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Abstract 

SOMatic Trainer is a java library to train Self-organizing Maps (SOM) from arbitrary data. 

It tries to fill the gap between self-contained SOM software that is operated through a 

graphical user interface and libraries that are outdated or not generic enough to be run in 

any other than their specific environment. Both sides have in common that they are not 

compatible with Processing, a java based programming language for visualization which 

is highly usable for data visualization purposes such as SOM. There is no SOM tool or 

library that is arbitrarily reusable and compatible to a visualization platform that allows 

interactive and real time visualization of the SOM also during the training process. 

Even though SOM training is computationally heavy and can easily exceed computational 

power of desktop computers parallelization is hardly used in any existing SOM tool. Due 

to the fact that processors usually have more than one core SOMatic applies a parallel 

version of the SOM training algorithm that allows one SOM to be trained by multiple 

training vectors at a time. This parallelization does not require coordination of training 

threads and thus does not have communication latencies. It is also not necessary to 

partition or distribute training data or the SOM as all processing cores have access to the 

same data and SOM. This gives this algorithm a performance advantage over previous 

parallel SOM algorithms which are based on distributed computing nodes. 

There is also a graphical user interface (GUI) for SOMatic Trainer that allows using it as a 

java desktop application. It supports reading data files, creating a SOM, training it and 

storing the result again as a file. Thereby it offers a wide range of parameters for 

preprocessing the training data, SOM initialization and training. The training process can 

be visualized in real time with the use of Processing. There is also a basic GUI 

implemented in Processing to demonstrate SOMatic’s compatibility. 

Tests show that SOMatic’s parallel implementation can accelerate SOM training 

effectively. On a computer with eight physical and 16 logical processor cores parallel SOM 

training was up to 9.14 times faster than sequential SOM training. The quantization 

error, a measure for adaption of the SOM to the training data, after parallel training was 

equal after an equal number of training runs in sequential training. Thus parallel training 

is as effective as sequential training. There are also no significant differences in the 

topological layout of SOMs. 

Comparison of SOMs created by SOMatic and SOM_PAK show that SOMatic produces 

meaningful and comparable results but does not fully reach the quality of SOM_PAK as 

there are harsher transitions between neurons and minor visual artifacts that could not 

yet be resolved. 

 

Keywords: Self-organizing Maps, Parallelization, Processing, Implementation 
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1. Introduction 

Several techniques to summarize multi-dimensional data exist and are widely used such 

as Principal Component Analysis (PCA), Correspondence Analysis (CoA). Many of them 

produce statistical numbers or mathematical terms to describe certain characteristics of 

data. Their common goal is to give an impression on the overall predicates and find 

peculiarities and anomalies of data that human mind could hardly find in the raw data. 

A Kohonen Map, named after its developer Teuvo Kohonen (1982) or Self-Organizing 

Map (SOM) aims to describe data in a visual and non-numerical way. A SOM is a kind of 

artificial neural network and therefore requires data to be trained. After training it is 

possible to derive information about the data from the attributes of the SOM neurons as 

well as from projecting data onto the SOM. No information about the training data (e.g. 

classification, principle components, distribution) is required prior to training. But data 

items must be of the same kind i.e.: all data items must describe elements of the same 

kind and with the same number and semantics of attributes.  

A SOM only consists of one layer of neurons that are topologically ordered and have the 

same attributes as the input data items. This allows the neurons to represent the data. 

Since there is only one layer of neurons, no propagation function is available to adjust 

neurons for better fitting to a result. Instead the topological neighborhood of neurons is 

used as relation between the neurons. So neurons are adjusted according to their 

neighborhood relations. 

SOM is a method of unsupervised learning mostly applied to high dimensional data as a 

topology preserving method to reduce dimensionality. Generally, its outcome is a two-

dimensional grid of topologically ordered neurons that represents the data of which it is 

derived (see figure 1). The outcome is called map because the arrangement of neurons is 

usually visualized such that it looks similar to a geographic map even though it is actually 

a two dimensional representation of the higher dimensional attribute space described by 

the input data. Actually any n-dimensional representation is possible but only 2D and 3D 

representations are suitable for visualization. Distances between the neurons in the SOM 

represent the distances of input data items in the original attribute space. Data items 

that are similar and therefore close in attribute space will also be represented by neurons 

that are close in the SOM or even by the same neuron.  

In order to support the understanding of this thesis the most frequent terms are 

explained here in short: Prior to the training of a SOM training vectors are derived from 

training data items. Each training vector represents one data item. Its attributes are 

usually normalized such that they are mutually comparable and to allow measuring 

similarity of two training vectors over all attributes.  

The number of attributes a training vector has is referred to as dimension. So, if a data 

item is described by n numerical attributes, the training vector can have up to n 
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dimensions. The SOM that is created for visualization purposes usually has two 

dimensions as it is illustrated in the example in figure 1. 

During the training process training vectors are presented to the SOM in order to find the 

best matching unit (BMU) (i.e. the most similar neuron to the training vector). Therefore 

it is necessary that the neurons have the same dimension as the training vectors.  

 

Fig. 1: A two-dimensional SOM that represents n-dimensional data. 

 

1.1. Motivation 

Even though the outcome of SOM-training is generally called a map its use is not 

restricted to that as a map. Several other fields of application that are not native to 

visual data mining make use of the method, in science as well as in economics and 

engineering. López et al. (2012) used the SOM method to forecast the electrical load in 

the Spanish electricity network and found it suitable therefore with a forecasting accuracy 

comparable to other techniques. Giraudel and Lek (2001) used the SOM method and 

other statistical ordination techniques to summarize the structure of ecological 

communities. They found it suitable therefore with comparable results as classical data 

mining techniques have. Karimi and Seyedtabaii (2011) used the SOM method to classify 

echoes of ultra-sonic signals and compared it with a multilayer perceptron method and 

found that both methods are suitable therefore with an error rate of 6 percent. 

This versatility of the SOM method requires a broad set of tools to make use of a trained 

SOM and to be able to retrieve the wanted result. A common method therefore is 

visualizing the neurons as map and coloring them according to certain attributes. These 

attributes can be: distance in attributes between neighboring neurons (U-matrix), values 

of a certain attribute (component plane), the number of associated training vectors per 
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neuron (hit histogram) or clusters of training vectors, just to name a few. Of course 

choice of the visualization technique is determined by the aim of the investigation, so for 

certain uses a new and specialized visualization technique might have to be developed. 

The java based programming language Processing provides an API (application 

programming interface) and IDE (integrated development environment) that allow 

creating animated and interactive sketches. A sketch is a designated freely accessible 

screen area that can be drawn onto in 3D or 2D (Fry, Reas 2013). Therefore any kind of 

SOM visualization can be implemented in Processing. It is also possible to visualize a 

SOM that is currently being trained such that the training progress can be seen as 

animation. Finally a trained SOM can be interactively explored by the use of Processing 

interactivity functionality but it gives total freedom in graphic design and data structure 

to create such software. Processing does not provide any SOM-specific functionality, 

neither for training nor visualization and there are also no third party applications or add-

on libraries for that.  

There are numerous freely usable SOM tools available. They differ widely in functionality, 

available training parameters, compatibility to data and reusability. There is no standard 

file format for describing a SOM or training data. The format used by SOM_PAK (Kohonen 

et al. 1995) can be considered a de facto standard as it is used by several tools and is 

based on human readable text with little overhead and a simple structure. Never the less 

it does not support meta data storage such as entity names, attribute names, IDs or 

geographic references. 

Despite the development to have multiple processors or processor cores in one computer 

parallelization of the SOM training algorithm is hardly used in “of the shelf” SOM software 

for desktop computers. Further, there is no application that provides freely available and 

reusable code or libraries that is independent from other software, a graphical user 

interface (GUI), and makes use of a modern computer’s ability of parallel computation. 

SOM_PAK (Kohonen 1995) is well documented and free to use and is able to be included 

in other software, but does not have a graphical user interface (GUI) and is not 

compatible to Processing. Java SOMToolbox (Mayer et al. 2012) does not provide any 

documentation or reusable and extensible code. The SOM Toolbox for MATLAB (Alhoniemi 

et al. 2000) is only available as MATLAB code and therefore not usable for independent 

software. SpiceSOM (Thang 2004) is undocumented and not available for reuse. SOM VIS 

(Guo 2008) is specialized in visualizing SOMs and does not give information on its 

training implementation and used training parameters. SOMine (Viscovery 2013) is a 

proprietary tool and therefore no information about implementation details is available. 

SOM training can be a very time consuming task.  Parallelization of the training algorithm 

can reduce the training time but none of the tools described implements an effective 

parallel SOM training. In a study of Skupin et al (2013) a SOM was trained with textual 

data derived from over 2 million publications in medical science. Due to the amount of 



4 
 

training data and the resulting SOM the training would have taken estimated 4 to 6 

years. Through parallelization and optimization of the algorithm for execution on a 

supercomputer the training time could be reduced to 6 days. So it seems to be 

reasonable to ask whether the parallelization of the SOM algorithm can reduce training 

time significantly also on desktop computers, without the need of a supercomputer. 

Several studies have covered the topic of SOM training parallelization and proven that 

parallelization can effectively reduce the training time almost up to the factor of the 

number of parallel working computers (Biberstine et al, 2012).  

Ceccarelli et al (1993) describe a Network Partitioning Approach (NPA) and Data 

Partitioning Approach (DPA) as possibilities to distribute either data or the SOM in 

partitions to several computing nodes that can then execute certain tasks of the training 

in parallel. These approaches have been proven to effectively speed up SOM training 

(Ozdzynski et al. 2002, Arroyave at al. 2002, Seiffert 2002) but NPA has the 

disadvantage of requiring frequent communication between computing nodes and a 

master node that distributes data and instructions, while the computing nodes have to 

wait for the master to finish. DPA has the disadvantage that each computing node has to 

hold a complete copy of the SOM and therefore requires much more memory than a NPA 

solution would. Seiffert (2002) also found that multi-processor computers (MPC) can 

reduce the usual communication latency of the DPA. Also massively parallelized 

algorithms have been investigated (Weigang, Correia da Silva 1999) also with the use of 

GPUs (Graphics Processing Unit) (Sijo, Preetha 2011). Due to their primary usage of 

rendering images GPUs are optimized for SIMD (Single Instruction Multiple Data) 

operations, which can be applied on the SOM training algorithm where the same 

instruction is applied on many neurons. It has been shown that training can be 

accelerated tremendously, but this approach is limited by the amount of graphics 

memory of the GPU and a compatible GPU must be installed in the computer. 

Despite this promising research results, no freely available software exists, that 

makes use of any parallel SOM training algorithm. In order to overcome the 

disadvantages of DPA and NPA a centralized parallel training algorithm is implemented to 

make use of nowadays standard multi-core processors. A MPC would allow one SOM to 

be trained by several training threads simultaneously and thus communication latencies 

and data redundancy could be greatly reduced, because training threads can work 

independently from each other, except for the case that they would access the same 

neuron at the same time. 
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1.2. Research questions 

How does one design and implement a SOM-training library for Processing that is 

independently reusable and suitable for interactive SOM training and visualization? 

 Current free SOM software often has poor data compatibility, does not provide any graphical user 

interface and therefore is complex to use and lacks visualization possibilities. Mostly they lack 

application programming interfaces (API) that would allow reusing existing SOM tools in other software 

projects or workflows such as animated visualization of the training process and interactive visualization 

and exploration of trained SOMs. For that reason a tool shall be described and prototypically 

implemented in order to address the described lacks. 

 

Is a parallel but not distributed implementation of the SOM algorithm able to effectively 

accelerate SOM training compared to a sequential implementation and does it produce 

reasonable SOMs? 

 Parallel SOM training on a multi-processor computer (MPC) differs from conventional Data 

Partition (DPA) or Network Partition Approaches (NPA) as it holds only one copy of the SOM and the 

training data and executes SOM training in several independent training threads simultaneously. The 

question aims on the efficiency of this approach and its ability to produce meaningful SOMs. 
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2. Background 

This section describes the SOM algorithm and some relevant variants of it. Further it 

describes existing SOM training tools and compares them in functionality, reusability and 

compatibility. It also describes existing concepts of parallel SOM training and compares 

then in required resources, training performance and scalability. 

2.1. The Self-Organizing Map (SOM) 

The Self-organizing-Map algorithm is a variant of Neural Network algorithms. Its main 

specifics are firstly that it reduces the number of network layers to one which then 

consequently serves as input and output layer at the same time.  

Secondly there are no logical or semantic connections or relations within the neurons of 

the network layer. The only relation neurons of a SOM have to each other is the distance 

to each other or the neighborhood. That’s why it is called map even though it does not 

represent geographic space. The distance between two neurons is measured in 

topological network units (i.e. Neurons). The distance does not include any other 

parameters of the neurons. Since neurons have a specific shape (hexagonal or square) 

they do also have a fixed number of direct neighbors. These neighbors do never change. 

Consequently also the topologic distance of neurons does never change. It is specific to 

SOMs that after the training process the entirety of all neurons is a result that is usually 

used to visually describe the input data and as base map to visualize the individual input 

vectors. 

A third major specialty is that SOM uses competitive learning. This means that the 

neurons compete against each other to be activated and only one neuron can be 

activated at a time. Therefore, and because the neurons’ positions cannot be changed, 

the algorithm aims to organize the neurons by changing their attributes. It uses the 

parameters of the input vectors to adjust the parameters of the SOM neurons. This is 

done either for a certain number of iterations or until the change falls below a certain 

threshold. Then the SOM should be ready to serve its purpose: visual data exploration. 

Kohonen describes the central idea of the SOM algorithm as: “Every input data item shall 

select the neuron that matches best with the input item, and this neuron, as well as a 

subset of its spatial neighbors in the SOM shall be modified for better matching.” 

(Kohonen, 2013). 
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2.2. The SOM algorithm 

This sub section gives a detailed explanation of the basic SOM algorithm as it was 

proposed by Teuvo Kohonen (1982, 2001, 2013). It includes the preparation of the 

training data to fit optimally for the training and the users requirements, the initiation of 

the SOM and its neurons, the standard stepwise SOM training and the batch SOM 

training, the impact of the neighborhood function as well as stop conditions for the 

training and the final result. 

2.2.1. Data preparation 

SOM intends to visualize high dimensional data. That is, descriptions of objects via a 

collection of features. This collection of features are then called feature vector (Samet, 

2006).The training of a SOM requires quantitative data since it must perform value 

comparison and proportional adaption of values. Thus, if an object is described by 

features that cannot be described by one value, the feature must be decomposed to one 

or more atomic parameters to be usable for SOM training. Therefore the term ‘parameter’ 

will be used instead of ‘feature’. 

From a software developer’s point of view it is also preferable to have values as integers 

that are within a certain range. This would allow optimizing program routines to perform 

better. If all parameters would use the same value range, that would make them directly 

comparable and it would allow the user to easier understand the characteristics and 

relations to each other (Pyla, 1999). 

To prepare data in the described way, the values of each parameter may have to be 

normalized to a common scale. Thereby only methods that do not change the topology of 

values are allowed. Methods that change the distance proportions between the values, 

such as logarithmic functions, can be useful in certain situations but can also have 

unwanted exaggeration or underestimation effects. Also normalization to the z-score can 

be used if the probability of a value is of interest. 

Data must also be investigated for completeness. A SOM cannot deal with missing data. 

It is in the user’s responsibility to distinguish whether to eliminate a parameter or object 

that has too many missing values or to impute missing values from existing data. 

Imputation would bypass the basic idea of SOM, which is highlighting differences and 

peculiarities of data and not, as imputation does, diminish them. Therefore imputation 

should only be used to close little gaps of data. 

 

2.2.2. Neuron Initialization 

Several decisions must be made when initializing a SOM and its neurons. The size of the 

SOM, respectively the number of neurons, has a great effect on the computing 

performance of the training as well as on the accuracy of the SOM. Therefore it is 
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recommended to have the number of neurons be depending on the number of input 

vectors (Alhoniemi et al. 2005). A recommended number that is a good trade of between 

accuracy and computing effort is 5 times the square route of the number of input 

vectors. Whereas it is not recommended to use less than 100 neurons even if the number 

of input vectors is small to preserve enough space for the input vectors to obviously 

distinguish visually from each other on the SOM. Kohonen describes the number of 

neurons to be dependent on the number of clusters a data set is expected to have 

(Kohonen, 2012). For a data set that only contains few clusters a coarse resolution of the 

SOM would be sufficient, whereas to effectively visualize many clusters, a higher 

resolution and therefore a higher number of neurons is necessary. 

The neurons are usually arranged in a 2 dimensional grid. Even though higher 

dimensional grids are possible they are hardly used because they are difficult to visualize 

(Alhoniemi et al. 2005). The neurons can be arranged in either a hexagonal or a 

rectangular lattice (See Fig.2). In a rectangular arrangement neighborhood relations are 

easier to model because of its symmetrical orthogonal coordinate system. A hexagonal 

arrangement of neurons provides nicer visual representations especially when the 

resolution (the number and size of neurons) is not high enough that the neurons would 

blur to from a visual continuum. This is the case in most SOMs since the number of 

neurons is usually not high enough. A hexagonal arrangement of neurons is also more 

suitable to visualize movement which is often done on a SOM when one wants to 

visualize the position of a specific input vector at the SOM during the training process 

(Birch, Oom, Beecham 2005). 

 

 

Fig. 2. Left: Neurons in hexagonal shape. Right: Neurons in rectangular shape. 

The neurons of the SOM are often initialized with random values within the range of the 

input data parameters. To have an ordering effect after less training steps the values can 

be derived of the two largest principal components of the input data. This can be done 

using the principal component analysis which calculates the eigenvectors. This method is 

called linear initialization (Kohonen, 2001). 

The overall shape of the SOM can be freely chosen. Most common shapes are square or 

rectangular SOMs. These shapes provoke an edge effect that makes neurons at the edge 

represent wider areas of attribute space, so on the edge more attribute space is 

represented between the neurons and neurons have a higher attribute space distance. 

This makes input data items tend to match best to a neuron at the edge of the SOM. This 
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edge effect can be avoided when a spheroid or toroid shape is used for the SOM. There 

are also methods that use a growing SOM (Fritzke 1993) to flexibly add new neurons 

whenever a density of matching input data items gets too high at one specific neuron 

(section 2.3.1). 

2.2.3. Stepwise SOM training 

When the neurons are initialized, the actual training of the SOM can begin. Therefore 

each input data vector xj is used and compared with all neurons mi in order to find the 

neuron mc that has the smallest Euclidian distance to x (see Fig. 3). In other words, the 

most similar neuron to the input vector is searched. When this best matching unit (BMU) 

neuron is found, it and its topologically neighboring neurons in the SOM will be modified 

to become even more similar to the input vector. This modification value is called 

learning rate. The BMU will be modified the most. Its first degree neighbors less. With 

higher distance from the BMU the neurons will be modified with a decreasing learning 

rate until for a certain distance the learning rate will be zero. When these modifications 

are iteratively repeated using all input vectors. By that the SOM neurons will become 

spatially ordered to represent the input data (Kohonen, 2013). 

 

 

Fig.3: The SOM-neurons as circles (Mi), during the best matching unit search for training vector X 

 

2.2.4. Neighborhood functions 

The degree of decreasing learning rate with an increasing spatial distance of a neuron to 

the BMU can be described as function. Any function that fulfills this requirement can be 

used therefore. This so called neighborhood function hc(x),i is often taken to be the 

Gaussian 

�����,� � 	�
���
 �� ‖�� � ��‖²
2�²�
� � 

where 0 � 	�
� � 1 is the learning rate factor which decreases with the number of training 

steps t. Further ri and rc represent the positions of the updated neuron and the BMU in 

the SOM and ��
� corresponds to the width of the neighborhood function which also 

decreases with the number of training steps (Alhoniemi et al. 2005). 
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For implementation and performance reasons the bubble neighborhood function can be 

used which avoids squaring and exponential calculation. The bubble neighborhood is a 

constant function within the defined neighborhood radius around the BMU with the value 

1, so the full learning rate is applied to all neurons within the radius. Outside the radius 

no learning rate will be applied (Kohonen, 2013). 

 

2.2.5. The batch computation of the SOM 

The batch wise training of SOM is a faster variant i.e. with less computational effort 

compared to the stepwise SOM training. The neurons can be initialized similarly to the 

stepwise training. Also the search for the best matching unit to an input vector is done 

equally, but when the BMU to an input vector is found, the parameters of the BMU and its 

neighboring neurons are not modified immediately. Instead the input vector’s values are 

copied into a sub-list associated with the BMU. After each input vector was matched to 

the neurons and the BMU for each input vector was found, each neuron will have a list of 

vectors to which it is the BMU. This list can also be empty. 

Then the neurons are being modified by calculating the mean of all associated input 

vectors to the neurons within the neighborhood radius. Each of these associated vectors 

can be weighted with a neighborhood function, or not weighted if the bubble 

neighborhood was chosen as neighborhood function. This mean is then the new value for 

the neuron vector (Kohonen, 1998). 

The batch version takes less update operations on the neurons compared to the stepwise 

training because the neurons are only updated after one matching cycle (i.e. all input 

vectors x have been matched to the neurons m) is completed. This update is done in as 

many operations as there are neurons. In stepwise training neurons are updated after 

each matching step (i.e. one input vector xj is matched to the neurons m). Therefore it 

takes |x| times |m| operations to finish one training cycle in stepwise training but only 

|x| + |m| operation in batch wise training. 

 

2.2.6. Termination and results of SOM training 

The SOM training is usually terminated after a predefined number of training steps or 

cycles. Since SOM training makes the neurons converge to a stable state (Kohonen, 

2013) it is also possible to stop training when a certain threshold of change per training 

step/cycle is not reached anymore. There is no function or rule that defines what number 

of training steps or threshold is ideal. It depends highly on the amount and quality of 

input data and the intended usage when a SOM is sufficiently trained and therefore 

represents the input data good enough (Kohonen, 2013). 



11 
 

When the training has ended, more similar input vectors will be associated with neurons 

that are closer on the SOM than input vectors that are more different. This relation is the 

basis of all visualizations that can be derived of a SOM. 

If input data is derived from geographic units (e.g. countries, political units) the result 

can be projected into geographical space to visualize whether the units’ similarities and 

differences are spatially correlated.  

2.2.7. Optimizing training efficiency 

An effective algorithm for searching in multi-dimensional data can reduce run time of the 

algorithm. Several other methods to improve the performance of the algorithm exist 

(Kohonen, 1998). Further an adequate data structure for reading and preprocessing of 

the training data needs to be found with respect to standardization and comparability of 

attributes. 

Even though standard search algorithms for finding BMUs or nearest neighbors do not 

perform well on high dimensional data, several approaches exist that promise significant 

performance increases. Gionis et al. (1999) propose a hash function that is used to 

organize data prior to the actual search. The data vectors are “hashed to ensure that the 

probability of collision is much higher for objects that are close to each other” (Gionis et 

al., 1999). Another approach suggests the precomputation of Voronoi Cells for each data 

point and then creating an index structure suitable for high dimensional data spaces. This 

technique can reduce search time up to a factor of 4 (Berchtold et al., 1998). There is 

also a proposal of a probabilistic variant to estimate the nearest neighbor with a certain 

probability. It exploits the marginal distribution of k nearest neighbors and uses a variant 

of the partial distance searching and claims to achieve sub linear runtime in data size 

(Toyama et al., 2009). These algorithms will be investigated on their suitability to reduce 

BMU search in the SOM algorithm.  

A measure to reduce calculation time that can be applied in any case is the use of 

Manhattan distance measure instead of Euclidean distance measure. This accelerates 

computation because it avoids multiplications and square root calculation (Rüping et al., 

1998) and reduces the “curse of dimensionality”-effect which is that the concept of 

similarity becomes less meaningful in higher dimension as differences between elements 

converge to zero as dimensionality grows (Aggarwal et al., 2000). 

Parallelization of the SOM algorithm can be performed on several levels, network, 

training set, neuron, weight and bit level (Hämäläinen, 1996). On a standard desktop 

computer with two to eight CPU cores parallelization on training set and neuron level 

makes sense. 

The training set parallelization would divide the set of SOM neurons into as many subsets 

as CPUs are available. Each subset would be handled in a separate thread. The training 

vector will be provided to each thread and the search for the partial best matching unit 
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(BMU) will be performed in parallel. The results of each thread will then be compared to 

find the global BMU. In this case each CPU would perform a partial search over the SOM 

neurons. The threads would have to wait until the other threads are done and until the 

final comparison can be done. Since the search for the BMU is a time consuming task in 

the SOM algorithm this parallelization can greatly reduce processing time. After the 

search the neuron training can be done. 

With neuron parallelization each thread would perform a full BMU search over the SOM 

neurons. The SOM neuron training is also done without waiting for other threads. Thus 

the threads would read and manipulate SOM neurons asynchronously. This will raise 

occasional data access issues as threads could limit each other in accessing the SOM data 

and therefore force them to pause working. Section 2.8 deals with that problem in detail 

and describes ways to reduce inter-thread communication latency and avoid 

simultaneous data access.  
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2.3. The use of Self-Organizing Maps: 

A self-organizing map can be used for data visualization and visual data mining. Once a 

SOM is trained, each input data item can be visualized in the SOM. This is done by 

matching the input data items to the neurons and associating them with the best 

matching neuron. Consequently one neuron can be the best match for several input data 

items. Finally in the SOM each neuron will show the number of input data items it is 

associated with. This method of visualization is called hit histogram which is the base for 

most relevant visualizations.  The hit histogram can be used for finding patterns, 

structures or dependencies in the data by just looking at the SOM. 

Fig. 4 shows two types of hit histogram visualizations of the same SOM. In this example 

each input data item is referenced to by a unique identification number from 1 to 84. To 

the left the input data items are listed by their ID within the best matching neuron. Some 

neurons do not match best with any input data item, so they are empty. The neuron 

within the top left corner does match best with six input data items. 

 
Fig. 4: Two types of hit histogram visualization. (Budayan et al. 2009) 

 

Another visualization method is called component plane. Thereby the neurons of the 

trained SOM are colored according to the value of one of the attributes. Typically neurons 

with a higher value in a specific attribute have a darker color in the visualization than 

neurons with a lower value. During the training of the SOM the neurons get adopted to 

the distribution of the input data vectors, and therefore neighboring neurons will have 

similar values. Also, in any component plane, neurons of similar color will be ordered in 

regions. 
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In figure 5 two component planes can be seen. This Self Organizing Map has been 

trained from census data on Carinthian municipalities with the software SOM_PAK 

(Kohonen et al. 1995). The SOM was visualized with SOM Analyst (Lacayo-Emery 2011) 

a toolbox for ESRI’s ArcGIS that can train and visualize self organizing maps. The left 

component plane shows the area attribute of each neuron, whereas the right component 

plane shows the circumference attribute. It can be seen that the color of neurons in the 

same position in the SOM have a similar color i.e. neurons that have a light color in the 

left component pane also have a light color in the right pane. This means that the values 

for area and circumference correlate strongly. Since SOM is a visual method of data 

mining, there is no number or mathematical expression for this correlation, but SOM 

makes it visually obvious that these two attributes have are correlated. 

  
Fig. 5: Two component planes of a trained SOM. 

 

A special quality of the SOM algorithm is that it reduces the dimensionality of a data set 

to allow visualization and at the same time preserves the topology of data items. In 

contrast to standard data visualizing techniques such as diagrams which can only 

visualize a low number of attributes at a time, a SOM is able to depict the complete 

dataset at once. Further a trained SOM can be the basis for other data mining 

techniques, such as clustering, categorization and generalization. Either through the 

application of standard clustering algorithms on the neurons of the SOM or visual hands 

on clustering, clusters of neurons can be detected. For visual hands on clustering the 

unified distance matrix (U-matrix) visualization of the SOM can be used. Thereby the 

neurons are colored according to their attribute-distance to neighboring neurons. Thus 

neurons that have a greater distance to their neighbors – and therefore represent more 

space - have a different color than neurons that are close to their neighbors. This way it 
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is possible to see the distance between different parts of the training data. Clusters can 

then be identified as spots of the same color that represents low distance between 

neurons. Figure 6 shows an example of how a U-matrix visualization can look like. The 

darker the neuron, the farther the distance to its neighbors and the more space is 

covered by it. The dark area in this figure divide the light colored neurons into three 

clusters. 

 

Fig. 6: An example of a unified distance matrix (U-matrix) (Peltarion 2013) 

 

 

2.4. Applications of Self-Organizing Maps 

Self-Organizing maps are mainly used to investigate data that cannot be investigated by 

the human mind alone because the number of data sets and attributes is too large. 

Therefore a SOM reduces the dimensionality (i.e. number of attributes) to a presentable 

number of dimensions i.e. three or two. Data can then be visualized on a SOM for visual 

data mining purposes. 

A trained SOM can then serve as basis for clustering techniques and further 

generalization methods. It is easier to derive clusters of SOMs because visual analysis 

can give information whether and how many clusters exist in data. Further it is 

computationally easier to perform cluster analysis on data with fewer dimensions. 

The SOM can also be applied to more specific use than data mining:  

Karimi and Seyedtabaii (2011) used the SOM method to classify echoes of ultra-sonic 

signals. They evaluated the application of a self-organizing map and a multi-layer 

perceptron to automated pattern recognition of ultra-sonic echoes and found that both 

methods were suitable therefore with an error rate of 6 percent. 

Giraudel and Lek (2001) used the SOM method and other statistical ordination 

techniques to summarize the structure of ecological communities. It provided a visual 

way to find structures in ecological communities and allowed the visualization of sample 

units as well as abundant species. The SOM method was found fully usable for ecologists 

and it can complete classical data mining techniques for ecological community ordination. 

López et al. (2012) used the SOM method to forecast the electrical load in the Spanish 

electricity network. They used electricity load data and meteorological data from the 
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recent ten years. SOM was found a usable tool not only for clustering and classification of 

data but also for forecasting. The accuracy of the forecast models based on SOM was 

comparable with those based on other techniques. The forecast model was also found to 

be well performing and flexible with new input variables, which makes it applicable to 

different usages. 

These examples show that SOM is useful not only in theoretical computer sciences but 

also in applied science and technical questions.  

 

 

2.5. Variants of SOM 

This section describes alternative or extended SOM variants. Variants usually use 

different topological layouts and relations as well as variable SOM sizes depending on the 

distance of neurons in attribute space or the number of training vectors that match best 

to one neuron. Such variants are based on the same training algorithm but use additional 

functionality and criteria. 

 

2.5.1. Growing SOM 

The Growing Cell Structure (GCS) or growing SOM (Fritzke 1993) has the possibility to 

add new neurons to a SOM or remove superfluous neurons. Therefore the size and 

structure must not be given in the beginning of training but will be determined 

automatically from the pattern of the training data. Also training parameters as the 

learning rate and neighborhood function are constant and must not be described by a 

function depending on completed training runs.  

A growing SOM usually starts with a very small number of neurons. The structure of a 

growing SOM is in general not regular (neither rectangular nor hexagonal) but depending 

on the dimension k of the SOM the shape of connections between neurons must always 

be a k-dimensional simplex. The training algorithms is the same as for a regular SOM 

described in section 2.3. Additionally each neuron holds a parameter that describes the 

relative frequency of how often the neuron is the best matching unit to a training vector. 

When this parameter - called signal frequency - exceeds a certain threshold one or 

several new neurons will be added to the SOM. A new neuron Nnew is added topologically 

between the neuron with the highest signal frequency NmaxSF and its most distant 

neighboring neuron Nmd. It is further connected to other cells such that the structure of 

connections consists of k-dimensional simplices (Cheng, Zell 1999). Figure 7 shows the 

insertion of a new neuron at the example of a 2 dimensional growing SOM. Since neurons 

in a growing SOM are not ordered in a regular topology they are not represented as 

regular shapes such as rectangles or hexagons but as graph network where every node 
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of the graph represents a neuron and every edge represents a neighborhood relation 

between Neurons. 

 

Fig. 7: Adding a new neuron to an existing growing SOM. 

 

2.5.2. Mnemonic SOM 

The mnemonic SOM uses an irregular map shape to form recognizable areas (Mayer et 

al. 2005). This allows easier description and communication of map areas and certain 

data items. Also memorizing the locations in the SOM can be solved more satisfactory in 

mnemonic SOMs than in conventional rectangular shaped SOM. Suitable shapes therefore 

are country or continental map or geometrical shapes. Such shapes provide an additional 

mnemonic clue for comparing and remembering the locations and relations of clusters. 

Thus, map areas can be addressed not only by the corners of the SOM, but by telling the 

name of a region of the map. In figure 8 a SOM in the shape of a human body can be 

seen. It allows referring to parts of the SOM by naming the specific part of the human 

body it is in. A disadvantage of a certain shape can be that it may be predetermining for 

a certain number of clusters or that it is not suitable to represent a certain number of 

clusters in a reasonable way. In the example of figure 8, the number of clusters fits well 

to the number of body parts that are represented by the shape of the SOM (Mayer et al. 

2005). 

 

Fig. 8: An example for a mnemonic SOM in the shape of a human body. 
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2.6. The “Processing” programming language 

Processing is a programming language that is designed for implementing visual effects 

and animations (Fry, Reas 2013). It also provides an own Integrated Development 

Environment (IDE) for the development of Processing sketches, as Processing programs 

are called. Processing was originally based on Java and must be compiled to Java for 

execution and could therefore only be run in a Java virtual machine. Later the possibility 

to export the Processing code to JavaScript was added. This way it is possible to run any 

Processing sketch in a website without Java. So any Processing project can be either run 

as stand-alone Java program or JavaScript application in a browser. 

Processing functionality can also be used as part of any Java program. Therefore 

Processing is provided as Java software library and can be imported into a program just 

like any other Java library. A Processing instance will then run a separate thread for 

drawing in one or several sketches. The sketch can be used and placed as user interface 

element as part of a window frame or as self-contained window with no other user 

interface elements. It can even show user interface elements itself and provide 

interaction possibilities. 

Processing is used to interactively visualize data in a wide variety of ways. For the 

visualization of artifacts of the body of knowledge (BoK) of geographic information 

science and technology (GIS&T) Processing is used to provide an interactive user 

interface (Stowell et al, 2013). The project called BoKVis allows to explore and organize 

the BoK such that it can be conveyed to the user. Figure 9 shows the 4 different layouts, 

tree map (1), tree graph (2), indented list (3) and similarity graph (4). 

 

 

Fig. 9: BoKVis’ 4 ways of visualizing a tree data structure implemented in Processing (Stowell at al, 2013). 

4 

2 1 
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Processing was used in the maeve project at the International Architecture Exhibition 

Biennale in Venice to visualize social and intellectual networks behind architectural 

projects (mæve 2008). It was designed and developed by the University of Applied 

Sciences Potsdam. ”By placing physical project cards on an interactive surface, users can 

explore the presented projects, embedded in an organic network of associated projects, 

people and media.” (mæve 2008). Figure 10 shows how mæve reacts on placed object 

cards and visualizes information about and relations between the projects represented by 

the cards. 

 

Fig. 10: The interactive screen to explore relations between projects was implemented with processing (mæve 2008). 
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The Champs d’Ozone project used Processing to visualize air pollution over Paris 

(Champs d’Ozone, 2007). It uses quasi real time air quality data to create a virtual cloud 

that is used as overlay on a real time video of the city. The saturation and color of the 

cloud depend on several air quality indicators such as ozone, nitrogen dioxide or particle 

dust concentration and others. Even though the purpose of this installation is not 

primarily scientific, it shows the potential of Processing to interact with real time data and 

to create visualizations of it even though data comes from an external data source. 

Figure 11 shows the visualization of project Champs d’Ozone, the lower part of the 

screen shows real time imagery of Paris taken by a camera, the upper part is and virtual 

overlay created by Processing depending on the current measurements of air quality 

through the Paris air quality monitoring network Airparif. 

 

Fig. 11: An example of the visualization of air quality implemented with Processing (Champs d’Ozone, 2007). 

 

These examples show the potential of Processing as an information visualization tool. 

What makes it even more interesting for exploratory visual data analysis is the possibility 

of creating interactive visualizations. However, no tool that uses Processing for 

visualizing SOMs could be found. 

 

There exist numerous software libraries that can be used to enhance the functionality of 

Processing, such as Graphical User Interface (GUI) libraries, data input and output 

libraries, special effects, data conversion, communication, sound and many more (Fry, 

Reas 2013). Never the less, there is no library that can deal with self-organizing maps in 

a comprehensive manner. 
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2.7. Existing SOM tools 

The SOM method has been implemented in several ways. This section tries to describe a 

selection of the most popular and sophisticated SOM applications that are currently 

available.  

 

2.7.1. SOM_PAK 

Kohonen and his team developed a tool called SOM_PAK (Kohonen et al. 1995). It 

implements only the basic SOM algorithm but gives access to a lot of parameters such as 

neighborhood functions and learning rate, number of training steps, number of neurons 

and topology type. There is no graphical user interface (GUI) so SOM_PAK must be 

operated from the command line. There is also no visualization component included. 

Results can only be stored in different text based file formats, such as post script or a 

custom line based format .cod. Since SOM_PAK was one of the first SOM training tools its 

file formats (.cod for SOM and .dat for data) became a quasi-standard for storing SOMs 

and training data. If someone would want to visualize the results, other software must be 

used. All together SOM_PAK is a sophisticated program designed by scientists for 

scientists with little respect to usability and visualization. It can serve as scientific tool to 

investigate SOM related topics but it is not suitable for novice users. Its source code is 

generally available online (Kohonen 1995) and can be freely reused and extended for 

scientific purposes only. SOM_PAK does not use any parallelization in its implementation 

of the SOM training algorithm. 

 

2.7.2. Spice SOM 

Spice SOM was developed by Thang C. (2004) as student research work. It implements 

the basic SOM algorithm as well as several data normalization methods and 

neighborhood functions. It can be used as desktop application and has a simple GUI to 

allow the user to adjust parameters (see figure 12). The major working steps preparing 

training data, SOM training and several ways of visualization are separated in different 

tabs. Figure 12 shows the data preparation step where the user is offered several options 

to describe the data and normalize it. Further it shows training data attribute wise as a 

table and as a diagram so the user can see the distribution of data along each attribute 

and select the normalization method accordingly.  

Results of the training can be saved either in a custom text or binary format. It also 

allows visualizing the resulting SOM and various attributes of the neurons, such as map 

coordinates, corresponding training data set and distance to the neighbors and a specific 

neuron. It does not allow visualizing intermediate training steps to analyze the SOM 

development process and it does not allow visualizing only one specific attribute of the 
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data. Also Spice SOM offers no possibility to calculate clusters in the result. Further, 

Spice SOM does only support a custom file format for importing training data and is 

therefore not compatible to other tools. The source code is not generally available. Also it 

is not generally reusable or extendable with additional functions. 

 

Fig. 12: The Graphical user interface of Spice SOM for preparing training data (Thang 2004). 

 

2.7.3. SOM Toolbox for MATLAB 

The SOM Toolbox for MATLAB was developed by Alhoniemi et al. (2000) as a software 

library for MATLAB 5. It allows the use of SOM_PAK executable files but also has own 

implementations of SOM algorithms. It implements a lot of additional functionality to the 

SOM training algorithm such as clustering, alternative SOM algorithms and error 

measures. It is intended for the use with MATLAB only and is therefore not usable for 

people who are not familiar with scientific computing, but it is very flexible and adaptable 

to specific user needs.  

Even though it does provide a graphical user interface its’ developers discourage its use 

and suggest to use MATLAB's command line interface instead. There is no reason given 

for this recommendation. SOM Toolbox makes use of MATLAB's support for graphics and 

visualization and allows a wide variety of visualizations. This means that it can create and 

show images in various formats but no interactive visualization is possible. Images can 

be created per command but not interactively manipulated or explored. SOM Toolbox 

does support the SOM_PAK file format for training data and SOM files. It does not 

support parallelization of the SOM algorithm in any way. 
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2.7.4. Java SOMToolbox 

Mayer et al. (2012) developed Java SOMToolbox as standalone software application. It 

implements a large set of SOM algorithms, data preprocessing functionality as well as 

different visualizations and quality measures. It provides a GUI for preparing data and 

SOMs as well as a very flexible visualization module. It uses a complex structure of 

custom text based file formats for storing results and is not compatible to any other file 

format. Java SOMToolbox is well documented, free for use and also the source code is 

available online. Therefore its application programming interface (API) makes it usable 

for third party software applications.  

It provides the possibility to do training in up to 16 parallel working threads. Thereby the 

neurons of the SOM are split up in equally sized partitions such that the best matching 

unit search can be done in parallel (according to R. Mayer, personal communication, 

29.July 2013). No detailed information on how parallelization is implemented in Java 

SOMToolbox is given. Depending on the number of parallel threads and the size of the 

SOM parallelization does have an effect on the time the training needs to be computed. 

Figure 13 shows that the parallelization in Java SOMToolbox does not necessarily speed 

up SOM training. For this experiment a SOM was trained with the census data of 

Carinthian municipalities which contains 42 attributes that are suitable for SOM training. 

The training was run on a computer with 2 Intel Xeon 5520 processors with 4 cores each. 

On a small SOM parallelization is rather an obstacle than an improvement. Up to a size of 

200 neurons parallelization slows training down. On bigger SOMs performance improves 

up to 35% with 4 threads. The use of 8 threads does not make a difference anymore. 

In general the training performance of Java SOMToolbox seems to be approximately 10% 

slower than SOMPAK as experiments have shown. So it can be considered almost equal. 

In certain cases parallelization gives it a performance advantage over SOMPAK.  

 

Fig 13: Performance improvement of parallelization of SOM training in Java SOMToolbox. 
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2.7.5. SOMVIS 

SOMVIS is a Java software to train SOMs based on shape-files (Guo 2008). It further 

visualizes SOMs and the geographic map and creates relations between geographic 

entities and SOM clusters through coloring (see figure 14). It allows interactive 

investigation of results and easy change and application of parameters such that a new 

SOM based on a different set of attributes, normalization, weight or SOM size can be 

seen with a couple of clicks and short processing time. Additionally to the visualizations 

of the distance matrix, the clusters and their geographic representation SOMVIS also 

offers a Parallel Component Plot that shows a line diagram of data entities on the 

horizontal axis and the attributes on the y axis (figure 14 bottom left). SOMVIS does not 

allow to set any training parameters for the SOM training and it does limit the SOM size 

to 11 by 11 neurons and the SOM shape to squares. Further it is limited to shape-files 

only, such that data that does not have geographical representation cannot be used with 

this tool. The source code to SOMVIZ is not generally available just as it is not generally 

possible to use its functionality in third party software or other software projects. Also 

nothing about the training procedure and parameters is said. 

 

Fig 14: A screen shot from SOMVIZ in a typical situation showing all its visualization possibilities. 

 

2.7.6. SOMine 

SOMine is a proprietary program for exploratory and visual data mining based on SOMs 

(Viscovery 2013). It provides a GUI that guides the user through a very strict process. It 

also provides a broad range of visualization methods and analytics. It can import data in 

various formats such as excel spreadsheets and comma separated value files. It does not 

support the SOM_PAK file format. The only training parameters that can be set are the 

SOM size and shape (square/rectangular). No information is given on how the SOM 
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algorithm is implemented and how training parameters are selected. The use of SOMine 

is licensed and the source code is not available. 

 

2.7.7. Conclusions about existing SOM applications 

Table 1 summarizes certain properties of the discussed SOM applications. The year refers 

to the latest date when the application was updated. No predominant file format for 

storing data, trained SOMs or meta data can be found. Only SOM_PAK's file format, as it 

is the oldest and defined by the inventor of the SOM algorithm (Kohonen et al. 1995), is 

used by more than one application. Therefore it can be considered a de facto standard. 

Never the less it lacks any kind of meta data storage such as entity names, attribute 

names, IDs or geographic references. 

Table 1 also shows that parallelization of the SOM training algorithm in desktop software 

is not yet the state of the art, even though standard desktop computers support it mostly 

to a level of two to eight parallel threads. Only the most recent application uses 

parallelization, but in an undocumented extent and with little performance gain, or even 

performance loss on smaller SOMs. So it seems to be reasonable to ask whether the 

parallelization of the SOM algorithm can reduce training time significantly more than Java 

SOMToolbox’ implementation does. Further there is no application that provides freely 

available and reusable code or libraries that is independent from other software, a 

graphical user interface (GUI), and makes use of a modern computer’s ability of parallel 

computation.  

Name, Year GUI File formats Parallelization Parameterization Reusability 

SOM_PAK, 

1995 

No .dat .cod  

(SOM_PAK) 

No good Yes 

SOM VIS, 

2007 

Yes .shp No No  

(SOM size only) 

 

Spice SOM, 

2004 

Yes, Unusual 

naming and 

functions 

Custom only No good No 

SOM Toolbox  

for MATLAB, 

2005 

Yes, not 

recommended  

by developers 

SOM_PAK,  

export images 

No good Yes  

(MATLAB 

only) 

Java 

SOMToolbox, 

2013 

Yes Custom only Yes, no 

explanation, 

little effect 

good Yes 

SOMine,2013 

proprietary 

Yes Multiple  

not SOM_PAK 

No Poor No 

Tab. 1: Available SOM software compared by specific characteristics. 
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2.8. Parallelization of SOM training 

The computational effort of training a SOM does increase with the number of neurons of 

a SOM, the number of dimensions of the training data and the number of training runs. 

As can be seen on the example of Skupin et al. (2013) the application of the SOM 

method to a real world data mining problem is not always feasible to do on a standard 

desktop computer because it would take too much time. Since SOM is a kind of neuronal 

network it is inherently parallel (Seifert 2002), but this parallelization is not exploited and 

considered in the standard SOM training algorithm (Kohonen 1998). This parallelism 

stems from the fact that neuron operations are mostly small but equal and independent 

operations applied to a high number of neurons. Therefore they can be executed 

simultaneously from independent computing nodes. So if the number of computing node 

is as high as the number of neuron operations, all of them could be executed at once. In 

general there are two limitations to that: a) usually the number of neuron operations that 

can be executed simultaneously outnumber the number of processing nodes, so neuron 

updates cannot be parallelized to an arbitrary level; b) data distribution, communication 

latency and the effort for collecting the results increases with number of computing 

nodes such that a high number of computing nodes does not necessarily lead to a higher 

performance. Therefore the inherent parallelism of artificial networks is usually not 

entirely exploited but some divide et impera strategy that is derived from this inherent 

parallelism is applied. 

Due to these characteristics and constraints, this section focuses on comparing the most 

common approaches to parallelize SOM training and discusses several vivid 

implementations and results.  

 

2.8.1. Workload distribution approaches 

SOM training parallelization approaches can be categorized by how they distribute 

instructions and data to computing nodes to either Network Partitioning Approach (NPA) 

or Data Partitioning Approach (DPA) (Ceccarelli et al. 1993).  

In NPA the network of neurons is partitioned and each computing node only holds one of 

these parts. This way the best matching unit (BMU) search and the following neuron 

updates can be distributed to the computing nodes and thus be done in parallel. 

Therefore a central coordination computing node is necessary to initially create and 

distribute the partitions of the network to the other computing nodes. Further it 

distributes the training data to the computing nodes and determines global variables 

such as the actual training vector, its BMU or learning rate neighborhood radius. In NPA 

there does not exist a complete version of the SOM, each node holds its partition of the 

SOM and maintains it independently until the training is finished. In the end the central 
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node will combine the SOM parts of the computing nodes the same way as they were 

distributed such that the SOM will be complete as one piece. During the process of 

determining the global BMU and neuron update parameters the other computing nodes 

have to wait, so at this point the training process can hardly be parallelized anymore and 

can therefore be called the bottleneck of the NPA. 

In the DPA, not the SOM but the training data is partitioned and distributed to the 

computing nodes. Each computing node holds a full copy of the SOM and does the 

training independently from other nodes. To achieve a meaningful result and avoid that 

SOMs diverge during training in the independent computing nodes, the SOMs must be 

merged and redistributed frequently. This is again the task of one central computing 

node. During the process of collecting the different SOM versions from the computing 

nodes and merging them to a common SOM and the redistribution of that common SOM 

to the computing nodes, the actual training process is interrupted. 

 

2.8.2. Parallel SOM training implementations 

In the implementation of Skupin et al. (2013) the training algorithm was parallelized due 

to the necessity of reducing the training time to a reasonable amount, because the 

estimated time of training on a desktop computer was not acceptable. They wanted to 

visualize a SOM of the medicinal body of knowledge based on indexer assigned terms 

from 2 million publications. The extracted 2300 most important terms formed the 

attributes and each publication formed one input vector. Therefore it was necessary to 

have a reasonable sized SOM to represent the training data which was found at a size of 

75000 neurons. It was assumed that each training vector should be presented to the 

SOM for training 50 times to produce a meaningful visualization, which results in 100 

million training runs that needed to be executed. This resulted in an estimated training 

time of several years. Therefore they adapted the training algorithm to be executed on a 

super computer applying the DPA (see figure 15). They distributed the training data to 

225 computing nodes and each of the nodes held a full copy of the SOM. Each node then 

trained its SOM with the given partition of training vectors and returns the updated SOM. 

The 225 different SOMs where then merged by calculating the averages of corresponding 

attributes and redistributed to the computing nodes to continue training.  
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Fig. 15: The DPA implementation of Skupin et al. (2013) for parallelizing the SOM training algorithm. 

 

The results of this training were used to generate topic clusters by finding dominant 

terms in regions of the SOM. These regions were delineated as can be seen on figure 16. 

Through the parallelization of the training algorithm the training computation time could 

be reduced to 6 days on the super computer in comparison to an estimated 4-6 years on 

a standard desktop computer. 

 

 

Fig. 16: The result of the parallel SOM training by Skupin et al. (2013). 

 

Ozdzynski et al. (2002) implemented a parallel SOM training algorithm based on the NPA. 

They used a commodity-class Beowulf computer cluster and investigated the possible 

performance gain through parallelization and the scalability of their parallelization design. 

The design was such that one processing node – the master node – was coordinating 

central working tasks such as distributing data and instructions and processing results of 

other nodes, the slave nodes. At the beginning of the training the SOM was divided 

among the computing nodes, so one node would carry out operations only within its 
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portion of the SOM. For each training step the master node would distribute the training 

vector to the slave nodes and they would find the best matching neuron within their part 

of the SOM. The master node would then determine the global best matching neuron 

from the local winners from the slave nodes and distribute the result to the slave nodes 

again such that they can update their neurons accordingly. The result is shown in the 

diagram in figure 17. It compares the relative theoretical optimal performance gain – 

purple – with achieved performance gain for a SOM of 600 neurons – red, almost 

identical with purple – and a SOM of 1200 neurons – green. This means that the solution 

accelerates SOM training almost perfectly well for a SOM of at least several hundred 

neurons. For small SOMs with only 8 neurons parallelization does not accelerate training 

at all, but slows it down such that in this case training time increases with the number of 

parallel working nodes. No information on the number of attributes and intermediate 

sized SOMs is given. 

 

Fig 17: The relative performance difference in parallel SOM training depending on the number of neurons. 
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A similar approach by Arroyave at al. (2002) also built on the master-slave relationship 

between computing nodes. Their implementation design is almost identical to the one 

from Ozdzynski et al. (2002) and can be seen in figure 18. It describes the same 

workflow of a master node distributing data and instructions to slave computing nodes 

and then processing their results. This iterative process is continued until the training 

reaches its termination condition (e.g. a certain number of training steps is completed). 

 

Fig. 18: Diagram showing the relation between master and slave computing node in parallel SOM training using NPA 

(Arroyave et al. 2002). 

 

They did performance tests with 4 computing nodes and investigated the parallelization 

performance gain for several SOM sizes. Figure 19 shows that the actual performance 

acceleration gets closer to the theoretical optimum of 4 as the number of neurons in the 

SOM increases. The number of attributes used in the experiment is not mentioned. 

 

Fig. 19: The performance gain of parallel SOM training on 4 computing nodes (Arroyave et al. 2002). 
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Seiffert (2002) compared SOM training implementations on a computer cluster to SOM 

training on a computer with multiple processors. Both implementations used the NPA and 

the same design principles to achieve comparable results that represent characteristics of 

the hardware differences but do not differ in software structures. The results show that 

on a multi-processor computer (MPC) communication latency (the time for distributing 

data and instructions) is much lower than on a computer cluster. Therefore a MPC is 

more efficient in parallelizing smaller SOMs because the less neurons a SOM has, the less 

time is necessary to find a BMU to a training vector and consequently relatively more 

time must be spent on distributing data and processing results. Further the scalability of 

the implementation was tested up to 25 computing nodes. The result shows that there is 

a limit in scalability of the algorithm and it depends on the communication latency of the 

computing nodes and the number of neurons in the SOM. The lower the communication 

latency is, the higher is the scalability of the algorithm. Scalability in this context means 

that adding more computing nodes will increase the training speed of the SOM. So in 

general MPC are more scalable than computer clusters. Also the larger the number of 

neurons in a SOM is the more scalable is SOM training, because communication between 

computing nodes takes relatively less time. 

There also exist massive parallelization approaches called quantum computing that aim 

on parallelizing SOM training to neuron level such that every neuron is computed by a 

single computing node (Weigang, Correia da Silva 1999). No results have been achieved 

with an experimental parallel implementation of this approach. Only a sequential version 

has been implemented in order to prove the feasibility and correctness of the concept. 

The SOM algorithm has also been massively parallelized such that those parts that 

require many neurons to do the same operation - such as the BMU search and the 

update - to be done by a GPU (graphics processing unit) and not by the central processor 

of a computer (Sijo, Preetha 2011). GPUs seem useful for such operations because they 

consist of a large number of processing units that are optimized for doing SIMD (single 

instruction multiple data) operations such as the SOM algorithm requires. It has been 

shown, that this approach can accelerate SOM training up to a factor of 84 on the used 

hardware. This factor highly depends on the size of the SOM and the number of 

attributes. The use of this method is limited by the amount of GPU-memory because the 

entire SOM must be available there. This approach also requires special hardware (GPU) 

that is not generally available in a standard desktop computer. 
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2.8.3. Conclusion on parallel SOM training 

Several parallel SOM algorithm approaches exist. They usually take advantage of the 

algorithm’s SIMD nature, i.e. the algorithm applies the same operation to a high number 

of neurons. To parallelize that usually the training data (Data Partitioning Approach, DPA) 

or the neurons of the SOM (Network Partitioning Approach, NPA) are divided among the 

computing nodes (Ceccarelli et al. 1993). DPA requires each computing node to have a 

full copy of the SOM and therefore uses much mode memory, which again lowers the 

limit for the number of neurons a SOM can have. Also it requires frequent merges of the 

distributed SOM versions in order to make training process converge to a common 

solution. NPA requires more frequent communication between the computing node and a 

central node that coordinates training and calculates training parameters. During these 

central computations and the communication of results, the computation nodes are in 

idle mode waiting for new instructions from the central node (Arroyave at al. 2002, 

Ozdzynski et al. 2002), therefore NPA seem not an effective solution. It has been shown 

that multi-processor computers can greatly reduce the communication latencies of DPA 

and NPA approaches (Seiffert 2002). With the growing availability of multiple processor 

cores in desktop computers this seems to be a promising and generally applicable 

method to accelerate SOM training. Massively parallel computing on GPUs has proven to 

be highly capable to accelerate SOM training (Sijo, Preetha 2011). Nevertheless the size 

of the SOM that can be trained with this method is limited by the available amount of 

GPU memory. Also it requires the computer to have a compatible GPU in order to be able 

to make use of its massively parallel capabilities. 

Due to the development of an increasing number of processors per computer and the 

lack of freely available SOM software that makes use of multi-processor computers (MPC) 

it seems reasonable to think of a software that exploits the advantages of a MPC (i.e. 

working on one central data structure with multiple processes simultaneously) and 

reduces the disadvantages of distributed computing SOM parallelism (i.e. communication 

latencies). 
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3. Method of solution 

This section describes measures that were taken in order to find answers to the stated 

research questions in section 1.3. This includes the structural design and implementation 

of a software prototype that is able to train SOMs from arbitrary data and the description 

of the parallel SOM training algorithm that is implemented in the prototype. Finally the 

tests for investigating correctness of the algorithm, reasonability of SOMs that where 

trained in parallel and the performance gain of parallel training are described. 

 

3.1. The SOM training prototype 

The SOM training prototype is called SOMatic and consists of three structural parts: the 

SOMatic library as independently reusable collection of SOM training functionality, the 

SOMatic GUI as a user interface implemented with Java Swing GUI library to demonstrate 

and efficiently use the functionality of the SOMatic library and the SOMatic Processing 

GUI which demonstrates the compatibility of the SOMatic library to the Processing 

programming language and IDE. 

This section describes the development process, structure and functionality of the 

SOMatic library. The Java and Processing GUI are described in section 3.2. 

3.1.1. Processing deployment: Java vs. JavaScript 

A follow up question from the decision to create a software library that is compatible and 

usable in Processing is: which deployment option is more suitable for SOM training, as 

Processing code can be deployed as Java application/applet or JavaScript code for 

integration in a website.  

The deployment of the prototype as web-application does have several advantages such 

as global availability and compatibility with any computer that has internet access. It 

does not require any additional software to be downloaded or installed other than a web 

browser in order to do SOM training. A Java program requires a Java Virtual Machine 

(JVM) to be installed on a computer in order to execute. The advantages of a Processing 

sketch deployed as Java application are that parallelization can be implemented natively. 

JavaScript is an interpreted scripting language and therefore does not support parallel 

code execution. Further a Java deployment can use existing Processing libraries that 

implement extended specialized functionality that are not native to Processing. Also a 

Java deployment is independent from any web server ability and network infrastructure.  

The most decisive question is which solution would be more powerful in terms of faster 

SOM training speed. To answer that question a test benchmark was created to measure 

the time it takes to carry out a specific operation. The test setup consisted of a regular 

laptop computer with Windows8 as operating system. The web browsers Chrome (V25), 

FireFox (V17), Internet Explorer (V11), Opera (V12) and Safari (V5) were used to test 
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the JavaScript performance. Since JavaScript is interpreted and executed by the browser 

it was believed that there are performance differences among browsers. Java (V7) was 

installed to execute the Java deployment of the benchmark.  

The benchmark consisted of two steps: a) creating a number of string elements 

(“words”) with random letters; b) comparing each word to every other word to find a 

difference. To compare the performance the time was measured that it takes to carry out 

the benchmark for a specific number of words. The benchmark was implemented in 

Processing and then deployed as Java or JavaScript code. In order to run the test in a 

realistic environment a website was set up that provided both, the Java and the 

JavaScript version of the benchmark.  

The test showed (see figure 20) that, almost independent of the number of words that 

are compared, the Java deployment is 29 to 137 times faster than the JavaScript 

deployment. The performance difference of each implementation/browser is consistent 

over the number of words, e.g. Java is 29 times faster than Chrome for each number of 

words. The performance differences among browsers is surprisingly high as well, so 

Chrome is the fastest browser in this test and 1.47 to 3.65 times faster than other 

browsers, independent of the number of words that were compared. 

 

Fig. 20: The string comparison performance benchmark measuring JavaScript and Java execution time. 

 

Due to these test results it was decided to implement the SOM training tool in Java and 

create a library that is compatible to Processing and standard Java programs as it does 

not seem reasonable to use JavaScript for high performance computational tasks. Even 

though the benchmark did not execute actual SOM training, and that SOM training might 

perform better in JavaScript than that simple comparison of string elements, it is 

assumed that the performance difference that became evident in this test would not be 

compensated. 
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3.1.2. System design 

To tackle the software design requirement of reusability and extensibility it is common to 

organize software in a layered model, such that layers are independent from each other 

(Goldstein, Bobrow, 1980). Communication between layers is done using specifically 

defined interfaces. Therefore changes in any part of the software can not affect other 

parts as long as the interfaces are adhered to. The layers of this project (GUI, calculation 

logic, data storage) make use of this design pattern, even though the communication 

between layers is generally one way and not interactive (Fig. 21). 

 

 
Fig. 21: The three layers of the project and the main communication interfaces. 

 

The interface description between the GUI and the calculation logic (IF1) does include a 

reference to the input data, all possible parameters for data preprocessing and SOM 

training (i.e. data normalization, SOM size, number of training runs, …) as well as the 

possibility to extend the set of parameters for additional future functionality. The 

interface is implemented in the calculation logic layer as API such that it can be utilized 

by the GUI via function calls.  

The interface between calculation logic and data storage layer (IF2) does consist of a 

data structure to represent the result of the SOM training process and intermediate 

results of the training as well as meta data that describes the parameters that were 

passed through IF1 and description of the training data itself such as entity or attribute 

names. 

Parameter settings and meta data are described in a human readable format to 

document the operations and settings that lead to a specific result and to be able to 

easily reproduce and share the settings. This format is inspired by but not compatible to 

the format described by Kohonen et al. (1995) for their SOM training software SOM-PAK.  
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3.1.2.1. System design elements 

The GUI allows defining how and under which parameters the SOM should be created and 

how the user wants to monitor the creation process. It gives control over the 

preprocessing conditions, such as normalization weight and choice of variables and 

attributes that are used for training. The GUI does also allow the user to become familiar 

with the concepts and application of SOMs and help to learn about high dimensional data 

patterns. So it is necessary to design the GUI in a way that the user is guided through 

the workflow of SOM training correctly. The GUI uses the interface of the calculation logic 

layer to allow the user to trigger certain actions such as preparing a SOM or starting the 

training.  

 

The calculation logic layer implements the actual SOM algorithm with an emphasis on 

modular software design to allow later enhancements and additions of other functionality 

and SOM variants. The calculation logic is designed with respect to maximum 

performance, since SOM calculation can be a time consuming procedure and even exceed 

the power of super computers (Biberstine et al. 2012, Skupin et al. 2013). Therefore a 

parallel SOM training algorithm is implemented in order to use the multi processing core 

infrastructure of desktop computers more efficiently and thus accelerate the training 

process. The SOM algorithm is an iterative procedure that mainly consists of search and 

comparison of numerical attribute data from input data to SOM neurons.  

 

The data storage layer is used for documenting results of SOM creation and intermediate 

steps as well as project files that store meta data about parameters from the training and 

preprocessing progress. Main challenges thereby are to design a human readable file 

format for results which also should be easy to interpret by a computer. Further it should 

be compatible to other SOM software to allow comparison of results of different products 

and procedures as a measure of correctness and quality. Storing intermediate steps, 

results and configurations can allow starting a process in a custom situation, so the 

creation of a SOM must not always be started from the beginning but can be resumed 

from a certain point. This can be especially useful for in class use as someone can 

prepare a scenario in advance instead of processing it in class.  

As input file formats for training data comma separated value text files and SOM_PAK's 

.dat format are supported. To store SOMs SOM_PAK's .cod format is used, the used 

training vectors can be stored as .dat files. A separate project file will contain the meta 

data that describe the content of a SOM and how it was created. The schema for the 

project file is developed from scratch as there is no suitable existing schema available 

that can be used. 
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3.1.2.2. Workflow 

The workflow (see figure 22) that SOMatic is intended to be used with consists of three 

major steps: reading and preprocessing the training data, initializing a SOM and training 

the SOM. Additionally the SOM and some training documentation can be stored as .cod 

and .sprj files respectively. This functionality is wrapped up as software library and 

cannot be run on its own. This allows complete independent development of the 

components and reuse of the library. The library can either be integrated in some user 

interface or other non-visual environment which takes care of setting parameters and 

triggering functions of the library. The library also allows access to the training data and 

neurons such that real time animation of the training process are possible.  

 

Fig. 22: The work flow that the SOMatic library is designed for. 

3.1.3. Core training algorithm 

As the performance of the training algorithm is an essential part of this research, the 

training algorithm was implemented independently of any considerations concerning data 

in and output and relations to other parts of the system. The focus was to design a 

memory data structure that makes use of data types that have short data access 

latencies and requires little meta data to address values. Four different objects were 

designed, SOM, neuron, attribute and training vector (see class diagram in figure 23). 

The SOM is considered as an organization and data reference point for the neurons and it 

holds the methods that are necessary to perform the training. It controls access to the 

neurons and holds methods for SOM training. The other objects are primarily holding 

data values. The Attribute object does not hold data that is directly relevant for training, 

but describes attributes that occur in training vectors and neurons. 
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Fig. 23: A class diagram describing classes related in the training process. 

 

The neurons and the training vectors each hold an array of equal length that represents 

either the training attributes or the neuron attributes respectively. The attribute objects 

hold information about a specific attribute such as statistical values, name or ID. 

Attribute objects are referenced by the index of the training vectors attribute it 

represents, so their property “referenceIndex” points to the training vectors and neurons 

attribute value that is described by the attribute object. This means the attribute object 

with referenceIndex = 4 represents the fourth attribute of any training vector or neuron. 

As the order of attribute values of neurons and training vectors cannot be changed, this 

reference will be consistent. Figure 24 shows that each neuron holds a certain number of 

values. It also shows the described organization of objects and the reference of an 

attribute object of a certain index to the respective values of the neurons.  

 

 

Fig. 24: The organization of the elements of a SOM (SOM, neurons, attributes) in SOMatic. 
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To hold globally shared parameters and references to objects such as the SOM and 

training vectors, a global object was designed that implements the singleton design 

pattern. This design pattern restricts the number of instances of the global object to 1, so 

no multiple instances of this object can exist. This restriction allows centralized 

maintenance of parameters and object references and facilitates keeping track of existing 

instances and parameter values. All parameters that are used by multiple objects or in 

multiple processing steps are referenced here.  

This is especially useful when several threads perform operations on the SOM because it 

makes intra thread communication obsolete. Instead threads share the same resources 

and use the same parameters. Thus it is necessary to control access to parameters and 

objects that can be used by multiple threads at a time to prevent multiple threads 

changing a value at the same time which can cause incorrect values and further critical 

errors. 

Neurons have generic neighborhood relations to other neurons, so depending on the 

topology and shape of the SOM each neuron can have a reference to a certain number of 

direct neighbors. This way each neuron “knows” what its neighboring neurons are. Also it 

allows to retrieve all n-degree neighbors of a neuron independent from the shape, 

topology and order of neurons. Even though such a generic neighborhood detection can 

be computationally expensive, it allows describing any kind of topological neuron 

ordering and shape of the SOM such as spheroid or toroid shapes. These shapes require 

irregular neuron shapes, thus describing neighborhoods around a specific neuron can in 

general not be described by indices. This functionality is included to support extending 

SOMatic to other SOM shapes, since SOMatic only supports two dimensional planar SOM 

shapes at the moment. Therefore it is sufficient and computationally less expensive to 

use indices as reference to a neuron. Thus in SOMatic neighborhoods are described by 

one pair of coordinates that represent the center neuron and the radius of the 

neighborhood. For iteratively accessing all neurons within the neighborhood these values 

can be easily converted to two pairs of coordinates one describing the lower left neuron 

of the neighborhood and the other describing the upper right neuron. 
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Figure 25 shows coordinate indexes of hexagonal shaped neurons in SOM, where neurons 

that have an index difference of 1 are not necessarily direct neighbors and neurons with 

an index difference of two can be direct neighbors. This is due to the skewed alignment 

of hexagonal neurons, which is – depending on the orientation – shifted either at every 

second row or column. In figure 25 the neurons N(0/0) and N(1/1) are not neighbors; in 

a rectangular raster they would be touching at their edges. On the other side the neurons 

N (0/3) and N (1/2) would not be neighbors in a rectangular raster but are direct 

neighbors in a hexagonal raster. 

 

Fig. 25: The implicit neighborhood relation of neurons described by their index-coordinates. 

 

For this reason in SOMatic neurons are organized in a two-dimensional array and can 

therefore be referred to by only two index coordinates. Both, rectangular and hexagonal 

neuron shapes are supported, but because of the implementation of general explicit 

intra-neuron neighborhood relations, support for irregular shapes and topologies can be 

implemented in future work. 

3.1.4. Data input and output 

To feed the training algorithm with data, files can be read and interpreted as training 

data. The interpretation will only work properly if the files strictly follow a certain 

structure. Two different text based formats are supported by SOMatic: comma separated 

values (CSV) files and SOM_PAK's .dat file format. Examples for the supported file 

formats can be seen in figure 26. 

In general CSV files do not have a semantic structure but only list values. Therefore 

SOMatic requires CSV files to follow a defined structure that is primarily organized in 

lines and can be understood as table. Each line represents a training data item which will 
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be interpreted as training vector. Each column represents an attribute. The first line 

holds the names of the attributes. Attributes can hold any kind of data: numbers or 

characters. Only numeric attributes can be used for training though. 

 

Fig. 26 A schematic example of the .csv format used for SOMatic. 

 

The SOMPAK .dat file format is also organized in lines. The first line usually only holds 

one value: the number of attributes each data set has. The following lines each represent 

one data item and hold numeric values that are separated by spaces. Each line consists 

of as many values as defined by the value in the first row.  

The original .dat file format does not include meta data, therefore some extensions were 

made which allow meta data in the .dat file and still keep compatibility to SOMPAK. 

Therefore the comment character “#” was exploited (see figure 27). For SOMatic the 

second line can hold the attribute names if it starts with “#atts”. The names must be 

separated by spaces, so spaces that naturally occur in a name must be replaced with 

some other character. Further at the end of each line a string for the name and some ID 

can occur. This ID is thought to serve as geographic reference if the training data is 

derived from some geographic data. 

 

Fig. 27: A schematic example for the SOMPAK .dat file format with the optional enhancements for SOMatic. 

 

When any data file is read, the data will be interpreted according to the described file 

structure. If the file structure is correct, a temporary unified data structure is created. 

This data structure holds all values that were found in the file. This unified data structure 

was created to support future extended file formats. Thus one would only have to 

implement a file parser that reads the file content but would not have to derive training 

vectors thereof. This is done by SOMatic once the complete file content is available in the 

unified data structure. When the training vectors are created from the unified data 

structure, the values of the attributes are checked. Attributes with non-numeric values 

are excluded from training. For attributes with numeric values only basic statistical 

values are calculated such as the minimum, the maximum, the mean and the standard 

deviation. Also the number of missing values is determined. The statistical values are 

used later for normalizing the training data. 
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Three different types of information can be stored as file from SOMatic: the training data, 

the SOM and the SOM training log. The training data is stored in the described .dat 

format and contains the data that was used to train the SOM, so if the training data was 

normalized, only the normalized data can be stored. If available also attribute names, 

data item names and IDs are stored. 

The SOM is stored in SOM_PAK's .cod file format, a text based file similar to the .dat file 

but with different semantics. Structural difference to a .dat file only occurs in the first 

line. Its first value holds the number of attributes, followed by the topology (either 

“hexa” or “rect”). Then the X and Y extent of the SOM are described by one integer each 

and finally the neighborhood function is described (either “bubble” or “gaussian”) 

(Kohonen et al. 1995). The following lines describe one neuron each in the same manner 

as the .dat file describes data items. 

The SOM training log .sprj file is a text based file that describes actions and parameters 

that were used to train a SOM (see figure 28). It does not contain data itself but holds 

references to the data that was used and stored. The training log will be automatically 

created during the training process and stored to the same directory where the SOM is 

stored. The .sprj file is not necessary for visualization purposes but automatically 

documents the work that was done and thus serves as guideline for reproducing a certain 

result. 

 

Fig 28: An example of a .sprj file containing meta data describing data preprocessing and the training process. 
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3.1.5. Preprocessing training data 

Since different attributes are generally not directly comparable because they can have 

different value ranges it is usually necessary to normalize all attributes to a certain 

common value range prior to SOM training. SOMatic supports three ways of normalizing 

attributes: linear, Boolean and z-score normalization. The normalization method can be 

set for each attribute individually. Linear normalization uses this formula: 

 

�� � � �� � �������� � ����� ∗ ��� �� � �� ��� +  �� �� 

 

where Xn is the normalized value, Xmin the minimum and Xmax the maximum value of non-

normalized values. XnMax and XnMin are the desired range of the normalized values. They 

allow stretching and shifting the normalized value to any other value range. 

For Boolean normalization a threshold must be defined. All values higher than that 

threshold will be normalized to 1, lower values to 0.  

Attributes can also be normalized to their z-score. Therefore the standard z-score 

formula is used: 

 

�� �  �� � #���
����  

 

where #��� is the mean of the attribute and ���� is the standard deviation. 

SOMatic also supports missing values in the data, but it is required to eliminate them for 

the training. Three methods to deal with missing values are implemented. Either missing 

values can be replaced with an average value for this attribute, the containing attribute 

can be excluded from training or the containing training vector can be excluded from 

training. 

Attributes that have only one value in all training vectors will be automatically excluded 

from linear and z-score normalization and therefore from training, because these 

normalization methods require distributed data. Further it makes generally no sense to 

train a SOM with not distributed data, since SOM tries to organize data items according 

to their differences. If attributes do not have any difference, then it is not able to 

organize them. 

Also the option to exclude attributes on demand is available, so the user is able to train a 

SOM only with a subset of the available attributes. 
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3.1.6. Parallelization 

In order to be able to carry out SOM training simultaneously by multiple threads and to 

be able to monitor and interact with the training process a separate training surveillance 

thread was created in addition to the regular training threads. This training surveillance 

thread (TST) monitors the training progress by counting the completed training steps and 

offering a progress bar object. This progress bar object can be implemented in a GUI. 

Since SOM training usually lasts at least a few seconds such a progress feedback is 

considered as a crucial usability requirement, in order to allow the user or using system 

to estimate the running time of the training process.  

The training threads are organized in a thread pool such that they can be addressed and 

monitored in one single instance. All training threads have the exact same 

responsibilities, access to data and access to the SOM. So if only one thread is created, 

the training will be executed as standard sequential SOM training. If more than one 

thread is created, the number of required training steps is divided by the number of 

training threads, so every training thread executes only the nth part of the totally 

required training steps. The training threads work completely independent and do not 

communicate with each other directly. To ensure that neuron updates are done correctly 

and to avoid that two threads update the same neuron at the same time, the neuron 

update is synchronized. So one neuron can only be updated by one thread at a time. In 

case two threads try to update the same neuron, one of the threads is forced to wait until 

the other one has finished updating. This forces a thread to wait and therefore produces 

latency, but since the number of neurons is usually several times higher than the number 

of threads (up to 16 on a standard desktop computers, limited by the number of 

processors/cores) this situation is not considered likely enough to cause a serious 

performance drop. 

Figure 29 shows a typical sequence of the SOM training process in SOMatic and the 

threads that are involved. The SOMatic main thread is the thread that holds the instance 

of SOMatic and persists beyond training. From the main thread the TST is created. Its 

sole purpose is to give feedback about the progress of the training process as long as the 

training is going on. The TST initializes and starts the training threads. Each training 

threads does train the SOM for a certain number of training runs. Once this number is 

reached, each training thread will terminated automatically.  

After each training run the number of completed training steps is increased by 1, so the 

TST is able to measure the training progress. The TST will terminate automatically as 

soon as the progress reaches 100% i.e. the number of completed training runs equals 

the number of required training runs. Additionally to this diagram the TST also initializes 

and feeds the progress bar that visually indicates the training progress. It is not required 

to use or show the progress bar though, if SOMatic is used in a non-visual environment. 
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Finally the main thread offers the possibility to cancel the training progress. This can be 

done at any time once the training is running. 

 

Fig. 29: The sequence of threaded training tasks. 

 

 

3.1.7. Enwrapping functionality 

To simplify and unify the use of the SOMatic training library an API was created with the 

goal to provide as much functionality and at the same time reduce the number of 

methods that need to be called and objects that need to be addressed. Therefore the 

SOMatic object was created as a wrapper object that provides access to all the 

functionality and parameters of the library. It summarizes the libraries functionality into 

six methods: read a data file, normalize training vectors, initialize a SOM, train the SOM, 

store the SOM as file and store the training data as file. Additionally to these methods, 

the parameters for training can be set using setter methods, so access to parameters is 

indirect and thus parameters can be checked for reasonability right when they are about 

to be set.Figure 30 shows an example of how the SOMatic library can be used in a Java 

environment. Only the SOMatic object must be created to use the library. Accessing 

other objects is not necessary yet possible. Each method requires a set of parameters to 

be set prior to the method call. These parameter settings are not shown in this example. 

SOMatic uses a set of default values for each parameter, so it works also if none of the 

parameters is actually set by the user. 

 

Fig. 30: An example for the use of the SOMatic library in Java; parameter settings missing. 
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3.2. The GUI 

This section describes graphical user interfaces (GUI) that were implemented to 

demonstrate the functionality and compatibility of the SOMatic training library to Java 

and Processing. The Java GUI makes extensive use of parameter settings and provides as 

much functionality to the user as SOMatic offers. It is designed to facilitate the use of 

SOMatic as regular desktop application. The Processing GUI solely serves as compatibility 

demonstration and does not consider and usability issues or dependent parameter 

settings. 

3.2.1. The Java GUI 

The Java GUI for SOMatic describes the SOM training process in three stages, each 

represented by a tab just below the options menu bar. The first stage is the data 

preprocessing stage (see figure 31). It provides general settings for normalizing the 

training data, such as a global normalization method that is applied to all attributes, the 

according parameters for normalization and the action that will be applied to missing 

values. After a data file was read, it shows the attributes that were found in the data that 

are suitable for training. Non-numeric attributes are not shown because they cannot be 

used for training. Each attribute is represented by a line of user interface elements: 

attribute name, attribute specific normalization method, mean, range, standard 

deviation, percentage of missing values, whether the attribute will be used for training or 

not, the attribute specific action on missing values and the weight for normalization. 

Once the parameters are set a click on the button “process” will apply the normalization 

to the training vectors. This action can be repeated, its effects will not be cumulative 

because normalization will always use the original values and store the normalized values 

separately. Then the training process can be continued to the second stage represented 

in the second tab. 

 

Fig. 31: The Java GUI for the SOMatic library in the data preprocessing stage. 
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The second stage of SOM training with the Java GUI is related to SOM initialization and 

training parameters. In the fist, upper part SOM parameters are described and can be 

chosen (i.e. topology of the neurons, initialization method of the neuron attribute values, 

the extent of the SOM in X and Y direction measured in neurons) (see figure 32). Once 

the SOM is created by pressing the “Prepare SOM” button, the second, lower part comes 

into play. It provides parameters specific for the training of the SOM (i.e. selecting the 

neighborhood function and the similarity measure, the number of training runs, the initial 

alpha/learning rate, the initial neighborhood radius, the number of parallel training 

threads to use and an option to randomize the order of the training vectors after a 

training cycle has been completed. The button “Start Training” starts the training. 

 

Fig. 32: The Java GUI for the SOMatic library in the SOM and training initialization stage. 

The third stage of SOMatic’s Java GUI visualizes the current status of the SOM and 

animates the progress during training (see figure 33 and 34). For animation the SOMatic 

Viewer library is used (Rainer, 2013). SOMatic Viewer is a Java library developed for 

Processing to visualize self-organizing maps. It provides Processing sketches that can be 

used on arbitrary SOM files or data. These sketches can be built in any Java or 

Processing application.  

Therefore either the U-matrix visualization or a component plain can be chosen for 

animated visualization. The U-matrix the average distance between neurons in attribute 

space. It measures the distance over all attribute dimensions from every neurons to all 

its direct neighbors and uses the mean values as color value on a grey scale. All distance 

values are normalized over the whole SOM such that the highest value (at the neuron 

with the highest distance to its neighbors) has the darkest color. A component plane 

visualizes one single attribute value in all neurons. It is again normalized over the whole 

SOM to produce a high contrast image. 

Figure 33 shows the development of the U-matrix from the initial state where neuron 

attributes are randomly chosen and therefore the U-matrix does not show any structure, 

to an intermediate state during the training where several rapidly changing circular 
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patterns are visible, and the final trained state of the SOM where the U-matrix delineates 

areas of similar neurons (white) by black neurons. The white areas describe regions in 

attribute space that are more densely populated by training data items than black areas. 

   

 

Fig. 33: The U-matrix visualization of a SOM. Upper left: the random initialized SOM, upper right: the SOM during training, 

lower: the SOm after training is completed. 
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Figure 34 shows the development of one component plane during training. In the initial 

state attributes are randomly chosen, so the component plane does show this random 

distribution. During the training this random pattern gets organized and areas of equal 

color are formed. Whith the decreasing neighborhood radius these areas consolidate until 

the final component plane shows the distribution of the chosen attribute throughout 

attribute space.  

  

 

Fig. 34: The component plane visualization of a SOM. Upper left: the random initialized SOM, upper right: the SOM during 

training, lower: the SOM after training is completed. 
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3.2.2. The Processing GUI 

The GUI implemented in processing (see figure 35) is not meant to be visually attractive 

and usable. It was created to demonstrate and test the compatibility of the Somatic 

library to Processing. Thus it is kept very simple and consists of six textual user interface 

elements that represent the six methods provided by the SOMatic API (see section 

3.1.7). Each line is an interactive button and executes the related method, but only the 

default parameters can be used. The seventh line slightly separated at the bottom 

indicates the current status of the program. In this example, after the first interactive 

line was clicked and therefore the SOM created, the last line indicates success and how 

long it took to create the SOM. 

The integration of SOMatic in a Processing sketch works similarly as in a Java program. 

The library must be imported into the sketch and the SOMatic object instantiated. Then 

SOMatic is ready to be used with its complete functionality.  

 

Fig. 35: The Processing GUI for SOMatic, a simplistic proof of SOMatic’s compatibility to Processing. 

 

3.3. Proof of concept and performance tests 

This section describes the validity and performance tests that were made to compare 

qualities of SOMatic to other SOM training software. The validity or meaningfullness of a 

SOM is evaluated by visually comparing results from SOMatic to results of other SOM 

training software. The quality of a SOM is also described by measuring the average 

quantization error (QE) of it.  

First the idea of SOM training as a web application with JavaScript discussed in section 

3.1.1 is recovered, since only an artificial benchmark was used to determine speed 

differences from Java and JavaScript. This benchmark did not do any SOM training 

because the prototype was not yet implemented at that time. Second, the sequential 

training performance of SOMatic is compared to SOM_PAK's training performance. Third 



51 
 

the performance gain from parallel training will be measured. Finally estimations about 

memory usage and the following SOM size and training data size limits will be done. 

All performance tests are done on the same test environment which was a laptop 

computer with Windows8 as operating system. The web browsers Chrome (V25), Firefox 

(V17), Internet Explorer (V11), Opera (V12) and Safari (V5) were used to test the 

JavaScript performance. The hardware setup consisted of an Intel i7 processor at 3 GHz 

and 8 GB of RAM. The processor hosts 4 physical and 8 logical cores. The computational 

speed of the processor determines the running time of the SOM training, initialization and 

preprocessing. The available memory limits the size of the SOM and the number of 

training vectors that can be used at one training stage. 

3.3.1. Correctness of a SOM 

The correctness of a SOM is hardly measurable. Because at a random initial state the 

result of training is not deterministic, so SOMs trained from the same data and the same 

parameters usually look different. Never the less similar patterns occur but in different 

regions. Often two SOMs are mirrored around one or two axes. Also a similar amount of 

equally colored neurons are visible. To see if SOMatic produces similar results as existing 

and widely accepted software two SOMs were created one with SOMatic and one with 

SOMPAK and the results were compared with regard to the described characteristics. 

To evaluate the reasonability independent from solutions of other software the resulting 

SOMs of SOMatic are investigated with respect to obvious mistakes such as globally, 

homogeneously distributed training vectors or suspicious global patterns and regional 

regularly repeated patterns that could be a hint for a systematic error. 

Also the SOM and the distribution of projected training vectors should describe what is 

generally known about the data. In the Carinthian municipalities’ census data the two 

mayor cities Klagenfurt and Villach are highly different to all other municipalities mostly 

because of their size. So it is expected to see them close together on the map with 

significant distance to the rest. Other bigger cities are expected to be their closest 

neighbors on the SOM. 

The quality of a SOM can be measured by the average quantization error. Even though 

two equally created SOMs look different their average QE should be almost equal. The QE 

describes the distance of a training vector to its BMU on a trained SOM, thus the average 

QE of all training vectors is a measure of how good a SOM fits/describes the data it was 

trained with (Kohonen et al. 1995). The QE tests are run with SOM_PAK and SOMatic in 

sequential training and SOMatic in 4-threaded parallel training. The Carinthian 

municipalities’ census data was used to train a SOM of 600 neurons. As SOM training 

tends to fit the neurons to the training data the QE decreases with each training run. 

Therefore the QE tests are done with hundred, thousand, 10 thousand, 100 thousand, a 

million and 10 million training runs. 
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3.3.2. JavaScript vs. Java in SOM training 

To measure the performance difference of SOM training in Java and JavaScript, the SOM 

initialization and best matching unit search algorithm was implemented in Processing and 

deployed as Java applet and JavaScript web application on a website. Both solutions 

would create a SOM of 4000 neurons with randomly chosen attribute values and then run 

the BMU search for 20 randomly created training vectors. The time is measured for both 

actions, the SOM initialization and the BMU search. 

3.3.3. Sequential performance 

The sequential performance test measures the time it takes to train a SOM and is done 

with the final version of SOMatic and compared to the sequential training time of 

SOM_PAK. The Carinthia municipalities’ census data will be used therefore, so the 

training will be done with 46 attributes. To be able to directly compare the training times 

both programs will use the same training parameters: a SOM of 20 by 30 neurons and 

hexagonal topology, a bubble neighborhood function with an initial neighborhood radius 

of 20 neurons, an initial alpha value of 0.05 and 100000 training runs. The time 

difference from the first training run and the last training run will be measured in 

SOMatic in milliseconds. SOMPAK does only allow to measure the time in seconds, so to 

achieve representative and sufficiently exact results the number of training runs was 

chosen to be high enough to last more than 30 seconds. Therefore the measurement 

uncertainty is reduced to 3%. 

3.3.4. Parallelization speed up 

Since parallelization of SOM training is designed to be independent and only at the 

occasion that two training threads try to access the same neuron there will be a delay for 

one thread, training is expected to be almost inverted proportional to the number of 

training threads. Of course only if the number of training threads does not exceed the 

number of processors available for training. Therefore on the test setup the training time 

with four parallel training threads is expected to be close to one fourth of the sequential 

training time. 

Some time is required to initialize and start the training threads, also the threads are 

usually not equally fast, so one might already have finished its share of training while 

others are still working. This is based on the operating system’s task scheduling which 

tries to distribute computing resources to all tasks equally, and treats the SOM training 

tasks equal to any other task running on the computer. This cannot be dealt with in Java 

and it’s expected to have a negligible effect on the overall performance but might lead to 

unexpected irregularities in training time measurements. Also, due to the additional 

preparation effort for multi-threaded training, the performance gain on smaller SOMs is 

expected to be less. 
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To be able to test the parallelization of SOMatic up to eight parallel threads, a computer 

with two quad core processors of Intel’s type Xeon 5520 was used for this test. The goal 

was to find out how much SOMatic’s way of training parallelization can improve training 

time and whether the SOM size has an impact on the performance gain through 

parallelization. Therefore three benchmarks were designed: once a SOM of 400 neurons a 

SOM of 10000 neurons and then a SOM of 1 million neurons was used for training. The 

benchmarks did not differ in any other parameter, except the number of training runs, 

which was 100000 for the first and 4000 for the second and 100 for the third benchmark, 

to keep absolute training time low and the training test quicker. To compare performance 

of all benchmarks the training times were normalized to the sequential training time, so 

the performance gain will be directly comparable. As main measure for multi-threading 

efficiency the difference between optimal and actual performance increase is used.  

To see the relation of training performance to the actual number of available physical and 

logical processors, multi-threaded training tests were also performed on the standard 

test computer. 

3.3.5. SOM size limit (memory usage) 

To find the limits of SOMatic concerning SOM size (i.e. maximum number of neurons and 

attributes) tests are done to measure the memory usage of SOMatic when a SOM is 

created. Thereby it is of interest to see whether the number of neurons and the number 

of attributes have a different influence on the memory usage. Therefore tests are run for 

both parameters and compared independently. Both parameters are increased iteratively 

to find the maximum SOM size possible to initiate in 8 GB of memory. 

Also the memory usage of training data is measured in a similar way. Therefore a 

different data set is used. The data set for this test consists of more than 66000 data 

entries with 100 attributes each. It is derived from textual analysis of conference 

abstracts from the Annual Meeting of the Association of American Geographers. Since 

training data is kept in memory three times (original values read from the file, parsed 

numerical values and normalized numerical values), a higher memory consumption then 

for a similar amount of neurons is expected. 
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4.  Results 

This section describes the physical and scientific results i.e. the characteristics of the 

SOMatic prototype and the correctness and performance tests. It describes the main 

component of SOMatic, the SOM training library, its functionality and limits and the 

implemented GUIs that proof the functionality and compatibility of the library with other 

software. 

The reasonability and performance tests show that SOMatic produces correct SOM and 

that its performance is better than SOMPAK due to the multi-threaded SOM training, but 

highly dependent on the number of processors available for training. 

4.1. The SOMatic Prototype 

The SOMatic prototype consists of three separate components: the training library, the 

Java GUI and the Processing GUI whereas the main component is the training library 

because it contains all the functionality necessary to process data and train a SOM. The 

Java GUI demonstrates how the library can be used in a self-contained user oriented 

interactive program. It makes use of the API provided by the library and does not add 

any functionality to it. Its purpose is to proof and show that the training library works 

and can actually be brought to use. The Processing GUI does proof that the training 

library is compatible with Processing and serves as an example on how to integrate the 

library in a Processing sketch. It is not intended to be a best practice example, rather a 

simple showcase that the requirements for a Processing library are fulfilled. 

Since the SOM training library is considered the main component of the prototype, in this 

section “SOMatic” will refer to the training library only and not the GUIs. 

4.1.1. Functionality of SOMatic 

The functionality of SOMatic can be structured in four main working steps: reading 

training data, preparing and normalizing training data, creating and training a SOM, 

storing results and documenting processing steps. 

Training data can be read from either a CSV or a DAT file. The CSV must be organized as 

regular table with attribute names in the first row in order to be correctly interpreted by 

SOMatic. The DAT file format was extended by optional meta data such as attribute and 

entity names and geographic IDs in case data is derived from a geographic source and 

references thereto have to be kept. The extensions are designed to be keep the file 

format compatible with the original DAT file format from SOMPAK (Kohonen et al. 1995). 

SOMatic automatically interprets all data that is found in a file and tries to find attributes 

that are suitable for training. Attributes with alphabetical values are automatically 

excluded from training. Attributes of training vectors with missing values can be excluded 

from training. Missing values can also be replaced with an average value. For all numeric 

attributes SOMatic calculates some basic statistical values that are used for 
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normalization: mean, maximum, minimum and standard deviation. Somatic provides 

three normalization methods: linear, Boolean and z-score normalization. For linear 

normalization any value range can be defined as target range individually for each 

attribute, the default value range is 0-1. Boolean normalization assigns either 0 or 1 as 

normalized values. Depending on a defined threshold that is individually defined for each 

attribute, a value higher than the threshold is normalized to 1, others to 0. Z-score 

normalization calculates the z-score of each value. No parameters can be set for this 

normalization method. 

SOMatic can deal with two-dimensional planar SOMs only. The initialization of a SOM 

allows 4 parameters to be set: the number of neurons in X and Y direction, the topology 

of the neurons and the method for deriving the initial values of the neurons. Any integer 

number from 1 – the numerical limits of Java can be chosen as SOM size, although the 

memory usage of neurons and computational power will set a much lower limit to that 

size. Somatic supports rectangular and hexagonal neurons topology. As initialization 

method only random is supported. For training 6 parameters can be set: number of 

training runs, initial learning rate, neighborhood function, initial neighborhood radius, 

number of parallel training threads, randomizing training vectors after each training 

cycle. SOMatic supports bubble and linear neighborhood function, the neighborhood 

radius and alpha value decrease linearly to zero during training with the rising number of 

completed training steps. During SOM training a progress bar is provided that shows how 

much of the training steps are already completed. Training can be performed in as many 

parallel threads as logical processors are available. Each training thread works as 

independent training instance but shares the SOM and training data with all other 

training threads. This way no inter-thread communication and latency occurs and neither 

data nor the SOM must be distributed or held redundantly for each thread as it is done in 

most recent studies (see section 2.8). 

When a SOM was trained the used training data and the SOM can be stored as DAT and 

COD files following the SOM_PAK file format with the added meta data support described 

in section 3.1.4. SOMatic also automatically documents all processing steps that are done 

to training data and the SOM. This documentation is stored automatically in the SOMatic 

project file format (SPRJ) as a separate file with the COD file of the SOM. The SPRJ 

format was especially created therefore. 
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4.2. Correctness and performance evaluation 

The correctness of a SOM is evaluated by two visual factors: the absence of systematic 

errors and the confirmation of previously known facts. Systematic errors can be visible as 

regionally repeated patterns, a uniform distribution of attribute values or outliers that do 

not occur in the data. Previously known facts can be reviewed by projecting the training 

data onto the SOM and verifying that objects that are known to be similar are located on 

close or equal neurons in the SOM. 

Figure 36 left shows a component plane visualizing the “area” attribute. Distribution of 

this attribute shows a clear structure and no surprising outliers. An effect of slight line 

displacement can be seen at the left center of the SOM. It seems as if every second line 

is displaced for 1 neuron. This component plane shows that large municipalities can be 

organized in two groups (two black areas in the SOM). Other averagely sized 

municipalities are rather equally distributed. 

The right side shows the distribution of population among municipalities and it shows a 

noticeable concentration of high values in the left upper corner. This can be explained 

with the fact that there are only few municipalities with a high population and most 

others have a rather low and equal population, thus it cannot be considered an error but 

rather an approval of a correct result. 

 

 

Fig. 36: Component planes created with SOMatic and visualized with the SOMatic Viewer (Rainer 2013) showing attributes 

area (left) and population (right). 
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The hit histogram in figure 37 shows the distribution of training data across the SOM. In 

accordance to the population component plane (figure 36 right), the municipalities with 

the highest population are matched to neurons in the upper left corner (Klagenfurt, 

Villach, Wolfsberg, Spittal). As the area component plane sais, large municipalities are 

found in the lower center of the SOM (Malta, Krems, Metnitz). In accordance to the 

population component plane they have very little population. This combination of big 

areas and low population can be explained with the fact that they are located in a very 

mountainous area where big areas are not suitable for settlement. 

 

Fig. 37: A component hit histogram with the Carinthia municipalities matched onto the SOM, visualized with SOMatic 

Viewer (Rainer 2013).  
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The U-matrix visualization in figure 38 shows a mostly equal distribution of attribute 

space in the SOM, except for the upper left corner, where the bigger cities are located. 

This means that the municipalities in Carinthia can mostly be divided in two groups, cities 

and rural municipalities, which are relatively homogenous. So the difference between the 

two classes are higher as the differences among rural municipalities, according to census 

data. 

 

Fig. 38: The U-Matrix shows distance in attribute space among the neurons, a measure for similarity of neighboring neurons 

and data items matched thereon. 

 

4.2.1. Comparison of SOMs from SOMatic and SOMPAK 

The comparison of two SOMs that were created with the same parameters and data is 

not a straight forward process as measuring difference in numeric values, because it is 

not a deterministic process. Since the starting point of SOM training is a randomly 

initialized SOM, the result will differ every time. Also the order of training vectors can 

influence the order of regions in a SOM. Usually the global orientation of the SOM is 

different. A SOM can be mirrored or rotated, because it does not have any absolute 

orientation. 

Equal SOMs will always show the same structure though, which means that 

corresponding areas/clusters will be visible in equally created SOMs. Corresponding areas 

are recognizable by their size and their relative position to other areas.  

Fig 39 compares component plains from the population attribute. The left component 

plain was created with SOMatic, the right component plain was created with SOM_PAK. 

Their overall structure is mirrored along the vertical axis. Both show a concentration of 
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neurons with a high population attribute in the lower left or right corner respectively. 

Neurons with average population values are mostly located around that area but also 

scattered over the rest of the SOM. 

SOM_PAK creates smoother transitions between the neurons, so the differences of 

directly neighboring neurons are lower. Therefore SOMatic creates more self-contained 

clusters with clearer borders. 

     

Fig. 39: Comparison of population component planes from SOMatic (left) and SOMPAK (right). 

 

The component plains in figure 40 show the area attribute, SOMatic to the left and 

SOM_PAK to the right side with similar differences and similarities. Neurons with high 

area values are organized in two areas in the SOM. In the SOMatic verison the high area 

neurons are less concentrated and cover a bigger part. 

       

Fig. 40: Comparison of area component planes from SOMatic (left) and SOMPAK(right). 
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In figures 39 and 40 the correlation of population and area of a municipality is visualized. 

Neurons with a high population can only be found in one area, whereas neurons with 

high area values can be found in several areas of the SOM. High values in population and 

area do not necessarily have to occur together, but in both solutions a cluster of neurons 

with high population and area values can be found.  

  

The average quantization error (AQE) of a SOM describes the distance of training vectors 

to their best matching neuron. Therefore it can be used as measure for describing how 

good a SOM describes the data it was trained with, the lower the AQE the better.  

Tests on a SOM with 600 neurons that was trained with the Carinthian municipalities 

census data using SOM_PAK and SOMatic in sequential and 4-threaded parallel training 

show that there are almost no differences between the programs and also parallel 

training achieves equal results (see figure 41). Some interesting issue occurs in 

SOM_PAK when 1000 training runs are done, the AQE is even higher than with 100 

training runs. No reason could be found for that behavior, which continued to occur every 

time the test was run. In all other settings SOM_PAK’s results are similar to SOMatic’s. 

Also the multi-threading of SOMatic results with AQEs that do not differ from SOMatic’s 

sequential training. Only with 1 million training runs SOM_PAK's AQE is noticeably lower 

(0.19 to 0.24), and with 10 million training runs SOMatic’s sequential training has a 

higher AQE than SOM_PAK and SOMatic’s multi-threaded training (0.03 to 0.11). 

 

Fig. 41: The relation of the average quantization error and the number of training runs in SOMatic, tested on the Carinthian 

municipalities census data. 

4.2.2. Performance test results 

To compare the performance of Java and JavaScript SOM initialization and BMU search 

was implemented in Processing and deployment in Java and JavaScript. Both benchmarks 

were run on the same computer and on the most common web browsers. See figure 42 

for detailed results. As it was already measured in section 3.1.1 the JavaScript versions 

performance depends very much on the browser. So the slowest browser (Firefox) takes 
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4.9 times as much time in BMU search as the fastest Browser (Chrome). In random SOM 

initialization Opera is the slowest browser and takes 2.9 times as much time as the 

fastest (Chrome). Java is still the fastest in both categories, even though its advantage is 

not that big anymore as in the artificial benchmark from section 3.1.1. It has a minimum 

performance advantage to the best browser of 1.8 times in BMU search and 6.9 times in 

random SOM initialization. This advantage can be up to 10.2 and 20.7 times if compared 

to the slowest browser. 

 

Fig. 42: Performance test results of Processing code deployed in Java and JavaScript.  

 

The results support the decision to create a Java library for SOM training because 

processing time is a crucial issue and can easily extend over several minutes and hours 

even for moderate SOMs. Especially the big advantage of Java in SOM initialization – 

which involves random number generation and writing values to memory – shows that 

Java is much more suitable for SOM training then JavaScript. Nevertheless the efficiency 

of the code was not evaluated because it was automatically created by Processing. 

 

SOMatic’s training performance was compared to SOM_PAK's training performance by 

training the same SOM with the same data and the same parameters. The number of 

training runs was chosen such that the SOM_PAK training would take around 30 seconds 

because SOM_PAK measures training time in seconds only, so measurement uncertainty 

is around 3%. 

The results (see figure 43) show that SOMatic takes up to 1.63 times more time than 

SOM_PAK, but the number of neurons does not seem to make any difference. Whether 

the SOM consists of 1200, 600 or 300 neurons, SOMatic takes between 1.61 and 1.63 

times more time for training.The performance difference depends highly on the number 

of attributes. The Carinthian census data contains 46 attributes. When only 20 attributes 

are used for the same number of training steps and neurons SOMatic can reduce the 

training time from 53 to 26 seconds, SOM_PAK’S training time is reduced from 33 to 23 
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seconds. So SOM_PAK’s performance advantage is reduced to 13%. When only 3 

attributes are used, the performance difference is reduced to 9%.  

SOMatic can compete with SOM_PAK's performance as long as the number of attributes 

is low. Due to the increased performance drawback with a higher number of attributes, it 

seems that SOMatic’s implementation of attribute access is not ideal and might be 

improved. 

 

Fig. 43: Training performance comparison of SOM_PAK and SOMatic. 

 

During the sequential training performance tests, also the BMU search and neuron 

update times have been measured in SOMatic (figure 44). In scenarios with a higher 

number of attributes the ratio of BMU search and neuron update time is between 1.98 

and 2.34, only with a very low number of attributes (3) the ratio is 1.71. All tests assume 

a linear decay of the neighborhood radius and an initial radius of as many neurons as the 

width of the SOM has. As the neighborhood radius defines how many neurons will be 

updated each training run, the ratio would decrease when the radius is decreased and 

vice versa. 

 

Fig. 44: Share of BMU search and neuron update on overall training time in SOMatic. 
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Parallel training performance measurements showed that SOMatic’s parallel training 

implementation can boost training up to 9.14 times on the used test platform. Therefore 

SOMatic was also run on a computer with 8 physical and 16 logical cores instead of the 

standard test platform which only provided 4 physical and 8 logical cores. There results 

were achieved on the 8 physical / 16 logical core machine. The figures 45 a-c show the 

actual training time ratio derived from multi-threaded training time normalized by the 

sequential training time. 

On a SOM with 400 neurons (see figure 45a) SOMatic’s multi-threaded training scales 

almost optimally up to a thread count of 5. Not more than 10% difference between the 

optimal scaling ratio and actual scaling ratio. At higher thread counts this difference 

increases more dramatically up to 50% at 8 threads (100% utilization of physical cores). 

When 12 or 16 training threads are used (100% utilization of logical cores) the difference 

between optimal and actual training time goes up to 93% and 140%. The overall training 

performance increases with every additional training thread, when more threads than 

logical cores are used, the training performance increases less efficiently. 

 

Fig. 45a: Parallel SOM training performance gain with 400 neurons. 
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On a SOM with 10000 neurons the parallel training works more efficiently (see figure 

45b). Especially in the case of 5 and 6 training threads SOMatic scales only 4% and 7% 

slower than optimal. On lower thread counts this percentage is even lower. On higher 

thread counts scaling deteriorates such that on 8 threads a difference of 32% and on 16 

threads a difference of 117% is measured. Training performance scales well up to 6 

threads, performance increases but scales less on a higher thread count. 

 

Fig. 45b: Parallel SOM training performance gain with 10,000 neurons. 

 

On a SOM with 1 million neurons a similar behavior occurs (see figure 45c). Up to a 

thread count of 6 SOMatic’s parallel training scales almost optimally, only 2.5% 

difference. Scaling deteriorates with increasing thread count but no as much as it did on 

the smaller SOMs. The highest difference between optimal and actual scaling occurs at 

16 training threads with 75 percent, at 8 threads the difference is 35%. 

 

Fig. 45c: Parallel SOM training performance gain with 1,000,000 neurons. 
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To be able to see the relation of training performance to the actual number of available 

physical and logical processors, multi-threaded training tests were also performed on the 

standard test computer with 4 physical and 8 logical cores (see figure 46 a-c). The same 

test procedure was applied. 

On a SOM with 400 neurons (see figure 46a) the SOMatic multi-threaded training scales 

only 5.1% lower than optimal up to a number of 4 training threads. With a higher 

number of threads the performance still increases but less effectively, such that with 8 

training threads the training time is 61% higher than the optimal scale. 

 

Fig. 46a: Parallel SOM training performance gain with 400 neurons. 

 

On a SOM with 10000 neurons parallelization works less efficient on a number of threads 

lower than the number of physical cores (figure 46b). Training time is 6.2% higher for 

two threads and already 17.5% higher for four threads compared to optimally scaled 

training time. For higher numbers of threads, the results are almost identical with those 

from a 400 neuron SOM. Training performance increases but training efficiency 

decreases.  

 

Fig. 46b: Parallel SOM training performance gain with 10000 neurons. 
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performance efficiency does not deteriorate as much with a higher number of training 

threads. With eight threads the parallel training is 36% slower than the theoretical 

optimum. So a higher number of neurons seems to be more suitable for a higher grade 

of parallelization with logical cores. The results do not give any reason to believe that 

training parallelization efficiency does depend on the number of neurons as long as the 

number of threads does not exceed the number of physical processor cores. 

 

Fig. 46c: Parallel SOM training performance gain with 1 million neurons. 

 

 

Memory usage of a SOM depends on two parameters, the number of neurons and the 
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GB. To guarantee stability of the program and due to the obvious linear relation of 
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On a SOM with 100,000 neurons 6400 attributes make up a memory usage of 2927MB 

(figure 47), about the half of the usable memory. So an estimated 12000 attributes can 

possibly be created in the available 6GB of memory. 

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,00

0,10

0,20

0,30

0,40

0,50

0,60

2 3 4 5 6 7 8

number of threads

ratio

opimal ratio

difference in %



67 
 

 

Fig. 47: The memory usage of a SOM with 100,000 neurons. 

 

On a SOM with 1 million neurons the highest tested number of attributes was 800, which 

resulted in a memory usage of 4360MB (figure 48). Following the linear memory increase 

with increasing number of attributes, an estimated 1000 attributes could be created 

within the limit of 6GB of memory. 

 

Fig. 48: The memory usage of a SOM with 1 million neurons. 

 

A SOM of 10 million neurons and 50 attributes uses about 3860 MB of memory, thus an 

estimated 75 attributes could be used to reach the limit of 6 GB (figure 49). If only 6 

attributes are used, the SOM already requires 2100MB of memory. Thus, this memory 

mostly consists of meta data, memory references and functions that are implemented.  
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Fig. 49: The memory usage of a SOM with 10 million neurons. 

 

The results show that the memory usage of a SOM is almost equally dependent on the 

number of neurons and the number of attributes. So a SOM with n neurons would require 

10 times more memory than a SOM with n/10 neurons. The almost same relation applies 

for the number of attributes. The number of neurons has a slightly higher influence on 

memory usage than the number of attributes. As can be read from figures 47 and 49 a 

SOM with 100,000 neurons and 4000 attributes requires around 2200MB of memory 

whereas a SOM of 10 million neurons and 40 attributes requires 3400MB of memory. 

In general can be said that SOMs which require several gigabytes of memory are too big 

to be seriously trained on a standard computer. One training run on a SOM of 10 million 

neurons and 46 attributes takes 9 seconds.  Scenarios that would require a SOM of 

comparable size usually includes several thousand/million training vectors (see Skupin 

2013 and Biberstine 2012). Another usual requirement is, that every training vector must 

be used for training several times. Therefore the number of training runs will most 

certainly exceed 1 million, which would require several months of training time. 
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5. Discussion 

SOMatic Trainer is a prototype of the independently reusable SOM training application 

proposed in this thesis. It is implemented in Java and consists of three parts: the core 

training library, a GUI based on standard Java user interface elements and an alternative 

GUI implemented in Processing. The library is not executable by itself but requires some 

application to make use of it, as it only provides functionality for processing data, 

preparing and training self-organizing maps. It is accessible via an API that provides six 

main functions that are used to train a SOM. It is further able to read arbitrary data in 

either .dat or .csv format and therefore not restricted to the Carinthian census data only. 

The utilization of the library in two different GUIs demonstrates its independence and 

versatile reusability. It implements several variants of data normalization and similarity 

measures and allows adding more variants. Also diverse methods for initializing the 

values of a SOM can be added. However, such a method might require some data 

analysis. The Java GUI also demonstrates the library’s ability to visualize the current 

status of the SOM during SOM training. Therefore the SOM visualization abilities of 

SOMatic Viewer (Rainer 2013) were used which were implemented in Processing. 

The parallelization of the training algorithm does not require redundant or distributed 

data or SOM. It is designed to execute independent training threads that do not interfere 

with each other and therefore do not have wait or rely on another. All training threads 

use the training data and the SOM as if they were a single self-contained training 

instance. Only at updating the values of a neuron threads require synchronized access to 

the value, such that no other thread can access that value as long as it is being changed. 

Tests have shown that this parallel training implementation is scalable to at least eight 

physical processor cores on a computer. With the use of 8 physical respectively 16 logical 

cores training can be accelerated up to 9.14 times. Sequential SOM training is 1.6 times 

slower as in SOM_PAK, but training with two parallel threads can already be faster than 

SOM_PAK. Thus, under consideration of present day computing resources SOMatic can be 

considered faster than SOM_PAK, since SOM_PAK was created in 1992 and not updated 

since 1995 (Kohonen et al. 1995). Even though parallelization does reduce the training 

time the training of huge SOMs such as in Skupin 2013 or Biberstine 2012 does not 

become feasible to be executed on a standard desktop computer. 

SOMatic’s parallelization does not reduce the quality of a SOM. The average quantization 

error (AQE) of a parallel trained SOM is equally high as the AQE of a sequentially trained 

SOM and also equally high as a SOM trained by SOM_PAK. 

SOMs trained with SOMatic produce reasonable results and show expected patterns and 

ordering of input data items. So municipalities that are obviously similar in census data 

attributes are found on close neurons in the SOM. Also the distribution of values in 

component planes are organized in reasonable patterns and do not disagree with known 

patterns in the data. Also SOMatic’s SOMs are very similar to SOM_PAK’s. SOM_PAK 
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creates smoother transitions between neurons, which on the other hand results in clearer 

structures and patterns in SOMatic. Nevertheless SOMatic struggles with an occasional 

minor systematic error in hexagonal SOMs. Evenly numbered rows appear to be shifted 

for half a unit such that an unnatural zigzag pattern appears. 

SOMatic Trainer can be integrated in any automated workflow that is able to deal with 

Java libraries and thus facilitates SOM training such that the creation of a SOM and the 

visualization of the result can be done without any human interaction and additional 

software. The real-time visualization of the SOM during training as well as the parallel 

training algorithm make it unique as no other SOM software provides these features. 

6. Future Work 

This topic addresses features that are not yet included in SOMatic or issues that have 

caused problems that could not yet be solved or explained. They are organized in the 

subsections Functionality and Investigation. 

6.1. Functionality: 

SOMatic does log all parameters and actions that were taken while creating a SOM and 

stores this information as .sprj file when the SOM is stored. This file describes what data 

was used for training, how it was preprocessed, how the SOM was initialized and how it 

was trained. However it is not possible to load such a .sprj file and have these settings be 

executed automatically without external interference. Such a function would allow using 

the .sprj file as script that describes a sequence of functions and therefore increase the 

ability to repeat SOM training with a certain set of parameters and files. 

To be able to compare results of different parameters it would be necessary to 

start training with a completely identical SOM. SOMatic requires to generate a new SOM 

every time a training is done, such that multiple training stages cannot be started from 

the same SOM. A function to read a SOM from a file would solve this problem. 

In order to achieve a proper SOM with less training steps, the initial SOM values can be 

derived from the principal components of the training data. PCA is not yet included in 

SOMatic but the ability to initialize a SOM differently than random was considered in the 

design and can be added. 

6.2. Investigation: 

Parameters, temporary parameters, attribute values and objects are centrally and 

hierarchically organized. Therefore the call of a specific value is occasionally complicated 

and requires method calls on objects that are not actually of interest. This nested 

structure allows comprehensible intuitive code design but might result in a certain 

performance drawback. If hierarchical levels and conditions can be reduced training 
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performance might also be increased. Especially the significant performance advantage of 

SOM_PAK indicates that SOMatic’s organization of objects might not be optimal for 

performance. 

Even though the AQE does not decrease as the number of parallel training threads rises it 

is not proven that at an equal number of training runs is equally efficient in parallel 

training as in sequential training. So it is not clear if sequential training with 10000 

training runs is equally effective as parallel training with four training threads and 2500 

training runs per thread. No obvious evidence for inequality could be found so far, but no 

extensive investigation was done either. Also no existing study about parallel SOM 

training that addresses this matter was found. 

The comparison of SOMatic SOMs to SOM_PAK SOMs showed that SOM_PAK produces 

smoother transitions between neurons which make a SOM look more purposefully 

organized. It is not clear why this effect occurs and what the consequences are and 

whether it means that SOMatic produces less qualitative SOMs. Detailed comparison of 

the SOM_PAK and SOMatic training algorithm implementation might solve that issue. 

Another effect is clearly an error or SOMatic. Occasionally unevenly numbered rows seem 

to be shifted for half a neuron in hexagonal SOMs. The cause of this effect could not be 

found until now. Nevertheless the SOMs are still useful, also because the visibility of the 

effect decreases when the number of neurons is increased. 
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