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ABSTRACT 
 

 
The Self-Organizing Map (SOM) is an artificial neural network, used to determine 

similarities in high-dimensional datasets through simplified abstractions. This thesis 

deals with the development of an interactive and integrable SOM visualization tool. 

The aim of this work is to support students and researchers to accelerate their 

understanding how to analyze large datasets using the SOM approach and to 

provide software that is open for modifications. The implemented SOMatic Viewer is 

a toolset which consist of a Processing 2.0 library for SOM visualization and a 

standalone Java application. The difference to other SOM software is its ability to be 

used within a larger knowledge discovery workflow. It provides seven popular SOM 

visualization techniques, from component planes and the U-Matrix to input vectors 

projected onto the SOM. Both similarity- and topology-based SOM coloring as well 

as k-Means clustering are integrated. SOM visualizations can be linked to the 

geographic space to find spatial relationships and clusters. Therefore, loading of 

referenced Shapefiles is supported. SOMatic Viewer uses an enhanced version of the 

well-known SOM_PAK file format. Application settings can be saved and restored 

with project files. The core of the software is a flexible SOM grid and the interactive 

selection highlighting between all visualizations and data tables. The software can 

be seen as first release and is intended to be improved by students or by the 

Processing community in the future. As practical example, SOMatic Viewer is applied 

to a real-world dataset to analyze the census records of municipalities in the region 

of Carinthia, Austria. The preprocessing and SOM training procedure together with 

results and conclusions are given. Another outcome of this thesis is the classification 

of SOM visualization techniques. A classification matrix which contains 23 

visualizations, logically ordered into four main groups, is created. Through the vast 

collection of SOM visualization methods and latest research activities described 

throughout this thesis, it provides an interesting overview about the current state of 

the art in the field of SOM visualization research. 
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1.  

Introduction 
 

 
This chapter gives an introduction to the applied research work presented in this 

thesis. It describes the motivation for pursuing this work, investigates the 

background by discussing used terms and methodologies and lays out the problem 

statement. Then, the underlying goals and research questions are explained in 

detail. Further, it gives a summary about the methodology as well as the expected 

results. An overview about the structure of this thesis is presented at the end. 

 

 
1.1 Motivation 
 
Dealing with high-dimensional data is demanding work where correct information 

extraction and interpretation requires specific domain knowledge. In contrast to 

conventional data mining techniques, a Self-Organizing Map (SOM) provides visually 

understandable results by showing clusters and dependencies between elements 

through ordering similar objects close to each other. A variety of visualization 

methods, from component planes to distance matrices and creative trajectory maps, 

can be applied and represent multi-facetted information from input records. A SOM 

is an artificial neural network (ANN) which breaks down high-dimensional data into 

simplified abstractions and enables preserving topological and metric relationships 

(Kohonen 1998).  When speaking of a high-dimensional data space, it describes the 

amount of attributes which define a certain object. SOMs help to find complex 

correlations and allow retrieving valuable information from those data spaces. 

Visualizations of a SOM are objective and scalable, this makes it easier to define and 

handle the results. In the manner of how attributes are depicted in geographic 

space, SOMs can even serve as a serious alternative to conventional maps (Skupin 

and Esperbé 2011). 

This thesis work aims to support students and researchers to accelerate their 

understanding how to analyze large datasets and to provide new perspectives from 

various angles. The implemented SOM visualization library has programming 

interfaces, which allows integrating additional visualization methods and new 

functionalities, such as clustering algorithms, or other distance measures. Since the 

emergence of SOM in year 1982 and its first software package, called SOM_PAK 

(Kohonen et al. 1995), a bunch of software applications and toolboxes have been 

implemented for SOM training and visualization. Most of them are still updated and 

have a varied range of functionalities, but they are not designed for specific 

integration purposes into other workflows and usually not open for modifications 

too. Seven different software products and add-ins are described in section 2.1. 
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Data mining tools are complex. It requires some time to get used to the software, 

whereas there is often the need to get quick results. The present thesis work is 

intended to give support to that demanding task. The extendibility and portability of 

this library is a criterion to make it attractive for future use. Therefore, the chosen 

programming language Processing (2013) with its simplified syntax enables 

extending the library, even in case of limited programming knowledge. As there is 

no current SOM visualization library available in Processing, this is a challenge and 

great motivation to create a modular SOM toolset and contribute it as an official 

library to the community. Further, a SOM Visualization tool which integrates the 

library is developed and used to analyze the sample dataset of Carinthia census 

data as a practical example of the implementation. 

Another major interest of this work is the combination and interaction of all three 

types of SOM visualizations. In the end, not only visualizations of the SOM itself are 

provided, there is also a connection of the attribute space with Geographic 

Information Science (GIS) and visualizations in geographic maps. Working in the 

rather small research field of Self-Organizing Maps offers the need of open and 

extendible toolsets. An entire knowledge discovery workflow, for instance, becomes 

long and tedious and requires integrable and modifiable libraries. The SOM 

visualization library for Processing can be used as a part of an automated 

computation process with a combination of different data analysis techniques such 

as dimensionality reduction, spatial clustering and GIS functions. According to the 

statement of Skupin and Fabrikant in 2003, “the potential of SOMs seems 

inexhaustible, because they can be used for any kind of attribute data and they 

provide the possibility of mapping almost everything”. 

 
1.2 Background 
 
This chapter provides explanations about the principle of a Self-Organizing Map, the 

field of visual data mining and knowledge discovery, as well as it discusses the term 

geovisualization and how it is connected to this research work.  As the major part of 

the implementation is based on the programming language Processing, it is also 

described here. 

 
1.2.1 Self-Organizing Maps 
 
The Self-Organizing Map, also called Kohonen Map, or Self-Organizing Feature Map 

(SOFM), was developed by the Finish professor Teuvo Kohonen and is a type of 

artificial neural network (Kohonen 1998). The term ’self-organizing’ describes the 

fact that there is no supervision used. SOMs learn on their own through 

unsupervised competitive learning methods. The SOM consists of neurons, also 

called units or nodes, organized on a regular, mostly two-dimensional, grid. The 

SOM terminology uses a couple of different words for the same terms. A complete 
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list of equivalent expressions can be found in Table 1. The usual arrangement, so 

called topology, of these nodes is rectangular or hexagonal, as depicted in Figure 1.  

 

             

Figure 1: Regular two-dimensional SOM topologies, using 
 (a) rectangular or (b) hexagonal arrangement. 

 

The used topology affects the connection of neighbors. In a rectangular topology a 

neuron has a maximum of four neighbors, where in a hexagonal arrangement six 

neighbors are connected with each other. A hexagonal grid is more frequently used 

and provides smoother transition in visualizations. There are other approaches such 

as a spherical topology, which is not subject of this work, but shortly described in 

the literature review, subsection 3.3.2. The SOM uses three different layers (see 

Figure 2).  

 

 

Figure 2: Structure of a SOM. First, initial values are given to the weight vectors from the 
input layer. During training phase the BMU is determined on the competition layer.  

A visual representation of the results is done on the output layer  
(image source: Mongini and Italiano 2001). 

(a) (b) 



 

 
4 

 

 

There is the SOM competitive layer with its neurons and the input layer containing 

the high-dimensional input vectors. The resulting output layer contains the topology 

preserved map units. Each input vector is associated with a set of weights in the 

same dimension. To understand how a SOM operates, it is useful to know that the 

algorithm combines two tasks: training and mapping. The training step constructs 

the map using learning vector quantization (LVQ) as competitive process. During 

this process, the distance of an input vector to all weight vectors is calculated. Used 

distance measures include Euclidian, Cosine, or Manhattan distances. The neuron 

with the most similar weight values to the input vector is called best matching unit 

(BMU). Once the BMU is found, the input vector is assigned, so-called mapped, to 

this single winning neuron. The weights of the BMU including surrounded nodes are 

then adjusted towards the input vector. An example of this process, using a 3x3 

SOM arranged in rectangular topology and trained with four input vectors, can be 

seen in Figure 3. 

 

 
Figure 3: The competitive learning process from initialization of the neurons (a) to the  

adjusted weights (e) from four input vectors after best matching unit search  
(Skupin and Agarwal 2008). 

 

This process is repeated for each input vector for a usually large number of training 

iterations. The magnitude of change, so called training rate, as well as the distance 

measure is reduced over time. This also reduces the number of weights that get 

updated per iteration. Figure 4 illustrates the non-linear projection during training in 

the high-dimensional input space. The projection is restricted to the map topology. 

This topology-preserving mapping shows that the more similar two data samples 

are in the input space, the closer they will appear together on the final map. In 

other words, it preserves the relative distance between the points. The visualization 

of a SOM allows cluster identification and pattern recognition. Therefore, SOMs 

operate both as a kind of visual similarity graph and clustering diagram. It 

comprehensively visualizes natural groupings and relationships and has been 

successfully applied in a large spectrum of research areas ranging from speech 

recognition to biomedical analysis. Due to the fact that SOM enables low-

dimensional views of high-dimensional data, it is restricted to its grid projection. 
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Enhanced algorithms, which tackle this limitation, are discussed in section 3.3. In 

recent years, research brought up some alternatives and extensions to the basic 

SOM technique, such as the growing (hierarchical) SOM or the time adaptive Self-

Organizing Map to name only two of them. These methods are not described and 

dealt within this thesis work. 

 

                

 

                
 

Figure 4: Non-linear projection of a 5x5 SOM, where the nodes are iteratively moved 
towards their best matching units in multi-dimensional input vector space (image source: 

http://www.peltarion.com/doc/index.php?title=Self-organizing_map). 

 

SOMs are applied in any fields of science where high-dimensional data needs to be 

visualized and relationships need to be found. Examples for such application areas 

are multispectral remote sensing imagery, biomedicine, robotics, socio-economics, 

finance and trading, or climatology. 

 

(a) (b) (c) 

(f) (e) (d) 
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Table 1: SOM Terminology. 

 

1.2.2 Visual Data Mining and Knowledge Discovery 
 
As SOM is a technique used for visual data mining and knowledge discovery, these 

two terms require some further explanation. Traditional methods for extracting 

knowledge from data involved manual analysis and interpretation. Since in all fields 

of science, society, and industry massive amounts of data are collected, there was 

the need of computational theories and tools to assist humans in retrieving useful 

information from the rapidly growing volumes of data (Fayyad et al. 1996). For this 

purpose, knowledge discovery in databases (KDD) emerged. KDD deals with the 

development of techniques to make sense of data, by providing a more compact, 

abstract, and more useful view on voluminous datasets. To handle the problem of 

data overload, data mining, as advanced analysis step in the KDD process, applies 

specific methods for pattern recognition and extraction. Machine learning, artificial 

intelligence and statistics provide the technical basis for data mining. Visual data 

mining aims at integrating the human’s perceptual abilities, presenting the data in 

some visual form, getting insight to the data, drawing conclusions, and directly 

interacting with the data (Keim 2002). To find hidden information in the data, visual 

data mining as a technique for knowledge visualization uses representations in 

multiple dimensions and hierarchies. Varied display technologies and methods for 

interaction, such as zooming, filtering, or projection enhance this interdisciplinary 

research field. Because of limitations in human visual and cognitive processing 

restricted by large volumes of numbers and objects in a two dimensional map 

(Koaua 2003), a SOM visualization framework provides powerful functions to 
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analyze geospatial data which meet exactly these requirements. Figure 5 shows 

such a framework for exploratory data analysis using Self-organizing Maps, where 

knowledge discovery is performed using a computational data mining process 

followed by visual interpretation, and applying the results to the user domain tasks. 

 

 
Figure 5: Data exploration and knowledge discovery using a SOM data mining and 

visualization framework (Koaua 2003). 

 

The highest benefit of a visual data mining is the simple way to deal with highly 

inhomogeneous and noisy data and its intuitive process, which requires no 

understanding of complex mathematical or statistical algorithms or parameters 

(Keim 2002). 

 
1.2.3 Geovisualization 
 
When visualizing SOM data in geographic and attribute space, the present work 

consequently aims towards the fields of geovisualization. The comprehensive 

definition of geovisualization unites various visualization methods, such as 

exploratory visualization and information visualization, scientific visualization, 

cartography, image analysis and GIS (Dykes et al. 2005). A SOM can be applied for 

and combined with all these representation methods. Using a SOM as part of a 

knowledge discovery process, analyzing AAG (Association of American Geographers) 

paper abstracts from the last 20 years for instance, the results are in the domain of 

information visualization. If the color coded neurons are linked to a geographic map, 

then one is speaking of a cartographic visualization. More complex combinations of 

visualization methods with GIS, such as the so-called spatialization, done by Skupin 

and Fabrikant (2007), are handled in section 3.1. Spatialization uses geographic 

metaphors to visualize non-geographic data and makes use of human’s perceptual 

capabilities. It depends on the application area, the used datasets and the 

combination of methodologies to be able to speak of a specific visualization. 

Therefore, the SOM visualizations mentioned in this thesis all depend somehow to 

the area of geovisualization. According to Dykes et al. (2005) geovisualization can 

be described as a loosely bounded domain that addresses the visual exploration, 

analysis, synthesis and presentation of geospatial data by integrating approaches 
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from cartography with those from other information representation and analysis 

disciplines. SOM combined with geovisualization methods provides intuitive and 

experimental representation methods which enhance the understanding and 

knowledge retrieving of increasingly large and complex geospatial datasets (Koua 

2003). When dealing with large datasets, the users tend to need interaction and 

dynamic visualizations. After researchers found out that visualizations had not taken 

advantage of exploiting the full potential of geospatial data, a commission within in 

the International Cartographic Association (ICA) was created. This Commission on 

Visualization and Virtual Environments then came up with theories, practices and 

tools for geospatial data exploration, analysis and knowledge retrieval (MacEachren 

and Kraak 2001). Today, it has become the Commission on GeoVisualization and 

continues the work of the former commission which has been establishing the 

emergent discipline of geovisualization since 1995 (ICA 2013). 

 
1.2.4 Processing 2.0 
 
The programming language and integrated development environment (IDE) 

Processing is used for the implementation of the SOM visualization library. It is 

open-source and purely based on the Java programming language. Processing is 

popular for creating images, animations and interactions (Processing 2013). It has a 

simplified syntax and allows fast development of visualizations, so called sketches. 

Since the community is rapidly increasing and hundreds of modules and thousands 

of code examples have been published (OpenProcessing 2013), it became a serious 

environment for the development of professional work in the fields of electronic 

arts, visual design, and recently in scientific research areas. Besides drawing in two 

dimensions, Processing provides accelerated 3D using OpenGL. The simplicity 

compared to other programming languages makes it easier for people who want to 

do follow up enhancements of the SOM visualization library, even though they may 

not have extensive programming skills. The Processing sketchbook can be exported 

into JavaScript for website integration, or embedded into a Java application. These 

features make it a universally integrable visualization toolkit. For the present thesis 

work, the Eclipse IDE was used for developing the SOM visualization library which 

extends the Processing PApplet class. The SOM visualization library was then 

embedded into a Java SWING application. As part of the preliminary work, some 

performance testing with Processing sketches, running as JavaScript, Java Applet 

and integrated into a standalone Java application, was done (see section 4.1). 

 
1.3 Problem Statement 

 

First of all, the SOM visualization library needs to be extendable and reusable. It is 

necessary to give an exact documentation about the programming interfaces to 

ensure that subsequent developers have a source to understand the architecture 

and to extend the software. Also the integration of functionalities has to underlie 
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these principles. As already mentioned, there is no available SOM visualization 

library in Processing right now, which requires a lot of groundwork. The structuring 

and creation of classes has to be done based on the guidelines for contribution, so 

that it is working properly within the Processing Development Environment (PDE). 

Another challenge will be to design and implement a tool which fulfills not only the 

technical requirements, but also meets the interaction and performance needs. 

Because of usability reasons, a simple and understandable user interface is taken 

into account. This user interface needs to be decoupled from the visualization itself. 

Certain visualization methods and clustering techniques need to be adjusted with 

the use of parameters, for example to set the distance measurement between 

objects or to define the minimum number of objects within a cluster. However, the 

integration of the SOM visualization library into the Java application must be done 

without any direct references from the visualization library to the user interface. 

Moreover, what if the user wants to explore the data using two different 

visualizations? A solution for displaying multiple frames and interactive selection has 

to be investigated. An issue is the granularity of the library modules, because a 

novice user might want to have a component planes class which can be initialized 

with a few parameters. Another one might only want to use the core methods for 

creating another customized SOM visualization, so the whole toolkit has to be more 

a white-box rather than a black-box. 

Then, the SOM input file format is an important factor. What are common data 

formats used in SOM software tools? In addition, there has to be an effective way to 

process these mostly large amounts of data, which leads back to the performance of 

the system. An inspection of available SOM tools will help to find out more about 

data formats as well as to get some impression of how to design a proper user 

interface. The results of this tool testing can be found in section 2.1. 

The intention is to integrate two-dimensional visualization representations of the 

SOM. The topology of a neural network can be rectangular or hexagonal, which has 

to be considered when visualizing the data. Basic geometric algorithms need to be 

implemented to draw the shapes and automatically adjust the map according to 

frame size. The SOM should be visualized with at least one technique out of three 

main visualization groups, described in section 2.2. Further, clustering is an aspect 

that corresponds to the visualization. Therefore, besides representations of the SOM 

neurons and the projection of input vectors, the integration of a clustering algorithm 

applied on the data and visualized in the SOM is considered. The integration of SOM 

visualization in geographic space is another essential task within the present thesis 

work. The way how to integrate SOM data into geographic map needs to be 

investigated. As Processing is a rather young programming language, the 

capabilities for geographic data mapping might be limited. Thus, this task requires 

research on available libraries which provide necessary functionalities. An animation 

of training steps should give the user a visual representation of the evolution of a 

Self-Organizing Map. The same can be done with clustering iterations where one 

can interactively see how clusters are formed. There is the question if the animation 
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can be done in real-time which would need an additional communication interface 

with another SOM training tool, or by reading SOM data with training iteration steps 

from previously saved files.  

The present thesis work also tries to outline the various known SOM visualization 

methods. There is the intention to provide a compact classification of all found 

techniques. As visualizations vary in their representation style, algorithms and 

information content this requires a method to categorize each based on common 

characteristics.  

 
1.4 Research Questions 
 
The three research questions and their detailed description derived from the 

problem statement are as follows: 

 
1. How can an extendible SOM visualization library be developed for 
Processing? 

 
What are the requirements for successful library integration into the PDE and the 

contribution to the community? How to cope with the PApplet inheritance in a large 

project where multiple sketches are running simultaneously? Under the extendibility 

aspect, which interfaces have to be defined? To which granularity needs the 

modularization be done to guarantee useful method access to the user? Then, what 

are the limitations of a library, written in mostly pure Java, which references the 

Processing core and other libraries? How can the data be read and stored? In 

general, what should the input data look like? Also, what is an effective way to run 

multiple Processing SOM sketches simultaneously and keep them all interactively 

selectable?  

 
2. How can a SOM visualization tool with integrated Processing library be 

implemented? 
 
The first thing to clarify here is if the software should be developed for server or 

client side application. What are the criteria for that decision? Are there any issues 

when embedding the Processing SOM visualization library into a Java application? 

What does an appropriate user interface look like? What is an effective way to 

control the sketches from the user interface and enable simultaneous changes in all 

windows? What kind of further data exploration functions can be added? 

 
3. What are methods for SOM visualization classification? 
 
What kind of SOM visualization techniques have been developed and published? In 

which representation format should the classification result? What are suitable 

classification criteria? In general, is it possible to get a complete and comparable list 

or overview of SOM visualizations? 
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These research questions will be dealt throughout chapters 4 and 5, respectively the 

applied methodologies and thesis results, and are going to be explicitly answered in 

the conclusions, section 7. 

 
1.5 Methodology 
 
The SOM visualization library is implemented using the open-source programming 

language Processing 2.0, which is mostly simplified Java code. The software design 

is based on object oriented programming, using packaged class modules and 

communication interfaces. The toolset uses an enhanced version of the SOM_PAK 

file format (Kohonen et al. 1995) for data input. This file format was specifically 

modified to support the implemented visualization methods and is backward 

compatible to SOM_PAK. The SOM is drawn according to the data read from a 

codebook file, containing the description of the SOM itself. Data from input vector 

files is projected onto the SOM. Seven different visualizations are implemented. 

Component planes, hit diagram with labeling and marker symbols, hit histogram, 

the U-Matrix, as well as k-Means are visualizing and clustering the SOM space. For 

the representation of the SOM in geographic space, the Processing library MapThing 

(Reades 2013), which is base on the Java GeoTools GIS library (OSGeo Project 

2013), is used display and modify Shapefiles. Geographic features are color-coded 

according to the applied visualization in the linked SOM. The SOM coloring classes 

are using a commonly defined interface. Visualizations are interactively connected 

using a global variables class. This Singleton pattern class (Vlissides et al. 1995) 

keeps the data and parameters in memory, and is accessed and updated from each 

of the visualizations. The visualization settings and file paths can be saved and 

loaded as project files. An animation effect during SOM clustering or SOM training 

can be achieved through step-wise updating of the vector attributes while running 

the Processing sketch in an infinite drawing loop. There are two different 

approaches for coloring the SOM space. One method simply creates two-

dimensional plane of RGB (Red Green Blue) colors and stretches it over the SOM. 

The other one uses SOM training to create a one-dimensional color SOM from the 

codebook vectors, where colors are assigned to each neuron according to their BMU 

in the color SOM. Diverging-diverging color schemes and automatic color picking 

from HSB hue circle are implemented. The SOM visualization library for Processing 

is embedded into a Java application, which uses SWING user interface elements. 

Multiple windows allow interactive exploration and comparison of the visualized SOM 

and input data. The global variables class from the Processing library together with 

event listeners is used for interactive highlighting between all visualizations and 

data tables.  

A criteria matrix is used for the classification of SOM visualizations, which allows a 

compact visual comparison of 23 representation techniques. The classification 

characteristics are elaborated from common differentiation features, for instance if 
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vector distance or density is visualized or cluster connections are drawn. This task 

requires an extensive literature review and involves the testing of SOM visualization 

tools for gathering a basic practical understanding of certain techniques. 

 
1.6 Expected Results and Significance of Work 
 
First of all, the aim of this work is not the development of highly complex 

visualizations or inventing new ones, rather, it is to provide a basic and working 

toolset of common SOM visualization techniques. The implementation results should 

be used as growing and evolving tools for SOM visualizations and data exploration, 

where users can implement new functions and representation techniques. The two 

primary results are, on the one hand, the technical implementation of a SOM 

visualization library in Processing, the so called SOMatic Viewer library. This library 

should be contributed to the Processing community. On the other hand, there is the 

development of SOM visualization software in Java which uses the library as 

integrated part. As sample dataset, the census data of Carinthia, a region in 

Southern Austria, is visualized with the implemented SOM toolset. The analysis 

results are discusses at the end of this thesis.  

 

Additionally, as theoretical part of this thesis, a list of known SOM visualization 

techniques are collected and ordered into a classification matrix to provide a current 

state of the art overview for SOM visualizations, based on their main characteristics.  

 

The significance of this work can be seen in the fact that it is the first extensive 

SOM visualization library implemented for the Processing IDE. This is also the first 

which analyzes census data of Carinthia using the SOM visualization approach. The 

data preprocessing and analysis should be an example for others to follow up with 

further research interests on the dataset. Then, the classification matrix for SOM 

visualizations is, according to the current state of literature review, the first which 

tries to create a comprehensive overview about the types of available SOM 

representations and their characteristics. It can be seen as prototype which allows 

getting an imagination of the varied visualization possibilities of SOMs, logically 

grouped and classified. 

 
1.7 Structure of the Thesis 
 
To provide an overview about the subsequent parts in the present thesis work, the 

next chapters and their associated content are given below: 

 
Self-Organizing Map Tools and Visualizations (chapter 2) 

Seven SOM software tools are tested and described with their capabilities and how 

they differ. After that, the range of available SOM visualizations is explained in 

detail. 
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Literature Review (chapter 3) 

This chapter deals with fundamental information about research activities, common 

methods and improvements of the SOM. Besides the description of related work in 

the domain of SOM visualizations, popular clustering techniques and enhanced SOM 

algorithms are discussed. 

Methodology (chapter 4) and Results (chapter 5) 

The design and implementation workflow is given in the methodology chapter. This 

includes used methods, libraries, and algorithms. A description of the resulting 

SOMatic Viewer toolset as well as the final SOM visualization classification can be 

found in chapter 5. 

Discussion (chapter 6) 

The proof of concept compares the implemented visualization methods with the 

same ones from other software tools to show if they are correct or not. Further, the 

analysis of the Carinthia census dataset is discussed here. 

Conclusion (chapter 7) 

Conclusions and further concerns, based on the findings and outcomes of the thesis 

work, are presented. Moreover, the research questions are explicitly answered here. 

Outlook and Future Work (chapter 8) 

This last chapter gives an outlook about potential enhancements of the SOM 

visualization software and exemplifies possible upcoming development steps. 

 

 

2.  

     Self-Organizing Map 
Tools and Visualizations 

 

 
Since Kohonen introduced the SOM algorithm, several software applications and 

tools have been developed. The first section describes seven different SOM software 

applications and toolboxes. The second section consists of SOM visualizations, 

ordered into four main categories. Among traditional methods such as component 

planes or the U-Matrix there are also recently developed visualizations.  

 

 

2.1 SOM Tools and Software 
 
This section presents four freely available SOM tools, one commercial software, and 

two software extensions for SOM training and visualization. The focus here is less on 
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the training aspect rather than on the given file handling, processing workflow, 

functionality range, and visualization capabilities. Further, the integration and 

visualization of geographic data was critical too. The SOM software tools are briefly 

described and a conclusion is given afterwards. 

 

Standalone Software. The first software package was SOM_PAK, developed by 

Kohonen et al. (1995) in 1992. It was updated until 2004, but is still in use and a 

popular SOM component which can be integrated into newer SOM applications. 

SOM_PAK is written in the programming language C and comes without graphical 

user interface. Commands for SOM initialization, training, and visualization have to 

be manually typed into the console. Component planes, U-Matrix, and Sammon’s 

mapping are the only visualizations, saved as PostScript (PS) file. Another well-

known software for SOM visualization is GeoVISTA Studio (PennState 2013, 

Takatsuka and Gahegan 2002). It offers an environment for geospatial data analysis 

with various functional components, so-called JavaBeans. This approach of creating 

reusable models by weaving beans into a workflow is unconventional but offers a lot 

of opportunities. Models can be shared with others and serve as functional part of a 

larger workflow. The variety of SOM visualizations is limited, but includes the most 

common ones together with a 3D representation of the SOM. However, its 

extendibility and the combination with build-in analysis tools make it to an 

interesting alternative to traditional SOM-specific software. Especially geospatial 

datasets which need to link their output to a geographic map can benefit from its 

features. A sophisticated implementation with a vast number of visualization 

methods, clustering and quality measures is the Java SOMToolbox, developed at the 

Vienna University of Technology (2013). It contains by far the most extensive 

functionality range, but this has the drawback of a flood of settings and menus. The 

way from getting into the tool to the first SOM visualization result can be long and 

requires technical and subject matter understanding. The input data concept is 

reasoned but also includes many different files. The biggest advantage comes from 

their self-developed visualizations in the viewer which cannot be found in any other 

software so far. Compared to the Java SOMToolbox as expert tool, the next one is 

rather for novice users and therefore straightforward with only three different 

visualizations. The name of this software is SOMVis (Guo 2005, 2013), developed in 

Java as well. It solely accepts Shapefiles with comma separated value (CSV) files. 

The SOM, parallel coordinate plot (PCP), and geographic map view are linked and 

allow interactions. The SOM coloring methods are highly adjustable, the SOM 

clustering very user-friendly. The only issue of this simple tool is the restricted SOM 

dimension and it gives no information about the training or mapping details. All 

mentioned solutions are freely available, and mostly open-source. On the other 

hand, there are a few proprietary SOM applications too. One of those which needs a 

closer look is the SOMine software product (Viscovery 2013). It is a very complete 

product with high visualization performance and good usability. Besides its own 

input file formats it can also handle SOM_PAK codebook files and statistical data 
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from SPSS. The visualization, clustering and analysis capabilities are complex, but 

do not require such a long learning curve as for the Java SOMToolbox. SOMine is 

implemented in Visual C++. Only the trial version was tested which is limited in its 

functionality. The special feature of SOMine is the project workflow, which splits up 

the data preparation, processing and evaluation into separate logical steps. The 

visualizations are not as varied as in Java SOMToolbox, but provide extensive 

functional parameters and analysis options. Its primary focus in not on geospatial 

data visualization, thus it does not provide geographical maps in any form. 

 

Software Add-Ons. Among others, there are two interesting extensions for 

existing software products, namely the SOM Analyst (Lacayo and Skupin 2007) for 

ESRI’s ArcMap, and the SOM Toolbox for MATLAB (Vesanto et al. 1999). SOM 

Analyst was developed from a student project and serves as toolbox for data 

preprocessing and SOM training in ArcMap, using SOM_PAK as training core. The 

map can be visualized with common ArcGIS tools. This provides on one hand a 

great flexibility for combining geospatial data and applying geoprocessing functions, 

but on the other hand most popular and necessary SOM visualization techniques are 

missing. At that point, SOM Toolbox for MATLAB suits better, which has a lot more 

visualization capabilities. But, the toolbox requires basic understanding of the 

MATLAB environment and also of its syntax for more sophisticated training and 

visualization. The SOM Toolbox comes with simple GUI frames that offer common 

functions for data preprocessing, training, and visualization. As MATLAB is widely 

used environment for technical and statistical data analysis and representation, this 

toolbox is a popular SOM software in that domain. Visualizations cover various kinds 

of SOM topologies and vector projections including the most common techniques to 

color the SOM space. Geographic maps cannot be loaded or linked which is a 

remarkable difference to SOM Analyst and thus makes it less suitable for geo-

referenced training data.   

 

Conclusion. The variety of SOM tools is as large as their range of functionalities. 

There is no one-for-all solution which is fast to learn, easy to use and offers all 

functions for the analysis of spatial and non-spatial datasets. Each of the mentioned 

software tools has its strengths for one more particular purpose. This is exactly 

what drives the usability, functionality, and complexity aspects of the tools. Even 

though most of them have their own data formats, common SOM_PAK files are 

occasionally supported by newer software. One reason might be that the data 

formats follow a similar content structure. Interesting approaches are the 

component-oriented framework of composing functional modules with JavaBeans in 

GeoVISTA and the workflow-oriented data processing and evaluation in SOMine. 

Another important fact was the introduction of project files. The more complex and 

comprehensive a software, the more it makes sense to read and save these settings 

and processing statuses into separate files. This saves time and is convenient for 

keeping track of training and visualization parameters and such. Further, SOM 
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extensions for ArcMap and MATLAB are doing a good job, but require some 

knowledge of how to use these products before being able to run the SOM add-ons. 

A powerful aspect here is, that the data can be further processed in the given 

software environment. There are also simple tools available, but they have a very 

limited application area as described for the SOMVis software. But simple does not 

automatically mean bad; it comes with great SOM coloring methods and fast 

clustering results for the attribute and geographic space. Unlike SOMVis, there is 

usually a long learning curve to get used to the software and to understand the 

processing workflow. The present thesis work is intended to bridge the gap between 

expert and novice users. The use of a SOM tool will always require domain 

knowledge to a certain degree, but there are ways to simplify the file handling, SOM 

control and interaction for a fair amount of visualizations. 

 

2.2 Visualization Techniques 

 
There are basically three groups of SOM visualizations, introduced by Skupin and 

Agarwal (2008). Visualizing the SOM grid itself, mapping data onto the SOM and 

linking data from the SOM to other visualizations. Another category is encountered 

during this thesis research and added as fourth group, which describes projections 

from the SOM space to other representations. Vesanto already came up with three 

categories of SOM visualizations in 1999, but they are slightly different to the ones 

used in this thesis and do not consider linking to geographic visualizations. 

 

2.2.1 Visualizing the SOM itself 
 
The SOM itself allows visualizations showing component planes, clusters through 

applied cluster algorithms, as well as interneuron distances and density in the data 

space. 

 
Component Planes. This popular visualization method slices the SOM into separate 

component planes to see how the values of certain attribute, also called component, 

vary on different locations on the map (Himberg et al. 2001). Each plane contains 

the values of a single variable of the input vector in each node of the SOM. When 

using component planes, the number of maps increases according to the selected or 

displayed number of variables. Component planes are perfect visualizations for 

correlation detection because even partial relationships or correlations can be found 

by visually side-by-side comparison of different planes (see figure 2). An intelligent 

way for correlation hunting through a rearrangement of the component planes was 

shown by Vesanto (1999). Based on their correlation, similar looking component 

planes are automatically placed near each other, which results in a more efficient 

comparison capability. 

 



 

 

 

Figure 6: Component planes of a high

 

Vector Fields. Two kinds of SOM cluster structure visualizations based on vector 

fields are developed by Pölzlhuber et al. (2006). On the one hand, there is the 

gradient field visualization which projects an arrow on each of the neurons that 

points to the center of a ne

length and direction of the arrow is based on the prototype vector, the map 

topology, and the size of the neighborhood kernel. 

a smoothed vector field which outlines clusters in the map. On the other hand, there 

is the borderline visualization which shows an alternative representation of the 

cluster boundaries. It is derived from the gradient field, but doesn’t use arrows for 

representation. Instead, it draws the orthogonal of each arrow as a line from both 

sides of the center. The length of the lines has the same purpose as the length of 

the arrow. It depicts the ma

map in Figure 7(b), this representation forms a kind of cluster boundaries in the 

map. 

 

Figure 7: Vector fields. (a) Arrows are pointing to a cluster center and result in a smooth 
gradient field. (b) Similar method showing cluster boundary lines (Pölzlbauer et al. 2006).

(a) 
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Component planes of a high-resolution SOM constructed from climate data
 (Skupin and Esperbé 2008). 

Two kinds of SOM cluster structure visualizations based on vector 

fields are developed by Pölzlhuber et al. (2006). On the one hand, there is the 

gradient field visualization which projects an arrow on each of the neurons that 

points to the center of a nearby located homogeneous area. The calculation of 

length and direction of the arrow is based on the prototype vector, the map 

and the size of the neighborhood kernel. Figure 7(a) illustrates the result, 

a smoothed vector field which outlines clusters in the map. On the other hand, there 

is the borderline visualization which shows an alternative representation of the 

s derived from the gradient field, but doesn’t use arrows for 

representation. Instead, it draws the orthogonal of each arrow as a line from both 

sides of the center. The length of the lines has the same purpose as the length of 

the arrow. It depicts the magnitude of cluster separation. When looking at the entire 

(b), this representation forms a kind of cluster boundaries in the 

          

Vector fields. (a) Arrows are pointing to a cluster center and result in a smooth 
gradient field. (b) Similar method showing cluster boundary lines (Pölzlbauer et al. 2006).

(b) 

 

resolution SOM constructed from climate data 

Two kinds of SOM cluster structure visualizations based on vector 

fields are developed by Pölzlhuber et al. (2006). On the one hand, there is the 

gradient field visualization which projects an arrow on each of the neurons that 

arby located homogeneous area. The calculation of the 

length and direction of the arrow is based on the prototype vector, the map 

(a) illustrates the result, 

a smoothed vector field which outlines clusters in the map. On the other hand, there 

is the borderline visualization which shows an alternative representation of the 

s derived from the gradient field, but doesn’t use arrows for 

representation. Instead, it draws the orthogonal of each arrow as a line from both 

sides of the center. The length of the lines has the same purpose as the length of 

gnitude of cluster separation. When looking at the entire 

(b), this representation forms a kind of cluster boundaries in the 

 

Vector fields. (a) Arrows are pointing to a cluster center and result in a smooth 
gradient field. (b) Similar method showing cluster boundary lines (Pölzlbauer et al. 2006). 
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Cluster Connections. This technique draws a grid of connected nodes onto the 

SOM with edges showing their mutual similarity (Merkl and Rauber 1997). The 

degree of connectivity is based on the distance between two neighboring neurons. 

Neurons are connected if they are similar to each other and thus belong to the same 

cluster. The similarity threshold can be parametrically adjusted. If they are outside 

or along a cluster boundary, no connection is drawn. A grey-scale coloring 

represents the distances. This visualization method looks similar to the distance 

matrix or U-Matrix. Figure 8 shows the result on a SOM with rectangular topology. 

 

 
Figure 8: Cluster connection visualization where nodes from same clusters 

are connected. The color of an edge indicates the distance between the neurons  
(Merkl and Rauber 1997). 

 
 
U-Matrix and other Distance Matrices. The unified distance matrix or U-Matrix 

calculates the Euclidian distance from each unit center to all of its neighbors. The 

distance to adjacent neurons is presented using a gray scale or color range 

representation on the map grid. It is an effective method to find clustering 

structures. Data clusters can be seen as valleys and borders are depicted as 

mountains or ridges (Himberg et al. 2001). There are different types of distance 

matrices, where two of them are called U-Matrix. The original U-Matrix keeps the 

dimensionality of the SOM grid. Another kind of U-Matrix is visualized with 

interpolated neurons between each pair of neurons which creates a larger grid than 

the original one. The third type is a distance matrix which preserves the 

dimensionality but draws the neurons in relation of the distance to adjacent 

neighbors. Examples for these three kinds of distance matrix are shown in Figure 9, 

where (a) is showing an original U-Matrix. Based on another dataset, (b) is an 

interpolated U-Matrix and (c) shows the distances using the size of the neurons. 
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Figure 9: (a) U-Matrix without interpolated neurons, (b) U-Matrix with interpolated neurons, 
(c) distance matrix resizing the SOM neurons to their interneuron distances (Vesanto 1999). 
 
 
P-Matrix. The P-Matrix was introduced by Ultsch (2003) as new visualization 

method for the ESOM tool (Databionic 2007). This visualization method measures 

the data’s density structure using the pareto density estimation, which is a special 

case of the kernel density estimation with a fixed kernel bandwidth (Ultsch and 

Mörchen 2005). At each neuron position, a density estimation for the data space is 

displayed. Taking a closer view on figure 10 it seems that most but not all of the 

patterns of the P-Matrix are the inverse of the U-matrix (Ultsch 2003). 

 

U*-Matrix. This method is a combination of the distance-based U-Matrix and the 

density- based P-Matrix described above. The U*-Matrix disregards local distances 

in dense regions where they do not matter inside a cluster, keeps the values in 

average density areas, and emphasizes sparse regions of the SOM data space 

(Ultsch and Mörchen 2005). This brings a much clearer outline of clusters compared 

to the U-Matrix. Figure 10 allows a comparison of the visualized results using the U-

Matrix, P-Matrix and U*-Matrix for a given dataset. 

 

The close relationship between the distance and the probability density of the SOM 

vectors is coming from a SOM characteristic. It is known as magnification factors 

(Pampalk et al. 2002) and expresses that areas with high density of vectors are 

described with more detail than sparse ones. The same principle is used for the 

visualization in the next paragraph. 

 

(c) (b) (a) 
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Figure 10: Comparing the visualization results from U-matrix (b), P-matrix (c) and  

U*-matrix (d) applied on the same dataset (a) to find cluster regions  
(Ultsch and Mörchen 2005). 

 
 
Smoothed Data Histogram. Pampalk et al. 2002 developed this technique to 

parametrically visualize clusters in SOMs. The smoothed data histogram (SDH) 

method tries to find clusters through estimation of the probability density of the 

data on the map. The idea is that clusters are areas in the data space with a high 

density of data items. The smoothing parameter s allows changing the membership 

degree and thus affects the cluster building, visually explained in Figure 11. While a 

U-Matrix representation with large distances might represent lower distances and 

possible clusters less significant, the various cluster shapes of the SDH show a more 

precise hierarchical structure of the clusters in the data (Pampalk et al. 2002). 

 

 

Figure 11: Effects on cluster detection by changing the value of the smoothing  
parameter s for the SDH (Pampalk et al. 2002). 

 
 
 
 



 

 

 

2.2.2 Projections onto the SOM
 
The examination of new data with the map is 

belongs to the SOM space. 

input data. Further, it is a popular method for 

where data samples other

map. Match-accuracy is another important topic in SOM visualization. How it 

made visible on the map is

 
Data Histograms. One might want to know the distribution of the input data

on the SOM grid, respectively on the neurons.  The visualization of hits per neuron 

can be done by simply doing a BMU search and mapping the input vectors onto the 

matching neurons. Euclidean distance is commonly used for measurement type. If 

there are multiple items on the same neuron, a data or hit histogram is obtained. 

The visualization can be done in several ways. Figure 1

histograms on a rectangular and hexagonal grid topology. There is an interpolated 

heat map used in (a), (b) has proportional markers placed on the center of the 

neurons, and (c) colors the neurons in relation to their hit count in

range. An issue with this representation, where simply the BMU is pointed out, is 

the fact that it shows no detail in the accuracy of the neuron match. Therefore, 

more enhanced visualizations, such as the sky

 

 

     
Figure 12: Types of data histogra

interpolated density coloring

 

 

Sky-Metaphor. The sky-metaphor

a hit histogram, with used techniques from

subsection 2.2.1), but provides more detail 

over the neurons, and especial

histogram, the center of the neuron is use

present approach shifts th

(a) 
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Projections onto the SOM 

The examination of new data with the map is used to see how the training data 

space. This is utilized to find similarities and correlations in the 

Further, it is a popular method for novelty detection

other than the ones used for training are associated with the 

is another important topic in SOM visualization. How it 

is described at the end of this subsection.

One might want to know the distribution of the input data

on the SOM grid, respectively on the neurons.  The visualization of hits per neuron 

can be done by simply doing a BMU search and mapping the input vectors onto the 

matching neurons. Euclidean distance is commonly used for measurement type. If 

are multiple items on the same neuron, a data or hit histogram is obtained. 

The visualization can be done in several ways. Figure 12 shows three types of hit 

histograms on a rectangular and hexagonal grid topology. There is an interpolated 

heat map used in (a), (b) has proportional markers placed on the center of the 

neurons, and (c) colors the neurons in relation to their hit count in

range. An issue with this representation, where simply the BMU is pointed out, is 

the fact that it shows no detail in the accuracy of the neuron match. Therefore, 

more enhanced visualizations, such as the sky-metaphor, were developed.

        
histograms, showing the distribution of hits per neuron

coloring, (b) markers, (c) color range (TU Vienna 2013

metaphor visualization (Latif and Mayer 2007) 

, with used techniques from the P-Matrix and the SDH

, but provides more detail about how the input data is distributed 

over the neurons, and especially how hits are scattered on a single

histogram, the center of the neuron is used for placing the input vectors. T

approach shifts the input vectors towards the closest neighboring 

(b) (c) 

used to see how the training data 

similarities and correlations in the 

novelty detection (Marsland 2003), 

ining are associated with the 

is another important topic in SOM visualization. How it can be 

described at the end of this subsection. 

One might want to know the distribution of the input data items 

on the SOM grid, respectively on the neurons.  The visualization of hits per neuron 

can be done by simply doing a BMU search and mapping the input vectors onto the 

matching neurons. Euclidean distance is commonly used for measurement type. If 

are multiple items on the same neuron, a data or hit histogram is obtained. 

shows three types of hit 

histograms on a rectangular and hexagonal grid topology. There is an interpolated 

heat map used in (a), (b) has proportional markers placed on the center of the 

neurons, and (c) colors the neurons in relation to their hit count in a unique color 

range. An issue with this representation, where simply the BMU is pointed out, is 

the fact that it shows no detail in the accuracy of the neuron match. Therefore, 

metaphor, were developed. 

of hits per neuron with (a) 
TU Vienna 2013, Vesanto 2002). 

(Latif and Mayer 2007) is similar to 

and the SDH (see 

how the input data is distributed 

a single neuron.  In a hit 

d for placing the input vectors. The 

towards the closest neighboring neuron, 
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based on their distance. This is resulting in a better visual differentiation of vectors 

on the same map unit as well as to in a better detection of similarities between 

vectors across neuron boundaries. For the creation of the night sky effect, neurons 

are colored in black and input vectors are mapped as white stars onto the map. 

Smoothed density histogram visualization at the top of the black neurons creates 

the galaxy effect. Further, interconnections can be automatically or manually be 

drawn as connected lines between the mapped input vectors. Figure 13(a) allows a 

closer look onto mapped vectors within the neurons, together with drawn 

interconnections. The whole map with four galaxies is shown in (b). 

 

 
Figure 13: Sky-metaphor. (a) Detailed view of the map, with input vectors mapped as stars  

onto the neurons, some of them connect to trails. (b) The entire map with four galaxies 
  (Latif and Mayer 2007). 

 
 

Component Charts. A possibility of showing multiple vector components is 

generating charts and projecting them onto the map. Attributes from codebook 

vectors as well as from input vectors can be used for multivariate symbolization. 

This representation is limited to a small number of components. Popular chart types 

are pie or bar charts. Figure 14 shows both types, (a) applied on projected inputs 

vectors and (b) used as component bars describing SOM neurons. A more enhanced 

method which uses cross-symbolization for different data spaces is explained in 

subsection 3.1.3. Moreover, special types of glyphs are able to visualize the  

multi-dimensional SOM vectors, for example fan plots or Chernoff’s face (Vesanto 

2002).  

 

(a) (b) 
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Figure 14: Component charts. Projecting (a) input vector attributes as pies charts and  
(b) codebook vector attributes as bar charts (Skupin and Fabrikant 2003, SOM Toolbox for 

MATLAB 2013). 
 

Trajectories. If there is an interest in following a selected input vector on the map 

during the training process, trajectories can be created by drawing connected lines 

between the changing positions of the BMU. This visualization is also named 

projection of the multi-dimensional state space (Himberg et al. 2001). The 

trajectory is drawn according to the updated BMU position of the input vector during 

certain training iteration steps. Figure 15 shows such trajectories mapped onto a 

SOM, created from three input vectors. As labeled in the map, the state of each 

vector was recorded once every 10,000 iterations (Skupin and Agarwal 2008). The 

trajectory visualization approach can basically be used for many other purposes to 

show connections between input vectors (see sky-metaphor) or to show movement. 

More enhanced research work based on SOM trajectories is given in section 3.1.3. 

 

 

Figure 15: Visualizing the SOM training. Three input vectors are recorded every 10,000 
training iterations and connected at each BMU position (Skupin and Agarwal 2008). 

(a) (b) 
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Metro Map. This approach utilizes the well-known metro map metaphor to project 

multiple component lines onto the SOM (Neumayer et al. 2007). A component line is 

drawn from the center of discretized areas in a component plane, depicted in Figure 

16(a). Line connections are done from the lowest to the highest component value 

with mutable steps in between. As the main concept of metro maps, lines show a 

simplified, skewed representation of the underlying data. Other functions are the 

aggregation of highly correlated component lines together with line snapping and 

the representation of metro stations as markers scaled to the number of 

intersections. Hierarchical clustering is used for aggregation. Figure 16(b) illustrates 

a metro map on the SOM, showing four colored and snapped component lines. All in 

all, this visualization provides extensive calibrating and scaling possibilities for the 

chosen component planes.  

 

         

Figure 16: (a) Trajectory connecting the centroids of discretized areas of one component 
plane. (b) Metro map showing four component lines (Neumayer et al. 2007). 

 

Neighborhood Graphs. Graph-based visualizations of the SOM input data can be 

used to determine the mapping topology and how relations are preserved after 

projection (Pölzlbauer et al. 2005). Clusters can be indicated which are close in 

input space, but moved further apart after training. Two methods are introduced. 

The first graph structure is generated by nearest neighbor calculations of the input 

data. The second one uses pair-wise distances between vectors in input space. The 

first method makes an efficient use of the space in large SOMs with a lower number 

of input vectors, whereby the second approach has its advantages in the detection 

of outliers and dense areas. Figure 17 shows the nearest neighborhood graph 

representation of input vectors projected onto a SOM with rectangular topology.  

 

(a) (b) 



 

 

 

Figure 17: Neighborhood graph representation

 

Minimum Spanning Tree

relationship visualization method 

nodes on the SOM (Mayer and Rauber 2010)

projected input vectors can be visualized

the distance between connected nodes. Figure 1

representation for both the SOM space (a) and projected input space (b). The line 

thickness of the edges is related to their weight values.

visual interpretation of clusters

related method is the neighborhood graph, 

subsection. 

 

Figure 18: MST Visualization of (a)
are scaled according to their weight

 

Class Map. If the input data is assigned to classes

possible to visualize clusters and similarities

It uses a graph-based coloring where the detected regions are first subdivided into 

(a) 
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Neighborhood graph representation of the projected input data
 (Pölzlbauer 2005). 

Minimum Spanning Tree. The minimum spanning tree (MTS) is 

relationship visualization method used to connect similar vectors, represented as 

(Mayer and Rauber 2010). Both codebook vectors as well as

can be visualized. The edges are basically weight

distance between connected nodes. Figure 18 depicts a weighted

for both the SOM space (a) and projected input space (b). The line 

thickness of the edges is related to their weight values. This approach 

visual interpretation of clusters, cluster connections and vector correlations

related method is the neighborhood graph, described in an earlier 

MST Visualization of (a) SOM codebook vectors and (b) input vectors
are scaled according to their weight values (Mayer and Rauber 2010).

If the input data is assigned to classes, this representation

clusters and similarities between distributed 

based coloring where the detected regions are first subdivided into 

(b) 

of the projected input data onto the SOM 

spanning tree (MTS) is a similarity 

vectors, represented as 

. Both codebook vectors as well as 

. The edges are basically weights showing 

depicts a weighted MST 

for both the SOM space (a) and projected input space (b). The line 

This approach provides 

and vector correlations. A 

described in an earlier part of this 

 

codebook vectors and (b) input vectors. The edges 
Mayer and Rauber 2010). 

representation makes it 

distributed classes in the map. 

based coloring where the detected regions are first subdivided into 
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Voronoi diagrams (Mayer et al. 2007). Then, imaginary lines are drawn, which 

connect regions containing same classes. Pixel-wise color-assignment along the 

connection lines and across borders is used to visualize classes that span over 

multiple regions. To create a smooth partitioning at the border transitions, the line 

segments are weighted at both ends. Figure 19 shows different abstraction levels of 

a class map, projected onto a SOM grid with rectangular topology. The granularity 

can be modified by setting a minimum class threshold value. 

 

 

 

Figure 19: Levels of class granularity. The minimum class threshold was set to 0%, 50% 
and 100% contribution fraction (Mayer et al. 2007). 

 

Response Surface. The BMU search has the purpose to find the best matching 

neuron, but usually there are other neurons which might be almost as good as the 

BMU. Additionally, a projection onto the BMU gives no detail about the hit accuracy. 

The accuracy issue was already visually tackled by the sky-metaphor method (see 

Figure 13). Response surfaces (Vesanto 1999) can solve both problems through 

highlighting potential matches on the map. This visualization shows the relative 

goodness of each neuron to a given input vector by coloring the neurons from black, 

which is the best, to white, corresponding to the worst possible match (see Figure 

20). The quantization error is used as indicator for the matching goodness. The 

quantization error measures the distance between an input vector and its BMU.  

 

 
Figure 20: Response surfaces. (a) Good match, (b) poor match, (c) average match. Black 

color associates the best response and white signalizes the worst (Vesanto 1999). 
 

(a) (b) (c) 
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There are two ways to determine the accuracy: First, by calculating the average 

quantization error, and second (used for independent data measures) by getting the 

average distance of each neuron to its neighbors. Finally, the quantization errors 

need to be scaled with the accuracy. As depicted in Figure 20, a good match can be 

recognized as a clear cluster, highlighted as dense black spot. An average match 

may be highlighted as cluster which is cut along the border of the SOM. Maps with 

scattered dark cluster structures indicate that there is a poor match of the input 

vector, because a large number other potential BMUs exist. 

 
Position Accuracy Marker. Other than the response surface, which uses the whole 

map to show match accuracy for one input vector, position accuracy markers 

indicate match accuracy for multiple vectors by rescaling the size of each sample 

marker. The position of the marker shows the BMU and the size the quantization 

error (Vesanto 1999). Figure 21 shows an example for calculated accuracy markers. 

The smaller the diameter of a circle, the better is the BMU accuracy. 

 

 
Figure 21: Position accuracy markers placed on top of a distance matrix (Vesanto 1999). 

 
 

2.2.3 Projections from the SOM 
 
Sometimes it can be useful to project the data from SOM output into another space 

to get a better insight into distances and correlations between neurons or to 

visualize the distribution of vector attributes. Among other possibilities, two 

common methods are presented here. The first approach projects the units from 

SOM space into a distance-preserving low-dimensional space. The second method 

generates a parallel coordinate plot from codebook vector attributes and clusters. 

Both types require color-coding to be able to track neurons and clusters over space. 

 

Distance-Preserving Visualizations. This technique is commonly used when, for 

some interest, the contraction and expansion effects of the SOM training need to be 

visualized. As already mentioned, the topology-preserving SOM grid doesn’t keep 
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interneuron distances. A distance-preserving projection of neurons using Sammon’s 

mapping and PCA is shown in Figure 22. In (a), smooth topology-based coloring of 

the grid is done, the neurons are then projected into the 3D space. The distribution 

of neurons within clusters can be seen in (b), using a two-dimensional plane. More 

information about these two projection methods and related improvements of the 

SOM algorithm is given in subsection 3.3.1. Color-coding is the best way to 

recognize the nodes after projection into another space. Distance-preserving 

projections also allow a data space distance visualization of the SOM (Himberg 

1998). An example can be seen in Figure 23, where in (a) the SOM neurons are 

projected using Sammon’s mapping. Then, based on interneuron distances in this 

projection, the coloring of the SOM is adjusted in (b). Another purpose of combining 

a SOM with such projections is to find out correlations between pairs of vectors. An 

accurate comparison of values in component planes is almost impossible (Vesanto 

et al. 1998). Two-dimensional functional plots allow a more detailed comparison 

between two components. SOM can be used to reduce noise in the data, then as 

further step the component vectors are laid out in the function plot to depict their 

related distances.  

 

       

Figure 22: Distance-preserving projecting of SOM neurons (a) into three-dimensional space 
to see interneural distances, or (b) into two-dimensional space to see the distribution within 

clusters (Gorricha 2009, Vesanto 2002). 
 

  

Figure 23: Data space distance visualization of SOM neurons  
using projection and back projection (Himberg 1998). 

 

(b) (a) 
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Parallel Coordinate Plot. The parallel coordinate plot (PCP) is a popular method 

for the visualization of multivariate patterns (Guo et al. 2005, 2006). In 

combination with SOM, this tool provides a powerful data exploration technique. 

SOM clusters, or data vectors, are projected into the PCP and linked with the 

corresponding colors in the map. The PCP uses nested-means scaling, which divides 

each axis into equal-length portions, where the mean value is always in the center 

(see Figure 24). This method makes diverse vectors and value ranges comparable. 

The lines can be scaled in relation to the cluster size, or as another possibility, to 

the variance within each cluster (Guo et al. 2005). Therefore, a PCP provides great 

insight into the characteristics of each cluster. An interactive highlighting at the 

SOM neuron or cluster level with corresponding lines in the plot can improve its 

usability. 

 

 

Figure 24: Parallel Coordinate Plot showing SOM clusters.  
The line thickness is scaled to the cluster size (Guo et al. 2005). 

 

Remark: The mentioned techniques for projecting data from the SOM can of course 

be applied to input data as well, which makes sense to explore the original input 

space.  

 

2.2.4 Visualizations linked from the SOM 
 
Linking SOM Data to Geographic Maps. A method for linking geo-referenced 

SOM data back into the geographic space was presented by Skupin and Argwal 

(2008). Gorricha and Lobo (2012) used the same methodology for referencing the 

geographic map features with label colors obtained from 3D SOM instead of a two-

dimensional one. No matter if a 2D or 3D SOM is used, the results follow the same 

principle. Figure 25 shows a geographic map, colored in relation to the 

corresponding BMU of the neurons in a high-resolution SOM. This method of linking 

different data projections allows an interactive and efficient way to recognize and 

associate areas in the map. This combined representation provides valuable 
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conclusions for geospatial data analysis as the result from attribute space is 

transferred to an actual real-world location. 

 

              

Figure 25: Linking the BMU colors from SOM space to their  
corresponding geographic map features (Skupin and Esperbé 2011). 

 
 

3.  

   Literature Review 
 

 
There is a lot of related research done within a broader context of this thesis work, 

reaching from sophisticated visualizations to intelligent color-coding algorithms. GIS 

is heavily employed to the related research work in the area of SOM visualizations 

presented throughout this chapter. Further, k-Means and hierarchical clustering of 

SOM space is discussed. Finally, other interesting SOM algorithms are given, which 

have an effect on the visualization as well. 

 

 
3.1 Related Work 
 
Spanning from common representations to more enhanced methodologies, the next 

five subsections show impressive SOM visualizations and coloring results.  

 

3.1.1 Spatialization 
 

During the research on Self-Organizing Maps an expression called spatialization 

appeared. Spatialization is a comprehensive term which refers to spatial metaphors 

which are used to describe an abstract concept. These metaphors include basic 

geographic concepts, such as location, distance, pattern, or scale. Spatialization is 
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defined as the methodology for knowledge construction by applying dimensionality 

reduction and spatial layout on large, multi-dimensional datasets (Skupin and 

Fabrikant 2003). Spatio-temporal techniques developed and applied in GIS are also 

applicable in spatialization. The data can be geo-referenced or not, and it does not 

matter if it is unstructured, semi-structured or structured. In other words, it is 

possible to visualize and map almost every domain of interest. In case of non geo-

referenced sources, spatialization works on implicit relationships derived from 

quantifiable notions of distance and similarity (Skupin and Fabrikant 2007). The 

SOM is a central element in such a spatialization procedure. But how does it work? 

According to Skupin and Fabrikant (2007), there is no single method to apply 

spatialization. Reasons therefore are the mostly very inhomogeneous data and the 

different disciplines for which the workflows are developed. Figure 26 shows the 

spatialization procedure for the visualization of abstracts presented at the annual 

meeting of the Association of American Geographers (AAG).  

 

 
 

Figure 26: Spatialization process used to visualize AAG conference abstracts 
 (Skupin and Fabrikant 2007). 

 

Many different methods are used to create the final spatialized map. There is an 

extensive preprocessing task to get the abstract data into the right format. Then, 

the most frequent terms are extracted and a term-document matrix is created. The 

SOM algorithm is used for dimensionality reduction and spatial layout. Hierarchical 

clustering generates the boundaries. GIS software is used to transform the 

spatialized geometry and other elements. The scale dependence and symbolization 
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relies on cartographic principles. The result of this workflow is a map with a 

geographic look where the most occurring terms are spatially grouped and aligned 

according to their mutual relationship. The scaling of the labels shows their 

magnitude and clusters can be identified using different border styles (see Figure 

27). 

 

 

Figure 27: Extracted part of the resulting map from the AAG spatialization procedure 
showing five levels of hierarchical clustering (Skupin and Fabrikant 2007). 

 

3.1.2 Novel Projections and High Resolution SOM 
 

As already seen in the previous subsection, GIS provide powerful tools for creating 

sophisticated multidisciplinary SOM visualizations. Besides the described knowledge 

visualization approach, there are other research works which use SOM to create new 

map projections and visualizations by applying typical GIS techniques onto input 

and output data.  

Skupin (2003) introduced a novel map projection where he trained the grid node of 

a SOM with geographic coordinates expressed in latitude and longitude instead of 

using high-dimensional feature vectors. Regular sampled coordinates, derived from 

a Shapefile, were used as input data source. This Shapefile had an equal-area 

projection and consisted of land mass locations on the entire earth, forming its 

continents with 14,500 points. After training the SOM, using Euclidean distance 

measure and a 2:1 neuron grid shape ratio to be able to compare the output to the 

initial projection, the result was then postprocessed and visualized with GIS 

software. The result of the SOM-based visualization in attribute space is depicted in 

Figure 28. In this representation, several layers such as border lines and country 

outlines, as well as the latitude-longitude grid, were projected onto the SOM with 

best matching unit search. 
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Figure 28: SOM-based visualization of the earth with projected cartographic input layers 
and trained with geographic coordinates using Euclidean distance measure (Skupin 2003). 

 

Continents are filling the space of the oceans, because they were left out for 

training. Distortions come from the fact, that a Self-Organizing Map does not 

preserve relative distances. Especially on the edges, where most of the input 

vectors are laid out, a useful determination of recognition of areas is not possible. 

Also spherical distance was used for comparison, which did not lead to any 

meaningful results. 

Another research work of Skupin and Esperbé (2011) is interesting in this context, 

which creates a holistic representation of the United States using 200,000 census 

block groups containing data from 6 different input types, such as population, 

climate, soil, or topography. These were visualized on a SOM consisting of 250,000 

neurons. Data integration of all inhomogeneous sources was extremely difficult 

considering that both continuous and discrete data was used and various extents 

and granularities had to be unified. In the end, they had 69 attributes describing 

each geographic feature. The resulting high resolution SOM was then used for 

various visualizations besides the traditional component planes and U-Matrix 

representations. Through clustering the neurons with k-Means and SOM 

postprocessing using GIS software, an interesting map could have been realized. 

This map, shown in Figure 29(b), has the boundaries of 25 k-Means clusters as 

overlay on a density landscape, created from the neuron vectors. Blue colors can be 

anticipated with lower elevation and indicate low density, where brownish colors 

represent higher elevations and high density. 

 



 

 
34 

 

        

  

Figure 29: (a) Linked representation of the color-coded k-Means clusters in SOM and 
geographic space. (b) Cluster boundaries as line feature overlay on a neuron vector density 
landscape. (c) Cluster areas in the zoomed geographic space (Skupin and Esperbé 2011). 

 

Another advantage of such a high-resolution SOM with multivariate attributes can 

be seen in Figure 29 (a) where the clustered neurons are projected from attribute 

into geographic space. This geographic regionalization can then be analyzed in 

detail. For example, if one zooms into specific regions on the map, as depicted in 

Figure 29 (c), block group clusters are represented in finer granularity. Such a side-

by-side analysis of visualizations in different spaces and various zoom levels 

provides a valuable insight into multidisciplinary high-dimensional data. 

 

3.1.3 Cross-Symbolization and Travelling in Attribute Space 
 

Besides simply mapping input vectors as points onto the SOM, there has been the 

method of displaying attributes as glyphs onto the neurons (Vesanto 2002). 

Recently, another way to show multiple attributes describing these units using cross 

symbolization was introduced by Burns and Skupin 2009. Pie charts or bar charts 

are utilized to visualize multiple dimensions simultaneously. After determining the 

best matching units, the symbology is assigned to the mapped points on the SOM. 

The placement can be relative to one attribute space and its symbology is then 

derived from another attribute space. This requires having two separately trained 

SOMs. Figure 30 illustrates two kinds of cross-symbolized visualizations. The left 

one shows pie charts which are geometrically ordered by their population attributes. 

(a) 

(b) (c) 
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The symbology shows nine utterance terms for each matching unit, the size is also 

derived from a chosen attribute. The SOM visualization on the right uses the same 

principle with bar charts, showing six utterance terms in another attribute space. 

 

   

Figure 30: Cross-symbolization, showing multiple dimensions and attributes spaces 
simultaneously (Burns and Skupin 2009). 

 

Travelling in attribute space is a fascinating idea of how changes in time and space 

can be visualized using SOM. In this approach, multi-temporal observations are 

linked to a spatialized representation in high-dimensional SOM space (Skupin and 

Hagelman 2005). It uses a neuron grid with a vast number of neurons, having 

enough space to project the input vectors without too much overlap. The 

demographic data used for training and projection is stored in a multi-year 

database. GIS is used for the whole visualization process, where each geometric 

data layer is stored as separate feature class. A trajectory is drawn as a directed 

and non-branching graph connecting time stamps represented as vectors in 

attribute space. Figure 31 shows two highlighted pairs of linked temporal vertices 

which indicate parallel development based on their multi-dimensional attributes.  

 

 
Figure 31: Multi-temporal trajectories showing parallel development of two pairs 

 of cities in Texas (Skupin and Hagelman 2005). 
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An advantage of such trajectories is the capability of getting a quick and explicit 

visual representation of spatio-temporal changes and relationships through linking 

to other attributes. A criterion is the placement of the temporal vertices onto the 

neurons where one has to consider if the center, a random placement inside the 

neuron, or another method is used to get suitable results. Additionally, Skupin and 

Hagelman (2005) also describe a method for trajectory clustering and insertion of 

additional time vertices. Visualization is not limited to demographic changes; other 

spatio-temporal phenomena such as tornado touchdowns and hurricane paths can 

be mapped onto climate driven spatializations (Skupin and Esperbé 2008). The tri-

space approach, lately reintroduced by Skupin (2010), uses the SOM technique with 

mapped data trajectories as one part of its multi-space transformation and analysis. 

 

3.1.4 Adding a Third Dimension 
 

The present thesis work does not apply SOM visualizations in 3D. Therefore, an 

excerpt to SOM representations in the third dimension is shown in this subsection. 

To enhance the visualization capabilities and detect clusters by observing the overall 

shape of the SOM, Vesanto et al. (1998) showed an example using Sammon’s 

projection (Sammon 1969) representing the data in three dimensions. 

 

 

Figure 32: Mesh representation of SOM data in (a) 2D and (b) 3D, and (c) color coded 
component planes projected into (d) 3D (Vesanto et al. 1998).  



 

 

 

 

Figure 32 shows juxtapositions where in the first approach, the neighboring un

were connected with lines which resulted in a 

approach was done with color

vector units. When projecting into the third dimension, the 2D projection has folded 

and makes a two-dimensional representation useless for correct info

extraction. Where in the first approach

in the mesh, the color-coded version makes it easier to deduce from the two

dimensional SOM grid.  

For the projection from two into three dimensions, typically dis

values are taken. Takatsuka (2001) for instance used the distances from the 

distance matrix to visualize a SOM grid in 3D (see 

visualization figure was created with

Gahegan 2002). When using the height, the distances no longer need to be 

normalized. Thus it is easier to find and interpret clusters 

view. The visual recognition of clusters and boundaries can be enhanced by applying 

common cartographic colors to the surface. Interactive rotation functions make 

to an intuitive exploration tool. 

the third dimension it is the largest that human beings can easily grasp (Vesanto et 

al. 1998). The conclusion from SOM projections in 3D is that whenever possible and 

suitable, a three-dimensional projection can be used for further data exploration.

 

Figure 33: Creating a 3D SOM distance matrix from it
using the distances as height values

 

Other three-dimensional SOM approaches are mentioned in the 

this chapter as well. 
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shows juxtapositions where in the first approach, the neighboring un

were connected with lines which resulted in a mesh presentation. The second 

approach was done with color-coded component planes instead of connecting the 

vector units. When projecting into the third dimension, the 2D projection has folded 

dimensional representation useless for correct info

extraction. Where in the first approach, some effort is needed to find certain areas 

coded version makes it easier to deduce from the two

For the projection from two into three dimensions, typically dis

values are taken. Takatsuka (2001) for instance used the distances from the 

distance matrix to visualize a SOM grid in 3D (see Figure 

figure was created with GeoVista Studio software (Takatsuka and 

When using the height, the distances no longer need to be 

Thus it is easier to find and interpret clusters in the three dimensional 

The visual recognition of clusters and boundaries can be enhanced by applying 

common cartographic colors to the surface. Interactive rotation functions make 

to an intuitive exploration tool. From the point of visual perception and cognition, 

it is the largest that human beings can easily grasp (Vesanto et 

al. 1998). The conclusion from SOM projections in 3D is that whenever possible and 

dimensional projection can be used for further data exploration.

            

Creating a 3D SOM distance matrix from its equivalent 2D representation
using the distances as height values (Takatsuka 2001).

dimensional SOM approaches are mentioned in the next

shows juxtapositions where in the first approach, the neighboring units 

presentation. The second 

coded component planes instead of connecting the 

vector units. When projecting into the third dimension, the 2D projection has folded 

dimensional representation useless for correct information 

some effort is needed to find certain areas 

coded version makes it easier to deduce from the two-

For the projection from two into three dimensions, typically distance or density 

values are taken. Takatsuka (2001) for instance used the distances from the 

Figure 33). The 3D SOM 

GeoVista Studio software (Takatsuka and 

When using the height, the distances no longer need to be 

in the three dimensional 

The visual recognition of clusters and boundaries can be enhanced by applying 

common cartographic colors to the surface. Interactive rotation functions make this 

point of visual perception and cognition, 

it is the largest that human beings can easily grasp (Vesanto et 

al. 1998). The conclusion from SOM projections in 3D is that whenever possible and 

dimensional projection can be used for further data exploration. 

 

equivalent 2D representation 
(Takatsuka 2001). 

next two sections of 
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3.1.5 Coloring the SOM Space 
 

Indicating metrical relationships through spatial positioning is one advantage of 

SOMs. Coloring its neurons is the other way to achieve similarity encoding. The 

color-coding could be simply done by manually or randomly assigning colors or color 

ranges to the neurons and clusters, but this is not very intuitive. Therefore, different 

methods for SOM color-coding and color projections have been elaborated. Used 

color spaces are RGB (Red Green Blue), HSB (Hue Saturation Brightness) and 

CIELab. See references (Joblove and Greenberg 1978, CIE 1986, Wikipedia 2013) 

for further information about each color space. Basically, the intention is to get a 

perceptual difference in the neurons of the SOM space by approximating distances 

in suitably defined color spaces (Kaski et al. 2000). The coloring methods are as 

follows: 

 

1) Color-coding based on the topological order of the neurons in the SOM 

This type assigns colors to each SOM unit according to its position in the SOM 

space, without respect to relative distances between the neurons. One way is to 

generate a color plane and stretch it over the SOM grid. The plane can have four 

base colors at the edges and every transition color in between is calculated. 

Basically, a small number of colors results in discrete coloring. A large number of 

colors together with higher SOM dimensions results in smooth coloring of the grid. 

Himberg (2001) used the simplest form of this technique with four levels of gray for 

coloring equal quadrants of the SOM. The other way is to create a color plane from 

RGB space and let each neuron of the SOM grid pick its associated color in the plane 

(Himberg 1999). Figure 34 shows an example of a smoothly colored SOM grid 

following it topology. 

 

 
Figure 34: Coloring of SOM neurons based on their  

topological order in the grid (Vesanto 1999). 
 

Guo et al. (2005) have developed a very complex and well-thought technique that 

creates 2D color schemes from the 3D CIELab space. This method constructs a two-
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dimensional array of differentiable, logically ordered colors using variations in hue 

and lightness. Therefore, a square grid is laid onto the CIELab color plane and lifted 

to the shape of a certain geometric object, like a bell or ellipsoid. The elevation of 

the intersection where the grid meets the surface of the geometric object defines 

the lightness. The coordinates of the grid on the color plane results in the associated 

hue (Guo et al. 2005). Figure 35 illustrates this method creating a 5x5 diverging-

diverging color scheme based on an ellipsoid model. This approach is utilized in the 

SOMVis tool (Guo 2013). 

 

 
Figure 35: Diverging-diverging color scheme created from an ellipsoid model  

in the CIELab space. 
 

2) Similarity-based coloring using distance-preserving projections 

These methods use different non-linear projections of the codebook vectors for 

assigning colors to the SOM neurons based on their mutual distances. One approach 

uses the popular Sammon’s mapping (Himberg 1999) together with the RGB color 

space. Another more sophisticated projection method was developed by Kaski et al. 

(2000) which transforms into CIELab color space. Both methods let the neurons pick 

their associated color based on their location in the projected color space. The 

CIELab colors require a calculated hue value, non-saturated colors where left out 

and lightness got a fixed value. Finally, the determined colors are linked back to the 

SOM neurons (see Figure 22 as an example). Besides RGB and CIELab space, there 

is the possibility to use the HSB circle and detect colors based on calculated hue 

values (Vesanto 2002); saturation and brightness have fixed values in this 

technique too. Figure 36 applies the latter of the mentioned coloring methods to the 

SOM neurons. 
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Figure 36: Similarity coloring of a SOM based on  

interneural distances (Vesanto 1999). 
 

3) Similarity-based coloring through a one-dimensional color SOM 

The SOM itself can be used to order the neurons in a diverging manner, as 

described by Vesanto (2002). First, a one-dimensional SOM is trained from the 

codebook vectors. Then, colors from the hue circle in HSB space are calculated for 

each neuron in the 1D SOM. Colors can be detected equidistant from each other or 

relative to the distance of neighboring vectors. As last step, each neuron in the SOM 

grid gets the color of its BMU in the color SOM. This method is used for this thesis 

implementation. Further descriptions can be found in subsection 4.5.1. 

 
3.2 K-Means, Hierarchical, and Geo-Clustering 

 
Clustering has been mentioned many times before this section. Visual 

representation of clustering can be gained from SOM visualization methods such as 

the U-Matrix. The next pages give some more explanation about the two most 

common clustering techniques applied to SOM, namely k-Means or hierarchical 

clustering. Vesanto (2002) provides the definition of clustering as: “Clustering 

algorithms divide, or partition, data into natural groups of objects. The term natural 

usually means that the objects in a cluster should be internally similar to each 

other, but differ significantly from the objects in the other clusters.” 

While the k-Means algorithm is often directly compared to SOM as a related 

technique in multi-dimensional space (Bacao et al. 2005), it can also be a useful 

method in combination with Self-Organizing Maps. As already described in the 

previous sections, k-Means is applied to SOM by showing clusters through color 

coding and cluster boundaries as overlay. The algorithm divides objects into k 

clusters where each objects depends to the clusters with the nearest mean. It starts 

with the initialization of the k number of means, also called seeds, which are 

randomly created within the data space. Then, all objects are associated with their 

nearest centroid by calculating the Euclidean distance from each object to each of 
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the k means. The partitions then represent Voronoi diagrams. After the first 

clustering, the centroid of each of the clusters becomes the new mean. This 

iterative process is then repeated until convergence. The result can be seen in 

Figure 37. There is an improved algorithm, called k-Means++, which uses a more 

sophisticated seeding of the initial k means. Arthur and Vassilvitskii (2007) describe 

the procedure to initialize the centroids before proceeding with the standard k-

means iteration process. 

 

 
Figure 37: K-Means result, showing 5 Voronoi cluster cells (k=5) and their centroids 

(image source: http://www.mathworks.com/MATLABcentral/fx_files/19344/1/k_means.jpg). 
 

Another technique besides k-Means partitioning is hierarchical clustering. 

Generating cluster hierarchies allows exploring the vector space from different 

granularities. The representation of such clustering is done in a tree diagram, a so 

called dendrogram. There are two types, namely the bottom-up, or agglomerative, 

approach as well as the top-down, or divisive, approach. In the agglomerative 

approach, each object has its own cluster in the beginning and those clusters are 

merged when moving up the hierarchy. The divisive approach starts having all 

objects in one cluster and recursively splitting up in smaller ones when moving 

down the hierarchy. Clustering algorithms are based on distance measures. The two 

general distance measures used are within-cluster distances and between-cluster 

distances (Vesanto 2002). Within-cluster distances measure the spreading in the 

cluster and between-cluster distances, also called linkage criteria, determine the 

separation between clusters. The corresponding formulas are given in Table 2.  
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Table 2: Clustering distances (Vesanto 2002) 

 

The agglomerative hierarchical clustering algorithm can be explained in four main 

steps: 1) assign each object to its own cluster, 2) calculate the distances between 

all clusters based the chosen linkage criteria, and 3) merge the two clusters which 

are closest to each other. Finally, repeat the whole process beginning at step two 

until only one cluster is left. The top-down approach goes into the other direction. 

Agglomerative algorithms produce binary trees which have at least one extra 

intermediate cluster which need to be pruned out (Vesanto 2002). Figure 38 shows 

a hierarchical clustering result where the SOM is colored according to the calculated 

base cluster hierarchy from the dendrogram. The colors of superordinate-clusters 

are simply calculated as averages from their subordinate-clusters. 

 

 

Figure 38: Hierarchical clustering of a Self-Organizing Map (Vesanto 2002). 
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There has also been a big effort in finding improvements for SOM clustering. 

Gorricha and Lobo (2012) provided interesting research work about the visualization 

of clusters in geo-referenced data. In their approach they use the width of the 

border line between geo-referenced vectors in SOM space to represent the distances 

from the vectors in input space to their BMUs. The clustering structure was detected 

by considering a cut distance and manipulating the width of the border lines. The 

SOM units were colored according their topological order in the SOM space. This 

methodology was tested with 2D and 3D SOM (Bacao et al. 2005a, 2005b) 

topology, whereby the 3D SOM (see subsection 3.3.2 for additional explanation) 

showed significantly better results (Gorricha and Lobo 2012). Finding homogeneous 

areas using this approach is quite efficient, because the border lines allow an 

identification of different zones where the color-coding from SOM space is not 

sufficient enough for clustering purposes. Figure 39 shows the clustering using a 3D 

SOM model and projecting the results to a geographic map.  

 

          

Figure 39: Cluster detection using a 3D SOM model with color-coded neurons and 
manipulated border line width representing the distance between geo-referenced  
vectors. The resulting clusters are projected into the geographic map on the right  

(Gorricha and Lobo 2012). 
 

However, sometimes the membership degree in a particular SOM cluster may not be 

easy to judge. Therefore, fuzzy clustering algorithms (Bezdek and Pal 1992) can be 

applied to deal with partial membership problems. 

 
3.3 Improved SOM Algorithms 
 
The basic SOM algorithm is limited to factors such as not preserving the distance in 

attribute space, or sticking to the rectangular and hexagonal topology. The next two 

subsections provide an insight into the improvements done beyond traditional 

SOMs. 
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3.3.1 Dimensionality Reduction and Distance Preserving 
 
As already mentioned in the introduction, SOM is a popular technique for non-linear 

dimensionality reduction. Other widely used methods are the principle component 

analysis (PCA) and multidimensional scaling (MDS). PCA (Johnson and Wichern 

1992) is a linear data analysis method that projects data from high-dimensional 

space into a commonly two-dimensional principle plane. This is done by reducing 

data variables through eliminating minor components and finding orthogonal 

principle directions along the components with the largest variances. A major 

limitation of PCA is that it cannot find non-linear relationships defined by other than 

the first and seconds-order statistics (Yin 2002). In other words, it comes to a 

significant loss of information when dealing with data in higher dimension. 

Extensions to non-linear PCA exist, but are not exemplified here. MDS (Shepard 

1965) is more appropriate for dimensionality reduction as it tries to preserve the 

distances between components from the input space when projecting to the lower 

dimensional output space. It needs to be mentioned that PCA and MDS are not at 

the same level, as PCA can be used as a projection method for MDS, which is more 

a class of analysis. Sammon’s mapping as MDS method attempts to minimize the 

differences between interneuron distances in the input and output space (Sammon 

1969). When speaking of input and output space, the original and projected vector 

space is meant. Even though Sammon’s mapping shows better results than PCA, it 

has some issues with consecutive data input as it needs to recalculate every time. 

Prediction of new points is impossible. Another well-known method of MDS, and 

related to iterative algorithm of Sammon’s mapping, is curvilinear component 

analysis (CCA). Demartines and Hérault (1992) introduced this algorithm, which 

also preserves original distances as much as possible through searching for small 

distances in the output space. Sammon’s mapping, in contrast, focuses on small 

distances in the input space. All these algorithms are also not directly performing 

clusters, unlike SOM does. SOMs are totally different as it is based on a topology-

preserving approach, making an efficient use of the available output space by 

accepting distortions of interneuron distances projected from input space. There is 

no attempt to keep the original distances after projection which creates distortions. 

Here provides the visualization-induced SOM (ViSOM) a solution, where the 

interneuron distances from input space are preserved as faithfully as possible both 

in the map as well as in the topology (Yin 2002). ViSOM is as simple and similar in 

structure as the SOM. It constrains the lateral contraction force and controls the 

resolution of the map by using the regularized interneuron distance as parameter. 

This produces a smooth and regularly graded mesh from the data points. A further 

improvement of ViSOM, since it does not assign any cost function, is the 

probabilistic regularized SOM (PRSOM). Figure 40 shows how the mentioned 

techniques relate to each other. The methods are horizontally ordered according to 

their capability of preserving the interneuron distances. 
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Figure 40: Diagram of dimensionality reduction methods. Ordered and aligned in  
relation to their capabilities of preserving topology and distances after projection 

 from high-dimensional input space into low dimensional output space. 
 

According to Wu and Chow (2005), PRSOM extends the sequential weight-updating 

rule from ViSOM with an optimization of a cost function. A color-coded area in the 

output space shows the accumulated probability for each neuron. PRSOM is a 

hybridized technique, which includes SOM and MDS into one. This makes it to an 

effective methodology that leads to improved visualization results compared to the 

other dimensionality reduction techniques SOM, ViSOM, CCV, and Sammon’s 

mapping (see Figure 41). 

 

 

 
Figure 41: Visualization of a dataset with (a) PRSOM, (b) SOM, (c) ViSOM, (d) non-linear 

mapping by CCA, and (e) non-linear mapping by Sammon’s mapping (Wu and Chow 2005). 
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3.3.2 About Spherical SOM and Geo-SOM 
 
The traditional SOM topology is either hexagonal or rectangular. These topologies 

are coming along with a special problem, the so-called border or edge effect. 

Neurons at the border of the grid have fewer neighbors which results in a reduced 

interaction with other neurons during training and higher distortions may occur. A 

solution for that problem is the spherical SOM (Wu and Takatsuka 2006, Schmidt 

2008). This topology does not only tackle the edge effect problem, it can also 

reduce the average distortion by up to two thirds (Wu and Takatsuka 2006). An 

illustration of a spherical SOM is given in Figure 42. The spherical SOM is shown in 

3D (a), projected to a 2D plane (b), and for comparison, a conventional 2D SOM 

was trained and visualized with the same dataset (c). The spherical SOM shows 

significantly better results, especially by exploring the traditional SOM which has 

distortions at the neurons near the boundaries and corners of the grid, indicated by 

colored circles.  

 

 

Figure 42: The trained spherical SOM (a) in 2D view, the white line indicates the cut for 
projection (b) into a 2D plane, and (c) a conventional SOM trained with the same dataset. 

The colored circles show distortions in the map (Wu and Takatsuka 2006). 

 

Bacao et al. (2005a) developed an improved SOM algorithm that takes into account 

spatial dependency. The Geo-SOM architecture detects clusters in geo-referenced 

data which are geographically close. Homogeneous zones, as well as spatial borders 

are indicated. The algorithm works in a way that the BMU search consists of two 

steps. In the first step, the BMU search uses only the geographical coordinates of 

the input vectors. The neighboring units in the output space are then used for the 

second phase BMU search, comparing that area to all input vectors. The update 

procedure is the same as for the standard SOM. The neighborhood of the first BMU 

step can be declared with a geographical tolerance value. Increasing this tolerance 

creates a radius of potential BMUs in the output space. The implementation was 

done in MATLAB (Bacao et al. 2005b). Figure 39, illustrated earlier in this chapter, 

shows a variant of the Geo-SOM algorithm applied on a 3D SOM to detect clusters 

and cluster distances in geo-referenced data. 
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4.  

Methodology  

 

 
This chapter deals with the technical implementation of the SOM visualization 

toolset. Basic decisions are answered at the beginning. Then, the software concept, 

the given sample dataset, as well as the specified data format are described in 

detail. All visualization methods, third-party libraries, algorithms, and system design 

approaches used for this work are explained throughout the following sections. At 

the end, used methods for the classification of SOM visualizations are given. 

 

 

4.1 Fundamental Decisions 
 

Three essential questions have to be answered before starting with the development 

of the software. First, what is the main purpose of this SOM visualization tool? Then, 

which visualizations need to be implemented? And third, based on the performance 

and functional support, for which technology platform should the application be 

developed. 

 

Purpose of Use. This software aims to be used as a standalone SOM visualization 

tool, as well as for integration into extensive data mining workflows. Thus, the 

implementation is split into two separate parts: the library and the application. 

Scientists and students are major target groups that will work with the tools. The 

intention of continuous improvement of this work requires well-defined interfaces 

and explicit documentations. 

 

Visualization Types. Component planes, hit histogram, k-Means clustering, 

intelligent SOM coloring, and the integration of geographic maps are chosen as 

important visualization methods. Further, animation functions for showing a SOM 

evolution and U-Matrix implementation are also considered. Each visualization has 

its own parameters which affect the user interface design discussed later in this 

chapter. The visualizations are chosen based on the needs of the target groups. 

 

Application Platform. Processing provides various deployment options for its 

sketches (Processing 2013). Among others, it can run as JavaScript, Java applet, or 

be integrated into Java projects. Java itself allows the execution as Java Web Start 

or as standalone application (Oracle 2013). Therefore, a test sketch with simple 

user interface that does basic SOM calculations was implemented. Random SOM 

initialization and BMU search were then tested in Java and JavaScript. Java itself 



 

 

 

showed no performance differences 

standalone application. The speed of J

used browser. Figure 43

JavaScript running in the 

indicates that Java is a lot faster than JavaScript, which has a fluctuating 

performance in the different browsers. 

conclusions for the further 

were best fulfilled by the Java application. JavaScript offers 

platform-independent web

functional support is still not sophisticated enough

purpose, with multiple windows and partitioned layout,

SWING components instead of 

this software should primarily be used offline and performance is an essential issue

with large input files and 

application with the embedded SOM visualization library is implemented in Java.

 

Figure 43: Java versus JavaScript.
 and BMU search in a Java application and running as JavaScript in five popular

 web browsers. 

 

4.2 SOMatic Viewer 
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Therefore, the Processing

the common name SOMatic Viewer

purpose of this software is
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showed no performance differences whether running as an Ap

The speed of JavaScript, on the other hand, 

43 shows the performance test for Java

in the five commonly used internet browsers. 

that Java is a lot faster than JavaScript, which has a fluctuating 

performance in the different browsers. The tests gave some important

further implementation. Performance and functional support 

led by the Java application. JavaScript offers good

web-applications but is limited to the browser and its 

is still not sophisticated enough. Also, the user interface

windows and partitioned layout, is easier to create using Java 

SWING components instead of using web scripting languages. 

this software should primarily be used offline and performance is an essential issue

with large input files and Processing as resource-consuming visualization core, the 

embedded SOM visualization library is implemented in Java.

Java versus JavaScript. Performance results of random SOM initialization
and BMU search in a Java application and running as JavaScript in five popular

web browsers. 4000 neurons and 20 input vectors were used.

 Software Concept 

made, there is the time to find a name for the visualization 

It is necessary to know that this thesis work has a counterpart

tool which does the SOM training. The whole SOM project h

the title SOMatic, with the Trainer on the one side and the Viewer on the other side. 

Processing SOM visualization library and the Java application 

SOMatic Viewer, with the supplements lib and app

software is exploring and visualizing SOM files

and relationships in high-dimensional datasets

an Applet, Web Start, or 

avaScript, on the other hand, depends on the 

shows the performance test for Java compared to 

browsers. The bar chart 

that Java is a lot faster than JavaScript, which has a fluctuating 

some important insights, with 

erformance and functional support 

good opportunities for 

applications but is limited to the browser and its 

the user interface for this 

is easier to create using Java 

 Given the fact that 

this software should primarily be used offline and performance is an essential issue, 

consuming visualization core, the 

embedded SOM visualization library is implemented in Java. 

 

Performance results of random SOM initialization 
and BMU search in a Java application and running as JavaScript in five popular 

were used. 

a name for the visualization 

It is necessary to know that this thesis work has a counterpart. Another 

which does the SOM training. The whole SOM project has 

er on the other side. 

library and the Java application have 

supplements lib and app. Again, the 

files for finding hidden 

dimensional datasets. Figure 39 
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shows the entire process of such visual data mining process. The training file (.dat) 

and map file, so called codebook (.cod), are saved from the SOM training software 

and then used for visualization and knowledge discovery in the viewer. SOMatic 

Trainer (Spöcklberger 2013), SOM_PAK (Kohonen 1995), or any other software 

which produces files in the specified format can be used.  Then, the created files are 

feed into the SOMatic Viewer toolset. The map file describes the SOM grid 

dimension, its topology type and holds the high-dimensional attributes for each SOM 

neuron. Input vector files, for example the one used for training, which contain 

related information, can be mapped onto the SOM. Generally, the datasets used for 

analysis with SOMs may be of any domain. There is the possibility to link neurons to 

a Shapefile which contains the same geographic IDs as the spatially referenced 

input dataset. With this method, the SOM space and geographic space can be 

connected. The different visualization methods provided by the SOM Viewer give 

valuable insights and intelligible visual output for high-dimensional datasets. 

Interactive highlighting and selection functions improve the exploration capabilities 

of the software.  

 

 
Figure 44: The entire SOM knowledge discovery workflow from data preprocessing, training 

to visualization. SOMatic Viewer requires three input files, of which two are specifically 
created with SOM training software (SOMatic Trainer or SOM_PAK). 

 

4.3 Carinthian Census Dataset 

 
For practical application and further discussions, a real world dataset is trained with 

SOMatic Trainer and then visualized with SOMatic Viewer. Census records for the 

region of Carinthia, Austria, are used as sample data. Figure 45 depicts the chosen 

area on the map. Statistik Austria, a governmental organization, collected the data 

in 2001 and it was last updated in 2004. This dataset contains demographic 



 

 

 

information for 132 municipalities with 

reach from administrational 

population data. In addition

WIGeoGIS GmbH, containing geographic features for each municipality

region. The dataset is going to be 

implemented SOMatic Viewer application in 

together with further thoughts

 

 

Figure 45: Map of Austria. 
 is used for real world data

 
 

4.4 Enhanced SOM_PAK
 
SOMatic Viewer uses the SOM_PAK

enhancements. As SOM_PAK

added using the existing

identifiers considered in the basic format.

which is read by SOMatic Viewer. This enables to join the 

the input data file with geographic features in a Shapefile. Figure 

SOM_PAK file format together with the enhanced version used for SOMatic Viewer. 

The software can read and process both formats.
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132 municipalities with 46 different attributes. The 

reach from administrational information, to various quantitative and 

In addition, there is a polygon Shapefile of Carinthia

, containing geographic features for each municipality

region. The dataset is going to be properly preprocessed and 

implemented SOMatic Viewer application in section 6.2. The results

together with further thoughts and conclusions, are discussed there

Map of Austria. A census records dataset for the selected 
ed for real world data analysis (image source: http://www.locationaustria.at)

_PAK File Format 

SOM_PAK file format (Kohonen 1995) with some additional 

SOM_PAK does not contain any attribute names, this 

existing comment line definition. Also, there are no 

considered in the basic format. Therefore, a geographic ID can be added 

which is read by SOMatic Viewer. This enables to join the referenced vectors 

with geographic features in a Shapefile. Figure 

file format together with the enhanced version used for SOMatic Viewer. 

The software can read and process both formats. 

The given attributes 

, to various quantitative and proportional 

Shapefile of Carinthia, produced by 

, containing geographic features for each municipality in the 

properly preprocessed and analyzed with the 

results of the analysis, 

there. 

 

selected region of Carinthia 
(image source: http://www.locationaustria.at). 

with some additional 

does not contain any attribute names, this feature is 

. Also, there are no further 

a geographic ID can be added 

referenced vectors from 

with geographic features in a Shapefile. Figure 46 shows the basic 

file format together with the enhanced version used for SOMatic Viewer. 
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 (a) Enhanced SOM_PAK data file (c) SOM_PAK data file 

 

  

 (b) Enhanced SOM_PAK map file (d) SOM_PAK map file 
 

Figure 46: Comparison of the two SOM_PAK file format version. (a) Shows the enhanced 
version of the SOM_PAK data file (.dat) and (b) is the new version of the map file (.cod).  

(c) Shows the conventional SOM_PAK data file and (d) the corresponding map file.  
Both formats can be used with SOMatic Viewer. 

 
 
The first line declares the vector dimensionality (integer), the grid topology type 

(string), the map dimension in x and y direction (integer), and the defined 

neighborhood type (string). The input data file needs to contain only the vector 

dimensions, the rest is optional. For the map file all parameters are mandatory, 

except the neighborhood type. The parameters need to be defined in the first line 

and have to occur in the given order. Then, where SOM_PAK only has a normal 

comment line recognition, using ’#’, the new version can read vector attribute labels 

by adding the ’att’ suffix without space to the comment declaration. Figure 41(c) 

and (d) shows the added lines, highlighted in red. The purpose behind that is to 

guarantee backward compatibility and to keep the existing notations. The 

subsequent lines contain numerical values in floating-point format, describing each 

vector in the given dimension. Input data files can have an optional string at the 

end of each line which describes the vector name. The enhanced version allows 

adding another string right after the label. It is used as identifier of vectors in a 

geo-referenced dataset. As depicted in Figure 41, the map file looks same, without 

vector label and additional geographic ID string. If there are missing values in the 

dataset, the numerical value is substituted with an ’x’. During calculations they are 

simply ignored by the software. 

 

4.5 Implementation 
 
The entire implementation is done in Java. As Processing uses a simplified Java 

syntax, it is not counted as separate programming language. Two projects are 

created within the non-commercial IDE Eclipse (2013): the SOM visualization 
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library, called SOMatic Viewer library, and the Java SWING tool, named SOMatic 

Viewer application. The library is a referenced project of the application and can also 

be exported as Java Archive File (JAR). Open-source libraries are used for both 

Eclipse projects (see Figure 56).  

 

4.5.1 SOM Visualization Library in Processing 
 
Processing is Special. The implementation of a Processing library requires some 

understanding of how Processing 2.0 works and how the file structure has to look 

like. Within the referenced core library, the PApplet is the parent class which 

provides access to the Processing methods and variables. It can further be seen as 

the drawing sketch itself. Two methods are important, the setup() which works as 

constructor and initializes the sketch, and the draw(), which contains everything 

that needs to be painted to the canvas. Then, as only one class can hold a sketch 

and extend PApplet, all other classes are using a reference of it. In other words, the 

PApplet is passed as parent object to any class constructor which uses Processing 

features for drawing on the same sketch. When developing outside of the Processing 

IDE, there are some other modification required which are not specifically explained 

here, but can be read in the official documentation (Processing 2013). As this 

project should also result in a contributed library which is going to be published to 

the community, the folder structure and content is critical and has to meet the 

Processing guidelines. 

 

Component Model. An overview about the main components of the SOMatic 

Viewer library and how they are related to each other is illustrated in Figure 47. 

Four different files can be read. An input vector and codebook file is mandatory for 

the visualizations. There is the option to load a polygon Shapefile containing 

geographic features of the input vectors. Further, a project file, which contains file 

paths, settings, and default values, can be loaded and saved separately. Data is 

read into memory and kept during runtime. The file reader initializes the neuron and 

input vector arrays and assigns the associated data. The central element is the 

SOMatic Globals class, a Singleton-pattern class containing all global variables. After 

data is in memory, the SOM grid is created from the neuron array. Input vectors are 

mapped to their best matching neurons in SOM space using BMU search. Another 

main component is the coloring, which is fundamentally an abstract group for all 

visualizations methods of the SOM. The reason why BMU search is also used for 

coloring relates to one of the SOM grid representation techniques. The GeoMap 

communicates with the SOM through the Globals. K-Means is feed with the neurons 

of the SOM. During cluster iterations, a color scheme is created, which is then 

dynamically applied to the grid.  
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Figure 47: SOMatic Viewer Library component model 
 

 

The SOM Grid. Several classes are involved and nested for drawing the SOM grid. 

There is the SOMGrid class, which is used to instance the top by defining the 

dimension in x and y direction, the given topology type and optional border spacing. 

Then, based on the specified parameters, the grid controller class determines the 

available space within the sketch according to its current width and height and 

scales the grid to fit best into the defined area. This provides flexible grid resizing 

when the sketch dimensions change. The calculated radius for each SOM neuron 

within the available space is passed to the topology class, which arranges the 

neurons based on the chosen topology type and grid dimensions. As both the 

rectangular and hexagonal topology require different offsets, this is handled here. 

Finally, the neurons are drawn at their position in the grid with the determined 

extent, offset, and geometry based on the topology type. Each geometry class 

inherits styling parameters, such as fill color, or stroke width and color, from the 

shape class. Once a neuron is drawn, its geometry is held within the associated 

instance. This is useful, as each neuron’s geometry and appearance can be accessed 

and modified independently. The neuron geometry can return its center coordinates, 

inner and outer radius, as well as current fill and stroke settings. These parameters 

are useful for labeling or mapping objects onto the grid. Figure 48 depicts the 

described SOM drawing sequence based on a nested class hierarchy. 
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Figure 48: A SOM grid is drawn by a sequence and hierarchy of classes. 

 
 

Hit Projection and Hit Histogram. The projection of input vectors onto the map 

grid is accomplished by the BMU search, where each input vector is compared to all 

neurons of the SOM based on the distance between their attributes in the same 

high-dimensional space. The neuron with the smallest distance to the given input 

vector is the BMU. Euclidean, Cosine, and Manhattan distance are provided for the 

BMU search. One neuron can have 0 to n matching input vectors. Once a BMU is 

found, both objects keep the index of each other. Figure 49 shows a class diagram 

of the neuron and input vector entity in unified modeling language (UML) 

representation. A hit can be drawn as number, quantifying the hits per neuron, or 

as point marker, scaled by the number of hits per neuron. As additional feature, the 

hits can be labeled. If enabled, the names of the vector are placed next to the hit 

marker on the neuron. This function has some limitations. Labels cannot be fully 

display with increasing number of hits per neuron, because they would overlap 

other elements in the sketch. The hit histogram is simply determining the minimum 

and maximum hit count of all neurons, assigning two different colors to these values 

and then calculating the color values for the number of hits in between. The 

lerpcolor() function in Processing does this job. Light colors can be used for the 

minimum hit count and rich colors for the maximum. The resulting map visualization 
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provides an understandable representation of the distribution and number of hits 

per neuron with bright areas for low hit density and darker areas for high hit 

density.  

 
Figure 49: Class diagram of the two SOM entities, neuron and input vector. 

 

 

Component Planes. Since the SOM itself contains valuable information about the 

data used for training, there is an interest of visualizing each attribute as a sliced 

piece of the SOM. Each neuron is holding an n-dimensional vector of attributes. 

Based on the number of selected attributes, a SOM for each component plane is 

drawn. The neurons are colored with the same method used for the hit histogram, 

two different colors are assigned to the minimum and maximum value and all colors 

in between are calculated. This method requires a normalization of the values first. 

Component planes are a popular technique for side-by-side comparison of the data 

distribution. SOMatic Viewer has a flexible layout on top of the component planes. 

This means that the grids do not only adjust automatically to the available sketch 

dimensions, they also get proportionally rearranged. As an example, six component 

planes are displayed and the frame width and height changes from 400x400 to 

600x200 pixels. Then the component planes are rearranged from formerly 3 on the 
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x-axis and 2 on the y-axis, to 6 on the x-axis and 1 on the y-axis. A minimum 

spacing parameter between the grids can be set. Each component plane is labeled 

with the given attribute name. 

 

GeoMap. The geographic map uses MapThing (Reades 2013), an external 

Processing library. MapThing itself imports methods of the comprehensive GeoTools 

Java library (OSGeo Project 2013). These toolsets offer all necessary functions to 

draw and manipulate Shapefiles in Processing. What MapThing does not provide is a 

method to automatically get the extent of the Shapefile. This was self-made with 

some functions from GeoTools. The geographic map needs one parameter for 

correct interaction with the SOM, which is the field name for the geographic ID from 

the attribute table. Additionally, the attribute category for labeling needs to be 

defined. The GeoMap communicates with the SOM through the global variables 

Singleton-pattern class. It reacts on every change in the SOM. Whenever another 

visualization method is applied, the GeoMap gets updated. The coloring is done by 

linking the colors from SOM space into the geographic space. As each feature in the 

GeoMap has an associated input vector projected onto the SOM, the color can be 

retrieved from the corresponding BMU. Another function is the interactive selection, 

where connected features and neurons are highlighted if one of them is selected. 

This selection works with an ArrayList that holds the indices of the currently 

selected neurons or features. Whenever there is a change in the list, both views get 

updated. More details about the interactive selection and highlighting are given in 

the next subsection 4.5.2. 

 

U-Matrix. The unified distance matrix shows interneuron distances in the map, 

where each neuron is colored in relation to the distance to its neighbors. As an 

example, the creation of a U-Matrix from a 3x3 grid with hexagonal topology works 

as follows. To get the distances of one neuron to its neighbors, imaginary neurons 

are inserted. Figure 50 shows an illustration. The 3x3 grid results in a 5x5 

interpolated matrix with new neurons in between. The {x,y} elements are holding 

the distance between neuron x and y and the values in {x} elements are the mean 

of the surrounding values. In the given example:  {4,5} = distance(4,5) and {4} = 

mean({1,4},{2,4},{4,5},{4,7}). Euclidean is used for distance measures. The 

same principle is applied to a rectangular topology, with the distinction that a 

neuron can have the maximum of four neighbors compared to six in the hexagonal 

topology. In the map, the interpolated neurons disappear and only the mean 

distances for each neuron are visualized. Assigning light gray colors to low distances 

and dark ones to larger distances results in a representation where light areas are 

considered as clusters and black ridges indicate cluster boundaries. 
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Figure 50: The U-Matrix uses interpolated cells (blue color) for interneuron  
distance calculation. 

 

K-Means Clustering. The standard k-Means algorithm, explained in section 3.2, is 

applied for SOM clustering. Initial centroids are randomly chosen. Each iteration 

step during k-Means calculation affects the coloring of the map which leads to an 

animation of the cluster evolution. Euclidean is used as distance measure between 

vector attributes.  

 

SOM Coloring Methods. Two different methods for SOM grid coloring are applied. 

The first one uses the topological order of the neurons as done by Himberg et al. 

(2001), whereas the second one is based on similarities between neurons, colored 

according to their BMU in a one-dimensional color SOM as described by Vesanto 

(2002). The topological order coloring approach uses a 2D color plane in RGB color 

space. The plane contains four quadrants in the lowest resolution, painted in green, 

red, blue, and dark magenta. With increasing resolution, transition colors are 

calculated in between. This plane is then stretched over the SOM grid. Depending on 

the resolution of the color plane and the dimensions of the SOM, a discrete or 

smooth coloring is the result. Figure 51 shows snapshots of this method. 

 

 
Figure 51: SOM coloring based on the topological order or the neurons.  
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The similarity-based coloring technique uses the SOMatic Trainer library 

(Spöcklberger 2013) to create a diverging one-dimensional SOM from the codebook 

vectors. Each component in the 1D SOM gets a distinct color. The color assignment 

itself is split into two separate methods. The first method uses diverging color tables 

from the giCentreUtils library. The second one automatically picks colors from the 

HSB hue circle (Vesanto 202). Both techniques use the equidistance of neurons for 

color assignment. An illustration of the SOM coloring procedure utilizing the HSB 

hue circle is given in Figure 52.   

 

 
Figure 52: Process of similarity-based SOM coloring using a 1D HSB color SOM. 

 

 

Training Animation. An animation of SOM training can be easily accomplished 

with the use of this library. After import of SOMatic Viewer library, an array of 

neuron objects together with all necessary SOM parameters, such as grid dimension 

and topology, need to be created. The chosen SOM visualization needs to be 

initialized, which references the former created array of neurons. Then, the 

associated neuron vector attributes can be update during an interval of training 

steps. Through the continuous drawing of the SOM sketch the visualization changes 

whenever new vector attributes are available. This results in an animation of the 

SOM training. Based on the chosen visualization, it can be seen how the SOM 

algorithm works and how the weights are updated in the SOM. An example is 

illustrated in the proof of concept, subsection 6.1. 

 

Design and Extendibility. The aim was to implement an extendable and flexible 

toolset. Flexible in the meaning of as simple to use as possible, but also with access 

to basic classes and methods where one can create an individual SOM by putting 

pieces of code together. As an example, when importing the library, there is the 

option whether to create a new instance of the MainSOM object which already 
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contains all visualization methods, or to build a customized SOM by inheriting from 

the BasicSOM class, which provides common controls and selection functions. 

Sample code can be found in the Processing examples folder. The extendibility 

aspect is accomplished by providing programming interfaces which make it easier to 

write and integrate new classes. Figure 43 describes interfaces for the SOM grid 

creation. There are other interfaces for customizations such as for SOM coloring. 

When implementing an interface, all necessary methods are automatically created in 

Eclipse. The standardized method signature guarantees that new classes can 

communicate properly with the rest of the system. Class inheritance, mentioned 

above, is another way of providing a simple way to create new parts and extend a 

software application by accessing common methods and variables. Having a parent 

controls class thus makes sure that a SOM always has the same behavior in terms 

of interaction and events. Figure 53 shows an excerpt of the SOMatic Viewer class 

diagram for SOM control and coloring with implemented interface and inherited 

classes. 

 
 

Figure 53: Class diagram showing the use of an interface for SOM coloring  
and class inheritance for common SOM controls and selection methods. 

 

Project File. The project file is used to simplify the file input and to save 

parameters used for a single project. It can also be seen as a settings file containing 

file paths, default values and visualization preferences. A saved state of the project 

can be restored from the file. Moreover, the same project file can be used for 

SOMatic Trainer (Spöcklberger 2013). The structure is simple. It can contain 

comments and searches for explicit keys and values. See the example in Figure 54 

below. Values are updated when saving the file. If a key is missing, the application 

adds it together with its associated value to the end of the file. 
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Figure 54: Excerpt of a SOMatic project file. 

 

 
4.5.2 The Java Application 
 

SWING and Processing. Java SWING API is used for the graphical user interface 

(GUI) and thus works as presentation layer of the SOMatic Viewer application. The 

SWING toolkit provides a varied range of GUI components to create platform-

independent software applications. The SOMatic Viewer sketches are embedded into 

panels. GUI components call methods of the sketch, listeners detect if there is an 

interaction with the sketch, and variables are updated. There is no direct reference 

from the sketch to the rest of the application; everything is loosely coupled. The 

GUI frames as well as the sketches are resizable. Visualizations automatically adjust 

to the given frame dimensions. An embedded sketch has to be initialized and 

started. After that it keeps running until the application is closed. There is also the 

possibility to stop it programmatically.  

 

Attribute Tables. For better data exploration reasons, two attribute tables are 

integrated. The codebook vector and input vector data is read from memory and 

added to the table frames, which can be handled independently from each other. 

Both tables have an attribute search function with auto-completion. The column 

containing the search result is automatically focused and highlighted. Both tables 

are connected to the SOM visualizations. Their selections get mutually updated. The 

interactive selection process is described in the next paragraph. 

 

Interactive Selection. Already a common feature in other SOM software, the 

interactive selection and highlighting between various data representations was 

implemented in SOMatic Viewer. This function is provided for the visualizations as 

well as the attribute tables. The SOMatic Viewer Globals class holds variables which 

are sequentially called and updated from all presentation components. These 

components can be seen in Figure 55. The sketches simply use their draw() 

method, which is called in an infinite loop and thus continuously updates the global 
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selection parameters. In case there is no continuous drawing done, the depending 

selection methods are called after certain events. Slightly more complicated is the 

method for the attribute tables as they are part of the GUI. Because of loose 

coupling reasons there is no direct reference to any of the events within each 

sketch. The solution comes from mouse listeners which detect if the user has clicked 

into a sketch panel and consequently updates the selection variables. Multiple 

selection can be done by holding the CTRL key while selection neurons in the SOM, 

features in the geographic map, or rows in the attribute tables. 

 

 

Figure 55: Abstraction of the presentation components which sequentially access and 
update the global variables used for interactive selection. To guarantee a loose coupling 

between the GUI and the library, the attribute tables use click listeners on the panels which 
contain the sketches. 

 

External Libraries. SOMatic Viewer uses several external libraries, which are 

depicted in Figure 56. The Java application imports two libraries, which are the 

suggest field, used for searching through attribute tables, and XSwing, which offers 

some sophisticated GUI elements such as the collapsible panel, used for the SOM 

controls in the main frame. The SOMatic Viewer Processing library is a referenced 

project of the application that includes six more libraries. There is the SOMatic 

Trainer library which is used together with color tables from giCentreUtils to create 

SOM-based coloring. Processing core is the heart of the toolset with its sketching 

capabilities. Cloning makes deep-copies of objects and finally there is the MapThing 

library, which references GeoTools. These two in combination provide extensive 

Shapefile handling and visualization functions. 
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Figure 56: External libraries used for SOMatic Viewer. 

 
 

4.6 Visualization Classification 
 
First, getting a complete list of SOM visualizations is even after extensive literature 

review and software testing simply not possible. But, an appropriate classification 

can be done based on the different types of visualizations that were found. An 

important remark is that the only visualizations that are considered are those which 

do not require a sequence of software tools or complex preprocessing and 

visualization workflows. In other words, only reproducible visualizations are 

classified. Further, SOM grid coloring methods are also not considered, even though 

they can be seen as distinct visualization techniques. 

 

In total, ten classification characteristics for 23 different SOM visualization 

techniques have been elaborated. They are clearly described as follows: 

 

Codebook Vectors / Input Vectors. These two determine which types of vectors 

are used for the visualization. Component planes, for example only use codebook 

vectors as only the SOM itself is visualized. Hit histograms solely visualize the input 

vectors, projected onto the map. Other visualizations require both for a more 

enhanced representation of the input and output space. 

Cluster Indication. The visualization shows clusters through coloring and other 

methods of separation or agglomeration. Therefore, trajectories may identify 

clusters where hit diagrams do not, because there is no cluster delineation. 

Distance. The representation visualizes distances between neurons using colors, 

connections, or a distance-preserving projection. 
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Density. The representation visualizes neurons density using colors, contours, or 

markers showing the magnitude. 

Cluster Connections. Visualizes the connection or correlation between clusters 

based on certain characteristics. Usually, lines are used to connect two or more 

related clusters. 

Movement. Shows the movement of vectors or attributes through the SOM space.  

Parameterization. This describes if the visualization can be calibrated by 

modifying certain parameters. These can be the number of clusters, value of 

significance, or distance threshold and so on. Coloring or marker settings are not 

considered as parameterization. Also different distance measures for hit projection 

are left out. 

Vector Correlations. Explicitly visualizes the correlation between single vectors in 

the SOM or projected space by connecting them with a line or using some sort of 

color differentiation. 

Match Accuracy. Determines the accuracy of BMU search results for vector 

projection. 

 

Based on these ten criteria, a classification matrix is created. The results are given 

at the end of the next chapter. 

 

 

5.  

Results  
 

 
The SOMatic Viewer toolset serves as technical result of this thesis work. It consists 

of a Processing library for SOM visualization and the Java application. The software 

provides interactive functionalities for SOM data visualization and exploration.  

A classification matrix for SOM visualizations is the other research outcome. 

 

 
5.1 SOMatic Viewer Processing Library 

 
The SOMatic Viewer Processing library comes as JAR file which can be imported into 

a Processing sketchbook or Java application. It has the folder structure for official 

contribution to the Processing community together with all other necessary files, 

such as documentation, source, and sample code files. The library import and 

visualization of SOM files requires just a few code lines. Visualization parameters 

can be set from a user interface, which does not come with the library.  
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The following visualizations are available: 

 

• Hit projection 
o Hit histogram 
o Hit diagram 

� Numerical hit count 
� Marker showing the location and magnitude of hits 
� Labeling of the projected vector names 

• U-Matrix 

• Component planes 
o Automatic plane arrangement within sketch dimensions 

• SOM coloring 
o Discrete or continuous coloring from 2D color plane, following the 

toplogical order of the neurons in the SOM 
o Similarity-based coloring with diverging-diverging colors schemes and 

HSB colors 

• GeoMap 
o Labeling of the map features 

• k-Means clustering 
 
Visualizations can be embedded into separate frames for simultaneous view and 

independent resizing. The library provides several interaction and map control 

features for each visualization: 

 
• Map controls 

o Zooming 
o Panning 
o Key events 

• Interactive selection and highlighting 
o Single or multiple neuron selection (see Figure 59) 
o Selection gets updated in connected visualizations (see Figure 57) 

 
Project files (.sprj) can be loaded and saved. These files contain the parameters and 

file paths of a single SOMatic project.  

 
5.2 SOMatic Viewer Java Application 
 
This platform-independent Java application comes as runnable JAR with integrated 

SOMatic Viewer library project. It can be executed without installation. Technical 

details of the software are given below: 

 
• Multiple data visualization and exploration windows (see Figure 57) 

o Main frame containing the main SOM grid 

o Component planes 
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o Attributes tables 

o Geographic map (see also Figure 58) 

• Interactive Selection and Highlighting between multiple representations (see 
Figure 57) 

 

 

Figure 57: SOMatic Viewer application updates the selection in multiple windows. The main 
frame shows a zoomed view of the SOM grid (upper left), the attribute table sets its focus to 
the row of the selected neuron, the geographic map provides a linked view of the SOM with 
the highlighted region, and component planes (lower left) identify the selection in all slices 

of the SOM. 

 

• Graphical User Interface (see Figure 59) 

o Toolbars with map controls 

o Preferences window 

o Visualization controls 

o SOM coloring panel 

o Hit info panel 

o Status bar 

 
File dialogs are used for input or output actions. Implemented functions are: 
 

• Sketch export as image or PDF 

• Loading of codebook and input vector files 

• Loading and saving of project files 

• Loading of Shapefiles with attribute field selection 
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Figure 58: The SOMatic Viewer geographic map window provides several controls. 

 

 

Figure 59: SOMatic Viewer main frame. (1) Toolbar with shortcuts for the project, map, and 
visualizations, (2) collapsible control panels for grid control, SOM coloring, hit information, 

and k-Means clustering, (3) selection of multiple neurons in the grid, (4) status bar. 

(1) (2) 

(4) 

(3) 
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5.3 SOM Visualization Classification 

 

21 types of SOM visualizations characterized by 10 classification criteria, described in section 4.6, are ordered into four 
visualization categories. Based on extensive literature research, the resulting classification matrix looks as follows: 

 

 
Visualizing the SOM itself 

 
SOM Space Cluster Space Distortion Space 

 
Component 

Planes k-Means Hierarchical 
Vector 
Fields 

Cluster 
Connections U-Matrix P-Matrix U*-Matrix 

Smoothed 
Density 

Histogram 

  Codebook Vectors � � � � � � � � � 

  Input Vectors x x x x x � � � � 

  Cluster Indication � � � � � � � � � 

  Distance x x x x � � x � x 

  Density x x x � x x � � � 

  Cluster  
  Connections x x x x � x x x x 

  Movement x x x x x x x x x 

  Parameterization x � � � � � � � � 

  Vector  
  Correlations x x x x x x x x x 

  Match Accuracy x x x x x x x x x 

 
Table 3: Classification matrix for SOM visualizations. Part 1: Visualizing the SOM itself.  

6
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Projections onto the SOM 

 
Hit Projection 

Multivariate 
Symbolization 

Graph Representation Path Visualization Classes 

 
Data Histogram 

Sky 
Metaphor 

Component 
Charts 

Neighborhood 
Graph 

Minimum 
Spanning Tree 

Trajectories Metro Map Class Map 

  Codebook Vectors x x � � � � � x 

  Input Vectors � � � � � � x � 

  Cluster Indication x � x � � � � � 

  Distance x � x x � x x x 

  Density x � x x x x x x 

  Cluster  
  Connections x x x � � x x � 

  Movement x x x x x � � x 

  Parameterization x � � x � � � � 

  Vector  
  Correlations x � � � � � � � 

  Match Accuracy x x x x x x x x 

 

Table 4: Classification matrix for SOM visualizations. Part 2: Projections onto the SOM. 
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Projections onto the SOM Projections from the SOM Linking from the SOM  

 
Match Accuracy Distance Preserving Low-Dimensional Space Ordered 2D Space Geographic Space 

 
Response  
Surface 

Position Accuracy 
Marker 

Sammon’s  
Mapping 

Principal Component 
Analysis 

Parallel Coordinate 
Plot Geographic Maps 

  Codebook Vectors x x � � � � 

  Input Vectors � � � � � � 

  Cluster Indication x x x x x � 

  Distance x x � � x x 

  Density x x x x x x 

  Cluster  
  Connections x x x x x x 

  Movement x x x x x x 

  Parameterization x x x x x x 

  Vector  
  Correlations x x � � � � 

  Match Accuracy � � x x x x 

 

Table 5: Classification matrix for SOM visualizations. Part 3: Projections onto the SOM,  
Projections from the SOM, Linking from the SOM. 
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6.  

  Data Analysis 
and Discussion 

 
 
This chapter is mainly about the analysis of the Carinthian census dataset. Another 
major part is the proof of concept, where the implemented visualizations are 
compared with results produced by other SOM tools. A short excursion about a 
possible parallelization of processing and visualization tasks is given at the end. 
 
 

Before starting with the proof of concept, there should be said that no user testing 

was possible for the SOMatic Viewer toolset. The major reasons were first, the focus 

on the technical and theoretical research of SOM visualizations together with 

functional implementation priorities, and second, the fact that proper user testing 

would have been very time-consuming at the expense of other, more essential parts 

of this thesis work. 

 

6.1 Proof of Concept 
 

The proof of concept intends to show that the implemented visualizations are 

working properly and are giving correct results. One part deals with the integration 

for training animation into SOMatic Trainer. The other subsection compares the 

visualization results with those from other SOM software. The Carinthian census 

data was used as input dataset for all of the given examples. 

 

6.1.1 Training Animation 
 
A required function was to provide the ability of training animation. Therefore, the 

SOMatic Viewer Processing library was integrated into SOMatic Trainer for animation 

of the entire training process. Component planes and the U-Matrix can be selected 

as visualization. Figure 60 show the evolution of a 50x50 hexagonal SOM with 

400,000 iterations in 4 training phases, visualized as U-Matrix. The initialization 

state is depicted in (a). In the training phase, it can be seen how weights are 

updated after BMU search. Circles identify the current neighborhood radius (b). The 

resulting U-Matrix identifies clusters in the map by visualizing the mean distance 

from reach neuron to its neighbors (c). 
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Figure 60: Animation of SOM training in SOMatic Trainer. Three training states for  
the Carinthian census dataset are shown: (a) random seeding of the neuron vector,  

(b) BMU search during training, (c) the resulting U-Matrix cluster structure.  

 

6.1.2 Comparison with Java SOMToolbox and SOMine 
 
The purpose behind this comparison is to show that the visualizations provide 

correct results. Of course, there is never a 100 percent similarity, but similar 

regions should be identified and visualized in the map. Also the position and 

distribution of projected hits can be compared. This is done in the first example. A 

30x30 rectangular SOM was trained with 100,000 iterations in SOMatic Trainer and 

visualized in SOMatic Viewer. The same settings were used for the training of a 

Growing SOM in Java SOMToolbox. Moreover, Euclidean distance was used for the 

projections in the hit histogram visualization of SOMatic Viewer. Even though Java 

SOMToolbox uses another SOM algorithm, the results are surprisingly similar. In 

Figure 61, the orange rectangle in the upper left corner identifies the cities 

Klagenfurt (corner) and Villach in both hit histograms. Additionally, only two 

municipalities have the same BMU, which are Feistritz ob Bleiburg and St. Paul im 

Lavanttal. Both SOMs show them on the same neuron in almost the same region, 

marked with a gray rectangle.  

 

     

Figure 61: Hit histogram comparison in SOMatic Viewer (left) and Java SOMToolbox (right). 
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Another comparison was done with the identical SOMs from above, but visualizing 

distances between neurons using the U-Matrix (see Figure 62). Again, both matrices 

show the same large distances detecting a small, well separated cluster in the upper 

left corner. The overall cluster structure is somehow related, but the resolution is 

quite different, as the Java SOMToolbox uses a more detailed U-Matrix visualization 

for each neuron. 

 

           

Figure 62: U-Matrix visualization comparison in SOMatic Viewer (left)  
and Java SOMToolbox (right). 

 

Finally, the component plane representation is compared with the one in Viscovery 

SOMine. For this case, the same map file is used as input for both the SOMatic 

Viewer and SOMine because the proprietary software is able to read codebook files. 

The SOM has a hexagonal topology and the dimension of 30x30. In Figure 63, two 

component planes were visualized. In both applications, cluster areas were outlined 

in exactly the same regions with exactly the same color intensity. The difference 

here is that SOMine provides a sequential color schema, whereas SOMatic only 

interpolates the range between two colors from the minimum to the maximum 

value. 

 

Conclusion. The conclusion of these comparisons is that the entire SOMatic toolset 

bundle works correctly and delivers results which can, to a certain level, compete 

with comprehensive SOM software applications.  
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Figure 63: Comparison of component plane visualizations in  

SOMatic Viewer (upper) and Viscovery SOMine (lower). 
 

6.2 Analysis of Carinthian Census Data 
 

This is an example of how SOMatic Viewer can be used for highly dimensional real-

world data analysis. The results might have practical relevance for the regional 

government and public institutions. For instance, the development and change 

within the population among the municipalities can be tracked down. The described 

procedure of this analysis can serve as reference for follow-up research activities. 

Some basic information about the Carinthia census records are given in section 4.3. 

 

6.2.1 Preprocessing 
 

Data preprocessing is the first step to get correct and meaningful results. For every 

variable it is necessary to decide carefully whether it is important to include it and 

how it should be preprocessed such that meaningful comparisons can be made 

between geographic objects. The Carinthia census records contain 43 quantitative 

attributes. Population density was manually added.  In total, 21 attributes were 

chosen for SOM training. Table 6 and 7 provide an overview about the census 

dataset attributes, which variables are used for training and how each of them is 

normalized. All 132 Carinthian municipalities are described through these attributes. 
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Attribute Name English Description 
Used for 

Training 
Normalized to 

Flaeche_m2 Area in square meters 
  

Umfang_m Perimeter in meters 
  

Anzahl_der_Haushalte Number of households 
  

Anzahl_der_Einwohner Number of population 
  

Anzahl_der_Maenner Number of male 
  

Anzahl_der_Frauen Number of female 
  

Anzahl_der_bis_19_jaehrigen_Personen Number of persons with age 19 and younger 
  

Anzahl_der_20_bis_39_jaehrigen_Personen Number of persons with age between 20 and 39 
  

Anzahl_der_40_bis_59_jaehrigen_Personen Number of persons with age between 40 and 59 
  

Anzahl_der_ab_60_jaehrigen_Personen Number of persons with age 60 and older 
  

Anzahl_der_Einpersonenhaushalte Number of one-person households 
  

Anzahl_der_Zweipersonenhaushalte Number of two-person households 
  

Anzahl_der_Drei-_und_Mehrpersonenhaushalte_(Familien) Number of three- or more-person households (families) 
  

Anzahl_der_Personen_mit_Universitaetsabschluss Number of persons with university degree 
  

Anzahl_der_Personen_mit_Matura Number of persons with high school certificate 
  

Anzahl_der_Personen_ohne_Matura Number of persons without high school certificate 
  

Anzahl_der_ledigen_Personen Number of unmarried persons 
  

Anzahl_der_verheirateten_Personen Number of married persons 
  

Anzahl_der_verwitweten_Personen Number of widowed persons 
  

Anzahl_der_geschiedenen_Personen Number of divorced persons 
  

Anzahl_der_Personen_mit_oesterreichischer_ 

Staatsangehoerigkeit 
Number of persons with Austrian citizenship 

  

Anzahl_der_Personen_mit_EU-

Staatsangehoerigkeit_(ohne_oesterr.) 
Number of persons with EU citizenship (without Austrian) 

  

Anzahl_der_Personen_mit_sonstiger_Staatsangehoerigkeit Number of persons with other citizenship 
  

 

Table 6: Carinthia census records attribute breakdown table, part 1. Variables not used for training. 

7
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Attribute Name English Description 
Used for 

Training 
Normalized to 

Anteil_der_Maenner Proportion of male � Anzahl_der_Einwohner 

Anteil_der_Frauen Proportion of female � Anzahl_der_Einwohner 

Anteil_der_bis_19_jaehrigen_Personen Proportion of persons with age 19 and younger � Anzahl_der_Einwohner 

Anteil_der_20_bis_39_jaehrigen_Personen Proportion of persons with age between 20 and 39 � Anzahl_der_Einwohner 

Anteil_der_40_bis_59_jaehrigen_Personen Proportion of persons with age between 40 and 59 � Anzahl_der_Einwohner 

Anteil_der_ab_60_jaehrigen_Personen Proportion of persons with age 60 and older � Anzahl_der_Einwohner 

Anteil_der_Einpersonenhaushalte Proportion of one-person households � Anzahl_der_Haushalte 

Anteil_der_Zweipersonenhaushalte Proportion of two-person households � Anzahl_der_Haushalte 

Anteil_der_Drei-_und_Mehrpersonenhaushalte_(Familien) Proportion of three- or more-person households (families) � Anzahl_der_Haushalte 

Anteil_der_Personen_mit_Universitaetsabschluss Proportion of persons with university degree � 
Σ (Anzahl_Uni + Anzahl_Matura +  

Anzahl_ohne_Matura) 

Anteil_der_Personen_mit_Matura Proportion of persons with high school certificate � 
Σ (Anzahl_Uni + Anzahl_Matura +  

Anzahl_ohne_Matura) 

Anteil_der_Personen_ohne_Matura Proportion of persons without high school certificate � 
Σ (Anzahl_Uni + Anzahl_Matura +  

Anzahl_ohne_Matura) 

Anteil_der_ledigen_Personen Proportion of unmarried persons � Anzahl_der_Einwohner 

Anteil_der_verheirateten_Personen Proportion of married persons � Anzahl_der_Einwohner 

Anteil_der_verwitweten_Personen Proportion of widowed persons � Anzahl_der_Einwohner 

Anteil_der_geschiedenen_Personen Proportion of divorced persons � Anzahl_der_Einwohner 

Anteil_der_Personen_mit_oesterreichischer_ 

Staatsangehoerigkeit 
Proportion of persons with Austrian citizenship � Anzahl_der_Einwohner 

Anteil_der_Personen_mit_EU-

Staatsangehoerigkeit_(ohne_oesterr.) 

Proportion of persons with EU citizenship (without 

Austrian) 
� Anzahl_der_Einwohner 

Anteil_der_Personen_mit_sonstiger_Staatsangehoerigkeit Proportion of persons with other citizenship � Anzahl_der_Einwohner 

Durchschnittliche_Haushaltsgroesse Average size of household � Anzahl_der_Einwohner / Haushalte 

Bevölkerungsdicht_km2 Population density in square kilometers � Anzahl_der_Einwohner / Flaeche 

 

Table 7: Carinthia census records attribute breakdown table, part 2. Variables used for training.
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Basically, the order of suitable variable preprocessing is:  

1. Choose which variables to use. 

2. For each variable, decide whether it should be used on its own or within a 

composite variable. 

3. Normalize/standardize with the goal of accounting for magnitude differences. 

 

Since total counts of population variables are highly correlated with total population, 

it makes no sense to include them for training. Instead, solely proportional 

attributes are used which allow a meaningful comparison and should also lead to 

spatial clusters. All attribute variables are normalized in the range between 0 and 1. 

 

6.2.2 Training 
 
The SOMatic Trainer tool, implemented by Spöcklberger (2013), is used for training. 

To get a detailed SOM for the given input dataset, a resolution of 50x50 neurons is 

chosen. Generally, the size of a neuron lattice should be chosen that each input 

vector has the possibility to occupy at least one single neuron (Kohonen 1998). In 

this case a significantly larger lattice is used to get a SOM with higher granularity 

and more detailed cluster structure. The training is split up into three consecutive 

cycles. After each cycle, learning rate and neighborhood radius gets decreased and 

the number of training runs gets increased. The first training cycle is establishing 

broad, global structures and the second and third cycle firm up regional and local 

structures in the SOM. All attributes are equally weighted. The used SOM training 

parameters for the given analysis are as follows: 

 

SOM: 50x50 neurons, hexagonal topology, random initialization, 

 Euclidean distance measure, neighborhood function = bubble 

 
1st cycle:  100,000 runs, learning rate = 0.05, neighborhood radius (alpha) = 20 

2nd cycle: 200,000 runs, learning rate = 0.05, neighborhood radius (alpha) = 15 

3rd cycle: 300,000 runs, learning rate = 0.03, neighborhood radius (alpha) = 8 

 

The average quantization error (AQE) after training shows a value of 0.002, which is 

a good result. The quantization error measures the matching goodness between an 

input vector and its BMU. In other words, the lower the AQE the better is the match. 

 

6.2.3 Results 
 
The SOM visualizations in Figure 64 give interesting insights into the trained census 

records codebook file. All input vectors are surprisingly regular spread over the 

entire SOM without many accumulations. The overall structure in the U-Matrix 

shows rather small clusters containing a low number of hits. These characteristics 

indicate a quite balanced dataset with a few strong local relationships. When taking 
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a closer look into the SOM, as depicted in Figure 65, the view gets more detailed. 

The lower right corner with significant clusters shows mostly municipalities from the 

areas around the biggest lakes in Carinthia, namely the Woerthersee, Ossiacher 

See, and Millstaetter See. The two largest cities Klagenfurt and Villach can be found 

in this corner as well. They are divided by clusters with average distances but seem 

to have a lot in common. Hermagor, St. Veit/Glan and Spittal/Drau complete the 

assumption that large Carinthian cities tend to have strong relationships. Mallnitz is 

the only exception here, which is totally different than the other municipalities 

nearby in geographic space.  

 

      
Figure 64: Hit histogram (left) and U-Matrix visualization (right) of the  

Carinthia census records. 
 

 
Figure 65: Zoomed view to the lower right corner of the U-Matrix. 
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To find out what is the reason behind these matching results, it is important to 

break down the SOM into its single attributes. The component planes are used for 

that. A side-by-side representation of component planes allows finding similar 

patterns and from there, conclusions to the hits in the map can be done. As an 

example, Figure 66 shows twelve component planes, where some of them contain 

almost identical patterns in the map. The two yellow rectangles mark clusters of 

high values for average size of household and proportion of unmarried persons 

which seem to highly correlate. The municipality located in the corresponding area 

in the SOM is Steuerberg. The same procedure can be used to determine the 

correlation of single-households, widowed persons, and people older than 60 years, 

marked with green rectangles. The two almost identical areas refer to Huettenberg, 

Koetschach-Mauthen as well as Eisenkappel-Vellach. Moreover, high correlation can 

be found for divorced people and population density in the area around Klagenfurt, 

highlighted with the two red rectangles. Mallnitz has by far the highest number of 

people with university degree. This is one remarkable difference to all other 

municipalities in Carinthia. Krumpendorf, as another example, has the highest 

proportion of EU citizen. All these attribute values affect the matching position. 

 

 
Figure 66: Selected component planes, similar occurrences are marked with rectangles. 

 

To be able to see relationships not only in attribute but also in geographic space, 

the geographic map visualization can be used. Figure 67 illustrates the color-coded 

k-Means clustering results linked from the SOM. Five clusters were calculated. 
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Figure 67: K-Means cluster visualization of Carinthian municipalities 
linked to the geographic map (k = 5). 

 

 

 

Figure 68: Similarity-based visualization linked to the geographic map using a 
diverging-diverging color scheme (number of colors in range = 20). 
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Municipalities in light blue, located around the brownish colored cities of Spittal, 

Villach, and Klagenfurt tend to be very similar. Municipalities in the Moelltal (black 

rectangle) and the Liesertal together with the Maltatal (green rectangle) as well as 

in the Gurktal and Metnitztal (red rectangle) show also strong relationships. When 

using another visualization method with more accurate measurements, the 

similarities among municipalities in the red rectangle seem to decrease. Figure 27 

shows the results of the similarity-based SOM coloring approach with a range of 20 

diverging-diverging colors. While the relationships in the areas with the black and 

green rectangle still persist is the homogeneous coloring in the former red rectangle 

disappeared. Nonetheless, the dataset shows a few spatial clusters which can be 

identified with most of the visualization techniques applied to the SOM. As a 

conclusion of this analysis, apart from larger cities and their neighboring communes 

together with municipalities near the biggest lakes in Carinthia which have common 

relationships, municipalities from rural areas can mostly be found in small clusters 

all over the map. The U-Matrix in Figure 64 shows best how the input data are 

distributed within the SOM space. When going through the component planes it 

turns out that many attributes have no significant patterns. All this leads to such 

fine grained separation rather than to large clusters.  

 

The analysis could be much more detailed, but this is just be an example to give 

some helpful information about how to interpret SOM visualization results and how 

to use the toolset for visual data analysis of highly dimensional real-world data.  

 

6.3 Parallelization 
 

The implementation of threading and design patterns for parallel processing would 

have been a favorable enhancement of this toolset, but due to the higher priority of 

other functionalities this was not accomplished. Threading can be implemented for 

time- and resource-consuming processes in order to improve the performance of 

the software. Interactive visualizations require real-time frame rates. In some cases 

the data may be too big for the available memory or CPU (Central Processing Unit), 

so it is better to increase physical memory size by using shared-memory or in case 

of multi-core CPUs to partition the data into smaller chunks and to distribute parallel 

jobs to the different cores. Java provides an extensive range of parallelization 

methods. As an example, the k-Means clustering could be done in parallel, as 

described by Chandramohan (2012). The component planes provide another useful 

integration possibility of parallel processing. Right now the sketch gets slowed down 

if large SOMs need to be visualized. As Processing allows running other threads 

independently from the main animation thread, this task could be done in parallel, 

where a proportion of component planes is drawn by a number of available threads. 

Moreover, after extensive testing it turned out that the BMU search is a major 

bottleneck with increasing amount of data. Therefore, it is the perfect case for 

parallelization. This is one of the most required improvements in the future. 
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7.  

Conclusion 
 
 
This is a review of what has been found out and accomplished within this thesis 

work. The conclusion sums up technical and theoretical insights and allows a brief 

answering of the research questions. 

 
 
It has been demonstrated that the implementation of a comprehensive SOM 

visualization library in Processing is possible and benefits from the powerful drawing 

capabilities of the Processing core library. SOMatic Viewer provides an easy to use 

toolset with interactive visualizations for SOM analysis. Ten different visualizations 

reaching from visualizing the SOM itself, projecting input data onto the map, to 

linking from the SOM to geographic space are implemented. These cover three of 

the four main SOM visualization categories. The PApplet handling as the single 

parent object which is passed to the rest of the visualization classes brought some 

challenges. Also, the fact that multiple connected visualization instances need a 

synchronized access to a central class holding common variables became much 

clearer at an advanced state of this thesis work. SOMatic Viewer serves 

programming interfaces for future enhancements, such as adding new coloring or 

visualization methods. The library works well and shows a consistent performance 

for small and medium sized SOMs. Large SOMs with the dimension of 100x100 and 

more, and consisting of hundreds of vector attributes, already show the limits of 

this toolset, where it takes some time for redrawing the sketch. The final stable 

release of the library is already in the required structure for getting contributed to 

the Processing community. Creating a Java application was the favored choice after 

testing SOM sketches running in JavaScript. The library is used as referenced 

project. Sketches are embedded into SWING panels and loosely coupled to the GUI 

controls elements. Attribute tables serve as a method for further data exploration. 

The tables and visualizations are interactively selectable. Further, the GUI provides 

different file input and output dialogs, preferences can be set, and the visualizations 

can be controlled and modified in various ways. As the Processing sketches are 

running in an infinite loop, the application can become resource-consuming quickly. 

Another issue is that Processing sketches do not start or stop from time to time or 

freeze after certain events. This needs some further testing and debugging. 

The SOM visualization classification, the first of its kind in SOM research, contains 

four main categories with 23 different visualization types divided into further 

subgroups. This can be seen as prototypical method as most visualization types 

vary in their implementation, which may affect the classification results. All in all, it 

gives a neat overview about the current research state for SOM visualization 
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techniques, their data exploration capabilities and possible combinations with other 

representation methods. 

The practical example, applying SOMatic Viewer to the real-world data analysis of 

Carinthian census records, showed that the software already provides a good 

variety of visualizations for an extensive data analysis. In combination with SOMatic 

Trainer (Spöcklberger 2013), the toolset has lots of potential for future applications. 

Besides the common name, both projects also share the same logo, which is 

illustrated in Figure 69, at the end of the next page. 
 

 

8.  

Outlook and Future Work 
 

 
The SOMatic Viewer tools are already in use; future continuous improvements are 

planned. As this toolset is the foundation for further implementations it provides a 

lot of potential, especially for the Processing library. Besides a list of suggestions for 

improvements, the next possible software evolution steps are given.  

 

 
SOMatic Viewer works well, but not without occasional errors. As this is the first 

release, there are many ways to improve the software. Performance reasons are on 

the one side; algorithmic and functional enhancements are on the other side. Some 

suggestions for improvements are given below. 

 
SOM Coloring. The coloring of the SOM space can be enhanced by using more 

advanced algorithms for picking colors from different color spaces. As an example, 

the current SOM-based coloring uses equidistant steps for color picking, which can 

be changed by using steps of relative distances between neighboring neurons in the 

color SOM (see Vesanto 2002). 

User Interface. A potential integration of a flip or rotate function of the map would 

make it easier to compare the SOM with results from other software. It would also 

solve the issue that the current version of SOMatic starts drawing the first neuron in 

the upper left corner, which is usually done in the lower left one. 

Clustering. Threading can be implemented to speed up the clustering process. 

Further, there is an algorithm which uses a more sophisticated initial seeding, called 

k-Means++. It would be a useful replacement to the basic k-Means algorithm. Then, 

as there is currently no information about the cluster characteristics, this could be 

integrated. For example, where are cluster boundaries, what makes one cluster 

different to the other, etc. The integration of hierarchical clustering would be vast 

enhancement. The user could scroll with a slider through the dendrogram and see 

cluster hierarchies visualized in the SOM. 



 

 

 

Performance. There is an urgent need to find out how the continuously runni

Processing sketches affect the software performance

disabling the infinite draw() loop 

visualizations require modification

parallelization of certain processes, such as the BMU search or drawing of 

component planes can sign

Visualizations. Most of the visualization methods of SOMatic

different colors assigned to

these two are interpolated. To 

table approach used for coloring the SOM space can

visualizations, maybe with the additional function of replacing different 

the table. Moreover, the visualizations need a legend, which shows the applied color 

schema together with its value range.

useful improvement for the software.

Training Animation. The implemente

projection of trajectories which draw the path of a component during SOM training.

GeoMap. The geographic map has one issue right now. It does not proportionally 

resize to the frame dimensions.

SOM Grid Export. There m

This can be elaborated. The current export to image results i

resolution; an improvement would be to integrate a method for higher image 

resolution export. 

Project File. There is also a lot of potential in the project file approach. Right now 

the software is using it in a very simplistic way. Based on the fact that it contains 

variables for both SOMatic Viewer and Trainer, settings such as 

parameters can be used for visualizations and analysis techniques.

Input Files. Currently, only one input file can be loaded and visualized. It would be 

useful to project and compare more input data sample

 
What comes next? There might be the possibility of fully combining the SOMatic 

Viewer and Trainer projects

As the currently implemented visualizations provide more or less basic algorithms, 

there might be the possibilit

techniques. The GUI in the application 

nested menus. The SOMatic Viewer library might be further developed by 

Processing community members, which is the best cas

source software. True to the motto: T
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There is an urgent need to find out how the continuously runni

sketches affect the software performance and robustness

disabling the infinite draw() loop might show some significant results. But then the 

modifications too. As mentioned in section 6.3, the 

certain processes, such as the BMU search or drawing of 

component planes can significantly speed up the software. 

Most of the visualization methods of SOMatic Viewer

assigned to the minimum and the maximum value. C

these two are interpolated. To see more detailed patterns in the SOM, the color 

used for coloring the SOM space can also be applied

visualizations, maybe with the additional function of replacing different 

the table. Moreover, the visualizations need a legend, which shows the applied color 

schema together with its value range. Especially trajectory visualizations would be a 

useful improvement for the software. 

The implemented methods make it easy to integrate a 

projection of trajectories which draw the path of a component during SOM training.

The geographic map has one issue right now. It does not proportionally 

resize to the frame dimensions. 

There must be a way to create a Shapefile from the SOM grid. 

This can be elaborated. The current export to image results in a rather low image 

an improvement would be to integrate a method for higher image 

There is also a lot of potential in the project file approach. Right now 

using it in a very simplistic way. Based on the fact that it contains 

variables for both SOMatic Viewer and Trainer, settings such as 

be used for visualizations and analysis techniques.

Currently, only one input file can be loaded and visualized. It would be 

useful to project and compare more input data samples at the same time.

There might be the possibility of fully combining the SOMatic 

Viewer and Trainer projects. This would result in a homogeneous SOM application. 

ly implemented visualizations provide more or less basic algorithms, 

there might be the possibility to enhance those and integrate other visualization 

techniques. The GUI in the application would then need more control elements and 

nested menus. The SOMatic Viewer library might be further developed by 

community members, which is the best case scenario for any open

True to the motto: This is just the beginning… 

 

Figure 69: SOMatic software logo. 

There is an urgent need to find out how the continuously running 

and robustness. Maybe 

show some significant results. But then the 

As mentioned in section 6.3, the 

certain processes, such as the BMU search or drawing of 

Viewer use only two 

value. Colors between 

more detailed patterns in the SOM, the color 

applied to the other 

visualizations, maybe with the additional function of replacing different colors within 

the table. Moreover, the visualizations need a legend, which shows the applied color 

Especially trajectory visualizations would be a 

d methods make it easy to integrate a 

projection of trajectories which draw the path of a component during SOM training. 

The geographic map has one issue right now. It does not proportionally 

ust be a way to create a Shapefile from the SOM grid. 

n a rather low image 

an improvement would be to integrate a method for higher image 

There is also a lot of potential in the project file approach. Right now 

using it in a very simplistic way. Based on the fact that it contains 

variables for both SOMatic Viewer and Trainer, settings such as the normalization 

be used for visualizations and analysis techniques. 

Currently, only one input file can be loaded and visualized. It would be 

at the same time. 

There might be the possibility of fully combining the SOMatic 

. This would result in a homogeneous SOM application. 

ly implemented visualizations provide more or less basic algorithms, 
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more control elements and 

nested menus. The SOMatic Viewer library might be further developed by 
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