
Extracting Sequential Patterns from

Collaborative Ontology-Engineering

Projects

Technical Report

Simon Walk1

with
Philipp Singer1

Markus Strohmaier2,3

Tania Tudorache4

Natalya F. Noy4

Mark A. Musen4

1 Knowledge Technologies Institute
Graz University of Technology, Austria

2 Computational Social Science
GESIS - Leibniz Institute for the Social Sciences, Cologne, Germany

3 Department of Computer Science
University of Koblenz-Landau, Germany

4 Biomedical Informatics Research Center
Stanford University, California, USA

March, 2014



Abstract. This technical report summarizes the results and work that
was conducted by me during my research visit at Stanford University
from September to December 2013. During my stay, I performed a de-
tailed analysis and evaluation of sequential patterns in five different col-
laborative ontology-engineering projects from the biomedical domain. In
ongoing work, I will implement a plug-in for WebProtégé in cooperation
with researchers at Stanford University, which leverages the results of
the sequential pattern analysis to create task recommendations.

Parts of this technical report have already been submitted to the Journal
of Biomedical Informatics.

Biomedical taxonomies, thesauri and ontologies, such as the Interna-
tional Classification of Diseases (ICD) or the National Cancer Institute
Thesaurus (NCIt), play a critical role in acquiring, representing and
processing information about human health. With increasing adoption
and relevance, biomedical ontologies have also significantly increased in

size. For example, the 11th revision of the International Classification
of Diseases (ICD-11), which is currently under active development by
the World Health Organization (WHO) contains nearly 50, 000 classes
representing a vast variety of different diseases and causes of death. This
evolution in terms of size was accompanied by an evolution in the way
ontologies are engineered. Because no single individual has the expertise
to develop such large-scale ontologies, ontology-engineering projects have
evolved from small-scale efforts involving just a few domain experts to
large-scale projects that require effective collaboration between dozens
or even hundreds of experts, practitioners and other stakeholders. Under-
standing the way these different stakeholders collaborate will enable us
to improve editing environments that support such collaborations. In this
paper, we uncover how large ontology-engineering projects such as ICD-
11 unfold by analyzing usage logs of five different biomedical ontology-
engineering projects of varying sizes and scopes. We discover intrigu-
ing patterns that suggest that large collaborative ontology-engineering
projects are governed by a few general principles that determine and
drive development. From our analysis, we identify commonalities and
differences between distinct projects that have implications for project
managers, ontology editors, developers and contributors working on col-
laborative ontology engineering projects and tools in the biomedical do-
main.
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1 Introduction

Today, biomedical ontologies play a critical role in acquiring, representing and
processing information about human health. For example, the International Clas-
sification of Diseases (ICD) is used in more than 100 countries to encode patient
diseases, to compile health-related statistics and to collect health-related spend-
ing statistics. Similarly, the National Cancer Institute’s Thesaurus (NCIt) rep-
resents an important vocabulary for classifying cancer and cancer-related terms.

With their increase in relevance, biomedical ontologies have also significantly
increased in size to cover new findings and to extend and complement their orig-

inal areas of application. For example, the 11th revision of the International
Classification of Diseases (ICD-11), currently under active development by the
World Health Organization (WHO), consists of nearly 50, 000 classes represent-
ing a vast variety of different diseases and causes of death. This growth was
accompanied by a need to adapt the way these ontologies are developed as no
single individual or small group of domain experts have the expertise to develop
such large-scale ontologies. New tools and processes have to be developed in
order to coordinate, augment and manage collaboration between the dozens or
hundreds of experts, practitioners and stakeholders when engineering an ontol-
ogy.

Understanding the ways in which such a large number of participants – e.g.,
more than 100 experts contribute to ICD-11 – collaborate with one another
when creating a structured knowledge representation is a prerequisite for quality
control and effective tool support.

Objectives: Consequently, we aim at understanding how large collaborative
ontology engineering projects such as ICD-11 unfold. We approach this prob-
lem by analyzing usage logs of five biomedical ontology-engineering projects of
varying sizes and scopes. For this analysis we employ Markov chain models for
investigating whether we can use the history of user actions for the task of pre-
dicting the next action that the user is going to perform (e.g., the user who will
change a class next). The analyzed datasets range from large-scale datasets such
as ICD-11 to smaller ones such as the Ontology for Parasite Lifecycle (OPL). We
aim to explore differences and similarities in patterns among different biomedi-
cal ontology-engineering projects (e.g., we look at sequences of users who edit a
class). Furthermore, we aim to identify and discuss features of these projects that
potentially affect the patterns that we observed. This analysis can be seen as a
stepping stone for collaborative ontology-engineering project managers to devise
infrastructures and tool support to augment collaborative ontology engineering.

Findings: We discover new insights on social interactions and editing pat-
terns that suggest that large collaborative ontology engineering projects are
governed by a few general principles that determine and drive development.
Specifically, our results indicate that general edit patterns can be found in all
investigated datasets, even though they (i) represent different projects with dif-
ferent goals, (ii) use variations of the same ontology-editors and tools for the
engineering process and (iii) differ in the way the projects are coordinated.
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Fig. 1. A screenshot of iCAT, a custom tailored, web-based version of WebProtégé,
developed for the collaborative engineering of ICD-11. The left part of the interface
visualizes the ICD-11 class hierarchy, the class titles, the number of annotations each
class has received (speech bubbles) and its overall progress (color and symbol before
the class title). The right part of the interface shows the different user-interface sections
(e.g, Title & Definition or Classification Properties), listing all properties and property
values for each class.

We find first evidence that users collaborate in micro-workflows, where infor-
mation about previous users contains information about which user is likely to
edit a given class next (Section 4.1). We show that specific roles – e.g., the so-
called gardener, a contributor focused on pruning ontology classes and fixing syn-
tactical errors – of an ontology [1]) exhibit different transition probabilities and
features from regular contributors. Users tend to move along special ontological
relationships and do not follow a single, but a combination of multiple strategies
when editing ontologies (e.g., bottom-up, top-down, breadth-first or depth-first)
(Section 4.2). Finally, we find that users tend to change the same properties
across different classes. When investigating which properties are changed for a
class, we find out that (different) contributors consecutively change the same
properties multiple times, rather than multiple properties for each class (Sec-
tion 4.3).

Contributions: To the best of our knowledge, the work presented in this
paper represents the most fine-grained and comprehensive study of patterns in
large-scale collaborative ontology-engineering projects in the domain of biomedicine.
In addition, our analysis is conducted across five datasets of different sizes, which
have been developed using different versions of Collaborative Protégé (Table 1).
Our results reveal that (i) general social patterns and sequential patterns can
be found across all five projects and (ii) there are commonalities and differences
between extracted patterns in our datasets.
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2 Collaborative Ontology Engineering

According to Gruber [2], Borst [3], Studer et al. [4] an ontology is an explicit
specification of a shared conceptualization. In particular, this definition refers to
a machine-readable construct (the formalization) that represents an abstraction
of the real world (the shared conceptualization), which is especially important
in the field of computer science as it allows a computer (among other things) to
“understand” relationships between entities and objects that are modeled in an
ontology.

Collaborative ontology engineering is a new field of research with many new
problems, risks and challenges that we must first identify and then address. In
general, contributors of collaborative ontology-engineering projects, similar to
other collaborative online production systems (e.g., Wikipedia), engage remotely
(e.g., via the internet or a client–server architecture) in the development process
to create and maintain an ontology. As an ontology represents a formalized and
abstract representation of a specific domain, disagreements between authors on
certain subjects can occur. Similar to face-to-face meetings, these collaborative
ontology-engineering projects need tools that augment collaboration and help
contributors in reaching consensus when modeling topics of the real world.

Indeed, the majority of the literature about collaborative ontology engineer-
ing sets its focus on surveying, finding and defining requirements for the tools
used in these projects [5, 6].

The Semantic Web community has developed a number of tools aimed at
supporting the collaborative development of ontologies. For example, Semantic
MediaWikis [7] and its derivatives [8, 9, 10] add semantic, ontology modeling
and collaborative features to traditional MediaWiki systems.

Protégé, and its extensions for collaborative development, such as WebProtégé
and iCAT [11] (see Figure 1 for a screenshot of the iCAT ontology-editor inter-
face) are prominent stand-alone tools that are used by a large community world-
wide to develop ontologies in a variety of different projects. Both WebProtégé
and Collaborative Protégé provide a robust and scalable environment for collab-
oration and are used in several large-scale projects, including the development
of ICD-11 [12].

Pöschko et al. [13], Walk et al. [14] have created PragmatiX, a tool to visualize
and analyze a collaboratively engineered ontology and aspects of its history
and the engineering process, providing quantitative insights into the ongoing
collaborative development processes.

Falconer et al. [15] investigated the change-logs of collaborative ontology-
engineering projects, showing that users exhibit specific roles, which can be
used to group and classify users, when contributing to the ontology. Pesquita
and Couto [16] investigated if the location and specific structural features can
be used to determine if and where the next change is going to occur in the Gene
Ontology5. Strohmaier et al. [17] investigated the hidden social dynamics that
take place in collaborative ontology-engineering projects from the biomedical

5 http://www.geneontology.org

http://www.geneontology.org
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domain and provides new metrics to quantify various aspects of the collaborative
engineering processes. Wang et al. [18] have used association-rule mining to
analyze user editing patterns in collaborative ontology-engineering projects. The
approach presented in this paper uses Markov chains to extract much higher
detailed user-interaction patterns incorporating a variable number of historic
editing information.

The only requirement to perform the pattern analysis that we present in this
paper is the availability of a structured log of changes that can be mapped to
the underlying ontology. The majority of the discussed collaborative ontology-
engineering environments provide such a log, allowing for a similar analysis.
For example, the Semantic MediaWikis store all the changes to the articles,
and thus the ontology, allowing to expand the application of Markov chains to
analyze sequential patterns as shown in this paper.

3 Materials & Methods

For the analysis conducted in this paper we concentrated our efforts on five
ontology-engineering projects in the biomedical domain. Each of the projects (i)
has at least two users who contributed to the project, (ii) provides a structured
log of changes and (iii) represents knowledge from the biomedical domain. In
section 3.1 we provide a brief history for each dataset and in section 3.2 we de-
scribe the sequential path analysis. To aid readers in understanding the analyses
conducted in this paper and its implications we provide a very brief overview of
Markov chains and the involved model selection methodology in section 3.3.
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Table 1. Detailed information of the datasets used for the sequential pattern analysis to extract beaten paths in collaborative ontology-
engineering projects.

ICD-11 ICTM NCIt BRO OPL

Ontology
classes 48,771 1,506 102,865 528 393
changes 439,229 67,522 294,471 2,507 1,993
DL expressivity SHOIN (D) SHOIN (D) SH SHIF(D) SHOIF

Editor tool iCAT iCAT-TM Collaborative Protégé WebProtégé Collaborative Protégé

Users
users 109 27 17 5 3
bots (changes) 1 (935) 1 (1) 0 (0) 0 (0) 0 (0)

Duration
first change 18.11.2009 02.02.2011 01.06.2010 12.02.2010 09.06.2011
last change 29.08.2013 17.7.2013 19.08.2013 06.03.2010 23.09.2011
observation period (ca.) 4 years 2.5 years 3 years 1 month 3 months
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3.1 Datasets

Table 1 lists the detailed features and observation periods for the following five
datasets that we used in our analysis.

The International Classification of Diseases (ICD)6 is the interna-
tional standard for diagnostic classification used to encode information relevant
to epidemiology, health management, and clinical use in over 100 United Nations
countries. The World Health Organization (WHO) develops ICD, and publishes
new revisions of the classification every decade or more. The current revision in
use is ICD-10, which contains over 15, 000 classes. The 11th revision of ICD,7

ICD-11, is currently taking place and brings two major changes with respect
to previous revisions. First, ICD-11 is developed as an OWL ontology using a
much richer representation formalism than previous revisions. ICD-11 contains
very detailed descriptions of several aspects of diseases, mostly represented as
properties in the ontology. Second, the development of ICD-11 takes place in a
Web-based collaborative environment, called iCAT (see Figure 1), which allows
domain experts around the world to contribute and review the ontology online.
ICD-11 is planned to be finalized in May 2017.

The International Classification of Traditional Medicine (ICTM) is
a WHO led project that aimed to produce an international standard terminol-
ogy and classification for diagnoses and interventions in Traditional Medicine.8

ICTM is represented as an OWL ontology, which tries to unify the knowledge
from the traditional medicine practices from China, Japan and Korea. Its content
is authored in 4 languages: English, Chinese, Japanese and Korean. More than
20 domain experts from the three countries developed ICTM using a customized
version of the iCAT system, called iCAT-TM. The development of ICTM was
stopped in 2012, and a subset of ICTM is also included as a branch in the ICD-11
ontology.9

The National Cancer Institute’s Thesaurus (NCIt) [19] has over
100, 000 classes and has been in development for more than a decade. It is a ref-
erence vocabulary covering areas for clinical care, translational, basic research,
and cancer biology. A multidisciplinary team of editors works to edit and up-
date the terminology based on their respective areas of expertise, following a
well-defined workflow. A lead editor reviews all changes made by the editors.
The lead editor accepts or rejects the changes and publishes a new version of
the NCI Thesaurus. The NCI Thesaurus is an OWL ontology, which uses many
OWL primitives such as defined classes and restrictions.

The Biomedical Resource Ontology (BRO) originated in the Biositemaps
project,10 an initiative of the Biositemaps Working Group of the NIH National
Centers for Biomedical Computing [20]. Biositemaps is a mechanism for re-
searchers working in biomedicine to publish metadata about biomedical data,

6 http://www.who.int/classifications/icd/en/
7 http://www.who.int/classifications/icd/ICDRevision/
8 http://tinyurl.com/ictmbulletin
9 The ICD-11 dataset used in our analysis did not include the ICTM branch.

10 http://biositemaps.ncbcs.org

http://www.who.int/classifications/icd/en/
http://www.who.int/classifications/icd/ICDRevision/
http://tinyurl.com/ictmbulletin
http://biositemaps.ncbcs.org
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tools, and services. Applications can then aggregate this information for tasks
such as semantic search. BRO is the enabling technology used in Biositemaps; a
controlled terminology for describing the resource types, areas of research, and
activity of a biomedical related resource. BRO was developed by a small group
of editors, who use a Web-based interface (WebProtégé) to modify the ontology
and to carry out discussions to reach consensus on their modeling choices.

The Ontology for Parasite Lifecycle (OPL) models the life cycle of
the T.cruzi, a protozoan parasite, which is responsible for a number of human
diseases. OPL is an OWL ontology that extends several other OWL ontologies.
It uses many OWL constructs such as restrictions and defined classes. Several
users from different institutions collaborate on OPL development. This ontology
is much smaller and has far fewer users than NCIt, ICD-11, or ICTM.

3.2 Sequential Paths

For our sequential pattern analysis we analyze three different kinds of paths,
which all represent actual interactions with the underlying ontology. A sequen-
tial path is represented by the chronologically ordered list of extracted states for
either one user or one class (see Figure 2). For example, a sequential property
path for one user (user-based) consists of a chronologically ordered list of all
properties (e.g., title, definition etc.), which have been changed by that user,
while a sequential property path for one class (class-based) consists of a chrono-
logically ordered list of properties that were changed on that class.

U P2 P3 P1

C P3P2P2P1:

:

Fig. 2. The top row of the figure depicts an exemplary class-based sequential property
path (P1 to P3) for class C. This means that for class C the property P1 was changed
first, then property P2 and most recently changed was property P3. The bottom row
of the figure depicts the sequential property path (P1 to P3), however this time for a
user U (user-based). Analogously, user U has first changed P2, continued to change
property P3 and most recently changed P1.

User-Sequence Paths: First, we analyze activity patterns within the collab-
orative ontology-engineering project. This means that we identify sequences of
users who change a class. We want to investigate if and to what extent his-
toric editing information (memory) can be used to predict the next user who is
going to change a class. We will also inspect and describe the different sequen-
tial patterns (the structure) that can be extracted from the change-logs of the
investigated collaborative ontology-engineering projects
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Structural Paths: Analogously to the User-Sequence Paths, we investigate
edit-strategies, such as bottom-up or top-down development, that users follow. Is
it possible to predict at what depth level a user is going to contribute to the on-
tology next? In addition to development-strategies, we look at the relationships
(e.g., parent, child, sibling etc.) between the current and the next class a user is
going to contribute to.

Property Paths: On a content-based level, we investigate the series of property-
changes users perform on. In particular, we want to know if we can model and
predict the next property a user is going to change? Can we model and predict
which property is going to be changed next for a given class?

3.3 Markov chain Model Selection

For the analysis conducted in this paper we are adopting the methodology pre-
sented by Singer et al. [21] and mapped to collaborative ontology-engineering
change logs by Walk et al. [22] to determine if and to what extent sequential
patterns can be identified in and extracted from change-logs and how well they
perform in our prediction task.

For a better understanding of the collected results, we will provide a short de-
scription of Markov chains and the evaluation used to determine the appropriate
order of a Markov chain to use. For an in-depth description of our methodology
we point to Singer et al. [21], Walk et al. [22].

Among other fields of application, Markov chain models have been used for
modeling navigation on the web. In general, a Markov chain consists of a finite
state-space and the corresponding transition probabilities between these states.
For our analysis, we will make use of the transition probabilities to identify likely
transitions for a variety of different states. To be able to do so, it is important
to understand the nature of Markov chains. Formally, a finite and discrete (in
time and space) Markov chain can be seen as a stochastic process that contains
a sequence of random variables. One of the most well known hypotheses about
Markov chains is the so-called Markovian assumption that postulates that the
next state of a sequence depends only on the current state and not on a sequence
of preceding ones of the investigated data.

We are also interested in higher order Markov chains, meaning that in a k-th
order Markov chain the next state depends on k previous ones. This means that
given k previous changes of a user, we can predict, for example, what kind of
property that user is most likely to change next.

For easier understanding, one could think of a first-order Markov chain model
as a matrix, where each column and row correspond to a state of the state-space
and the elements within the matrix represent the transition probabilities to and
from each state towards the corresponding other states. For higher order Markov
chain models, the states would include the combinations of all states, which
drastically increases the state-space and therefore the complexity of the resulting
Markov chain. When looking at the sequence of properties and a Markov chain of
first order, we would calculate the transition probabilities between all properties.
On a second-order Markov chain (and analogously higher-order Markov chains)
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we would calculate the transition probabilities between all property pairs (as in
2 properties) and every single property. For example, what is the probability of
a user changing property c next if that same user has last changed property a
and then property b?

It is important to understand that if a Markov chain of at least first-order
can be detected and put to practical use, transitions between the investigated
states are not random, meaning that at least the current state holds information
about the next state to occur.

4 Results

In this section, we report the results from our experiments on User-Sequence
Paths, investigating if and to what extent it is possible to predict the user who
is going to change a class next. In the Structural Paths section we analyze if and
to what extent users move along the hierarchy of the ontology when contributing.
In the Property Paths section we investigate if we can predict the property a user
is going to change next as well as the property that is going to be changed next
for a class.

4.1 User-Sequence Paths

In the User-Sequence Paths analysis we investigate whether we can predict the
user who is going to contribute to a class next, given n previous contributors.
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histograms (top area of Figures 3(a) to 3(e)) show the amount of changes performed by each user (again for a first-order Markov chain)
within the five ontologies in alphabetical order. Note, that the y-axes for all histograms are scaled differently for each dataset. All datasets
have a few users who contributed the majority of changes, while the rest of the users (the long-tail) only contributed a very small number
of changes. It is important to understand that the transition-probabilities depicted in the transition maps are relative numbers for each
column and row individually. Thus, an inspection of the transition maps and histograms is necessary for proper interpretation. To increase
readability we have removed users from the plots who have contributed only a very limited amount of changes for ICD-11, ICTM and
NCIt.
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Analyzing the chronologically ordered list of contributors for each class of the
five investigated datasets provides the necessary information to identify users
who perform changes on classes after (or before) other users. It is important to
understand that this analysis on its own, without regarding additional factors,
such as the changed property or the performed change-action, does not provide
information about actual collaboration. The results of this analysis can be used
to identify users who work on the same classes, however, we do not know if they
actually collaborate with or just clean up (i.e., a gardener) after other users.

Path & State Descriptions: To analyze user sequences, we iterated over
each class of our datasets and extracted a chronologically ordered list of con-
tributors. As we are interested in uncovering the transitions between users, we
merged multiple consecutive changes by the same user into a single change to
avoid the detection of longer Markov chains based on frequent and consecutive
loops between the same states.

As the name of this analysis suggests, the states of the Markov chain cor-
respond to the usernames of the users who contributed to each project. Due to
reasons of privacy we obfuscated the actual usernames and replaced them with
generic names.

Results: When investigating the transition probabilities (representing a
Markov chain of first order) between contributors (see bottom area of Fig-
ures 3(a) to 3(e)) we can identify very active users by looking at darker colored
columns of the transition maps. As we have merged all consecutive changes of
the same user into one single change the diagonal, representing the transition
probabilities between the same users, is 0. Note, that the absolute transition
probabilities, depicted next to each transition map, are dependent on the abso-
lute amount of observations and states, thus are to be interpreted relatively to
each other for each row individually. When looking at the probabilities between
very active users and all target states in ICD-11 we can see that the probabilities
are very evenly distributed across all users. Nonetheless, we can clearly identify
User 66 to be the most likely following state after nearly all other states. This
suggests, that User 66 may represent a gardener in ICD-11.

For NCIt we can clearly observe that User 7 appears to be a gardener, who
is checking all the changes contributed by all other users. For BRO Users 2 and
5 are prominent target states, evident in the high transition probabilities as To
State (dark columns). Interestingly, the user with the highest amount of changes
(User 1 ) exhibits very low and evenly distributed transition probabilities (row)
and is not necessarily the user that most likely changes a class after other users.
This shows us that there does not need to be a necessary connection between
the overall activity of users and their activity as a gardener. For OPL we can
observe that User 3 frequently changes the same classes after User 2. A similar
observation can be made for Users 1 and 2. However, one has to keep in mind
that User 1 has contributed a limited number of changes, rendering the observed
transition probabilities less useful as they rarely occur.

The histograms (see top area of Figures 3(a) to 3(e)) indicate that a small
number of users contribute the majority of changes (similar to a long-tail distri-
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bution). This distribution can be seen most dominantly for ICD-11 and NCIt.
A larger share of users contributed the majority of changes for ICTM, BRO and
OPL, which is also connected to a larger number of gardeners in these ontologies.

Interpretation & Practical Implications: The transition probabilities
for a first-order Markov chain unveil the roles of certain users and can help to
identify users or even groups of users who frequently change the same classes.
Users that are prominent target states (i.e., exhibit high transition probabili-
ties in their columns) were identified by us as actual gardeners, curators and
administrators of the corresponding projects. If certain users always change the
same classes after specific other users, it could be worthwhile for project admin-
istrators to investigate if these users are actually collaborating, for example by
looking at the changed properties and property values, or if one user is always
cleaning up after the other user. In all datasets we were able to observe at least
one user who contributed a high amount of changes, with evenly distributed
transition probabilities to all remaining users. This observation indicates that
in all projects, gardeners, curators and administrators are assigned (directly or
indirectly) certain parts of the ontology; otherwise the transition probabilities
between the very active users would be higher.

The ability of predicting who is going to change a specific class next, as well
as the classes that a user is most likely to change next can be used by project
administrators to help users finding and identifying classes (and thus work) of
interest. Classes for users can be easily identified by using the calculated Markov
chain probabilities, and instead of just predicting the next user for a class, we
use the information of the most likely next contributor to infer the classes that
user is most likely to change next. Note, that using this approach we are not
guaranteed to find classes for all users. On the other hand the information about
the next, most probable contributor for a class, can even be used to create
automatic class recommender systems to suggest work to users, which could
help to increase participation. In particular for projects the size of ICD-11 and
NCIt, mechanisms to automatically identify and assign work are highly useful as
it is still very time-consuming to identify pending work and suitable users with
the necessary knowledge to address the identified work-tasks.

4.2 Structural Paths

The investigation of Structural Paths involves an analysis of different aspects
regarding how and where users contribute to the ontology, such as the depth
level of the class that users contribute to next (Section 4.2) as well as looking at
the relationship distances between consecutively changed classes (Section 4.2).

Depth-Level Paths In this analysis, we investigate if users concentrate their
efforts on specific depth levels of the ontology and if there are certain depth
levels that receive frequent transitions and less concentrated workflows. The
gathered results can be used to implement pre-fetching mechanisms to minimize
the loading and waiting times for contributors. Furthermore, we can determine
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whether users move along the structure of the underlying ontology when editing
classes.
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Fig. 4. Results for the Depth-Level Paths analysis: The columns and rows of the transition maps (bottom area of Figures 4(a)
to 4(e)) represent the transition probabilities of a first-order Markov chain between depth levels, where rows are source depth levels and
columns are target depth levels. A sequence (or transition probability) is always read from row to column. Darker colors represent higher
transition probabilities while lighter colors indicate lesser transition-probabilities. Absolute probability values are dependent on the number
of investigated rows and columns, hence relative differences are of greater importance. For classes closer to root a top-down editing manner
can be observed, while this is reversed for classes further away from root. The histograms (top area of Figures 4(a) to 4(e)) show the
amount of changes performed in each depth level aggregated over all users of the respective projects (again for a first-order Markov chain).
Throughout all projects, classes located between the first and last few depth levels (in the middle) are changed substantially more frequently
than others, suggesting that work is concentrated on some depth levels while others receive none to very few changes at all. Note, that the
y-axes for all histograms are scaled differently for each dataset. For the x-axes (and column/rows of the transition maps) we only display
depth levels which exhibit at least one change, thus, the depth level sequences are not necessarily continuous from lowest to highest depth
level.
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Fig. 5. The Figures 5(f) to 5(j) depict the absolute numbers (y-axis; Frequency) of classes as well as the number of edges (isA) to classes
on the immediate higher (parents; closer to root) and lower (children; further away from root) depth level for all depth levels (x-axis;
Depth-Level). According to Figures 5(f) to 5(j) the transition probabilities depicted in the transition maps correlate with the total number
of edges to children and parents for each depth level across all datasets.
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Path Extraction & State Descriptions: For this analysis, we stored the
chronologically ordered depth levels of each changed class for each user. The
depth level of a class is the length of the shortest path between the root node of
the ontology and the corresponding class. We merged consecutive changes that
were conducted by the same user on the same class into one single transition
between the same depth levels. This approach helps us to investigate actual
transitions between states while still retaining the notion of users consecutively
editing the same classes.

Results: First, the histograms (see top area of Figures 4(a) to 4(e)) show
that work is concentrated on certain levels of the ontology, with the highest and
lowest levels not receiving as much attention as the levels in-between.

As depicted in the transition maps (bottom area of Figures 4(a) to 4(e)),
users have a high tendency to edit classes in the same depth levels, visible in the
darker colored diagonal. In ICD-11, for the first 5 depth levels, users appear to
have a tendency towards top-down editing, while this tendency turns around at
a depth level of 6 and higher, and appears to be strictly limited to surrounding
depth levels. For ICTM (see Figure 4(b)), we can observe a similar trend, again
with the tendency towards top-down editing appearing to be minimally more
dominant. For NCIt, when only looking at the transition map, we can identify
a trend towards bottom-up editing. However, when we consider the absolute
amount of changes, depicted in 4(c), we can see that the levels with higher
transition probabilities to lower depth levels (further away from root) occur more
frequently. Thus, when users are not changing the same classes, they still exhibit
a preference towards top-down editing. Given the short observation periods for
BRO and OPL it is hard to infer actual edit strategies. However, similar to the
other projects, we can observe a concentration on the same depth levels with
alternating preferences towards higher and lower depth levels. Similar to ICD-
11, all datasets exhibit higher transition probabilities between the immediately
surrounding depth levels.

Furthermore, we investigate whether the total number of classes as well as
the total number of links to the immediate higher (children; edges to classes
one level further away from root) and lower (parents; edges to classes one level
closer to root) depth level correlate with our findings (Figures 5(f) to 5(j)). For
example, the transition map for ICD-11 (see Figure 4(a)) shows that contribu-
tors exhibit a top-down editing behavior for the first five depth levels, with level
5 exhibiting first signs of bottom-up editing. Figure 5(f) shows a higher num-
ber of possible transitions from children than parents, indicating that users are
in general likelier to follow top-down editing-strategies when changing classes,
following relationships by chance, of the first four levels. This changes for ICD-
11 at level 5, with a higher number of transitions to parents than to children,
and continues until level 10. Resulting in a higher probability of users perform-
ing bottom-up editing-strategies when changing classes from levels 6 to 10. The
same observations can be made for all other datasets, indicating that the class
hierarchy influences the edit behavior of contributors.
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In all datasets, after taking a BREAK (representing an artificially introduced
session break when two consecutive changes of the same user are more than
5 minutes apart; for more information see section 5.4), users exhibit a clear
tendency towards changing classes on certain depth levels (e.g., levels 3 to 5 for
ICD-11, levels 4 to 5 for ICTM, levels 4 to 7 for NCIt, levels 2 to 4 for BRO and
levels 6 to 9 for OPL).

Interpretation & Practical Implications: The results of this analysis
show if, to what extent and where work is conducted and concentrated within
the ontology. This information can be used in a variety of ways, for example
by ontology-engineering tool developers to pre-fetch potential classes a user is
likely to work on next, or to adapt the interface of the ontology-engineering
tool dynamically to display specific classes after users return from a BREAK.
Project managers can adapt milestones and project progress reports to reflect
the underlying editing strategies (e.g., top-down editing), for example by align-
ing progress with created branches (opposed to complete coverage). Across all
projects we can observe that classes close to and very far away from the root of
the ontology are not edited as frequently as other classes. One explanation for
this observation could be that classes in lower depth levels (closer to root) are
mainly used as content dividers and are usually created in the beginning of a
project. Thus, they may be more stable and less frequently updated. Classes at
the higher depth levels (further away from root) on the other hand most likely
require extensive expert knowledge. Hence, only a small number of users have
the necessary expertise to contribute to these classes. Additionally, the absolute
number of classes in the higher and lower depth levels is much lower in all inves-
tigated datasets. Note that absolute values of depth levels are less important for
the interpretation of the results, rather than their relative position (i.e., closest
to root, furthest away from root etc.). For example, a class at level 6 can exhibit
different behaviors in ontologies with 6 or 10 levels.

In all projects, except for NCIt, the depth levels where users start to edit the
ontology after they return from a BREAK are similar to the ones where they
stop editing before taking a BREAK. To be able to make that observation we
have to take the absolute numbers of changes on each depth level (bottom area
of Figure 4) into account when looking at the transition probabilities (top area
of Figure 4). NCIt is the only dataset where users appear to be similarly likely
to take a BREAK after changing classes across all depth levels, except for 0 and
12.

When we combine the results of this analysis with the results of the User-
Sequence Paths (Section 4.1) we can develop automatic mechanisms to curate
and delegate work to users. For example, if we know that a specific user is most
probably going to contribute to a class on level 3 and we have a set of classes on
that level where that specific user is the most probable next user to contribute
to, determined by the User-Sequence Paths analysis, we can combine these two
observations to create class (and thus work) suggestions for users.



22

Relative Relationship Paths Given the high number of observed transitions
between the same depth levels in the Depth-Level Paths analyses (Section 4.2;
bottom area of Figure 4), we conducted an additional analysis investigating
the shortest-paths and relationships between the changed classes for all users.
To further strengthen our observation that users are actually moving along the
ontological hierarchy when contributing to an ontology, we analyzed the actual
relative relationships between the changed classes for each user. For example,
when traversing the shortest-path distance of 2, multiple different nodes can
be reached, such as a grandparent (i.e., 2 times up), a grandchild (i.e., 2 times
down), a sibling (i.e., 1 time up, 1 time down) or even some other relationship
(e.g., 1 time down, 1 time up).

Path Extraction & State Descriptions: By combining the information
from the Depth-Level Paths and the relative movement between depth levels,
we inferred the relative relationships between two consecutively changed classes.
For example, if the difference between the depth levels of the investigated classes
would be exactly the size of the shortest-path between them (with the shortest-
path being > 0), the latter-changed class could either be a Child, a Parent, an
Ancestor or a Descendent of the first-changed class. Given a relative DOWN
movement (to a lower depth level) value, depending on the shortest-path value,
the second class could be classified as Child (shortest-path of 1) or Descendent
(shortest-path > 1). Analogously follows the definition of a Parent and Ancestor
with a relative UP movement. A Sibling is defined as the two classes being (i)
connected via the same parent with (ii) a shortest-path distance of 2 and (iii)
both classes are located on the SAME depth level. The Cousin state is defined as
two classes on the SAME depth level being connected by the same grand parent
while exhibiting a shortest-path distance of 4. Every other possible combination
of depth level and shortest-path was classified as Other. The state Self indicates
that the same class that was changed last time was changed again, thus, no
transition to another class occurred. For example, a transition from Sibling to
Self means that a change was first performed on a class that is a sibling of
the previous class (not displayed in this example) and then another change was
performed on the same class, however now the relationship changed to Self as
no new class was involved.

Again, consecutive changes on the same class by the same user have been
merged into one self-loop, meaning that multiple (more than 2) consecutive tran-
sitions of the same user on the same class have been merged into one transition
from the state Self to Self.
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Fig. 6. Results for the Relative-Relationship Paths analysis: The columns and rows of the transition maps (bottom area of
Figures 6(a) to 6(e)) represent the transition-probabilities of a first-order Markov chain between relative-relationship levels, where rows are
source relationships and columns are target relationships. A sequence (or transition-probability) is always read from row to column. Darker
colors represent higher transition-probabilities while lighter colors indicate lesser transition-probabilities. Absolute probability values are
dependent on the number of investigated rows and columns, hence relative differences are of greater importance. Across all datasets, aside
from Self, a very clear trend towards editing the ontology along Siblings can be observed. The histograms (top area of Figures 6(a) to 6(e))
show the total number of occurrences of each relationship in the corresponding datasets aggregated over all users (again for a first-order
Markov chain). Note, that the y-axes for all histograms are scaled differently for each dataset. For the x-axes (and column/rows of the
transition maps) we only relationships that occur at least once in the corresponding paths, thus the x-axes could be different from project
to project. Given the very high amount of Self and Sibling transitions we can concur that users, when they contribute to classes on the
same depth level follow a breadth-first strategy.



24

Results: When looking at the histograms (see top area of Figures 6(a) to
6(e)), we can observe that the states Self, Sibling and Other are highly repre-
sented across all datasets. The transition maps (bottom area of Figures 6(a) to
6(e)) show that after a BREAK, across all five datasets, users tend to change
classes “somewhere else” in the ontology, evident in the high transition prob-
ability from BREAK towards Other, and are likely not to resume work in the
same area of the ontology that they stopped working on. For ICD-11, ICTM
and OPL, no matter which relationship type occurs, users tend to edit the same
class consecutively (dark colors in the Self column). From this Self state, which
is also the state that occurs the most often in ICD-11, ICTM and OPL, users
are very likely either to change the same class again (Self ) or to change a Sibling
of the current class.

For NCIt, BRO and OPL we can observe that users, when changing a Parent
are very likely to change a Child of that parent afterwards. Note, that this
Child does not necessarily have to be the same class that was changed prior
to the traversal to Parent. In all datasets, except for OPL, very high transition
probabilities towards Other can be observed for all not so frequently used states.
In particular for NCIt we can observe that Other is the most frequently observed
transition, even before Self and Sibling.

Interpretation & Practical Implications: By combining the results of
this analysis with the results of the Depth-Level Paths analysis, we can infer that
users exhibit a tendency towards top-down editing while contributing to the on-
tology, when only considering changes that occur on different depth levels. If
they concentrate their efforts on the same depth levels, users exhibit a breadth-
first editing behavior either changing the same class multiple times or traversing
along siblings of the current class. We can leverage this information not only to
refine the previously suggested pre-fetching of classes but also to enhance possi-
ble class recommendations. Similarly, it is possible for ontology-engineering tool
developers to minimize the necessary efforts of users to contribute to the ontol-
ogy by implementing, for example, guided workflows that take the underlying
edit strategies of the contributors into account.

As classes in ICD-11 and ICTM have a large number of properties and for
ICTM certain properties have to be added in multiple languages, the high tran-
sition probabilities towards Self (dark colors in the Self column) are not sur-
prising. One possible explanation for this observation for ICD-11 could be the
special functionality available in iCAT (for ICD-11) that allows users to export
parts of the ontology as spreadsheets for local editing and adding property val-
ues. Once contributors finished editing the spreadsheet they have to enter the
data into the system manually, as no automatic import functionality is present.
In the iCAT interface, users are simultaneously presented with the ontology tree
for navigating through the classes and the corresponding properties and prop-
erty values. When users select a property they can easily switch between classes,
with the selected property staying selected, thus allowing to quickly enter the
same properties for different classes.
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A similar, yet not as dominant as in ICD-11 and ICTM, behavior can be ob-
served for NCIt and BRO and even to some extent in OPL, which all do not use
the export functionality. According to our observations, users travel along the
underlying hierarchy when contributing to the ontology. Given the observations
made for ICD-11 this behavior can be enforced by providing certain functional-
ities in the user-interface especially when they compliment the workflows of the
contributors.

The results of this analysis have also shown that users are likely to pursue a
certain strategy or intermediate goal for their edit sessions, for example changing
all classes in a specific (narrow) area of the ontology. This is evident in the
observation that after returning from a BREAK, users have a very high tendency
to change the ontology “somewhere else” (see the transition probabilities from
BREAK towards Other in the top-row of Figure 6), rather than picking up the
work, where they left off. This discovery is very important for developing class-
recommender, as we can use the results of this analysis to suggest closely related
classes to the current class a user is working on, however when that user stays
inactive for the duration defined for introducing BREAK s the recommendation
strategy has to be changed.

4.3 Property Paths

Aside from analyzing different aspects of activity (Section 4.1) and the cor-
relation between contribution patterns and the structure of an ontology (Sec-
tion 4.2), we can use Markov chains to perform an analysis on the properties
used in the ontology. We were not able to perform the Property Paths analy-
sis on OPL and BRO as these datasets contain only a very limited number of
unique property changes during our observation periods. We also had to discard
the results from NCIt, as the ontology-editing environment for NCIt provides
a unique change-queuing mechanism that allows for multiple properties to be
changed at the same time, making it impossible to extract chronologically or-
dered sequential property patterns. To compensate for the missing datasets, we
will use this section of the paper to show that the Markov chain analysis can
provide insights for the same state space when assuming different viewing angles
for the observations (or transitions) of ICD-11 and ICTM. In particular, we want
to know if it is possible to predict who is going to change which property next
and which property is changed next for a given class.

All properties which where rarely edited have been removed from Figure 7
as they do not hold information but their removal increased the readability of
the plots dramatically.
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(b) International Classification of Traditional
Medicine (ICTM) (Class)
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(c) International Classification of Diseases
(ICD-11) (User)
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Fig. 7. Results for the Property Paths analysis: The columns and rows of the transition maps (bottom area of Figures 7(a)
to 7(d)) represent the transition-probabilities of a first-order Markov chain between consecutively changed properties, where rows are
source properties and columns are target properties. A sequence (or transition-probability) is always read from row to column. Darker
colors represent higher transition-probabilities while lighter colors indicate lesser transition-probabilities. Absolute probability values are
dependent on the number of investigated rows and columns, hence relative differences are of greater importance. Across all datasets, aside
from Self, a very clear trend towards consecutively editing the same properties can be observed. The histograms (top area of Figures 7(a)
to 7(d)) show the total edits of each property in the corresponding datasets aggregated over all users and classes (again for a first-order
Markov chain). Note, that the y-axes for all histograms are scaled differently for each dataset. As ICTM and ICD-11 only share a limited
amount of properties the x-axes (and column/rows of the transition maps) are different from project to project. In both projects and
across all 4 different approaches the title, definition and use properties are frequently used. Due to reasons of readability we were forced to
remove properties from the plots, which exhibited only a very limited amount of changes, thus did not provide substantial information for
the purpose of this analysis.
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Path Extraction & State Descriptions: First, we extracted the proper-
ties that were changed in ICD-11 and ICTM, sorted either by user and times-
tamp or by class and timestamp. Finally, two chronologically ordered property
lists were extracted, one ordered per user and one ordered per class (for both
datasets). The states used for the Property Paths analyses represent the different
properties, which can be assigned a value for each class in ICD-11 and ICTM.
Whenever a change did not change a property (e.g., because the change action
dealt with moving or creating a class) we used the no property state. Similar to
previous analyses, if the same user has consecutively changed the same property
(e.g., title) on the same class, we merged these changes into one transition from
said property to said property (e.g., one transition from title to title). Analo-
gously, however without the restriction of the same user, if the same property
was changed on the same class, we merged these changes into one self-loop.

Results: When looking at the histograms (top area in Figures 7(a) to 7(d))
we can see that even after removing not very frequently used properties, both
datasets exhibit few properties which have received a high number of changes,
while the remaining majority of properties only received a very limited amount
of changes. For both datasets, aside from the no property state, use, title and
definition appear to be the most frequently used properties. As can be seen in the
top area of Figures 7(a) and 7(b), multiple consecutive changes of the same prop-
erty by different users (or only two changes by one user at all) appear to be fairly
common for both datasets. In contrast, when looking at Figures 7(c) and 7(d),
which depict the transition probabilities between the sequences of properties
changed by each user, we can see an even stronger trend towards consecutively
changing the same properties across different classes, especially definition, title
and use. Even though there is a stronger emphasis on consecutively changing
the same property multiple times, the overall transition probabilities are slightly
more diverse for the user-based analysis than for the class-based analysis for both
datasets. For ICD-11 Figures 7(a) and 7(c) show that the class-based approach
is less focused on self-loops, evident in the brighter diagonal, when compared
to the user-based approach. This is due to the export functionality available
in iCAT combined with the manual process of inserting the same property for
different classes by users of ICD-11. In contrast, such functionality is absent in
ICTM, thus leading to similar behaviors for the class and user-based approaches
for ICTM. The high concentration on self-loops in both approaches analyzed
for ICTM could also be due to the multilingual nature of the project, meaning
that certain properties, such as title and definition, have to be entered multiple
times in multiple languages. Similar results have been presented by Wang et al.
[18], who used association rule mining techniques to analyze the change-logs of
ICD-11 and ICTM.

Contributors in ICD-11 have a high tendency of performing no property
changes after they return from a BREAK followed by use, title and definition.
In ICTM, users resume their work primarily by changing the title property, the
definition property followed by no property changes.
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Interpretation & Practical Implications: One of the main benefits of
this analysis is the identification of commonly and consecutively changed prop-
erties for classes and users. This information can be used to suggest work (e.g.,
prompting a user to check a certain property by combining the User-Sequence
Paths analysis and the Property Paths analysis), or by ontology-engineering tool
developers to anticipate the property a user is most likely to change next. The
fact that classes appear to exhibit more diverse property-contribution patterns
when being changed than users could be a direct result of the multi-lingual na-
ture of ICTM and the already mentioned export functionality present in iCAT.
This means that given the most recent property of a class that was edited, we
can predict which property is most likely to be changed next. Similarly, we can
predict the property a user is going to edit next.
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Table 2. A summary of all findings applicable to all investigated biomedical ontologies. All listed findings are discussed in more
detail in section 5.

User-Sequence Paths
(cf. section 4.1)

Users work in micro-workflows
Information about who has edited classes in the
past contains predictive information about who is
going to change a class next.

User-roles can be identified
Looking at historic data, we can identify differ-
ent user roles, i.e., administrators and modera-
tors, gardeners and users that frequently interact
with (collaborate/revert) each other.

Structural Paths
(cf. section 4.2)

Users edit behavior is influenced by the class hierarchy
Contributors, when adding content to the ontol-
ogy, are influenced by the class hierarchy.

Users edit the ontology top-down and breadth-first

By and large, users exhibit a minor tendency
towards top-down editing behavior when chang-
ing hierarchy levels while contributing. However,
when staying in the same hierarchy level, contrib-
utors rather follow a breadth-first edit behavior,
moving from one sibling of a class to the next
sibling.

Users edit closely related classes
Contributors have a very high tendency to consec-
utively change closely related classes, as opposed
to randomly and distantly related classes.

Property Paths
(cf. section 4.3)

Users perform property-based workflows
Contributors, when adding content to the ontol-
ogy, tend to concentrate their efforts on one single
property, which is added and edited for multiple
classes.



30

5 Findings and Discussion

In this section we first report results from our evaluation of higher order Markov
chain models in section 5.1 before we summarize our findings in section 5.2.
Next, we discuss differences between the investigated projects in section 5.3 and
finally, point out potential limitations of this work in section 5.4.

5.1 Evaluation of higher Markov chain orders

Until now, we have only reported results and visualizations using first order
Markov chain models due to visualization tractability. However, as already pos-
tulated in section 3.3, higher order Markov chain models may be more appro-
priate for modeling the available sequential paths. This would mean that the
next state in a sequence (e.g., the next property a user modifies) can be best
predicted by not only looking at the current one, but by looking at a sequence
of preceding properties the user has changed. Hence, we now also tackle the
problem of identifying the appropriate Markov chain order for our data.

Table 3 summarizes the results of our evaluation task. For each analysis
the rows marked with Evaluation represent the suggested Markov chain orders
that performed best in our prediction task. The rows marked with Suggested
correspond to the manually selected Markov chain orders, which provide the
best balance between the complexity of the Markov chain and the performance
in the evaluation task. More details on the results of the evaluation can be found
in A.

For all of our findings, preprocessing the change logs by merging multiple
consecutive occurrences of certain states into one single action or one self-loop
biases the detection of higher-order Markov chains. Without this preprocessing,
we are more likely to obtain higher-order Markov chains, and thus better results
for the conducted prediction tasks. However, this would also mean that the
resulting Markov chain would be biased towards self-loops (higher transition
probabilities in the merged states for each analysis in the transition maps),
which do not provide further actionable information and potentially mask other
transition probabilities of the transition maps.

Despite this restriction we were able to extract multiple first- and higher-
order Markov chains, meaning that for several analyses users’ actions depend on a
single or a series of preceding actions. As shown in Table 3, we have suggested the
use of a first-order Markov chain for the majority of our analyses even though the
conducted evaluation prediction task determined a higher-order Markov chain
to produce the best average position. Our suggested Markov chain orders for
productive use represent a manually selected trade-off between performance and
complexity of the Markov chain model (i.e., a manual Occam’s razor).

Given the obtained differences in Markov chain orders (see Evaluation rows in
Table 3) we can see that for OPL and BRO, representing smaller collaborative
ontology-engineering datasets, the Markovian principle appears to hold. This
means that in BRO and OPL, users’s actions depend on one single preceding
action. In contrast, the larger datasets, being ICD-11, ICTM and NCIt, exhibit
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Markov chains up to an order of three, suggesting that the Markovian principle
is violated and the next action to occur in the system can be predicted best by
looking at a series of up to three previous actions.

For all datasets and all experiments, we were able to show that a first-order
Markov chain performed (at least minimally) better than randomly selecting the
next state in our evaluation task. As depicted in Table 3, users, when collab-
oratively creating and editing an ontology, exhibit strong tendencies towards a
memoryless editing behavior (first-order Markov chain) but simultaneously ex-
hibit memory influenced editing behavior (second-order Markov chain or higher)
as well. Hence, we can say that the Markovian principle does not hold for all
aspects of the sequential pattern analysis of collaborative ontology-engineering
change-logs.

By and large, this confirms that looking at first order Markov chain orders
already allows us to get thorough insights into the dynamics of sequential user
actions in collaboratively-engineered ontologies as we did in section 4. However,
this also suggests that looking at a larger history of actions might even further
augment our understanding of these dynamics and might also clearly improve
our ability of predicting user actions.

5.2 Summary of findings

We will now discuss our main findings (Table 2) and explore their consequences.

Emergence of micro-workflows: By investigating whether sequential user-
contribution patterns (see section 4.1) can be identified in five different collabo-
rative ontology-engineering projects, we have shown that users appear to work in
micro-workflows, indicating that for all investigated projects, each user contains
predictive information (the extracted Markov chain order) about the user, who
is going to contribute to a specific class next.

Additionally, however not presented in this paper due to reasons of space,
we have also conducted an analysis to determine the change type (e.g., adding
a property value, moving a class, replacing a property value etc.) a user is most
likely to perform next (as shown in Walk et al. [22] for ICD-11). In this analysis
we were able to extract a first-order Markov chain for all datasets presented in
this paper, meaning that the last change type that a user performed contains
information about the next change type of that user. When combining the in-
formation about the user who is most likely to contribute to a class next and
the specific change action that this user is most likely to conduct (or the change
action that is most likely conducted on a class next), we can create specific tasks
for contributors, asking them to perform a certain change on a specific class.

Our results can be used by project managers and ontology-engineering tool
developers to identify classes for users and users for classes, helping editors to
minimize the necessary efforts for finding and identifying classes to contribute to.
Moreover, automatic means of curating and delegating work-tasks to users can
be derived by ontology-engineering tool developers, which can help to potentially
increase participation as discussed in Kittur and Kraut [23].
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The conducted cross-fold evaluation suggests that for all datasets a first- or
second-order Markov chain model yields the best results in our prediction task.
This means that given the (two) last user(s) who changed a class, we can predict
the user who is most likely to change the class next.

User roles can be identified: Across all datasets we were able to identify
that a limited number of users have contributed to the majority of all changes.
These highly active users are very likely to be target users for all other users,
meaning that they are very likely to change the same class after another user.
Across all five datasets, the roles of these target users could be identified by us
as moderators or administrators of the corresponding projects performing main-
tenance tasks, such as gardening (e.g., pruning outdated classes, fixing errors
etc.) or manual verification of newly added data.

Furthermore, we were able to show that moderators and administrators di-
vide work among each other, as they are not very likely to change the same classes
directly after another administrator or moderator, even though these users ex-
hibit the highest absolute numbers of changes in the corresponding projects.
Looking at the transition probabilities of Figure 3 it is possible to identify users
or even groups of users who have a high tendency to work on the same classes,
thus might be collaborators or reverting/correcting changes of each other.

Users edit the ontology top-down and breadth-first: The Depth-Level
Paths analysis (see section 4.2) demonstrated that users have a very high ten-
dency of staying in the same depth level when contributing to the ontology. If
editors change depth levels while editing the ontology they exhibit a minimal
preference to do so in a top-down rather than a bottom-up manner. Furthermore,
the results suggest that users move along the hierarchy as we were able to show
that they follow a top-down editing strategy for classes that are closer to the
root node while this changes to a bottom-up editing strategy for classes closer
to the deepest depth levels and transitions are more likely to occur along the
immediate higher or lower depth level.

Users edit the ontology top-down and breadth-first: To further in-
vestigate the distances between changed classes at the same depth levels we
investigated the Relative Relationship Paths (e.g., child, parent, sibling, cousin
etc.) between these changed classes. We found that users, when they edit classes
on the same depth level, follow a breadth-first manner, focusing on editing all the
siblings of a class before switching to a completely different area of the ontology
to continue their work after a BREAK.

Users edit closely related classes: Additionally to the breadth-first man-
ner that users follow when editing classes in the same depth level, we discovered
that users have a very high tendency to work on closely related classes (e.g., the
sibling or cousin of the currently changed class). The information collected in
section 4.2 can be used to predict (or narrow down) the class a user is going to
contribute to next, which is a very valuable information that can be used for
a variety of improvements and adaptions. For example, user-interface designers
could implement pre-fetching algorithms to minimize load-times or emphasize
certain areas of the ontology to direct users towards specific classes – especially
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after they return from a BREAK – while project-administrators could adjust the
milestones of the development-strategy to better reflect the way users contribute
to the ontology. For contributors in particular, the task of identifying and finding
classes that they (i) want and (ii) have the necessary expert knowledge to con-
tribute to is a time consuming task, which can be minimized by implementing
class recommender based on the results of the Structural Paths Analysis and
User-Sequence Paths Analysis.

Users perform property-based workflows: The investigation of sequen-
tial patterns for property-contributions showed that in ICD-11, users have a
very high tendency of consecutively changing the same property across multiple
classes.

The conducted evaluation showed that we are able to predict the property a
user is most likely to change next by looking at exactly the property that user
changed last in both projects.

The results collected in the section 4.3 provide new insights for administrators
and ontology-engineering tool developers, as they allow the generation of actual
work-tasks (e.g., Please verify the property title of the class XII Diseases of the
skin!). So far, users are always presented first with the section of the interface
that allows for changing or adding the title and definition, which could be one
explanation for the high probabilities of users changing these properties when
returning from a BREAK.

Note, that for this analysis we have used the data from ICD-11 and ICTM,
which both share a very similar ontology-engineering tool, thus the results might
be biased towards the used ontology-editor.

5.3 Differences between the investigated projects

One obvious difference, which strengthens the observed commonalities of edit
strategies between the different projects, is the fact that all projects exhibit a
different number of depth levels, which all receive a different amount of attention
by the contributors. For example, the levels 3 to 6 exhibit the highest number
of changes in our observation period for ICD-11, while for OPL these levels are
6 and 7.

Regarding the relative relationships we can see that consecutively chang-
ing the same class is very likely to happen in ICD-11, ICTM, BRO and OPL
regardless of the source state (evident in the darker colored Self columns in Fig-
ures 6(a), 6(b), 6(d) and 6(e)). This Self -state is still very prominent, however
the transition probabilities towards Self for NCIt are not as dominant as they
are for the other datasets.

Another observation depicted in the transition maps is the clear focus on tran-
sitions from Sibling to Sibling across all datasets, with the exception of ICTM
and OPL. One explanation for ICTM could be the fact that some properties of
the ontology are multi-lingual, thus require users to add multiple languages for
the same property, which are all stored as a single change. For OPL, transitions,
except towards Self are in general really scarce, indicating that users focused
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on editing and entering multiple property values (or one property value) of one
class before continuing to the next class.

When looking at the sequence of changed properties for each class (in contrast
to: for each user) we can observe a concentration on self-loops in ICTM, which is
most likely a direct result of the multi-lingual nature of the properties used in this
project. In ICD-11 on the other hand, transitions between changed properties of
classes are much more diverse and less focused on transitions between the same
properties. This observation indicates that either not all properties have received
a substantial amount of values for all the possible properties and/or that users
make use of this special export functionality of iCAT, thus self-loops are less
common as the content is only inserted once into the system.

In the User-Interface Sections Paths analysis we have mapped the changed
properties to the corresponding sections of the user interface of the used ontology-
engineering tools, which essentially represents a more abstract analysis of the
Property Paths analysis. By investigating the sequences of user interface sec-
tions we could confirm that, for ICD-11, users have a very high tendency to
consecutively change the same properties for multiple classes, evident in the
scarce transitions between different sections and the high concentration on tran-
sitions between the same sections. For ICTM this behavior was not as distinctive
as it was for ICD-11, which could be due to the missing export functionality and
therefore the lack of the previously explained manual import sessions.

In general these observations indicate that the absence or presence of a given
functionality of the ontology-engineering tool can produce (and influence) dif-
ferent editing behaviors when developing an ontology.

5.4 Limitations

We were not able to recreate the exact class hierarchy of the ontology for every
single change across our observation periods for all datasets. This limitation is
partly due to a lack of detail in the change-logs. Thus, we decided to focus our
analysis, using all five ontologies as is at the latest point in time, which is also
what would most likely be used in a real-world scenario.

For example, if a class was changed by a user while it was located on depth
level 3 and at a later point in time moved to a different location where it now
resides at depth level 5, we would assume that this class has always been on
depth level 5. Please note that this bias is only present in the Structural Paths
analyses (Section 4.2). To measure the extent of the potential bias, we counted
all changes that were performed on a class before it was moved within in the
ontology. Applying this rule to our change dataset, we collected a total of 116, 204
of 439, 229 changes for ICD-11 and 18, 958 of 67, 522 for ICTM. These numbers
represent about 1/4 and 1/3 of all changes for ICD-11 and ICTM respectively.
For BRO 276 of 2, 507 (ca. 1/10) and for OPL 2 of 1, 993 of all changes were
performed on classes, which have been moved afterwards.

Note that an additional requirement for the identification of sequential pat-
terns in collaborative ontology-engineering projects using Markov chains is the
availability of rather large change-logs, which we do not discuss in detail in this
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paper. In general, the more unique states are present in the change-log the more
(exponentially) observations have to be available to detect higher order Markov
chains. Without enough observations (changes), the identification of sequential
patterns is either very hard and can only be approximated or not possible at all.
As can be seen in Table 1, we have selected all of our datasets to satisfy this
requirement, as all chosen datasets exhibit a substantial amount of changes.

Furthermore, we have included artificial session breaks into our analysis as
described by Walk et al. [22] to analyze where or what users start to edit in the
ontology and where or what users edit before they take a break. For all user-
based analyses we have introduced a BREAK state if two consecutive changes
of the same user were apart longer than 5 minutes.

6 Related Work

For the analysis and evaluation conducted in this paper, we identified relevant
information and publications in the domains of (i) Markov chain models, (ii)
collaborative authoring systems and (iii) sequential pattern mining.

6.1 Markov chain models

Previously, Markov chain models have been heavily applied for modeling Web
navigation—some sample applications of Markov chains can be found in [24, 25,
26, 27, 28, 29]. Markov chains can be used to uncover the transition likelihoods
between a set of states for n transitions in a row, where n represents the order
of the Markov chain under investigation. Detailed specifications of the parame-
ters in a Markov chain (e.g., transition probabilities or also the specification of
model orders) capture specific assumptions about the real human navigational
behavior. One frequently used assumption is that human navigation on the Web
is memoryless. This Markovian assumption states that the next state depends
only on the current state and not on a sequence of preceding ones. The Random
Surfer model in Google’s PageRank [30] also models this assumption.

Previously, researchers investigated whether human navigation really is mem-
oryless in a series of studies (e.g., [31, 27]). However, these studies mostly showed
that the benefit of higher orders is not enough to compensate for the extreme
high number of parameters needed and hence, the memoryless model seems to be
a quite plausible abstraction (see e.g., [32, 33, 28, 29]). Recently, a study picked
up on these investigations and again suggested that the Markovian assump-
tion might be wrong [34]. However, this study did not reveal any statistically
significant improvements of higher order models. Singer et al. [21] solved this
problem by developing a framework for determining the appropriate order of a
Markov chain for given set of input data. Their studies on several navigational
datasets also revealed that the memoryless model indeed seems to be a plausible
abstraction as it is very difficult for higher order models to show statistically
significant improvements due to the high number of parameters needed com-
bined with shortcomings in available data. However, their work showed that on
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a cognitive level (by looking at paths over topics instead of pages) clear memory
effects can be observed. In Walk et al. [22] we applied and mapped the presented
framework onto structured logs of changes and provided an in-depth description
of the requirements and steps necessary to use the framework in this setting.

In this paper we present a detailed analysis of sequential patterns by ap-
plying and analyzing Markov chains across the change-logs of five collaborative
ontology-engineering projects in the biomedical domain. A more detailed ex-
planation of the necessary steps to be able to apply Markov chains onto the
change-logs of collaborative ontology-engineering projects is presented in Walk
et al. [22].

6.2 Collaborative Authoring Systems

Research on collaborative authoring systems such as Wikipedia has in part fo-
cused on developing methods and studying factors that improve article quality or
increase user participation. These problems represent important facets of collab-
orative authoring systems and solutions to tackle these problems are of interest
for collaborative ontology-engineering projects.

For example, Cabrera and Cabrera [35] demonstrated the effect of minimizing
the costs and efforts necessary for users to contribute on potentially achieving
higher contribution rates. Another approach, also presented by Cabrera and
Cabrera [35], focuses on providing an environment where interactions and com-
munication between contributors are encouraged and performed frequently over
a long period of time to establish a group identity and to promote personal
responsibility.

More recent research on collaborative authoring systems, such as Wikipedia,
focuses on describing and defining not only the act of collaboration amongst
strangers and uncertain situations that contribute to a digital good [36] but also
on antagonism and sabotage of said systems [37]. It has also been discovered only
recently that Wikipedia editors are slowly but steadily declining [38]. Therefore
Halfaker et al. [39] have analyzed what impact reverts have on new editors of
Wikipedia. Kittur and Kraut [23] showed that an increase in participation can
be achieved by directly delegating specific tasks to contributors. As simple as
this approach may appear, the identification of work (and thus specific tasks) is
still a tedious and time-consuming process, which can only partly be automated
due to its assigned complexity.

With the analysis that we described here, we provide new results that we can
use to tackle some of the problems for collaborative authoring systems. These
problems are also present in collaborative ontology-engineering projects. For
example, we can identify new tasks by combining the results of the User-Sequence
Paths (Section 4.1) and Property Paths (Section 4.3) analyses to suggest classes
and the corresponding properties to work on to users.
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6.3 Sequential Pattern Mining

In 1995 Agrawal and Srikant [40] have first addressed the problem of sequential
pattern mining. They stated that given a collection of chronologically ordered
sequences, sequential pattern mining is about discovering all sequential patterns
weighted according to the number of sequences that contain these patterns. The
presented algorithm represents one of the first a priori sequential pattern mining
algorithms. This means that a specific pattern cannot occur more frequently
(above a threshold) if a sub-pattern of this pattern occurs less often (below that
threshold). Other examples of a priori algorithms are [41, 42].

One of the biggest problems assigned to the a priori based sequential pattern
mining algorithms was (in the worst case) the exponential number of candidate
generation. To tackle this problem Han et al. [43] developed the FP-Growth
algorithm.

Many researchers have adapted different algorithms and approaches for dif-
ferent domains to anticipate changing requirements, such as Wang and Han [44]
and Hsu et al. [45] who analyzed algorithms for sequential pattern mining in the
biomedical domain.

In Walk et al. [22] the authors have presented a novel application of Markov
chains to mine and determine sequential patterns from the structured logs of
changes of collaborative ontology-engineering projects. Making use of this frame-
work we investigate differences and commonalities across five different collabo-
rative ontology-engineering projects from the biomedical domain.

7 Conclusions & Future Work

In this work, we discover intriguing social and sequential patterns that suggest
that large collaborative ontology engineering projects are governed by a few
general principles that determine and drive development. Specifically, our results
indicate that general sequential patterns can be found in all investigated projects
(see Table 3), even though the National Cancer Institute Thesaurus (NCIt), the
International Classification of Diseases (ICD-11), the International Classification
of Traditional Medicine (ICTM), the Ontology for Parasite Lifecycle (OPL) and
the Biomedical Resource Ontology (BRO) (i) represent different projects with
different goals, (ii) use variations of the same ontology-editors and tools for the
engineering process and (iii) differ in the way the projects are coordinated. The
presented analysis not only provides new insights about the engineering and
development processes of each single project, but also shows that the analysis
of sequential patterns can be used to provide actionable insights for different
stakeholders in collaborative ontology-engineering projects.

Furthermore, the information of the next possible state (e.g., a user, a change-
type, a property, set of classes) or the combination of multiple of these next
states can be used by ontology-engineering tool developers to augment users
in collaboratively creating an ontology. For example, by highlighting, prefetch-
ing, rearranging or adjusting sections and content of the interface dynamically,
according to the user’s needs.
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In the future, as change tracking and even click tracking data will become
available more broadly, we believe that the analysis of this paper and the pos-
sible benefits of putting the results into practical use represent an import step
towards the development of even better (and simpler) ontology editors, which
can dynamically anticipate the editing-style of the users. Project administrators
could augment the results of the analysis, for example by allowing for easier
delegation of work to the “right” users. This is even more emphasized when con-
sidering that the Markov chain analysis is not computationally intensive, making
it highly suitable for productive use.

As biomedical ontologies play an increasingly critical role in acquiring, repre-
senting, and processing information about human health, we can use quantitative
analysis of editing behavior to generate useful insights for building better tools
and infrastructures to support these tasks.
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set and validate the model on an independent test set. As described in Singer
et al. [21], Walk et al. [22], we also apply Laplace smoothing in this case in order
to be able to predict states that are only present in the test set and not in the
training set. For reducing variance we perform a stratified cross-fold validation.
In this case we refer to the term stratified as we try to keep the number of visited
states in each fold equal. Note that the number of folds is determined for each
evaluation individually due to their stratified nature. Not every dataset can be
split into the same amount of pieces while retaining the stratified property of
the corresponding states. Therefore we will explicitly state the number of per-
formed folds that we were able to perform for each analysis and all datasets in
the corresponding evaluation subsections.

The validations are based on the task of predicting the next step in a path
of the test set. This also enables us to get detailed insights into the prediction-
possibilities of distinct Markov chain order models. Simply, one could predict
the next state by taking the one with the highest probability in the transition
matrix.

For calculating the prediction accuracy we measure the average rank of the
actual state of the test path in the sorted probabilities from the transition matrix.
Hence, we look up the rank of the target state in the sorted list of transition
probabilities of the start state (or series of preceding states for higher order
models). Next, we average over the rank of all observations in the test set.
Finally, we average over all folds and suggest the model with the lowest average
rank.
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Table 3. The results for all datasets and all analyses conducted in section 4. Evaluation indicates the best-fitting calculated
order of a Markov chain in our prediction task while Suggested indicates the manually selected best-fitting order of a Markov chain
simultaneously representing the best trade-off between complexity of the Markov chain (and thus calculations) and the average position
in our evaluation task. Analyses marked with a * have been performed but are not described in detail in this manuscript but are briefly
discussed in section 5.

ICD-11 ICTM NCIt BRO OPL

User-Sequence Paths
(cf. section 4.1)

User-Sequence Paths (Section 4.1)
Evaluation 2 2 2 1 1
Suggested 1 1 1 1 1

Change-Type Paths (Section 5)*
Evaluation 3 3 3 1 2
Suggested 1 1 1 1 2

Structural Paths
(cf. section 4.2)

Edit-Strategy Paths (Section 5)*
Evaluation 4 4 5 2 2
Suggested 3 3 2 2 2

Depth-Level Paths (Section 4.2)
Evaluation 2 2 2 1 1
Suggested 1 1 1 1 1

Relative Relationship Paths (Section 4.2)
Evaluation 3 2 3 1 1
Suggested 2 2 2 1 0

Property Paths
(cf. section 4.3)

Property Paths (User) (Section 4.3)
Evaluation 2 2 - - -
Suggested 1 1 - - -

Property Paths (class) (Section 4.3)
Evaluation 1 1 - - -
Suggested 1 1 - - -

UI Sections Paths (User) (Section 5)*
Evaluation 3 3 - - -
Suggested 1 1 - - -

UI Sections Paths (class) (Section 5)*
Evaluation 3 1 - - -
Suggested 1 1 - - -
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Fig. 8. Results for the User-Sequence Paths Evaluation: This plot depicts the
results of the stratified cross-fold evaluation for all five datasets for the User-Sequence
Paths analysis. The filled elements represent the corresponding Markov-Chain models
for each dataset, which achieved the best (lowest) average position score in the pre-
diction tasks. The position score is calculated by determining the position of the next
most likely state to occur in a test path given n previous states, where n represents
the investigated Markov chain order. Probabilities to select the next most likely state
are created using the training set to calculate the transition maps for all datasets and
Markov chain orders. For all datasets either a first- or second-order Markov chain per-
formed best. Given the minimal differences between the second- and first-order Markov
chains, we suggest the usage of a first-order Markov model for productive use.

User-Sequence Paths Evaluation (cf. section 4.1): To determine the
order of a Markov chain with the highest predictive power a 4-fold stratified
cross-fold validation was performed. According to Figure 8 a first- and second-
order Markov chain works best for all datasets. Due to very similar results across
the different Markov chain orders and the increased complexity of higher ordered
models, we would suggest the usage of a first-order Markov chain model for all
datasets. Overall, the results of the conducted prediction task suggests that the
user who modifies a class next appears to depend on the previous one. Given
the relatively low average positions in Figure 8 we are able to predict the next
user who edits a class reasonable well for all of our datasets.

Depth-Level Paths Evaluation (cf. section 4.2): The evaluation was
carried out as a two-fold stratified cross-fold prediction task (see Figure 9; sec-
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tion A for a detailed explanation). The goal of this evaluation is to determine
which order of the investigated Markov chains performs best for predicting the
depth level of the class a user is going to change next.
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Fig. 9. Results for the Depth-Level Paths Evaluation: This plot depicts the re-
sults of the stratified cross-fold evaluation for all five datasets for the Depth-Level
Paths analysis. The filled elements represent the corresponding Markov-Chain models
for each dataset, which achieved the best (lowest) average position score in the pre-
diction tasks. The position score is calculated by determining the position of the next
most likely state to occur in a test path given n previous states, where n represents
the investigated Markov chain order. Probabilities to select the next most likely state
are created using the training set to calculate the transition maps for all datasets and
Markov chain orders. For all projects a first- or second-order Markov chain performed
best. As the differences between the higher-order Markov chains and the first-order
Markov chains are minimal we suggest the usage of a first-order Markov model for
predictive tasks in all datasets.

According to the cross-fold validation a first- and second-order Markov chain
model performs best for our prediction task. As the differences in average posi-
tions between the first- and second-order models are very small, we recommend
the usage of a first-order Markov chain model in our five investigated projects
due to the drastic increase in complexity of higher-order models. This means that
the next depth can best be predicted by using information about the current one.
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Fig. 10. Results for the Relative-Relationship Paths Evaluation: This plot de-
picts the results of the stratified cross-fold evaluation for all five datasets for the
Relative-Relationship Paths analysis. The filled elements represent the corresponding
Markov-Chain models for each dataset, which achieved the best (lowest) average po-
sition score in the prediction tasks. The position score is calculated by determining
the position of the next most likely state to occur in a test path given n previous
states, where n represents the investigated Markov chain order. Probabilities to select
the next most likely state are created using the training set to calculate the transi-
tion maps for all datasets and Markov chain orders. For OPL and BRO a first-order
Markov chain performed best while a second-order model provided the best results for
ICTM. For NCIt and ICD-11 a third-order Markov chain was determined to provide
the best results in our prediction task. As the differences between the higher-order
Markov chains and the second-order Markov chains are minimal we suggest the usage
of a second-order Markov model for ICD-11, ICTM and NCIt for the given prediction
task. For OPL and BRO the differences between a zero- and first-order Markov chains
are very small, meaning that the difference between randomly selecting the next state
and using the transition-probabilities of a first-order Markov chain to determine the
next state perform virtually the same.

Relative-Relationship Paths Evaluation (cf. section 4.2): To deter-
mine the Markov chain models with the highest predictive power a stratified
cross-fold validation with two folds (see Figure 10) was conducted. For BRO and
OPL a first-order Markov chain performed better in our prediction task than any
other model, meaning that the extracted transition probabilities contain mini-
mally more information than randomly selecting the next state. For ICTM, the
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cross-fold validation strengthens suggests a second-order Markov chain. Simi-
larly to NCIt and ICD-11, where a third-order Markov chain yielded minimally
better results than a second order Markov chain. That means that we would pre-
fer to predict the next relative relationship between two consecutively changed
classes by using information about the current relationship or a series of two
preceding relationships. Note that for this analysis, randomly selecting the next
state already produces reasonable average positions. Hence, improving on these
results is difficult, resulting in a higher weight for improvements when manu-
ally determining the best balance between a Markov chains complexity and the
average position score of our evaluation task.

2
4

6
8

10

Markov Chain Order

A
ve

ra
ge

 P
os

iti
on

●

●

●

●

●

●

0 1 2 3 4 5

●

ICD11 (Concept)
ICTM (Concept)
ICD11 (User)
ICTM (User)

Fig. 11. Results for the Property Paths Evaluation: This plot depicts the results
of the stratified cross-fold evaluation for all five datasets for the Property Paths analysis.
The filled elements represent the corresponding Markov-Chain models for each dataset,
which achieved the best (lowest) average position score in the prediction tasks. The
position score is calculated by determining the position of the next most likely state to
occur in a test path given n previous states, where n represents the investigated Markov
chain order. Probabilities to select the next most likely state are created using the
training set to calculate the transition maps for all datasets and Markov chain orders.
For the user-based approach a second-order Markov chain performed best for both
datasets. In contrast, a first-order Markov chain yielded the best average positions for
both datasets for the class-based approach. Given the very increase in average position
of a second-order Markov chain versus a first-order Markov chain we suggest the usage
of a first-order Markov chain for productive use.
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Property Paths Evaluation (cf. section 4.3): We have conducted a
4-fold stratified cross-fold evaluation for all four approaches (see Figure 11; sec-
tion A for a detailed explanation) to evaluate the predictive power the differ-
ent Markov chain models. The class-based approaches performed best using a
second-order Markov chain for the prediction task while the first-order Markov
chain is equally good which is why we would suggest the less-complex model
(first-order) in this case. For the user-based approach a first-order Markov chain
performed best. This means that we would prefer to only use the currently
changed property in a path as information for predicting the next one (for both
the user and class case).
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