
Parameterized Core Functional Dataflow Modeling and Its

Application to Wireless Communication Systems

by

Lai-Huei Wang

Table of Contents

1 Introduction . 1
2 Background and Related Work . 3

2.1 Background . 3
2.2 Related Work . 4

3 CF-PSDF Modeling and Scheduling 5
3.1 Multi-Mode Actors . 9
3.2 Subsystem Modes . 9
3.3 Scheduling Techniques . 12

4 Case Study . 13
4.1 Application Model based on CF-PSDF 13
4.2 Experimental Results . 16

5 Conclusion . 18
6 Acknowledgement . 19

Bibliography 20

ii

Abstract

Due to the increased complexity of dynamics in modern DSP applications, dataflow-

based design methodologies require significant enhancements in modeling and schedul-

ing techniques to provide for efficient and flexible handling of dynamic behavior. In

this report, we address this problem through a new framework that is based on inte-

grating two complementary modeling techniques, core functional dataflow (CFDF)

and parameterized synchronous dataflow (PSDF). We apply, in a systematically in-

tegrated way, the structured mode-based dynamic dataflow modeling capability of

CFDF together with the features of PSDF for dynamic parameter reconfiguration

and quasi-static scheduling. We refer to this integrated methodology for mode- and

dynamic-parameter-based modeling and scheduling as core functional parameterized

synchronous dataflow (CF-PSDF). Through a wireless communication case study in-

volving MIMO detection, we demonstrate the utility of design and implementation

using CF-PSDF graphs. Experimental results on this case study demonstrate the

efficiency and flexibility of our proposed new CF-PSDF based design methodology.

1 Introduction

Dataflow models are widely used for expressing the functionality of digital sig-

nal processing (DSP) applications, such as those associated with audio and video

data stream processing, digital communications, and image processing (e.g., see [1]).

Their graph-based formalisms allow intuitive and yet semantically rigorous descrip-

tions of applications. Such a semantic foundation enables a variety of analysis

tools, including tools for determining buffer bounds and efficient scheduling (e.g.,

see [2, 3, 4]).

Due to the increased complexity of dynamics in modern DSP applications,

such as wireless communication systems based on LTE and WiMAX, designers need

significant flexibility in the types of functional behaviors that they can efficiently

specify and implement. To model complex dynamic DSP systems, a variety of

dataflow approaches have been proposed (e.g., see [1]). Some of these can model

arbitrary dynamic behaviors, but may lead to inefficient schedules. Others allow

powerful scheduling and mapping techniques by restricting the range of dynamic

applications that they can accommodate.

Core functional dataflow (CFDF), is a dynamic dataflow model that provides

highly expressive semantics for the design of applications with structured dynamic

behavior [5]. However, this flexibility, especially when high levels of data-dependent

dynamics are present, may result in significant run-time scheduling overhead and

reduced predictability in scheduling performance.

On the other hand, parameterized synchronous dataflow (PSDF) is a modeling

1

technique that provides for systematic integration of dynamic parameter reconfig-

uration into synchronous dataflow representations [3]. Such an approach enables

flexible parameterized modeling as well as strong support for quasi-static schedul-

ing, which allows efficient and predictable scheduling performance for many kinds

of dynamic applications. Here, by quasi-static scheduling, we mean scheduling tech-

niques that fix a significant portion of schedule structure at compile time, while

allowing flexibility for run-time adaptation of this statically constructed structure

based on characteristics of input data and operating conditions [2]. To provide sup-

port for powerful quasi-static scheduling techniques, expression of dynamics in PSDF

is restricted — in particular, dynamic changes to actor and subsystem dataflow

properties are disallowed for some kinds of modeling structures [3].

This report is written and organized based on the work published in [6] with

minimal changes required. In this report, we develop a new dataflow modeling

framework, which is based on careful integration of the CFDF and PSDF mod-

els. We refer to our proposed model as core functional parameterized synchronous

dataflow (CF-PSDF). CF-PSDF provides useful trade-offs among dynamic model-

ing flexibility, and support for efficient quasi-static scheduling. By applying our

proposed design methodology based on CF-PSDF modeling, designers can poten-

tially enhance performance of dynamic applications by employing efficient static

and quasi-static scheduling techniques locally, and reducing the overhead associated

with more general dynamic scheduling strategies. We demonstrate the utility of our

proposed CF-PSDF based modeling and design techniques using an application case

study involving MIMO detection.

2

2 Background and Related Work

2.1 Background

Parameterized dataflow is a meta-modeling technique that can significantly

improve the expressive power of an arbitrary dataflow model that possesses a well-

defined concept of a graph iteration [3]. Parameterized dataflow provides a method

to systematically integrate dynamic parameter reconfiguration into such models of

computation, while preserving many of the properties and intuitive characteristics

of the original models. The integration of the parameterized dataflow meta-model

with synchronous dataflow (SDF) provides the model of computation referred to

as parameterized synchronous dataflow (PSDF). PSDF offers valuable properties in

terms of modeling systems with dynamic parameters, supporting efficient scheduling

techniques, and natural integration with popular SDF modeling techniques [3].

A PSDF specification (subsystem) is composed of three cooperating PSDF

graphs, the init, subinit, and body graphs of the specification. The init graph is

designed to configure the corresponding subinit and body graphs while the subinit

graph can only change parameters in the body graph. The body graph, when

executed, performs the main functionality of the subsystem based on the updated

set of parameters. For more details on PSDF modeling, we refer the reader to [3].

Core functional dataflow (CFDF), a deterministic sub-class of enable-invoke

dataflow (EIDF), is a dynamic dataflow model that provides highly expressive se-

mantics for the design of applications with structured dynamic behavior [5]. In the

formalism, each CFDF actor has a set of modes. When a given actor mode is exe-

3

cuted (invoked), an actor consumes and produces a fixed number of tokens. However

different modes of the same actor can produce and consume different numbers of

tokens, thereby allowing for actor-level dynamic dataflow behavior. Each actor has

an enabling function, which indicates if a given mode may be executed given the

present state of the application. The invoking function for a CFDF actor takes an

enabled mode as an argument, executes the associated actor in that mode, and then

determines the next mode in which the actor will be executed (after it has been

enabled and subsequently invoked).

2.2 Related Work

In addition to CFDF and PSDF, there is a variety of other models that sup-

port dynamic dataflow modeling, design, and implementation. Wiggers, Bekooij,

and Smit [7] present variable rate dataflow (VRDF) to model systems with data-

dependent communication, and develop techniques to compute buffer sizes for VRDF

specifications for given throughput constraints. Eker et al. [8] present a hierarchi-

cal approach for modeling of heterogeneous embedded systems, including systems

that incorporate dataflow behaviors. In this approach, designers employ modeling

constructs called directors to control the communication and execution schedules

for associated application subsystems. The stream-based functions (SBF) model of

computation combines the semantics of dataflow and process network models for

design and implementation of embedded signal processing systems [9]. An actor in

SBF contains a set of operational functions, along with a controller, state, and a

4

transition function. The use of operational functions and the transition function in

SBF is analogous in some ways to the modes and next mode determination func-

tionality in the CFDF model. Given this relationship, an interesting direction for

further study is the adaptation of the techniques introduced in this work to SBF

specifications (i.e., an integrated SBF-PSDF modeling framework).

The dataflow-based modeling and design techniques presented in this report

differ from the related work discussed above in that our framework generalizes CFDF

and PSDF models to provide systematic mode-based dynamic modeling together

with flexible dynamic parameter reconfiguration. Our emphasis on support for lo-

calized use of optimized static and quasi-static schedules further distinguishes our

contribution in this report from related work in this area.

The work presented in this report is to be presented also at the 2013 IEEE

Workshop on Signal Processing Systems [6].

3 CF-PSDF Modeling and Scheduling

In CF-PSDF, a DSP application is modeled through a CF-PSDF specification,

which is also called a CF-PSDF subsystem. A hierarchical actor that encapsulates a

CF-PSDF subsystem S (i.e., for instantiation in a higher level subsystem) is called

the CF-PSDF actor associated with subsystem S. A CF-PSDF actor H can be

viewed at its interface as a CFDF actor that has a set of modes, and enable and

invoke functions, which are fundamental components of the CFDF model [5]. When

H is executed in a given mode, a fixed number of tokens is consumed and produced

5

Figure 1: An example of a CF-PSDF graph.

at the input and output ports of H , respectively. Across different modes of H ,

however, the production and consumption rates at the ports of H can vary.

In a CF-PSDF actor H , the encapsulated specification, which we denote by

σ(H), is decomposed into three cooperating graphs, which we refer to as the ctrl (φc),

subctrl (φs), and body (φb) graphs of σ(H) (here, “ctrl” is used as an abbreviation

for “control”). The actor H3 in Figure 1(b) shows an example of a CF-PSDF actor.

As in PSDF modeling, the body graph of a CF-PSDF specification is intended

for use in modeling the core functional behavior of the associated subsystem, while

the ctrl and subctrl graphs, which are analogous in some ways to the init and subinit

graphs of PSDF, control the dynamic behavior of the body graph. This dynamic

body graph control is achieved by appropriately configuring selected body graph

parameters. As in PSDF, the subctrl graph of a CF-PSDF specification σ(H) can

configure the parameters in the associated body graph in ways that do not change

the production and consumption rates at the interfaces (ports) of H .

The ctrl graph of a CF-PSDF subsystem σ(H) is executed once during each

6

firing of H and is allowed to update parameters in the associated subctrl and body

graphs. Such parameter configurations may depend on parameters of the enclosing

system as well as on run-time data generated from other CF-PSDF actors (i.e.,

data-dependent parameter updates).

On specific parameter that is configured in the ctrl graph of σ(H) is a special

parameter µ(H) that controls the execution mode of H . The ctrl graph is the basic

mechanism in CF-PSDF for determining this execution mode. After the ctrl graph

of σ(H) executes and µ(H) is updated, the production and consumption rates at the

interfaces of H are fixed until the next execution of the ctrl graph. Furthermore, the

control information processed in the ctrl graph of σ(H) can be shared by “exporting”

tokens (through dedicated dataflow graph edges) to ctrl graphs in other CF-PSDF

actors within the enclosing application model. This mechanism of “sharing” control

information, which represents a departure from the parameterized dataflow meta-

model, can facilitate local scheduling and mapping optimization, and help avoid

repetitive computation of control information. Additionally, the ctrl graph can

process data from input ports of σ(H) and produce data onto the output ports of

σ(H). This is more flexible compared to the init graph of PSDF, where such linkages

to the ports of the enclosing PSDF actor are not allowed.

The modeling flexibility of CF-PSDF compared to PSDF is illustrated in Fig-

ure 2. In the PSDF subsystem shown in Figure 2, the production rate of actor A

must be independent of the output of actorX . However, this kind of data-dependent

dynamics can be useful to model when developing DSP applications. For example,

in wireless communications, a turbo decoders with a dynamic iteration count may or

7

Figure 2: Examples of PSDF and CF-PSDF actors.

may not execute one more iteration according to the run-time output of the current

iteration [10]. Another example of this kind of dataflow dynamics is discussed in

Section 4.

On the other hand, in CF-PSDF, designers can pass control tokens from actor

X to the ctrl graph of a CF-PSDF subsystem, as shown in Figure 2(b). Then,

the ctrl graph can configure the dataflow (production and consumption) rates of A

through the CF-PSDF mechanism of parameter reconfiguration based on subsystem

input tokens (input tokens arriving from actor X in this case). A disadvantage in

supporting this kind of dynamics is that the efficient quasi-static scheduling tech-

niques that have been developed for PSDF models (e.g., see [3]) are in general not

applicable to CF-PSDF specifications. However, in Section 3.3, we develop new

scheduling techniques that exploit the structure of CF-PSDF models, and permit

derivation of efficient schedules from such models.

8

3.1 Multi-Mode Actors

In this section, we develop scheduling techniques for mapping CF-PSDF graphs

into efficient implementations.

The hierarchical, mode-oriented structure of CF-PSDF modeling allows de-

signers to specify complex applications with more concise graphs representations,

where related functionality can be grouped together naturally under common actors

or subsystems. For example, a P -QAM mapper, which maps blocks of log2P input

bits to P -QAM symbols, consumes P tokens (bits) and produces one token (QAM

symbol). An SDF representation of this functionality would typically require three

separate actors for 4-QAM, 16-QAM, and 64-QAM processing, while this entire

functionality can be encapsulated within a single, multi-mode CFDF actor. How-

ever, in a CFDF graph, additional control modes may be needed to provide for

correct transitioning between operational states (e.g., see [5]), which may increase

design effort and introduce scheduling overhead. In CF-PSDF, we alleviate these

problems by applying a central control mechanism, through ctrl and subctrl graph

execution, and a modeling approach based on designer-specified sets of practical

mode combinations (functional modes) across body graph actors. This concept of

functional modes is discussed next, in Section 3.2.

3.2 Subsystem Modes

In CF-PSDF, it is not possible for one body graph actor to have direct control

over the dataflow rates of another actor in the same body graph. For example, in

9

the graph of Figure 1(b), the dataflow rates of actors A and B can be varied based

on output from H1, but the dataflow rates of A are prohibited from depending on

outputs of B, and vice versa. This condition ensures that the mode transitions of all

actors in a body graph φb can be configured centrally from the ctrl graph based on

system parameters and run-time data. This centralized, ctrl-graph based control of

actor modes can help to eliminate certain local (actor-level) modes and transitions

that are employed in pure CFDF models to ensure proper transitioning between

processing states.

Each CF-PSDF actor (subsystem) H has a special mode called the control

mode of H , which is used to execute the ctrl graph of H , and update parameters,

including the next mode parameter µ(H). The control mode can in general consume

and produce data at the interface ports of H , as described previously.

Apart from the control mode, a CF-PSDF actor H may have any number of

additional modes, which are referred to as the functional modes of H . Execution

of H proceeds based on alternating sequences of the control mode and a functional

mode (i.e., between each pair of successive functional mode executions, there is

exactly one execution of the control mode). Each functional mode of H corresponds

to a unique set of modes for all actors that are contained in the associated body

graph, φb. That is, for each functional mode m of H and each actor α in φb, there

is a unique mode z(m,α) of α that governs the execution state of α whenever H

executes in functional mode m. Thus, in each functional mode m, φb can be viewed

an SDF graph Gsdf (m), which can be analyzed and scheduled by leveraging the large

body of existing techniques for SDF (e.g., see [1]).

10

Note that in CF-PSDF, the set F (H) of functional modes of H is defined

explicitly by the designer. An alternative approach would be to derive F (H) by

enumerating all possible mode combinations across the actors within φb. However,

this approach is clearly not scalable since, for example, there is no polynomial bound

on such mode combinations.

Indeed, in practical DSP applications, many mode combinations may be unin-

teresting (e.g., redundant or simply not useful). In Figure 1(b), for example, suppose

that actors A and B are both P -QAM mappers with three modes each for P = 4,

16, and 64. The set of all mode combinations for H3 contains 3×3 = 9 combinations.

However, at any given time during actual execution of the system, the values of P

will be identical for both A and B — only three mode combinations are relevant in

the design of H3. Thus, H3 is designed such that F (H3) contains only three modes.

In previous work, methods have been developed to detect and eliminate un-

reachable mode combinations in CFDF graphs [5]. However, in practical scenarios,

such as the example of Figure 1(b), it can be difficult to detect all unused modes

without designer guidance. Automated techniques, such as those developed in [5],

can be used in a complementary fashion to the designer-specified approach in CF-

PSDF (e.g., to remove unused modes from the specified functional mode set). In-

tegrating such automation into the CF-PSDF framework is an interesting direction

for future work.

11

3.3 Scheduling Techniques

In CF-PSDF, dynamically parameterized and dynamic dataflow subsystems

are represented with two-level hierarchies, as illustrated in Figure 1. In the top level

(e.g., Figure 1(a)), each actor is a CF-PSDF actor with associated enable and invoke

functions, which have similar roles as in the pure CFDF model. The lower level of

the subsystem design hierarchy (e.g., Figure 1(b)) is composed of three subgraphs to

provide flexible dynamic parameter reconfiguration. This structured decomposition

into three subgraphs is based on a similar kind of decomposition provided in PSDF,

but with significant adaptations to make the modeling approach more flexible and

more coupled to CFDF design techniques.

CF-PSDF provides a natural framework for quasi-static scheduling based on

the decomposition of a CF-PSDF subsystem H in terms of it functional modes F (H)

and the associated set of SDF graphs

S(H) = {Gsdf (m) | m ∈ F (H)} (1)

that characterizes the body graph φb. Each graph {R ∈ S(H)} can be scheduled

using SDF techniques, and based on specific operational constraints (e.g., constraints

on throughput, latency, or buffer memory requirements) that are associated with the

corresponding functional mode of H . The resulting set of SDF schedules S(R) | R ∈

S(H) can then be integrated in a quasi-static, dynamic control-driven manner using

CFDF techniques for scheduling H as a component within its enclosing subsystem

or application graph model.

12

For example, for the dataflow graph Gouter that contains H , one can readily

apply a CFDF canonical schedule, which is a standard type of schedule for CFDF

graphs that can be constructed quickly and is suitable for rapid prototyping and

bottleneck identification [5]. Alternatively, existing techniques for CFDF schedule

optimization (e.g., see [5]) can be applied to Gouter to help improve system perfor-

mance or satisfy operational constraints.

4 Case Study

In this section, we demonstrate the utility CF-PSDF-based implementation

with a case study of soft multiple-input-multiple output (MIMO) detection.

4.1 Application Model based on CF-PSDF

MIMO technology has been adopted in many modern wireless communication

standards, such as LTE and WiMAX, due to the significant capacity increases that

can be achieved by using multiple antennas in transmitters and receivers [11]. In

this case study, we implement an application of M × M MIMO detection with a

P -QAM constellation. We apply an efficient soft MIMO detection algorithm called

the list fixed-complexity sphere decoder (LFSD), which is a list-based version of the

fixed-complexity sphere decoder (FSD) [12]. The LFSD generates a list of candidates

around the maximum likelihood (ML) solution that can be used to calculate soft-

output information for each transmitted bit bk in the form of log-likelihoods (LLRs),

{Lk}.

13

An M ×M MIMO system is commonly decomposed into M processing layers

(in our experiments, we use M = 4). In our design, the vector-valued parameter λ,

consisting of M-elements, specifies the number of optimal detected results that are

generated at each layer. If λ = (n1, n2, . . . , nM), then the list size can be expressed

as NL =
∏

M

i=1
ni.

In our implementation, the soft MIMO detector takes the received symbol vec-

tor y and the channel matrix C as inputs, finds the NL candidates for each y and

C, and generates the soft information Lk. We model the application with our pro-

posed CF-PSDF framework, as illustrated in Figure 3. Here, the dataflow graph is

composed of three CF-PSDF actors (Pre-processor, LFSD, and Post-processor),

two source actors Y (source of y) and H (source of C), and one sink actor B (sink

of Lk). The soft MIMO detector is divided into three parts: (1) the preprocessing

component (Pre-processor actor), which applies QR decomposition on the channel

and least squares estimation of the input symbols; (2) the LFSD component (LFSD

actor), which generates a list of candidates according to the FSD algorithm; and (3)

the postprocessing component (Post-processor actor), which computes the LLRs

with the list generated by the LFSD component. On the subsystem corresponding

to each CF-PSDF actor, the quasi-static scheduling technique developed in [3] is

applied.

In our implementation, the list size NL is determined dynamically for each re-

alization (i.e., for each y and C) based on the channel quality. Usually, a large value

for NL improves the bit error rate (BER), but at the cost of increased complexity. In

our design, a realization with better channel quality is processed with a smaller list

14

Figure 3: CF-PSDF model of soft MIMO detection application.

to reduce computational complexity. On the other hand, a large list is used for real-

izations in poor channel states to improve the detection accuracy. We consider three

different settings of λ in our MIMO system implementation: (1, 1, 1, P), (1, 1, 2, P),

and (1, 2, 2, P). These settings result in NL = P , NL = 2P , and NL = 4P , respec-

tively.

In our CF-PSDF-based design, the LFSD actor includes three modes, MODE-P,

MODE-2P, and MODE-4P to output NL = P , NL = 2P , and NL = 4P tokens (candi-

dates), respectively. The associated control actor C2 of the LFSD actor, when fired,

computes the channel quality (instantaneous channel capacity of C, denoted ρC)

with the input data exported from the Pre-processor actor, and then configures

the subsystem mode parameter µ (i.e., selects a list size) based on the current chan-

nel quality indicator ρC . In the cases of ρC > ρTH1 (“good quality”) and ρC < ρTH2

(“bad quality”), MODE-P and MODE-4P are selected, respectively, while in all other

cases, the mode is set to MODE-2P. Here, ρTH1 and ρTH2 are two system parameters

that determine the thresholds to use for determining good and bad channel quality,

as described above.

15

The designer-provided specification of functional modes in CF-PSDF provides

significant streamlining in the space of mode combinations that need to be handled

during the implementation process. The body graph of the LFSD actor contains four

actors — E1, E2, E3, and E4 — which, respectively represent the FSD processing

elements for layers 1 through 4. Each Ei has four operational modes — a LOAD mode

for reading input tokens, and three processing modes, denoted M-1, M-2, and M-P, to

process data for ni = 1, ni = 2, and ni = P , respectively. The total number of actor

mode combinations in the body graph is therefore 44 = 256. However, it is easy

for the designer to understand and specify that only three of these combinations,

which correspond to MODE-P, MODE-2P, and MODE-4P of the LFSD subsystem, are

relevant. Thus, including the required control mode, the total number of operational

modes for the LFSD subsystem is reduced from 256 to only 4 using the CF-PSDF

convention of designer-specified functional modes.

4.2 Experimental Results

Our experiments on this MIMO detector case study are performed on a PC

with an Intel 3GHz CPU and 4GB RAM. First, we compare the performance of

the detector modeled in pure CFDF and CF-PSDF for a 4× 4 MIMO system with

QPSK, 16-QAM, or 64-QAM modulation. In the experiments, both implementa-

tions apply the canonical CFDF scheduler [5]; however, for the CF-PSDF-based

implementation, the results of this scheduler are integrated with SDF schedules for

individual functional modes, as described in Section 3.3.

16

Table 1: Performance comparison between CFDF- and CF-PSDF-based implemen-

tations. Run time is in microseconds.

Modulation 4-QAM 16-QAM 64-QAM

Dataflow model CF CF-PS CF CF-PS CF CF-PS

Visited node count 272.6 68.7 1012 151.9 3972 484.4

Improvement 74.8% 85.0% 87.8%

Run time 0.11 0.10 0.19 0.15 0.50 0.33

Gain 9.1% 21.1% 34.0%

Table 1 lists experimental results for this comparison. From the results, we see

that compared to CFDF, CF-PSDF modeling can significantly reduce the number

of average visited actors per realization (shown in the row labeled Visited node

count). Here, by a “visit”, we mean a basic dataflow scheduling operation that

involves assessing whether an actor has sufficient input data, firing the actor if it

has sufficient data, or both. This reduction in visited node count, which can be

viewed as a reduction in schedule execution overhead, arises because of the novel

support in CF-PSDF for efficient quasi-static scheduling (i.e., in terms of local SDF

schedules for individual functional modes). The overall performance of the CF-

PSDF implementation is correspondingly improved as well. As we see from the row

labeled “Run time”, the average execution time is improved by 9.1%, 21.1%, and

34.0%, respectively, for QPSK, 16-QAM, and 64-QAM.

Next, we compare the performance of our dynamic MIMO detector against

a conventional static detector with a fixed list size NL = 4P for a 64-QAM 4x4

17

Table 2: Experimental comparison between the SS and DS. Run time is in microsec-

onds.

SNR (dB) 19.0 19.5 20.0 20.5 21.0

Run time (static) 0.425 0.425 0.424 0.426 0.425

Run time (dynamic) 0.370 0.353 0.339 0.327 0.318

Gain 12.9% 16.9% 20.0% 23.2% 25.2%

MIMO system (i.e., P = 64). To evaluate the coded BER performance, we feed

the soft output of the detectors to a length 3600, rate 1/2 turbo decoder with

eight iterations [13]. Our experimental results show that to achieve the target BER

(assume 10−4), the static system (SS) and dynamic systems (DS) require at least

19.84dB and 19.90dB signal to noise power ratio (SNR), respectively. In exchange

for this small (0.06dB) degradation, the DS provides a significant improvement in

run time (RT), as shown in Table 2. As expected, the RT of the DS at various SNRs

is almost uniform. By contrast, the RT for the DS improves as SNR increases. This

is because higher SNR provides more opportunities for use of smaller list sizes, which

results in lower computational cost.

5 Conclusion

In this report, we have introduced a novel dataflow modeling approach, called

CF-PSDF, that integrates core functional dataflow (CFDF) and parameterized syn-

chronous dataflow (PSDF) techniques. CF-PSDF offers useful features including

18

flexible dynamic parameter reconfiguration and enhanced support for quasi-static

scheduling. We have demonstrated the utility of CF-PSDF using a case study of soft

MIMO detector implementation. Our experimental results show significant perfor-

mance improvement through use of the streamlined scheduling techniques supported

by CF-PSDF.

6 Acknowledgement

This research was sponsored in part by the Austrian Marshall Plan Foundation,

and the US National Science Foundation (Grant No. CNS-1264486).

19

Bibliography

[1] S. S. Bhattacharyya, E. Deprettere, R. Leupers, and J. Takala, Eds., Handbook
of Signal Processing Systems, Springer, 2010.

[2] S. Ha and E. A. Lee, “Compile-time scheduling and assignment of data-flow
program graphs with data-dependent iteration,” IEEE Transactions on Com-

puters, vol. 40, no. 11, pp. 1225–1238, November 1991.

[3] B. Bhattacharya and S. S. Bhattacharyya, “Parameterized dataflow modeling
for DSP systems,” IEEE Transactions on Signal Processing, vol. 49, no. 10,
pp. 2408–2421, October 2001.

[4] J. McAllister, R. Woods, R. Walke, and D. Reilly, “Synthesis and high level
optimisation of multidimensional dataflow actor networks on FPGA,” in Pro-

ceedings of the IEEE Workshop on Signal Processing Systems, 2004.

[5] W. Plishker, N. Sane, and S. S. Bhattacharyya, “A generalized scheduling
approach for dynamic dataflow applications,” in Proceedings of the Design,

Automation and Test in Europe Conference and Exhibition, Nice, France, April
2009, pp. 111–116.

[6] L. Wang, C. Shen, and S. S. Bhattacharyya, “Parameterized core functional
dataflow graphs and their application to design and implementation of wireless
communication systems,” in Proceedings of the IEEE Workshop on Signal

Processing Systems, Taipei, Taiwan, October 2013, To appear.

[7] M. H. Wiggers, M. J. G. Bekooij, and G. J. M. Smit, “Computation of buffer
capacities for throughput constrained and data dependent inter-task commu-
nication,” in Proceedings of the Design, Automation and Test in Europe Con-

ference and Exhibition, March 2008.

[8] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer,
S. Sachs, and Y. Xiong, “Taming heterogeneity — the Ptolemy approach,”
Proceedings of the IEEE, January 2003.

[9] B. Kienhuis and E. F. Deprettere, “Modeling stream-based applications using
the SBF model of computation,” in Proceedings of the IEEE Workshop on

Signal Processing Systems, September 2001, pp. 385–394.

[10] M. Wu, Y. Sun, G. Wang, and J. R. Cavallaro, “Implementation of a high
throughput 3GPP turbo decoder on GPU,” Journal of Signal Processing Sys-

tems, vol. 65, no. 2, 2011.

[11] E. Telatar, “Capacity of multi-antenna Gaussian channels,” European Trans-

actions on Telecommunications, vol. 10, no. 6, pp. 585–595, 1999.

20

[12] L. G. Barbero and J. S. Thompson, “Extending a fixed-complexity sphere
decoder to obtain likelihood information for Turbo-MIMO systems,” IEEE

Transactions on Vehicular Technology, vol. 57, no. 5, pp. 2804–2814, 2008.

[13] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-
correcting coding and decoding: Turbo-codes,” in IEEE International Confer-

ence on Communications, 1993, pp. 1064–1070.

21

