
M A S T E R T H E S I S

Automated Detection of Encrypted RoIs in
JPEG2000

prepared at

Salzburg University of Applied Sciences

Master Degree Program

Information Technology & Systems Management

submitted by:

Andreas Weitlaner, BSc

Head of Faculty: FH-Prof. DI Dr. Gerhard Jöchtl

Supervisor: FH-Prof. DI Mag. Dr. Dominik Engel

Registration Number: 1110581037

Salzburg, August 2013

Affidavit

I hereby declare that I wrote this thesis on my own and without the use of any other than

the cited sources and tools and all explanations that I copied directly or in their sense are

marked as such, as well as that the thesis has not yet been handed in neither in this nor

in equal form at any other official commission.

Salzburg, 7th August 2013

Andreas Weitlaner, BSc Registration Number

i

Details
First Name, Surname: Andreas Weitlaner

University: Salzburg University of Applied Sciences

Master Degree Program: Information Technology and Systems Management

Title of Thesis: Automated Detection of Encrypted RoIs in JPEG2000

Academic Supervisor: FH-Prof. DI Mag. Dr. Dominik Engel

Keywords
1st Keyword: JPEG2000

2nd Keyword: Automated RoI detection

3rd Keyword: Region of Interest

4th Keyword: Scrambling / Encryption

5th Keyword: Data hiding / Signaling

ii

iii

Make everything as simple as
possible, but not simpler.

Albert Einstein

Acknowledgements

First of all, I would like to thank my Master’s Thesis advisor

FH-Prof. DI Mag. Dr. Dominik Engel for his support and guidance.

Our meetings and discussions made this thesis possible.

I am especially grateful to my girlfriend for her patience

and insightful comments when I was struggling.

Finally, thanks to my family for always standing by me.

This work has been partly supported by the

Forschungsförderungsgesellschaft GmbH under FFG Bridge project 832082.

Furthermore, this work has been partly supported by the

Austrian Marshall Plan Foundation which offered me the

unique opportunity to spend a semester at the Polytechnic Institute

of New York University.

iv

Abstract

With the wide use of video surveillance systems in public and private spaces the question of

individual privacy concerns receives increasing attention [1, 2]. It is out of question that the

recording of a person’s visual appearance poses a threat to personal privacy. To preserve

personal privacy, privacy-preserving video surveillance systems have been proposed since

2006, with the basic idea to protect the facial area of people being recorded by some

cryptographic means [3]. The goal of the proposed research project is to improve and

extend existing RoI encryption techniques focusing on encryption applied to the media

bitstream, specifically targeting the scalable format JPEG2000 [4, 5]. Focus of the project

is on improving real world applicability of JPEG2000 RoI encryption by creating a format-

compliant representation of the privacy-protected bitstream.

An approach that allows determining the encrypted regions automatically will be devel-

oped. For this purpose, we will investigate on the one hand the completely automatic

detection of encrypted regions without any additional information and on the other hand

we use data hiding techniques, to insert additional information into the JPEG2000 bit-

stream, for locating the RoIs. All approaches will be evaluated regarding computational

demand, impact on image quality, format compliance and real-world feasibility.

v

Contents

Abstract v

List of Figures x

List of Tables xiii

1 Introduction 1

1.1 State of the Art . 2

1.2 Research question and objectives . 4

1.3 Thesis Structure . 5

2 JPEG2000 Standard 6

2.1 JPEG2000 Introduction . 6

2.2 Basic Architecture . 8

2.2.1 Pre-processing . 8

2.2.2 Wavelet Transform . 10

2.2.3 Quantization . 10

2.2.4 Context Model . 11

2.2.5 Arithmetic Entropy Coder . 11

2.2.6 Bitstream Ordering . 13

2.2.7 Codestream Syntax . 13

2.2.8 File Format . 13

2.3 RoI Coding . 14

2.4 JPEG2000 Parts . 15

2.4.1 Part 1 - Core Coding System . 15

2.4.2 Part 2 - Extensions . 16

2.4.3 Part 3 - Motion JPEG2000 . 16

vi

CONTENTS vii

2.4.4 Part 4 - JPEG2000 Conformance 16

2.4.5 Part 5 - JPEG2000 Reference Software 16

2.4.6 Part 6 - JPEG2000 Compound Image File Format 16

2.4.7 Part 8 - JPEG2000 Security . 17

3 Multimedia Encryption 18

3.1 Encryption Approaches . 18

3.1.1 Pre-Compression / Image-Domain Encryption 19

3.1.2 In-Compression / Transform-Domain Encryption 19

3.1.3 Post-Compression / Codestream-Domain Encryption 19

3.2 Evaluating the Encryption Methods . 20

3.2.1 Format Compliance . 20

3.2.2 Overhead . 20

3.2.3 Computational Demand . 21

3.2.4 Security . 21

3.2.5 Transcodability . 22

3.2.6 Image Quality . 22

3.3 JPEG2000 RoI Encryption . 24

3.3.1 Detect RoIs based on Max-Shift . 24

3.3.2 Detect RoIs by Codeblocks . 25

3.3.3 Detect RoIs by Tiles . 26

3.3.4 Packet-Body Encryption . 26

3.3.5 Packet-Header Encryption . 27

4 Data Embedding Techniques 28

4.1 Watermarking . 28

4.1.1 Digital Watermarking Process . 29

4.1.2 Requirements of Digital Watermarking 30

4.1.3 Watermarking Applications . 30

4.2 Steganography . 32

4.2.1 Steganography Concepts . 33

4.2.2 Requirements of Digital Steganography 34

4.3 Embedding Binary Data into the JPEG2000 Codestream 35

4.3.1 Embed Data into the JPEG2000 COM-Segment 36

4.3.2 Non-Format-Compliant Data Embedding 36

4.3.3 Length-Preserving Data Embedding 37

CONTENTS viii

5 Automated RoI Detection 38

5.1 Detect RoI by Entropy . 38

5.1.1 Definition . 38

5.1.2 Reasoning for Choosing the Entropy 39

5.2 Detect RoI by Variance . 39

5.2.1 Definition . 39

5.2.2 Reasoning for Choosing the Variance 39

5.3 Use Edge Detector to Detect RoI . 40

5.3.1 Sobel Edge Detection . 41

5.3.2 Canny Edge Detection . 42

6 Implementation of JPEG2000 RoI-Detection-Methods 44

6.1 Development Environment . 44

6.2 Data Embedding Techniques . 45

6.2.1 Embed Data into the JPEG2000 COM-Segment 45

6.2.2 Embed Data prior to the JPEG2000 SOC-Marker 47

6.2.3 Embed Data after the JPEG2000 EOC-Marker 48

6.2.4 Length-Preserving Data Embedding 49

6.3 Automated RoI Detection . 51

6.3.1 Acquiring the Image-Data . 51

6.3.2 Detect RoI by Entropy . 52

6.3.3 Detect RoI by Variance . 53

6.3.4 Detect RoI by Thresholding . 53

6.3.5 Detect RoI by Canny- or Sobel-Edge-Detector 54

7 Performance Evaluation 55

7.1 Experimental Setup . 55

7.2 Data Embedding Techniques . 56

7.2.1 Embed Data into the JPEG2000 COM-Segment 57

7.2.2 Embed Data prior to the JPEG2000 SOC-Marker 60

7.2.3 Embed Data after the JPEG2000 EOC-Marker 63

7.2.4 Length-Preserving Data Embedding 65

7.2.5 Encrypt Multiple RoIs per Image 69

7.3 Comparison – Embedding Methods . 70

7.3.1 Format Compliance . 70

7.3.2 Embedding Overhead . 70

CONTENTS ix

7.3.3 Computational Demand . 72

7.3.4 Image Quality . 74

7.3.5 Capacity Assessment – Length Preservation 75

7.4 Automated RoI Detection . 76

7.4.1 Detect RoI by Entropy or Variance 77

7.4.2 Detect RoI by Thresholding . 82

7.4.3 Use Edge Detector to Detect RoI 84

8 Summary & Conclusion 90

A Source Code – Embedding Techniques 93

B Source Code – Automated RoI Detection 97

C Results – Embedding Techniques 101

D Results – Automated RoI Detection 112

Bibliography 120

List of Figures

2.1 Block Diagram – JPEG2000 Encoder [6] 9

2.2 Pre-processing Substages – JPEG2000 Encoder [7] 9

2.3 Irreversible Component Transform (ICT) – Baboon Image [7] 10

2.4 Discrete Wavelet Transform (DWT) - Process – Baboon Image [7] 11

2.5 Sample Scan Order within a JPEG2000 Code-Block [8] 12

2.6 Tile Partition into Subbands and Code-Blocks [9] 12

2.7 Sample JPEG2000 Entropy Coding [10] . 12

2.8 JPEG2000 Codestream Syntax [11] . 13

2.9 Scaling of JPEG2000 RoI Coefficients [12] 15

2.10 Example – JPEG2000 Wavelet Domain RoI Mask [7] 15

3.1 Example – RoI Max-Shift Encryption with Varying Code-Block-Sizes . . . 25

3.2 Example – Information Extracted from the Leading-Zero-Bitplanes (LZB)

of a High Resolution Image [4] . 27

4.1 Digital Watermarking Process [13] . 29

4.2 General Model for Steganography [14] . 34

5.1 Examples of Entropy Changes . 39

5.2 Example – Edge Detector Source Signal, First Derivative and

Second Derivative [15] . 40

5.3 Masks used by Sobel Edge Detector [15] 41

5.4 Sample Sobel Edge Detection – Procedure [15] 42

5.5 Canny Edge Detector – Possible Edge Directions [15] 43

6.1 Packet Structure – Embed Data into the JPEG2000 COM-Segment 46

6.2 Packet Structure – Embed Data prior to the JPEG2000 SOC-Marker . . . 47

6.3 Packet Structure – Embed Data after the JPEG2000 EOC-Marker 49

6.4 Packet Structure – Length-Preserving Data Embedding 50

6.5 Example – Partitioned PGM Input Image 51

x

LIST OF FIGURES xi

6.6 Sample Bounding-Box – Thresholding . 54

7.1 Example – Unencrypted Surveillance Images, Surveillance Image Contain-

ing one Encrypted RoI and a Surveillance Image Containing eight En-

crypted Image Regions . 56

7.2 Example – JPEG2000 RoI Encryption with

varying Wavelet-Decomposition-Level . 76

7.3 Example – Partitioned PGM Input Image - used to Calculate Entropy and

Variance . 77

7.4 Example – Input Images used by the Edge Detectors 84

7.5 Example – Detect Edges using the Sobel Edge Detector 85

7.6 Example – Detected Edges using the Canny Edge Detector 88

C.1 COM-Segment – Embedding Overhead . 101

C.2 COM-Segment – Computational Demand 102

C.3 COM-Segment – Image Quality (SSIM, ESS and LSS) after Decryption . . 102

C.4 COM-Segment – Image Quality (PSNR) after Decryption 103

C.5 Prior to SOC-Marker – Embedding Overhead 103

C.6 Prior to SOC-Marker – Computational Demand 104

C.7 After EOC-Marker – Embedding Overhead 104

C.8 After EOC-Marker – Computational Demand 105

C.9 Length-Preserving – Embedding Overhead 105

C.10 Length-Preserving – Computational Demand 106

C.11 Length-Preserving – Image Quality (SSIM. ESS, LSS) after Decryption . . 106

C.12 Length-Preserving – Image Quality (PSNR) after Decryption 107

C.13 Length-Preserving – Image Quality (SSIM, ESS, LSS) - Increasing Capacity 107

C.14 Length-Preserving – Image Quality (PSNR) - Maximum Capacity 108

C.15 Length-Preserving – Image Quality (SSIM, ESS, LSS) - Maximum Capacity 108

C.16 Length-Preserving – Image Degradation - Increasing Capacity 109

C.17 Comparison – Embedding Overhead . 109

C.18 Comparison – Embedding Overhead caused by the Proposed Embedding

Methods in Relation to Storing all Start-, End-Values and the Encryption-

Counter . 110

C.19 Comparison – Computational Demand - Decryption 110

C.20 Comparison – Computational Demand - Embedding 111

C.21 Comparison – Image Quality (PSNR) - between COM-Segment & Length-

Preserving . 111

LIST OF FIGURES xii

D.1 Entropy – PGM-File . 112

D.2 Variance – PGM-File . 113

D.3 Entropy – JPEG2000 Packet Data . 113

D.4 Variance – JPEG2000 Packet Data . 114

D.5 Entropy – Wavelet-Coefficients . 114

D.6 Variance – Wavelet-Coefficients . 115

D.7 Thresholding – Computational Demand - Encryption Detection 115

D.8 Thresholding – Error Rate - Encryption Detection 116

D.9 Thresholding – Error - Encryption Border Detection 116

D.10 Thresholding – Error - Encryption Border Detection - CBS 4x4 pixel 117

D.11 Thresholding – Error - Encryption Border Detection - CBS 64x64 pixel . . 117

D.12 Sobel Edge Detector – Error Rate - Encryption Detection 118

D.13 Canny Edge Detector – Error Rate - Encryption Detection 118

D.14 Proposed Edge Detector – Error Rate - Encryption Detection 119

D.15 Comparison – Error Rate - All Evaluated Edge Detectors 119

List of Tables

4.1 RoI Embedding Methods - Summarization 37

7.1 COM-Segment – Embedding Overhead . 58

7.2 COM-Segment – Computational Overhead 59

7.3 COM-Segment – Image Quality (SSIM, ESS, LSS, PSNR) 60

7.4 Prior to SOC-Marker – Embedding Overhead 61

7.5 Prior to SOC-Marker – Computational Demand 62

7.6 After EOC-Marker – Embedding Overhead 64

7.7 After EOC-Marker – Computational Demand 65

7.8 Length-Preserving – Embedding Overhead 66

7.9 Length-Preserving – Computational Demand 67

7.10 Length-Preserving – Image Quality (SSIM, ESS, LSS, PSNR) 68

7.11 COM-Segment – Multiple RoIs - Embedding Overhead 69

7.13 Comparison – Embedding Overhead of All proposed Embedding Methods . 71

7.14 Comparison – Computational Overhead - Decryption 73

7.15 Comparison – Image Quality (SSIM, ESS, LSS, PSNR) after Decrypting -

COM-Segment & Length-Preserving . 74

7.16 Length-Preserving – Image Quality (SSIM, LSS, ESS, PSNR) - Capacity

Assessment . 75

7.17 Variance/Entropy – Automated RoI Detection – PGM-File 78

7.18 Variance/Entropy – Automated RoI Detection - JPEG2000 Packet 79

7.19 Variance/Entropy – Automated RoI Detection - JPEG2000 Inverse Wavelet

Transformation . 81

7.20 Thresholding – Computational Overhead - Encryption Detection 82

7.21 Thresholding – Error - Encryption Border Detection 83

7.22 Sobel Edge Detector – Error - Encryption Border Detection 86

7.23 Canny Edge Detector – Error - Encryption Border Detection 87

7.24 Proposed Edge Detector – Error - Encryption Border Detection 89

xiii

Chapter 1

Introduction

With the increasing usage of video surveillance systems in public and private spaces,

the question of how to deal with privacy concerns of people being recorded receives in-

creasing attention [1, 2]. It is out of the question that the recording of a person’s visual

appearance poses a threat to personal privacy. In order to account for these concerns,

privacy-preserving video surveillance systems need to be developed. Besides the possi-

ble application of automated tracking and recognition systems, the unlimited observation

of the actions of any recorded person by human security personnel is another major is-

sue raising privacy concerns. It is important to notice that for most surveillance-relevant

application scenarios, it is not required that the identity of persons being recorded is

revealed at first. Privacy-preserving video surveillance systems have been proposed since

2006: The basic idea is to protect the facial area of people being recorded by some cryp-

tographic means. Most proposals employ some sort of region-of-interest (RoI) encryption

technique for this task [16, 17]. The goal of the proposed research project is to improve

and extend existing RoI encryption techniques focusing on encryption applied to the me-

dia bitstream, specifically targeting the scalable format JPEG2000 [4, 5]. The focus of the

project is to improve real world applicability of JPEG2000 RoI encryption by creating a

format-compliant representation of the privacy-protected bitstream. As outlined above,

the principal approach has significant application potential but techniques developed so

far suffer from several shortcomings in terms of practical feasibility. To some extent this is

due to the fact that meta- and key-data, required to decrypt the encrypted image regions,

need to be stored separately from the surveillance video data. This is due to the fact, as

outlined in Chapter 3, that additional data such as the cipher-key (used to decrypt the

bitstream parts), the position and length of encrypted bitstream sections, the encryption-

counters, etc., must be stored to successfully detect and decrypt the encrypted image

regions. An approach will be developed that allows determining the encrypted regions

without additional meta data. For this purpose, we will investigate the efficient auto-

1

CHAPTER 1. INTRODUCTION 2

mated detection of encrypted regions in the JPEG2000 bitstream. A second angle to be

investigated is the use of data hiding techniques to store the specification of the encrypted

regions in the unencrypted parts of the image. All approaches will be evaluated regarding

computational demands, impact on image quality and real-world feasibility.

1.1 State of the Art

The aim of this section is to give an overview of the latest research results and findings

in the field of privacy-preserving video surveillance systems. It specifically targets the

scalable format JPEG2000, which is used by this work to evaluate different embedding and

automated RoI detection approaches. JPEG2000 is the latest image compression standard

developed by the Joint Photographic Experts Group (JPEG) [9, 18]. This standard has

been developed because existing standards lack efficiency and flexibility [18]. Furthermore,

JPEG2000 offers among other features the ability to efficiently handle RoIs [9]. Hence,

the JPEG2000 standard offers the possibility to encode- and decode certain image regions

differently (e.g., the facial area of people being recorded by a video surveillance system).

However, in the development of the JPEG2000 standard, decisions for not storing the RoI

position explicitly in the resulting media bitstream were made. This decision leads to the

fact that, without decoding the image or adding additional information, it is not possible

to extract the position of the RoI (for further details see Chapter 2).

Therefore methods such as the one described by Hämmerle-Uhl et al. [19] and implemented

by Stubhann [5], where parts of the media bitstream are encrypted to preserve the privacy

of the persons recorded, need an additional file which stores the actual position of the

encrypted bitstream parts for decrypting the encrypted parts of the bitstream. Stubhann

implemented and evaluated three different privacy-preserving JPEG2000 RoI encryption

methods, which are applied at codestream level, after applying the JPEG2000 encoder

to the input image (see Section 3.1). For detecting the codestream sections representing

the RoI (e.g., the facial area), Stubhann used the following RoI detection approaches: RoI

Max-Shift, Codeblock, and Tiles (see Section 3.3 for further details). Although JPSEC

offers the possibility to encrypt selective/partial image regions by defining a Zone of

Influence (ZoI, for further details see Subsection 2.4.7), this work is based on the format

compliant JPEG2000 encryption, proposed by Hämmerle-Uhl et al. [19].

Nevertheless, JPEG2000 is capable of decoding RoIs with the Max-Shift method, for

example (for a more detailed explanation of this and other RoI coding methods see [9]).

However, this method is not suitable for detecting the encrypted RoIs without decoding

the bitstream. Because of this circumstance and the lack of an extra field in the JPEG2000

CHAPTER 1. INTRODUCTION 3

header to store all the RoI specific information, a different solutions for storing the RoI

data needs to be found. One such solution could be data hiding, which offers the ability

to store arbitrary data in the image without a perceptual impact. With data hiding, it

is possible to hide messages in an image. These messages are only able to be read by

someone who knows where to look for them. Some implementations for hiding data in a

JPEG2000 image have already been published (for more detailed information about data

hiding, see Wayner’s book [20] or for a JPEG2000 data hiding implementation, see Zhang

et al. [21]). However, all these data hiding methods lack the feasibility in conjunction with

Stubhann’s implementation of a JPEG2000 bitstream RoI encryption, which follows an

approach proposed by Hämmerle-Uhl et al. [19]. This is due to the fact that Hämmerle-

Uhl’s media bitstream encryption method is invoked after encoding and finalizing image

compression, and it is not possible to combine it with the outlined data hiding methods

proposed so far, because all of them must to be executed while encoding the image. This

needs to be done this way because the proposed methods need to identify parts of the

image in which it is possible to hide the information, without degrading the image quality

nor causing any perceptual impact.

Another technique to embed information into digital images is watermarking, which has

been studied for copyright protection extensively in recent years [22, 23, 24, 25]. Most

of the proposed watermarking methods are, along with the steganography methods, in-

voked while encoding the digital image and therefore not applicable in conjunction with

the privacy-preserving method proposed by Hämmerle-Uhl et al. [19] and Stubhann’s [5]

implementation. Some research has been done on watermarking on bitstream level, such

as the proposed method by Katsutoshi et al. [26] which embeds data into a JPEG2000

bitstream by overwriting certain parts of the bitstream. This method has the advantage

of detecting the embedded data very efficiently, as no data needs be decoded for extract-

ing the hidden data in the JPEG2000 bitstream. However, one drawback of this method,

which will be further evaluated in this master thesis, is the image quality degradation.

The image quality degradation is based on the fact that certain parts of the bitstream

need be overwritten for embedding the encryption specification.

Nevertheless, extensive studies have been carried out in the fields of encrypting parts

of the JPEG2000 bitstream [16, 27, 5, 4, 19] and data embedding methods [26, 24, 25].

No methods for automatically detecting the encrypted parts of the bitstream have been

proposed thus far. The objective of this master thesis is to evaluate different methods of

embedding data or automatically detecting encrypted parts of the JPEG2000 bitstream

because techniques developed thus far suffer from several shortcomings and limitations in

terms of practical feasibility.

CHAPTER 1. INTRODUCTION 4

1.2 Research question and objectives

Based on the situation outlined in the introduction, the main objective of this master

thesis is to investigate the automatic detection of encrypted RoIs in the JPEG2000

media bitstream. Therefore, the main objective is subdivided into two approaches, (1)

the automatic detection of RoIs by using data hiding techniques to store specification of

the encrypted regions in the unencrypted parts of the image and (2) the detection of RoIs

without any additional information.

All investigated approaches are based on Stubhann’s implementation of a JPEG2000 RoI

bitstream encryption, which follows an approach proposed by Hämmerle-Uhl et al. [19].

To be precise, the “Max-Shift RoI encryption” method (see Section 3.3) is used to evaluate

the results regarding computational demands, impact on image quality, JPEG200 format-

compliance and real-world feasibility [5].

1. Data hiding techniques:

• Embed data into JPEG2000 header fields: Embed encryption specification into

the JPEG2000 COM-segment.

• Non-format compliant data embedding: Embed encryption specification either

prior to the JPEG2000 SOC-marker or after its EOC-marker.

• Length-preserving data embedding: Embed encryption specification by replacing

JPEG2000 image coefficients.

2. Automatic detection of RoIs, without additional information:

• Feasibility of automatic detecting RoI by using only the JPEG2000 bitstream:

Without any decoding or additional data (no data hiding), it is investigated

whether or not it is possible to extract the position of the encrypted data in the

JPEG2000 bitstream.

• Decode bitstream up to inverse wavelet transformation: Investigate feasibility of

detecting RoIs by wavelets.

• Completely decode the image: After completely decoding the image, the en-

crypted RoI is extracted by entropy, variance or edge detection methods.

CHAPTER 1. INTRODUCTION 5

1.3 Thesis Structure

The remainder of this master thesis is structured as follows: The first few chapters give

theoretical background knowledge about JPEG2000, media bitstream encryption based on

JPEG2000, data hiding and methods to automatically detect a Region-of-Interests in the

JPEG2000 media bitstream. Therefore, this part comprises multiple chapters (see Chap-

ters 2, 3, 4 and 5) that provide theoretical knowledge and references to further readings.

The second part (Chapter 6) describes the implementation of different RoI detection ap-

proaches (embedding the encryption specification and automated RoI detection).

Finally, the third part discusses the evaluation and comparison of the results of the pro-

posed methods according to the theoretical assumptions we obtained from the theoretical

analysis (see Chapter 7). This part concludes with Chapter 8, which gives a summary and

some recommendations.

Chapter 2

JPEG2000 Standard

As stated by the Joint Photographic Expert Group (JPEG) [28]:

JPEG2000 is a new image coding system that uses state-of-the-art compres-

sion techniques based on wavelets technology. Its architecture should lend itself

to a wide range of uses from portable digital cameras to advanced pre-press,

medical imaging and other key sectors.

This chapter provides an overview of the compression standard JPEG2000.

2.1 JPEG2000 Introduction

JPEG2000 is the latest compression standard for still images, created by the Joint Pho-

tographic Experts Group (JPEG) and coordinated by the Joint Technical Committee on

Information Technology of the International Organization for Standardization (ISO) /

International Electrotechnical Commission (IEC) [28].

With the continual expansion of multimedia- and Internet-applications, the needs and

requirements of the technologies used grew and evolved. Therefore, in March 1997, a new

call for contributions to develop a new standard for the compression of still images, the

JPEG2000 standard, was launched [29]. JPEG2000 was developed with the objective to

overcome the shortcomings of the predominant JPEG standard, which was released in

1992 and is still one of the most widely used compression standard for still images [18].

JPEG2000 provides a whole new way of interacting with compressed images in a scalable

and interoperable fashion. Some of JPEG2000’s numerous advantages and features over

its predecessor JPEG [30, 31], cited by Taubman et al. [18] and Skodras et. al [29], are:

• Superior low bit-rate performance: This standard offers superior performance

in comparison to the prevailing image compression standard JPEG at low bit-rates

(e.g., below 0.25 bpp (bits per pixel) for highly detailed grey-scale images). This

significantly improved low bit-rate performance is achieved without sacrificing per-

6

CHAPTER 2. JPEG2000 STANDARD 7

formance on the rest of the rate-distortion spectrum. Examples of applications that

need this feature include network image transmission and remote sensing. This has

been the feature in the JPEG2000 standardization process with the highest priority.

• Continuous-tone and bi-level compression: This coding standard is capable

of compressing both continuous-tone (e.g., photographs or television images that

have a virtually unlimited range of color or shades of grays) and bi-level images (a

digital image that has only two possible values for each pixel, e.g., black and white).

Another development goal for this new standard was to strive to achieve continuous-

tone and bi-level compression with similar system resources. The JPEG2000 system,

if implemented correctly, is capable of compressing and decompressing images with

various dynamic ranges (i.e. 1 bit to 16 bit) and multiple components. Examples of

applications that can use this feature include compound documents with images and

text, medical images with annotation overlays, and graphic and computer generated

images with binary and near to binary regions and alpha and transparency planes.

• Lossless and lossy compression: The JPEG2000 compression standard provides

lossless and lossy compression. Lossy compression is achieved by applying the Daube-

chies 9-tap/7-tap irreversible wavelet transformation and the lossless compression

is achieved by applying the Le Gall 5-tap/3-tap reversible wavelet transformation.

Examples of applications that can use this feature include medical images, where

loss is not always tolerated, image archival applications, where the highest quality is

vital for preservation but not necessary for display, network applications that supply

devices with different capabilities and resources, and pre-press imagery.

• Progressive transmission by pixel accuracy and resolution: Progressive trans-

mission that allows images to be reconstructed with increasing pixel accuracy or

spatial resolution is essential for many applications. This feature allows the recon-

struction of images with different resolutions and pixel accuracy, as needed or desired,

for different target devices. Examples of applications include the World Wide Web,

which uses this feature to steadily increase image quality while loading the image

from the internet or image archival applications and printers.

• Region-of-interest (RoI) coding: Often there are parts of an image that are more

important than others (e.g., facial area is generally of greater importance than the

background). This feature allows users to define certain RoIs in the image to be coded

and transmitted in a better quality and less distortion than the rest of the image.

Furthermore, this feature allows random codestream processing which could allow

CHAPTER 2. JPEG2000 STANDARD 8

operations such as rotation, translation, filtering, feature extraction and scaling.

• Robustness to bit-errors: For wireless communication, for instance, it is desir-

able to offer robustness to bit-errors, otherwise an effective communication would

not be possible. Therefore, while designing the codestream, robustness needs to be

considered a major part. Portions of the codestream may be more important than

others in determining decoded image quality. Proper design of the codestream can

aid subsequent error correction systems in alleviating catastrophic decoding failures.

• Open architecture: JPEG2000 has been developed as an open architecture, which

has the advantage to allow a better interoperability with different image types and

applications. Due to that fact, it is now possible to implement a decoder with core

functionalities, which is able to parse all JPEG2000 format-compliant codestreams.

• Protective image security: Protection of a digital image can be achieved by means

of different approaches, such as watermarking, labeling, stamping, or encryption.

The open architecture of the JPEG2000 standard makes it possible to integrate such

protection techniques into the JPEG2000 coder very easily.

2.2 Basic Architecture

Figure 2.1 depicts the basic operations a JPEG2000 encoder needs to fulfill while process-

ing image samples. The bottom of the block diagram depicts the main processing steps,

which are explained in more detail in this section. However, before proceeding with the

details of each processing step, it should be mentioned that the standard encoding/de-

coding works on tiles. The tile-components are the basic units, which are treated by the

coder as completely distinct images, and therefore compressed independently. Tiling re-

duces memory requirements, and since tiles are encoded and decoded independently, they

can be used for decoding specific parts of an image instead of the whole image. An im-

age can either be divided into one tile, which covers the whole image, or into multiple

non-overlapping rectangular blocks (tiles) of equal size (expect those at the image bor-

ders) [6, 9, 29, 18]. For further details, reference is made to the book “JPEG2000 Image

Compression Fundamentals, Standards and Practice” by Taubman and Marcellin [9].

2.2.1 Pre-processing

In the first stage, pre-processing is performed. JPEG2000 pre-processing is sub-divided

into three stages, as shown in Figure 2.2. All these steps must be performed, otherwise the

discrete wavelet transformation, which represents the next step in processing a JPEG2000

CHAPTER 2. JPEG2000 STANDARD 9

Figure 2.1: Block Diagram – JPEG2000 Encoder [6]

Figure 2.2: Pre-processing Substages – JPEG2000 Encoder [7]

image, would not work properly [7]. As mentioned in the introduction to this section, tiling

needs to be performed to reduce memory demand; otherwise the coding of large images

might not work or might take too long.

The second pre-processing stage ensures that the nominal dynamic range is centered

around zero. This stage, called DC level shifting, needs to be performed prior to the dis-

crete wavelet transformation (DWT), as JPEG2000 uses high-pass filtering while encoding

an image. DC level shifting is performed on the samples of components that are unsigned

only [18].

The third pre-processing stage deals with the component transformation, which provides

decorrelation among image components. This pre-processing step improves the compres-

sion and allows for visually relevant quantization [6]. JPEG2000 supports up to 214 com-

ponents, and each component consists of a matrix of samples representing the luminosity

of the component at that point [7]. Color images are most commonly represented in RGB

format, which leads to three components (one for each color; red, green, blue). However,

since Y (luminance), Cr (blue-difference chrominance components) and Cb (red-difference

chrominance components) color components are less statistically dependent than RGB

color components, they independently compress better. Therefore, the JPEG2000 stan-

dard has decided to convert RGB data into Y CrCb data for a better transformation per-

formance [7]. The JPEG2000 standard supports two component transformations, one that

can be used for irreversible component transformation (ICT, lossy coding, see Figure 2.3)

and one for reversible component transformation (RCT, lossless coding) [18].

CHAPTER 2. JPEG2000 STANDARD 10

Figure 2.3: Irreversible component transformation (ICT) of a baboon image [7]

2.2.2 Wavelet Transform

During the wavelet transformation, each tile component is passed recursively through low

pass and high pass wavelet filters. This procedure enables an intra-component decorrela-

tion that concentrates the image information in a small and very localized area. Further-

more, it enables a multi-resolution image representation, which is one of the JPEG2000

core features [11].

There are two different wavelet transforms defined by the JPEG2000 standard, one for

lossy and the other for lossless compression. Both provide lower resolution images and

spatial decorrelation of the image to improve compression. The Daubechies 9-tap/7-tap

irreversible wavelet transformation provides highest compression, while the Le Gall 5-

tap/3-tap reversible wavelet transformation provides lossless compression [6, 7, 29, 9]. The

wavelet transformation is applied by filtering each row and column of the pre-processed

image tile by a high pass and low pass filter. For keeping the sample rate constant, a

down sampling by two (every other value is removed) must be performed, after applying

the low pass and high pass wavelet filtering to the pre-processed image data [9]. Figure

2.4 depicts step by step how a one-step wavelet transformation is performed (high- and

low-pass filters and a down-sampling by 2 are applied).

2.2.3 Quantization

Even after the wavelet transformation has been applied, the image data is not yet com-

pressed. The wavelet transformation is solely responsible for restructuring the image in-

formation in such a way that it is easier to compress the data through quantization. The

CHAPTER 2. JPEG2000 STANDARD 11

Figure 2.4: The figure above shows the Discrete Wavelet Transformation (DWT) process for the Y
component based on the baboon image [7]

quantization process step is responsible for obtaining a trade-off between rate and distor-

tion by quantizing all wavelet coefficients. Therefore, a uniform scalar quantization with

dead-zone around the origin is used to compress the image data. This processing step is

lossy, unless the quantization step is limited to 1 and the image coefficients are integers,

as produced by the 5/3 reversible wavelet transformation [29, 11, 6].

2.2.4 Context Model

Before JPEG2000 arithmetic coder can perform coding, the subbands of each tile are

further partitioned into smaller non-overlapping rectangular blocks, so called code-blocks.

A typical code-block-size, as stated by Marcellin et al. [6], is 64 × 64 or 32 × 32 pixel.

Furthermore, as stated by Acharya et al. [32], the compression performance decreases in

case a code-block-size less than 16 × 16 is chosen. The purpose of further dividing the

subbands into code-blocks of the same size (except those located at the image borders) is

to permit a flexible bitstream organization after encoding the JPEG2000 image through

the arithmetic entropy coder [9, 29, 6, 7]. Figure 2.6 shows a sample image partitioning

(into subbands and code-blocks).

2.2.5 Arithmetic Entropy Coder

The basic functionality of the arithmetic entropy coder is to remove redundancy in the

encoded of the image data. To fulfill this, it assigns short code-words to the more probable

events and longer code-words to the less probable ones [11]. In JPEG2000, the coding

algorithm encodes each code-block independently without any reference to other blocks

CHAPTER 2. JPEG2000 STANDARD 12

Figure 2.5: Sample scan order within
a JPEG2000 code-block [8]

Figure 2.6: Tile partition into subbands and
code-blocks [9]

Figure 2.7: Sample JPEG2000 Entropy coding [10]

in the same or any other subband (Figure 2.7 shows a simplicial illustration of how the

arithmetic decoder works). Within each subband, the coder scans each bit plane of a code-

block in a special order (see Figure 2.5). Starting from the top left, the first four bits of the

first column are scanned. The first four bits of the second column are scanned next, until

the end of the code-block row is reached. After that, the second four bits of the first column

are scanned and so on [29]. Each coefficient bit in the bit-plane is coded in only one of the

three coding passes, namely the significance propagation, the magnitude refinement, and

the cleanup pass. For each pass, contexts, which are provided to the arithmetic coder, are

created. For further details about the arithmetic entropy coder, see the book “JPEG2000

Image Compression Fundamentals, Standards and Practice” by Taubman et al. [9].

CHAPTER 2. JPEG2000 STANDARD 13

Figure 2.8: JPEG2000 Codestream syntax [11]

2.2.6 Bitstream Ordering

After applying the arithmetic coder to the image data, its output is collected into packets.

One packet is generated for each precinct in a tile. A precinct is essentially a container

for a number of code-blocks, and is used to facilitate access to a specific area within an

image. Furthermore, each packet consists of a header and the encoded image coefficients

[29, 6, 7]. After organizing the output of the arithmetic coder into packets, the packets are

multiplexed in an ordered manner to form the JPEG2000 code-stream. The JPEG2000

standard defines five ways of ordering the packets (called progressions), as mentioned in

Part 1 of the JPEG2000 standard [9, 7].

2.2.7 Codestream Syntax

The final codestream consists of marker segments and the coded image coefficients. These

marker segments are used to structure the codestream and consist of two bytes (starting

with 0xFF). The marker segments facilitate to determine location of the encoded data

corresponding to a given spatial location, resolution, and quality in the image [6]. A

more detailed explanation of marker segments is given by Taubman et al., in the book

“JPEG2000 Fundamentals” [9]. Figure 2.8 depicts a sample JPEG2000 codestream syntax.

2.2.8 File Format

Any additional data which is related to the image, but is not needed to reconstruct

components of the image, is stored in the file format. The optional file format is provided

to prevent the proliferation of non-standard proprietary formats, which happened with

the original JPEG standard. The file format begins with a unique signature, has a profile

indicator, and repeats the width, height, and depth information from the codestream.

Optionally, the file format may contain a limited color specification, capture and display

resolution, intellectual property rights information, and some additional metadata. The

CHAPTER 2. JPEG2000 STANDARD 14

output of the encoder can either be directly sent to the recipient or stored in a JPEG2000

format compliant form. The JPEG2000 standard defines the file extension .jp2 [6].

2.3 RoI Coding

The JPEG2000 standard exhibits the feature of defining a Region-of-Interest (RoI). This

image region (e.g., the facial area of a person, or any other important image region) as

defined in Part 1 of the JPEG20000 coding standard can be of arbitrary shape. As the

image coefficients belonging to the RoI are shifted by the Max-Shift method, the bits

associated with the RoI are placed in higher bit-planes than the bits associated with

the background. The shifting procedure is depicted in Figure 2.10. The shifting of image

coefficients belonging to the RoI into higher bit-planes leads to the fact that during the

embedded coding process, the most significant RoI bit-planes (MSB) are placed in the

JPEG2000 bitstream before any background bit-planes of the image. Hence, the RoI will

be decoded prior to the rest of the image. Theoretically, if the bitstream is truncated, or

the encoding process is terminated before the whole image is fully encoded, the ROI will

be of higher fidelity than the rest of the image [9, 29, 33].

As outlined by Skodras et al. [29], the general JPEG2000 Max-Shift method is imple-

mented as follows (focus is on RoI scaling; pre-processing, bitstream ordering, etc. are

skipped for simplicity reasons in the following outline):

1. The wavelet transform is calculated

2. In case an RoI is defined, an RoI mask needs to be derived, which indicates all the

wavelet coefficients associated with the RoI (Figure 2.10 depicts a sample RoI mask)

3. After defining the RoI mask, the wavelet coefficients are quantized

4. The next step deals with downscaling the background coefficients by a specified scal-

ing factor (Max-Shift scaling factor needs to be high enough to shift the background

coefficients below the least significant bitplane (LSB) of the RoI (see Figure 2.9))

5. Finally, all coefficients are entropy encoded, with the most significant bit-plane first

(RoI coefficients are located at the beginning of the codestream)

As mentioned above, the Max-Shift method makes it possible to define RoIs of arbitrary

shape, without the need of transmitting any additional information concerning the shape

or location of the RoIs. Therefore, only one additional marker needs to be added to the

JPEG2000 codestream. This marker is the Region-of-Interest marker (RGN), which indi-

cates the up-shift factor by which the background has been downscaled while encoding the

CHAPTER 2. JPEG2000 STANDARD 15

Figure 2.9: Scaling of JPEG2000 RoI coefficients [12] Figure 2.10: Example – JPEG2000
Wavelet Domain RoI mask [7]

image data. The RGN marker can be placed at multiple JPEG2000 bitstream locations,

e.g., the main header or in the tile header containing an RoI. For a more detailed expla-

nation of the RGN-marker segment, or any other marker segment, reference is made to

Taubman and Marcellin’s book“JPEG2000 Image Compression Fundamentals, Standards

and Practice” [9].

2.4 JPEG2000 Parts

The term JPEG2000 refers to all parts of this compression standard for still images.

Some of the JPEG2000 parts have already been published, such as Part 1 (the core of

JPEG2000 coding), which is an international standard for still image compression. Parts

2-6 have been completed or are nearly completed and Parts 8-12 are under development

[28]. While the majority will be interested in the core coding system of Part 1, this section

describes the reasons for Parts 1-8 (Parts 9-12 will not be covered by this work).

2.4.1 Part 1 - Core Coding System

As its name suggests, Part 1 defines the core functionalities of the JPEG2000 compression

standard. This includes the syntax of the JPEG2000 codestream and the necessary steps

involved in coding the JPEG2000 image (see Section 2.2 for more details). A number of

existing implementations, such as the Java implementation JJ2000, utilize only Part 1,

which is sufficient to code JPEG2000 images properly. Part 1 defines a basic file format

called JP2, which can be used to store JPEG2000 coded images. Furthermore, Part 1 was

developed with the intention of being available without the requirement of any license

fees.

Part 1 became an International Standard (ISO/IEC 15444-1) in December 2000 [28].

CHAPTER 2. JPEG2000 STANDARD 16

2.4.2 Part 2 - Extensions

Part 2 defines various extensions to Part 1, which are required by some image compres-

sion applications where interoperability is not as important as other requirements. Some

of the extensions of Part 2 listed by Marcellin et al. [6] are: the use of another quantiza-

tion (e.g., Trellis Coded Quantization, which increases rate-distortion performance); allow

multiple wavelet transformations; a new file format JPX (used to support multiple layers,

animation, extended color spaces, etc.) or the option for additional metadata.

Part 2 became an International Standard (ISO/IEC 15444-2) in November 2001 [28].

2.4.3 Part 3 - Motion JPEG2000

Part 3 defines a file format called MJ2 (or MJP2) for motion sequences of JPEG2000

images. Support for associated audio is also included. However, Part 3 does not include

inter-frame coding. Hence, each frame must be encoded and decoded independently. In

addition to Part 2, this part is not compatible with Part 1 and consequently a standard

compliant Part 1 decoder cannot handle MJ2 files.

Part 3 became an International Standard (ISO/IEC 15444-3) in November 2001 [28].

2.4.4 Part 4 - JPEG2000 Conformance

Part 4 of the JPEG2000 standard defines some test procedures for both encoding and

decoding a JPEG2000 image. It provides definitions of a set of decoder compliance classes.

Therefore, Part 4 consists of test files including bare codestreams and JP2 files.

Part 4 became an International Standard (ISO/IEC 15444-4) in May 2002 [28].

2.4.5 Part 5 - JPEG2000 Reference Software

Part 5 provides two source code packages, implementing Part 1 of the JPEG2000 standard.

One is written in Java (JJ20001) and the other in C (JasPer2). The JJ2000 group consisted

of Canon France, Ericsson and EPFL, and JasPer was developed by the University of

British Columbia. Both are available under open-source type licensing [6].

Part 5 became an International Standard (ISO/IEC 15444-5) in November 2001 [28].

2.4.6 Part 6 - JPEG2000 Compound Image File Format

As its name suggests, Part 6 defines a file format for compound images. Hence, it offers

a mechanism by which multiple images can be combined into a single compound image.

Furthermore, it defines a new file format called JPM, which is an extension of the JP2 file

1http://jj2000.googlecode.com/svn/trunk/
2http://www.ece.uvic.ca/ frodo/jasper/

CHAPTER 2. JPEG2000 STANDARD 17

format. It builds upon the same architecture defined in Part 1 and uses many of the same

boxes defined in Part 1 (JP2) and Part 2 (JPX). It is used for document imaging (storing

multi-page document with many objects per page, for pre-press and fax-like applications).

Even though JPM is a JPEG2000 part, it supports many other coding or compression

technologies, such as JPEG and JPIG2.

Part 6 became an International Standard (ISO/IEC 15444-6) in April 2003 [28].

2.4.7 Part 8 - JPEG2000 Security

This part of the JPEG2000 standard defines additional measures to secure JPEG2000

compressed images. Part 8 is also known as JPSEC. The JPSEC standard provides a

security framework with a wide range of security services, including confidentiality, source

authentication, data integrity, conditional access and ownership protection [28, 34, 35].

The JPSEC bitstream is quite similar to the JPEG2000 Part 1 bitstream, except it might

be partially encrypted, scrambled or watermarked in order to provide one of the security

services mentioned above. To enable a proper decoding of the JPSEC bitstream, two ad-

ditional marker segments are introduced. These markers are the Security Marker segment

(SEC) and the In-Codestream Security Marker segment (INSEC).

The SEC segment is located at the main header of the JPSEC bitstream and it signals some

general security parameters used to secure the JPEG2000 bitstream. These parameters

are applicable to the whole JPSEC bitstream. To signal the covered areas in terms of

both image related parameters (such as tile, resolution, precinct, component and region

of interest) and no-image related parameters (such as byte range) in a JPSEC bitstream,

the Zone Of Influence (ZOI) has been introduced. However, if each packet of a ZOI is

encrypted by a different key, the second marker segment (INSEC) can be used to signal

the different keys. In doing so, the decoding performance can be increased, as stated

by Sun an Zhishou [36]. The INSEC marker can be placed anywhere in the bitstream

because the arithmetic JPEG2000 decoder stops automatically reading the bitstream when

encountering any marker segment (two bytes with a value exceeding 0xFF8F) [36]. JPSEC

will not be used in this work to detect RoIs in the JPEG2000 bitstream, due to the fact

that the objective of this work is to automatically detect, without any additional marker

segments, the encrypted image regions. Hence, JPSEC is not applicable, as it offers the

functionality to add additional marker segments to the bitstream that indicate the position

and type of encryption. Therefore, this paper focuses on detecting encrypted RoIs in a

JPEG2000 encoded image, based on Stubhann’s RoI bitstream encryption implementation

[5], which follows an approach proposed by Hämmerle-Uhl et al. [19]. Part 8 became an

International Standard (ISO/IEC 15444-8) in July 2006 [28].

Chapter 3

Multimedia Encryption

Nowadays security and privacy in digital video applications, such as video surveillance

systems or digital cinema, are a major concern, especially when it comes to the ease to

manipulate, copy, analyze and distribute digital content at negligible cost. Furthermore,

these concerns raises, the issues of confidentiality, data integrity, authentication and condi-

tional access control [37]. Hence, to develop privacy-preserving video surveillance systems,

the security issue should be taken into account. Therefore, this chapter gives an overview

of possible encryption approaches, their evaluation criteria and some approaches on how

to encrypt RoIs in a JPEG2000 image. The latter will be of importance to this work, hence

this work is based on Stubhann’s primary work [5], which deals with an RoI encryption

implementation and its evaluation.

3.1 Encryption Approaches

Compared to the encryption of plain text or the encryption of the whole codestream,

the encryption of multimedia data is computationally more demanding and complex [5].

There are several reasons for this, including the increased data-volume (images or video-

files have in general a larger file-size than plain-text files) and the coding of image data,

which is necessary to compress the image data, but increases the encryption complexity.

Due to this fact, researchers have developed different approaches to solve the problem of

encrypting multimedia data [37, 38, 39]. Basically, researchers have developed methods

for encrypting multimedia data that can be applied at three different image-compression-

stages. These stages are: in the image-domain prior to coding; in the transform-domain

during coding; and in the codestream-domain after coding [37]. All these approaches are

more thoroughly discussed hereafter.

18

CHAPTER 3. MULTIMEDIA ENCRYPTION 19

3.1.1 Pre-Compression / Image-Domain Encryption

The first encryption approach performs image data encryption prior to encoding the image.

Compared to the other encryption approaches, Pre-Compresssion is very simple. This is

based on the fact that encryption can be performed on unmodified (not encoded) image

data, hence it is independent from any encoding processes.

However, this simple and fast approach has two major disadvantages. The first one is that

it significantly alters the image data statistics, hence making the ensuing compression less

efficient [37]) The other disadvantage is that the amount of data which must be encrypted

is higher at this stage than after or while coding [5].

3.1.2 In-Compression / Transform-Domain Encryption

The second encryption approach applies multimedia data encryption while encoding the

JPEG2000 image. As stated by Mao et al. [40], the encoding process offers multiple stages

for inserting the encryption method. Some of these stages are Wavelet Transform, after

or while Quantization and the Arithmetic Entropy Coder (for further details about these

stages see Section 2.2) [40, 5]. One benefit of this approach is that, thanks to the frequency

analysis property of the wavelet transform, the strength of the encryption can be controlled

by restricting the encryption to some frequencies [37]. Nevertheless, manipulating the

encoding process poses the risk of losing JPEG2000 format-compliance [5]. However, as

shown by Dufaux et al. [37], losing format-compliance can be prevented by designing

the encryption method according to the JPEG2000 standard. Another major drawback

of this method is based on the fact that no standard compliant encryption cipher (e.g.,

Advanced Encryption Standard AES) can be applied at this stage of encryption. This is

due to the fact that the encryption cipher needs to be adjusted in a way that it does

not compromise the JPEG2000 coding procedure. Hence, image data security cannot be

guaranteed. Furthermore, encrypting the image while encoding the image data can result

in additional overhead, due to altered image data statistics, which make the ensuing

compression less efficient [5].

3.1.3 Post-Compression / Codestream-Domain Encryption

Finally, the third encryption approach applies image encryption after encoding. More

specifically, this approach encrypts the coded JPEG2000 bitstream directly [37]. This

approach poses the advantage of being able to use any standardized cryptographic cipher

(e.g., AES) to encrypt the JPEG2000 bitstream. Therefore, image data security can be

guaranteed if the encryption method has been applied correctly [41]. However, in addition

CHAPTER 3. MULTIMEDIA ENCRYPTION 20

to encrypting In-Compression, this approach poses the risk of losing format-compliance

when encrypting the image data without taking the JPEG2000-marker segments into

account [40]. Thus, one of the drawbacks of this approach is that the codestream needs to

be parsed in order to identify which parts correspond to the regions to be encrypted, hence

entailing a larger computational complexity [37]. Another drawback this approach has in

common with the In-Compression approach is the additional overhead caused by storing

the encryption information (encrypted JPEG2000 packets, encryption-counter, etc.) [5].

3.2 Evaluating the Encryption Methods

As the approaches proposed for JPEG2000 encryption differ significantly in their field of

application (see Section 3.1), their level of security, the functionalities they provide and

their computational demands, a systematic evaluation needs to take place when comparing

the various encryption techniques [4]. Therefore, this section covers criteria by which

JPEG2000 encryption techniques can be evaluated and classified.

3.2.1 Format Compliance

Each multimedia compression standard defines its own codestream syntax, which includes

the placement of marker segments, the byte value of these marker segments and header

structures. This codestream syntax is sometimes called meta-information, which is re-

quired by a standard compliant decoder to decode the codestream properly. The objective

of format-compliant encryption is therefore to preserve these selected parts of the code-

stream in a way that the encrypted data is still format-compliant. If format-compliance is

desired, the classical näıve cryptographic approach (the whole codestream is encrypted)

cannot be employed as the meta-information would not be preserved. Hence a standard

compliant decorder would no longer be able to decode the encrypted bitstream, except

if the decryption of the encrypted bitstream has been performed beforehand [4]. There-

fore, this evaluation criterion is used to evaluate whether the proposed encryption method

fulfills the format specified by the multimedia standard in use (e.g., JPEG2000).

3.2.2 Overhead

In this context, overhead is defined as the increase of data after encrypting the image

data (given in bytes). There are several reasons for this, including altering the image

data statistics, which makes the ensuing compression less efficient. Another reason is the

additional data, which is required to decrypt the encrypted image parts (e.g., cipher-

key, position and length of encrypted bitstream section, encryption-counter, encryption-

CHAPTER 3. MULTIMEDIA ENCRYPTION 21

cipher-method, etc.). Because of this, minimizing the amount of additional data required

to decrypt the encrypted image parts is a crucial criterion for evaluating an encryption

technique [5].

3.2.3 Computational Demand

As encrypting multimedia data evokes an additional processing step while encoding the

multimedia data, this criterion will be outlined shortly in this subsection. The additional

processing step can either result in a longer computing time or in an increase of computa-

tional power required to complete the coding. Basically, the format-compliant encryption

of JPEG2000 images is computationally more demanding than a näıve encryption of the

whole codestream, as the structure of the JPEG2000 codestream needs to be preserved.

The employment of SOP and EPH markers (both are optional, but used in this work to

minimize overhead), which is used to indicate the position of the JPEG2000 packet body

data, reduces the cost of parsing the JPEG2000 codestream. Therefore, when using these

optional markers, the overhead and the computational demand can be limited to a certain

degree, as not every encrypted bitstream section needs to be stored [42].

3.2.4 Security

The security aspect, as the name suggests, is very important when it comes to evaluating

different encryption approaches. An encryption method which can be broken with negligi-

ble effort is of limited use when it comes to encrypting multimedia data. Because of this,

the encryption approaches proposed by the authors of In-Compression encryption meth-

ods (see Section 3.1.2) should be evaluated thoroughly, as these approaches need to use

ciphers, which are not as thoroughly tested or evaluated for security issues as the standard-

ized cipher AES (Advanced Encryption Standard), for instance. Another security aspect

which needs to be evaluated is based on the visual recognition of the encrypted parts of

an image by an un-authorized observer. Thus, if the image content is still recognizable

after encrypting the image, the whole encryption processes is useless [5].

Furthermore, as pointed out by Engel et al. [4], it is not sufficient to solely encrypt the

packet body of a JPEG2000 image, as the packet headers contain crucial (even visual)

information about the source image as well, which can be used to figure out what the

encrypted part of the image is all about. Therefore, this aspect needs to be taken into

account while evaluating an encryption approach.

CHAPTER 3. MULTIMEDIA ENCRYPTION 22

3.2.5 Transcodability

Another evaluation criterion for multimedia encryption methods is the transcodability.

Transcodability is the ability to convert the coded multimedia data into another format,

which might be necessary for some applications. Therefore, when encryption has been

applied to the codestream, it is important to note whether it is possible to convert the

codestream directly into another form, or if some intermediate processing step (decrypt-

ing the codestream – convert to other format – encrypt codestream again [34]) must be

executed beforehand. A successful and fast Transcodability is therefore strongly linked to

format-compliance, which, when preserved, might make the intermediate step unnecessary

[5].

3.2.6 Image Quality

As pointed out by Engel et al. [4] and Köckerbauer et al [43], the peak-signal-to-noise-ratio

(PSNR) is no longer an optimal choice for assessing image quality. However, the PSNR is

widely used because it is unrivaled in speed and ease of use [19]. The PSNR is calculated

as follows [44]:

PSNR = 10 log10(
M2

MSE
) (3.1)

where M is the maximum possible pixel value of the image, and MSE the mean squared

error defined as

MSE = 1
WH
·
W∑
i=1

H∑
j=i

(I(i, j)−O(i, j))2

The MSE is applied to two images. The original image O and impaired image I, both

with size W × H (width and height). Due to the fact that the PSNR is no longer an

optimal choice for assessing image quality, the authors Engel et al. [4] and Köckerbauer

et al [43] proposed to use the state-of-the-art image quality measure SSIM (structural-

similarity-index-measure) for getting an adequate image quality measure, which comes

closer to the quality assessment of the human visual system. The SSIM ranges, with

increasing similarity, ranges from 0 to 1, where 0 indicates that the images are very highly

dissimilar and 1 indicates that the two images are identical. The SSIM between two images

is calculated as follows (as described by Wang et al [45]):

SSIM(I, O) =
(2µIµO + c1)(2σIO + c2)

(µ2
I + µ2

O + c1)(σ2
I + σ2

O + c2)
, (3.2)

CHAPTER 3. MULTIMEDIA ENCRYPTION 23

where µI is the average pixel value of image I, σ2
I is the variance of pixel values of image

I and σIO is the covariance of I and O. The variables c1 = (k1M)2 and c2 = (k2M)2, with

k1 = 0.01 and k2 = 0.03, are used to stabilize the division.

Furthermore, as pointed out by Engel et al. [4], there is a measure specifically for the secu-

rity evaluation of encrypted images that separates luminance and edge information into a

luminance similarity score (LSS) and an edge similarity score (ESS). These measures are

based on the work proposed by Mao and Wu [40] that tried to find a measure matching

the optical characteristics of a human eye. As stated by Mao and Wu [40], the human

eyes can extract coarse visual information in images and videos in spite of a small amount

of noise and geometric distortion. Hence, they proposed these two metrics of evaluating

image quality, which were better than with the PSNR.

ESS is a score measuring the degree of resemblance of the edge and contour information

between two images on a block basis. It delivers a value ranging from 0 to 1, where 0

indicates that the edge information of the two images is highly dissimilar and 1 indicates

a match between the edges in the two images. Denoting e1i and e2i as the edge direction

indices for the i-th block in two images, respectively, the edge similarity score (ESS) for

a total of N image blocks is computed as follows [40]:

ESS =̂

∑N
i=1w(e1i, e2i)∑N
i=1 c(e1i, e2i)

(3.3)

w(e1i, e2i) =̂

0 if e1 = 0 or e2 = 0,

| cos(φ(e1)− φ(e2))| otherwise,

where φ(e) is the representative edge angle for an index e, and c(e1, e2) an indicator

function defined as

c(e1i, e2i) =̂

0 if e1 = 0 or e2 = 0,

1 otherwise,

The LSS determines the similarity of the luminance components and has a variable range

depending on the color depth and the chosen parameters. The Luminance similarity score

is calculated on block basis. Therefore, the two images are divided into non-overlapping

blocks in the same way. Then the average luminance values of the i-th block from both

images, y1i and y2i, are calculated. Therefore, Mao et al. [40] have defined the LSS as

follows:

LSS =̂
1

N

N∑
i=1

f(y1i, y2i), (3.4)

CHAPTER 3. MULTIMEDIA ENCRYPTION 24

Here, the function f(y1i, y2i) for each pair of average luminance values is defined as

f(y1i, y2i) =̂

1 if |xi − x2| < β
2
,

−α round(|xi−x2|
β

) otherwise,

where the parameters α and β control the sensitivity of the score. As stated by Mao

et al. [40], image comparison may be corrupted by noise during transmission or minor

pixel perturbation. Therefore, they proposed the scaling factor α and the quantization

parameter β to improve resistance to noise and minor perturbation. A negative LSS value

indicates substantial dissimilarity in the luminance between the two images. For example,

as stated by Köckerbauer et al. [43], this yields for an 8 bit per pixel image (α = 0.1 and

β = 3) an LSS range of -8.5 to 1, where -8.5 indicates the worst image quality and 1

indicates that the images are identical.

3.3 JPEG2000 RoI Encryption

This section gives an overview of JPEG2000 format-compliant RoI encryption approaches

applied at codestream level. This section is divided into three main parts. The first part

describes three different approaches used to detect the data packets belonging to an RoI.

The second part handles the JPEG2000 packet body encryption. Finally, the third part

focuses on encrypting the packet headers, which have been shown by Engel et al. [4] to

contain crucial information about the source image. However, as mentioned in the Sec-

tion 1.1, this work is based on Stubhann’s implementation of a bitstream RoI encryption,

which follows an approach proposed by Hämmerle-Uhl et al. [19].

3.3.1 Detect RoIs based on Max-Shift

The Max-Shift method is defined as the standard RoI coding method in the JPEG2000

Part 1 compression standard for still images [9]. As mentioned in Section 2.3, an RoI can

be of arbitrary shape. The image coefficients belonging to the RoI are shifted by the Max-

Shift method, so that the bits associated with the RoI are placed in higher bit-planes than

the bits associated with the background. For decoding the JPEG2000 image, the scaling

value is extracted from the JPEG2000 RGN-segment, which is used while decoding the

JPEG2000 image to up-scale the image coefficients smaller than the scaling value, as

these coefficients belong to the background. The RoI scaling procedure leads to the fact

if quality progression bitstream ordering has been applied to the JPEG2000 codestream

that all data packets belonging to an RoI are aligned at the beginning of the JPEG2000

codestream. Because of this, it is sufficient to store only the length of the encrypted

CHAPTER 3. MULTIMEDIA ENCRYPTION 25

(a) 4x4 (b) 8x8 (c) 16x16 (d) 32x32 (e) 64x64

Figure 3.1: Example RoI Max-Shift encryption with varying code-block-sizes (surveillance image cam1 1
from the SCFace image database [46], - image size = 75x100 pixel, RoI = 36x72 pixel and Wavelet Decom-
position Level = 0)

codestream. Furthermore, the decoder is able to extract the encrypted JPEG2000 data

packets belonging to an RoI by parsing the codestream (packet body data is embraced

by Start of Packet (SOP) and End of Packet (EOP) marker segments) [39]. Figure 3.1

depicts some sample results caused by varying code-block-sizes.

However, the major drawback of this approach is that the bitstream needs to be encoded

in quality progression bitstream order and the SOP and EOP marker segments need to

be used while encoding the image [9]. If any other JPEG2000 bitstream ordering has

been used or the mentioned marker segments have not been embedded while encoding the

image, the overhead caused by storing the encryption specification will be much higher.

Hence, every start- and end-point of an RoI data packet needs to be stored.

3.3.2 Detect RoIs by Codeblocks

The second RoI detection approach relies on the JPEG2000 code-block image structure.

Hence, everything required to detect the RoI accurately is the code-block-size and the

Wavelet decomposition level used while encoding the JPEG2000 image. Furthermore, it

should be noted that the initial encoding code-block-size is defined for the first resolu-

tion level (lowest resolution) and increases by the factor 2 for each performed Wavelet

decomposition (resolution level). Prior to encrypting any code-blocks, it needs to be de-

termined which code-blocks in which resolution levels represent the RoI’s spatial extent.

However, to determine the code-blocks belonging to an RoI accurately, the bitstream or-

dering used while encoding the JPEG2000 image needs to be taken into account. The

bitstream ordering influences the alignment of the code-block within the JPEG2000 code-

stream. After the code blocks belong to the RoI are detected, they can be encrypted. The

decryption of the encrypted JPEG2000 code-blocks is performed in the same way, pro-

vided that the same information (initial code-block-size, used Wavelet-levels) required to

encrypt the code-blocks is available. Furthermore, it should be noted that this encryption

approach features the possibility to scale the encryption quality, as each code-block of

each resolution and subband can be accessed separately [39].

CHAPTER 3. MULTIMEDIA ENCRYPTION 26

3.3.3 Detect RoIs by Tiles

Finally, the third RoI detection approach relies on the fact that each JPEG2000 image

is further divided into non-overlapping rectangular tiles. Similar to the codeblock RoI

detection method, this method utilizes the fact that tiles can be used to access certain

image regions. Prior to detecting the tiles belonging to an RoI, it should be noted that

inside the JPEG2000 codestream the tiles are always ordered in the same way. Due to

the fact that the source image is partitioned into non-overlapping tiles, these tiles need

to be aligned somehow in the JPEG2000 codestream. Therefore, the tiles are ordered

starting by the top left corner of the source image and continuing until the bottom right

is reached. However, very small tile sizes, which might be required to accurately cover the

RoI, negatively influence the compression efficiency. The encryption of the RoIs, as stated

by Hämmerle-Uhl et al. [19], is performed quite similarly to the RoI detection method

outlined above. At first, the JPEG2000 codestream is parsed until a Tile Header (TH)

is found. Afterwards, it is checked whether the tile belongs to the RoI. Hence, if the tile

belongs to an RoI, all packets belonging to the tile will be encrypted. However, while

encrypting the packets, attention needs to be paid to the JPEG2000-marker segments,

which should not be modified due to the fact that otherwise, JPEG2000 format-compliance

may no longer be given. Due to the tile marker segments, parsing the codestream is less

complex and therefore less computationally demanding than the Codeblock method (see

Subsection 3.3.2). However, the major disadvantage of this method is that each tile-header

adds additional overhead to the codestream. This leads to low compression efficiency, for

small tile size in particular [39].

3.3.4 Packet-Body Encryption

As stated by Stütz and Uhl [41], all format-compliant codestream encryption methods

proposed thus far apply the RoI encryption on the JPEG2000 packet bodies containing

the compressed image data. The packet bodies are responsible for storing the encoded

image coefficients. All the other data stored within the JPEG2000 codestream are used

to store additional information, e.g., compression parameters, data structure, etc., which

is used to decode the image. However, the JPEG2000 codestream syntax imposes certain

requirements on the packet data format, which cannot be guaranteed by any standard

encryption method (no additional marker segments, no change in packet size, and no

packet is allowed to end with the byte value 0xFF). Therefore, the iterative encryption

approach proposed by Wu and Deng [47] is capable of encrypting 100 % of the packet

body data while not producing any additional markers or harming format-compliance.

CHAPTER 3. MULTIMEDIA ENCRYPTION 27

The basic encryption algorithm proposed by Wu and Deng [47] looks as follows:

1. Encrypt the packet body

2. Check if it contains a two byte sequence in excess of 0xFF8F

If yes, go to 1 and re-encrypt the encrypted packet body

3. Check if it ends with 0xFF

If yes, go to 1 and re-encrypt the encrypted packet body

4. Output the format-compliant codestream containing the encrypted packet body data

3.3.5 Packet-Header Encryption

This subsection discusses format-compliant packet header encryption. As shown by Engel

et al. [4], the packet-header contains information of the source image. However, even if

the encoded image coefficients are stored in an encrypted form in the packet-bodies, it is

possible to extract information from the packet headers. Particularly for high-resolution

images or small codeblock-sizes (see Figure 3.2), the risk of not encrypting the leading

zero bitplanes (LZB) in the packet headers can harm content security/confidentiality.

When applying the packet-header encryption proposed by Engel et al. [4], no influence on

compression performance is observed. Furthermore, if the visual information contained in

LZB information is effectively encrypted by the proposed encryption approach, content

security/confidentiality can be achieved. However, as stated by Engel et al. [4], even if

packet body based encryption and format-compliant header encryption are combined,

security under Indistinguishability under chosen-plaintext attack can still not be achieved

as the packet borders are preserved. The proposed format-compliant header encryption

method invokes only small computational overhead, due to the fact that the packet header

data accounts only for a small fraction of the actual codestream. For a more detailed

explanation of the packet-header encryption, reference is made to Engel et al. [4]

(a) Original, image
2160×2160 pixel [4]

(b) Codeblock-size
16×16 [4]

(c) Codeblock-size
32×32 [4]

(d) Codeblock-size
64×64 [4]

Figure 3.2: The figures above show the effect of extracting the visual information of JPEG2000 packet
headers from its leading zero bitplanes (LZB). The example is based on a high resolution source image
(see Figure 3.2a). As seen in the figures, the code-block-size used while encoding the JPEG2000 image
contributes to the visual information extractable from the packet-headers (see Figure 3.2b, 3.2c, 3.2d) [4]

Chapter 4

Data Embedding Techniques

Embedding data into a media file can basically be performed in two closely related ways,

namely steganography and watermarking. These embedding techniques have a great deal

of overlap and share many technical approaches. Information hiding, which is a general

term including the subdisciplines watermarking and steganography, have recently become

more and more important in a number of different application areas (e.g., Digital audio,

video, and pictures) [48, 49, 13].

This chapter gives a basic understanding of steganography, which is used for secret com-

munication and watermarking. Watermarking is used for content protection, copyright

management, content authentication and tamper detection. Furthermore, this chapter

describes some data embedding techniques targeting the JPEG2000 standard.

4.1 Watermarking

As mentioned in the introduction, watermarking is a subdiscipline of information hiding

which is used to hide proprietary information in digital media such as photographs, digital

music, or digital video [13]. With the increased distribution of digital media through the

internet, the unauthorized use of these has increased dramatically and causes billions of

euros of loss every year for the media industry. Therefore, digital watermarking has been

proposed as a promising technique for information assurance in digital media [50].

However, applying watermarking techniques to the digital media can cause some perma-

nent distortion. Hence, the original media file may not be able to be reversed exactly,

even after the hidden data have been extracted from the media file. Because of this,

digital watermarking techniques can primarily be referred to lossy data hiding methods.

Furthermore, as stated by Cox et al. [13], most of the watermarking algorithms reported

in the literature are lossy. This section provides a short description about the watermark-

ing process, the main requirements by which watermarking algorithms can be sorted and

some of the watermarking-applications.

28

CHAPTER 4. DATA EMBEDDING TECHNIQUES 29

4.1.1 Digital Watermarking Process

The process of embedding the watermark (e.g., copyright logo, meta data, etc.) in a media

object (e.g., image, video, audio, or any other digital content) is called watermarking.

Therefore, a watermark can be considered as a kind of signature that reveals the owner

of the multimedia object.

A watermarking system is usually split into two main processing steps, which are embed-

ding and detecting. The embedding of a visible or invisible watermark in a multimedia

object is performed by a watermarking algorithm, which decides about the embedding lo-

cation within the multimedia object. Once the watermark is embedded, it can be attacked

in several ways. This is based on the fact that the multimedia object can be processed dig-

itally with ease and at negligible cost. However, even if a person makes any unintentional

modification (e.g., filtering, resampling, compressing, etc.), this is considered an attack.

Hence, the watermark should be very robust against any unintentional modification a

person may execute when using the multimedia object. The watermark can be extracted

using the secret key for embedding the watermark. If the extracted watermark resembles

the embedded watermark, it can be assumed that no attack has taken place. To check

whether an attack against the watermark has taken place, either the original-watermark

can be used to extract and compare the embedded-watermark (non-blind watermarking)

or a correlation measure can be used to detect the strength of the watermark signal from

the extracted watermarked multimedia object (blind watermarking). Therefore, a statisti-

cal correlation test is used to determine the existence of the watermark, solely by knowing

the key used during the embedding process [13].

Figure 4.1 shows the basic steps of a digital watermarking process.

Figure 4.1: Digital Watermarking Process [13]

CHAPTER 4. DATA EMBEDDING TECHNIQUES 30

4.1.2 Requirements of Digital Watermarking

Following are some properties of the watermarking systems. Based on these properties,

the overall efficiency of a watermarking technique can be judged [13].

1. Transparency or Fidelity: This is basically the perceptual similarity between the

original and the watermarked version of the digital media object [51]. Therefore,

one evaluation criterion of the watermarking algorithm is that the quality of the

watermarked digital multimedia object should not be degraded. If visible distortions

are introduced, the commercial success of the watermarking approach can be reduced.

2. Robustness: This is the ability to detect the watermark after common signal pro-

cessing operations have been applied to the digital media object [51]. There are

many unintentional watermark attacks (e.g., filtering, scaling, cropping, compress-

ing, etc.) which are not intended to destroy or attack the watermark. Because of this,

watermarks should be invariant to a variety of such attacks (unintentional and inter-

national), which makes robustness the most important requirement of a watermark.

3. Capacity or Data Payload: This is the number of bits a watermarking algorithm

is capable of embedding into a digital media object [51]. Therefore, this watermarking

property describes the maximum amount of data that can be embedded as a water-

mark into the image. Furthermore, it ensures a successful detection and extraction of

the watermark. The watermark capacity varies from application to application, but,

as stated by Potdar et al. [13], it should at least be able to carry enough information

to represent the uniqueness of the multimedia object.

4.1.3 Watermarking Applications

Watermarking can be used in a variety of application areas. Some of the main applications,

as stated by Vidysagar et al. [13], are:

• Copyright Protection: This is by far the most prominent digital watermark ap-

plication these days. Considering the fact that more and more multimedia objects

have been illegally redistributed over untrusted networks such as the internet or any

peer-to-peer (P2P) network, a solution needs to be found to solve this issue. Due to

this reason, copyright protection tries to counteract the illegal distribution of multi-

media objects by embedding watermarks within the digital object. One example of

how watermarking can be used to counteract the illegal distributions of multimedia

objects is by applying content-aware networks (p2p) that incorporate watermarking

technologies to report or filter out copyrighted material from such networks.

CHAPTER 4. DATA EMBEDDING TECHNIQUES 31

• Authentication: In some applications, it is required to verify the ownership of

the content. One way of achieving this is by embedding a watermark and providing

the owner with a private key which gives him access to the message. Hence, the

authentication is achieved by comparing the watermark embedded in the multimedia

object and the pre-stored watermark (the original watermark) [52].

• Content Archiving: A digital watermark can be used to embed a digital object

identifier or a serial number into the multimedia object by which the archiving of

digital contents (e.g., images, audio- or video-files) is supported. Furthermore, wa-

termarks can be used to support the automated classifying and organizing of digital

contents. Commonly, digital contents are identified by their file name. This is a very

fragile technique compared to to embedding a digital object identifier within the

multimedia object itself, as file names can be changed very easily.

• Meta-data Insertion / Content-Labeling: Watermarks can be used to pro-

vide additional information about the multimedia object. This process of embedding

information into the multimedia object is called Content-Labeling or Meta-data in-

sertion (additional information describes the data further). For example, images can

be labeled with its (information describing the image) content, which consequently

can be used by search engines to get additional information about the image. Other

examples of content-labeling might be adding the lyrics or the name of the singer to

an audio file, a journalist using photographs of an incident to insert the cover story

of the respective news, or even medical x-rays being used to store patient records.

• Broadcast Monitoring: As the name suggests, broadcast monitoring is a technique

used to verify whether the content (e.g., advertisement) that was supposed to be

broadcasted (on TV or radio) has really been broadcasted or not. To fulfill this

requirement, watermarking can be used for broadcast monitoring. This feature helps

the advertising companies see whether their advertisements appeared at the right

time and for the right duration. Hence, this application has the potential to be a

financially successful watermarking application.

• Tamper Detection: Fragile watermarks can be used to detect tampering in multi-

media objects. If the fragile watermark is degraded or destroyed in any way, it indi-

cates the presence of tampering. Hence, this is a sign of no longer trusting the digital

content. This feature is very important for applications such as medical imagery and

satellite imagery, as these applications rely on highly sensitive data. Another field

of application where tamper detection might be useful is the court, where digital

CHAPTER 4. DATA EMBEDDING TECHNIQUES 32

watermarks could be used as a forensic tool to prove whether an image has been

tampered with or not.

• Digital Fingerprinting: Digital Fingerprinting is a technique used to detect the

owner of the digital content by embedding a unique identifier within the multimedia

object. Therefore, similar to human fingerprints, the digital fingerprints are unique

to the owner of the digital content. A single multimedia object can have different

fingerprints as they might belong to different users.

4.2 Steganography

Steganography refers to the science of invisible communication. The word steganography

is derived from the Greek words stegos meaning cover and grafia meaning writing, defin-

ing it as covered writing. The goal of steganography is therefore to prevent the detection

of the message itself by an observer (person not privileged to see the message), unlike

cryptography, where the goal is to secure communication from an eavesdropper. To ac-

complish this task, steganography hides information in existing parts of the multimedia

object (e.g., uses the LSB to hide the secret message), with the intention of hiding the

existence of the communicated message [53, 14, 54].

The main difference between steganography and watermarking is the absence of an active

attack. This is based on the fact that in steganography the message is transmitted hidden

and nobody knows about its presence, except for the communicating parties. However, in

conjunction to this work, the host signal (e.g., image, audio file, etc.) cannot be chosen

freely, as the encryption specification needs to be stored within the JPEG2000 codestream.

Hence, a potential attacker knows about the presence of a hidden message and can either

destroy it (by rearranging image coefficients, for example) or try to detect and read it.

Because of this, the concepts of steganography cannot be used by this work.

In watermarking, which can be used for copyright protection or authentication (for more

applications see 4.1.3), a potential attacker knows about the presence of a watermark.

This leads to the fact that watermarking applications are constantly exposed to attacks

that would remove, invalidate or forge the watermark. In steganography, there is no such

active attack, as there is no value associated with the act of removing the information

hidden in the content of the multimedia object. Although steganography is not exposed

to constant attack as watermarking is, it should be robust against accidental distortions

(e.g., cropping, resampling, filtering, etc.) [14].

This section provides a short description about the steganography concept and the main

requirements by which a steganography algorithm can be evaluated.

CHAPTER 4. DATA EMBEDDING TECHNIQUES 33

4.2.1 Steganography Concepts

Based on the paper proposed by Kharrazi et al. [14], this section gives an overview of the

underling concepts and definitions used in the field of steganography. Therefore, this sec-

tion starts by describing the underling concepts of steganography based on the prisoners

problem [55], where Alice and Bob are two inmates who wish to communicate in order

to hatch an escape plan. Although all the messages exchanged between Alice and Bob

are examined by the warden called Wendy, Alice wants to send a secret message to Bob

(see Figure 4.2). In order to achieve this, Alice embeds m (secret/hidden message) into a

cover-object c, and obtains a stego-object s, which is sent to Bob.

This leads to the following definitions, used in steganography:

• Cover-object: This is the object used to carry the message. Many different object-

types can be used to embed the secret message. Some examples are images, audio,

and video, as well as file structures and html pages, etc.

• Stego-object: After embedding the secret/hidden message m into the cover object,

the resulting object is called stego-object, which carries the message.

• Steganalysis: This refers to the statistical tests or techniques that help Wendy

distinguish between cover-objects and stego-objects. When making this distinction,

Wendy does not know the secret key Alice and Bob may be sharing and the warden

cannot be sure about the specific algorithm they might be using.

However, it is generally considered that the algorithm in use between Alice and Bob is

publicly known, but the key used by the algorithm is kept as a secret between the two

parties. This security-assumption is also known, as the Kerchoff’s principle in the field of

cryptography, which states that while the algorithm can be publicly known, as long as

the key is secret, nobody will be able to decrypt the encrypted message. Wendy has no

knowledge about the secret key the communication partners Alice and Bob share; however

she might be aware of the algorithm they use for embedding the hidden messages.

Wendy, the warden, has the possibility to either passively or actively examine the mes-

sages exchanged between Alice and Bob. The difference between a passive and an active

examination lies in the fact that, in a passive examination, the warden simply tries to de-

tect any hidden message by applying steganalysis. In an active examination, Wendy can

alter messages deliberately, even though she does not see any traces of a hidden message.

This is a precaution applied to destroy any potential hidden message exchanged between

Alice and Bob. However, the amount of changes made to the multimedia object is limited,

as the multimedia object should not show significant visual quality changes.

CHAPTER 4. DATA EMBEDDING TECHNIQUES 34

Figure 4.2: General model for steganography [14]

4.2.2 Requirements of Digital Steganography

To evaluate different stenographic algorithms, the authors Morgek et al. [56] and Wei-

Ming [54] have proposed some requirements by whitch a steganography algorithm can be

evaluated and compared with others.

• Imperceptibility: The invisibility of a stenographic message embedded into a mul-

timedia object is the foremost requirement of a stenographic algorithm. Therefore,

the information needs to be embedded in a sophisticated way to avoid degrading the

perceptual quality of the multimedia object (user cannot see or hear the existence of

a hidden message). To achieve this, many information hiding techniques make use of

certain human perceptual models in the embedding process. If this requirement is not

fulfilled or destroyed by any un-/ or intentional attack, the algorithm is compromised.

• Capacity: This property describes the maximum amount of data that can be embed-

ded into the image to ensure invisibility of the hidden message. Unlike watermarking,

which needs to embed only a small amount of data (e.g., copyright-, authentication-,

archiving-information, etc.) into a multimedia object, steganography aims at hiding

a whole communication, meaning that it requires a sufficient embedding capacity.

• Robustness against manipulation: A steganography algorithm should be resis-

tant to multimedia object manipulation (e.g., rotating, filtering, resampling, etc.),

which can be performed while processing the object. Depending on the manner in

which the message is embedded, these manipulations may destroy the hidden mes-

sage. Because of this, it is preferable for stenographic algorithms to be robust against

CHAPTER 4. DATA EMBEDDING TECHNIQUES 35

either malicious or unintentional modifications of the multimedia object.

• Robustness against statistical attacks: By using statistical test (i.e. steganal-

ysis), an attacker tries to detect a hidden message in a multimedia object. Many

simple stenographic algorithms leave a so called “signature” when embedding infor-

mation into the multimedia data. Hence, the signature can be detected with ease by

applying statistical tests to the multimedia object. Therefore, the robustness against

statistical attacks is another requirement a stenographic algorithm should exhibit in

order to be imperceptible and not detectable using statistical tests.

• Independent of file format: Constantly using the same file format for inserting

hidden messages might be suspicious. Therefore, a powerful stenographic algorithm

must cope with multiple file formats, which means the algorithm needs to be able

to embed information in multiple file types. Furthermore, the ability to use different

file formats solves the problem of converting the multimedia object into the suitable

file format or of find a suitable object at the right moment.

• Unsuspicious files: However, there is another requirement a steganography algo-

rithm needs to fulfill in order to be difficult to attack and/or not to look suspicious.

This requirement includes all the multimedia-object-characteristics that might have

changed due to embedding the hidden message. For instance, an abnormal file size

might be a sign of an embedded message, which can result in further investigation

by an attacker.

4.3 Embedding Binary Data into the JPEG2000 Codestream

In addition to watermarking (see Section 4.1) and steganography (see Section 4.2), ad-

ditional approaches for embedding RoI information into the JPEG2000 bitstream exist.

Some of them are discussed in this section, with respect to the following aspects:

1. Format compliance: the strict fulfillment of all syntactical and semantically re-

quirements imposed by the multimedia standard (e.g., JPEG2000) [57, 58]

2. Losslessness: the exact preservation of all (visible) picture data [58]

3. Length-preservation: the guarantee that the picture’s file size does not change

(suitable for length-preserving encryption methods) [58]

The following JPEG2000 binary data embedding methods are described with regard to

the aforementioned aspects. All RoI embedding methods proposed in this section are

summarized in Table 4.1.

CHAPTER 4. DATA EMBEDDING TECHNIQUES 36

4.3.1 Embed Data into the JPEG2000 COM-Segment

JPEG2000 Comment marker segment (COM), which is optional in the JPEG2000 stan-

dard, is used to embed unstructured data (e.g., text) into JPEG2000 codestream. To be

more precise, the COM-segment is capable of storing up to 65530 payload bytes, plus its

marker (2 bytes for COM: 0xFF64), length of marker segment (2 bytes for Lcom: ranging

from 4 to 65534 bytes) and the registration values (2 bytes for Rcom: indicates the used

data type), totaling 65534 bytes, in the JPEG2000 COM-segment [9].

As recommended by the JPEG2000 standard, the COM segment should only be used to

embed informative information, such as software version or any copyright information.

Furthermore, they explicitly recommend not to use the COM-segment for embedding

any data necessary to decode or properly interpret a JPEG2000 encoded image. Hence,

neither any meta data required to properly interpret and exploit the compressed imagery

nor any information that might be used to improve JPEG2000 decoder performance shall

be placed within a COM-segment [9].

Although embedding decoding information into the JPEG2000 COM-segment is not rec-

ommended by the JPEG2000 standard, this work will employ it as an additional method

to embed the encryption specification into the JPEG2000 codestream. However, the risk

of losing the embedded data is high, as removing the meta data or converting the image to

another file-format will delete the encryption specification completely (if no intermediate

processing step to extract and to embed the data into the other file are conducted).

4.3.2 Non-Format-Compliant Data Embedding

A non-format-compliant way to losslessly embed the encryption specification into the

JPEG2000 codestream is to either insert the data at the very beginning of the file or

at its end. Therefore, embedding the encryption specification prior the first marker is

achieved by embedding the data right before the Start of Codestream (SOC) marker,

which is indicated by the value 0xFF4F in the JPEG2000 codestream. The encrpytion

specification is embedded after the End of Codestream (EOC) marker, which is indicated

by the value 0xFFD9. The SOC- and the EOC-marker are both required and should only

occur once in the JPEG2000 codestream [9].

However, adding data in this way is not JPEG2000 format-compliant, as the standard

specifies that the JPEG2000 codestream must start with the SOC-marker and end with

the EOC-marker. Furthermore, as pointed out by Engel et al. [58], special care must be

taken in order to not insert additional marker segments. Hence, payload bytes exceeding

0xFF8F must be escaped. Otherwise, they would be interpreted as additional markers.

CHAPTER 4. DATA EMBEDDING TECHNIQUES 37

Depending on how escaping is done, this could lead to additional overhead. Due to the

fact that embedding the encryption specification in this way is not JPEG2000 format

compliant, most image viewers and editors will not be able to open files edited in this

way [58]. This non-format-compliant binary data embedding method has the advantage

of being computational less demanding and it poses no risk for degrading the perceptual

image quality, as no JPEG2000 image coefficients are modified.

4.3.3 Length-Preserving Data Embedding

Finally, the third embedding approach evaluated by this work embeds the encryption

specification into the JPEG2000 bitstream by substituting JPEG2000 image coefficients

with the encryption specification. Hence, by using this method, a JPEG20000 standard

compliant decoder is still able to decode the image without any problems.

As mentioned above, this embedding approach embeds the encryption specification into

the JPEG2000 codestream by overwriting certain parts of the bitstream. Therefore, for

not overwriting the image coefficient belonging to the RoI, we have decided to embed

the encryption specification at the very end of the JPEG2000 codestream, just before the

EOC-marker concludes the codestream. This bitstream location has been selected due

to the fact, quality progression bitstream ordering (as mentioned in previous chapters),

which implies that all data packets belonging to an RoI are aligned at the beginning of

the codestream.

Embedding the encrypting-specification into JPEG2000 codestream by replacing image

coefficients leads to numerous benefits, such as length-preservation, format-compliance

and efficient data embedding. However, this simple and fast data embedding approach

has one drawback, one of altering the perceptual image quality. The degree to which the

embedded data influences the perceptual image quality is evaluated in Chapter 7.

Approach Format-compliance Losslessness No Overhead

COM-Segment X X ×
Before-SOC-Marker × X ×
After-EOC-Marker × X ×
Data Embedding X × X

Table 4.1: This table lists the proposed embedding approaches and their characteristics concerning format-
compliance, image-quality (losslessness) and overhead (length-preservation), which indicates whether the
length of the JPEG2000 codestream has been changed while embedding the encryption specification.

Chapter 5

Automated RoI Detection

This chapter provides an overview of the automated RoI detection methods we have

proposed. We have identified five different RoI detection approaches, with which it may

be possible to detect the encrypted image region accurately.

The first three methods proposed by this work are concerned with detecting the RoI by its

entropy, variance or by a defined threshold. For all three scenarios, the image containing

the encrypted image region needs to be spitted into smaller non-overlapping rectangular

image blocks. These image blocks are further used to calculate the variance/entropy or

whether the image block contains any image value exceeding the threshold.The final two

methods proposed by this work rely on detecting the encrypted image region by using

edge detectors. Therefore, the Sobel- and the Canny-edge-detector have been chosen to

detect the edges within an image.

5.1 Detect RoI by Entropy

In information theory, the concept of Shannon’s entropy is used as a measure of uncer-

tainty in a random variable [59]. The entropy of a random variable is defined in terms

of its probability distribution and can be shown to be a good measure of randomness or

uncertainty [60]. Therefore, this section describes the fundamentals of entropy and the

reasoning, why we have chosen the entropy to detect the encrypted image region.

5.1.1 Definition

Shannon denoted the entropy H of a random variable X with a finite number of possible

values x1, x2, . . . , xn and with probabilities p(xi) respectively such that p(xi) ≥ 0, i =

1, 2, . . . , n
∑n

i=1 = 1 [61].

H(X) = −
n∑
i=1

p(xi) log2 p(xi) (5.1)

38

CHAPTER 5. AUTOMATED ROI DETECTION 39

5.1.2 Reasoning for Choosing the Entropy

As pointed out by Wu et al.[62], an encrypted image has a random-like image characteris-

tic. Because of this, the entropy of an encrypted image region needs to be higher than in

the unencrypted image regions. Figure 5.1 shows the effect of encrypting a source image

on the entropy. Therefore, as evident from the figures below, the entropy is low in unen-

crypted images (see Figure 5.1a) and increases with random-like images (see Figure 5.1d).

(a) (b) (c) (d)

Figure 5.1: The figures above show some Entropy examples: Figure 5.1a - H = 0,0 bits, Figure 5.1b -
H = 1,0 bits, Figure 5.1c H = 2,0 bits, Figure 5.1d - H = 2,0 bits,

5.2 Detect RoI by Variance

In probability theory and statistics, the variance is a measure of how far a set of numbers

is spread out. In other words, the variance describes how far the numbers (e.g., lumi-

nance values of a pixel) lie from the mean value µ (i.e. average of all pixel values) of the

data set. Therefore, the variance is a mathematical expectation of the average squared

deviations from the mean. Hence, the variance has the advantages of mathematical and

computational simplicity compared to other probability distribution descriptors [63].

5.2.1 Definition

The variance of X with a finite number of possible values x1, x2, . . . , xn and with proba-

bilities p(xi) respectively such that p(xi) ≥ 0, i = 1, 2, . . . , n
∑n

i=1 = 1 is given by:

V ar(X) = σ2 =
n∑
i=1

p(xi) · (xi − µ)2 (5.2)

5.2.2 Reasoning for Choosing the Variance

Based on the assumption that an encrypted image region should have an increased vari-

ance, we have chosen the variance to detect the encrypted image region automatically.

This assumption is based on the fact that the encryption algorithm, used to encrypt the

CHAPTER 5. AUTOMATED ROI DETECTION 40

image region, spreads the pixel values over the whole luminance range (e.g., in an 8 bit im-

age, the luminance value ranges from 0 to 255). Therefore, the probability that two pixel

located next to each other differ in their luminance value by several orders of magnitude

is more likely than in an unencrypted image. Hence, distinguish between unencrypted-

and encrypted-image regions should be possible.

5.3 Use Edge Detector to Detect RoI

Edge detection is an image processing technique used to mathematically detect the pixels

in digital images at which the image brightness changes sharply. In other words, the

objective of these methods is to detect edges by a strong intensity of contrast - a jump

in intensity from one pixel to the next. Therefore, edge detectors significantly reduce the

amount of image data and filters out useless information (data not belonging to an edge),

while preserving the important structural properties in a digital image [15, 64].

As stated by Green [15], there are two main edge detection categories used to categorise

the majority of different edge detection methods. These categories are gradient and Lapla-

cian. The gradient methods determine the location of edges by looking for maximum and

minimum in the first derivative of the image, whereas the Laplacian methods use the zero

crossings in the second derivative of the image to detect edges.

As depicted in Figure 5.2a, the edge has the one-dimensional shape of a ramp and, by

calculating the derivative of the source image, can highlight its location. Therefore, Fig-

ure 5.2b represents the first derivative (used by the gradient methods) and Figure 5.2c

shows the second derivate (used by the Laplacian methods) of the source signal.

(a) Edge Detector – Input
Signa [65]l

(b) Edge Detector – First
Derivative [65]

(c) Edge Detector – Second
Derivative [65]

Figure 5.2: The figures above show the effect of applying the first- or the second-derivative to a source
signal. Figure 5.2a shows a ramp edge, which is used as source signal, to calculate the 1st- and 2nd
derivative. Figure 5.2b shows the first derivative. This approach is used by the gradient methods (e.g.,
Canny, Sobel). Figure 5.2c depicts the second derivative, which is used by the Laplacian edge detection
methods to detect edges by looking for zero crossings [65].

CHAPTER 5. AUTOMATED ROI DETECTION 41

5.3.1 Sobel Edge Detection

Similar to the Canny algorithm, the Sobel Edge Detection operator is used to detect

image-edges. In order to fulfill this objective, the Sobel operator measures the 2-D spatial

image gradient. This is done by applying a pair of 3×3 convolution masks, one estimating

the gradient in the x-direction (used for the columns) and the other estimating the gradient

in the y-direction (used for the rows). The convolution masks are depicted in Figure 5.3,

whereby the two masks differ from each other by simply rotating one by 90◦ .

(a) (b)

Figure 5.3: Masks used by Sobel Edge Detector: Gx (a) and Gy (b) [15]

As the convolution masks are usually much smaller than the actual image, the masks are

slid over the image, manipulating only one pixel at a time. These masks are designed to

respond best to edges running vertically and horizontally relative to the pixel grid. The

property of detecting vertical and horizontal edges best represents in conjunction to this

work an advantage, as all the encrypted RoIs are limited to vertical and horizontal edges.

As pointed out by Raman and Himanshu [64], the masks (Gx and Gy, as depicted in

Figure 5.3) can be applied separately to the source image. Thereby they produce separate

measurements of the gradient component in each orientation. Hence, the measurements

can be combined in order to determine the absolute magnitude of the gradient at each

point. The gradient magnitude is given by:

|G| =
√
G2
x +G2

y (5.3)

However, due to performance reasons, an approximation of the gradient magnitude is

typically computed.

|G| = |Gx|+ |Gy| (5.4)

As mentioned above, the mask is slid over an area of the source image and manipulates

only one pixel at a time. After changing that pixel’s value, the mask shifts one pixel to

the right and continues to the right until it reaches the end of the row. When the end of

the first row is reached, the mask continues at the second row to manipulate the pixel’s

value and shifts one pixel to the right and so on, until the end of the image is reached.

Figure 5.4 depicts how the mask is slid over the source image and how the output pixel’s

values are computed. Therefore, the image region, which is processed by the Sobel mask,

CHAPTER 5. AUTOMATED ROI DETECTION 42

and its corresponding output pixel are highlighted by a green border. Formula 5.5 is used

to calculate the output pixel.

(a) Source Image (b) Mask (c) Output Image

Figure 5.4: This figure demonstrates how the Sobel mask is slid over an input image and how the pixel
values are changed (see Formula 5.5)

Formula 5.5 shows how a particular pixel in the output image would be calculated. There-

fore, the center of the mask is placed over the pixel, which will be manipulated. However,

it should be noted that all the pixels located at the image borders (first-, last-column and

first-, last-row) cannot be used by the Sobel edge detector, due to the fact that the 3× 3

mask cannot place its center over these pixels.

b22 = (a11 ·m11) + (a12 ·m12) + (a13 ·m13) +

(a21 ·m21) + (a22 ·m22) + (a23 ·m23) +

(a31 ·m31) + (a32 ·m32) + (a33 ·m33)

(5.5)

5.3.2 Canny Edge Detection

Although the Canny edge detector is more complex than the Sobel edge detector, its

superior performance might result in a superior encryption detection. The superior per-

formance results are based on the fact that the Canny edge detector achieves a very low

error rate and the localization of the edge points is done very accurately. In other words,

the Canny Edge Detection algorithm is able to differentiate between edges and non-edges

with a low error rate. Furthermore, the distance between the edge pixels determined by

the detector and the actual edge is at a minimum. In order to achieve this, the Canny

edge detector combines a number of techniques to detect and refine edge decisions. The

main processing steps are highlighted in the following [15, 64]:

1. The first step handles the noise reduction. Therefore, the source image is filtered by

a Gaussian filter. Due to the fact that the Gaussian smoothing mask (similar to the

Sobel mask) is typically much smaller than the actual image, the mask is slid over

the source image, manipulating a square of pixel at a time. Hence, the larger the

CHAPTER 5. AUTOMATED ROI DETECTION 43

Gaussian mask is, the lower the detector’s sensitivity is to noise. The filtering step

results in a smoothed image, which contains less noise.

2. After smoothing the image and reducing the noise, the gradient magnitude of the

edges is calculated. Therefore, the Sobel masks Gx and Gy, as depicted in Figure 5.3,

can be used to calculate the gradient magnitude (edge strength) at each point.

3. Next, the edge directions are calculated. Therefore, as outlined by Green [15], the

edge direction is calculated as follows: θ = arctan(Gx

Gy
), where Gx and Gy are the

gradient scores respectively, calculated by the two Sobel masks.

4. The next step in detecting the image edges accurately, is to relate the edge direction

to a direction that can be traced in an image. Therefore, the computed direction

θ needs to be rounded to one of four valid image directions 0◦, 45◦, 90◦ or 135◦.

Obviously, edges resulting in 180◦ are mapped to 0◦, 225◦ = 45◦, etc. This means if

θ ranges between [−22,5◦ · · · 22,5◦] or [157,5◦ · · · 202,5◦], the edge direction would be

rounded to 0◦. Figure 5.5 depicts each edge direction in a different color. The colors

would repeat on the lower half of the circle.

Figure 5.5: Canny Edge Detector – Possible Edge Directions [15]

5. Then, the non-maximum suppression is applied to the detected edges. This step is

performed due to the fact that the edges detected by the Sobel masks can either be

very thick or very narrow, depending on the intensity across the edge and how much

the image was blurred at first. Therefore, the non-maximum suppression is used to

trace along the edge in the edge direction and suppress any pixel value considered

not to be an edge. Hence, only the edges with the highest gradient magnitude are

kept, which results in a thin edge line.

6. Finally, the hysteresis is used to eliminate the effect of streaking edges. Therefore,

two thresholds are used, a high T1 and a low T2. Hence, if any pixel in the image

exceeds T1, it is presumed that this pixel belongs to an edge. Then, any pixels that

are connected to this edge pixel and that have a value greater than T2 are also

selected as edge pixels.

A more thorough explanation of the Canny algorithm can be found in the paper, “A

Computational Approach to Edge Detection” [66].

Chapter 6

Implementation of JPEG2000
RoI-Detection-Methods

This chapter gives detailed information about the implementation of the embedding- and

automated-RoI detection methods proposed by this work. All investigated approaches are

based on Stubhann’s implementation of a JPEG2000 RoI bitstream encryption [5], which

follows an approach proposed by Hämmerle-Uhl et al. [19]. To be precise, the “Max-Shift

RoI encryption” method (see Section 3.3) has been used to evaluate the results regard-

ing computational demands, impact on image quality, JPEG2000 format-compliance and

real-world feasibility. Due to the fact that Stubhann’s implementation is based on the

open-source JPEG2000 Part 1 Java implementation JJ20001, which is available under

GNU Lesser GPL type licensing, all functions we have implemented are also written in

Java. Furthermore, we need to highlight that this chapter focuses exclusively on the im-

plementation details and design decisions. Hence, no in-detail explanation of any previous

implementations (e.g., JJ2000 or Stubhann’s bitstream encryption) is given.

6.1 Development Environment

This implementation is realized using the Eclipse Indigo Enterprise Edition Software De-

velopment Kit Version 1.4.2 in connection with the Java Standard Edition Development

Kit (JDK) version 1.7.0 03. All experiments carried out to evaluate the embedding- or

the automated RoI detection methods are based on the image database SCFace [46]. This

is due to the fact that we wanted to compare the embedding overhead caused by the pro-

posed embedding methods with Stubhann’s experimental results [5]. Furthermore, this

image database offers a wide range of different images. To be more precise, the SCFace

image database provided us with video-surveillance camera images of 130 persons (stored

in JPEG file-format). Furthermore, the SCFace image database contains, in addition to

the image files, a textile incorporating the x- and y-coordinates of the eyes, tip of the nose

1http://jj2000.googlecode.com/svn/trunk/

44

http://jj2000.googlecode.com/svn/trunk/

CHAPTER 6. IMPLEMENTATION OF JPEG2000 ROI-DETECTION-METHODS 45

and the mouth. This text-file was used by Stubhann to determine the Region of Interest

(the facial area) of the people being recorded by the video-surveillance systems. Conse-

quently, he was able to determine the image region covering the facial area of the recorded

people and to successfully encrypt certain bitstream parts belonging to the determined

RoI. For further details on how Stubhann handles the RoI detection and its encryption,

reference is made to Stubhann’s Master Thesis [5].

6.2 Data Embedding Techniques

As mentioned in Section 2.2, there are five ways of ordering the JPEG2000 codestream.

However, in connection with embedding the encryption specification into the JPEG2000

codestream, this work focuses exclusively on the quality progression bitstream ordering.

Hence, all data packets belonging to an RoI or multiple RoIs are aligned at the beginning of

the JPEG2000 codestream. Therefore, this type of ordering the JPEG2000 bitstream offers

the advantage of reducing the information required to specify the encrypted codestream

parts. Hence, it is sufficient to store the length, in bytes, of the encrypted RoIs within the

codestream and their encryption counters, in order to successfully decrypt the encrypted

bitstream data packets. This is based on the fact that the encryption length reveals the

end of the encrypted bitstream, which is used to extract solely the encrypted packets.

Furthermore the encryption counters are used, to signal how often packets are encrypted.

This encryption-counter is required due to the multiple packet encryption, which is used

due to the fact that applying multiple encryption avoids the creation of additional marker

segments (see Subsection 3.3.4). However, the encryption counter is only embedded into

the codestream if a packet is encrypted more than once. Hence, JPEG2000 packets which

are encrypted only once are not embedded into the JPEG2000 codestream. Because of

this, the embedding overhead can be reduced to a minimum, as not all the encrypted

packets need to be embedded into the JPEG2000 codestream (see Chapter 7). Therefore,

this section describes the implementation details and the proposed packet structure used

to embed the encryption specification into the JPEG2000 codestream.

6.2.1 Embed Data into the JPEG2000 COM-Segment

The JPEG2000 COM segment, as described in Section 4.3.1, can be used to store up to

65530 bytes of additional payload into the JPEG2000 codestream. Therefore, the COM

segment offers the possibility to store the specification of the encrypted RoI bitstream

parts into the JPEG2000 codestream (length of encrypted bitstream and encryption

counter per packet). Figure 6.1 depicts the proposed packet structure for embedding the

CHAPTER 6. IMPLEMENTATION OF JPEG2000 ROI-DETECTION-METHODS 46

encryption specification into the JPEG2000 COM segment. It starts with the COM-marker

(0xFF64), which indicates the start of the COM segment. The COM-marker is then fol-

lowed by the Lcom, which gives information about the length of the COM segment (the

length is at least 8 bytes, when data embedding has been applied). The Lcom is calculated

as follows: 2 bytes for the Lcom itself, 2 bytes for the Rcom, 4 bytes for the length of the

encrypted codestream and if a packet is encrypted multiple times, 3 bytes must be added

for each multiple encrypted packet. The Rcom (registration values) succeeds the Lcom,

which indicates the type of data used in the COM segment. The Rcom can assume the

value 0 or 1, whereby 0 indicates that any binary data is allowed within the COM segment

and 1 indicates that only text encoded bytes are allowed. Finally, the payload field of the

COM segment is used to embed the encryption specification. As depicted in the following

figure, the packet-structure starts by the length of the encrypted bitstream and continues

with the packet-IDs and their corresponding encryption counters (how often the packet

has been encrypted). However, the packet-ID and its corresponding encryption counter is

is only added if the packet is encrypted more than once. Adding only packets which have

been encrypted multiple times offers the advantage, of superior embedding overhead (less

overhead), as experimental results have shown.

Figure 6.1: Packet structure used to embed the encryption specification into the JPEG2000 COM-segment

The basic embedding procedure, used to embed the encryption specification into the

JPEG2000 COM-segment, looks as follows:

1. Load encrypted bitstream from hard drive

2. Detect position of COM marker (0xFF64) in encoded and partly encrypted JPEG2000

bitstream (see Source-code A.2)

3. Create payload, containing the length of the encrypted bitstream and if a packet is

encrypted multiple times, the packet-ID + its encryption counter

4. Replace the Lcom field, with the new length of COM segment (2 bytes for Lcom +

2 bytes for Rcom + size of payload); See Source-code A.3

5. Finally, embed the encryption specification into bitstream (see source-code A.1)

CHAPTER 6. IMPLEMENTATION OF JPEG2000 ROI-DETECTION-METHODS 47

The extraction of the embedded RoI-information is performed quite similarly to the pro-

cedure outlined above. At first, the position of the COM-marker within the encrypted

bitstream must be detected. Afterwards, the Lcom (length of COM segment) and the

length of the encrypted bitstream are read. The Lcom is used to determine the number

of packets, which have been encrypted multiple times, as it gives information about the

length of the COM segment. Finally, the packet-IDs and their corresponding encryption

counters can be read (see source-code A.4). After extracting the encryption specification

completely, the encrypted JPEG2000 data packets can be decrypted.

6.2.2 Embed Data prior to the JPEG2000 SOC-Marker

As outlined in Subsection 4.3.2, embedding the encryption specification prior to the en-

coded JPEG2000 codestream is a non-format-compliant way of embedding data into the

JPEG2000 codestream. Hence, a standard compliant JPEG2000 decoder might not be

able to decode the JPEG2000 codestream properly.

Figure 6.2 depicts the proposed packet structure for embedding the encryption specifica-

tion prior to the JPEG2000 SOC-marker. The designed packet structure starts with the

so called Active Encryption Marker, which has been introduced by us to signal that data

has been embedded into the JPEG2000 codestream. Therefore, the byte value 0xFF8E

has been chosen to represent the Active Encryption Marker. This is based on the fact that

this byte value represents the lowest value not in use by the standard JPEG2000 coding

system to signal a marker. The Active Encryption Marker is followed by the length of

the encrypted JPEG2000 codestream (length of all the encrypted RoI image coefficients,

stated in bytes). Finally, the packet-IDs and their corresponding encryption counters are

added for all packets which are encrypted more than once. Adding only packets which

have been encrypted multiple times offers the advantage of superior embedding overhead

(see Chapter 7), as experimental results have shown. Although embedding the encryption

specification prior to the JPEG2000 codestream is straight forward, the impact of non-

format compliance on standard compliant JPEG2000 decoders needs to be investigated.

Figure 6.2: Packet structure used to embed the encryption specification prior to the JPEG2000 SOC-
marker

CHAPTER 6. IMPLEMENTATION OF JPEG2000 ROI-DETECTION-METHODS 48

The basic embedding procedure used to embed the encryption specification prior to the

SOC-marker looks as follows:

1. Load partly encrypted bitstream from hard drive

2. Copy bitstream into byte array (see Source-code A.5, line 4-7)

3. Create encryption specification, containing the length of the encrypted bitstream and

if a packet is encrypted multiple times, the packet-ID + its encryption counter

4. Write encryption specification to output file (see Source-code A.5, line 9-14)

5. Write temporary byte array to output file (see Source-code A.5, line 15-16)

The extractionprocedure that we have implemented starts by checking if the JPEG2000

codestream starts with the Active Encryption Marker (0xFF8E), which has been intro-

duced to signal active data embedding (see source-code A.6). Subsequently, the length

of the encrypted bitstream is extracted from the codestream. Then the position of the

SOC-marker in the JPEG2000 bitstream is identified, which is required to determine how

many packets are encrypted more than once. After extracting the length of the encrypted

bitstream and the position of the SOC-marker within the JPEG2000 codestream, the

remaining encryption specification can be read from the codestream (information about

packets encrypted more than once). Thereafter, the embedded data should be removed

from the JPEG2000 codestream, as otherwise a standard compliant JPEG2000 decoder

might not be able to decode the image properly. This is due to the fact that the codestream

does not start with the expected SOC-marker. Finally, using the encryption specification,

the encrypted JPEG2000 packets can be decrypted.

6.2.3 Embed Data after the JPEG2000 EOC-Marker

As outlined in Subsection 4.3.2, embedding the encryption specification after the en-

coded JPEG2000 codestream is a non-format-compliant way of embedding data into the

JPEG2000 codestream. Hence, a standard compliant JPEG2000 decoder might not be

able to decode the JPEG2000 codestream properly.

Figure 6.3 depicts the packet structure proposed to embed the encryption specification

after the EOC-marker. The designed packet structure differs from the packet structure

designed for embedding the data prior to the SOC-marker solely in the position of the

Active Encryption Marker, which is aligned after the embedded encryption specification.

This design decision has been made due to the fact that adding a delimiter to the embed-

ded data structure enables the detection of whether the codestream has been fully loaded

or if the codestream has been damaged while transferring/storing it.

CHAPTER 6. IMPLEMENTATION OF JPEG2000 ROI-DETECTION-METHODS 49

Figure 6.3: Packet structure used to embed the encryption specification after the JPEG2000 EOC-marker

Embedding and extracting the encryption specification after the EOC-marker are both

performed as outlined in Subsection 6.2.3. However, embedding the encryption specifica-

tion after the EOC-marker slightly differs from embedding the encryption specification

prior to the SOC-marker. The first difference is obviously the bitstream position used to

embed the encryption specification, which has been changed from the beginning of the

JPEG2000 codestream to its end. The second difference is the position of the Active En-

cryption Marker, which is located at the end of the JPEG2000 bitstream. Finally, after

extracting the encryption specification and removing it from the codestream, the partly

encrypted JPEG2000 bitstream can be decrypted by using the gathered encryption spec-

ification and decoded by a JPEG2000 compliant decoder.

6.2.4 Length-Preserving Data Embedding

As outlined in Subsection 4.3.3, embedding encryption specification by replacing JPEG2000

image coefficients has the advantage of being JPEG2000 format-compliant and resistant

against removing the meta data, as no JPEG2000 file-format specific container has been

used to embed the encryption specific information. Furthermore, the length of the code-

stream is not changed, which might be required by some applications.

Figure 6.4 depicts the packet structure used to embed the encryption specification into

the JPEG2000 codestream. The designed packet structure starts with the so called Ac-

tive Encryption Marker (0xFF8E), which we have introduced to signal that data has

been embedded into the JPEG2000 codestream. This marker is followed by the length of

the encrypted JPEG2000 codestream (length of all the encrypted RoI image coefficients,

stated in bytes). Finally, the packet-ID and its corresponding encryption counter for all

packets encrypted more than once are embedded into the JPEG2000 codestream. The

EOC-marker (0xFFD9) concludes the encoded encryption specification and the JPEG2000

codestream. However, it should be noted that, while embedding the encryption specifica-

tion, no JPEG2000 markers should be modified or added, as this would violate JPEG2000

format-compliance. The decision for embedding the encryption specification prior to the

CHAPTER 6. IMPLEMENTATION OF JPEG2000 ROI-DETECTION-METHODS 50

EOC-marker by replacing the JPEG2000 image coefficient is based on the fact that the

Image quality Progression Bitstream ordering has been used while encoding the image,

as mentioned in previous sections. Hence, all RoI relevant image coefficients (encrypted

coefficients) are aligned at the beginning of the codestream, and the image coefficients at

the end of the codestream contain only background information.

Figure 6.4: Packet structure used to embed the encryption specification into the JPEG2000 codestream
by replacing JPEG2000 image coefficients

The basic embedding procedure, used to embed the encryption specification into the

JPEG2000 codestream by replacing image coefficients, looks as follows:

1. Load partly encrypted bitstream from hard drive

2. Create encryption specification, containing the length of the encrypted bitstream and

if a packet is encrypted multiple times, the packet-ID + its encryption counter

3. Identify position for inserting encryption specification (Length of encoded and en-

crypted JPEG2000 codestream - 2 bytes (EOC-marker) - n-bytes for length of multi-

ple encrypted packets - 2 bytes for length of encrypted codestream, used to encrypt

the RoI coefficients - 2 bytes for Active Encryption Marker). During this step, one

must be careful of the overlapping with any existing JPEG2000 markers.

4. Write Active Encryption Marker to output file (see Source-code A.7)

5. Write encryption specification to output file

The extraction of the embedded encryption specification starts by determining the posi-

tion of the Active Encryption Marker (0xFF8E) within the JPEG2000 encoded bitstream.

If the Active Encryption Marker has been found, the length of the encrypted bitstream

is extracted, which is located next to the Active Encryption Marker, as described above.

Thereafter, the length of the embedded encryption specification is calculated (for more

details see Source-code A.8), which is used to extract the embedded encryption speci-

fication. Finally, after extracting the embedded data, the JPEG2000 bitstream can be

decrypted by using the gathered encryption specification.

CHAPTER 6. IMPLEMENTATION OF JPEG2000 ROI-DETECTION-METHODS 51

6.3 Automated RoI Detection

This section describes the implementation details of the methods proposed in Chapter 5.

Basically, the idea behind these methods is to automatically detect the encrypted RoI

(e.g., facial area of a person who is recorded by a video-surveillance system) without any

additional information. Therefore, the methods in this section differ from the methods

proposed in the previous section only by not storing the encryption information into the

JPEG2000 codestream (see Section 6.2 for further implementation details). Therefore, this

section is divided into two main parts. The first part presents the three ways of acquiring

the image data (e.g., from: JPEG2000 packet data, PGM image data, and inverse Wavelet

coefficients) and the second part describes the implementation details when it comes to

automatically detecting the encrypted image parts.

6.3.1 Acquiring the Image-Data

In order to apply the automated RoI detection methods, the image data must be acquired.

This work has proposed the following ways of acquiring the data:

From PGM-File:

Figure 6.5: Partitioned PGM In-
put Image

In order to acquire image data from a PGM-file (portable

gray map format), the JPEG2000 image must be decoded and

stored as PGM-file. Afterwards, the PGM file is loaded and

partitioned into smaller non-overlapping rectangular blocks

of equal size (except those located at the image boarders).

Partitioning the image into smaller blocks enables the auto-

mated RoI detection methods to detect differences in vari-

ance, entropy, etc., for example, hence detecting the en-

crypted image region. Figure 6.5 shows the partitioning of

the PGM file in smaller non-overlapping rectangular blocks,

which are used to automatically detect the encrypted image

region.

From JPEG2000-Codestream:

Acquiring image data from the JPEG2000 codestream is performed as follows: First, the

JP2 image-file is loaded (this file contains the encrypted JPEG2000 codestream). Next,

the codestream is parsed accordingly, which implicates the detection of the JPEG2000

CHAPTER 6. IMPLEMENTATION OF JPEG2000 ROI-DETECTION-METHODS 52

packet bodies (encapsulated by the SOP- and the EPH-marker, as depicted in Figure 2.8).

Finally, the automated RoI detection methods are applied to the packets.

From JPEG2000-Decoder:

The last image data acquisition method is concerned with extracting the image-data while

decoding the JPEG2000 image. Therefore, all the JPEG2000 decoding steps (outlined

in Chapter 2) are executed until the inverse Wavelet transformation has been applied.

Extracting the image data from the inverse Wavelet transformation is based on the fact

that the Wavelet image coefficients provide the best encryption detection performance, as

experimental results have shown. After extracting the inverse Wavelet coefficients from

the JPEG2000 decoder, the data is partitioned into smaller code-blocks of equal size

(comparable to Figure 6.5). However, selecting the code-block-size used to partition the

extracted image data should not be done randomly, as the best results can be achieved

when the same code-block-size is selected as the size used to encode the JPEG2000 image.

Hence, we extract the code-block-size used to encode the JPEG2000 image from the

JPEG2000 decoder. Finally, the partitioned Wavelet data is forwarded to the automated

RoI detection methods, which are explained in more detail in the following subsections.

6.3.2 Detect RoI by Entropy

The first automated RoI detection method relies on the entropy to detect the encrypted

image region. Therefore, as outlined by the data acquisition methods, the source data

is further partitioned into smaller parts (image block, or JPEG2000 packet body data),

which are used to calculate the entropy. These smaller image-parts, be it from a PGM-file,

the JPEG2000 packet data or from the inverse JPEG2000 Wavelet transformation, are

henceforth called blocks. After extracting the data from any of the three input sources

and partitioning it into smaller blocks, the data are forwarded to the entropy calculator,

which calculates the entropy for each block (Source-code B.6 depicts a code snippet to

load and parse the JPEG2000 codestream).

Subsequently, as pointed out by Wu et al.[62], it should be possible to detect the encrypted

image region. This assumption is based on the fact that an encrypted image has a random-

like image characteristic, hence the entropy of these image parts needs to be higher than in

the other unencrypted parts of the image [62]. Source-code B.1 depicts the implementation

of the entropy-calculation, which features a histogram function B.3 to calculate the entropy

value. The histogram function is used to calculate the distribution of the input-values.

For further details about how the entropy is calculated or its formula, reference is made

to Section 5.1.

CHAPTER 6. IMPLEMENTATION OF JPEG2000 ROI-DETECTION-METHODS 53

6.3.3 Detect RoI by Variance

The second automated RoI detection method relies on the variance to detect the encrypted

image region accurately. Similar to the entropy image encryption detection method, this

method calculates the variance on parts of the source image at a time (partitioned image,

or JPEG2000 packet body data). This blocks represent a smaller part of the source image,

as calculating the variance for the whole image would be useless. This is due to the fact

that no distinction between an unencrypted image region and an encrypted image region

could be made, as only one variance calculation has been performed.

After calculating the variance values (of each image block) and defining a proper threshold,

the encrypted image regions should be detectable. The threshold is used to distinguish

between an encrypted and an unencrypted image block, as the encrypted image regions

should have an increased variance value.

Source-code B.4 depicts the implementation of the variance-calculation, which features

the histogram function B.3 to calculate the variance value. The histogram function is

used to calculate the distribution of the input-values. For further details about how the

variance is calculated or its formula, reference is made to Section 5.2.

6.3.4 Detect RoI by Thresholding

Thresholding is the simplest approach to determine the encrypted image region. This is

due to the fact that it is sufficient to simply check whether the values extracted from

the JPEG2000 inverse Wavelet-transformation are valid image values. The Thresholding

decision boundary, as implemented by this work, looks as follows:

if TU < f(x, y) > TL then f(x, y) = Encrypted content

else f(x, y) = Unencrypted content

Where x and y define the pixel at a specific image location, TU and TL represent the upper-

, respectively the lower-threshold. In our case, the upper-threshold is 255 and the lower-

threshold is 0, which is based on the fact that we used an 8 bit source image. Furthermore,

the signed source image values (ranging from -128 to 127) converted to an unsigned version

(ranging from 0 to 255), as depicted in Source-code B.6 at line 19. Hence, all valid image

values should range from between 0 and 255.

However, detecting the encrypted image region by thresholding is limited to the values

extracted from the JPEG2000 inverse Wavelet-transformation. As the other data acquiring

methods described above provide either values which are already in a valid range (load

from PGM-file) or are due to the JPEG2000 entropy encoder, random like distributed.

CHAPTER 6. IMPLEMENTATION OF JPEG2000 ROI-DETECTION-METHODS 54

Figure 6.6: Bounding-Box –
Thresholding

Hence, no proper threshold could be defined. The results

of checking whether the image block contains any invalid

values are stored in a simple Boolean array (see Thresh-

olding method Source-code B.2), which is forwarded to the

bounding-box calculation method (see Source-Code B.5),

which calculates the bounding box of all the blocks contain-

ing an invalid number. Figure 6.6 depicts a sample bounding-

box of blocks containing invalid numbers, whereby the grid

visualizes the partitioning of the Wavelet-coefficients and the

black filled rectangles represent the blocks containing an in-

valid number. The dotted border visualizes the calculated

bounding box, which represents the border of the detected

encrypted image region. As the figure illustrates, not all blocks contain invalid numbers,

even if they are encrypted. However, due to the fact that the bounding-box is calculated in

order to surround all invalid image blocks, accurate encryption detection can be achieved.

However, this approach, as well as all the other automated encryption detection methods

we have proposed, are limited to detecting only one encrypted RoI per image, which might

not be accepted by all applications.

6.3.5 Detect RoI by Canny- or Sobel-Edge-Detector

Detecting the RoI by either applying the Canny- or the Sobel-Edge-Detector is performed

on the whole image, which differs from the other automated RoI detection proposed

methods implemented by this work (which were performed on block basis). This is due to

the fact that detecting the edges of one code-block at a time would be useless, as the edges

of the whole image are needed to detect the encrypted RoI. Furthermore, it is important

to notice that all pixels at the borders (first-, last-column and first-, last-row) cannot be

used by the Sobel- or Canny-edge-detector, due to the fact that the 3×3 mask, used to

calculate the edge strength (gradient magnitude), cannot place its center over these pixels.

Therefore, images containing encrypted RoIs bordering the image borders might not be

detectable by the proposed edge detectors.

The edge-detectors proposed by this work cannot use all three input resources imple-

mented by this work, as the data acquired by extracting the JPEG2000 packet data

provides no information which could be used to detect any borders. This is due to the fact

that the encoded image coefficients stored in JPEG2000 packets feature no image edge

characteristics which could be used by the edge detectors.

Chapter 7

Performance Evaluation

This chapter presents and discusses the results of the proposed embedding- and automated

RoI detection approaches outlined in previous chapters. Therefore, this chapter is divided

into three main sections. The first section describes the experimental setup, which has

been used to evaluate the proposed methods. The second section presents and discusses

the results of the proposed embedding methods. Finally, the third section presents and

discusses the experimental results obtained by the proposed automated RoI detection

methods.

7.1 Experimental Setup

This section gives an overview of the equipment and the development environment used

to evaluate the proposed embedding- and automated RoI detection methods.

The hardware and software used for the experiments is listed below:

• Laptop: Dell XPS L502X

• CPU: Intel Core i7-2670QM at 2,2 GHz

• RAM: 2×4GB DDR3-1333

• Display: NVIDIA GeForce GT 540M

• Hard drive: SSDSA2CW160G310 320 Series SSD 160GB, SATA 300

• Operating System: Windows 7 Professional 64-bit, Service Pack 1

• Development environment: Eclipse Indigio Enterprise Edition Version 1.4.2

• Standard Development Kit: Java JDK Version 1.7.0 03

• JPEG2000 Coder: JJ20001 Version 5.1

1http://jj2000.googlecode.com/svn/trunk/

55

http://jj2000.googlecode.com/svn/trunk/

CHAPTER 7. PERFORMANCE EVALUATION 56

7.2 Data Embedding Techniques

This section presents and discusses the results of the proposed data embedding techniques.

Therefore, the experimental measurements are evaluated for their suitability based on the

criteria outlined in Section 3.2. The criteria used in this section are Format-Compliance,

Overhead, Computational-Demand and Image-Quality. The other two criteria mentioned

in Section 3.2 are not covered in this section, due to the fact that, on the one hand, the

Security criterion is fulfilled, as the standardized and well tested Advanced Encryption

Standard (AES) in Output Feedback Mode (OFB) is used to encrypt the JPEG2000 code-

stream. On the other hand, the Transcodability criterion is not evaluated due to the fact

that it is not relevant to this work. The following experiments and evaluations are based

on the following images from the SCFace image database [46]: cam1 1, cam3 3, cam5 3,

001 frontal, (see Figure 7.1). In order to minimize the risk of outliers, the experimen-

tal results shown in this section are based on at least 1000 simulations. Hence, all the

proposed embedding methods and parameterizations (Wavelet-Level and code-block-size)

used to obtain the results are executed at least 1000 times (bitstream encryption, data

embedding, data extraction and bitstream decryption).

This section is divided into two parts. The first part presents the evaluation of the ex-

perimental results obtained by the four proposed embedding methods, which are em-

bedding the encryption specification into the JPEG2000 COM-segment, prior- of after-

the JPEG2000 codestream, and embedding the encryption specification by replacing

JPEG2000 image coefficients. Finally, the second part analyzes the results outlined in

the first part, in conjunction with their suitability based on the criteria outlined in Sec-

tion 3.2.

(a) cam1 1 (b) 1 RoI (c) 8 RoIs (d) cam3 3 (e) cam5 3 (f)
001 frontal

Figure 7.1: The figures above represent the data-set used to evaluate the proposed embedding methods. All
surveillance images are based on the SCFace image database [46]. Figure 7.1a – image-size = 75×100 pixel
and RoI = 36×72 pixel (top left corner = 26×12 pixel); Figure 7.1d – image-size = 168×224 pixel and
RoI = 87×140 pixel (top left corner = 27×37 pixel); Figure 7.1e – image-size = 480×640 pixel and RoI
= 90×158 pixel (top left corner = 252×392 pixel); Figure 7.1f – image-size = 768×1024 pixel and RoI =
579×804 pixel (top left corner = 104×36 pixel). Furthermore, the Figures 7.1b and Figure 7.1c show the
image cam1 1 containing either one encrypted RoI or eight encrypted RoIs.

CHAPTER 7. PERFORMANCE EVALUATION 57

7.2.1 Embed Data into the JPEG2000 COM-Segment

Embedding the encryption specification into the JPEG2000 COM-segment offers the ad-

vantage of JPEG2000 format-compliance. However, in order to achieve format-compliance,

the position of the COM-marker (0xFF64) within the JPEG2000 codestream must be de-

tected and some corresponding COM-fields need to be altered according to the embedded

encryption specification (for further details, see Subsection 6.2.1).

Table 7.1 shows the embedding overhead caused by embedding the encryption specifi-

cation into the JPEG2000 COM-segment (indicated by EMB, which stands for active

data embedding and represents the data overhead caused by embedding the encryption

specification into the COM-segment). For comparability reasons, the overhead caused by

storing all the start-, end-values and the encryption-counters is given as well (indicated

by No EMB, which stands for no embedding). As evident from the results shown in Ta-

ble 7.1, the overhead caused by the two signaling methods differs significantly. To be more

precise, embedding the encryption specification into the COM-segment of image cam1 1

requires, on average, 3.010 % of the data-volume required by storing all the start-, end-

values and the encryption-counters (4.879 % for image cam3 3, 9.660 % for image cam5 3

and 14.658 % for image 001 frontal). This is based on the fact that the proposed embed-

ding methods embed the packet-IDs and their corresponding encryption counters only if

the packet are encrypted more than once. Furthermore, as no packet start- or end-values of

the encrypted packet is embedded into the codestream, this reduces the overhead as well.

Finally, as evident from Table 7.1, using more Wavelet-Levels or a smaller code-block-size

while encoding the JPEG2000 image causes an increased signaling overhead.

As evident from the experimental results, embedding the encryption specification into

the COM-segment increases the computational demand required to encode a JPEG2000

image. This is due to the fact that the additional processing step is required to detect

and alter the COM-segment, increasing the computing demand. Furthermore, decoding a

JPEG2000 image used to embed the encryption specification requires more computing re-

sources, as well, as the COM-segment needs to be detected and parsed prior to decrypting

the encrypted image regions.

Table 7.2 shows the average time, in milliseconds, required to embed the encryption spec-

ification into the COM-segment and alter it as well. As evident with this, the time re-

quired to embed the encryption specification into the JPEG2000 codestream increases

when smaller a code-block-size has been used while encoding the JPEG2000 image. This

is due to the fact that smaller code-block-sizes cause an increased data-volume, which

must be embedded into the JPEG2000 codestream. Hence, more computing resources are

CHAPTER 7. PERFORMANCE EVALUATION 58

WL CBS
No EMB [byte] EMB [byte] Ratio [%]

1 2 3 4 1 2 3 4 1 2 3 4

0

4x4 144 276 312 312 8.64 30.27 49.69 65.53 6.00 10.97 15.93 21.00

8x8 120 192 252 240 6.97 15.69 45.72 53.27 5.81 8.17 18.14 22.20

16x16 108 180 192 216 6.89 13.88 33.22 48.77 6.38 7.71 17.30 22.58

32x32 96 168 192 204 6.39 12.02 34.44 47.11 6.65 7.15 17.94 23.09

64x64 96 168 192 204 6.26 12.36 34.50 47.03 6.52 7.35 17.97 23.05

1

4x4 276 492 516 612 9.49 32.31 58.29 89.45 3.44 6.57 11.30 14.62

8x8 216 384 444 456 7.62 24.52 51.33 68.50 3.53 6.38 11.56 15.02

16x16 180 288 408 408 7.21 12.93 44.55 62.24 4.01 4.49 10.92 15.25

32x32 180 276 348 396 6.99 12.47 34.62 61.46 3.89 4.52 9.95 15.52

64x64 168 276 324 396 6.48 12.11 26.86 62.34 3.86 4.39 8.29 15.74

2

4x4 564 684 756 900 13.13 33.21 77.20 140.80 2.33 4.85 10.21 15.64

8x8 300 504 648 684 8.23 24.96 62.56 101.47 2.74 4.95 9.65 14.84

16x16 276 360 612 624 7.73 13.71 59.13 89.75 2.80 3.81 9.66 14.38

32x32 252 336 492 600 7.50 12.53 35.94 83.32 2.97 3.73 7.31 13.89

64x64 252 324 492 576 7.10 12.94 34.60 80.19 2.82 3.99 7.03 13.92

3

4x4 720 864 1008 1200 13.59 33.03 81.03 159.68 1.89 3.82 8.04 13.31

8x8 384 624 864 912 9.21 25.53 66.02 115.92 2.40 4.09 7.64 12.71

16x16 324 456 660 840 7.81 14.00 61.01 102.28 2.41 3.07 9.24 12.18

32x32 288 420 660 804 7.46 13.35 39.18 95.19 2.59 3.18 5.94 11.84

64x64 288 408 660 768 7.49 12.90 39.23 89.65 2.60 3.16 5.94 11.67

Table 7.1: This table shows the embedding overhead caused by embedding the encryption specification
into the JPEG2000 COM-segment. The abbreviation EMB stands for active embedding (in this case,
into the COM-segment) and No EMB stands for no embedding (the encryption specification is stored in
an additional file), which is stated for comparability reasons. The No EMB column represents the bytes
required to store all the start-, end-values and the encryption counters. The EMB column represents
the bytes required to store the encoded encryption specification into the COM-segment. WL stands for
Wavelet-Level, CBS is the short form for code-block-size and Ratio shows the proportion between No EMB
and EMB in %. All measurements are based on the average of 1000 simulations conducted on the following
images from the SCFace image database [46]: cam1 1 (1), cam3 3 (2), cam5 3 (3) and 001 frontal (4).

required to embed the encryption specification into the JPEG2000 codestream. Figure C.2

shows the results depicted in Table 7.2. Compared to Figure C.1, it is evident that the

time required to embed the encryption specification depends on the data-volume which

must be embedded into the JPEG2000 codestream.

However, as experimental results have shown, embedding the encryption specification into

the COM-segment poses the risk of degrading the image quality. This is due to the fact

that the EBCOT-algorithm (Embedded Block Coding with Optimal Truncation) inserts

the truncation points differently when the main-header differs in length. Hence, embedding

a different payload into the COM-segment while encoding the JPEG2000 image causes

CHAPTER 7. PERFORMANCE EVALUATION 59

WL CBS
Embedding Time [ms]

WL
Embedding Time [ms]

1 2 3 4 1 2 3 4

0

4x4 1.20 3.56 18.23 52.02

2

1.44 2.87 10.95 43.04

8x8 1.12 2.80 11.95 33.35 1.34 2.34 7.89 30.07

16x16 1.02 2.38 9.75 28.94 1.22 2.10 5.78 23.45

32x32 0.96 2.38 8.89 25.53 1.20 2.01 5.24 21.02

64x64 0.93 2.30 8.68 24.18 1.17 1.95 5.44 20.62

1

4x4 1.26 2.96 11.81 41.92

3

1.40 2.90 11.91 42.72

8x8 1.28 2.38 7.99 29.11 1.34 2.43 7.69 29.80

16x16 1.05 2.11 6.34 22.55 1.36 2.16 6.26 22.94

32x32 1.00 2.03 5.76 20.52 1.24 2.06 6.06 20.61

64x64 0.99 1.94 5.59 19.57 1.32 1.97 5.73 20.52

Table 7.2: This table shows the time, in milliseconds, required to embed the encryption specification into
the COM-segment. The abbreviation CBS stands for code-block-size and WL stands for Wavelet-Level.
Both parameters are specified while encoding the JPEG2000 image. All measurements are based on the
average of 1000 simulations conducted on the following images from the SCFace image database [46]:
cam1 1 (1), cam3 3 (2), cam5 3 (3) and 001 frontal (4).

a completely different JPEG2000 codestream. Therefore, modifying the COM-segment

(embedding the encryption specification into the COM payload field, at codestream level)

after encoding the JPEG2000 image might result in a degraded image quality. Therefore,

this embedding approach might not be applicable for some applications, as the image

quality might be degraded. However, as shown by experimental results, the issue of image

quality degradation can be overcome by removing the embedded encryption specification

prior to decoding the JPEG2000 image.

Table 7.3 shows the average SSIM, LSS, ESS and PSNR value caused by embedding

the encryption specification into the JPEG2000 COM-segment of image cam1 1 (see Fig-

ure 7.1a). Therefore, the results are based on the decrypted and decoded sample image if

the encryption specification is not removed prior to decoding the JPEG2000 image. Fig-

ure C.3 and Figure C.4 show the four image metrics described in Subsection 3.2.6, which

are used to evaluate the image quality of the decrypted image. As evident from the results

shown in these figures or in Table 7.3, the image quality is deteriorating when the code-

block-size increases. This is due to the fact that the JPEG2000 encoder generates less data

packets when the code-block-size increases. Therefore, the packets are larger and contain

more encoded image coefficients, which could degrade the image quality more dramatically

when decoded wrongly. The fluctuating PSNR value caused by COM-method is due to

the EBCOT-algorithm (Embedded Block Coding with Optimal Truncation), which places

the truncation points differently when the main-header differs in size. Hence, if the main

CHAPTER 7. PERFORMANCE EVALUATION 60

header differs in size, (compared to the size prior to embedding the encryption specifica-

tion) the JPEG2000 decoder extracts the image data wrongly. However, as experiments

have shown, a solution to solving the problem of degrading the image quality is to restore

the original COM-segment prior to decoding the JPEG2000 image.

WL CBS SSIM ESS LSS PSNR WL SSIM ESS LSS PSNR

0

4x4 1.000 1.000 1.000 ∞

2

1.000 1.000 1.000 ∞
8x8 1.000 1.000 1.000 ∞ 0.939 0.962 0.887 65.843

16x16 0.982 0.983 0.927 27.151 1.000 1.000 1.000 ∞
32x32 0.999 0.998 0.996 ∞ 1.000 1.000 1.000 ∞
64x64 0.744 0.820 0.225 15.687 0.873 0.871 0.818 79.267

1

4x4 1.000 1.000 1.000 ∞

3

1.000 1.000 1.000 ∞
8x8 0.997 0.999 0.996 ∞ 1.000 1.000 1.000 ∞

16x16 0.996 0.975 0.942 55.344 0.978 0.974 0.945 87.361

32x32 0.849 0.890 0.839 49.262 0.697 0.808 0.506 39.999

64x64 0.285 0.463 -0.871 11.489 0.627 0.651 0.446 42.831

Table 7.3: This table shows the four image quality metrics outlined in Subsection 3.2.6. The image quality
scores are calculated after decrypting and decoding the JPEG2000 image cam1 1 (see Figure 7.1a into the
PGM file-format, whereby the embedded encryption specification is not removed prior to decoding. The
image quality metrics SSIM, ESS and LSS show the similarity between the original- and the image used
for embedding (a similarity score of 1 indicates that the images are identical). The PSNR is given in dB
and depicts the similarity between the original unmodified and the image used to embed the encryption
specification (a higher dB score represents a better similarity, ∞ shows that the images are identical).

7.2.2 Embed Data prior to the JPEG2000 SOC-Marker

This subsection outlines the experimental results of embedding the encryption specifica-

tion prior to the JPEG2000 SOC-marker (start of codestream). First, we need to point

out that this approach of embedding data into the JPEG2000 codestream is not format-

compliant. Hence, the image containing the embedded data might not be decodable by

a standard compliant JPEG2000 decoder. This is due to the fact that Part 1 of the

JPEG2000 standard defines that the JPEG2000 codestream starts by the SOC-marker

(0xFF8E). To embed the encryption specification prior to the JPEG2000 codestream, the

proposed embedding packet-structure must be created and prepended to the JPEG2000

encoded codestream (for further details about the proposed packet-structure and the em-

bedding procedure, see Subsection 6.2.2).

Table 7.4 shows the embedding overhead caused by embedding the encryption specifi-

cation prior to the JPEG2000 SOC-marker (indicated by EMB, which stands for active

data embedding and represents the data overhead caused by embedding the encryption

specification prior to the SOC-marker). For comparability reasons, the overhead caused

CHAPTER 7. PERFORMANCE EVALUATION 61

WL CBS
No EMB [byte] EMB [byte] Ratio [%]

1 2 3 4 1 2 3 4 1 2 3 4

0

4x4 144 276 312 312 10.88 32.33 52.07 67.05 7.55 11.71 16.69 21.49

8x8 120 192 252 240 9.06 17.76 47.42 55.40 7.55 9.25 18.82 23.08

16x16 108 180 192 216 8.90 15.66 35.11 50.79 8.24 8.70 18.29 23.51

32x32 96 168 192 204 8.26 13.85 36.41 49.14 8.60 8.24 18.96 24.09

64x64 96 168 192 204 8.19 14.10 36.23 49.04 8.53 8.39 18.87 24.04

1

4x4 276 492 516 612 11.36 34.14 60.15 91.13 4.12 6.94 11.66 14.89

8x8 216 384 444 456 9.77 26.34 53.57 70.72 4.52 6.86 12.07 15.51

16x16 180 288 408 408 9.24 14.92 46.38 64.07 5.13 5.18 11.37 15.70

32x32 180 276 348 396 8.85 14.70 36.56 63.42 4.92 5.33 10.51 16.02

64x64 168 276 324 396 8.47 14.03 29.08 64.37 5.04 5.08 8.98 16.26

2

4x4 564 684 756 900 14.93 34.80 78.84 143.06 2.65 5.09 10.43 15.90

8x8 300 504 648 684 10.37 27.20 64.33 103.65 3.46 5.40 9.93 15.15

16x16 276 360 612 624 9.68 15.51 60.49 92.36 3.51 4.31 9.88 14.80

32x32 252 336 492 600 9.26 14.40 37.58 84.81 3.68 4.29 7.64 14.14

64x64 252 324 492 576 9.03 14.63 37.01 81.89 3.58 4.52 7.52 14.22

3

4x4 720 864 1008 1200 15.48 34.99 82.52 162.14 2.15 4.05 8.19 13.51

8x8 384 624 864 912 11.06 27.44 67.99 117.92 2.88 4.40 7.87 12.93

16x16 324 456 660 840 9.92 16.27 63.17 104.19 3.06 3.57 9.57 12.40

32x32 288 420 660 804 9.47 15.14 40.95 97.78 3.29 3.61 6.20 12.16

64x64 288 408 660 768 9.61 14.95 41.30 91.43 3.34 3.66 6.26 11.91

Table 7.4: This table shows the embedding overhead caused by embedding the encryption specification
prior to the JPEG2000 SOC-marker (before JPEG2000 codestream). The abbreviation EMB stands for
active embedding (in this case, prior to the SOC-marker) and No EMB stands for no embedding (the
encryption specification is stored in an additional file), which is stated for comparability reasons. The No
EMB column represents the bytes required to store all the start-, end-values and the encryption counters.
The EMB column represents the bytes required to store the encoded encryption specification prior to the
SOC-marker. WL stands for Wavelet-Level, CBS is the short form for code-block-size and Ratio shows
the proportion between No EMB and EMB in %. All measurements are based on the average of 1000
simulations conducted on the following images from the SCFace image database [46]: cam1 1 (1), cam3 3
(2), cam5 3 (3) and 001 frontal (4).

by storing all the start-, end-values and the encryption-counters is given as well (indicated

by EMB, which stands for no embedding). As evident from the results shown in Table 7.4,

the overhead caused by the two signaling methods differs significantly. To be more pre-

cise, embedding the encryption specification prior to the JPEG2000 codestream of image

cam1 1 requires, on average, 3.857 % of the data-volume required by storing all the start-,

end-values and the encryption-counters (5.380 % for image cam3 3, 10.039 % for image

cam5 3 and 15.014 % for image 001 frontal). This is based on the fact that the proposed

embedding methods embed the packet-IDs and their corresponding encryption counters

only if the packet is encrypted more than once. Furthermore, the fact that no packet packet

CHAPTER 7. PERFORMANCE EVALUATION 62

start- or end-values of the encrypted packet is embedded into the codestream reduces the

overhead as well.

As evident from the experimental results, embedding the encryption specification prior

to the JPEG2000 SOC-marker increases the computational demand required to encode

a JPEG2000 image. This is due to the fact that an additional step for prepending the

encryption specification must be executed. Furthermore, decoding a JPEG2000 image

which has been used to embed the encryption specification also requires more computing

resources, as the prepended encryption specification must be detected and parsed prior

to decrypting the encrypted image regions. Finally, the prepended data must be removed

prior to decoding the image, otherwise a JPEG2000 standard compliant decoder might

not be able to decode the image.

Table 7.5 shows the average time, in milliseconds, required to embed the encryption spec-

ification prior to the SOC-marker. However, as evident from the results shown below, it

takes more time to embed the encryption specification for smaller code-block-sizes (CBS).

This is due to the fact that smaller CBSs cause an increased encryption specification size.

Hence, more data must be embedded into the JPEG2000 codestream. Figure C.6 shows

the results depicted in the table below. Compared to Figure C.5 it is evident that the

time required to embed the encryption specification depends on the data-volume which

must be embedded into the JPEG2000 codestream.

WL CBS
Embedding Time [ms]

WL
Embedding Time [ms]

1 2 3 4 1 2 3 4

0

4x4 1.20 3.56 18.23 52.02

2

1.34 2.59 10.52 43.53

8x8 1.12 2.80 11.95 33.35 1.08 2.06 7.16 29.25

16x16 1.02 2.38 9.75 28.94 0.85 1.88 5.70 23.48

32x32 0.96 2.38 8.89 25.53 0.88 1.78 5.16 21.58

64x64 0.93 2.30 8.68 24.18 0.97 1.75 4.94 20.23

1

4x4 1.26 2.96 11.81 41.92

3

1.16 2.63 10.40 43.64

8x8 1.28 2.38 7.99 29.11 0.98 2.07 7.72 27.77

16x16 1.05 2.11 6.34 22.55 0.98 1.88 5.68 23.23

32x32 1.00 2.03 5.76 20.52 0.96 1.69 5.12 21.11

64x64 0.99 1.94 5.59 19.57 1.05 1.79 5.38 20.19

Table 7.5: This table shows the time, in milliseconds, required to embed the encryption specification prior
the JPEG2000 SOC-marker. The abbreviation CBS stands for code-block-size and WL stands for Wavelet-
Level. Both parameters are specified while encoding the JPEG2000 image. All measurements are based on
the average of 1000 simulations conducted on the following images from the SCFace image database [46]:
cam1 1 (1), cam3 3 (2), cam5 3 (3) and 001 frontal (4).

CHAPTER 7. PERFORMANCE EVALUATION 63

As experimental results have shown, if the embedded encryption specification is removed

prior to decoding the JPEG2000 image, no image-quality degradation, or JPEG2000

format-compliance problems are detectable. This is based on the fact that the encoded

JPEG2000 codestream is not modified while embedding the encryption specification. How-

ever, as the experimental results have shown, if the prepended data are not removed prior

to decoding the image, a JPEG2000 standard compliant decoder cannot decode it.

7.2.3 Embed Data after the JPEG2000 EOC-Marker

This subsection outlines the experimental results of embedding the encryption specifica-

tion after the JPEG2000 EOC-marker (end of codestream). First, we need to point out

that this embedding approach is not JPEG2000 format-compliant, and also embeds the

data prior to the codestream. Hence, the image containing the embedded data might not

be decodable by a JPEG2000 standard compliant decoder. However, as experiments have

shown, this embedding approach is more likely to be decodable by a standard compliant

decoder (JJ2000 Version 5.1 and IrfanView Version 4.32 are able to decode the image).

Table 7.6 shows the embedding overhead caused by embedding the encryption specifi-

cation after the JPEG2000 EOC-marker (indicated by EMB, which stands for active

data embedding and represents the data overhead caused by embedding the encryption

specification after the EOC-marker). For comparability reasons, the overhead caused by

storing all the start-, end-values and the encryption-counters is given as well (indicated by

No EMB, which stands for no embedding). The results in Table Table 7.6 illustrate, the

overhead caused by the two signaling methods differs significantly. To be more precise, em-

bedding the encryption specification after the EOC-marker of image cam1 1 requires, on

average, 3.863 % of the data-volume required by storing all the start-, end-values and the

encryption-counters (5.384 % for image cam3 3, 10.037 % for image cam5 3 and 15.015 %

for image 001 frontal). This is based on the fact that the proposed embedding methods

embed the packet-IDs and their corresponding encryption counters only if the packet is

encrypted more than once. Furthermore, as no packet start- or end-values of the encrypted

packet is embedded into the codestream, the overhead is also reduced.

As seen with the experimental results, embedding the encryption specification after the

EOC-marker increases the computational demand required to encode a JPEG2000 image.

This is due to the fact that an additional step for appending the encryption specification

must be executed. Furthermore, decoding a JPEG2000 image also requires more comput-

ing resources, as the appended encryption specification must be detected and parsed prior

to decrypting the encrypted image regions. Finally, the appended data must be removed

CHAPTER 7. PERFORMANCE EVALUATION 64

WL CBS
No EMB [byte] EMB [byte] Ratio [%]

1 2 3 4 1 2 3 4 1 2 3 4

0

4x4 144 276 312 312 10.67 31.97 51.62 67.62 7.41 11.58 16.54 21.67

8x8 120 192 252 240 9.16 17.76 47.34 55.39 7.64 9.25 18.79 23.08

16x16 108 180 192 216 8.89 15.88 35.26 50.76 8.23 8.82 18.36 23.50

32x32 96 168 192 204 8.41 14.00 36.59 48.83 8.76 8.33 19.05 23.94

64x64 96 168 192 204 8.21 13.73 36.39 49.03 8.56 8.17 18.95 24.04

1

4x4 276 492 516 612 11.40 33.87 59.89 91.43 4.13 6.88 11.61 14.94

8x8 216 384 444 456 9.84 26.34 53.53 71.10 4.56 6.86 12.06 15.59

16x16 180 288 408 408 9.43 14.86 46.52 64.03 5.24 5.16 11.40 15.69

32x32 180 276 348 396 9.14 14.44 36.73 63.54 5.08 5.23 10.55 16.04

64x64 168 276 324 396 8.55 14.30 28.93 64.21 5.09 5.18 8.93 16.22

2

4x4 564 684 756 900 14.94 34.80 79.16 142.72 2.65 5.09 10.47 15.86

8x8 300 504 648 684 10.34 26.99 64.44 103.35 3.45 5.35 9.94 15.11

16x16 276 360 612 624 9.74 15.54 60.83 91.97 3.53 4.32 9.94 14.74

32x32 252 336 492 600 9.29 14.80 37.61 85.41 3.68 4.40 7.64 14.24

64x64 252 324 492 576 8.97 14.33 36.49 81.79 3.56 4.42 7.42 14.20

3

4x4 720 864 1008 1200 15.39 35.52 82.61 161.85 2.14 4.11 8.20 13.49

8x8 384 624 864 912 10.94 27.41 68.30 118.19 2.85 4.39 7.90 12.96

16x16 324 456 660 840 9.84 16.34 62.69 103.82 3.04 3.58 9.50 12.36

32x32 288 420 660 804 9.41 15.73 40.98 97.73 3.27 3.75 6.21 12.15

64x64 288 408 660 768 9.53 14.90 40.99 91.77 3.31 3.65 6.21 11.95

Table 7.6: This table shows the embedding overhead caused by embedding the encryption specification
after the JPEG2000 EOC-marker (after JPEG2000 codestream). The abbreviation EMB stands for active
embedding (in this case, after the EOC-marker) and No EMB stands for no embedding (the encryption
specification is stored in an additional file), which is stated for comparability reasons. The No EMB column
represents the bytes required to store all the start-, end-values and the encryption counters. The EMB
column represents the bytes required to store the encoded encryption specification after the EOC-marker.
WL stands for Wavelet-Level, CBS is the short form for code-block-size and Ratio shows the proportion
between No EMB and EMB in %. All measurements are based on the average of 1000 simulations conducted
on the following images from the SCFace image database [46]: cam1 1 (1), cam3 3 (2), cam5 3 (3) and
001 frontal (4).

prior to decoding the image, otherwise a JPEG2000 standard compliant decoder might

not be able to decode the image.

Table 7.7 shows the average time, in milliseconds, required to embed the encryption spec-

ification after the JPEG2000 EOC-marker. However, as the results below demonstrate, it

takes more time to embed the encryption specification for smaller code-block-sizes. This

is due to the fact that smaller CBSs cause an increased encryption specification size.

Hence, more data must be embedded into the JPEG2000 codestream. Figure C.8 shows

the results depicted in the Table 7.7. Compared to Figure C.7, it is evident that the time

required to embed the encryption specification, depends on the data-volume which must

be embedded into the JPEG2000 codestream.

CHAPTER 7. PERFORMANCE EVALUATION 65

WL CBS
Embedding Time [ms]

WL
Embedding Time [ms]

1 2 3 4 1 2 3 4

0

4x4 1.06 3.16 18.13 53.28

2

1.01 2.46 10.48 42.75

8x8 0.91 2.31 11.87 35.65 1.01 2.03 7.48 28.77

16x16 0.87 2.02 9.65 26.83 0.81 1.70 5.69 23.49

32x32 0.80 1.90 8.79 25.20 0.76 1.60 5.16 21.17

64x64 0.78 1.88 8.66 25.93 0.87 1.67 4.97 20.95

1

4x4 0.96 2.53 11.73 44.07

3

1.01 2.58 10.69 40.82

8x8 0.84 1.97 7.90 30.09 0.92 1.98 7.29 28.45

16x16 0.79 1.71 6.22 23.87 0.90 1.82 6.20 22.25

32x32 0.75 1.66 5.71 21.60 0.78 1.69 5.37 19.79

64x64 0.77 1.58 5.52 20.75 0.87 1.69 5.23 19.04

Table 7.7: This table shows the time, in milliseconds, required to embed the encryption specification after
the JPEG2000 EOC-marker. The abbreviation CBS stands for code-block-size and WL stands for Wavelet-
Level. Both parameters are specified while encoding the JPEG2000 image. All measurements are based on
the average of 1000 simulations conducted on the following images from the SCFace image database [46]:
cam1 1 (1), cam3 3 (2), cam5 3 (3) and 001 frontal (4).

7.2.4 Length-Preserving Data Embedding

This subsection outlines the experimental results of embedding the encryption specifi-

cation into the JPEG2000 codestream by replacing JPEG2000 image coefficients. This

method has the advantage, as mentioned in Subsection 6.2.4, of being JPEG2000 format-

compliant and thereby preserving the original codestream length, which might be nec-

essary for some applications. For further details on how the encryption specification is

embedded into the JPEG2000 codestream, see Subsection 6.2.4.

Table 7.8 shows the number of image coefficients which have been replaced by the encryp-

tion specification (indicated by EMB, which stands for active data embedding and rep-

resents the JPEG2000 image coefficients, which are replaced by the encryption specifica-

tion). As this method embeds the encryption specification by replacing image coefficients,

no additional data overhead is caused. For comparability reasons, the overhead caused by

storing all the start-, end-values and the encryption-counters is given as well (indicated by

No EMB, which stands for no embedding). As demonstrated by the results in Table 7.8,

the number of bytes required by the two signaling methods differs significantly. To be

more precise, embedding the encryption specification into the JPEG2000 codestream by

replacing image coefficients of image cam1 1 requires, on average, 3.860 % of the data-

volume required by storing all the start-, end-values and the encryption-counters (5.373 %

for image cam3 3, 10.052 % for image cam5 3 and 15.026 % for image 001 frontal). This

is due to the fact that the proposed embedding packet structure stores only stores the

CHAPTER 7. PERFORMANCE EVALUATION 66

information required for decrypting the encrypted packets (no data which can be parsed

from the JPEG2000 codestream itself is included anymore). Furthermore, the proposed

embedding methods embed the packet-IDs and their corresponding encryption counters

only if the packet is encrypted more than once.

WL CBS
No EMB [byte] EMB [byte] Ratio [%]

1 2 3 4 1 2 3 4 1 2 3 4

0

4x4 144 276 312 312 10.56 32.13 51.67 67.25 7.34 11.64 16.56 21.55

8x8 120 192 252 240 9.16 17.56 47.70 55.37 7.63 9.15 18.93 23.07

16x16 108 180 192 216 8.65 15.97 35.07 50.82 8.01 8.87 18.27 23.53

32x32 96 168 192 204 8.31 13.98 36.25 49.21 8.65 8.32 18.88 24.12

64x64 96 168 192 204 8.26 13.85 36.33 48.81 8.60 8.24 18.92 23.93

1

4x4 276 492 516 612 11.19 34.32 60.50 91.35 4.06 6.98 11.72 14.93

8x8 216 384 444 456 9.60 26.41 53.60 70.81 4.45 6.88 12.07 15.53

16x16 180 288 408 408 9.29 14.57 46.44 64.10 5.16 5.06 11.38 15.71

32x32 180 276 348 396 8.89 14.54 36.69 63.60 4.94 5.27 10.54 16.06

64x64 168 276 324 396 8.57 14.02 28.97 64.60 5.10 5.08 8.94 16.31

2

4x4 564 684 756 900 15.29 34.85 79.16 142.86 2.71 5.10 10.47 15.87

8x8 300 504 648 684 10.28 26.84 64.80 103.75 3.43 5.33 10.00 15.17

16x16 276 360 612 624 9.67 15.74 60.64 91.79 3.50 4.37 9.91 14.71

32x32 252 336 492 600 9.17 14.60 37.97 85.48 3.64 4.34 7.72 14.25

64x64 252 324 492 576 9.13 14.61 36.41 81.98 3.62 4.51 7.40 14.23

3

4x4 720 864 1008 1200 15.70 35.11 83.08 162.29 2.18 4.06 8.24 13.52

8x8 384 624 864 912 11.28 27.04 68.03 118.20 2.94 4.33 7.87 12.96

16x16 324 456 660 840 9.92 16.29 63.06 103.93 3.06 3.57 9.55 12.37

32x32 288 420 660 804 9.60 15.27 40.73 97.94 3.33 3.64 6.17 12.18

64x64 288 408 660 768 9.50 14.98 41.36 91.62 3.30 3.67 6.27 11.93

Table 7.8: This table shows the experimental results for embedding encryption specification into the
JPEG2000 codestream by replacing image coefficients. The abbreviation EMB stands for Embedding Data
into the codestream and No EMB stands for no embedding has been applied, which is used to compare
the proposed embedding method with the data-volume, which would be required for storing all the start-,
end-values and the encryption-counters. WL stands for Wavelet-Level, CBS is the abbreviation for code-
block-size and Ratio shows the proportion between No EMB and EMB in %. All measurements are based
on the average of 1000 simulations conducted on the following images from the SCFace image database
[46]: cam1 1 (1), cam3 3 (2), cam5 3 (3) and 001 frontal (4).

As shown with the experimental results, embedding the encryption specification into

JPEG2000 codestream by replacing image coefficients increases the computational de-

mand required to encode a JPEG2000 image. This is due to the fact that an additional

processing step required to embed the encryption specification into the JPEG2000 code-

stream must be executed. Furthermore, decoding a JPEG2000 image also requires more

computing resources, as the embedded data must be detected and parsed prior to de-

CHAPTER 7. PERFORMANCE EVALUATION 67

crypting the encrypted image regions. This embedding method has the computational

advantage of not removing the embedded data prior to decoding the JPEG2000 image.

This is due to the fact that the image is still JPEG2000 format-compliant after embedding

the encryption specification.

Table 7.9 shows the average time, in milliseconds, required for embedding the encryption

specification into the JPEG2000 codestream by replacing JPEG2000 image coefficients. As

shown here, the time required to embed the encryption specification into the JPEG2000

increases when a smaller code-block-size has been used while encoding the JPEG2000 im-

age. This is due to the fact that smaller code-block-sizes cause an increased data-volume

which must be embedded into the JPEG2000 codestream. Hence, more computing re-

sources are required to embed the encryption specification into the JPEG2000 codestream.

Figure C.10 shows the results depicted in Table 7.9. By comparing Figure C.10 with Fig-

ure C.9 it becomes evident that the time required to embed the encryption specification

into the JPEG2000 codestream depends on the data-volume which must be embedded

into the JPEG2000 codestream.

WL CBS
Embedding Time [ms]

WL
Embedding Time [ms]

1 2 3 4 1 2 3 4

0

4x4 1.13 3.16 19.43 54.73

2

1.08 2.45 11.58 43.71

8x8 1.04 2.39 12.84 34.98 0.92 1.98 8.12 29.08

16x16 1.06 2.18 10.32 28.91 0.97 1.84 6.19 22.79

32x32 0.99 2.04 9.53 27.00 0.89 1.72 5.58 20.98

64x64 0.94 2.09 9.17 25.18 0.92 1.70 5.46 20.32

1

4x4 1.08 2.49 12.61 45.14

3

1.04 2.45 11.58 41.04

8x8 0.88 1.98 8.60 29.90 0.98 2.07 7.92 29.87

16x16 0.94 1.82 6.68 24.45 0.90 1.72 6.26 22.77

32x32 0.88 1.76 6.09 22.08 0.89 1.58 5.65 20.23

64x64 0.89 1.64 5.99 20.84 0.90 1.62 5.55 19.75

Table 7.9: This table shows the time, in milliseconds, required to embed the encryption specification
into the JPEG2000 codestream, by replacing JPEG2000 image coefficients. The abbreviation CBS stands
for code-block-size and WL stands for Wavelet-Level. Both parameters are specified while encoding the
JPEG2000 image. All measurements are based on the average of 1000 simulations conducted on the fol-
lowing image from the SCFace image database [46]: cam1 1 (see Figure 7.1).

However, as the experimental results show, embedding the encryption specification into

the JPEG2000 codestream by replacing image coefficients poses the risk of degrading the

image quality. Furthermore, as proven by this study (see Subsection 7.3.5), the degree of

image quality degradation depends on the data-volume which has been embedded into the

JPEG2000 codestream. This is due to the fact that some JPEG2000 image coefficients

are replaced by the encryption specification.

CHAPTER 7. PERFORMANCE EVALUATION 68

Table 7.10 shows the average SSIM, LSS, ESS and PSNR value caused by embedding the

encryption specification into the JPEG2000 codestream by replacing image coefficients.

All the experimental results shown in the table below are based on the results obtained by

the decrypted and decoded sample image cam1 1 from the SCFace image database [46].

Due to the fact that all the other sample images used to evaluate the embedding methods

(see Figure 7.1) show similar results, the following evaluation focuses on image cam1 1.

Figure C.11 shows the four image metrics described in Subsection 3.2.6, which are used

to evaluate the image quality of the decrypted image. As illustrated by the results in Fig-

ure C.11 or Table 7.10, the PSNR (peak-signal-to-noise-ratio) is deteriorates if more data

is embedded into the JPEG2000 codestream. This is due to the fact that more JPEG2000

image coefficients are replaced by the encryption specification (see Figure C.12, which

visualizes the PSNR values listed in Table 7.10 below). All the experiments conducted in

this work showed no visible image degradations (at least for the human eye). This is due

to the fact that no more than a few bytes have been replaced. However, as more image

coefficients are replaced, the worse the image quality gets, as illustrated by the results be-

low (smaller CBSs require more encryption specification, hence it degrades image quality

to a greater degree).

WL CBS SSIM ESS LSS PSNR WL SSIM ESS LSS PSNR

0

4x4 0.995 0.994 0.991 57.617

2

0.999 0.983 1.000 57.933

8x8 0.996 0.991 0.992 58.464 1.000 0.987 1.000 66.356

16x16 0.999 0.986 0.999 70.786 1.000 0.983 1.000 70.622

32x32 1.000 0.987 0.999 71.306 1.000 0.977 1.000 71.630

64x64 1.000 0.988 1.000 73.837 1.000 0.994 1.000 73.178

1

4x4 1.000 0.987 1.000 63.079

3

0.999 0.984 1.000 58.073

8x8 1.000 0.986 1.000 68.447 1.000 0.985 1.000 65.490

16x16 1.000 0.983 1.000 70.564 1.000 0.984 1.000 70.378

32x32 1.000 0.977 1.000 71.791 1.000 0.977 1.000 71.408

64x64 1.000 0.997 1.000 73.364 1.000 0.992 1.000 72.769

Table 7.10: This table shows the four image quality metrics outlined in Subsection 3.2.6. The image quality
scores are calculated after decrypting and decoding the JPEG2000 image into the PGM file-format, whereby
embedding the encryption specification into the JPEG2000 codestream replaces some image coefficients.
The image quality is degraded when compared with the original, unmodified image. The image quality
metrics SSIM, ESS and LSS show the similarity between the original- and the image used for embedding
(a similarity score of 1 indicates that the images are identical). The PSNR is given in dB and depicts the
similarity between the original unmodified and the image used to embed the encryption specification (a
higher dB score represents a better similarity, ∞ shows that the images are identical). All measurements
are based on the average of 1000 simulations conducted on the following image from the SCFace image
database [46]: cam1 1 (see Figure 7.1).

CHAPTER 7. PERFORMANCE EVALUATION 69

7.2.5 Encrypt Multiple RoIs per Image

As illustrated in Table 7.11 below, encrypting more than one RoI per JPEG2000 code-

stream causes no additional computational- or embedding overhead. This is due to the

fact that this work utilizes the JPEG2000 quality progression bitstream ordering, as out-

lined in Chapter 6. This ordering-type offers the advantage of aligning all the JPEG2000

data packets belonging to an RoI or the data packets of multiple RoIs at the beginning

of the JPEG2000 codestream. As shown in the table below, defining more than one RoI

while encoding the JPEG2000 image (Figure 7.1a shows image cam1 1 from the SCFace

image database [46], which has been used for multiple RoI encoding) has no impact on

the length of the encryption specification, as all the RoI relevant data-packets are aligned

at the beginning of the codestream. Table 7.11 shows embedding-overhead caused by

embedding the encryption specification of up to eight different RoIs into the JPEG2000

COM-segment. As experimental results have shown, the crucial factor for determining

the embedding-/decryption-time is the data-volume which must be embedded into the

JPEG2000 codestream. However, this crucial factor is linked to the used Wavelet-Level,

code-block-size and the size of the defined RoI, which all contribute to an increased en-

cryption specification size. Hence, these parameters determine the time required to embed

the data into the JPEG2000 image.

WL CBS
COM-Segment – Embedding-Overhead

1 RoI 2 RoI 3 RoI 4 RoI 5 RoI 6 RoI 7 RoI 8 RoI

8x8 6.292 6.247 6.316 6.244 5.248 5.266 5.137 5.293

16x16 6.160 6.316 5.209 5.266 5.230 4.969 5.008 5.050

32x32 6.247 6.244 5.266 5.293 4.939 5.050 5.023 5.002

64x64 6.142 5.248 5.230 4.939 4.996 5.071 4.963 5.083

1

4x4 6.316 5.266 4.969 5.050 5.071 5.038 10.372 10.498

8x8 6.136 5.137 5.008 5.023 4.963 10.372 5.395 5.371

16x16 6.244 5.293 5.050 5.002 5.083 10.498 5.371 5.119

32x32 5.209 4.969 5.011 5.038 10.264 5.362 4.945 4.999

64x64 5.248 4.939 5.071 5.083 5.428 5.056 5.020 5.065

2

4x4 5.236 4.948 5.014 10.087 5.362 5.107 4.978 10.327

8x8 5.266 5.050 5.038 10.498 5.056 4.999 10.648 5.902

16x16 5.209 5.032 4.963 5.386 5.005 5.107 5.959 5.410

32x32 5.137 5.023 10.372 5.371 5.020 10.648 5.245 5.476

64x64 5.230 5.071 10.264 5.056 5.053 6.076 5.560 5.314

Table 7.11: This table shows the embedding overhead, in bytes, caused by embedding the encryption
specification of up to eight RoIs into the JPEG2000 COM-segment. All measurements are based on the
average of 1000 simulations conducted on image cam1 1 [46] (see Figure 7.1).

CHAPTER 7. PERFORMANCE EVALUATION 70

7.3 Comparison – Embedding Methods

Based on the results outlined in the previous section, the objective of this section is to

compare the proposed embedding methods with each other. To do this, we will utilize the

evaluation criteria described in Section 3.2, excluding the security - and transcodability

aspects (as mentioned in the introduction to this chapter), which are not covered by this

section due to the reasons previously outlined.

7.3.1 Format Compliance

As the experimental results show, not all proposed embedding methods fulfill the re-

quirements of JPEG2000 format-compliance. Hence, not all of these methods can be used

in conjunction with a standard compliant JPEG2000 Part 1 decoder, which might not

be able to decode a non-format-compliant JPEG2000 image. Although embedding the

encryption specification prior- or after the JPEG2000 codestream does not modify the en-

coded bitstream, these embedding methods do modify the JPEG2000 Part 1 codestream

syntax (see Figure 2.8). This is based on the fact that after embedding the encryption

specification, the codestream either has an invalid start- or end-value (JPEG2000 expects

to start with the SOC-marker and ends with the EOC-marker). However, as experiments

show, when embedding the encryption specification after the EOC-marker, the JJ2000

Version 5.1 coder and IrfanView Version 4.32 are still able to decode the image. However,

the JJ2000 Version 5.1 coder shows a warning that the codestream ends incorrectly.

Embedding the encryption specification either into the JPEG2000 codestream by replacing

image coefficients or into the JPEG2000 COM-segment are both format-compliant ways

of embedding the encryption specification into the JPEG2000 codestream. This is based

on the fact that no JPEG2000 marker is modified, added or deleted while embedding the

encryption specification into the codestream. Furthermore, the JJ2000-decoder has not

shown any format-compliance warnings while decoding the image, which would not be

the case if the expected JPEG2000 syntax has been manipulated.

7.3.2 Embedding Overhead

As experimental results have shown, embedding the encryption specification into the

COM-segment, prior- or after- the JPEG2000-codestream causes overhead. This is due

to the fact, as outlined in Chapter 6, that the encryption specification must be added to

the encoded and encrypted JPEG2000 codestream, which is necessary to successfully de-

crypt the encrypted bitstream parts. Furthermore, embedding the encryption specification

into the JPEG2000 codestream by replacing image coefficients has the benefit of causing

CHAPTER 7. PERFORMANCE EVALUATION 71

no overhead, which might be mandatory for some applications. However, this method has

the drawback of degrading the image-quality to a certain degree, as outlined in Subsec-

tion 6. As the results in Table 7.13 below illustrate, the proposed embedding methods (see

Chapter 6) need less encryption specification than storing all the start-, end-values and

the encryption-counters. Therefore, the following table gives an overview of the average

(out of 1000 simulations) embedding overhead caused by the proposed embedding meth-

ods. The given results are based on image cam1 1 from the SCFace image database [46].

The other images from the data-set (see 7.1) show similar results, as presented in pre-

vious sections. As shown in the following table, the embedding overhead caused by the

proposed embedding methods differs only slightly, except for embedding data into the

COM-segment, which needs, on average, 2 bytes less overhead than the other methods.

This is due to the fact that this method does not need to signal the start or the end of

the encryption specification within the codestream.

WL CBS

No EMB COM-Seg. Before SOC After EOC Repl. Coef.

[byte] [byte] [byte] [byte] [byte]

1 4 1 4 1 4 1 4 1 4

0

4x4 144 312 8.64 65.53 10.88 67.05 10.67 67.62 10.56 67.25

8x8 120 240 6.97 53.27 9.06 55.40 9.16 55.39 9.16 55.37

1616 108 216 6.89 48.77 8.90 50.79 8.89 50.76 8.65 50.82

32x32 96 204 6.39 47.11 8.26 49.14 8.41 48.83 8.31 49.21

64x64 96 204 6.26 47.03 8.19 49.04 8.21 49.03 8.26 48.81

1

4x4 276 612 9.49 89.45 11.36 91.13 11.40 91.43 11.19 91.35

8x8 216 456 7.62 68.50 9.77 70.72 9.84 71.10 9.60 70.81

1616 180 408 7.21 62.24 9.24 64.07 9.43 64.03 9.29 64.10

32x32 180 396 6.99 61.46 8.85 63.42 9.14 63.54 8.89 63.60

64x64 168 396 6.48 62.34 8.47 64.37 8.55 64.21 8.57 64.60

2

4x4 564 900 13.13 140.80 14.93 143.06 14.94 142.72 15.29 142.86

8x8 300 684 8.23 101.47 10.37 103.65 10.34 103.35 10.28 103.75

1616 276 624 7.73 89.75 9.68 92.36 9.74 91.97 9.67 91.79

32x32 252 600 7.50 83.32 9.26 84.81 9.29 85.41 9.17 85.48

64x64 252 576 7.10 80.19 9.03 81.89 8.97 81.79 9.13 81.98

3

4x4 720 1200 13.59 159.68 15.48 162.14 15.39 161.85 15.70 162.29

8x8 384 912 9.21 115.92 11.06 117.92 10.94 118.19 11.28 118.20

1616 324 840 7.81 102.28 9.92 104.19 9.84 103.82 9.92 103.93

32x32 288 804 7.46 95.19 9.47 97.78 9.41 97.73 9.60 97.94

64x64 288 768 7.49 89.65 9.61 91.43 9.53 91.77 9.50 91.62

Table 7.13: This table compares the average capacity required to embed the encryption specification
into the JPEG2000 codestream. Therefore, image cam1 1 (1 ,see Figure 7.1) and image 001 frontal (4
,see Figure 7.1f) from the SCFace image database [46] have been used. Column three and four show the
capacity, in bytes, required to store all the start-, end-values and the encryption-counters into an additional
file (No EMB). The other columns show the capacity required to store the encryption specification into the
JPEG2000 codestream. The abbreviation WL stands for Wavelet-Level and CBS stands for code-block-size.

CHAPTER 7. PERFORMANCE EVALUATION 72

Figure C.17 depicts the embedding overhead caused by the proposed embedding methods,

as shown in Table 7.13. However, as the length-preserving data embedding does not cause

any overhead, this figure shows the number of image coefficients which have been replaced

by the encryption specification. As shown in Figure C.17, the capacity required to embed

the encryption specification increases when the code-block-size decreases. As previously

outlined, this is because a smaller code-block-size used while encoding the JPEG2000

image results in more JPEG2000 packets. Furthermore, encoding the image with more

Wavelet-levels increases the data-volume required to store the encryption specification

as well. Figure C.18 compares the proposed embedding methods with the embedding

overhead which would be required to store all the start-, end-values and the encryption-

counters.

7.3.3 Computational Demand

As outlined in previous sections decoding a JPEG2000 image which has been used to

embed the encryption specification demands more computing resources. This is based on

the fact that the embedded data must be extracted and parsed prior to decrypting the

encrypted bitstream parts. Furthermore, as experimental results have shown, not only does

the decoding require more computing resources; embedding the encryption specification

into the JPEG20000 bitstream itself also requires more computing resources than would

be needed for simply writing the data into an additional file.

As the results in Table 7.14 illustrate, the proposed embedding methods require more

time to decrypt the decrypted bitstream parts than would be the case when reading

the encryption specification from an additional file (indicated by No EMB, which stands

for no data embedding). The given measurements are based on image cam1 1 from the

SCFace image database [46]. The other images from the data-set show similar results

and are therefore not explicitly mentioned in this section. The increased decryption time

is due to the fact that some JPEG2000 codestream parts have been modified and not

all the start-, end-values are stored in the JPEG2000 codestream. Hence, the missing

information must be parsed from the JPEG2000 codestream, which requires more time.

As shown in the following table, the time required by the proposed embedding methods

differs only slightly, except for embedding data into the COM-segment, which requires,

on average, one millisecond longer than embedding the encryption specification before or

after the JPEG2000 codestream. Furthermore, embedding the data into the JPEG2000

codestream by replacing image coefficients requires, on average, half a millisecond less

time than the other methods, as no data need to be removed prior to decoding the image.

Figure C.19 depicts the decryption time required by the proposed embedding methods,

CHAPTER 7. PERFORMANCE EVALUATION 73

as shown in Table 7.14 below. As evident in this figure, the time required to decrypt the

encrypted bitstream parts is lower when no embedding has been performed. This is due to

the fact that the embedded encryption specification must be extracted and parsed prior to

decrypting the encrypted bitstream parts, which is not the case when the whole encryption

specification is stored in another file. Furthermore, this figure shows some peaks, which

are caused by choosing a smaller code-block-size while encoding the JPEG2000 image,

which then leads to more encrypted packet data.

Figure C.20 depicts the embedding time caused by the proposed embedding methods. As

evident in this figure and previous analyzes (see the Tables 7.2, 7.5, 7.7 and 7.9) embedding

data into the COM-Segment poses the highest computational demand since, in addition

to embedding the encryption specification, some COM-fields must be altered, which is not

the case for the other embedding methods.

WL CBS
No EMB COM-Seg. Before SOC After EOC Repl. Coef.

[ms] [ms] [ms] [ms] [ms]

0

4x4 3.40 8.83 8.87 8.87 7.92

8x8 3.02 7.47 7.05 7.05 6.78

1616 2.89 6.61 6.64 6.54 6.55

32x32 2.71 5.83 5.79 5.77 5.62

64x64 2.75 5.90 6.03 5.86 5.91

1

4x4 3.57 9.78 8.82 8.75 8.71

8x8 3.29 9.30 7.61 7.58 6.77

1616 3.00 7.05 5.95 6.00 5.85

32x32 2.96 6.70 5.87 5.75 5.39

64x64 2.83 6.36 5.45 5.71 5.30

2

4x4 4.54 15.78 13.97 12.95 13.08

8x8 3.58 9.55 8.49 8.52 6.64

1616 3.24 8.09 6.62 6.59 6.82

32x32 3.18 7.91 6.73 6.29 6.23

64x64 3.09 8.53 7.73 7.73 6.83

3

4x4 4.99 15.09 14.95 13.76 12.19

8x8 3.79 10.79 8.92 9.09 8.16

1616 3.51 8.78 7.84 7.09 6.14

32x32 3.34 7.86 7.22 6.11 5.74

64x64 3.25 8.18 7.62 7.01 5.74

Table 7.14: This table compares the average time, in milliseconds, required to decrypt the encrypted
image regions. Therefore, image cam1 1 (see Figure 7.1) from the SCFace image database [46] has been
used. Column three shows the time required to decrypt the JPEG2000 image when no data embedding
has been applied (No EMB). The other columns shows the time required to extract, parse and decrypt the
encrypted image parts (for further details see Chapter 6). The abbreviation WL stands for Wavelet-Level
and CBS stands for code-block-size.

CHAPTER 7. PERFORMANCE EVALUATION 74

7.3.4 Image Quality

As outlined in the previous section, the image quality might be degraded by two of the

proposed embedding methods. These methods are embedding the encryption specification

into the JPEG2000 COM-segment (if the embedded data is not removed prior to decoding

the JPEG2000 image) and the length-preserving method, which replaces JPEG2000 image

coefficients by the encryption specification. As illustrated in Table 7.15 below, the length-

preserving embedding method is in generally a better choice, as its image degradation is,

on average, superior to the COM embedding method. The fluctuating PSNR value caused

by COM-method is due to the EBCOT-algorithm, which places the truncation points

differently when the main-header differs in length.

WL CBS
COM Repl. COM Repl. COM Repl. COM Repl.

SSIM SSIM ESS ESS LSS LSS PSNR PSNR

0

4x4 1.000 0.995 1.000 0.994 1.000 0.991 99.924 57.617

8x8 1.000 0.996 1.000 0.991 1.000 0.992 99.329 58.464

16x16 0.982 0.999 0.983 0.986 0.927 0.999 27.151 70.786

32x32 0.999 1.000 0.998 0.987 0.996 0.999 98.181 71.306

64x64 0.744 1.000 0.820 0.988 0.225 1.000 15.687 73.837

1

4x4 1.000 1.000 1.000 0.987 1.000 1.000 100.000 63.079

8x8 0.997 1.000 0.999 0.986 0.996 1.000 97.616 68.447

16x16 0.996 1.000 0.975 0.983 0.942 1.000 55.344 70.564

32x32 0.849 1.000 0.890 0.977 0.839 1.000 49.262 71.791

64x64 0.285 1.000 0.463 0.997 -0.871 1.000 11.489 73.364

2

4x4 1.000 0.999 1.000 0.983 1.000 1.000 100.000 57.933

8x8 0.939 1.000 0.962 0.987 0.887 1.000 65.843 66.356

16x16 1.000 1.000 1.000 0.983 1.000 1.000 100.000 70.622

32x32 1.000 1.000 1.000 0.977 1.000 1.000 100.000 71.630

64x64 0.873 1.000 0.871 0.994 0.818 1.000 79.267 73.178

3

4x4 1.000 0.999 1.000 0.984 1.000 1.000 100.000 58.073

8x8 1.000 1.000 1.000 0.985 1.000 1.000 100.000 65.490

16x16 0.978 1.000 0.974 0.984 0.945 1.000 87.361 70.378

32x32 0.697 1.000 0.808 0.977 0.506 1.000 39.999 71.408

64x64 0.627 1.000 0.651 0.992 0.446 1.000 42.831 72.769

Table 7.15: This table shows the four image quality metrics outlined in Subsection 3.2.6. The image quality
scores are calculated after decrypting and decoding the JPEG2000 image into the PGM file-format, whereby
the encryption specification is either embedded into the COM-segment (indicated by COM) or into the
JPEG2000 codestream by replacing JPEG2000 image coefficients (indicated by Repl.). The image quality
metrics SSIM, ESS and LSS show the similarity between the original- and the image used for embedding
(a similarity score of 1 indicates that the images are identical). The PSNR is given in dB and depicts the
similarity between the original unmodified and the image used to embed the encryption specification (a
higher dB score represents a better similarity, ∞ shows that the images are identical). All measurements
are based on the average of 1000 simulations conducted on the following image from the SCFace image
database: cam1 1 (see Figure 7.1).

CHAPTER 7. PERFORMANCE EVALUATION 75

7.3.5 Capacity Assessment – Length Preservation

As demonstrated by the experimental results, embedding the encryption specification into

the JPEG2000 codestream by replacing image coefficients degrades the image quality.

Therefore, this subsection evaluates the effect on the image quality caused by increasing

the embedding capacity steadily. Table 7.16 shows the embedding capacity and the four

image metrics, which are described in Section 3.2. All the measurements are based on

the image cam1 1 (see Figure 7.1) (75x100 pixel) from the SCFace image database [46],

which has been encoded with a code-block-size = 16x16 pixel and Wavelet decomposi-

tion level = 0. The encoded JPEG2000 image results in a file-size of 6718 bytes, which

includes all the header-data, marker-segments and the encoded image coefficients stored

in the packet bodies. Hence, subtracting the header-data and the marker-segments from

the file-size results in 5921 bytes, which are used to store the encoded image coefficients.

This size represents the maximum capacity that is feasible to embed into the JPEG2000

codestream without destroying JPEG2000 format-compliance. As evident in Figure C.13

and C.14, the image quality gets worse when the embedding capacity increases. Further-

more, Figure C.16 depicts the PSNR value caused by embedding up to 5921 bytes into

the sample image, cam1 1 from the SCFace image database [46].

Embed.
SSIM LSS ESS PSNR

Embed.
SSIM LSS ESS PSNR

[byte] [byte]

1 1 1 0.981 75.420 563 0.992 0.983 0.905 49.825

2 1 1 1 75.090 614 0.992 0.983 0.913 49.456

4 1 1 0.981 73.659 665 0.991 0.983 0.913 49.114

8 1 1 0.981 67.388 716 0.99 0.983 0.904 48.992

16 0.998 0.992 0.986 62.748 768 0.989 0.983 0.920 48.572

22 0.998 0.992 0.986 62.488 870 0.987 0.975 0.897 47.835

32 0.998 0.992 0.986 60.330 1024 0.984 0.975 0.862 47.224

71 0.998 0.992 0.986 58.011 1432 0.964 0.912 0.794 42.212

90 0.996 0.975 0.986 55.037 1636 0.952 0.878 0.778 40.477

128 0.996 0.983 0.986 54.998 2048 0.913 0.715 0.739 37.907

228 0.996 0.983 0.977 53.745 2864 0.739 0.202 0.611 28.900

256 0.995 0.983 0.971 52.911 3072 0.634 0.104 0.631 20.861

358 0.994 0.983 0.957 51.425 3480 0.351 0.050 0.571 11.779

409 0.994 0.983 0.949 51.069 3684 0.280 0.040 0.514 10.015

512 0.993 0.983 0.926 50.002 4096 0.283 0.030 0.522 10.215

Table 7.16: This table shows the four image quality metrics outlined in Subsection 3.2.6. The image quality
scores are calculated after decrypting and decoding the JPEG2000 image into the PGM file-format, whereby
the encryption specification is embedded into the JPEG2000 codestream by replacing image coefficients.
All measurements are based on image cam1 1 [46], CBS of 16x16 pixel and a WL of 0.

CHAPTER 7. PERFORMANCE EVALUATION 76

7.4 Automated RoI Detection

This section presents and discusses the results of the proposed automated RoI detection

methods. Therefore, the experimental results are based on the following images from the

SCFace image database [46]: cam1 1 (see Figure 7.4a), cam3 3 (see Figure 7.4b), cam5 3

(see Figure 7.4c) and 001 frontal (see Figure 7.4d). All these images are encoded and

evaluated for experimental purposes with varying code-block-sizes (CBS) and a constant

Wavelet decomposition level (WL). As outlined by Uhl et al [39], the decision for encoding

the input images with a constant Wavelet decomposition level is based on the fact that

in case of small image dimensions or for higher Wavelet decomposition levels the spatial

extent of a single code-block exceeds the RoIs or the image size, which would result in a

decreased accuracy of detecting the encrypted JPEG2000 image region by the automated

RoI detection methods proposed by this work.

In Figure 7.2, the impact of varying different encoded images on the scrambling accuracy

of the JPEG2000 RoI method is demonstrated. Thereby, the decreasing covering accuracy

of the predefined rectangular RoI (highlighted by red border) is clearly visible. The auto-

mated RoI detecting methods proposed by this work focus on Wavelet decomposition level

0, which offers the required property of an accurate RoI scrambling which does not exceed

the code-block- nor its image-size. However, even if the image is encoded with WL-0, the

encrypted image region exceeds the predefined rectangular RoI, which is highlighted by

the red border. This circumstance is based on the fact that the JPEG2000 coder performs

all the image processing steps on code-block basis (as outlined in Chapter 2). Hence, en-

crypting the majority of the image-coefficients belonging to one code-block destroys the

visible reconcilability of the whole code-block.

(a) WL-0 (b) WL-1 (c) WL-2 (d) WL-3

Figure 7.2: The figures above show some RoI encryption examples (surveillance image cam1 1 from the
SCFace image database [46]) with image size = 75×100 pixel and RoI = 36×72 pixel (RoI is highlighted by
red border) with top left corner located at x = 26 and y = 12 pixel. All the images above are encoded with
a code-block-size of 16×16 pixel and varying Wavelet-Levels. Figure 7.2a is encoded with a Wavelet-Level
(WL) = 0, Figure 7.2b WL = 1, Figure 7.2c WL = 2 and Figure 7.2d WL = 3.

CHAPTER 7. PERFORMANCE EVALUATION 77

The proposed automated RoI detection methods have the following advantages over the

proposed embedding methods (not all advantages apply to all embedding methods):

• JPEG2000 format-compliance: The syntactical and semantical requirements im-

posed by the JPEG2000 standard [9] are fulfilled

• Losslessness: The exact preservation of all (visible) picture data

• Length-preserving: It is guaranteed that the picture’s file size does not change

while performing the automated RoI detection

This is due to the fact that no data are embedded into the JPEG2000 codestream, nor

are any image coefficients modified while performing the automated RoI detection.

7.4.1 Detect RoI by Entropy or Variance

Figure 7.3: Partitioned PGM In-
put Image

This subsection outlines the experimental results of automat-

ically detecting the encrypted picture region by its entropy

or variance. Therefore, calculating the entropy or the vari-

ance is applied at three different input levels, as outlined

in Chapter 6. The first method handles the RoI detection

at PGM image data level, which is straight-forward, but as

experimental results have shown (see Table 7.17), promises

little success of detecting the encrypted image region cor-

rectly. As evident in Figure 7.3, the input image is further

partitioned into smaller non-overlapping rectangular blocks,

which are used to calculate the entropy/variance for each of

these blocks. Each of these blocks is labeled in Figure 7.3

by a unique block-number, which is later used in Table 7.17 reference to certain image

blocks. Although the human eye is capable of detecting encrypted picture region easily, the

proposed automated RoI detection methods are not. Table 7.17 shows the experimental

results of calculating the entropy/variance for each image block. All the measurements de-

picted in Table 7.17 represent the average of 1000 simulations, based on the circumstance

that the input image is again re-encrypted after the entropy/variance has been calcu-

lated for the whole image. The following table highlights the unencrypted image blocks

with a blue background color. However, as shown in the experimental results, detecting

the encrypted image regions by either variance or entropy is not sufficient to accurately

detect the encrypted image region automatically. On the one hand, this is based on the

fact that some image blocks might have a high contrast, meaning that they are hardly

CHAPTER 7. PERFORMANCE EVALUATION 78

distinguishable from encrypted image regions (see image block 21 or 25 in Figure 7.3).

On the other hand, as experimental results have shown, detecting the encrypted image

region by variance or entropy depends on the decryption itself. As illustrated in the image

blocks 18 and 19 (see Figure 7.3), these two image blocks show little contrast. Hence, they

do have a small variance- and entropy-value, which leads to the fact that detecting en-

crypted image blocks is even harder, as their variance-/entropy-values differ greatly from

each other. Based on the experimental results, detecting the encrypted image region by

variance or entropy does not work for PGM images, due to the above mentioned reasons.

Block Variance Entropy Block Variance Entropy

1 5.968 3.248 19 2984.637 5.220

2 3017.622 5.265 20 68.288 4.638

3 2983.669 5.280 21 2226.279 4.921

4 3084.993 5.233 22 3049.670 5.241

5 6.338 3.035 23 3002.934 5.386

6 2.781 2.559 24 2986.943 5.319

7 2982.278 5.268 25 3449.446 6.074

8 2971.483 5.265 26 1529.972 4.900

9 3037.916 5.260 27 3154.024 5.231

10 15.057 3.708 28 2985.631 5.347

11 4.468 2.942 29 3026.227 5.259

12 3000.282 5.262 30 17.278 3.763

13 3055.838 5.295 31 79.069 3.233

14 3079.018 5.252 32 30.392 3.424

15 217.804 4.232 33 3110.082 5.282

16 3.761 2.971 34 8214.554 5.074

17 3112.561 5.251 35 1.208 1.961

18 3056.617 5.211

Table 7.17: This table shows the experimental results of calculating the variance and the entropy based
on a PGM image. Therefore, the source image has been encoded with a code-block-size of 16×16 pixel and
a Wavelet-Level of 0. Image dimensions = 75×100 pixel. As illustrated in Figure 7.3 the input image is
further partitioned into smaller non-overlapping rectangular picture regions, which are used to calculate the
variance and entropy scores on image block basis. The highlighted cells above represent the unencrypted
image parts. All measurements are based on the average of 1000 simulations conducted on the following
image from the SCFace image database [46]: cam1 1.

Figure D.1 depicts the experimental results caused by calculating the entropy for each

PGM-image block. Therefore, image cam1 1 from the SCFace image database [46] has

been used. It has been encoded with a code-block-size of 16×16 pixel and a Wavelet

decomposition level of 0. However, as evident in Figure D.1 it is not possible differ between

an unencrypted image block or an encrypted image block. As outlined above, it is possible

CHAPTER 7. PERFORMANCE EVALUATION 79

that some unencrypted image blocks feature a high contrast and some encrypted image

blocks feature a low contrast, which contradicts our assumptions that all encrypted image

blocks should have increased entropy. Although calculating the variance shows similar

results (see Figure D.2) it performs better than the entropy, as the difference between the

monotonic gray background and the encrypted image parts is more clear. Nevertheless,

when it comes to distinguishing between an encrypted image block and unencrypted

images block with a high contrast (e.g., image block 21, 33, and 34), this methods shows

the same problems as the entropy approach.

The second input level, which can be used to calculate the entropy or the variance, relies

on extracting the image data from the JPEG2000 codestream. Therefore, the JPEG2000

codestream is parsed, as outlined in Subsection 6.3.1, to extract the JPEG2000 packet

data, which contains the encoded and encrypted image coefficients. As shown in Ta-

ble 7.18 below, calculating the entropy or the variance, based on data extracted from

the JPEG2000 packets, do not promise automated encryption detection approaches. All

the measurements shown in this table are based on the average of 1000 simulations and

the JPEG2000 quality progression bitstream ordering has been applied to the codestream.

Hence, the encrypted RoI image coefficients are aligned at the beginning of the JPEG2000

Packet-ID Variance Entropy Packet-ID Variance Entropy

1 5380.761 5.074 13 5645.482 6.511

2 5273.485 4.793 14 5397.951 7.457

3 5374.257 5.712 15 5623.537 7.309

4 5173.898 4.380 16 4545.875 4.970

5 5280.161 4.494 17 4616.950 6.872

6 5401.586 5.580 18 5406.246 7.424

7 5467.336 6.316 19 5122.294 7.302

8 5423.892 6.740 20 5813.026 7.503

9 4937.823 6.977 21 5476.311 7.724

10 5754.693 6.104 22 5321.552 7.491

11 5371.121 7.564 23 5578.688 7.796

12 5533.204 6.893

Table 7.18: This table shows the experimental results of calculating the variance and the entropy based
on the data extracted from the JPEG2000 packet bodies. Therefore, the source image has been encoded
with a code-block-size of 16×16 pixel and a Wavelet-Level of 0. Image dimensions = 75×100 pixel. Prior
to calculating the variance and the entropy, the JPEG2000 packet body data must be extracted from the
image codestream (JPEG2000 packets are encapsulated by SOP- and the EPH-marker). Hence, the packet
data is used to calculate the variance and entropy scores for each packet. The highlighted cells represent the
encrypted packets, which are located at the beginning of the JPEG2000 codestream (quality progression
bitstream ordering has been applied while encoding the image). Packet number 9 represents a special case,
as not the whole packet is encrypted, as is the case with the other highlighted packets.

CHAPTER 7. PERFORMANCE EVALUATION 80

codestream. To be more precise, the first 8 packets are completely taken by the encrypted

RoI coefficients and packet number 9 is partly taken by the encrypted RoI coefficients.

However, as shown in Table 7.18, encrypted entropy and the encrypted-variance are

not distinguishable. This is based on the fact that the Arithmetic entropy coding (see

Chapter 2) which is applied while encoding the image destroys any image characteristic,

hence every packet looks the same. As experimental results show, detecting the encrypted

JPEG2000 packets is not possible, due to the Arithmetic entropy coding. However, even if

detecting the encrypted JPEG2000 packets would be possible, the issue of detecting the

precise end of the encrypted codestream must be solved prior to accurately decrypting

the encrypted image parts.

Figure D.3 depicts the experimental results caused by calculating the entropy of the

JPEG2000 packet-data. As illustrated in the figure, it is not possible to differ between an

encrypted (data-packets 1-8 are completely encrypted and packet 9 is partially encrypted,

all the other data-packets are unencrypted) or any unencrypted data-packet. As depicted

in Figure D.4, the same applies to computing the variance, as all the variance scores

caused by the data-packets are quite similar. As mentioned above, this is due to the fact

that the JPEG2000 encoder applies an entropy encoder prior to ordering and storing the

JPEG2000 codestream. Therefore, as experiment results show, it is possible to distinguish

between encrypted and unencrypted JPEG2000 data-packets.

Finally, the third input level which can be used to calculate the entropy or the vari-

ance relies on extracting the image data from the JPEG2000 inverse Wavelet transfor-

mation. Therefore, the encoded and encrypted JPEG2000 image is decoded until the

inverse Wavelet transformation has been applied. Hence, the resulting inverse Wavelet co-

efficients are partitioned into smaller non-overlapping rectangular blocks, which are used

to calculate the variance/entropy. For best results, as experiments have shown, the same

code-block-size used to encode the image should be used to partition the image. Table 7.19

presents the experimental results caused by calculating the variance/entropy based on the

values extracted from the inverse Wavelet-transformation. As shown in Table 7.19, the

distinction between the encrypted- and unencrypted image blocks seems easier than with

the PGM-method, but due to image blocks such as block 34, an accurate distinction is not

possible. Although this input level is more likely to achieve higher encryption-detection

accuracy, as would be the case with the other two input levels, it is obvious that more re-

search must be done in this field in order to detect the encrypted image region accurately.

However, as this method promises no success in detecting the encrypted bitstream parts,

we chose not to focus on any further about detecting the encrypted image.

CHAPTER 7. PERFORMANCE EVALUATION 81

Block Variance Entropy Block Variance Entropy

1 5.968 3.248 19 7760.816 5.508

2 8123.017 5.409 20 68.288 4.638

3 8907.141 5.394 21 2226.279 4.921

4 8159.228 5.499 22 8034.414 5.517

5 6.338 3.035 23 7937.078 5.464

6 2.781 2.559 24 8342.943 5.472

7 8614.466 5.600 25 3449.446 6.074

8 8413.303 5.555 26 1529.972 4.900

9 8482.343 5.561 27 8345.871 5.524

10 15.057 3.708 28 8635.804 5.541

11 4.468 2.942 29 7934.832 5.528

12 8267.022 5.534 30 17.278 3.763

13 8480.741 5.519 31 79.069 3.233

14 8454.742 5.499 32 30.392 3.424

15 217.804 4.232 33 3110.082 5.282

16 3.761 2.971 34 8214.554 5.074

17 8468.571 5.500 35 1.208 1.961

18 8041.758 5.497

Table 7.19: This table shows the experimental results of calculating the variance and the entropy based on
the data extracted from the JPEG2000 inverse Wavelet transformation. Therefore, image cam1 1 from the
SCFace image database [46] has been used as source image to calculate the variance/entropy (encoded with
a code-block-size of 16×16 pixel and a Wavelet-level of 0). The data extracted from the inverse Wavelet
transformation is further partitioned into smaller non-overlapping rectangular blocks (see Figure 7.3). These
blocks are used to calculate the variance and entropy on image block basis. The highlighted cells above
represent the unencrypted image parts. All measurements are based on the average of 1000 simulations.

Figure D.5 depicts the experimental results caused by calculating the entropy for each

image block. Therefore, image cam1 1 from the SCFace image database [46] has been

used, which has been encoded with a code-block-size of 16×16 pixel and a Wavelet de-

composition level of 0. Nevertheless, while the results are superior to all the other entropy

calculation approaches, they feature the same drawback when it comes to distinguishing

between an encrypted image block and an image block containing high contrast (e.g.,

image blocks 21, 25, 33 or 35). However, as demonstrated in Figure D.6, calculating the

variance based on the data extracted from the inverse Wavelet transformed promises a

higher chance of being able to distinguish between an encrypted- and an unencrypted im-

age block. Nevertheless, even if detecting the encrypted image blocks would be sufficient,

it would not be possible to get the encrypted bitstream from only detecting the encrypted

image-blocks, as the encrypted RoI size does not match with the used code-block-size.

CHAPTER 7. PERFORMANCE EVALUATION 82

7.4.2 Detect RoI by Thresholding

Thresholding is the simplest and, as experimental results have shown, the most promising

approach for automatically detecting the encrypted RoI. As outlined in Subsection 6.3.4,

Thresholding is exclusively performed on the data extracted from JPGE2000s inverse

Wavelet transformation. This is based on the fact that the other input sources (PGM-file,

or JPEG2000 packet data) are not applicable for Thresholding, as they either consist only

of valid image values (PGM-file) or are “randomly” distributed (due to the JPEG2000

entropy coder), and therefore offer no useable threshold. For calculating the threshold,

the extracted inverse Wavelet coefficients, which can be represented as an image with

width and height, are further partitioned into non-overlapping rectangular blocks, which

are used to determine whether the block is encrypted or not. Hence, an unencrypted block

consists solely of luminance values ranging from 0-255 (8 bit images). Encrypted image

blocks might contain values exceeding these limits and therefore can be easily detected.

Table 7.20 shows the time required to determine the encrypted image region. As shown in

Table 7.20, the time required to automatically detect the encrypted image region decreases

when a larger code-block-size has been used while encoding the JPEG2000 image. One

of the reasons for this is the fact that the same block-size is later used to partition the

extracted inverse Wavelet coefficients into smaller non-overlapping rectangular blocks.

Hence, a larger code-block-size leads to less blocks which need to be checked regarding

whether they contain any image value exceeding the threshold or not. The results from

Table 7.20 are illustrated in Figure D.7.

Image CBS Time [ms] Image CBS Time [ms]

1

4x4 19.122

3

4x4 706.752

8x8 8.935 8x8 309.895

16x16 5.359 16x16 165.859

32x32 4.747 32x32 116.396

64x64 4.120 64x64 102.939

2

4x4 98.318

4

4x4 1955.464

8x8 42.570 8x8 803.133

16x16 23.619 16x16 422.808

32x32 17.724 32x32 328.791

64x64 16.570 64x64 310.280

Table 7.20: This table shows the time, in milliseconds, required to detect the encrypted image parts
by the automated RoI detection method Thresholding. Therefore, the following images from the SCFace
image database [46] have been used (image dimensions in pixel and reference number are given in brackets):
cam1 1 (75×100, 1), cam3 3 (168×224, 2), cam5 3 (480×640, 3), 001 frontal (768×1024, 4).

CHAPTER 7. PERFORMANCE EVALUATION 83

Table 7.21 shows the error caused by determining the encrypted image region by the

automated RoI detection method Thresholding. Therefore, the error caused by detecting

each border of the encrypted region correctly is given. For example, the column left X

indicates the number of wrongly determined left x-coordinate of the encrypted image

region (out of 1000 simulations). Furthermore, the experimental results are based on

four different images from the SCFace image database [46] (for further details see table

caption). As demonstrated in the experimental results, the code-block-sizes 4×4 pixel or

64×64 pixel cause the highest classification error rate. Furthermore, as shown in the results

below, most errors are caused by determining the y-coordinate. One reason for this is that

the encrypted image region has more height than width. Hence, less data is available to

determine the height of the encrypted image region correctly. As shown in the results

below, the best RoI detection results are achievable by a code-block-size of 16×16 pixel.

Image CBS left X upper Y right X lower Y Error Abs. Error Rate [%]

1

4x4 1 40 2 30 70 7.0

8x8 0 7 1 16 23 2.3

16x16 0 6 0 6 12 1.2

32x32 2 8 0 6 16 1.6

64x64 4 79 4 71 146 14.6

2

4x4 0 1 0 0 1 0.1

8x8 0 0 0 7 7 0.7

16x16 0 0 0 0 0 0.0

32x32 0 0 0 0 0 0.0

64x64 0 4 0 3 7 0.7

3

4x4 0 0 0 0 0 0.0

8x8 0 0 0 0 0 0.0

16x16 0 0 0 0 0 0.0

32x32 0 0 0 0 0 0.0

64x64 0 0 0 0 0 0.0

4

4x4 0 0 0 0 0 0.0

8x8 0 0 0 0 0 0.0

16x16 0 0 0 0 0 0.0

32x32 0 0 0 0 0 0.0

64x64 0 0 0 0 0 0.0

Table 7.21: This table shows the error caused by the automated RoI detection method Thresholding. The
following images from the SCFace image database [46] have been used (image size in pixel and reference
number are given in brackets): cam1 1 (75×100, 1), cam3 3 (168×224, 2), cam5 3 (480×640, 3) and
001 frontal (768×1024, 4). The results given in the columns: left X, upper Y, right X and lower Y
represent the wrongly determined borders of the encrypted RoI (e.g., left X represents the upper left
x-coordinate and upper Y the upper left Y-coordinate of the encrypted RoI). Error Abs. represents the
wrongly detected RoI dimensions (out of 1000 simulations) and Error Rate shows the error in percent.

CHAPTER 7. PERFORMANCE EVALUATION 84

Figure D.8 depicts the error rate in percent, given in Table 7.21. As illustrated in the figure

and the table, the code-block-sizes 4×4 pixel and 64×64 pixel cause the worst encryption

detection accuracy. Furthermore, as demonstrated, smaller image-sizes pose the risk of

an increased error rate. One reason therefore is due to the smaller encrypted RoI size,

which lowers the chance of detecting an invalid (exceeding threshold) JPEG2000 image

coefficient correctly. Another reason, as illustrated in Figure D.9, is that the error caused

by detecting the y-coordinate correctly is increased for smaller images. This is based on

the fact that the encrypted RoI has more height than width, hence less encrypted data

is available for detecting the y-coordinate correctly. The increased error rate caused by

detecting the y-coordinate correctly is highlighted in Figure D.10 and Figure D.11 that

focus, due to the highest error rate, on a code-block-size of 4×4 pixel and 64×64 pixel.

7.4.3 Use Edge Detector to Detect RoI

This subsection presents the experimental results of automatically detecting the encrypted

image region by its edge information. Therefore, three different edge detection methods

have been evaluated for their suitability, when it comes to detecting the encrypted image

region automatically. All the proposed methods have the benefit of not manipulating any

JPEG2000 image coefficients nor embedding any information into the JPEG2000 code-

stream. Hence, the JPEG2000 codestream, after performing the encryption detection, is

still format-compliant, no image quality degradation is measurable and the codestream

length is preserved. Figure 7.4 depicts the data-set used to automatically detect the en-

crypted image region. All the images are based on the surveillance images from the SCFace

image database [46].

(a) cam1 1 (b) cam3 3 (c) cam5 3 (d) 001 frontal

Figure 7.4: The figures above represent the data-set used by the automated edge detection methods. All
surveillance images are based on the SCFace image database [46]. Figure 7.4a - image-size = 75×100 pixel
and RoI = 36×72 pixel (top left corner = 26×12 pixel); Figure 7.4b - image-size = 168×224 pixel and
RoI = 87×140 pixel (top left corner = 27×37 pixel); Figure 7.4c - image-size = 480×640 pixel and RoI
= 90×158 pixel (top left corner = 252×392 pixel); Figure 7.4d - image-size = 768×1024 pixel and RoI =
579×804 pixel (top left corner = 104×36 pixel).

CHAPTER 7. PERFORMANCE EVALUATION 85

Sobel Edge Detection

As shown in Table 7.22, the encryption detection accuracy achieved by the Sobel edge

detector is very low. Furthermore, the error rate is frequently at 100 %, which indicates

that at least one border of the detected image region has been detected wrongly. This is

based on the fact that the edges detected by the Sobel edge detector are not as precise as

required to detect the borders of the encrypted image region more accurately, as shown in

Figure 7.5 and outlined in Subsection 5.3.1. In other wordsthe edges detected by the Sobel

edge-detector are blurred, as pixels located close to the edge are also linked to the edge.

Hence, the detected edge cannot be represented by a thin line, but rather a thicker and

more imprecise line instead. The proposed encryption detection method cannot accurately

detect where the border of the encrypted image is located. Despite the increased accuracy

which has been achieved for the whole data-set (see Table 7.22), when encoding the image

with a code-block-size of 32×32 pixel, it is clear that perfect detection is not possible, albeit

necessary for correct image decryption.

Figure 7.5: Detected Edges using So-
bel Edge Detector - Image cam5 3 (CBS
= 4×4 pixel, WL = 0)[46]

Figure 7.5 depicts the results of applying the Sobel

edge detector to image cam5 3 from the SCFace image

database [46]. As illustrated in Figure 7.5, the detected

image edges are quite blurry, which makes a proper de-

tection of the encrypted image region more complex.

This is due to the fact that the detected edges are not ex-

actly at the code-block borders, but all pixels around the

actual edge are detected to belong to the edge. Another

reason is that the edges running vertically or horizon-

tally pose a major problem for detecting the encrypted

picture region correctly. This is especially the case when

a smaller code-block-size (e.g., 4×4 pixel) has been used

to encode the image. Hence, if another edge runs parallel to the actual encryption border,

the correct detection of the edge surrounding the encrypted image region is unlikely.

As illustrated in Figure D.12, which depicts the error caused by the Sobel edge detec-

tor logarithmically, the accuracy for detecting the encrypted image region correctly is

very low. Furthermore, as outlined above, choosing a code-block-size of 4×4 pixel results

in the worst classification performance.

CHAPTER 7. PERFORMANCE EVALUATION 86

Image CBS left X upper Y right X lower Y Error Abs. Error Rate [%]

1

4x4 75 317 25 1000 1000 100.0

8x8 1 122 1 2 126 12.6

16x16 0 0 0 29 29 2.9

32x32 0 0 0 10 10 1.0

64x64 0 2 0 1000 1000 100.0

2

4x4 129 250 111 94 433 43.3

8x8 0 69 11 6 83 8.3

16x16 0 19 1 2 22 2.2

32x32 0 0 0 0 0 0.0

64x64 0 0 0 2 2 0.2

3

4x4 1000 8 0 3 1000 100.0

8x8 1000 2 0 0 1000 100.0

16x16 0 1 0 0 1 0.1

32x32 0 13 0 1 14 1.4

64x64 0 5 0 5 10 1.0

4

4x4 0 0 0 1000 1000 100.0

8x8 0 0 0 0 0 0.0

16x16 0 0 0 0 0 0.0

32x32 0 0 0 0 0 0.0

64x64 0 0 0 0 0 0.0

Table 7.22: This table shows the classification error caused by the Sobel edge detector. The following
images from the SCFace image database [46] have been used (image size in pixel and reference number
are given in brackets): cam1 1 (75×100, 1), cam3 3 (168×224, 2), cam5 3 (480×640, 3) and 001 frontal
(768×1024, 4). The results given in the columns: left X, upper Y, right X and lower Y represent the
wrongly determined borders of the encrypted RoI (e.g., left X represents the upper left x-coordinate and
upper Y the upper left Y-coordinate of the encrypted RoI). Error Abs. represents the wrongly detected
RoI dimensions (out of 1000 simulations) and Error Rate shows the error in percent.

Canny Edge Detection

The second edge detection method proposed by this work relies on the Canny edge detec-

tor. This method, as shown in Table 7.23, performs as badly as the Sobel edge detection

method. Although the Canny edge detector is much better at detecting encrypted image

regions not bordering to the image borders, it fails when detecting the encrypted image

region bordering to the image borders. Furthermore, the error rate is frequently at 100 %,

which indicates that at least one border of the detected image region has been detected

wrongly. This is based on the fact that the proposed Canny edge detector cannot detect

edges located at the image borders, as shown in Figure 7.6b. As illustrated in Table 7.23,

this results in the fact that all images containing an encrypted image region bordering

the image border are not correctly detected. Despite the increased accuracy which has

CHAPTER 7. PERFORMANCE EVALUATION 87

been achieved for the whole data-set (see Table 7.23), when the encrypted image-region

does not border the image borders, it is clear that perfect detection is not possible, albeit

necessary for correct image decryption.

Image CBS left X upper Y right X lower Y Error Abs. Error Rate [%]

1

4x4 0 80 1 0 81 8.1

8x8 0 2 0 0 2 0.2

16x16 0 1000 0 123 1000 100.0

32x32 1000 1000 0 131 1000 100.0

64x64 1000 1000 0 1000 1000 100.0

2

4x4 7 21 17 21 60 6.0

8x8 0 0 0 6 6 0.6

16x16 0 0 0 1 1 0.1

32x32 1000 0 0 0 1000 100.0

64x64 1000 1000 0 0 1000 100.0

3

4x4 0 1000 0 0 1000 100.0

8x8 0 0 0 0 0 0.0

16x16 0 0 0 0 0 0.0

32x32 0 0 0 0 0 0.0

64x64 0 0 0 0 0 0.0

4

4x4 0 0 0 0 0 0.0

8x8 0 0 0 0 0 0.0

16x16 0 0 0 0 0 0.0

32x32 0 0 0 0 0 0.0

64x64 0 1000 0 0 1000 100.0

Table 7.23: This table shows the classification error caused by the Canny edge detector. The following
images from the SCFace image database [46] have been used (image size in pixel and reference number
are given in brackets): cam1 1 (75×100, 1), cam3 3 (168×224, 2), cam5 3 (480×640, 3) and 001 frontal
(768×1024, 4). The results given in the columns: left X, upper Y, right X and lower Y represent the
wrongly determined borders of the encrypted RoI (e.g., left X represents the upper left x-coordinate and
upper Y the upper left Y-coordinate of the encrypted RoI). Error Abs. represents the wrongly detected
RoI dimensions (out of 1000 simulations) and Error Rate shows the error in percent.

As illustrated in Figure D.13, which depicts the error caused by the proposed Canny edge

detector logarithmically, the accuracy for detecting the encrypted image regions correctly

is very low. Furthermore, images containing an encrypted image region bordering the

image border result in the worst classification performance. This is due to the simple fact

that the proposed Canny edge detector cannot detect edges located at the image borders.

CHAPTER 7. PERFORMANCE EVALUATION 88

(a) cam1 1 (b) cam5 3

Figure 7.6: The sample figures above show the edges detected by the Canny Edge Detector - Figure
7.6a depicts image cam1 1 (image-size = 75×100 pixel, encrypted image region = 48×96 (top left corner:
x = 16, y = 0 pixel), WL = 0, CBS = 16×16 pixel) and Figure 7.6b depicts image cam5 3 (image-size =
480×640 pixel, encrypted image region = 272×416 pixel (top left corner: x = 80, y = 144 pixel), WL = 0,
CBS = 16×16 pixel) from the SCFace image database [46].

Proposed Edge Detection

As the edge detection methods described thus far lack satisfactory encryption detection

accuracy, we have proposed another edge detection method. In order to achieve a better

encryption detection performance, we extracted the data required to determine the edges

surrounding the encrypted image region from the JPEG2000 inverse Wavelet transforma-

tion. This decision is based on the fact that this resource offers the advantage of getting

higher contrast values between the unencrypted- (within range of 0-255, as a 8 bit image

has been used) and the encrypted- image regions (might exceed valid image range). Next,

the code-block-size used to encode the JPEG2000 image is extracted from the JPEG2000

decoder and used to determine the possible encryption borders. Finally, the contrast be-

tween one code-block and its adjoining code-block is calculated row by row and column

by column. For example, if the code-block-size is 16×16 pixel, the contrast between image

pixel 16 and 17, 32 and 33 until the end of the column is reached, is determined. Then the

next column is checked and so on, until the end of the image is reached. The same is per-

formed for the rows. Thereafter, each code-block border contains information regarding

whether it borders the encrypted image region or not. Hence, the encrypted image region

can be determined.

Table 7.24 presents the experimental results caused by the proposed edge detection method.

As shown in Table 7.24, our edge-detection method is superior to the other evaluated auto-

mated edge detection methods. Although the human eye is capable of detecting encrypted

image region easily, automatically detecting the edges belonging to an encrypted image re-

gion is quite complex. In particular, edges running vertically or horizontally pose a major

problem for detecting the encrypted image region correctly. For instance, image cam5 3

CHAPTER 7. PERFORMANCE EVALUATION 89

from the SCFace image database [46], which contains many vertically and horizontally

aligned edges, poses great difficulties in detecting the edges correctly. This circumstance,

as outlined in the previous edge detection method, results in the fact that code-blocks

bordering such “natural” edges are exposed to a higher risk of determining the edges of

the encrypted image region incorrectly.

Image CBS left X upper Y right X lower Y Error Abs. Error Rate [%]

1

4x4 0 0 0 0 0 0.0

8x8 0 0 0 0 0 0.0

16x16 0 66 0 0 66 6.6

32x32 4 20 0 0 24 2.4

64x64 15 52 0 26 85 8.5

2

4x4 0 0 2 25 25 2.5

8x8 0 0 0 5 5 0.5

16x16 0 0 0 1 1 0.1

32x32 4 0 0 0 4 0.4

64x64 0 37 0 0 37 3.7

3

4x4 0 1000 0 0 1000 100.0

8x8 0 1000 0 0 1000 100.0

16x16 0 1000 0 0 1000 100.0

32x32 0 0 0 0 0 0.0

64x64 0 0 0 0 0 0.0

4

4x4 0 0 0 0 0 0.0

8x8 0 0 0 0 0 0.0

16x16 0 0 0 0 0 0.0

32x32 0 0 0 0 0 0.0

64x64 0 0 0 0 0 0.0

Table 7.24: This table shows the error caused by the automated RoI detection method we have proposed.
The following images from the SCFace image database [46] have been used (image size in pixel and reference
number are given in brackets): cam1 1 (75×100, 1), cam3 3 (168×224, 2), cam5 3 (480×640, 3) and
001 frontal (768×1024, 4). The results given in the columns: left X, upper Y, right X and lower Y
represent the wrongly determined borders of the encrypted RoI (e.g., left X represents the upper left
x-coordinate and upper Y the upper left Y-coordinate of the encrypted RoI). Error Abs. represents the
wrongly detected RoI dimensions (out of 1000 simulations) and Error Rate shows the error in percent.

Figure D.15 depicts the evaluated edge detection approaches. As illustrated in this figure,

the method we have proposed is superior to all the other evaluated edge detection methods.

Although the proposed edge detection method achieves a high accuracy, it is clear that

perfect detection is not possible, albeit necessary for correct decryption. Therefore, the

automated encryption detection methods have failed the real world feasibility test.

Chapter 8

Summary & Conclusion

We have proposed and evaluated several methods to signal multiple RoIs and to automat-

ically detect a single RoI in the JPEG2000 codestream. Therefore, our implementation of

the embedding and automated RoI detection methods builds up on Stubhann’s implemen-

tation of a JPEG2000 RoI bitstream encryption [5], which follows an approach proposed

by Hämmerle-Uhl et al. [19].

All automated RoI detection approaches proposed here handle the detection of the en-

crypted image region in one of five ways, which can be applied to three different input

data levels. Hence, a total of 15 different combinations of automated encryption detection

approaches have been evaluated based on their real world feasibility. First we would like

to summarize the three input levels which have been used to evaluate the different RoI

detection approaches. The first input level involves the transformation of the JPEG2000

image to the PGM file-format and its partitioning into smaller non-overlapping blocks of

equal size, which are used to automatically detect the encrypted image region. The second

and least promising input level handles the extraction of JPEG2000 packet-data, which

is further used to identify the encrypted RoI. Finally, the third and most promising input

level involves decoding the JPEG2000 image until the inverse Wavelet transformation has

been applied to the JPEG2000 codestream and the partitioning of the image coefficients

into smaller blocks. These are the three input levels which have been used to evaluate

the five automated encryption methods. The proposed automated encryption detection

approaches are Entropy, Variance, Thresholding, Sobel-Edge-Detector and Canny-Edge-

Detector. Furthermore, it should be noted that all proposed automated encryption de-

tection approaches are JPEG2000 format-compliant, do not degrade image quality and

preserve file-size, as they do not change or embed any data. Although the human eye is

capable of detecting encrypted picture regions easily, the automated encryption detection

methods proposed here are not. All the attempts to automatically detect the encrypted

image region failed due to the problem of accurately distinguishing between encrypted-

90

CHAPTER 8. SUMMARY & CONCLUSION 91

and unencrypted-image regions containing high contrast (i.e. image regions with a high

gradient magnitude value). Despite the promising attempts of detecting the encrypted im-

age regions by threshold or by the edge detector they are not accurate enough to detect all

encrypted RoIs correctly. Furthermore, the automated RoI detection methods proposed

here are limited to solely detecting one RoI per image, which might be not tolerated by

some applications. Nevertheless, even if it would be possible to detect the encrypted image

region with an accuracy of 100 %, it would not be possible to detect the encrypted code-

stream parts, as the encrypted RoI size might differ greatly from the correctly detected

encryption-size. This is based on the fact that we used Stubhann’s RoI encryption ap-

proach, which affects the whole code-block when the RoI has been encrypted. Figure 7.2a

visualizes the RoI size, which is indicated by the red border and the actual encrypted

image region. Therefore, determining the encrypted codestream parts by solely detecting

the encrypted image region is not sufficient.

Despite the high accuracy achieved by extracting the JPEG2000 inverse Wavelet coef-

ficients and applying a simple Threshold to detect the encrypted image blocks accurately,

it is clear that perfect detection is not possible, albeit necessary for correct decryption

in most cases. Therefore, there is an imminent need to store the encrypted RoI’s coor-

dinates inside the JPEG20000 file in order to have them available during decryption.

As this work does not utilize the JPEG2000 feature to signal encrypted regions in the

JPEG2000 codestream, other methods have been proposed to signal the encrypted image

parts. All embedding approaches proposed by this work handle the embedding of the RoI

encryption specification in one of four ways. The first method involves using JPEG2000

comment segments to embed the encryption specification. However, as experimental re-

sults have shown, this method has a few drawbacks. On the one hand, it changes the

JPEG2000 file size, which might not be tolerated by all applications. On the other hand,

embedding the encryption specification into the JPEG2000 comment segment causes the

EBCOT (Embedded Block Coding with Optimal Truncation) to handle the insertion of

truncation points and the optimization of the JPEG2000 packet data differently, as the

length of the main header has changed. This in turn leads to the fact that decoding the

image containing the embedded encryption specification leads to image quality degra-

dation, which might not be tolerable. Hence,in order to not degrade the image quality,

the embedded encryption specification must be removed prior to decoding the JPEG2000

file. Furthermore, this embedding approach has the limitation of losing the meta data

(everything embedded to the com segment) when transforming the JPEG2000 image to

another format (e.g.
”

from JP2 to JPEG or to PGM). Similarly, cropping or any other

CHAPTER 8. SUMMARY & CONCLUSION 92

form of image manipulation destroys the meta data. Therefore, embedding the encryption

specification into the com segment does not represent the perfect way of embedding data

into the JPEG2000 codestream.

The second and third embedding approach rely on embedding the encryption specifica-

tion either at the very beginning of the JPEG2000 codestream, i.e., before the first marker

(before the JPEG2000 SOC marker), or at its end, i.e., after the JPEG2000 EOC marker.

Adding the encryption specification in this way is not JPEG2000 format-compliant, as the

standard only allows for beginning with 0xFF4F or ending with 0xFFD9. However, these

embedding approaches provide the benefit of storing the encryption specification without

causing any image degradation into the JPEG2000 codestream. Furthermore, embed-

ding the encryption specification into the JPEG2000 codestream changes the JPEG2000

file size, which might not be tolerated by all applications. However, as experimental re-

sults have shown by embedding the encryption specification at the end of the JPEG2000

codestream the image viewer IrfanView Version 4.32 and the open-source JPEG2000

implementation JJ2000 Version 5.1 are able to decode the image properly, despite non

JPEG2000 format-compliant. Therefore, as experimental results have shown, embedding

the encryption specification at the end of the codestream is the better choice when choos-

ing between the two non-format-compliant embedding approaches.

Finally, the fourth embedding method embeds the data into the JPEG2000 codestream by

replacing some JPEG2000 image-coefficients. As this work utilizes the JPEG2000 quality

progression bitstream ordering, which aligns all the image coefficients belonging to an

RoI to the beginning of the codestream, the encryption specification is embedded at the

end of the JPEG2000 codestream, as this part of the codestream contains solely back-

ground data. Embedding the encryption specification into the JPEG2000 codestream by

replacing image coefficients offers, on the one hand the, benefit of preserving the length

of the JPEG2000 codestream and, on the other hand, the benefit of being JPEG2000

format-compliant. However, the biggest drawback of this approach is the image quality

degradation, which is linked to replacing image coefficients. However, as experimental re-

sults have shown, replacing only a few bytes lowers the image quality to a certain degree,

which is not detectable by the human eye.

Using a number of data sets, we determined that our proposed length preserving em-

bedding method is superior to all other proposed automated encryption detection or em-

bedding approaches, which is due to the fact that it preserves the file-size, keeps JPEG2000

format-compliance and degrades the image quality only slightly, as experimental results

have shown.

Appendix A

Source Code – Embedding
Techniques

Listing A.1: Embed encryption specification into the JPEG2000 COM-segment

1 // Detect position of COM marker in JPEG2000 bitstream

2 int startCOM = ImageFileHelper.findCOM(inputFile);

3

4 // Move the BufferedRandomAccessFile inputFile to position after

the COM marker

5 inputFile.seek(startCOM + 2);

6 // Read length of COM segment , minus 4 bytes (Lcom + Rcom)

7 short comLen = (short) (inputFile.readShort () - 4);

8

9 // Move inputFile to position of first payload byte

10 inputFile.seek(startCOM + 6);

11

12 // Create COM payload

13 byte[] writePayload = encRoundsTobyteArray(tmp , length);

14

15 // COM marker

16 hbuf.writeShort(COM);

17

18 // Calculate length: Lcom (2) + Rcom (2) + string ’s length;

19 markSegLen = 2 + 2 + str.length ();

20 hbuf.writeShort(markSegLen);

21

22 // Rcom

23 hbuf.writeShort (1);

24

25 // Write the COM payload (used for multiple packet encryption)

26 hbuf.write(writePayload , 0, writePayload.length);

93

APPENDIX A. SOURCE CODE – EMBEDDING TECHNIQUES 94

Listing A.2: Detect position of COM-marker in JPEG2000 bitstream

1 public static int findCOM(BEBufferedRandomAccessFile _fileHandle)

2 {

3 short data;

4 for (int i = 0; i < _fileHandle.length (); i++)

5 {

6 _fileHandle.seek(i);

7 data = _fileHandle.readShort ();

8 if (data == Markers.COM)

9 {

10 return i;

11 }

12 }

13 return 0;

14 }

Listing A.3: Create encoded encryption specification - used to embed into the JPEG2000 COM-segment

1 private byte[] encRoundsTobyteArray(Vector <EncPktCounter > _tmp ,

int _lenth)

2 {

3 byte[] encRounds = new byte[2 + (3 * _tmp.size())];

4 byte[] encryptionLength = shortTobyteArray ((short)_lenth);

5

6 System.arraycopy(encryptionLength , 0, encRounds , 0, 2);

7

8 // Loop over Vector of packet -ID and encryption counter

9 for (int i = 0; i < _tmp.size(); i++)

10 {

11 // Copy byte[] from _tmp Vector to byte[] encRound

12 // with an offset of 2 bytes for the length of the

encrypted bitstream and

13 // 3 bytes for every iteration (entry of the _tmp Vector)

14 System.arraycopy(_tmp.get(i).getbyteArray (), 0, encRounds ,

2 + i * 3, 3);

15 }

16

17 return encRounds;

18 }

APPENDIX A. SOURCE CODE – EMBEDDING TECHNIQUES 95

Listing A.4: Load embedded payload from COM-segment - used to decrypt the JPEG2000 packets

1 private Vector <EncPktCounter > loadEncryptionRounds(int _length ,

int _start) throws Exception

2 {

3 Vector <EncPktCounter > indexRoundVector = new Vector <

EncPktCounter >();

4 m_inputFile.seek(_start);

5 for (int i = 0; i < ((_length) / 3); i++)

6 {

7 indexRoundVector.add(new EncPktCounter(m_inputFile.

readShort (), m_inputFile.readbyte ()));

8 }

9 return indexRoundVector;

10 }

Listing A.5: Embed encryption specification prior to the SOC-marker

1 // contains the RoI encryption specification , with length of

encrypted bitstream and all the packets with corresponding

packet -ID that have been encrypted more than once

2 byte[] before = encRoundsTobyteArray(_tmp , _length);

3

4 // all the data of the encoded and encrypted JPEG2000 codestream

5 byte[] inputBuffer = new byte[inputFile.length ()];

6 inputFile.seek (0);

7 inputFile.readFully(inputBuffer , 0, inputFile.length ());

8

9 // write new file , with new header

10 outputFile.seek (0);

11 // write EMB marker , which is used to signal acitve embedding

12 outputFile.writeShort(Markers.EMB);

13 // write encryption specification

14 outputFile.write(before , 0, before.length);

15 // write unmodified JPEG2000 codestream after embedded data

16 outputFile.write(inputBuffer , 0, inputBuffer.length);

Listing A.6: Check whether JPEG2000 codestream starts with EMB-marker (indicates active embedding)

1 public static boolean embAtFront(BEBufferedRandomAccessFile

fileHandle)

2 {

3 fileHandle.seek (0);

4 return (fileHandle.readShort () == Markers.EMB) ? true : false;

5 }

APPENDIX A. SOURCE CODE – EMBEDDING TECHNIQUES 96

Listing A.7: Embed encryption specification into JPEG2000 codestream by replacing image coefficients

1 // _tmp contains the multiple encrypted packets

2 // _length signals the length of the encrypted bitstream

3 byte[] into = encRoundsTobyteArray(_tmp , _length);

4

5 // start of replacing JPEG2000 image confidents:

6 // total length of encoded image file - length of multiple

encrypted packets -

7 // - EMB -marker (2 bytes) - SOC -marker (2 bytes)

8 outputFile.seek(outputFile.length () - into.length - 4);

9 outputFile.writeShort(Markers.EMB);

10 outputFile.write(into , 0, into.length);

Listing A.8: Extract embedded encryption specification and decrypt JPEG2000 bitstream

1 // Determine position of EMB -marker , starting to search at the

end of the bitstream

2 int posEMB = ImageFileHelper.embBeforeEOC(m_inputFile);

3

4 if (posEMB > 0)

5 {

6 // Calculate length of embedded multiple encrypted packets

7 // Total length of codestream - position of EMB -marker -

8 // EOC -marker (2 bytes) - length of encrypted bitstream (2

bytes)

9 int comLength = m_inputFile.length () - posEMB - 4;

10

11 // Move m_inputFile to position after EMB -marker

12 m_inputFile.seek(posEMB + 2);

13 // Read length of encrypted bitstream

14 int length = m_inputFile.readShort ();

15

16 // Read encryption specification - multiple encrypted packets

17 // posEMB + 4 (length of encrypted bitstream and EMB -marker)

is used as start point for reading

18 Vector <EncPktCounter > tmp = loadEncryptionRounds(comLength ,

posEMB + 4);

19

20 // decrypt encrypted JPEG2000 packets

21 decryptEmbedded(length , tmp , 0);

22 }

Appendix B

Source Code – Automated RoI
Detection

Listing B.1: Calculate Entropy – Specific block of data

1 private double calculateEntropy(int[] _values) throws Exception

2 {

3 Double entropy = 0.0, frequency = 0.0;

4 // get frequency of each entry

5 Map <Integer , Integer > map = frequency(_values);

6 // calculate the entropy

7 for (Integer sequence : map.keySet ())

8 {

9 frequency = (double) map.get(sequence) / _values.length;

10 entropy -= (frequency *(Math.log(frequency)/Math.log(2)));

11 }

12 return entropy;

13 }

Listing B.2: Check Threshold – Specific block of data

1 private boolean checkThreshold(int[] _values)

2 {

3 for (int i = 0; i < _values.length; i++)

4 {

5 // check if image coefficient is within valid range

6 if (_values[i] < 0 || _values[i] > 255)

7 {

8 return true;

9 }

10 }

11 return false;

12 }

97

APPENDIX B. SOURCE CODE – AUTOMATED ROI DETECTION 98

Listing B.3: Calculate Frequency Distribution (histogram) – Specific block of data

1 private Map <Integer , Integer > frequency(int[] _values)

2 {

3 Map <Integer , Integer > map = new HashMap <Integer , Integer >();

4

5 // count the occurrences of each value

6 for (int i = 0; i < _values.length; i++)

7 {

8 // in case no entry with given Integer value is present in

HashMap , add it to Map

9 if (!map.containsKey(_values[i]))

10 {

11 map.put((int) _values[i], 0);

12 }

13 // increase counter of occurence

14 map.put((int) _values[i], map.get((int) _values[i]) + 1);

15 }

16

17 return map;

18 }

Listing B.4: Calculate Variance – Specific block of data

1 private double variance(int[] _values)

2 {

3 // get mean value of input array , used to calculate variance

4 double mean = mean(_values);

5 double variance = 0.0, frequency = 0.0;

6

7 // call method frequency , which stores the input array into a

Map indicating the distribution of the values

8 Map <Integer , Integer > map = frequency(_values);

9

10 // calculate the variance

11 for (Integer sequence : map.keySet ())

12 {

13 frequency = (double) map.get(sequence) / _values.length;

14 variance += (frequency * Math.pow((sequence - mean), 2));

15 }

16

17 return variance;

18 }

APPENDIX B. SOURCE CODE – AUTOMATED ROI DETECTION 99

Listing B.5: Calculate Bounding-Box for image blocks exceeding Threshold

1 private static void boundigBoxInvalidEntries(Vector <Boolean >

_invalidEntries , int _cbsHeight , int _cbsWidth , int _xBlocks ,

int _yBlocks , int _imgWidth , int _imgHeight)

2 {

3 // upper left x and y coordinates

4 int leftX = -1;

5 int upperY = -1;

6

7 // lower right x and y coordinates

8 int rightX = -1;

9 int lowerY = -1;

10

11 // loop over the input array

12 for (int ii = 0; ii < _invalidEntries.size(); ii++)

13 {

14 // check whether the current codeblock contains invalid

numbers (indicated by true)

15 if (_invalidEntries.get(ii) == true)

16 {

17 // when entering this part for the first time , leftX is

-1, otherwise leftX has any other value

18 if (leftX == -1)

19 {

20 // store upper left coordinates into variables

21 leftX = (ii % _xBlocks) * _cbsWidth;

22 rightX = leftX + _cbsWidth;

23

24 upperY = ((ii + 1) / _xBlocks) * _cbsHeight;

25 lowerY = upperY + _cbsHeight;

26 }

27 // bounding -box coordinates have been initialized

28 else

29 {

30 // check right corner of bounding box

31 if (rightX <= (ii % _xBlocks) * _cbsWidth)

32 {

33 rightX = ((ii%_xBlocks) * _cbsWidth) + _cbsWidth;

34 }

35 // check left corner of bounding box

36 else if (leftX > (ii % _xBlocks) * _cbsWidth)

37 {

APPENDIX B. SOURCE CODE – AUTOMATED ROI DETECTION 100

38 leftX = (ii % _xBlocks) * _cbsWidth;

39 }

40 // check lower y coordinate of bounding box

41 if ((lowerY) <= ((ii + 1) / _xBlocks) * _cbsHeight)

42 {

43 lowerY = (((ii + 1) / _xBlocks) * _cbsHeight) +

_cbsHeight;

44 }

45 }

46 }

47 }

48 System.out.println("UpperLeftX: " + leftX + " UpperLeftY: " +

upperY + "RightX: " + rightX + "LowerY: " + lowerY);

49 }

Listing B.6: Load Image Data from JPEG2000 Codestream

1 inputFile = ImageFileHelper.openFile(tmpFile.getPath ());

2 int nextSOPpos;

3 int pos;

4 // position of SOD marker

5 pos = ImageFileHelper.findNextSOD(inputFile , 4) + 2;

6 pos = ImageFileHelper.findNextEPH(inputFile , pos);

7

8 int length = inputFile.length () - pos - 2;

9 // start packet extraction

10 while (length > 0)

11 {

12 nextSOPpos = ImageFileHelper.findNextSOP(inputFile , pos);

13

14 byte[] data = new byte[nextSOPpos - pos];

15 // read packet -data

16 inputFile.seek(pos);

17 inputFile.readFully(data , 0, data.length);

18 // shift the input data

19 int[] shiftedData = shiftDatabyteAry(data);

20

21 entropyCheck(shiftedData);

22 variance(shiftedData);

23

24 length = length - (nextSOPpos - pos);

25 pos = ImageFileHelper.findNextEPH(inputFile , (nextSOPpos +4));

26 }

Appendix C

Results – Embedding Techniques

This chapter depicts some figures, illustrating the experimental results, obtained by em-

bedding the encryption specification into the JPEG2000 codestream. Therefore, the shown

figures have the following configuration in common, unless stated otherwise. All figures

show the average of 1000 simulations and the x-axis gives information about the param-

eterization used to encode the JPEG2000 image: Wavelet-level (ranging from 0 - 3) and

code-block-size (containing the following sizes: 4×4, 8×8, 16×16, 32×32 and 64×64 pixel).

All evaluations are based on the following surveillance camera images from the SCFace im-

age database [46] (given in brackets are the image-, RoI-size and its upper left corner coor-

dinates): cam1 1 (75×100 pixel, 36×72 pixel, x = 27, y = 12 pixel), cam3 3 (168×224 pixel,

87×140 pixel, , x = 27, y = 37 pixel), cam5 3 (480×640 pixel, 90×158 pixel, x = 252, y =

392 pixel) and 001 frontal (768×1024 pixel, 579×804 pixel, x = 104, y = 36 pixel).

5

10

20

40

80

160

W
L-0

CBS-
04

x0
4

-

W
L-0

CBS-
16

x1
6

-

W
L-0

CBS-
64

x6
4

-

W
L-1

CBS-
08

x0
8

-

W
L-1

CBS-
32

x3
2

-

W
L-2

CBS-
04

x0
4

-

W
L-2

CBS-
16

x1
6

-

W
L-2

CBS-
64

x6
4

-

W
L-3

CBS-
08

x0
8

-

W
L-3

CBS-
32

x3
2

-

E
m

b
ed

d
ed

[b
y
te

]

COM-Segment – Embedding Overhead

cam1 1 cam3 3 cam5 3 001 frontal

Figure C.1: This figure shows the embedding overhead caused by embedding the encryption specification
into the JPEG2000 COM-segment. The y-axis shows the additional overhead, in byte, required to store
the encryption specification (see Subsection 6.2.1 for further details about the used packet-structure).

101

APPENDIX C. RESULTS – EMBEDDING TECHNIQUES 102

1

2

4

8

16

32

64

W
L-0

CBS-
04

x0
4

-

W
L-0

CBS-
16

x1
6

-

W
L-0

CBS-
64

x6
4

-

W
L-1

CBS-
08

x0
8

-

W
L-1

CBS-
32

x3
2

-

W
L-2

CBS-
04

x0
4

-

W
L-2

CBS-
16

x1
6

-

W
L-2

CBS-
64

x6
4

-

W
L-3

CBS-
08

x0
8

-

W
L-3

CBS-
32

x3
2

-

T
im

e
[m

s]
COM-Segment – Computational Demand

cam1 1 cam3 3 cam5 3 001 frontal

Figure C.2: This figure shows the time, in milliseconds, required to embed the encryption specification
into the JPEG2000 COM-segment.

−1

−0,5

0

0,5

1

W
L-0

CBS-
04

x0
4

-

W
L-0

CBS-
16

x1
6

-

W
L-0

CBS-
64

x6
4

-

W
L-1

CBS-
08

x0
8

-

W
L-1

CBS-
32

x3
2

-

W
L-2

CBS-
04

x0
4

-

W
L-2

CBS-
16

x1
6

-

W
L-2

CBS-
64

x6
4

-

W
L-3

CBS-
08

x0
8

-

W
L-3

CBS-
32

x3
2

-

COM-Segment – Image Quality (PSNR) after Decryption

SSIM

ESS

LSS

Figure C.3: This figure shows the three image quality metrics, SSIM, ESS and LSS, described in Subsec-
tion 3.2.6. All measurements are based on the COM-segment data embedding method without removing
the embedded encryption specification prior to decoding the JPEG2000 image cam1 1 (see Figure 7.1a).
The y-axis shows the following image quality scores: SSIM, LSS and ESS (value 1 indicates that the images
are identical).

APPENDIX C. RESULTS – EMBEDDING TECHNIQUES 103

20

40

60

80

100

W
L-0

CBS-
04

x0
4

-

W
L-0

CBS-
16

x1
6

-

W
L-0

CBS-
64

x6
4

-

W
L-1

CBS-
08

x0
8

-

W
L-1

CBS-
32

x3
2

-

W
L-2

CBS-
04

x0
4

-

W
L-2

CBS-
16

x1
6

-

W
L-2

CBS-
64

x6
4

-

W
L-3

CBS-
08

x0
8

-

W
L-3

CBS-
32

x3
2

-

d
B

COM-Segment – Image Quality (PSNR) after Decryption

Figure C.4: This figure shows the image quality metric PSNR, in dB, after decrypting the JPEG2000
image cam1 1 (see Figure 7.1a). All the measurements are based on embedding encryption specification
into the JPEG2000 COM-segment. The y-axis shows the image quality in dB, whereby a higher value
indicates a higher image similarity (100 % identical images result in a PSNR of ∞, which is depicted by
the value 100).

5

10

20

40

80

160

W
L-0

CBS-
04

x0
4

-

W
L-0

CBS-
16

x1
6

-

W
L-0

CBS-
64

x6
4

-

W
L-1

CBS-
08

x0
8

-

W
L-1

CBS-
32

x3
2

-

W
L-2

CBS-
04

x0
4

-

W
L-2

CBS-
16

x1
6

-

W
L-2

CBS-
64

x6
4

-

W
L-3

CBS-
08

x0
8

-

W
L-3

CBS-
32

x3
2

-

E
m

b
ed

d
ed

[b
y
te

]

Prior to SOC-Marker – Embedding Overhead

cam1 1 cam3 3 cam5 3 001 frontal

Figure C.5: This figure shows the embedding overhead caused by embedding the encryption specification
prior to the JPEG2000 SOC-marker. The y-axis shows the additional overhead, in byte, required to store
the encryption specification (see Subsection 6.2.2 for further details about the used packet-structure).

APPENDIX C. RESULTS – EMBEDDING TECHNIQUES 104

1

2

4

8

16

32

64

W
L-0

CBS-
04

x0
4

-

W
L-0

CBS-
16

x1
6

-

W
L-0

CBS-
64

x6
4

-

W
L-1

CBS-
08

x0
8

-

W
L-1

CBS-
32

x3
2

-

W
L-2

CBS-
04

x0
4

-

W
L-2

CBS-
16

x1
6

-

W
L-2

CBS-
64

x6
4

-

W
L-3

CBS-
08

x0
8

-

W
L-3

CBS-
32

x3
2

-

T
im

e
[m

s]
Prior to SOC-Marker – Computational Demand

cam1 1 cam3 3 cam5 3 001 frontal

Figure C.6: This figure shows the time, in milliseconds, required to embed the encryption specification
prior to the JPEG2000 SOC-marker.

5

10

20

40

80

160

W
L-0

CBS-
04

x0
4

-

W
L-0

CBS-
16

x1
6

-

W
L-0

CBS-
64

x6
4

-

W
L-1

CBS-
08

x0
8

-

W
L-1

CBS-
32

x3
2

-

W
L-2

CBS-
04

x0
4

-

W
L-2

CBS-
16

x1
6

-

W
L-2

CBS-
64

x6
4

-

W
L-3

CBS-
08

x0
8

-

W
L-3

CBS-
32

x3
2

-

E
m

b
ed

d
ed

[b
y
te

]

After EOC-Marker – Embedding Overhead

cam1 1 cam3 3 cam5 3 001 frontal

Figure C.7: This figure shows the embedding overhead caused by embedding the encryption specification
after the JPEG2000 EOC-marker. The y-axis shows the additional overhead, in byte, required to store the
encryption specification (see Subsection 6.2.3 for further details about the used packet-structure).

APPENDIX C. RESULTS – EMBEDDING TECHNIQUES 105

1

2

4

8

16

32

64

W
L-0

CBS-
04

x0
4

-

W
L-0

CBS-
16

x1
6

-

W
L-0

CBS-
64

x6
4

-

W
L-1

CBS-
08

x0
8

-

W
L-1

CBS-
32

x3
2

-

W
L-2

CBS-
04

x0
4

-

W
L-2

CBS-
16

x1
6

-

W
L-2

CBS-
64

x6
4

-

W
L-3

CBS-
08

x0
8

-

W
L-3

CBS-
32

x3
2

-

T
im

e
[m

s]
After EOC-Marker – Computational Demand

cam1 1 cam3 3 cam5 3 001 frontal

Figure C.8: This figure shows the time, in milliseconds, required to embed the encryption specification
after the JPEG2000 EOC-marker.

5

10

20

40

80

160

W
L-0

CBS-
04

x0
4

-

W
L-0

CBS-
16

x1
6

-

W
L-0

CBS-
64

x6
4

-

W
L-1

CBS-
08

x0
8

-

W
L-1

CBS-
32

x3
2

-

W
L-2

CBS-
04

x0
4

-

W
L-2

CBS-
16

x1
6

-

W
L-2

CBS-
64

x6
4

-

W
L-3

CBS-
08

x0
8

-

W
L-3

CBS-
32

x3
2

-

E
m

b
ed

d
ed

[b
y
te

]

Length-Preserving – Embedding Overhead

cam1 1 cam3 3 cam5 3 001 frontal

Figure C.9: This figure shows the embedding overhead caused by embedding the encryption specification
into JPEG2000 codestream, by replacing image coefficients. The y-axis shows the additional overhead, in
byte, required to store the encryption specification (see Subsection 6.2.4 for further details about the used
packet-structure).

APPENDIX C. RESULTS – EMBEDDING TECHNIQUES 106

1

2

4

8

16

32

64

W
L-0

CBS-
04

x0
4

-

W
L-0

CBS-
16

x1
6

-

W
L-0

CBS-
64

x6
4

-

W
L-1

CBS-
08

x0
8

-

W
L-1

CBS-
32

x3
2

-

W
L-2

CBS-
04

x0
4

-

W
L-2

CBS-
16

x1
6

-

W
L-2

CBS-
64

x6
4

-

W
L-3

CBS-
08

x0
8

-

W
L-3

CBS-
32

x3
2

-

T
im

e
[m

s]
Length-Preserving – Computational Demand

cam1 1 cam3 3 cam5 3 001 frontal

Figure C.10: This figure shows the time, in milliseconds, required to embed the encryption specification
into the JPEG2000 codestream by replacing image coefficients

0,98

0,98

0,99

0,99

1

1

1,01

W
L-0

CBS-
04

x0
4

-

W
L-0

CBS-
16

x1
6

-

W
L-0

CBS-
64

x6
4

-

W
L-1

CBS-
08

x0
8

-

W
L-1

CBS-
32

x3
2

-

W
L-2

CBS-
04

x0
4

-

W
L-2

CBS-
16

x1
6

-

W
L-2

CBS-
64

x6
4

-

W
L-3

CBS-
08

x0
8

-

W
L-3

CBS-
32

x3
2

-

Length-Preserving – Image Quality (SSIM, ESS, LSS) after Decryption

SSIM

ESS

LSS

Figure C.11: This figure shows the three image quality metrics, SSIM, ESS and LSS, described in Sub-
section 3.2.6. All measurements are based on embedding encryption specification into the JPEG2000 code-
stream, by replacing the JPEG2000 image coefficients. Therefore, the image-degradation effect of embed-
ding the encryption specification is shown. The y-axis shows the following image quality scores: SSIM, LSS
and ESS (value 1 indicates that the images are identical). All measurements are based on image cam1 1
(see Figure 7.1a) from the SCFace image database [46].

APPENDIX C. RESULTS – EMBEDDING TECHNIQUES 107

60

65

70

W
L-0

CBS-
04

x0
4

-

W
L-0

CBS-
16

x1
6

-

W
L-0

CBS-
64

x6
4

-

W
L-1

CBS-
08

x0
8

-

W
L-1

CBS-
32

x3
2

-

W
L-2

CBS-
04

x0
4

-

W
L-2

CBS-
16

x1
6

-

W
L-2

CBS-
64

x6
4

-

W
L-3

CBS-
08

x0
8

-

W
L-3

CBS-
32

x3
2

-

d
B

Length-Preserving – Image Quality (PSNR) after Decryption

Figure C.12: This figure shows the image quality metric PSNR, in dB, after decrypting the JPEG2000
image. All the measurements are based on embedding encryption specification into the JPEG2000 code-
stream, by replacing image coefficients. The y-axis shows the image quality in dB, whereby a higher value
indicates a higher image similarity (100 % identical images result in a PSNR of ∞, which is depicted by
the value 100). All measurements are based on image cam1 1 (see Figure 7.1a) from the SCFace image
database [46].

0 103 203 303 403 503 603 703 803 903 1003
0,86

0,88

0,9

0,92

0,94

0,96

0,98

1

byte

Length-Preserving – Image Quality (SSIM, ESS, LSS) - Increasing Capacity

SSIM

ESS

LSS

Figure C.13: This figure shows the three image quality metrics, SSIM, ESS and LSS, described in Sub-
section 3.2.6. All measurements are based on embedding encryption specification into the JPEG2000 code-
stream, by replacing the JPEG2000 image coefficients. Therefore, the image-degradation effect of em-
bedding up to 1003 byte is shown. The y-axis shows the following image quality scores: SSIM, LSS and
ESS (value 1 indicates that the images are identical). All measurements are based on image cam1 1 (see
Figure 7.1a) from the SCFace image database [46].

APPENDIX C. RESULTS – EMBEDDING TECHNIQUES 108

1 8 32 128 256 512 768 1024 2048 3072 4096
10

20

30

40

50

60

70

80

byte

d
B

Length-Preserving – Image Quality (PSNR) - Maximum Capacity

Figure C.14: This figure shows the PSNR, in dB, caused replacing up to 4096 byte of JPEG2000 image
coefficients (total capacity of sample image cam1 1 is 5921 byte). The x-axis shows the data-volume, in
bytes, embedded into the JPEG2000 codestream. The y-axis shows the image quality in dB, whereby a
higher value indicates that the images are more similar (100% identical images result in a PSNR of ∞).
All measurements are based on image cam1 1 (see Figure 7.1a) from the SCFace image database [46].

1 8 32 128 256 512 768 1024 2048 3072 4096
0

0,2

0,4

0,6

0,8

1

byte

Length-Preserving – Image Quality (SSIM, ESS, LSS) - Maximum Capacity

SSIM

LSS

ESS

Figure C.15: This figure shows the three image quality metrics, SSIM, ESS and LSS, described in Sub-
section 3.2.6. All measurements are based on embedding encryption specification into the JPEG2000 code-
stream, by replacing the JPEG2000 image coefficients. Therefore, the image-degradation effect of em-
bedding up to 4096 byte is shown. The y-axis shows the following image quality scores: SSIM, LSS and
ESS (value 1 indicates that the images are identical). All measurements are based on image cam1 1 (see
Figure 7.1a) from the SCFace image database [46].

APPENDIX C. RESULTS – EMBEDDING TECHNIQUES 109

(a) 0 byte (b) 512 byte (c) 2048 byte (d) 4096 byte (e) 5921 byte

Figure C.16: The figures above show image cam1 1 from the SCFace image database [46], which is used to
visualize the impact of replacing more and more JPEG2000 image coefficients. The image is encoded with
a CBS = 16×16 pixel and a WL = 0, Image size = 75×100 pixel, the resulting JPEG2000 encoded file-size
= 6718 byte and 5921 byte are used as packet body data. Figure C.16a depicts the original source image
(no embedding). Figure C.16b depicts the result of embedding 512 byte into the JPEG2000 codestream,
by replacing image coefficients. Figure C.16e depicts the result of replacing all the packet body data used
to store the JPEG2000 encoded image coefficients.

0

5

10

W
L-0

CBS-
04

x0
4

-

W
L-0

CBS-
16

x1
6

-

W
L-0

CBS-
64

x6
4

-

W
L-1

CBS-
08

x0
8

-

W
L-1

CBS-
32

x3
2

-

W
L-2

CBS-
04

x0
4

-

W
L-2

CBS-
16

x1
6

-

W
L-2

CBS-
64

x6
4

-

W
L-3

CBS-
08

x0
8

-

W
L-3

CBS-
32

x3
2

-

E
m

b
ed

d
ed

[b
y
te

]

Comparison – Embedding Overhead

COM

Befor

After

Replace

Figure C.17: This figure shows a comparison of the embedding overhead caused by the four proposed
embedding methods. The y-axis depicts the embedding overhead, in byte, required to store the encryption
specification into the JPEG2000 codestream (see Section 6.2 for further details about the used packet-
structures). All measurements are based on image cam1 1 (see Figure 7.1a) from the SCFace image
database [46].

APPENDIX C. RESULTS – EMBEDDING TECHNIQUES 110

0

2

4

6

W
L-0

CBS-
04

x0
4

-

W
L-0

CBS-
16

x1
6

-

W
L-0

CBS-
64

x6
4

-

W
L-1

CBS-
08

x0
8

-

W
L-1

CBS-
32

x3
2

-

W
L-2

CBS-
04

x0
4

-

W
L-2

CBS-
16

x1
6

-

W
L-2

CBS-
64

x6
4

-

W
L-3

CBS-
08

x0
8

-

W
L-3

CBS-
32

x3
2

-

A
v
g.

in
%

Comparison – Encryption Specification Overhead

COM Befor After Replace

Figure C.18: This figure shows a comparison of the embedding overhead caused by the four proposed
embedding methods, in relationship with storing all start-, end-values and the encryption-counters into
an additional file. The y-axis shows the percentage of overhead required to store the encryption specifica-
tion, compared to storing all encryption relevant data. All measurements are based on image cam1 1 (see
Figure 7.1a) from the SCFace image database [46].

5

10

15

20

W
L-0

CBS-
04

x0
4

-

W
L-0

CBS-
16

x1
6

-

W
L-0

CBS-
64

x6
4

-

W
L-1

CBS-
08

x0
8

-

W
L-1

CBS-
32

x3
2

-

W
L-2

CBS-
04

x0
4

-

W
L-2

CBS-
16

x1
6

-

W
L-2

CBS-
64

x6
4

-

W
L-3

CBS-
08

x0
8

-

W
L-3

CBS-
32

x3
2

-

T
im

e
[m

s]

Comparison – Computational Demand - Decryption

No Embedding COM Befor After Replace

Figure C.19: The figure above compares the time, in milliseconds, required to decrypt the JPEG2000
image. Therefore, the four embedding approaches proposed by this work are compared with decrypting the
JPEG2000 image, when all the start-, end-values and the encryption-counters are stored in an additional
file. Hence, no additional extracting and parsing has to be performed prior to decrypting the image. All
measurements are based on image cam1 1 (see Figure 7.1a) from the SCFace image database [46].

APPENDIX C. RESULTS – EMBEDDING TECHNIQUES 111

0,8

1

1,2

1,4

1,6

W
L-0

CBS-
04

x0
4

-

W
L-0

CBS-
16

x1
6

-

W
L-0

CBS-
64

x6
4

-

W
L-1

CBS-
08

x0
8

-

W
L-1

CBS-
32

x3
2

-

W
L-2

CBS-
04

x0
4

-

W
L-2

CBS-
16

x1
6

-

W
L-2

CBS-
64

x6
4

-

W
L-3

CBS-
08

x0
8

-

W
L-3

CBS-
32

x3
2

-

T
im

e
[m

s]
Comparison – Computational Demand - Embedding

COM Befor After Replace

Figure C.20: The figure above compares the time, in milliseconds, required to embed the encryption
specification into the JPEG2000 codestream. Therefore, the four embedding approaches proposed by this
work are compared (see Chapter 6 for further details about the embedding procedure). All measurements
are based on image cam1 1 (see Figure 7.1a) from the SCFace image database [46].

20

40

60

80

100

W
L-0

CBS-
04

x0
4

-

W
L-0

CBS-
16

x1
6

-

W
L-0

CBS-
64

x6
4

-

W
L-1

CBS-
08

x0
8

-

W
L-1

CBS-
32

x3
2

-

W
L-2

CBS-
04

x0
4

-

W
L-2

CBS-
16

x1
6

-

W
L-2

CBS-
64

x6
4

-

W
L-3

CBS-
08

x0
8

-

W
L-3

CBS-
32

x3
2

-

d
B

Comparison – Image Quality (PSNR) - COM-Segment & Length-Preserving

Length-Preserving

COM-Segment

Figure C.21: This figure compares the PSNR scores, in dB, after decrypting the JPEG2000 image.
Therefore, the two embedding methods proposed by this work, causing image-degradation are compared.
These methods are: embedding encryption specification into the JPEG2000 COM-segment (embedded
payload is not removed prior to decoding the image) or into the JPEG2000 codestream by replacing image
coefficients. The y-axis shows the image quality in dB, whereby a higher value indicates a higher image
similarity (100% identical images result in a PSNR of ∞, which is depicted by a dB value of 100). All
measurements are based on image cam1 1 (see Figure 7.1a) from the SCFace image database [46].

Appendix D

Results – Automated RoI Detection

This chapter depicts some figures, illustrating the experimental results, obtained by au-

tomatically detecting the encrypted image regions. Therefore, the shown figures have the

following configuration in common, unless stated otherwise. All the shown figures show

the average of 1000 simulations and the x-axis gives either information about the used

code-block-size (containing the following sizes: 4×4, 8×8, 16×16, 32×32 and 64×64 pixel)

or the image block number (see Figure 7.3 for details about partitioning the image). Fur-

thermore all images are encoded with Wavelet-level of 0, due to the reasons outlined in

Section 7.4. The following surveillance camera images from the SCFace image database [46]

have been used (given in brackets are the image-, RoI-size and its upper left corner coordi-

nates): cam1 1 (75×100 pixel, 36×72 pixel, x = 27, y = 12 pixel), cam3 3 (168×224 pixel,

87×140 pixel, , x = 27, y = 37 pixel), cam5 3 (480×640 pixel, 90×158 pixel, x = 252, y =

392 pixel) and 001 frontal (768×1024 pixel, 579×804 pixel, x = 104, y = 36 pixel).

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
0

2

4

6

Block Nr.

A
v
g.

E
n
tr

op
y

Entropy – PGM-File

Figure D.1: The figure above shows the entropy based on image cam1 1 from the SCFace image database
[46]. Therefore, the image has been converted, for testing purposes, into the PGM-file-format. Furthermore,
the image is partitioned into 35 non-overlapping rectangular image blocks (see Figure 7.3). Hence, the
entropy is calculated on image block basis and visualized in the figure above. The y-axis shows the average
entropy for each image block. As evident from Figure 7.3 the following image blocks are unencrypted: 1,
5, 6, 10, 11, 15, 16, 20, 21, 25, 26, 30, 31, 32, 33, 34 and 35.

112

APPENDIX D. RESULTS – AUTOMATED ROI DETECTION 113

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
0

2,000

4,000

6,000

8,000

Block Nr.

A
v
g.

V
ar

ia
n
ce

Variance – PGM-File

Figure D.2: The figure above shows the variance based on image cam1 1 from the SCFace image database
[46]. Therefore, the image has been converted, for testing purposes, into the PGM-file-format. Furthermore,
the image is partitioned into 35 non-overlapping rectangular image blocks (see Figure 7.3). Hence, the
variance is calculated on image block basis and visualized in the figure above. The y-axis shows the average
variance for each image block. As evident from Figure 7.3 the following image blocks are unencrypted: 1,
5, 6, 10, 11, 15, 16, 20, 21, 25, 26, 30, 31, 32, 33, 34 and 35.

0 2 4 6 8 10 12 14 16 18 20 22 24
0

2

4

6

8

Block Nr.

A
v
g.

E
n
tr

op
y

Entropy – JPEG2000 Packet Data

Figure D.3: The figure above shows the entropy based on image cam1 1 from the SCFace image database
[46]. Therefore, the image is converted into the JPEG2000 file-format. Afterwards each JPEG2000 data-
packet is extracted from the codestream and its entropy is calculated. The y-axis shows the average entropy
value for each of the 23 JPEG2000 data-packets. The data-packets 1-8 are completely encrypted and data-
packet 9 is partially encrypted.

APPENDIX D. RESULTS – AUTOMATED ROI DETECTION 114

0 2 4 6 8 10 12 14 16 18 20 22 24
0

1,000

2,000

3,000

4,000

5,000

6,000

Block Nr.

A
v
g.

V
ar

ia
n
ce

Variance – JPEG2000 Packet Data

Figure D.4: The figure above shows the variance based on image cam1 1 from the SCFace image database
[46]. Therefore, the image is converted into the JPEG2000 file-format. Afterwards each JPEG2000 data-
packet is extracted from the codestream and its variance is calculated. The y-axis shows the average
variance value for each of the 23 JPEG2000 data-packets. The data-packets 1-8 are completely encrypted
and data-packet 9 is partially encrypted.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
0

1

2

3

4

5

6

7

Block Nr.

A
v
g.

E
n
tr

op
y

Entropy – JPEG2000 Inverse Wavelet-Coefficients

Figure D.5: The figure above shows the entropy based on image cam1 1 from the SCFace image database
[46]. Therefore, the image is decoded until the JPEG2000 inverse Wavelet transformation has been com-
puted. Afterwards the array of Wavelet-coefficients is partitioned into non-overlapping rectangular blocks,
which are used to compute the entropy. The y-axis shows the average entropy for each image block. As
evident from Figure 7.3 the following image blocks are unencrypted: 1, 5, 6, 10, 11, 15, 16, 20, 21, 25, 26,
30, 31, 32, 33, 34 and 35.

APPENDIX D. RESULTS – AUTOMATED ROI DETECTION 115

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
0

2,000

4,000

6,000

8,000

Block Nr.

A
v
g.

V
ar

ia
n
ce

Variance – JPEG2000 Inverse Wavelet-Coefficients

Figure D.6: The figure above shows the variance based on image cam1 1 from the SCFace image database
[46]. Therefore, the image is decoded until the inverse Wavelet transformation has been computed. After-
wards the array of Wavelet-coefficients is partitioned into non-overlapping rectangular blocks, which are
used to compute the variance. The y-axis shows the average variance for each image block. As evident from
Figure 7.3 the following image blocks are unencrypted: 1, 5, 6, 10, 11, 15, 16, 20, 21, 25, 26, 30, 31, 32, 33,
34 and 35.

5

10

20

40

80

160

320

640

1280

2560

CBS-
04

x0
4

-

CBS-
08

x0
8

-

CBS-
16

x1
6

-

CBS-
32

x3
2

-

CBS-
64

x6
4

-

T
im

e
[m

s]

Thresholding – Computational Demand - Encryption Detection

cam1 1 cam3 3 cam5 3 001 frontal

Figure D.7: This figure shows the computational demand, in milliseconds, required to detect the en-
crypted image blocks by the automated RoI detection method Thresholding. The y-axis shows the time,
in milliseconds, required to detect the encrypted image blocks.

APPENDIX D. RESULTS – AUTOMATED ROI DETECTION 116

0

2

4

6

8

10

12

14

CBS-
04

x0
4

-

CBS-
08

x0
8

-

CBS-
16

x1
6

-

CBS-
32

x3
2

-

CBS-
64

x6
4

-

E
rr

or
in

%

Thresholding – Error Rate - Encryption Detection

cam1 1 cam3 3 cam5 3 001 frontal

Figure D.8: The figure above shows the error rate caused by the automated RoI detection method
Thresholding. The y-axis depicts the error rate, in percent, for detecting the encrypted RoI border wrongly.

0

10

20

30

40

50

60

70

80

Im
g-

1
CBS-

04
x0

4
-

Im
g-

1
CBS-

16
x1

6
-

Im
g-

1
CBS-

64
x6

4
-

Im
g-

2
CBS-

08
x0

8
-

Im
g-

2
CBS-

32
x3

2
-

Im
g-

3
CBS-

04
x0

4
-

Im
g-

3
CBS-

16
x1

6
-

Im
g-

3
CBS-

64
x6

4
-

Im
g-

4
CBS-

08
x0

8
-

Im
g-

4
CBS-

32
x3

2
-

A
v
g.

E
rr

or

Thresholding – Error Rate - Encryption Border Detection

Left X Upper Y Right X Lower Y

Figure D.9: The figure above shows the error caused by the automated RoI detection method Thresh-
olding. The y-axis depicts the wrongly detected encrypted RoI borders (out of 1000 simulations).

APPENDIX D. RESULTS – AUTOMATED ROI DETECTION 117

0

20

40

60

80

Lef
t X

-

U
pp

er
Y

-

R
ig
ht

X
-

Low
er

Y
-

A
v
g.

N
u
m

b
er

of
E

rr
or

s
Thresholding – Error - Encryption Border Detection - CBS 64x64

cam1 1 cam3 3 cam5 3 001 frontal

Figure D.10: The figure above shows the error caused by the automated RoI detection method Thresh-
olding. The given results are based on a code-block-size of 4×4 pixel, used while encoding the JPEG2000
image. The y-axis depicts the wrongly detected encrypted RoI borders (out of 1000 simulations).

0

20

40

60

80

Lef
t X

-

U
pp

er
Y

-

R
ig
ht

X
-

Low
er

Y
-

A
v
g.

N
u
m

b
er

of
E

rr
or

s

Thresholding – Error - Encryption Border Detection - CBS 64x64

cam1 1 cam3 3 cam5 3 001 frontal

Figure D.11: The figure above shows the error caused by the automated RoI detection method Thresh-
olding. The given results are based on a code-block-size of 64×64 pixel, used while encoding the JPEG2000
image. The y-axis depicts the wrongly detected encrypted RoI borders (out of 1000 simulations).

APPENDIX D. RESULTS – AUTOMATED ROI DETECTION 118

0

20

40

60

80

100

CBS-
04

x0
4

-

CBS-
08

x0
8

-

CBS-
16

x1
6

-

CBS-
32

x3
2

-

CBS-
64

x6
4

-

E
rr

or
in

%

Sobel Edge Detector – Error Rate - Encryption Detection

cam1 1 cam3 3 cam5 3 001 frontal

Figure D.12: The figure above shows the error, caused by applying the Sobel Edge Detector, to detect
the encrypted image region. The y-axis shows the error rate logarithmically, for detecting the encrypted
image regions correctly.

0

20

40

60

80

100

120

CBS-
04

x0
4

-

CBS-
08

x0
8

-

CBS-
16

x1
6

-

CBS-
32

x3
2

-

CBS-
64

x6
4

-

E
rr

or
in

%

Canny Edge Detector – Error Rate - Encryption Detection

cam1 1 cam3 3 cam5 3 001 frontal

Figure D.13: This figure shows the error, caused by applying the Canny Edge Detector, to detect the
encrypted image region. The y-axis shows the error rate logarithmically, for detecting the encrypted image
regions correctly.

APPENDIX D. RESULTS – AUTOMATED ROI DETECTION 119

0

20

40

60

80

100

120

CBS-
04

x0
4

-

CBS-
08

x0
8

-

CBS-
16

x1
6

-

CBS-
32

x3
2

-

CBS-
64

x6
4

-

E
rr

or
in

%

Proposed Edge Detection – Error Rate - Encryption Detection

cam1 1 cam3 3 cam5 3 001 frontal

Figure D.14: This figure shows the error, caused by applying the Edge detection method proposed by
us, to detect the encrypted image region. The y-axis shows the error logarithmically, for detecting the
encrypted image region correctly

0

20

40

60

80

100

120

Im
g-

1
CBS-

04
x0

4
-

Im
g-

1
CBS-

16
x1

6
-

Im
g-

1
CBS-

64
x6

4
-

Im
g-

2
CBS-

08
x0

8
-

Im
g-

2
CBS-

32
x3

2
-

Im
g-

3
CBS-

04
x0

4
-

Im
g-

3
CBS-

16
x1

6
-

Im
g-

3
CBS-

64
x6

4
-

Im
g-

4
CBS-

08
x0

8
-

Im
g-

4
CBS-

32
x3

2
-

E
rr

or
in

%

Comparison – Error Rate - All Evaluated Edge Detectors

Own Sobel Canny

Figure D.15: This figure compares the error, caused by the edge detectors evaluated by this work. The
y-axis shows the error rate for detecting the encrypted image region correctly.

Bibliography

[1] A. W. Senior, S. Pankanti, A. Hampapur, L. M. G. Brown, Y. li Tian, A. Ekin, J. H.

Connell, C.-F. Shu, and M. Lu, “Enabling Video Privacy through Computer Vision,”

IEEE Security & Privacy, vol. 3, pp. 50–57, May 2005.

[2] W. H. Widen, “Smart Cameras and the Right to Privacy,” Proceedings of the IEEE,

vol. 96, pp. 1688–1697, October 2008.

[3] F. Dufaux, M. Ouaret, Y. Abdeljaoued, A. Navarro, F. Vergnenegre, and T. Ebrahimi,

“Privacy Enabling Technology for Video Surveillance,” in SPIE Mobile Multimedi-

a/Image Processing for Military and Security Applications, Lecture Notes in Com-

puter Science, IEEE, 2006.

[4] D. Engel, T. Stütz, and A. Uhl, “A survey on JPEG2000 encryption,” Multimedia

Systems, vol. 15, pp. 243–270, August 2009.

[5] C. Stubhann, “Selektive Verschlüsselung einer Region-of-Interest in JPEG2000-

Bitströmen,” Master’s thesis, University of Applied Sciencies Salzburg, August 2012.

[6] M. J. Gormish, D. Lee, and M. W. Marcellin, “JPEG2000: overview, architecture

and applications,” in InProceedings of ICIP’2000, vol. 2, (Menlo Park, CA, USA),

pp. 29–32, Ricoh California Research Center, September 2000.

[7] K. L. Gray, “The JPEG2000 Standard,” Technical University Munich, Institute for

Communication Networks, February 2003.

[8] M. D. Adams, “The JPEG-2000 Still image compression standard.” Department of

Electricaland Computer Engineering, University of Victoria, December 2005.

[9] D. Taubman and M. W. Marcellin, JPEG2000: Image Compression Fundamentals,

Standards and Practice. Norwell, MA, USA: Kluwer Academic Publishers, November

2001.

[10] V. Sanchez and A. Basu, “The JPEG2000 Image Compression Standard.”

http://webdocs.cs.ualberta.ca/˜anup/Courses/604/NOTES/slide jpeg2000.pdf, Febru-

ary 2003. Accessed: 15/02/2013.

120

http://webdocs.cs.ualberta.ca/~anup/Courses/604/NOTES/slide_jpeg2000.pdf

BIBLIOGRAPHY 121

[11] intoPIX, “Everything you always wanted to know about JPEG2000.” http://www.

intopix.com/pdf/JPEG%202000%20Handbook.pdf, 2008. Accessed: 15/02/2013.

[12] C. Christopoulos, A. Skodras, and T. Ebrahimi, “The JPEG2000 still image cod-

ing system: an overview,” Consumer Electronics, IEEE Transactions on, vol. 46,

pp. 1103–1127, November 2000.

[13] V. M. Potdar, S. Han, and E. Chang, “A survey of digital image watermarking tech-

niques,” in Industrial Informatics, 2005. INDIN ’05. 2005 3rd IEEE International

Conference on, pp. 709–716, August 2005.

[14] M. Kharrazi, H. T. Sencar, and N. Memon, “Image Steganography: Concepts and

Practice,” Lecture Notes Series, Institute for Mathematical Sciences, National Uni-

versity of Singapore, April 2004.

[15] B. Green, “Edge Detection Tutorial.” http://dasl.mem.drexel.edu/alumni/bGreen/,

2002. Accessed: 04/03/2013.

[16] F. Dufaux and T. Ebrahimi, “Scrambling for Privacy Protection in Video Surveillance

Systems,” in IEEE Trans. on Circuits and Systems for Video Technology, vol. 18,

pp. 1168–1174, 2008.

[17] Y. Kim, S. Jin, and Y. Ro, “Scalable Security and Conditional Access Control for

Multiple Regions of Interest in Scalable Video Coding,” in Digital Watermarking,

6th International Workshop, IWDW 2007 (Y. Shi, H.-J. Kim, and S. Katzenbeisser,

eds.), vol. 5041 of Lecture Notes in Computer Science, pp. 71–86, Springer Berlin

Heidelberg, December 2007.

[18] D. S. Taubman and M. W. Marcellin, “JPEG2000: standard for interactive imaging,”

Proceedings of the IEEE, vol. 90, pp. 1336–1357, August 2002.

[19] J. Hämmerle-Uhl, R. Schraml, and A. Uhl, “Privacy Enhancing Technologies in Video

Surveillance applied to JPEG2000 Codestreams,”In Proceedings of the IEEE Interna-

tional Workshop on Multimedia Signal Processing (MMSP’12), pp. 95–100, Septem-

ber 2012.

[20] P. Wayner, Disappearing Cryptography: Information Hiding: Steganography & Water-

marking. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 3 ed., January

2009.

[21] L. Zhang, H. Wang, and R. Wu, “A high-capacity steganography scheme for

JPEG2000 baseline system,” Image Processing, IEEE Transactions on, vol. 18,

pp. 1797–1803, August 2009.

http://www.intopix.com/pdf/JPEG%202000%20Handbook.pdf
http://www.intopix.com/pdf/JPEG%202000%20Handbook.pdf
http://dasl.mem.drexel.edu/alumni/bGreen/

BIBLIOGRAPHY 122

[22] H. Gao, G. Liu, X. Li, and Y. Xu, “A Robust Watermark Algorithm for JPEG2000

Images,” in Proceedings of the 2009 Fifth International Conference on Information

Assurance and Security, vol. 2 of IAS ’09, (Washington, DC, USA), pp. 230–233,

IEEE Computer Society, August 2009.

[23] H. Ming-Shing, T. Din-Chang, and H. Yong-Huai, “Hiding digital watermarks using

multiresolution wavelet transform ,” Industrial Electronics, IEEE Transactions on,

vol. 48, pp. 875–882, October 2001.

[24] K. A. Navasa, S. Nithya, R. Rakhi, and M. Sasikumar, “Lossless Watermarking in

JPEG2000 for EPR Data Hiding,” Proceedings IEEE EIT, pp. 697–702, June 2007.

[25] P. Meerwald, “Quantization Watermarking In The JPEG2000 Coding Pipeline,” in In

5th International Working Conference on Communication and Multimedia Security

(J. D. Ralf Steinmetz and M. Steinebach, eds.), (Darmstadt, Germany), pp. 69–79,

Kluver Academic Publishing, May 2001.

[26] A. Katsutoshi, K. Hiroyuki, and K. Hitoshi, “A Method for Embedding Binary Data

into JPEG2000 Bit Streams Based on the Layer Structure,” Technical report of IE-

ICE. DSP, vol. 101, pp. 17–24, October 2001.

[27] F. Dufaux and T. Ebrahimi, “Smart video surveillance system preserving privacy,”

Proceedings of SPIE, vol. 5685, pp. 54–63, April 2005.

[28] “Joint Photographic Expert Group (JPEG).” http://www.jpeg.org/jpeg2000/. Ac-

cessed: 13/02/2013.

[29] A. N. Skodras, C. A. Christopoulos, and T. Ebrahimi, “JPEG2000: the upcoming

still image compression standard,” Pattern Recognition Letters, vol. 22, pp. 1337–

1345, October 2001.

[30] G. K. Wallace, “The JPEG still picture compression standard,” Commun. ACM,

vol. 34, pp. 30–44, April 1991.

[31] W. B. Pennebaker and J. L. Mitchell, JPEG Still Image Data Compression Standard.

Norwell, MA, USA: Kluwer Academic Publishers, 1st ed., 1992.

[32] T. Acharya and P. Tsai, JPEG2000 Standard for Image Compression: Concepts,

Algorithms and VLSI Architectures. Hoboken, New Jersey: John Wiley & Sons, 1 ed.,

October 2004.

http://www.jpeg.org/jpeg2000/

BIBLIOGRAPHY 123

[33] C. Christopoulos, J. Askelof, and M. Larsson, “Efficient methods for encoding regions

of interest in the upcoming JPEG2000 still image coding standard,” Signal Processing

Letters, IEEE, vol. 7, pp. 247–249, September 2000.

[34] D. Engel, T. Stütz, and A. Uhl, “Format-compliant JPEG2000 encryption in JPSEC:

Security, Applicability, and the Impact of Compression Parameters,”EURASIP Jour-

nal on Information Security, vol. 2007, pp. 8:1–8:20, January 2007.

[35] J. Apostolopoulos, S. Wee, F. Dufaux, T. Ebrahimi, Q. Sun, and Z. Zhang, “The

emerging JPEG-2000 security (JPSEC) standard,” in Circuits and Systems, 2006.

ISCAS 2006. Proceedings. 2006 IEEE International Symposium on, Lecture Notes in

Computer Science, pp. 4 pp. –3885, IEEE, May 2006.

[36] Q. Sun and Z. Zhishou, “JPSEC: Security Part of JPEG2000 Standard,” Information

Technology Standards Committee, pp. 21–30, October 2006.

[37] F. Dufaux and T. Ebrahimi, “Region-Based Transform-Domain Video Scrambling,”

in SPIE Proceeding Visual Communications and Image Processing, Lecture Notes in

Computer Science, IEEE, 2006.

[38] S.-C. Cheung, J. Paruchuri, and T. Nguyen, “Managing privacy data in pervasive

camera networks,” in Image Processing, 2008. ICIP 2008. 15th IEEE International

Conference on, pp. 1676 –1679, October 2008.

[39] A. Uhl and R. Schraml, “J2K Privacy,” Department of Computer Sciences University

of Salzburg, Austria, 2012.

[40] Y. Mao and W. Min, “A joint signal processing and cryptographic approach to multi-

media encryption,” Image Processing, IEEE Transactions on, vol. 15, no. 7, pp. 2061–

2075, 2006.

[41] T. Stütz and A. Uhl, “On format-compliant iterative encryption of JPEG2000,” in in

Proceedings of the Eighth IEEE International Symposium on Multimedia (ISM06),

(Los Alamitos, (San Diego, CA, USA), pp. 985–990, IEEE Computer Society, De-

cember 2006.

[42] T. Stütz and A. Uhl, “On efficient transparent jpeg2000 encryption,” in Proceedings

of the 9th workshop on Multimedia & security, (Dallas, Texas, USA), pp. 97–108,

Association for Computing Machinery (ACM), September 2007.

[43] T. Köckerbauer, M. Polak, T. Stütz, and A. Uhl, “GVid - Video Coding and En-

cryption for Advanced Grid Visualization,” in Proceedings of the 1st Austrian Grid

BIBLIOGRAPHY 124

Symposium (J. Volkert, T. Fahringer, D. Kranzlmüller, and S. W., eds.), vol. 210,

(Schloss Hagenberg, Austria), pp. 204–218, Austrian Computer Society, OCG Ver-

lag, December 2005.

[44] H. Hofbauer, C. Rathgeb, A. Uhl, and P. Wild, “Image metric-based biometric com-

parators: A supplement to feature vector-based Hamming distance?,” in Biometrics

Special Interest Group (BIOSIG), 2012 BIOSIG - Proceedings of the International

Conference of the, (Salzburg, Austria), pp. 1–5, Deptartment of Comput. Science,

University of Salzburg, September 2012.

[45] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality assessment: from

error visibility to structural similarity,” Image Processing, IEEE Transactions on,

vol. 13, no. 4, pp. 600–612, 2004.

[46] M. Grgic, K. Delac, and S. Grgic, “SCface — surveillance cameras face database,”

Multimedia Tools Appl., vol. 51, pp. 863–879, February 2011.

[47] Y. Wu and R. Deng, “Compliant encryption of JPEG2000 codestreams,” in Image

Processing, 2004. ICIP ’04. 2004 International Conference on, vol. 5, pp. 3439–3442,

IEEE, October 2004.

[48] I. Cox, M. Miller, J. Bloom, J. Fridrich, and T. Kalker, Digital Watermarking and

Steganography. Multimedia Information and Systems, San Francisco, CA, USA: Mor-

gan Kaufmann Publishers Inc., 2 ed., November 2007.

[49] F. Petitcolas, R. Anderson, and M. Kuhn, “Information hiding a survey,” Proceedings

of the IEEE, vol. 87, pp. 1062 –1078, July 1999.

[50] B. Vassiliadis, V. Fotopoulos, A. Ilias, and A. Skodras, “Protecting Intellectual Prop-

erty Rights and the JPEG2000 Coding Standard,” in Panhellenic Conference on In-

formatics (P. Bozanis and E. Houstis, eds.), vol. 3746 of Lecture Notes in Computer

Science, pp. 705–715, Springer Berlin Heidelberg, November 2005.

[51] I. Cox, M. Miller, J. Bloom, and C. Honsinger, “Digital Watermarking,” Journal of

Electronic Imaging, vol. 11, no. 3, pp. 414–414, 2002.

[52] I. J. Cox, T. Kalker, and H.-K. Lee, eds., Digital Watermarking, Third International-

Workshop, IWDW 2004, Seoul, SouthKorea, October 30 - November 1, 2004, Revised

Selected Papers, vol. 3304 of Lecture Notes in Computer Science. Seoul, Sourth Korea:

Springer, 2005.

BIBLIOGRAPHY 125

[53] G. Saraswat Pradeep Kumar and R. K., “Digital Image Steganography - A Gentle

Overview,” VSRD International Journal of Computer Science & Information Tech-

nology, vol. 2, pp. 129–136, February 2012.

[54] P. Su, Information hiding in digital images: watermarking and steganography. PhD

thesis, Los Angeles, CA, USA, 2003. AAI3103970.

[55] G. J. Simmons, “The Prisoners’ Problem and the Subliminal Channel,” in Advances

in Cryptology – CRYPTO˜’83, pp. 51–67, Plenum, 1984.

[56] T. Morkel, J. Eloff, and M. Olivier, “An Overview of Image Steganography,” in

Proceedings of the Fifth Annual Information Security South Africa Conference

(ISSA2005) (H. Henter, J. Eloff, L. Labuschagne, and M. Eloff, eds.), (Sandton,

South Africa), July 2005.

[57] “ISO/IEC 15444-1. Information Technology - JPEG2000 Image Coding System, Part

1: Core Coding System,” December 2000.

[58] D. Engel, A. Uhl, and A. Unterweger, “Region of Interest Signalling For Encrypted

JPEG Images,” 2013.

[59] C. E. Shannon, A Mathematical Theory of Communication. CSLI Publications, 1948.

[60] J. T. Inder,“Generalized Information Measures and Their Applications.”http://www.

mtm.ufsc.br/˜taneja/book/book.html, June 2001. Accessed: 03/03/2013.

[61] A. Lesne, “Shannon entropy: a rigorous mathematical notion at the crossroads be-

tween probability, information theory, dynamical systems and statistical physcis,”

Mathematical Structures in Computer Science, vol. 1, pp. 1–43, January 2013.

[62] Y. Wu, Y. Zhou, G. Saveriades, S. Agaian, J. P. Noonan, and P. Natarajan, “Local

Shannon entropy measure with statistical tests for image randomness,” Information

Sciences, vol. 222, pp. 323–342, February 2013.

[63] T. Arens, F. Hettlich, C. Karpfinger, U. Kockelkorn, K. Lichtenegger, and H. Stachel,

Mathematik. Spektrum Akademischer Verlag, 2 ed., October 2011.

[64] R. Maini and H. Aggarwal, “Study and Comparison of Various Image Edge Detection

Techniques,” International Journal of Image Processing, vol. 3, no. 1, pp. 1–12, 2010.

[65] C. Philippe, “Image segmentation - introduction to signal and image processing,”

University of Basel, p. 193, May 2012.

[66] J. Canny, “A Computational Approach to Edge Detection,” Pattern Analysis and

Machine Intelligence, IEEE Transactions on, vol. 8, pp. 679–698, June 1986.

http://www.mtm.ufsc.br/~taneja/book/book.html
http://www.mtm.ufsc.br/~taneja/book/book.html

	Abstract
	List of Figures
	List of Tables
	Introduction
	State of the Art
	Research question and objectives
	Thesis Structure

	JPEG2000 Standard
	JPEG2000 Introduction
	Basic Architecture
	Pre-processing
	Wavelet Transform
	Quantization
	Context Model
	Arithmetic Entropy Coder
	Bitstream Ordering
	Codestream Syntax
	File Format

	RoI Coding
	JPEG2000 Parts
	Part 1 - Core Coding System
	Part 2 - Extensions
	Part 3 - Motion JPEG2000
	Part 4 - JPEG2000 Conformance
	Part 5 - JPEG2000 Reference Software
	Part 6 - JPEG2000 Compound Image File Format
	Part 8 - JPEG2000 Security

	Multimedia Encryption
	Encryption Approaches
	Pre-Compression / Image-Domain Encryption
	In-Compression / Transform-Domain Encryption
	Post-Compression / Codestream-Domain Encryption

	Evaluating the Encryption Methods
	Format Compliance
	Overhead
	Computational Demand
	Security
	Transcodability
	Image Quality

	JPEG2000 RoI Encryption
	Detect RoIs based on Max-Shift
	Detect RoIs by Codeblocks
	Detect RoIs by Tiles
	Packet-Body Encryption
	Packet-Header Encryption

	Data Embedding Techniques
	Watermarking
	Digital Watermarking Process
	Requirements of Digital Watermarking
	Watermarking Applications

	Steganography
	Steganography Concepts
	Requirements of Digital Steganography

	Embedding Binary Data into the JPEG2000 Codestream
	Embed Data into the JPEG2000 COM-Segment
	Non-Format-Compliant Data Embedding
	Length-Preserving Data Embedding

	Automated RoI Detection
	Detect RoI by Entropy
	Definition
	Reasoning for Choosing the Entropy

	Detect RoI by Variance
	Definition
	Reasoning for Choosing the Variance

	Use Edge Detector to Detect RoI
	Sobel Edge Detection
	Canny Edge Detection

	Implementation of JPEG2000 RoI-Detection-Methods
	Development Environment
	Data Embedding Techniques
	Embed Data into the JPEG2000 COM-Segment
	Embed Data prior to the JPEG2000 SOC-Marker
	Embed Data after the JPEG2000 EOC-Marker
	Length-Preserving Data Embedding

	Automated RoI Detection
	Acquiring the Image-Data
	Detect RoI by Entropy
	Detect RoI by Variance
	Detect RoI by Thresholding
	Detect RoI by Canny- or Sobel-Edge-Detector

	Performance Evaluation
	Experimental Setup
	Data Embedding Techniques
	Embed Data into the JPEG2000 COM-Segment
	Embed Data prior to the JPEG2000 SOC-Marker
	Embed Data after the JPEG2000 EOC-Marker
	Length-Preserving Data Embedding
	Encrypt Multiple RoIs per Image

	Comparison – Embedding Methods
	Format Compliance
	Embedding Overhead
	Computational Demand
	Image Quality
	Capacity Assessment – Length Preservation

	Automated RoI Detection
	Detect RoI by Entropy or Variance
	Detect RoI by Thresholding
	Use Edge Detector to Detect RoI

	Summary & Conclusion
	Source Code – Embedding Techniques
	Source Code – Automated RoI Detection
	Results – Embedding Techniques
	Results – Automated RoI Detection
	Bibliography

