partition, the function of each part has to be known.19

The model contains the data, and optionally the logic of the system. It is manip-

ulated by the "Controller" and informs the "View" part. The "Controller", the

controlling unit, sends information to the model, according to a possible user input.

"View" is the representation which processes the data from the "Model" part. There

can also be a direct connection between the "Controller" and the "View" if no new

data are needed and only the "View"'s representation of the "Model"'s data should

change.20

Figure 1221 shows a graphical representation of this principle with additional con-

sideration of user interaction.
18Wikipedia, Model View Controller .
19Powers, PHP Object-Oriented Solutions.
20Welling and Thomson, PHP and MySQL.
21Wikipedia, Model View Controller .

4 SOFTWARE ENGINEERING BASICS 27

Figure 12: Model - View - Controller with User Interaction

4.1.2 The Template System

The implementation of the MVC principles is done with a simple template engine.

A Template Engine is a software, which takes a �le and �lls its "gaps" with content.

A template system is the easiest and most common system for introducing the basic

MVC principles into small web-based software solutions.22

The "View" part is saved in the template �les, mostly in its own directory, which only

consists of information for the optical presentation. The "Controller" (controlling

unit), which is saved in other �les, acts according to the user input and �lls the

"gaps" with the requested information. This is done by requesting the data from

the "Model", which acts as a space for these data.23

The advantage of this system is the independence of code and design. Changes

in layout or additions can be arranged very easily, just by manipulating the tem-

plate �les. The programmed routines and, therefore, the software itself, are strictly

separated and protected from unintentional changes.

A practical example of such a system is an online telephone directory. The user

requests information with the help of the "Controller", for example a search engine.

This engine connects to the telephone database and gives the requested telephone

number to the "View" part, which is the optical presentation of the requested num-

22smarty.net, Smarty Template Engine.
23Quakenet/#php.de Sta�, Quakenet/#php Tutorial .

4 SOFTWARE ENGINEERING BASICS 28

ber to the user.24

Based on these principles a more detailed explanation of the user - server interaction

is provided in Section 4.2.

4.2 Client - Server Interaction

The most important part of using a webbased database system is to understand how

the connection between the actual user and the system itself works. The foundation

is a server-client interaction where the client sends requests to the server and gets

speci�c responses, according to the given action.25 Figure 1326 shows an example

connection of the client-server situation.

The client, in this case is a browser, which runs on a computer and is controlled by

the user. The browser, e.g. Internet Explorer, sends requests to another computer,

called the server.

In this case the server is a HTTP web daemon, running on an existing physical

computer. HTTP is the transfer protocol standard, similar to a postal carrier, like

UPS. Then the HTTP web daemon would be a physical place, where the request,

the "package" can be delivered. In this analogy a postal o�ce would act as the

browser system.

Figure 13: Client-Server Model

A dynamic webpage has some more extras which are necessary to full�ll the re-

quested options. To handle speci�c requests and get an adequate answer a pro-

grammed course has to exist, which only uses the given functions and excludes all

24Wikipedia, Model View Controller .
25tutorialspoint.com, Client Server Model - Architecture.
26Wikipedia, Client�Server Model .

4 SOFTWARE ENGINEERING BASICS 29

other possible inputs. This "code" is saved on the server.27

This programmed course is described with a script language, which is interpreted

by the server, with the help of an so-called interpreter. The most common script

language in case of client-server platforms with databases is PHP, which has a C /

Pearl-like syntax, ASP or Java.28

The actual code to handle the di�erent input cases is, as mentioned, on the server

and the user can only communicate with it through HTML-requests sent by the

browser. HTML is the markup language for creating webpages, which can be read

by the browser. So the user sends a request by using the prede�ned options on a

HTML page, which was sent from the server to the client's browser, see Figure 14.

Script languages such as PHP have no possibility to alter the system, the computer

of the client directly, it can only control what will be sent to the client's browser. So

PHP only changes what the user sees, that means it uses a process which is saved

on the HTTP server and the user will get, i.e.: a di�erent HTML-page with the help

of this process. There is no direct access to the user's computer.29

The user can not see the programmed routines and how the server will react (the

"answers" (HTML pages) the user receives). The PHP program acts as a compiled

program, which makes it executable immediately.30

Figure 14: Server-Client-Script Interpreter Model

Requests always contain data from the user whether already sent as an input by a

speci�c form or "hidden" by using di�erent menu options.

Usually a structured database is used to save data. Therefore input, which is given

27Wikipedia, Client�Server Model .
28The PHP Group, PHP.NET Manual .
29MacIntyre, Danchilla, and Gogola, Pro PHP Programming .
30The PHP Group, PHP.NET Manual .

4 SOFTWARE ENGINEERING BASICS 30

by a form, can be stored in an accurate structure and recalled later.31

To make use of the advantages of this structured space a database server is required.

The database server is, similar to HTTP servers, a part of the physical computer

i.e. with the help of an input language data can be stored.32

Finally the script program processes the user requests and therefore "talks" to the

database and saves or requests data from it. This is done by a database handler,

which is provided by the script language. A graphical interpretation of the interac-

tion can be seen on Figure 15.

So following things are needed to provide the basis of the classi�cation software and

to use it33:

• A physical computer with a client software, a browser, i.e. Internet Explorer,

which is used by the user and can send requests.

• Another computer which acts as server and receives requests and sends infor-

mation back. It is subdivided into a webserver, which stores all the program-

ming �les and a database server, which stores the data of the user.

• A HTTP handler to send data from the server to the client and vice versa and

Interpreter to run the programmed routines and "talk" with the database,

both on the server.

Figure 15: Script Language - Database Interaction

31MacIntyre, Danchilla, and Gogola, Pro PHP Programming .
32Welling and Thomson, PHP and MySQL.
33Rauch and Beer, Netzwerke - Grundlagen.

4 SOFTWARE ENGINEERING BASICS 31

4.3 Programming Language, Database and Additions

This section states the di�erences of available script languages with a general overview

of common databases and how the script language interacts with them. All of the

discussed script languages are able to create dynamic webpages, because the objec-

tive is to react to the user input, i.e. data input and classi�cation. As grain size

distributions have to be displayed, the needed methods to implement this require-

ment in a web platform are mentioned brie�y.

4.3.1 PHP and Alternatives

PHP34 PHP, a recursive acronym for PHP: Hypertext Preprocessor, is an open-

source server-side script language invented by Rasmus Lerdorf in 1995 with a syntax

similar to C and Perl. It is the most used language for web programming in about

79% of all dynamic websites and has a wide range of supported databases35 and

numerous prede�ned function libraries. When used as foundation for web appear-

ances, the script is often embedded in the HTML code and saved on the server,

although PHP can be used as a general-purpose programming language to create

any kind of software. In contrast to JavaScript36 the PHP code is interpreted on and

by the server and sends the generated HTML result to the client. Because of this

reason PHP can be used with all major operating systems, i.e. Linux and derivates,

Microsoft Windows, Apple MacOs, and also all mobile operating systems.

Because of its wide range of usage nearly all servers have the ability to execute PHP

codes. There are di�erent ways how to interpret the code but the most common,

which is also mentioned in a previous chapter, is with a webserver module - available

for all important webservers like Apache and Microsofts IIS (Internet Information

Services).

In version 5 of PHP, Objects were introduced, which �lled the gap between the "mod-

ern" programming language and old procedual style of programming. This produces

better performance and brought many new functions and possibilites, which are now

state of art in object oriented programming, i.e. abstract, �nal classes and methods,

and also interfaces.
34The PHP Group, PHP.NET Manual .
35Oracle Corporation, MySQL Manual .
36Sun Microsystems, JSP Manual .

4 SOFTWARE ENGINEERING BASICS 32

ASP.NET37 With about 20% of market share Microsoft introduced the second

most important technology to create dynamic websites - ASP.NET, the replace-

ment of the original Active Server Pages (ASP). ASP.NET is based on the .NET

framework which is a foundation to display .NET programs on Microsofts IIS or at

least ASP.NET compatible servers. Writing programs for ASP.NET means that no

speci�c programming language skill has to be acquired. All .NET supported pro-

gramming languages like C# and VB.NET can be used to �nish projects.38 There-

fore ASP.NET is not a programming language, it is more a framework of di�erent

techniques.

In contrast to the free software PHP, ASP.NET is proprietary, which means - in

this special case - that the code is closed for inspection (closed-source vs. open-

source). ASP.NET is accompanied by a wide range of possible functions, like image

processing, without the need of installing extra libraries.39

To use all the features of ASP.NET, one is bound to the technologies of Microsoft

and its server software. There exist some free alternatives but, because of the closed-

source policy, they are not 100% compatible and never up-to-date. So ASP.NET is

free available, but the used software is not, which means royalties have to be paid

to get full support and functions.

With ASP.NET the concept of the Code-Behind-Model (CBM) emerges. Similar to

other .NET applications this means a strict distinction of the code for presentation

and the content itself. The Code-Behind-File is interpreted before the site is re-

quested, which reduces the errors which take place during runtime. In this �le the

developer has the possibility to set all the possible actions in a lifecycle of a ASP

form including events like user interactions. Figure 1640 shows the "page lifecycle"

of an ASP.NET framework.

This Code-Behind-Model in ASP.NET is one of the most important di�erences

to the old version, ASP. The CBM strictly follows the principles of Model-View-

Controller(MVC) seperation and therefore makes division of labour in development

possible and enhances the work �ow signi�cantly. An simple representation of MVC

in the ASP.NET framework can be seen on Figure 1741.

37Microsoft, ASP.NET Manual .
38Wikipedia, ASP.NET .
39Microsoft, ASP.NET Manual .
40Ibid.
41Ibid.

4 SOFTWARE ENGINEERING BASICS 33

Figure 16: ASP.NET Page "Lifecycle"

Figure 17: ASP.NET MVC

4 SOFTWARE ENGINEERING BASICS 34

JSP42 Other alternatives to PHP include Java, Perl and CFM (ColdFusion Markup

language), where Suns JSP (JavaServer Pages) has the highest share with about 4%.

Like PHP and ASP, JSP is a web programming language for dynamic generation

of HTML and XML responses. In 1995 Sun Microsystems released as a high-level

abstraction of Java servlets. JSP and therefore the "translated" servlets, which

are classes to extend the applications of a webserver, are programmed in Java.

JavaServer pages need a translator, the JSP compiler, that performs a conversion of

the JSP page into a servlet and then to bytecode. These generated programs can

then be executed with the JRE and the results are presented in HTML. Figure 1843

shows an simple understandable "lifecycle" of a JS Page.

Figure 18: JSP Lifecycle

A main advantage of JSP is that it is not based on an own programming language:

it uses Java.44 Therefore a massive library is available for pogramming with JSP,

although the libraries of ASP and PHP are also quite big and su�cient to implement

"normal" web projects. Considering this fact and the free available support of JSP

concerning webservers it can be seen as a mixture of both, PHP and ASP.NET.

An important decision factor, nearly a knock out criterion, is the speed of JSP. As

described above there are many steps which have to be processed, next to installing

an own engine needed to execute the scripts, which makes the whole system very

42Sun Microsystems, JSP Manual .
43Wikipedia, Java Servlet .
44Leitenmüller, JSP - Java Server Pages.

4 SOFTWARE ENGINEERING BASICS 35

slow (in comparison to other available options). That is also one of the main reasons

the programming language Java is not used when it comes to performance.

Comparison Tables 7, 8 and 9 show the summarized advantages and disadvan-

tages of each scripting language.

PHP

+ Advantage - Disadvantage

speed content / code management

good support wide range of function with extra packages

open source

free

server support

easy programming

Table 7: Advantages and Disadvantages PHP

Usually the missing MVC principle can be solved easily: an advanced programmer

is able to do the content / code management seperation and can even implement a

MVC framework. Usually it is easy to �nd free packages for needed extraordinary

functions. In case of the muck classi�cation matrix, a package to display grain

size distribution has to be loaded, all other functions are available without loading

additional packages.

ASP.NET

+ Advantage - Disadvantage

lots of good implemented functions not as fast as PHP, but faster than JSP

"out-of-box" MVC framework propetiery

possibility of using di�erent license royalties for webserver

programming languages limited webserver support

special webserver needed for full support

smaller community

Table 8: Advantages and Disadvantages ASP.NET

All discussed systems to implement the muck classi�cation matrix are object-oriented,

or at least would be able to use it. The list of supported databases is large but all

of them vary concerning the working procedure. The speed of the database depends

on the amount of data and the used database. As we save same data sets, only the

second point has to be considered.

4 SOFTWARE ENGINEERING BASICS 36

JavaServer Pages

+ Advantage - Disadvantage

huge range of functions (Java) content / code management

"out-of-box" MVC really slow

good support own engine is needed to run

free a lot of intern steps

server support

easy programming

Table 9: Advantages and Disadvantages JSP

In addition to these objective advantages and disadvantages there is the subjective

opinion of the programmer. Although PHP is not meant to be "Object-Oriented",

one can use it, if needed. Another important fact is the personal preference, which

supports a positive and fast handling while programming. Considering all these

facts (objective and subjective) PHP is the language of choice.

In the case of the muck classi�cation matrix only one part of the code is object-

oriented - the interaction with the SQL database. The rest is straight-forward and

can be programmed procedually. With an implemented MVC, an easy template

engine, the objective to be expandable can be full�lled easily.

4.3.2 MySQL and Alternatives

According to the previous chapters a system for organized data collection, a database,

is needed. The term "database" is often used for both the real database - the data

and its structure - and the management system (DBMS). Di�erent of these software

management applications exist to create, de�ne, query, update and administrate

databases.45 The most important are:

• MySQL4647

• Microsoft SQL48

• Oracle49

45Rauch and Beer, Netzwerke - Grundlagen.
46Oracle Corporation, MySQL Manual .
47DuBois, MySQL.
48Microsoft, SQL Server Manual .
49Wikipedia, Oracle Database.

4 SOFTWARE ENGINEERING BASICS 37

All of these databases use the Structured Query Language (SQL) or a similar lan-

guage, which is based on SQL, as database language to process and request data.50

Database Models51 The most important di�erence between these systems is the

restructuring of the given data. The following models are distinguished:

• Hierarchical database model (Figure 19)

• Network model (Figure 20)

• Relational model (Figure 21)

• Object model

There exist some more, but their usage is very limited and they are not noteworthy

for the webbased usage. The hierarchical model has a tree-like structure and only has

one-to-many relationships. It uses simple parent/child relationships, which means

that every "parent" data or category can have more children "data", but only one

parent is connected to each child, see Figure 19.

Figure 19: Hierarchical Model

This structure limits the use of the database to simple models. The network model

extends this concept and permits multiple parents and therefore is able to display

a generalized graph model. As its structure is still hierarchical some di�erent data

relationships are not possible, it prohibits cycles.

The relational model replaced the network model as it is able to manage data in a

more declarative way with the help of �rst order predicate logic. The data is grouped

in tuples and connected with relations. Object databases enhance this concept and

50Date, An Introduction to Database Systems.
51Wikipedia, Database model .

4 SOFTWARE ENGINEERING BASICS 38

Figure 20: Network Model

introduce the object as datatype. Therefore hard-to-structure data can be saved

and recalled as objects easily, it di�ers in the table structure of the relational model,

see Figure 21. It shows two di�erent tables, which set up a simple user database:

• The �rst table consists of di�erent names and their user alias.

• The second table is an extension of the �rst one. It consists the user alias

(login) as "key" for the telephone number.

The point of relation is the "login" of each user. Therefore the phone number is

assigned to one user (relation).

Figure 21: Relational Model

4 SOFTWARE ENGINEERING BASICS 39

Database Orientation52 Another distinctive criterion is the "orientation" of the

system. This includes:

• OLTP - Online Transaction Processing

• OLAP - Online Analytical Processing

OLTP, also called real-time transaction processing, is built for many small requests

- direct and fast without time delay. This system is mainly used for operational

business processes or, more importantly, webshops, knowledges bases and content

management.

OLAP is an analytical information system, which is mainly used for prolonged eval-

uations, e.g. data mining, which is a statistical process of data pattern evaluation.

In contrast to OLTP the main purpose is to perform complex analysis projects,

which cause a very high volume of data.

So in consideration of the data in the classi�cation matrix, which means "small"

data sets and direct requests for further information processing, all of the mentioned

DBMS use OLTP for information processing.

Comparing the database management systems the di�erences concerning perfor-

mances are relatively small. Like PHP MySQL is open-source and free, which means

a strong community and high availability of add-ons. Oracle and Microsoft SQL are

proprietary, which may become very important for companies, which need special

features and add-ons as it has a better costumer support. But using normal features

this feature can be ignored and implies additional costs.

In contrast to Microsoft SQL and Oracle, MySQL has no database administration

tool included. This can be an advantage because there is a wide range of di�erent

tools available and one can decide for according to what is needed. But, because

MySQL is the most common database type, all servers already have an administra-

tion tool preinstalled, phpMyAdmin.

A preferred �eld of MySQL is the data storage for web services. It is frequently

used in conjunction with the Apache web server and the PHP scripting language.

Famous web applications and web pages like Flickr, Nokia.com, YouTube, Google,

Facebook and Twitter use this combination.

The fact that MySQL is free, has a good support, and the �eld of use or handling

of the database is very similar to other existing projects, it is the tool of choice.

52Gabriel, Gluchowski, and Pastwa, Datawarehouse und Data Mining .

4 SOFTWARE ENGINEERING BASICS 40

The work experience with MySQL databases and its administration software, php-

MyAdmin, supports this decision.

PHP and MySQL - Interaction53 There are several possibilities for "speaking"

with a MySQL database in PHP. An Application Programming Interface (API),

which is a class and/or collection of methods or functions is needed. These interac-

tion tools are called "connectors" . The most common tools are:

• MySQL - the original MySQL API

• MySQLi - the MySQL Improved Extension

• PDO - PHP Data Objects

All of the APIs above are included in PHP and available for the immediate use. The

original MySQL API is the oldest and �rst connector of the three. Because of its

procedual programming interface and the lack of security the PHP development team

stopped working on it and switched the development status to "Maintenance only".

Its functionality is also limited to MySQL versions below 5.1, which is why PHP does

not recommend using it for creating new projects. MySQLi is an improved version of

the original MySQL. It supports both procedual and object-oriented programming

and its development status is still "Active". Like MySQL it is limited to the use

with a MySQL database, but has improved security options.54

The most important di�erence concerning MySQL and alternatives like MySQLi

and PDO is the possibility of "Prepared Statements" and "Stored Procedures". As

variables of a user interaction often de�ne the data which has to be requested from

the MySQL database, there was the possibility of a system harm with a "SQL

injection". There the user manipulates the SQL-command with the help of this

missing variable. This is done by sending not the prede�ned input for the variable

but an intentional extension, e.g.

• "GET INFORMATION1 FROM $VARIABLE", where $VARIABLE can be

a prede�ned database. Usually the system sends, according to the actions of

the user, the name of a database.

• If the user would de�ne the $VARIABLE as "DATABASE1 AND DELETE

EVERYTHING", the command would be: "GET INFORMATION1 FROM

DATABASE1 AND DELETE EVERYTHING".
53The PHP Group, PHP.NET Manual .
54Welling and Thomson, PHP and MySQL.

4 SOFTWARE ENGINEERING BASICS 41

• This injection extended the command and changed its underlying purpose -

instead of only requesting data, everything would be deleted.

"Prepared Statements" bypass this possibility by preparing the exact SQL command

before processing. The missing variable is then, de�ned by exact syntax, inserted

later. This prevents the unauthorized altering of a given SQL command by stating

restrictions.

"Stored procedures" go a step further by saving the chain of SQL commands in the

database as a function and therefore strictly seperate it from the code in the PHP

�les on the web server. This may be important for big projects where di�erent people

are programming the database and the actual PHP code - the PHP programmer can

work with prede�ned functions without knowing the structure of the database.

The PHP Data Objects have another special feature: they are not limited to MySQL

databases. If a change of the database is considered or planned one does not have to

change the commands written in the PHP code. Only the driver has to be changed

according to the preferred database. When using multiple databases or executing

frequent changes PDO would be the ideal and most comfortable choice.55

Because of the lack of security the selection options are reduced to PDO and

MySQLi. When it comes to performance benchmarks showed that MySQL is slightly

faster (2.5 - 6.5 %) - if it deals with large amounts of data.56

Table 1057 outlines the main di�erences of the APIs.

original MySQL MySQLi PDO

PHP version introduced 2.0 5.0 5.1

Included with PHP 5.x Yes Yes Yes

Development status Maintenance only Active Active

Lifecycle Deprecated Active Active

OOP Interface No Yes Yes

Procedural Interface Yes Yes No

Prepared Statements No Yes Yes

Stored Procedures No Yes Yes

MySQL 5.1+ functionality No Yes Most

Performance 1+ 1 1-

Table 10: MySQL, MySQLi and PDO - Comparison

55The PHP Group, PHP.NET Manual .
56tutsplus.com, PDO vs. MySQLi: Which Should You Use?
57The PHP Group, PHP.NET Manual .

4 SOFTWARE ENGINEERING BASICS 42

Considering the fact that the classi�cation system only uses MySQL databases with

no intended change in future, MySQLi is the connector of choice. It is faster than

PDO, is able to perform all security statements and has the best functionality.

Developer recommendations and ongoing development underline the selection.

4 SOFTWARE ENGINEERING BASICS 43

4.4 The Classi�cation System

This section presents the application to the classi�cation system. It shows a detailed

explanation of how the user connects with the system and how the internal processes

work.

4.4.1 Client - Server Interaction

To apply the interaction to the system of the muck classi�cation matrix, the individ-

ual steps have to be explained in more detail. On the client end of the system there

are three di�erent classes of users - the seller, the buyer and the admin interface.

Every class consists of several users, depending on the number of people using the

platform.

Every user class acts as a system of its own, which means that there is no interaction

in the script language, but all of them use the same database. Figure 22 below shows

the architecture of this interaction.

Figure 22: Di�erent User - Database Interaction

On the other end there is the database and the HTTP-server which has the extra

feature of interpreting script language codes. The muck classi�cation itself is stored

in script �les (shown as "admin", "buyer" and "seller" in Figure 22) on the HTTP

server and gets called whenever the user on the other end sends a request.

To understand the programming routines, the verbal running simulation, which are

a verbal explanation of the connection concepts above, is used. A standardized call

can be seen below. Two "interactions" have to be distinguished: requesting and

sending data, now called "REQUEST" and "SEND".

1. user REQUESTS/SENDS information

4 SOFTWARE ENGINEERING BASICS 44

2. server PROCESSES the request

3. not necessarily: server REQUESTS/SENDS data FROM/TO database

4. server SENDS information/con�rmation to user

5. user GETS information/con�rmation

There are serveral small steps in between, but to keep the "command" small and

clear - using the KISS principle - they are not cited. The excluded steps contain for

example:

1. The actual request through the browser. The user is not directly in touch with

the information.

2. The HTTP-server gets the request and sends it to the script language handler.

3. If information from a database is needed, the script has to send a request with

a database handler to the database.

4. The script language builds the HTML command for the HTTP-server.

5. The browser �nally gets the information from the server and displays it.

Comment: Figure will be added!

4.4.2 The Database

As users want to receive and/or save, e.g. their classi�cation or pro�le data, a special

structured database is needed for this purpose. MySQL is a relational database,

which means that it includes di�erent tables with a prede�ned syntax - number of

columns and possible datatypes - and a variable number of rows depending on the

entered data. Table 11 shows the "User" table, where information about di�erent

users is saved.58

ID Username Password email description

integer character character character text

1 admin *encrypted* admin@admin.at This is the admin account

...

Table 11: Example User table

In the case of the classi�cation matrix tables with the following functions were

created:
58Oracle Corporation, MySQL Manual .

4 SOFTWARE ENGINEERING BASICS 45

• User. Contains the information about the users.

• Input Parameters. Mostly divided into more tables, like technical, chemical

and mineralogical parameters.

• Materials. An easy forward description of the material can be found here, i.e.

Name, Cubature, Time, ...

• Management. Comprises all data to ensure the interconnection of the databases

and to keep the web page running.

• Logbox. Protocols with information about "who, when and what" is saved

here.

The structure of the Materials and Input Parameters table is based on the classi-

�cation in Section 3. Figure 23 shows the main structure of the database and its

interconnections. Rows with attribute "Table" are supposed to be own tables, but

are written as normal datatypes to ensure the simplicity of the system.

Figure 23: Database structure

The relation between the tables (User, Material, Material Parameters, ...) are meant

as an exact assignment to an "upper" level. As the user is able to add a material, the

material has to have an "Owner" to know who is allowed to edit a speci�c material

4 SOFTWARE ENGINEERING BASICS 46

- a speci�c user. This fact is described by the "Owner" row of the material - the

same applies for the InfoMessage. The MaterialParameters table is connected to the

Material itself (the Material table is the "owner").

4.4.3 User Classes and Their Functions

With the help of the verbal running system and the given structure of the database

the di�erent functions of the user classes regarding the programming can be dis-

cussed.

Because of the fact that the classi�cation is part of the userclass "seller", it is

considered the be the most important. The following functions are used in this

interface:59

• Add / Edit / Activate / Deactivate / Delete Material

• List / Edit Material Properties

• Show ouput / classi�cation of the material

• Show / Edit pro�le

• Show Log

Similar to the "seller" interface, but with less functions, the "buyer" can be de�ned

as followed:

• Multi-option search for di�erent materials

• Show properties of the material of interest

• Show / Edit pro�le

The userclass "admin" has the most rights to interact with the system, since it

has the control function of the classi�cation matrix. To help whenever problems

for other classes - seller and buyer - appear, the admin interface should be able to

see / do what users can do, which means that most functions are combined in this

interface.

The following tasks have to be solvable as an admin:

• Admin level: Add / Edit / Activate / Inactivate Users; Show log of all users

• Seller level: Edit / Delete Material; List Material Properties; Show output

result / classi�cation of the material

59Quakenet/#php.de Sta�, Quakenet/#php Tutorial .

4 SOFTWARE ENGINEERING BASICS 47

• User level: Show / Edit pro�le

The exact interaction of the user and system, according to the mentioned functions

above, are discussed in the next section..

4.4.4 The Main Routines

This section explains the di�erent functions of the users in more detail. This is done

with the help of the verbal running system. Each function would require many single

steps, but, because of their similarity, they are grouped to few "Main Routines":

• The Get Query

• The Add/Update and Delete Query

• The Cookie Activate / Deactivate Query

As a result, one can understand how each function is built according to the running

system and therefore the summarized routines. This is shown by an example at the

end of this section.

The Get Query To enter a section, i.e.: "Adding Material Section" the user has

to request it:

1. seller REQUESTS "Page:Adding Material"

2. server PROCESSES the request

3. server SENDS "Page:Adding Material" to seller

4. seller GETS "Page:Adding Material"

As this is always done when requesting new pages (e.g.: Adding Material, Apply

Classi�cation,..), it will not be mentioned in the other routines! If the get-query

concerns information, which is stored in a database, the following line has to be

added after the PROCESS-command:

server SENDS get "Material:existing materials" TO database: material

The Add/Update and Delete Query Another step - for example after request-

ing the material page - is sending a complete form and add some information, in

this case a material:

1. seller SENDS "Material:form data"

4 SOFTWARE ENGINEERING BASICS 48

2. server PROCESSES the request

3. server SENDS insert "Material:form data" TO database: material

4. server SENDS "Page:Material Added" to seller

5. seller GETS "Page:Material Added"

The same steps, but "update" and "delete" instead of the "insert" are used when

editing or deleting a material.

The Cookie Activate / Deactivate Query For example, to activate a material

one has to go to the "Material Section" and choose an already existing material.

The properties can be altered, only when it is activated! Therefore two actions have

to be processed:

• Requesting the existing materials with the database-GET-query (see above)

• Choosing and saving active material

1. seller SENDS "Activate Material"

2. server PROCESSES the request

3. server SENDS "Cookie: Active Material" to seller

4. server SENDS "Page:Material Activated" to seller

5. seller GETS "Page:Material Activated"

When deactivating a material the second part is slightly modi�ed, Line 3 becomes:

• server SENDS "Cookie: No Active Material" to seller

Assembling the functions With a combination of these six queries all tasks of

the di�erent user classes can be done. For example, the log-in:

1. A normal Get Query for requesting the page

2. The next step is a database Get Query, where the system controls the login

information with the actual written.

3. If the information is ok a COOKIE Activate query is send to save the ID of

the User

The actual code behind is often a combination of di�erent sub-procedures, but the

idea is the same.

5 SOFTWARE ENGINEERING DETAILS 49

5 Software Engineering Details

After a short introduction of the basics in software engineering and how the interac-

tion between the client and server works, a deeper insight into the actual program-

ming of the classi�cation platform can be given. With the result of the last chapter

- the decision for the programming language PHP, the database MySQL and its

handler MySQLi - the focus switches then from the interaction of the client-server,

with its functions and routines, to a slightly di�erent �eld. The implementation

of the MVC principle with PHP is explained and the functions are reordered and

restructured so that the programmed routine can be understood easily. Therefore

the "classi�cation" and "login" function is explained in more detail. The structure

will be application-oriented; compare Section 3.3.

5.1 The Template System

This section elaborates the Model-View-Controller principle extensively for the Clas-

si�cation matrix system. This is done by an easy implementable template system,

compare Section 4.1.1 and 4.1.2.60

The server-side �le structure strictly separates the template �les, which are needed

for the optical presentation, and the code �les, which contain the programmed rou-

tines and therefore the "brain" of the program.

Figure 24 shows the basic folder-structure of the system. The "template" and "img"

folder consist of the HTML code and the needed graphics, whereas the code �les are

represented by the "inc", "includes" and "scripts" folders.

Figure 24: Folder structure

This subdivision is done for organizational purposes as the "inc" folder comprises

important constants, variables, functions and information for the output and in-

put parameters of the classi�cation (Figure 25). The "con�g.php" �le loads "con-

stants.php", "functions.php" and "variables.php". This is done for simpli�cation

60Quakenet/#php.de Sta�, Quakenet/#php Tutorial .

5 SOFTWARE ENGINEERING DETAILS 50

as all of them are always needed and loaded together. "constants.php" has exact

information about the database (username, password, ..) and de�nes important

constants for program version, which represents the development status, and error

messages. The "variables.php" �le limits the possible user webpages by de�ning an

exact array of possibilities, e.g. menu, register, pro�le, parameters, ...

This organizional structure is a standard procedure used in di�erent projects, books61

and tutorials62.

Figure 25: "inc" folder

"input_paramters.php" includes the description of the technical, chemical and min-

eralogical input parameters with information about their title in the MySQL database.

The di�erent output possibilities (brickearth, cement, ...) are de�ned in the "out-

put_paramters.php" with speci�cations of their limits and their title in the MySQL

database. This is needed for the comparison of the input and output parameters

during the classi�cation.

The "index.php" �le is the most important �le of the webbased system. It "builds"

the webpage by loading the content, which is needed by the user. Below is an excerpt

of the "index.php" �le including the pertinent command lines.

<?php

// P A R T 1 - BEGIN

error_reporting(E_ALL);

ini_set('display_errors ', 1);

include('inc/config.php'); // loading the configuration files

if(get_magic_quotes_gpc ()) {

array_stripslashes($_GET);

array_stripslashes($_POST);

array_stripslashes($_COOKIE);

}

61Gunnar Thies, PHP 5.4 und MySQL 5.5 .
62Quakenet/#php.de Sta�, Quakenet/#php Tutorial .

5 SOFTWARE ENGINEERING DETAILS 51

// connection to database

$db = @new MySQLi(MYSQL_HOST , MYSQL_USER , MYSQL_PASS ,

MYSQL_DATABASE);

// P A R T 1 - END

// P A R T 2 - BEGIN

$ret = 1;

if (mysqli_connect_errno ()) {

$ret = 'no connection to database possible , MySQL error: '.

mysqli_connect_error ();

} else if (is_string($error = getUserID($db))) { // String ->

error!

$ret = $error; // save error message in $ret to display it

later.

} else {

// creation of the include command

if (! getUserID($db)) {

$ret = include 'includes/'.$content['login '];

} else {

if (isset($_GET['section '], $content[$_GET['section ']])) {

if (file_exists('includes/'.$content[$_GET['section ']])) {

$ret = include 'includes/'.$content[$_GET['section ']];

} else {

$ret = "could not load the include file: 'includes/".

$content[$_GET['section ']]."'";

}

} else {

// loading default area

$ret = include 'includes/'.$content['menu'];

}

}

}

// P A R T 2 - END

// P A R T 3 - BEGIN

// loading of the html header

include 'templates/html_header.tpl'; // Doctype , <html >, <

head >, <meta >

include 'templates/html_body_tag.tpl'; // <body > and some

definitions;

// include 'templates/menu.tpl ';

5 SOFTWARE ENGINEERING DETAILS 52

// loading of the template file

if (is_array($ret) and isset($ret['filename '], $ret['data'])

and

is_string($ret['filename ']) and

is_array($ret['data'])) {

// valid template file

if (file_exists($file = 'templates/'.$ret['filename '])) {

$data = $ret['data']; // save the array data in

variable $data

// which can be used in the template.

include $file;

} else {

$data['msg'] = 'the template file "'.$file.'" does not

exist.';

include 'templates/error.tpl';

}

} else if (is_string($ret)) {

// got error message

$data['msg'] = $ret;

if(msgToLog($db , 2, $data['msg']))

$data['msg'] = $data['msg'].' the error was added

to the logsystem!';

else

$data['msg'] = $data['msg'].' the error was not

added to the logsystem!';

include 'templates/error.tpl';

} else if (1 === $ret) {

// return value forgotten

$data['msg'] = 'the return is missing in the incude file.';

if(msgToLog($db , 2, $data['msg']))

$data['msg'] = $data['msg'].' the error was added

to the logsystem!';

else

$data['msg'] = $data['msg'].' the error was not

added to the logsystem!';

include 'templates/error.tpl';

} else {

// wrong return value

$data['msg'] = 'the include file processed an invalid value

.';

if(msgToLog($db , 2, $data['msg']))

$data['msg'] = $data['msg'].' the error was added

to the logsystem!';

else

$data['msg'] = $data['msg'].' the error was not

5 SOFTWARE ENGINEERING DETAILS 53

added to the logsystem!';

include 'templates/error.tpl';

}

// load HTML footer

include 'templates/html_footer.tpl'; // includes </body > and

</html > ...

// P A R T 3 - END

?>

The �rst part of the "index.php" �le sets the error settings (which errors are shown),

loads the con�g �le and removes invalid characters of the GET, COOKIE and POST

variable. These variables contain the user input, e.g. given through a form or just

by using di�erent menu options. At the end the connection to the MySQL database

is built by using the MySQLi handler.

The second part focuses on possible errors and eventually - if no error occurs - builds

the command for the needed template �le, which should be shown. The considered

errors include:

• database connection errors

• errors loading the template �le

• all other errors, which are saved as error messages

As an output $res variable can either be the array that includes the information

for loading the needed section, or a string with an error message. If there is no

error and no section selected, e.g. "chemical parameters" or "brickearth", then the

"menu" section, which represents the main menu, will be loaded. This means if the

user requests the section "brickearth" the corresponding php �le "brickearth.php"

is executed and data, which are needed in the routine, are saved in the $res variable.

So $res contains:

• the name of the template �le - is saved in $ret['�lename']

• data, which were processed in the corresponding php �le and are needed in

the template �le later - is saved in $ret['data']

The third and last part of the "input.php" �le actually builds the webpage. At the

beginning the header and the �rst body are loaded, see "header" and "body" on

Figure 26. The header includes the graphics and information on top of the webpage

and is always loaded, whether a user is logged in, a section is selected or an error

5 SOFTWARE ENGINEERING DETAILS 54

occurs, see Figure 26. The body part includes the message (log) box, the "active"

material and user information - it changes if nobody is logged in or no material is

selected.

Figure 26: Template Structure

After that, the $res variable mentioned before is examined in more detail. The

routine checks if all the needed variables are set ($ret['�lename'] and $ret['data'])

and if set - checks the existence of the requested template �le. Then - if everything

is ok - the content of the section is included (the template �le, which shows the

needed information), see "template �le include" on Figure 26.

The following extensive if-then commands handle the di�erent errors and include, if

an error occurred, the error section, which shows the error message, instead of the

requested content. All errors are saved into a log system, which should help the user

to understand what was done.

That means the content of the $res variable is examined and therefore can contain:

• the valid de�nitions of template �les and data

• or an error message which was returned by one of the section pages

Figure 27 shows a simpli�ed �ow chart of the template system process.

The last command of the "index.php" �le includes the footer (see "footer" on Figure

26), which is - similar to the header �le - always loaded, but represents the bottom

part of the page.

5.2 The MySQL Database Structure

Before the di�erent user functions are discussed, the database structure should be

shown in detail. As already mentioned, all the input data, necessary to ensure the

5 SOFTWARE ENGINEERING DETAILS 55

index.php checks

user input

loads speci�c php �le

executes speci�c php �le

uses info of php

�le in template �le

and saves to $res

includes $res in "tem-

plate �le include"

Figure 27: index.php - Flow Chart

5 SOFTWARE ENGINEERING DETAILS 56

functionality of the classi�cation system, are saved here. Section 5.4 (reference!)

gives a �rst introduction about the the database and the structure and should be

the basis of the exact explanation in this section.

A total of about 15 tables are needed to enable the classi�cation:

• four tables for the user description

• nine tables for the material description (technical, mineral and chemical pa-

rameters)

• two tables for the log system

The tables and their relation can be seen on Figure 28.

Figure 28: SQL Database Structure

Each blue column and the information listed below it, stands for one table. The

written information under the blue line is the exact structure of each table. It states

the prerequisites for a data set, which will be saved through user input.

The following information is saved in each table:

• user - contains information about the user, e.g. username, password, email,

description

• infomsg - contains the log message with information about the user, who per-

formed the action, the date and the type (normal or error)

• infotype - has information about the di�erent types of log messages; is related

to the "infomsg" table

5 SOFTWARE ENGINEERING DETAILS 57

• activelist - saves the users, who are allowed to use the system. Therefore The

User ID is needed

• userclasses - states the "rights" of a user: if the user is admin, seller or/and

buyer

• classlist - includes the di�erent classes (admin/seller/buyer); is related to user-

classes with the ID

• material - has the basic information about the material, e.g. owner of the

material, date of change, name and short description

• minpar, mica_type, chempar_solid, chempar_eluate, chempar, techpar, ag-

gregate, aggregate_�nes - these table include all the input parameter infor-

mations which are needed: technical, chemical and mineralogical parameters

(see Section ..)

All tables have at least one additional line: "ID", which is needed to di�erentiate

data sets and also works as an index. The dark blue, light blue ,green, purple

and yellow lines in between the tables state the relations (di�erent color - di�erent

relation).

The "minpar" table for example, which represents the mineralogical parameters,

saves di�erent minerals, e.g. mica and kaolinite, but also has, next to the "ID" line:

"material_id". This relations are needed to distinguish every single dataset. The

"material_id" relates the mineral properties to a special material (with its mate-

rial ID), compare dark blue lines on Figure 28. The other input parameter tables

(chempar, chempar_solid, chempar_eluate, techpar, aggregate, aggregate_�nes)

have a similar structure - "ID" and "material_id" but the remaining lines di�er

because of the input.

The "user" table is the "starting point" of all the relations. It connects the "ma-

terial", "userclasses", "activelist" and "infomsg" table through the User ID, called

"ID" in the "user" table and "owner" or "UserID" in all others (green lines on Figure

28).

5.3 The Section Template and PHP File

Section .. introduces the principle of the template system and mentions the template

and PHP �les brie�y. A detailed explanation of the two �le types and their structure

are stated here.

The focus is on Section Template �les, which exclude the "normal" �les, like "header.tpl",

5 SOFTWARE ENGINEERING DETAILS 58

"footer.tpl" - they almost only consist of regular HTML code. The Section Template

�les, now "template �les", and their corresponding PHP code are loaded according

to the user actions and are represented in the "template �le include" on Figure 26.

The PHP File As the PHP �les are executed beforehand - because the evaluated

data are needed in the template �les - the structure of the standard PHP �le is

discussed �rst:

<?php

// P A R T 1 - BEGIN

// Security Check - User Login

if (! $UserID = getUserID($db)) {

return NOT_LOGGED_IN;

}

if(! isset($_COOKIE['MaterialID '])) {

return NO_MATERIAL;

}

// Definition of the $ret array

$ret = array();

$ret['filename '] = 'material.tpl';

$ret['data'] = array();

// P A R T 1 - END

// P A R T 2 - BEGIN

$sql = 'SELECT

material.ID ,

material.name ,

User.Username AS Owner ,

material.date ,

material.description

FROM

material

JOIN

User

ON

material.owner = User.ID

WHERE

material.owner = ?

ORDER BY

5 SOFTWARE ENGINEERING DETAILS 59

material.date DESC';

if (!$stmt = $db ->prepare($sql)) {

return $db ->error;

}

$stmt ->bind_param('i', $UserID);

if (!$stmt ->execute ()) {

return $stmt ->error;

}

$stmt ->bind_result($ID , $name , $owner , $date , $description);

$neu = array();

while ($stmt ->fetch ()) {

$materials [] = array('ID' => $ID ,

'name' => $name ,

'owner' => $owner ,

'date' => $date ,

'description ' => $description);

}

$stmt ->close();

// P A R T 2 - END

// P A R T 3 - BEGIN

$ret['data']['materials '] = $materials;

return $ret;

// P A R T 3 - BEGIN

?>

The PHP �le above shows the standard structure and contains an example SQL

query. In this case the di�erent materials of the user are evaluated and then saved

into an array. At the beginning of the �rst part if-clauses check if the user is logged

in and if a material is selected. The material selection check is not included in every

single �le as it is only required in further work with a speci�c material. If one of

these errors occurs, an error message will be returned (and saved in the $ret variable

of the "index.php" �le).

After positive passing of these checks the $ret array is initialized by including a

data array ($ret['data'] = array()) and information about the needed template �le

($ret['�lename'] = 'material.tpl')

The second part consist of the di�erent routines, which are needed in each section.

The $sql is a string with the material query, in SQL language. By looking at the

5 SOFTWARE ENGINEERING DETAILS 60

query the concept of the above mentioned "Prepared Statements" can be understood

easily.

$sql = 'SELECT

material.ID ,

material.name ,

User.Username AS Owner ,

material.date ,

material.description

FROM

material

JOIN

User

ON

material.owner = User.ID

WHERE

material.owner = ?

ORDER BY

material.date DESC';

The "?" is a space holder for a variable, in this case the information about the

material owner. The insertion is done by:

$stmt ->bind_param('i', $UserID);

This gives exact information about where it is inserted and what - i for an integer

and $UserID for the user information. So SQL injections, where "hackers" try to

harm the system by changing the SQL command, are not possible.

After that the result is prepared - �rst the error evaluation - and then executed. A

while-loop saves the information from the SQL database to the $materials array.

The third and last part of the php �le copies the $materials array to the $ret ar-

ray, which will be "returned" to the "index.php" �le and there "forwarded" to the

corresponding template �le.

The Template File After evaluating the needed information the template �le

is loaded to represent the information. Following commands are taken from the

"index.php" �le:

if (file_exists($file = 'templates/'.$ret['filename '])) {

$data = $ret['data']; // save the array data in variable

$data

// which can be used in the template.

include $file;

5 SOFTWARE ENGINEERING DETAILS 61

After several error checks the template is loaded into the $�le variable and the data

of the $ret array are saved into $data. The $data variable then can be used in the

template �le. Below a standard template �le can be seen. After that the template

�le is included with the $�le variable.

<div class="title">Material Information </div >

<table align="center" border="0" cellspacing="1" cellpadding="3"

bgcolor="#cccccc">

<tbody >

<tr >

<td bgcolor="#cccccc" class="normal" background="img/bg.gif

">activate material </td >

</tr >

<?php

foreach ($data['materials '] as $material) {

echo "<tr >";

echo ' <td bgcolor ="# ffffff" class ="

normal">';

echo $material['name'];

echo '</td >';

echo " </tr >";

}

?>

</tbody >

</table >

The template �le mainly consists of HTML code for the optical representation. In

this case the evaluated materials from the previous PHP �le are shown in a table.

A foreach loop loads the data which is saved in the $data['materials'] array.

INFORMATION PROCESSING: data saved in $ret['data'] in php �le →
$data in template �le

5.4 Pages and their Functions

This section provides information about the di�erent pages and their purpose (func-

tions). As mentioned, because of their importance the "Login"- and "Classi�cation"

functions will be described in detail.

5 SOFTWARE ENGINEERING DETAILS 62

5.4.1 Basis

The di�erent functions can be loaded through the menu page (Figure 29) and the

menu bar (Figure 30). The menu template is, as explained in Section .., loaded

if no other template is requested by the user or can be reached by clicking on the

"Main Menu" button on Figure 29 and Figure 30. In contrast to the menu page, the

menu bar is part of the "body.tpl" template �le, which means it is always loaded

and available. By using the links of these menu options the requested section will

be loaded. If no user is logged in, the "index.php" �le will automatically load the

"Login" page.

Figure 29: The "Menu" Page

Both, the menu and sidebar, change according to the user interface (admin, seller,

buyer) and can be extended easily.

5.4.2 The "Log on" and "Log out" Procedures

The "Login" Check Before any function of the system can be used, the user has

to be logged in. This is done by a check in the "index.php" �le, compare PART 2

in Section 5.1:

if (! getUserID($db)) {

$ret = include 'includes/'.$content['login '];

5 SOFTWARE ENGINEERING DETAILS 63

Figure 30: "inc" folder

The getUserID() function checks if a user exists and returns the ID of the User when

the query was positive and boolean "FALSE" when no user is logged in.

function getUserID($db) {

// P A R T 1 - BEGIN

if (! is_object($db)) {

return false;

}

if (!($db instanceof MySQLi)) {

return false;

}

if (!isset($_COOKIE['UserID '], $_COOKIE['Password '])) {

return false;

}

// P A R T 1 - END

// P A R T 2 - BEGIN

$sql = 'SELECT

ID

FROM

User

5 SOFTWARE ENGINEERING DETAILS 64

WHERE

ID = ? AND

Password = ?';

$stmt = $db ->prepare($sql);

if (!$stmt) {

return $db ->error;

}

$stmt ->bind_param('is', $_COOKIE['UserID '], $_COOKIE['Password '

]);

if (!$stmt ->execute ()) {

$str = $stmt ->error;

$stmt ->close();

return $str;

}

$stmt ->bind_result($UserID);

if (!$stmt ->fetch()) {

$stmt ->close();

return false;

}

$stmt ->close();

return $UserID;

// P A R T 2 - END

}

The �rst part checks the database connection and if the user is already logged in.

The COOKIE['UserID'] and COOKIE['Password'] variable should contain the ID

and password of the user, if he logged in before - it is set in the "Login" function.

The second part requests the user data from the database and therefore checks,

if the set user really exists. If everything is OK the return value will be $UserID

variable otherwise boolean FALSE statement.

The "Login" Page If the result is "FALSE" the "Login" page will be loaded.

The php �le of the "Login" page is listed below.

// P A R T 1 - BEGIN

if (getUserID($db)) {

return 'You are already logged in.';

}

$ret = array();

$ret['filename '] = 'login.tpl';

$ret['data'] = array();

5 SOFTWARE ENGINEERING DETAILS 65

// P A R T 1 - END

// P A R T 2 - BEGIN

if ('POST' == $_SERVER['REQUEST_METHOD ']) {

if (!isset($_POST['username '], $_POST['password '], $_POST['

formaction '])) {

return INVALID_FORM;

}

if (('' == $Username = trim($_POST['username '])) OR

('' == $Password = trim($_POST['password ']))) {

return EMPTY_FORM;

}

$sql = 'SELECT

ID

FROM

User

WHERE

Username = ?';

$stmt = $db ->prepare($sql);

if (!$stmt) {

return $db ->error;

}

$stmt ->bind_param('s', $Username);

if (!$stmt ->execute ()) {

return $stmt ->error;

}

$stmt ->bind_result($UserID);

if (!$stmt ->fetch()) {

return 'no user with this name found!';

}

$stmt ->close();

$sql = 'SELECT

Password

FROM

User

WHERE

ID = ? AND

Password = ?';

$stmt = $db ->prepare($sql);

if (!$stmt) {

return $db ->error;

}

$Hash = md5(md5($UserID).$Password);

$stmt ->bind_param('is', $UserID , $Hash);

if (!$stmt ->execute ()) {

5 SOFTWARE ENGINEERING DETAILS 66

return $stmt ->error;

}

$stmt ->bind_result($Hash);

if (!$stmt ->fetch()) {

return 'password is not ok!';

}

$stmt ->close();

// P A R T 2 - END

// P A R T 3 - BEGIN

setcookie('UserID ', $UserID , strtotime("+1 month"));

setcookie('Password ', $Hash , strtotime("+1 month"));

setcookie('Username ', $Username , strtotime("+1 month"));

$_COOKIE['UserID '] = $UserID; // fake -cookie

$_COOKIE['Password '] = $Hash; // fake -cookie

$_COOKIE['Username '] = $Username; // fake -cookie

return showInfo('you are logged in!', $db);

}

return $ret;

// P A R T 3 - END

The �rst part consists of a login check - in this case an error occurs if the user

is already logged in; loading the "Login" page would not make sense - and of the

standard array de�nitions, which can be found in every php �le, see Section 5.3.

In the second part, several if-clauses check if

• the user �lled the forms of the "Login" template page completely (username

and password).

• a user with that name exists.

• the written password is correct.

If some of those checks are not ok, an error occurs and the procedure ends by

returning the error message in the $ret variable.

In the last part the before-mentioned cookies are set ($_COOKIE['UserID'],

$_COOKIE['Password'] and $_COOKIE['Username']) with a time validity of 1

month. Because of the fact that a cookie is saved on the clients computer, which

means that it has to be at �rst sent and then can be recalled, a fake-cookie is set.

Therefore the cookies can be used immediately without waiting for the save and

5 SOFTWARE ENGINEERING DETAILS 67

request procedure, which usually waits until the user requests another page.

The optical representation of the template �le of the "Login" section consists of an

input form, see Figure 31.

Figure 31: The "Login" Template

The code of the template �le contains exclusively HTML commands to represent

the table "input form" on Figure 31.

The "Logout" Procedure To end the connection with the classi�cation platform

the user has to log out, which means that the system itself somehow has to recognize

if the user is still working or not. This is done by the cookies, which were set during

the login procedure. So, to perform the logout, the cookies have to be unset.

// P A R T 1 - BEGIN

if (! getUserID($db)) {

return NOT_LOGGED_IN;

}

$ret = array();

$ret['filename '] = 'logout.tpl';

$ret['data'] = array();

// P A R T 1 - END

// P A R T 2 - BEGIN

if ('POST' == $_SERVER['REQUEST_METHOD ']) {

if (!isset($_POST['formaction '])) {

return INVALID_FORM;

}

setcookie('UserID ', '', strtotime('-1 day'));

setcookie('Password ', '', strtotime('-1 day'));

setcookie('Username ', '', strtotime('-1 day'));

setcookie('MaterialID ', '', strtotime('-1 day'));

unset($_COOKIE['UserID ']);

5 SOFTWARE ENGINEERING DETAILS 68

unset($_COOKIE['Password ']);

unset($_COOKIE['Username ']);

unset($_COOKIE['MaterialID ']);

return showInfo('you are logged out!', $db);

}

return $ret;

// P A R T 2 - END

Part one of the PHP �le contains a login check and the standard $ret de�nitions.

After that, an if-clause ensures that the form of the corresponding template �le has

been used. Finally the cookies are unset by setting a negative time period and unset

the current, by the system used, variables.

The "logout.tpl" �le only consists of a simple button to initiate the unset procedure

of the PHP �le.

These registration conditions ("Log on" and "Log out") act as the basic security

functions and are part of all interfaces.

5.4.3 The "Classi�cation"

This section provides a detailed description of the classi�cation system and how

it works. The basic procedure can be reviewed in Section 3. The classi�cation is

divided into an "Input" and "Ouput" part; see Figure 32. All the selection options

are di�erent pages and therefore consist of the template and PHP �les.

Figure 32: Main Menu - Input / Output Categories

5 SOFTWARE ENGINEERING DETAILS 69

To describe the programmed routine only one speci�c input and output option is

chosen, as the principle itself stays unchanged.

The input part is divided into following pages, which are needed to specify all input

parameters:

• Muck Material - de�nition of material name and description

• Technical Parameters - input for technical parameters, e.g. elastic modulus,

wear resistance, compressive strength ...

• Chemical Parameters - chemical composition of the eluate and solid part of

the muck material

• Mineralogical Parameters - mineralogical composition

The exact input, which can be found on each page, can be taken from Section ...

The reuse is divided into end products and intermediate products (Figure 32). End

products are those raw materials with high amounts of special components - the last

part of the raw material value chain. These products are usually already processed

and therefore adjusted to the requirements of the industry. Intermediate products,

however, are those products that can be found in the middle part of the value

chain and have a wide range of use. In contrast to end products their classi�cation

criteria are not industry speci�c, they are named after the main component of the

raw material, e.g. a limestone, which can be used in di�erent industrial �elds.

Each output part mainly distinguishes between single output options and the sum-

mary output ("Output Summary"). The latter part represents an abridged version

of the other output options with less information provided. It sends a list with the

name of the output criteria and a "usable"/"not usable" statement (Figure 33).

Figure 33: Summary of Output Criteria

5 SOFTWARE ENGINEERING DETAILS 70

By using a speci�c output criteria the actual values of the input parameters and

their output limits can be evaluated (Figure 34).

Figure 34: Output Cement Industry

Figure 32 shows "Cement Industry" as speci�c output with detailed information on

the raw material, whereas Figure 33 shows the output summary.

The Input As an example for the input of the classi�cation, the "Mineralogical

Parameters" secion was chosen, see Figure ...

First already saved parameters have to be requested from the SQL database and then

returned with the $ret variable to use it in the template �le for visual presentation:

// P A R T 1 - BEGIN

if (! $UserID = getUserID($db)) {

return NOT_LOGGED_IN;

}

if(! isset($_COOKIE['MaterialID '])){

return NO_MATERIAL;

}

$ret = array();

$ret['filename '] = 'mineralogical_parameters.tpl';

$ret['data'] = array();

// P A R T 1 - END

// P A R T 2 - BEGIN

include('inc/input_parameters.php');

$ret['data']['mp']= $mineralogical_parameters;

5 SOFTWARE ENGINEERING DETAILS 71

// P A R T 2 - END

// P A R T 3 - BEGIN

//get data from mysql database

foreach ($ret['data']['mp'] as $key => $mp) {

$sql = 'SELECT

minpar.'.$mp['sql'].'

FROM

minpar

WHERE

material_id = ?';

$stmt = $db ->prepare($sql);

if (!$stmt) {

return $db ->error;

}

$stmt ->bind_param('i', $_COOKIE['MaterialID ']);

if (!$stmt ->execute ()) {

return $stmt ->error;

}

$stmt ->bind_result($erg);

$stmt ->fetch();

$stmt ->close();

$ret['data']['mp'][$key]['value '] = $erg;

}

// P A R T 3 - END

Part 1 contains the usual checks and array initialization with speci�cation of the tem-

plate �le. In Part 2, the input parameters are loaded with the $input_parameters

array. They are loaded from "input_parameters.php", which is saved in the "inc"

folder; see Section 5.1. To get an idea about the array, which is saved in $ret['data']['mp'],

following code shows an excerpt of $input_parameters:

$mineralogical_parameters = array(

'mica' => array(

'name' => 'Mica',

'unit' => 'M-%',

'sql' => 'mica'

),

'mica_type ' => array(

'name' => 'type of mica',

'unit' => 'M-%',

'sql' => 'mica_type '

5 SOFTWARE ENGINEERING DETAILS 72

),

'kaolinite ' => array(

'name' => 'Kaolinite ',

'unit' => 'M-%',

'sql' => 'kaolinite '

),

'sericite_illite ' => array(

'name' => 'Sericite Illite ',

'unit' => 'M-%',

'sql' => 'sericite_illite '

),

...

'other' => array(

'name' => 'Other',

'unit' => 'M-%',

'sql' => 'rest'

)

);

Each element of the $input_parameters array is an array itself and consists of the

name of the input parameters (which are shown in the template), its unit (also

shown in the template) and its name in the MySQL database (index "sql" in the

array), which is needed for saving the user input.

Part 3 requests the data from the "minpar" table of the MySQL database by using

the 'sql' index with $mp['sql']. This is done for each mineral parameter in the

array and the requested value (the saved mineral parameter) is then added to the

$ret array with $ret['data']['mp'][$key]['value'] = $erg as the last command of part 3.

$erg contains the value of the mineral parameters and $key is the mineral parameter

itself, e.g. "kaolinite".

Because of the fact that the $ret array is returned and then "forwarded" to the

template �le (standard procedure for php-template �les as explained in Section

..) with $data=$ret['data'], all the requested values can easily be recalled with

$data['mp']['MINERAL']['value'] in the template �le (MINERAL is a space holder

for one of the mineral nominations of the $input_parameters array, e.g. "kaolinite").

5 SOFTWARE ENGINEERING DETAILS 73

Figure 35: Template - Mineralogical Parameters

Figure 35 shows the upper part of the representation of the mineralogical parameters

template �le.

The actual code behind is listed below:

<div class="title">Mineralogical Parameters </div >

<form method="POST" action="index.php?section=

mineralogical_parameters">

<table align="center" border="0" cellspacing="1" cellpadding="3"

bgcolor="#cccccc">

<tbody >

<tr >

<td colspan="3" bgcolor="#cccccc" class="normal" background

="img/bg.gif">parameter list </td >

</tr >

<?php

// IMPORTANT - B E G I N

foreach ($data['mp'] as $mp) {

echo '<tr >';

echo ' <td bgcolor ="# ffffff" class=" normal">'.$mp['name'].

'</td >';

echo ' <td bgcolor ="# ffffff" class=" normal">'.$mp['unit'].

'</td >';

echo ' <td bgcolor ="# ffffff"><input type="text" name="mp['

.$mp['sql'].']" class ="text" value="'.htmlspecialchars(

$mp['value ']).'"></td>';

echo '</tr >';

}

// IMPORTANT - E N D

?>

<tr >

<td colspan="3" bgcolor="#ffffff" align="center"><input

5 SOFTWARE ENGINEERING DETAILS 74

type="submit" name="formaction" value="save

mineralogical parameters" class="button"></td>

</tr >

</tbody ></table >

</form >

As usual, most of the template �le consist of standard HTML code, except the

marked part, which "builds" the table of mineralogical input parameters (Figure ..)

with a foreach loop in PHP. The $data array, as already mentioned, consist of the

information of the PHP �le ($ret['data']).

The

$data['mp'] as $mp

part of the foreach loop takes all mineralogical parameters, e.g. "kaolinite", suc-

cessively, which means that $mp now represents every single mineral (instead of

$data['mp']['MINERAL'], with MINERAL as space holder).

The values are plotted as input �elds to make user input possible. For each mineral

parameter the input is then saved as $mp[$mp['sql']], where $mp['sql'] represents

the MySQL name of the mineral, again e.g. "kaolinite". By pressing the "save

mineralogical parameters" button (Figure 36) the PHP �le is again executed, but

with additional information because of the button-action.

Figure 36: Template - Save Mineralogical Parameters

Input given through a form is always saved under the given name but in another

array, the $_POST array. This means, the given input can be recalled in the php

�le with $_POST['mp'] - the index 'mp' because of the $mp declaration before.

$mp[$mp['sql']] then becomes $_POST['mp'][$mp['sql']], which can be seen in the

second part of the php �le:

foreach ($ret['data']['mp'] as $mp) {

$sql = 'UPDATE

minpar

SET

5 SOFTWARE ENGINEERING DETAILS 75

minpar.'.$mp['sql'].' = ?

WHERE

material_id = ?';

$stmt = $db ->prepare($sql);

if (!$stmt) {

return $db ->error;

}

$stmt ->bind_param('di', $_POST['mp'][$mp['sql']], $_COOKIE['

MaterialID ']);

if (!$stmt ->execute ()) {

return $stmt ->error;

}

}

return showInfo('the material was saved.', $db);

The foreach loop does exactly what was described before: it uses the mineral MySQL

nomination to save the given user input ($_POST['mp'][$mp['sql']]) successively -

each pass of the loop updates one parameter with a SQL query saved in $sql. After

the execute command the loop starts again until the last parameter is updated.

The principle of this input applies for all user inputs, whether other parameters, the

user pro�les or similar objects are changed/updated.

The Output - Classi�cation As mentioned before the output mainly di�eren-

tiates between the "Output Summary" and the regular speci�c output, i.e. "Car-

bonates" or "Cement Industry" (Figure ..).

To perform the classi�cation two functions were written, which are saved in the "inc"

folder within the "functions.php" �le. The get_classi�cation() function is needed

for the speci�c output:

function get_classification($db , $output_parameters , $name) {

// PART 1 - B E G I N

include('inc/input_parameters.php');

$data['name']=$name;

$data['output ']= $output_parameters;

$data['useable ']=TRUE;

foreach ($data['output '] as $key => $op) {

if(searchForId($op['sql'], $chemical_parameters_compound))

$data['output '][$key]['database ']='chempar ';

5 SOFTWARE ENGINEERING DETAILS 76

else if(searchForId($op['sql'], $chemical_parameters_other)

)

$data['output '][$key]['database ']='chempar ';

else if(searchForId($op['sql'],

$chemical_parameters_solids_anorganic))

$data['output '][$key]['database ']='chempar_solid ';

else if(searchForId($op['sql'],

$chemical_parameters_solids_organic))

$data['output '][$key]['database ']='chempar_solid ';

// PART 1 - E N D

// PART 2 - B E G I N

$sql = 'SELECT

'.$data['output '][$key]['database '].'.'.$op['sql'].

'

FROM

'.$data['output '][$key]['database '].'

WHERE

material_id = ?';

$stmt = $db ->prepare($sql);

if (!$stmt) {

return $db ->error;

}

$stmt ->bind_param('i', $_COOKIE['MaterialID ']);

if (!$stmt ->execute ()) {

return $stmt ->error;

}

$stmt ->bind_result($erg);

$stmt ->fetch();

$stmt ->close();

$data['output '][$key]['value'] = $erg;

if(($data['output '][$key]['value '] <= $data['output '][$key

]['ul']) AND

($data['output '][$key]['value'] >= $data['output '][$key

]['ll']))

$data['output '][$key]['classification ']=TRUE;

else {

$data['output '][$key]['classification ']=FALSE;

$data['useable ']= FALSE;

}

}

5 SOFTWARE ENGINEERING DETAILS 77

return $data;

}

// PART 2 - E N D

The function needs three parameters to be executed:

• $db - the database connection for the SQL query

• $output_parameters - an array with all the limits for a speci�c output

• $name - the name of the ouput parameter which has to be tested

Similar to the input parameters the speci�c output parameters can be found in the

output_parameters.php �le. A typical array of this �le can be seen below.

$clay_cement = array(

'sio2' => array(

'name' => 'SiO <sub >2</sub >',

'sql' => 'sio2',

'ul' => 6,

'll' => 2

),

'al2o3' => array(

'name' => 'Al <sub >2</sub >O<sub >3</sub >',

'sql' => 'al2o3',

'ul' => 55,

'll' => 45

),

...

'cao' => array(

'name' => 'CaO',

'sql' => 'cao',

'ul' => 3,

'll' => 0.5

)

);

Again, it is an array consisting of an array with the input parameters, e.g. 'sio2',

their limits and their database name. This information is then used in the classi�-

cation function.

Part 1 of the get_classi�cation() function loads all the prequisities, that are needed

for the classi�cation. It mainly consists of a "search" part, where the routine �nds

5 SOFTWARE ENGINEERING DETAILS 78

the SQL table in which the speci�c parameters can be found - chempar, minpar and

so on - this is why the input_parameters.php �le is included. The searchForId()

function returns the boolean value TRUE or FALSE, whether the parameter was

found in an array or not. The table information is then saved to each parameter

next to their limits - the array now consists of the name, limits, sql nomination and

table information and is called $data['output'].

The foreach loop of the second part takes each output parameter (called $op) and

loads the homonymous user input parameters to $data['output'][$key]['value'], where

$key is the name of input / output parameters.

After that an if-clause controls the limits and saves TRUE or FALSE to $data['output']

[$key]['classi�cation'], whether it is in between the limits or not - for each output

parameter. So the following information is obtained for every single parameters (and

saved in the array):

• name of the output parameters

• the limits

• the SQL name

• the name of the table

• if it is in between the limits or not

As addition $data['useable'] is initiated, which is needed for the "Output Summary".

It is FALSE if ONE of the parameters is not in the limits!

The information in the $data array then will be returned to the php �le, where it

was executed.

As an example for a speci�c output the PHP �le for "Cement Industry" (cement.php)

is chosen, which contains, next to the standard de�nitions:

...

include('inc/output_parameters.php');

//Clay Cement

$classification=get_classification($db , $clay_cement , 'Clay

Cement ');

$ret['data']['cc']= $classification;

...

5 SOFTWARE ENGINEERING DETAILS 79

// Gypsum Anhydrite

$classification=get_classification($db , $gypsum_anhydrite , '

Gypsum Anhydrite ');

$ret['data']['ga']= $classification;

return $ret;

The result of the get_classi�cation() function is saved to $classi�cation and then in

$ret['data']. In this �le more special ouput criteria are listed, e.g. "Clay Cement"

and "Gypsum Anhydrite", both saved in the same array, which is then returned and

used in the template �le for optical representation.

INFORMATION PROCESSING: $data in the get_classi�cation() function

→ $classi�cation and then $ret['data'] in the cement php �le → $data in the

cement template �le

Figure 34 shows the template �le. As one can see, the information, which was eval-

uated in the get_classi�cation(), is listed in table form.

The "Output Summary" page used the another function to obtain a less detailed

list of all possible options; see Figure 33.

function fast_classification($db , $output_parameters , $product) {

// PART 1 - B E G I N

if ($product == 'end') include('inc/output_parameters.php');

else if($product == 'intermediate ') include('inc/

output_parameters_intermediate.php');

$data['output ']= $output_parameters;

// PART 1 - E N D

// PART 2 - B E G I N

foreach ($data['output '] as $key => $output) {

//eval('return '. $output['array '] . ';');

$data['output '][$key]['useable ']=FALSE;

$result=get_classification($db , eval('return '. $output['

array '] . ';'), $output['name']);

if($result['useable ']) $data['output '][$key]['useable ']=

TRUE;

5 SOFTWARE ENGINEERING DETAILS 80

}

return $data;

}

// PART 2 - E N D

Similar to the get_classi�cation() function fast_classi�cation() uses three argu-

ments:

• $db - the database connection for the SQL query

• $output_parameters - an array - di�erent to get_classi�cation() - with infor-

mation about all the speci�c output criteria

• $product - for distinction between an output summary for "Intermediate" or

"End Products"

The �rst part loads the special output parameter for either intermediate or end

products, depending on how the function was executed - with $product. Then the

basic $output_parameters array, which is equivalent to $fast_classi�cation in the

output_parameters.php �le, is saved into $data['output']:

$fast_classification= array(

...

'clay_cement ' => array(

'name' => 'Clay Cement ',

'category ' => 'Cement Industry ',

'array' => '$clay_cement '

),

...

'magnesite ' => array(

'name' => 'Magnesite ',

'category ' => 'Paper Industry ',

'array' => '$magnesite '

)

);

$fast_classi�cation is an array including information about each special output cri-

terion (name, category and how it is called in the output_parameters.php �le).

In the second part a foreach loop uses this information and "feeds" the get_classi�cation()

5 SOFTWARE ENGINEERING DETAILS 81

function to evaluate if each special output, e.g. "Clay Cement" is usable or not. But

- instead of saving all detailed information in the $data array, which will be then

returned - it only saves TRUE or FALSE in a new array �eld. After that the

$data array array includes following information of each special output (e.g. "Clay

Cement"):

• name of the output parameters, e.g. "Clay Cement"

• the category, e.g. "Cement Industry"

• the name of the array in the output_parameters.php �le

• if it is usable or not

The php �le of the "Output Summary" page then just uses few commands:

...

include('inc/output_parameters.php');

//Fast Classification

$classification=fast_classification($db , $fast_classification ,

'end');

$ret['data']= $classification;

return $ret;

The fast_classi�cation() function is called by "giving" the $fast_classi�cation array

from the output_parameters.php �le. The result is then saved to $ret['data'], which

then can be used in the template �le.

The optical representation of the template �le (Figure 33) uses the information saved

in the given array and presents the information in a table.

6 EXAMPLE CLASSIFICATION 82

6 Example Classi�cation

Di�erent raw material based on real excavation material of a current tunneling

project, the "Bossler Filder" tunnel in Baden-Württemberg, Germany, is taken.

Its chemical properties are analyzed and entered in the muck classi�cation system.

Three di�erent groups of raw material are distinguished by a geologist before further

tests are done:

• limestone

• sandstone

• claystone/claymarl

In respect of this partition �ve di�erent raw material analyzes were carried out: two

limestone, three sandstone and one claystone/claymarl test objects. Tables 12, 13

and 14 show their chemical composition.

The materials are referenced in the muck classi�cation system as:

• Limestone_1 and Limestone_2

• Sandstone_1 to Sandstone_3

• Claymarl_1

Their description includes the given short reference, i.e. "7058-1 SST-F" for Sand-

stone_1, and their analysis data; compare Table 12 to 14. In this example, the

"Chemical Parameters" section of the system is edited, because the material was

only subjected to a chemical analysis.

The classi�cation considers all use criteria, which are stated in Section 2.1.2. One of

the stated tunnel excavation material immediately �ts to one reuse scenarios. The

raw material "Limestone_1" is useable as Limestone regarding the stated limits;

compare the Output Summary on Figure 37.

To see the details of the evaluation and the exact limits of the material, the "Car-

bonates" category is used; compare Figure 38.

Therefore, a simple analysis for the other tunnel excavation materials, why it is

not considered for a special use criteria, can be accomplished using the detailed

output. With information about the problematic values (comparing limits to the

actual values) various processing methods can be considered.

6 EXAMPLE CLASSIFICATION 83

Chemical Limestone 1 Limestone 2

Composition 7056-1 KST-H 7057-1 KST-D

g/100g g/100g

Na2O <0.01 <0.01

MgO 1,71 0,79

Al2O3 0,84 0,71

SiO2 4,25 3,27

P2O5 0,04 0,03

SO3 0,08 0,16

K2O 0,33 0,28

CaO 50,88 51,25

TiO2 0,04 0,03

Cr2O3 <0.01 <0.01

MnO 0,04 0,03

Fe2O3 0,34 0,27

LOI 41,56 41,85

sum 99,13 98,67

mg/kg mg/kg

Sc <10 <10

V 13 <10

Cr 11 <10

Co <10 <10

Ni <10 <10

Cu 20 29

Zn <10 <10

Ga <10 <10

Rb 12 15

Sr 117 129

Y <10 <10

Zr 13 <10

Nb <10 <10

Ba 29 16

La 11 10

Ce 11 <10

Pb <10 <10

Th <10 10

Table 12: Chemical Composition of tested Limestone

6 EXAMPLE CLASSIFICATION 84

Chemical Sandstone 1 Sandstone 2 Sandstone 3

Composition 7058-1 SST-F 7061-1 SST-B 7060-1 ALPHA-H

g/100g g/100g g/100g

Na2O 0,6 1,39 <0.01

MgO 4,33 8,11 0,1

Al2O3 14,49 12,82 2,71

SiO2 50,61 46,75 88,98

P2O5 0,059 0,063 0,023

SO3 0,12 0,08 0,02

K2O 3,55 2,92 0,21

CaO 4,34 11,78 0,08

TiO2 0,36 0,17 0,41

Cr2O3 <0.01 <0.01 <0.01

MnO 0,07 0,13 0,03

Fe2O3 1,53 1,03 3,3

LOI 19,78 14,88 3,63

sum 99,84 100,12 99,49

mg/kg mg/kg mg/kg

Sc <10 <10 <10

V 64 49 78

Cr 40 20 43

Co <10 <10 <10

Ni 13 <10 <10

Cu 44 102 32

Zn 57 54 23

Ga 13 <10 <10

Rb 122 98 <10

Sr 223 212 83

Y 16 18 20

Zr 256 174 337

Nb <10 <10 <10

Ba 2040 967 517

La 34 24 18

Ce 27 54 62

Pb 22 21 <10

Th <10 <10 <10

Table 13: Chemical Composition of tested Sandstone

6 EXAMPLE CLASSIFICATION 85

Chemical Sandstone 1

Composition 7058-1 SST-F

g/100g

Na2O 0,06

MgO 0,87

Al2O3 20,03

SiO2 60,95

P2O5 0,076

SO3 0,29

K2O 2,54

CaO 0,69

TiO2 1,57

Cr2O3 0,026

MnO 0,01

Fe2O3 2,79

LOI 9,82

sum 99,72

mg/kg

Sc 11

V 307

Cr 177

Co 14

Ni 29

Cu 53

Zn 32

Ga 24

Rb 111

Sr 212

Y 37

Zr 695

Nb 31

Ba 275

La 63

Ce 146

Pb 19

Th 12

Table 14: Chemical Composition of tested Clay/Marl

6 EXAMPLE CLASSIFICATION 86

Figure 37: Interface - Output Summary Limestone_1

Figure 38: Interface - Detail Limestone_1

7 SUMMARY AND OUTLOOK 87

7 Summary and Outlook

The implementation of a classi�cation system as a platform independent solution for

reuse of tunnel excavation material satis�es stated requirements: the simple access

provided by a regular browser, the programmed PHP routines and the MySQL data

storage give the user a straightforward and simple system to �nd di�erent �elds of

reuse, without thinking about all the possible background process.

In addition, the system provides the user with a material management system, which

can be saved and edited all the time. Following basic routines can be performed by

the user:

• basic material management (add/edit/delete raw materials)

• advanced material management (add/edit/delete chemical/mineralogical/tech-

nical properties of materials)

• logging of actions (interactions with the system)

• user pro�le management

The administration of the registered clients (users) is done by an own interface,

which consists of following tasks:

• user management (add/edit/delete raw materials)

• right management (specify user level for registered users - deny/grant access)

• user support with a log system

• restricted material management

An useful extension to "�nish" and round o� the system would be a third interface

- a possibility for clients to seek and �nd raw materials. A simple search engine,

which then establishes a contact between "sellers" and "buyers", would �ll this gap.

The user could sent material requests to the system and receive information as soon

as it is available according to his own conditions (distance, content, ...).

The currently available functions show that an extension to an online analysis of tun-

nel excavation material is useful and easy to implement. An on-site analysis would

make the material immediately available, without time delays caused by manual

input. As a result reuse scenarios could be evaluated and followed as soon as the

material is excavated and analyzed by measuring devices. The real challenge in this

case is the development of such a measuring system, as it is not available yet.

7 SUMMARY AND OUTLOOK 88

Another important point of discussion is the accuracy of such a classi�cation sys-

tem.63 The simple handling prevents the consideration of unpredictable �uctuations

concerning the properties of the material. All the entered properties are absolute

values which result in a deterministic evaluation. Interesting improvements would

include the implementation of probabilities of di�erent descriptive characteristics.

The system then shows the user the possible reuse together with a simple distribu-

tion curve.

Such an extension reduces its main advantage - the simple usability - and increases

the costs for the evaluation of material properties signi�cantly. Instead of distri-

bution functions for every parameter the selection should be limited to the most

important deciding factors and its extreme deviations.

In what extent an increase of accuracy justi�es the reduction of operability should

be matched to the demand and wishes of the user.

Future developments will show the acceptance of such a classi�cation system. Changes

concerning the law of �waste material� as main topic could be game-changing. How-

ever, a wide range of possibilities and its convincing advantages promise an inter-

esting development in this area.

63Zarai, Uromeihy, and Sharifzadeh, �A new tunnel in�ow classi�cation (TIC) system through

sedimentary rock masses�.

REFERENCES 89

References

Ayaydin, Nejad. �Classi�cation of Excavation with Austrian Code B2203: Main as-

pects and experiences�. In: Elsevier: Tunneling and Underground Space Technology

(2012).

Date, C.J. An Introduction to Database Systems. Pearson, 2003.

DuBois, Paul. MySQL. Developers Library, 2013.

Entacher, M., D. Resch, and R. Galler. �Abfall oder Rohsto�? Rechtsgrundlagen für

die Wiederverwertung von Tunnelausbruchmaterial�. In: Elsevier (2012).

� �Recycling of tunnel spoil � laws a�ecting waste from mining and tunnelling�. In:

Wiley Geomechanik und Tunnelbau (2011).

Erben, Hartmut and Robert Galler. �Ressourcene�zienz im Tunnelbau � On-site

Analysemöglichkeiten für die Weiterverwertung von Tunnelausbruchmaterial�. In:

BHM: Berg- und Hüttenmännische Monatshefte (2013).

Freeman, Adam. Pro ASP.NET MVC 4. Apress, 2012.

Gabriel, Roland, Peter Gluchowski, and Alexander Pastwa. Datawarehouse und Data

Mining. W3l, 2009.

Gertsch, L. et al. �Use of TBM Muck as Construction Material�. In: Elsevier: Tun-

neling and Underground space Technology (2000).

Gunnar Thies, Stefan Reimers und. PHP 5.4 und MySQL 5.5. Galileo Computing,

2012.

Koller, Wolfgang.Die volkswirtschaftliche Bedeutung mineralischer Rohsto�e in Öster-

reich. Tech. rep. Industriewissenschaftliches Institut, 2007.

Leitenmüller, Horst. JSP - Java Server Pages. Website. Available online at http:

//www.ssw.uni-linz.ac.at/Teaching/Lectures/Sem/2000/Leitenmueller/;

visited on December 9th 2013. 2000.

Lieb, Rupert. �Materials management at the Gotthard Base Tunnel � experience

from 15 years of construction�. In: Wiley Geomechanics and Tunneling (2009).

MacDonald, Matthew. Beginning ASP.NET 4.5 in C#. Apress, 2012.

MacIntyre, Peter, Brian Danchilla, and Mladen Gogola. Pro PHP Programming.

Apress, 2011.

McArthur, Kevin. Pro PHP: Patterns, Frameworks, Testing and More. Apress, 2008.

Microsoft. ASP.NET Manual. Available online at http://asp.net/; visited on

December 9th 2013. 2013.

� SQL Server Manual. Website. Available online at http://msdn.microsoft.com/

en-us/library/bb545450.aspx/; visited on December 9th 2013.

Oracle Corporation. MySQL Manual. Available online at http :/ /mysql . com/;

visited on December 9th 2013. 2013.

http://www.ssw.uni-linz.ac.at/Teaching/Lectures/Sem/2000/Leitenmueller/
http://www.ssw.uni-linz.ac.at/Teaching/Lectures/Sem/2000/Leitenmueller/
http://asp.net/
http://msdn.microsoft.com/en-us/library/bb545450.aspx/
http://msdn.microsoft.com/en-us/library/bb545450.aspx/
http://mysql.com/

REFERENCES 90

Powers, David. PHP Object-Oriented Solutions. Springer, 2008.

Quakenet/#php.de Sta�. Quakenet/#php Tutorial. Website. Available online at

http://tut.php-quake.net/; visited on December 9th 2013.

Rauch, Roland and Thomas Beer. Netzwerke - Grundlagen. HERDT-Verlag für Bil-

dungsmedien, 2004.

Resch, Daniel. �Verwendung von Tunnelausbruchmaterial � Entscheidungsgrundla-

gen�. In: (2012).

Seiden, Alan. �10 Cool PHP Things You Can run on Your System�. In: System

iNEWS (2008).

smarty.net. Smarty Template Engine. Website. Available online at http://smarty.

net/; visited on December 9th 2013.

Sun Microsystems. JSP Manual. Available online at http://www.oracle.com/

technetwork/java/javaee/jsp/; visited on December 9th 2013. 2013.

Teuscher, Peter et al. �Alpenquerende Tunnel: Materialbewirtschaftung und Beton-

technologie beim Lötschberg-Basistunnel�. In: Wiley Beton- und Stahlbetonbau

(2006).

The PHP Group. PHP.NET Manual. Available online at http://php.net/; visited

on December 9th 2013. 2013.

The phpMyAdmin Project. phpMyAdmin Manual. Available online at http : / /

phpmyadmin.net/; visited on December 9th 2013. 2013.

Tokgooez, Nuray. �Use of TBM excavated materials as rock �lling material in an

abandoned quarry pit designed for water storage�. In: Elsevier: Engineering Ge-

ology (2011).

tutorialspoint.com. Client Server Model - Architecture. Website. Available online at

http://www.tutorialspoint.com/unix_sockets/client_server_model.htm;

visited on December 9th 2013.

tutsplus.com. PDO vs. MySQLi: Which Should You Use? Website. Available online

at http://net.tutsplus.com/tutorials /php/pdo- vs- mysqli- which-

should-you-use//; visited on December 9th 2013.

Wasserbacher, R. �Die volkswirtschaftliche Bedeutung mineralischer Rohsto�e in

Österreich�. In: Springer: BHM (2007).

Welling, Luke and Laura Thomson. PHP and MySQL. Developers Library, 2009.

Wikipedia. ASP.NET. Website. Available online at http://en.wikipedia.org/

wiki/Asp.net/; visited on December 9th 2013.

� Client�Server Model. Website. Available online at http://en.wikipedia.org/

wiki/Client_server_model/; visited on December 9th 2013.

� Database model. Website. Available online at http://en.wikipedia.org/wiki/

Database_models/; visited on December 9th 2013.

http://tut.php-quake.net/
http://smarty.net/
http://smarty.net/
http://www.oracle.com/technetwork/java/javaee/jsp/
http://www.oracle.com/technetwork/java/javaee/jsp/
http://php.net/
http://phpmyadmin.net/
http://phpmyadmin.net/
http://www.tutorialspoint.com/unix_sockets/client_server_model.htm
http://net.tutsplus.com/tutorials/php/pdo-vs-mysqli-which-should-you-use//
http://net.tutsplus.com/tutorials/php/pdo-vs-mysqli-which-should-you-use//
http://en.wikipedia.org/wiki/Asp.net/
http://en.wikipedia.org/wiki/Asp.net/
http://en.wikipedia.org/wiki/Client_server_model/
http://en.wikipedia.org/wiki/Client_server_model/
http://en.wikipedia.org/wiki/Database_models/
http://en.wikipedia.org/wiki/Database_models/

REFERENCES 91

Wikipedia. Java Servlet. Website. Available online at http:///en.wikipedia.org/

wiki/Java_Servlet/; visited on December 9th 2013.

� Model View Controller. Website. Available online at http://de.wikipedia.org/

wiki/Model_View_Controller/; visited on December 9th 2013.

� Model View Controller. Website. Available online at http://en.wikipedia.org/

wiki/Model_View_Controller/; visited on December 9th 2013.

� Oracle Database. Website. Available online at http://en.wikipedia.org/wiki/

Oracle_Database/; visited on December 9th 2013.

Zandstra, Matt. PHP Objects, Patterns and Practise. Apress, 2008.

Zarai, H.R., A. Uromeihy, and M. Sharifzadeh. �A new tunnel in�ow classi�cation

(TIC) system through sedimentary rock masses�. In: Elsevier (2012).

http:///en.wikipedia.org/wiki/Java_Servlet/
http:///en.wikipedia.org/wiki/Java_Servlet/
http://de.wikipedia.org/wiki/Model_View_Controller/
http://de.wikipedia.org/wiki/Model_View_Controller/
http://en.wikipedia.org/wiki/Model_View_Controller/
http://en.wikipedia.org/wiki/Model_View_Controller/
http://en.wikipedia.org/wiki/Oracle_Database/
http://en.wikipedia.org/wiki/Oracle_Database/

LIST OF FIGURES 92

List of Figures

1 Flowchart - Classi�cation . 18

2 Interface - Main Menu . 19

3 Interface - Add Material . 20

4 Interface - Activate Material . 20

5 Interface - Chemical Parameters . 21

6 Interface - Brickearth . 21

7 Interface - Login . 22

8 Interface - List Materials . 23

9 Interface - Main Menu Admin . 24

10 Interface - Add User Admin . 25

11 Model - View - Controller . 26

12 Model - View - Controller with User Interaction 27

13 Client-Server Model . 28

14 Server-Client-Script Interpreter Model 29

15 Script Language - Database Interaction 30

16 ASP.NET Page "Lifecycle" . 33

17 ASP.NET MVC . 33

18 JSP Lifecycle . 34

19 Hierarchical Model . 37

20 Network Model . 38

21 Relational Model . 38

22 Di�erent User - Database Interaction 43

23 Database structure . 45

24 Folder structure . 49

25 "inc" folder . 50

26 Template Structure . 54

27 index.php - Flow Chart . 55

28 SQL Database Structure . 56

29 The "Menu" Page . 62

30 "inc" folder . 63

31 The "Login" Template . 67

32 Main Menu - Input / Output Categories 68

33 Summary of Output Criteria . 69

34 Output Cement Industry . 70

35 Template - Mineralogical Parameters 73

36 Template - Save Mineralogical Parameters 74

37 Interface - Output Summary Limestone_1 86

LIST OF TABLES 93

38 Interface - Detail Limestone_1 . 86

List of Tables

1 Reuse Constraints . 6

2 Aggregate Requirements . 8

3 Arithmetic mean of the mass fractions of the grain size distribution

curves sorted by the maximum grain size for inner lining cement . . . 9

4 Arithmetic mean of the mass fractions of the grain size distribution

curves sorted by the maximum grain size for shotcrete 9

5 Reuse Scenarios for Intermediate Products 12

6 Reuse Scenarios for End Products . 13

7 Advantages and Disadvantages PHP 35

8 Advantages and Disadvantages ASP.NET 35

9 Advantages and Disadvantages JSP 36

10 MySQL, MySQLi and PDO - Comparison 41

11 Example User table . 44

12 Chemical Composition of tested Limestone 83

13 Chemical Composition of tested Sandstone 84

14 Chemical Composition of tested Clay/Marl 85

15 Requirements For Lime; Portland Cement Limits according to Ger-

man Standards . A-1

16 Chemical Requirements for Wall Bricks A-2

17 Mineralogical Requirements for Wall Bricks A-3

18 Chemical Requirements for Clay Cement A-3

19 Chemical Requirements for Nepheline-Syenite A-3

20 Chemical Requirements for Nature Cement A-4

21 Chemical Requirements for Portland Cement (Austria) A-4

22 Chemical Requirements for Gypsum and Anhydrite A-4

23 Chemical Requirements for Limestone in the Paper Industry A-5

24 Chemical Requirements for Magnesite in the Paper Industry A-5

25 Chemical Requirements for Bauxite as Slagformer A-6

26 Chemical Requirements for Olivine in the Steel Industry A-6

27 Chemical Requirements for Olivine in the Foundry Industry A-6

28 Chemical Requirements for Fluorite for metallurgical Grade Fluorite . A-7

29 Chemical Requirements for Limestone for metallurgy A-7

30 Chemical Requirements for Dolomite (uncalcined) for pig iron (direct

use) . A-7

LIST OF TABLES 94

31 Chemical Requirements for Dolomite (calcined) for refractory industryA-7

32 Chemical Requirements for Dolomite (calcined) for Steelproduction . A-8

33 Chemical Requirements for Magnesite (calcined) for Transformer-

steelcoating . A-8

34 Chemical Requirements for Magnesite (calcined) for Steelindustry . . A-9

A ANNEX A-1

A Annex

A.1 Tables for Material Requirements for Industrial Use

A.1.1 End Product

Lime Table 15 shows the requirements for lime related to di�erent applications

(steel industry, quicklime, portland cement and agriculture).

Chemical Steel Industry Quicklime Portland Agriculture

Composition Cement

CaCO3 >95% >97% >75% >90%

CaO >95.2% >53.2% >42% >50.4%

MgCO3 <10% <3% <6% advantage

MgO <5% <2% <3% advantage

SiO2 <1.5% - <15% -

Al2O3 <1% <0.9% <5% <1%

Fe2O3 <2% <0.9% <4% <1%

Na2O <0.5% - <1% <0.05%

K2O <0.5% - <1% <0.05%

SO3 <0.05% - <0.5% -

P2O5 <0.01% - <0.5% -

grain size 0-3, 0-8, 8-40, 10-160mm di�erent 97% < 3mm

20-63mm 70% < 1mm

Table 15: Requirements For Lime; Portland Cement Limits according to German

Standards

Brickearth The requirements for brick clay are set in dependence on the use:

• block brick (facing blocks)

• clay block

• paving bricks

• roo�ng tiles

• clay pipes

Table 16 and 17 show the chemical composition and the mineralogical composition

with their average values. This is only done for wall bricks, as they have the strictest

A ANNEX A-2

requirements and are most important for the building industry.

Chemical Composition Average Limits

SiO2 49.2 - 68%

Al2O3 10.2 - 19.4%

Fe2O3 2.7 - 8.0%

TiO2 0.3 - 1.7%

CaO 0.3 - 9.4%

MgO 0.5 - 2.9%

K2O 1.3 - 4.0%

Na2O 0.3 - 1.2%

CaCO3 0 - 18%

Corg 0.04 - 1%

total sulfur 0.04 - 0.56%

loss on ignition 4.2 - 9.1%

Table 16: Chemical Requirements for Wall Bricks

Because of the large amount of di�erent raw materials and the lower use the grouping

changes, as mentioned, from the mineral itself to the industrial use, i.e. cement

industry, glass industry or abrasives ...

Cement Industry The following basic raw materials are needed for cement pro-

duction:

• bauxite for clay cement

• nepheline-syenite for cement production

• limestone for "Natural" cement

• limestone for "Portland" cement

• magnesite (calcined) for �oor cement

• gypsum and anhydrite for set retarder in cement

Table 18 to 22 show the chemical requirements for the di�erent cement types.

Magnesite for �oor cements, only, need an amount of MgO between 75 and 87%.

Paper Industry The main raw materials used in the paper industry are talc,

limestone, dolomite, magnesite and baryte (as a �ller). No Limits were found for

dolomite; baryte, however, should have an amount of BaSO4 between 97 and 100%

A ANNEX A-3

Chemical Composition Average Limits

kaolinite 0 - 15%

sericite+illite 10 - 20%

smektite 0 - 5%

chlorite 0 - 5%

quarzite 30 - 55%

feldspar 0 - 13%

calcite 0 - 10%

dolomite ankerite <1%

goethite <1%

hematite <1%

siderite <1%

pyrite <1%

gypsum <1%

hornblende <1%

other 1-10%

Table 17: Mineralogical Requirements for Wall Bricks

Chemical Composition Average Limits

SiO2 2 - 6%

Al2O3 45 - 55%

Fe2O3 10 - 30%

TiO2 2.5 - 3%

CaO 0.5 - 3%

Table 18: Chemical Requirements for Clay Cement

Chemical Composition Average Limits

Al2O3 45 - 55%

MgO 0 - 1.5%

FeO 0.5 - 3%

Table 19: Chemical Requirements for Nepheline-Syenite

A ANNEX A-4

Chemical Composition Average Limits

SiO2 16 - 35%

Al2O3 2 - 20%

Fe2O3 1 - 8%

CaO 28 - 55%

MgO 3 - 32%

K2O 1 - 7%

Na2O 1 - 7%

SO3 0.5 - 3%

Table 20: Chemical Requirements for Nature Cement

Chemical Composition Average Limits

SiO2 0 - 15%

Al2O3 0 - 5%

Fe2O3 0 - 4%

CaO 42 - 100%

MgO 0 - 3%

K2O 0 - 1%

Na2O 0 - 1%

CaCO3 75 - 100%

MgCO3 0 - 6%

SO3 0 - 0.5%

P2O5 0 - 0.5%

Cl 0 - 0.2%

Table 21: Chemical Requirements for Portland Cement (Austria)

Chemical Composition Average Limits

MgO 0 - 3%

CaSO4.2H2O 70 - 100%

Cl 0 - 0.5%

Table 22: Chemical Requirements for Gypsum and Anhydrite

A ANNEX A-5

and no contamination of Fe2O3. The requirements for talc, limestone and magnesite

can be seen in Table 23, 23 and 24.

Chemical Composition Average Limits

SiO2 0 - 2%

Al2O3 0 - 2%

Fe2O3 0%

CaO 52.1 - 100%

MgO 0 - 2%

CaCO3 93 - 100%

MgCO3 0 - 4%

Table 23: Chemical Requirements for Limestone in the Paper Industry

Chemical Composition Average Limits

SiO2 0 - 3%

Fe2O3 0 - 0.5%

MgO 70 - 90%

Table 24: Chemical Requirements for Magnesite in the Paper Industry

Steel Industry A wide range of raw materials, mainly Dolomite and Magnesite,

is considered in the Steel Industry section. They are classi�ed as:

• Bauxite as Slagformer

• Olivine for Steel Industry

• Olivine for Foundry Industry

• Fluorite for metallurgical grade �uorite

• Limestone for metallurgy

• Dolomite (uncalcined) for pig iron (direct use)

• Dolomite (uncalcined) for Steelproduction

• Dolomite (calcined) for refractory industry

• Dolomite (calcined) for Steelproduction

• Magnesite (calcined) for Transformersteelcoating

• Magnesite (calcined) for Steelindustry

The requirements can be seen in Table 25 to 34.

A ANNEX A-6

Chemical Composition Average Limits

SiO2 2 - 3%

Al2O3 55 - 57%

Fe2O3 22 - 23%

K2O 0 - 0.1%

TiO2 0 - 6%

MgO 0 - 0.1%

S 0 - 0.1%

LOI 11 - 14%

Table 25: Chemical Requirements for Bauxite as Slagformer

Chemical Composition Average Limits

SiO2 42 - 43%

Al2O3 0 - 2.5%

Fe2O3 6.8 - 7.3%

K2O 0 - 0.2%

CaO 0.1%

MgO 48 - 50%

Na2O 0 - 0.2%

LOI 0 - 1.5%

Table 26: Chemical Requirements for Olivine in the Steel Industry

Chemical Composition Average Limits

SiO2 41.5 - 42.5%

Al2O3 0.4 - 0.5%

Fe2O3 0 - 7%

CaO 0.1%

MgO 49 - 51%

LOI 0 - 1.3%

Table 27: Chemical Requirements for Olivine in the Foundry Industry

A ANNEX A-7

Chemical Composition Average Limits

SiO2 0 - 15%

CaCO3 0 - 3%

MgCO3 0 - 1%

S 0 - 0.3%

CaF2 60 - 100%

Pb 0 - 0.5%

Table 28: Chemical Requirements for Fluorite for metallurgical Grade Fluorite

Chemical Composition Average Limits

SiO2 0 - 1.5%

Al2O3 0 - 1%

Na2O 0 - 0.5%

K2O 0 - 0.5%

CaCO3 95 - 100%

CaO 95.2 - 100%

MgO 0 - 0.5%

MgCO3 0 - 10%

P2O5 0%

SO3 0 - 0.1%

Table 29: Chemical Requirements for Limestone for metallurgy

Chemical Composition Average Limits

SiO2 0 - 3%

Fe2O3 0 - 1.5%

CaO 31 - 35%

MgO 16 - 20%

SO3 0 - 0.1%

Table 30: Chemical Requirements for Dolomite (uncalcined) for pig iron (direct use)

Chemical Composition Average Limits

SiO2 0 - 3%

Al2O3 0.2 - 0.3%

Fe2O3 0.2 - 0.5%

CaO 0 - 35%

MgO 19 - 100%

Table 31: Chemical Requirements for Dolomite (calcined) for refractory industry

A ANNEX A-8

Chemical Composition Average Limits

SiO2 0 - 0.8%

Al2O3 0 - 0.4%

Fe2O3 0 - 1.3%

CaO 0 - 57%

MgO 39 - 100%

Table 32: Chemical Requirements for Dolomite (calcined) for Steelproduction

Chemical Composition Average Limits

CaO 0 - 0.2%

MgO 99.4 - 100%

Table 33: Chemical Requirements for Magnesite (calcined) for Transformersteel-

coating

A.1.2 Intermediate Product

Main groups:

1. Clay

2. a. Carbonates / b. Sulfates

3. Quartz

4. Vulcanic Stones

5. Feldspar

6. Al-Oxides

7. Mg-Oxides

8. Phosphates, Sulfur, Salt

9. Mica

10. Heavy Minerals

11. Beryllium Minerals, Bromine, Iodine

A ANNEX A-9

Chemical Composition Average Limits

MgO 70 - 90%

Table 34: Chemical Requirements for Magnesite (calcined) for Steelindustry

	Introduction
	Reuse of Tunnel Excavation Material - Current Situation, Application and Reasons
	An Automated And Centralized Classification

	Classification Basics
	Material Requirements For Different Reuse Scenarios
	Concrete Production
	Minerals For Industrial Use

	The Classification System
	Input Information
	Information Processing and Output
	The Platform
	Classification Interface
	Sale Interface
	Administration Interface

	Software Engineering Basics
	Programming Principles
	Model - View - Controller
	The Template System

	Client - Server Interaction
	Programming Language, Database and Additions
	PHP and Alternatives
	MySQL and Alternatives

	The Classification System
	Client - Server Interaction
	The Database
	User Classes and Their Functions
	The Main Routines

	Software Engineering Details
	The Template System
	The MySQL Database Structure
	The Section Template and PHP File
	Pages and their Functions
	Basis
	The "Log on" and "Log out" Procedures
	The "Classification"

	Example Classification
	Summary and Outlook
	Annex
	Tables for Material Requirements for Industrial Use
	End Product
	Intermediate Product

