

CARINTHIA UNIVERSITY OF APPLIED SCIENCES

School of Engineering and IT

Department of Geoinformation & Environmental Technologies

Graduate Program of Spatial Information Management

MASTER THESIS

SOMatic Viewer: Implementation of an Interactive

Self-Organizing Map Visualization Toolset in

Processing and Java

Submitted in partial fulfilment of the requirements of the academic degree

Master of Science in Engineering

Author: Manuel RAINER

Registration No.: 1110362012

Supervisor: Dr.-Ing. Karl-Heinrich Anders

 Department of Geoinformation & Environmental Technologies

 Carinthia University of Applied Sciences, Villach, Austria

Second Supervisor: Dr. André Skupin

 Department of Geography

 San Diego State University, San Diego, California, USA

San Diego, August 2013

STATUTORY DECLARATIO

I hereby declare that

- the Master Thesis has been written by

help and that it has not been submitted to any institution to achieve an academic

grading.

- I have not used sources or means without citing them in the text; any thoughts

from others or literal quotations are clearly

- the enclosed Master Thesis is the same version as the version evaluated by the

supervisors.

- one copy of the Master Thesis is deposited and made available in the CUAS

library (§ 8 Austrian Copyright Law [UrhG]).

I fully understand that I am

trademark or ornamental design and that I have to prosecute any resultant claims

myself.

Villach, 11 Sept 2013

Place, date

II

STATUTORY DECLARATION

the Master Thesis has been written by myself without any external unauthorised

help and that it has not been submitted to any institution to achieve an academic

I have not used sources or means without citing them in the text; any thoughts

from others or literal quotations are clearly marked.

the enclosed Master Thesis is the same version as the version evaluated by the

one copy of the Master Thesis is deposited and made available in the CUAS

library (§ 8 Austrian Copyright Law [UrhG]).

I fully understand that I am responsible myself for the application for a patent,

trademark or ornamental design and that I have to prosecute any resultant claims

 Signature

“Everything is related to everything else, but
things are more related than distant things.”

First Law of Geography (

myself without any external unauthorised

help and that it has not been submitted to any institution to achieve an academic

I have not used sources or means without citing them in the text; any thoughts

the enclosed Master Thesis is the same version as the version evaluated by the

one copy of the Master Thesis is deposited and made available in the CUAS

responsible myself for the application for a patent,

trademark or ornamental design and that I have to prosecute any resultant claims

Signature

“Everything is related to everything else, but closer
more related than distant things.”

First Law of Geography (Tobler 1970)

ACKNOWLEDGMENTS

I would like to thank my supervisor at the San Diego State University, Dr. André

Skupin, for giving me the chance to finish

beautiful Southern California

valuable discussions and improvement sessions.

people for his work, giving insights to his research activities, and showing pieces of

creative scientific stuff which has not been done by anyone before

effect on the results of my work.

Moreover, I want to show my gratitude to

roommate, research fellow, travelling buddy and friend during the whole time in

San Diego. We complemented

of time and brain drains. Cheers

My appreciation also refer

Carinthia University of Applied Sciences

Dr. Gernot Paulus, encouraged me to

Another important role played the scholarship

Foundation, without their financial support I would not have been able to come

San Diego State University

this thesis can be used for future research activities

with Self-Organizing Maps

students to go abroad, exchange experiences and

Finally, and not less important, I have to thank my family who

for independence in early years and

provided the chance to receive a perfect education which is now the basis for my

personal development and career

III

ACKNOWLEDGMENTS

I would like to thank my supervisor at the San Diego State University, Dr. André

Skupin, for giving me the chance to finish my Master studie

beautiful Southern California. His support was excellent. We had endless hours of

valuable discussions and improvement sessions. His ability to motivate

his work, giving insights to his research activities, and showing pieces of

stuff which has not been done by anyone before

effect on the results of my work.

to show my gratitude to Michael Spöcklberger,

roommate, research fellow, travelling buddy and friend during the whole time in

complemented each other very well and our mutual input saved

time and brain drains. Cheers man!

also refers to Dr.-Ing. Karl-Heinrich Andres, supervisor at the

University of Applied Sciences. His feedback and support

encouraged me to head into the right direction

important role played the scholarship granted by the Austrian Marshall Plan

Foundation, without their financial support I would not have been able to come

San Diego State University. I am indebted for this funding and hope that parts of

this thesis can be used for future research activities and encourage people to work

Organizing Maps. This scholarship provides such a great chance for

, exchange experiences and expand their horizon

Finally, and not less important, I have to thank my family who

for independence in early years and they still support everything I do. My parents

the chance to receive a perfect education which is now the basis for my

personal development and career.

I would like to thank my supervisor at the San Diego State University, Dr. André

studies at the SDSU in

. His support was excellent. We had endless hours of

to motivate and excite

his work, giving insights to his research activities, and showing pieces of

stuff which has not been done by anyone before had a positive

Michael Spöcklberger, who was a great

roommate, research fellow, travelling buddy and friend during the whole time in

mutual input saved a lot

, supervisor at the

support, together with

direction for groundwork.

the Austrian Marshall Plan

Foundation, without their financial support I would not have been able to come to

and hope that parts of

and encourage people to work

a great chance for

expand their horizon.

 gave me the wings

everything I do. My parents

the chance to receive a perfect education which is now the basis for my

IV

ABSTRACT

The Self-Organizing Map (SOM) is an artificial neural network, used to determine

similarities in high-dimensional datasets through simplified abstractions. This thesis

deals with the development of an interactive and integrable SOM visualization tool.

The aim of this work is to support students and researchers to accelerate their

understanding how to analyze large datasets using the SOM approach and to

provide software that is open for modifications. The implemented SOMatic Viewer is

a toolset which consist of a Processing 2.0 library for SOM visualization and a

standalone Java application. The difference to other SOM software is its ability to be

used within a larger knowledge discovery workflow. It provides seven popular SOM

visualization techniques, from component planes and the U-Matrix to input vectors

projected onto the SOM. Both similarity- and topology-based SOM coloring as well

as k-Means clustering are integrated. SOM visualizations can be linked to the

geographic space to find spatial relationships and clusters. Therefore, loading of

referenced Shapefiles is supported. SOMatic Viewer uses an enhanced version of the

well-known SOM_PAK file format. Application settings can be saved and restored

with project files. The core of the software is a flexible SOM grid and the interactive

selection highlighting between all visualizations and data tables. The software can

be seen as first release and is intended to be improved by students or by the

Processing community in the future. As practical example, SOMatic Viewer is applied

to a real-world dataset to analyze the census records of municipalities in the region

of Carinthia, Austria. The preprocessing and SOM training procedure together with

results and conclusions are given. Another outcome of this thesis is the classification

of SOM visualization techniques. A classification matrix which contains 23

visualizations, logically ordered into four main groups, is created. Through the vast

collection of SOM visualization methods and latest research activities described

throughout this thesis, it provides an interesting overview about the current state of

the art in the field of SOM visualization research.

KEYWORDS

Self-Organizing Map, Processing, Java, visual data mining, knowledge discovery,

data visualization, clustering, high-dimensional data, U-Matrix, component planes,

SOM coloring, interactive design, dimensionality reduction, artificial neural network.

V

Table of Contents

1. Introduction ... 1

1.1 Motivation ... 1

1.2 Background ... 2

1.2.1 Self-Organizing Maps ... 2

1.2.2 Visual Data Mining and Knowledge Discovery 6

1.2.3 Geovisualization .. 7

1.2.4 Processing 2.0 .. 8

1.3 Problem Statement ... 8

1.4 Research Questions .. 10

1.5 Methodology ... 11

1.6 Expected Results and Significance of Work 12

1.7 Structure of the Thesis .. 12

2. Self-Organizing Map Tools and Visualizations 13

2.1 SOM Tools and Software ... 13

2.2 Visualization Techniques ... 16

2.2.1 Visualizing the SOM itself ... 16

2.2.2 Projections onto the SOM ... 21

2.2.3 Projections from the SOM... 27

2.2.4 Visualizations linked from the SOM 29

3. Literature Review ... 30

3.1 Related Work .. 30

3.1.1 Spatialization.. 30

3.1.2 Novel Projections and High Resolution SOM 32

3.1.3 Cross-Symbolization and Travelling in Attribute Space 34

3.1.4 Adding a Third Dimension .. 36

3.1.5 Coloring the SOM Space... 38

3.2 K-Means, Hierarchical, and Geo-Clustering 40

3.3 Improved SOM algorithms .. 43

3.3.1 Dimensionality Reduction, Distance Preserving 44

3.3.2 About Spherical SOM and Geo-SOM 46

4. Methodology .. 47

4.1 Fundamental Decisions ... 47

4.2 SOMatic Viewer Software Concept 48

4.3 Carinthian Census Dataset .. 49

4.4 Enhanced SOM_PAK File Format ... 50

VI

4.5 Implementation .. 51

4.5.1 SOM Visualization Library in Processing 52

4.5.2 The Java Application .. 60

4.6 Visualization Classification .. 62

5. Results ... 63

5.1 SOMatic Viewer Processing Library 63

5.2 SOMatic Viewer Java Application .. 64

5.3 SOM Visualization Classification .. 67

6. Data Analysis and Discussion ... 70

6.1 Proof of Concept ... 70

6.1.1 Training Animation .. 70

6.1.2 Comparison with Java SOMToolbox and SOMine 71

6.2 Analysis of Carinthian Census Data 73

6.2.1 Preprocessing ... 73

6.2.2 Training ... 76

6.2.3 Results .. 76

6.3 Parallelization ... 80

7. Conclusion .. 81

8. Outlook and Future Work ... 82

References ... 84

Literature .. 84

Online Literature ... 88

List of Abbreviations .. 90

List of Figures .. 90

List of Tables ... 94

1

1.

Introduction

This chapter gives an introduction to the applied research work presented in this

thesis. It describes the motivation for pursuing this work, investigates the

background by discussing used terms and methodologies and lays out the problem

statement. Then, the underlying goals and research questions are explained in

detail. Further, it gives a summary about the methodology as well as the expected

results. An overview about the structure of this thesis is presented at the end.

1.1 Motivation

Dealing with high-dimensional data is demanding work where correct information

extraction and interpretation requires specific domain knowledge. In contrast to

conventional data mining techniques, a Self-Organizing Map (SOM) provides visually

understandable results by showing clusters and dependencies between elements

through ordering similar objects close to each other. A variety of visualization

methods, from component planes to distance matrices and creative trajectory maps,

can be applied and represent multi-facetted information from input records. A SOM

is an artificial neural network (ANN) which breaks down high-dimensional data into

simplified abstractions and enables preserving topological and metric relationships

(Kohonen 1998). When speaking of a high-dimensional data space, it describes the

amount of attributes which define a certain object. SOMs help to find complex

correlations and allow retrieving valuable information from those data spaces.

Visualizations of a SOM are objective and scalable, this makes it easier to define and

handle the results. In the manner of how attributes are depicted in geographic

space, SOMs can even serve as a serious alternative to conventional maps (Skupin

and Esperbé 2011).

This thesis work aims to support students and researchers to accelerate their

understanding how to analyze large datasets and to provide new perspectives from

various angles. The implemented SOM visualization library has programming

interfaces, which allows integrating additional visualization methods and new

functionalities, such as clustering algorithms, or other distance measures. Since the

emergence of SOM in year 1982 and its first software package, called SOM_PAK

(Kohonen et al. 1995), a bunch of software applications and toolboxes have been

implemented for SOM training and visualization. Most of them are still updated and

have a varied range of functionalities, but they are not designed for specific

integration purposes into other workflows and usually not open for modifications

too. Seven different software products and add-ins are described in section 2.1.

2

Data mining tools are complex. It requires some time to get used to the software,

whereas there is often the need to get quick results. The present thesis work is

intended to give support to that demanding task. The extendibility and portability of

this library is a criterion to make it attractive for future use. Therefore, the chosen

programming language Processing (2013) with its simplified syntax enables

extending the library, even in case of limited programming knowledge. As there is

no current SOM visualization library available in Processing, this is a challenge and

great motivation to create a modular SOM toolset and contribute it as an official

library to the community. Further, a SOM Visualization tool which integrates the

library is developed and used to analyze the sample dataset of Carinthia census

data as a practical example of the implementation.

Another major interest of this work is the combination and interaction of all three

types of SOM visualizations. In the end, not only visualizations of the SOM itself are

provided, there is also a connection of the attribute space with Geographic

Information Science (GIS) and visualizations in geographic maps. Working in the

rather small research field of Self-Organizing Maps offers the need of open and

extendible toolsets. An entire knowledge discovery workflow, for instance, becomes

long and tedious and requires integrable and modifiable libraries. The SOM

visualization library for Processing can be used as a part of an automated

computation process with a combination of different data analysis techniques such

as dimensionality reduction, spatial clustering and GIS functions. According to the

statement of Skupin and Fabrikant in 2003, “the potential of SOMs seems

inexhaustible, because they can be used for any kind of attribute data and they

provide the possibility of mapping almost everything”.

1.2 Background

This chapter provides explanations about the principle of a Self-Organizing Map, the

field of visual data mining and knowledge discovery, as well as it discusses the term

geovisualization and how it is connected to this research work. As the major part of

the implementation is based on the programming language Processing, it is also

described here.

1.2.1 Self-Organizing Maps

The Self-Organizing Map, also called Kohonen Map, or Self-Organizing Feature Map

(SOFM), was developed by the Finish professor Teuvo Kohonen and is a type of

artificial neural network (Kohonen 1998). The term ’self-organizing’ describes the

fact that there is no supervision used. SOMs learn on their own through

unsupervised competitive learning methods. The SOM consists of neurons, also

called units or nodes, organized on a regular, mostly two-dimensional, grid. The

SOM terminology uses a couple of different words for the same terms. A complete

3

list of equivalent expressions can be found in Table 1. The usual arrangement, so

called topology, of these nodes is rectangular or hexagonal, as depicted in Figure 1.

Figure 1: Regular two-dimensional SOM topologies, using
 (a) rectangular or (b) hexagonal arrangement.

The used topology affects the connection of neighbors. In a rectangular topology a

neuron has a maximum of four neighbors, where in a hexagonal arrangement six

neighbors are connected with each other. A hexagonal grid is more frequently used

and provides smoother transition in visualizations. There are other approaches such

as a spherical topology, which is not subject of this work, but shortly described in

the literature review, subsection 3.3.2. The SOM uses three different layers (see

Figure 2).

Figure 2: Structure of a SOM. First, initial values are given to the weight vectors from the
input layer. During training phase the BMU is determined on the competition layer.

A visual representation of the results is done on the output layer
(image source: Mongini and Italiano 2001).

(a) (b)

4

There is the SOM competitive layer with its neurons and the input layer containing

the high-dimensional input vectors. The resulting output layer contains the topology

preserved map units. Each input vector is associated with a set of weights in the

same dimension. To understand how a SOM operates, it is useful to know that the

algorithm combines two tasks: training and mapping. The training step constructs

the map using learning vector quantization (LVQ) as competitive process. During

this process, the distance of an input vector to all weight vectors is calculated. Used

distance measures include Euclidian, Cosine, or Manhattan distances. The neuron

with the most similar weight values to the input vector is called best matching unit

(BMU). Once the BMU is found, the input vector is assigned, so-called mapped, to

this single winning neuron. The weights of the BMU including surrounded nodes are

then adjusted towards the input vector. An example of this process, using a 3x3

SOM arranged in rectangular topology and trained with four input vectors, can be

seen in Figure 3.

Figure 3: The competitive learning process from initialization of the neurons (a) to the

adjusted weights (e) from four input vectors after best matching unit search
(Skupin and Agarwal 2008).

This process is repeated for each input vector for a usually large number of training

iterations. The magnitude of change, so called training rate, as well as the distance

measure is reduced over time. This also reduces the number of weights that get

updated per iteration. Figure 4 illustrates the non-linear projection during training in

the high-dimensional input space. The projection is restricted to the map topology.

This topology-preserving mapping shows that the more similar two data samples

are in the input space, the closer they will appear together on the final map. In

other words, it preserves the relative distance between the points. The visualization

of a SOM allows cluster identification and pattern recognition. Therefore, SOMs

operate both as a kind of visual similarity graph and clustering diagram. It

comprehensively visualizes natural groupings and relationships and has been

successfully applied in a large spectrum of research areas ranging from speech

recognition to biomedical analysis. Due to the fact that SOM enables low-

dimensional views of high-dimensional data, it is restricted to its grid projection.

5

Enhanced algorithms, which tackle this limitation, are discussed in section 3.3. In

recent years, research brought up some alternatives and extensions to the basic

SOM technique, such as the growing (hierarchical) SOM or the time adaptive Self-

Organizing Map to name only two of them. These methods are not described and

dealt within this thesis work.

Figure 4: Non-linear projection of a 5x5 SOM, where the nodes are iteratively moved
towards their best matching units in multi-dimensional input vector space (image source:

http://www.peltarion.com/doc/index.php?title=Self-organizing_map).

SOMs are applied in any fields of science where high-dimensional data needs to be

visualized and relationships need to be found. Examples for such application areas

are multispectral remote sensing imagery, biomedicine, robotics, socio-economics,

finance and trading, or climatology.

(a) (b) (c)

(f) (e) (d)

6

Table 1: SOM Terminology.

1.2.2 Visual Data Mining and Knowledge Discovery

As SOM is a technique used for visual data mining and knowledge discovery, these

two terms require some further explanation. Traditional methods for extracting

knowledge from data involved manual analysis and interpretation. Since in all fields

of science, society, and industry massive amounts of data are collected, there was

the need of computational theories and tools to assist humans in retrieving useful

information from the rapidly growing volumes of data (Fayyad et al. 1996). For this

purpose, knowledge discovery in databases (KDD) emerged. KDD deals with the

development of techniques to make sense of data, by providing a more compact,

abstract, and more useful view on voluminous datasets. To handle the problem of

data overload, data mining, as advanced analysis step in the KDD process, applies

specific methods for pattern recognition and extraction. Machine learning, artificial

intelligence and statistics provide the technical basis for data mining. Visual data

mining aims at integrating the human’s perceptual abilities, presenting the data in

some visual form, getting insight to the data, drawing conclusions, and directly

interacting with the data (Keim 2002). To find hidden information in the data, visual

data mining as a technique for knowledge visualization uses representations in

multiple dimensions and hierarchies. Varied display technologies and methods for

interaction, such as zooming, filtering, or projection enhance this interdisciplinary

research field. Because of limitations in human visual and cognitive processing

restricted by large volumes of numbers and objects in a two dimensional map

(Koaua 2003), a SOM visualization framework provides powerful functions to

7

analyze geospatial data which meet exactly these requirements. Figure 5 shows

such a framework for exploratory data analysis using Self-organizing Maps, where

knowledge discovery is performed using a computational data mining process

followed by visual interpretation, and applying the results to the user domain tasks.

Figure 5: Data exploration and knowledge discovery using a SOM data mining and

visualization framework (Koaua 2003).

The highest benefit of a visual data mining is the simple way to deal with highly

inhomogeneous and noisy data and its intuitive process, which requires no

understanding of complex mathematical or statistical algorithms or parameters

(Keim 2002).

1.2.3 Geovisualization

When visualizing SOM data in geographic and attribute space, the present work

consequently aims towards the fields of geovisualization. The comprehensive

definition of geovisualization unites various visualization methods, such as

exploratory visualization and information visualization, scientific visualization,

cartography, image analysis and GIS (Dykes et al. 2005). A SOM can be applied for

and combined with all these representation methods. Using a SOM as part of a

knowledge discovery process, analyzing AAG (Association of American Geographers)

paper abstracts from the last 20 years for instance, the results are in the domain of

information visualization. If the color coded neurons are linked to a geographic map,

then one is speaking of a cartographic visualization. More complex combinations of

visualization methods with GIS, such as the so-called spatialization, done by Skupin

and Fabrikant (2007), are handled in section 3.1. Spatialization uses geographic

metaphors to visualize non-geographic data and makes use of human’s perceptual

capabilities. It depends on the application area, the used datasets and the

combination of methodologies to be able to speak of a specific visualization.

Therefore, the SOM visualizations mentioned in this thesis all depend somehow to

the area of geovisualization. According to Dykes et al. (2005) geovisualization can

be described as a loosely bounded domain that addresses the visual exploration,

analysis, synthesis and presentation of geospatial data by integrating approaches

8

from cartography with those from other information representation and analysis

disciplines. SOM combined with geovisualization methods provides intuitive and

experimental representation methods which enhance the understanding and

knowledge retrieving of increasingly large and complex geospatial datasets (Koua

2003). When dealing with large datasets, the users tend to need interaction and

dynamic visualizations. After researchers found out that visualizations had not taken

advantage of exploiting the full potential of geospatial data, a commission within in

the International Cartographic Association (ICA) was created. This Commission on

Visualization and Virtual Environments then came up with theories, practices and

tools for geospatial data exploration, analysis and knowledge retrieval (MacEachren

and Kraak 2001). Today, it has become the Commission on GeoVisualization and

continues the work of the former commission which has been establishing the

emergent discipline of geovisualization since 1995 (ICA 2013).

1.2.4 Processing 2.0

The programming language and integrated development environment (IDE)

Processing is used for the implementation of the SOM visualization library. It is

open-source and purely based on the Java programming language. Processing is

popular for creating images, animations and interactions (Processing 2013). It has a

simplified syntax and allows fast development of visualizations, so called sketches.

Since the community is rapidly increasing and hundreds of modules and thousands

of code examples have been published (OpenProcessing 2013), it became a serious

environment for the development of professional work in the fields of electronic

arts, visual design, and recently in scientific research areas. Besides drawing in two

dimensions, Processing provides accelerated 3D using OpenGL. The simplicity

compared to other programming languages makes it easier for people who want to

do follow up enhancements of the SOM visualization library, even though they may

not have extensive programming skills. The Processing sketchbook can be exported

into JavaScript for website integration, or embedded into a Java application. These

features make it a universally integrable visualization toolkit. For the present thesis

work, the Eclipse IDE was used for developing the SOM visualization library which

extends the Processing PApplet class. The SOM visualization library was then

embedded into a Java SWING application. As part of the preliminary work, some

performance testing with Processing sketches, running as JavaScript, Java Applet

and integrated into a standalone Java application, was done (see section 4.1).

1.3 Problem Statement

First of all, the SOM visualization library needs to be extendable and reusable. It is

necessary to give an exact documentation about the programming interfaces to

ensure that subsequent developers have a source to understand the architecture

and to extend the software. Also the integration of functionalities has to underlie

9

these principles. As already mentioned, there is no available SOM visualization

library in Processing right now, which requires a lot of groundwork. The structuring

and creation of classes has to be done based on the guidelines for contribution, so

that it is working properly within the Processing Development Environment (PDE).

Another challenge will be to design and implement a tool which fulfills not only the

technical requirements, but also meets the interaction and performance needs.

Because of usability reasons, a simple and understandable user interface is taken

into account. This user interface needs to be decoupled from the visualization itself.

Certain visualization methods and clustering techniques need to be adjusted with

the use of parameters, for example to set the distance measurement between

objects or to define the minimum number of objects within a cluster. However, the

integration of the SOM visualization library into the Java application must be done

without any direct references from the visualization library to the user interface.

Moreover, what if the user wants to explore the data using two different

visualizations? A solution for displaying multiple frames and interactive selection has

to be investigated. An issue is the granularity of the library modules, because a

novice user might want to have a component planes class which can be initialized

with a few parameters. Another one might only want to use the core methods for

creating another customized SOM visualization, so the whole toolkit has to be more

a white-box rather than a black-box.

Then, the SOM input file format is an important factor. What are common data

formats used in SOM software tools? In addition, there has to be an effective way to

process these mostly large amounts of data, which leads back to the performance of

the system. An inspection of available SOM tools will help to find out more about

data formats as well as to get some impression of how to design a proper user

interface. The results of this tool testing can be found in section 2.1.

The intention is to integrate two-dimensional visualization representations of the

SOM. The topology of a neural network can be rectangular or hexagonal, which has

to be considered when visualizing the data. Basic geometric algorithms need to be

implemented to draw the shapes and automatically adjust the map according to

frame size. The SOM should be visualized with at least one technique out of three

main visualization groups, described in section 2.2. Further, clustering is an aspect

that corresponds to the visualization. Therefore, besides representations of the SOM

neurons and the projection of input vectors, the integration of a clustering algorithm

applied on the data and visualized in the SOM is considered. The integration of SOM

visualization in geographic space is another essential task within the present thesis

work. The way how to integrate SOM data into geographic map needs to be

investigated. As Processing is a rather young programming language, the

capabilities for geographic data mapping might be limited. Thus, this task requires

research on available libraries which provide necessary functionalities. An animation

of training steps should give the user a visual representation of the evolution of a

Self-Organizing Map. The same can be done with clustering iterations where one

can interactively see how clusters are formed. There is the question if the animation

10

can be done in real-time which would need an additional communication interface

with another SOM training tool, or by reading SOM data with training iteration steps

from previously saved files.

The present thesis work also tries to outline the various known SOM visualization

methods. There is the intention to provide a compact classification of all found

techniques. As visualizations vary in their representation style, algorithms and

information content this requires a method to categorize each based on common

characteristics.

1.4 Research Questions

The three research questions and their detailed description derived from the

problem statement are as follows:

1. How can an extendible SOM visualization library be developed for
Processing?

What are the requirements for successful library integration into the PDE and the

contribution to the community? How to cope with the PApplet inheritance in a large

project where multiple sketches are running simultaneously? Under the extendibility

aspect, which interfaces have to be defined? To which granularity needs the

modularization be done to guarantee useful method access to the user? Then, what

are the limitations of a library, written in mostly pure Java, which references the

Processing core and other libraries? How can the data be read and stored? In

general, what should the input data look like? Also, what is an effective way to run

multiple Processing SOM sketches simultaneously and keep them all interactively

selectable?

2. How can a SOM visualization tool with integrated Processing library be

implemented?

The first thing to clarify here is if the software should be developed for server or

client side application. What are the criteria for that decision? Are there any issues

when embedding the Processing SOM visualization library into a Java application?

What does an appropriate user interface look like? What is an effective way to

control the sketches from the user interface and enable simultaneous changes in all

windows? What kind of further data exploration functions can be added?

3. What are methods for SOM visualization classification?

What kind of SOM visualization techniques have been developed and published? In

which representation format should the classification result? What are suitable

classification criteria? In general, is it possible to get a complete and comparable list

or overview of SOM visualizations?

11

These research questions will be dealt throughout chapters 4 and 5, respectively the

applied methodologies and thesis results, and are going to be explicitly answered in

the conclusions, section 7.

1.5 Methodology

The SOM visualization library is implemented using the open-source programming

language Processing 2.0, which is mostly simplified Java code. The software design

is based on object oriented programming, using packaged class modules and

communication interfaces. The toolset uses an enhanced version of the SOM_PAK

file format (Kohonen et al. 1995) for data input. This file format was specifically

modified to support the implemented visualization methods and is backward

compatible to SOM_PAK. The SOM is drawn according to the data read from a

codebook file, containing the description of the SOM itself. Data from input vector

files is projected onto the SOM. Seven different visualizations are implemented.

Component planes, hit diagram with labeling and marker symbols, hit histogram,

the U-Matrix, as well as k-Means are visualizing and clustering the SOM space. For

the representation of the SOM in geographic space, the Processing library MapThing

(Reades 2013), which is base on the Java GeoTools GIS library (OSGeo Project

2013), is used display and modify Shapefiles. Geographic features are color-coded

according to the applied visualization in the linked SOM. The SOM coloring classes

are using a commonly defined interface. Visualizations are interactively connected

using a global variables class. This Singleton pattern class (Vlissides et al. 1995)

keeps the data and parameters in memory, and is accessed and updated from each

of the visualizations. The visualization settings and file paths can be saved and

loaded as project files. An animation effect during SOM clustering or SOM training

can be achieved through step-wise updating of the vector attributes while running

the Processing sketch in an infinite drawing loop. There are two different

approaches for coloring the SOM space. One method simply creates two-

dimensional plane of RGB (Red Green Blue) colors and stretches it over the SOM.

The other one uses SOM training to create a one-dimensional color SOM from the

codebook vectors, where colors are assigned to each neuron according to their BMU

in the color SOM. Diverging-diverging color schemes and automatic color picking

from HSB hue circle are implemented. The SOM visualization library for Processing

is embedded into a Java application, which uses SWING user interface elements.

Multiple windows allow interactive exploration and comparison of the visualized SOM

and input data. The global variables class from the Processing library together with

event listeners is used for interactive highlighting between all visualizations and

data tables.

A criteria matrix is used for the classification of SOM visualizations, which allows a

compact visual comparison of 23 representation techniques. The classification

characteristics are elaborated from common differentiation features, for instance if

12

vector distance or density is visualized or cluster connections are drawn. This task

requires an extensive literature review and involves the testing of SOM visualization

tools for gathering a basic practical understanding of certain techniques.

1.6 Expected Results and Significance of Work

First of all, the aim of this work is not the development of highly complex

visualizations or inventing new ones, rather, it is to provide a basic and working

toolset of common SOM visualization techniques. The implementation results should

be used as growing and evolving tools for SOM visualizations and data exploration,

where users can implement new functions and representation techniques. The two

primary results are, on the one hand, the technical implementation of a SOM

visualization library in Processing, the so called SOMatic Viewer library. This library

should be contributed to the Processing community. On the other hand, there is the

development of SOM visualization software in Java which uses the library as

integrated part. As sample dataset, the census data of Carinthia, a region in

Southern Austria, is visualized with the implemented SOM toolset. The analysis

results are discusses at the end of this thesis.

Additionally, as theoretical part of this thesis, a list of known SOM visualization

techniques are collected and ordered into a classification matrix to provide a current

state of the art overview for SOM visualizations, based on their main characteristics.

The significance of this work can be seen in the fact that it is the first extensive

SOM visualization library implemented for the Processing IDE. This is also the first

which analyzes census data of Carinthia using the SOM visualization approach. The

data preprocessing and analysis should be an example for others to follow up with

further research interests on the dataset. Then, the classification matrix for SOM

visualizations is, according to the current state of literature review, the first which

tries to create a comprehensive overview about the types of available SOM

representations and their characteristics. It can be seen as prototype which allows

getting an imagination of the varied visualization possibilities of SOMs, logically

grouped and classified.

1.7 Structure of the Thesis

To provide an overview about the subsequent parts in the present thesis work, the

next chapters and their associated content are given below:

Self-Organizing Map Tools and Visualizations (chapter 2)

Seven SOM software tools are tested and described with their capabilities and how

they differ. After that, the range of available SOM visualizations is explained in

detail.

13

Literature Review (chapter 3)

This chapter deals with fundamental information about research activities, common

methods and improvements of the SOM. Besides the description of related work in

the domain of SOM visualizations, popular clustering techniques and enhanced SOM

algorithms are discussed.

Methodology (chapter 4) and Results (chapter 5)

The design and implementation workflow is given in the methodology chapter. This

includes used methods, libraries, and algorithms. A description of the resulting

SOMatic Viewer toolset as well as the final SOM visualization classification can be

found in chapter 5.

Discussion (chapter 6)

The proof of concept compares the implemented visualization methods with the

same ones from other software tools to show if they are correct or not. Further, the

analysis of the Carinthia census dataset is discussed here.

Conclusion (chapter 7)

Conclusions and further concerns, based on the findings and outcomes of the thesis

work, are presented. Moreover, the research questions are explicitly answered here.

Outlook and Future Work (chapter 8)

This last chapter gives an outlook about potential enhancements of the SOM

visualization software and exemplifies possible upcoming development steps.

2.

 Self-Organizing Map
Tools and Visualizations

Since Kohonen introduced the SOM algorithm, several software applications and

tools have been developed. The first section describes seven different SOM software

applications and toolboxes. The second section consists of SOM visualizations,

ordered into four main categories. Among traditional methods such as component

planes or the U-Matrix there are also recently developed visualizations.

2.1 SOM Tools and Software

This section presents four freely available SOM tools, one commercial software, and

two software extensions for SOM training and visualization. The focus here is less on

14

the training aspect rather than on the given file handling, processing workflow,

functionality range, and visualization capabilities. Further, the integration and

visualization of geographic data was critical too. The SOM software tools are briefly

described and a conclusion is given afterwards.

Standalone Software. The first software package was SOM_PAK, developed by

Kohonen et al. (1995) in 1992. It was updated until 2004, but is still in use and a

popular SOM component which can be integrated into newer SOM applications.

SOM_PAK is written in the programming language C and comes without graphical

user interface. Commands for SOM initialization, training, and visualization have to

be manually typed into the console. Component planes, U-Matrix, and Sammon’s

mapping are the only visualizations, saved as PostScript (PS) file. Another well-

known software for SOM visualization is GeoVISTA Studio (PennState 2013,

Takatsuka and Gahegan 2002). It offers an environment for geospatial data analysis

with various functional components, so-called JavaBeans. This approach of creating

reusable models by weaving beans into a workflow is unconventional but offers a lot

of opportunities. Models can be shared with others and serve as functional part of a

larger workflow. The variety of SOM visualizations is limited, but includes the most

common ones together with a 3D representation of the SOM. However, its

extendibility and the combination with build-in analysis tools make it to an

interesting alternative to traditional SOM-specific software. Especially geospatial

datasets which need to link their output to a geographic map can benefit from its

features. A sophisticated implementation with a vast number of visualization

methods, clustering and quality measures is the Java SOMToolbox, developed at the

Vienna University of Technology (2013). It contains by far the most extensive

functionality range, but this has the drawback of a flood of settings and menus. The

way from getting into the tool to the first SOM visualization result can be long and

requires technical and subject matter understanding. The input data concept is

reasoned but also includes many different files. The biggest advantage comes from

their self-developed visualizations in the viewer which cannot be found in any other

software so far. Compared to the Java SOMToolbox as expert tool, the next one is

rather for novice users and therefore straightforward with only three different

visualizations. The name of this software is SOMVis (Guo 2005, 2013), developed in

Java as well. It solely accepts Shapefiles with comma separated value (CSV) files.

The SOM, parallel coordinate plot (PCP), and geographic map view are linked and

allow interactions. The SOM coloring methods are highly adjustable, the SOM

clustering very user-friendly. The only issue of this simple tool is the restricted SOM

dimension and it gives no information about the training or mapping details. All

mentioned solutions are freely available, and mostly open-source. On the other

hand, there are a few proprietary SOM applications too. One of those which needs a

closer look is the SOMine software product (Viscovery 2013). It is a very complete

product with high visualization performance and good usability. Besides its own

input file formats it can also handle SOM_PAK codebook files and statistical data

15

from SPSS. The visualization, clustering and analysis capabilities are complex, but

do not require such a long learning curve as for the Java SOMToolbox. SOMine is

implemented in Visual C++. Only the trial version was tested which is limited in its

functionality. The special feature of SOMine is the project workflow, which splits up

the data preparation, processing and evaluation into separate logical steps. The

visualizations are not as varied as in Java SOMToolbox, but provide extensive

functional parameters and analysis options. Its primary focus in not on geospatial

data visualization, thus it does not provide geographical maps in any form.

Software Add-Ons. Among others, there are two interesting extensions for

existing software products, namely the SOM Analyst (Lacayo and Skupin 2007) for

ESRI’s ArcMap, and the SOM Toolbox for MATLAB (Vesanto et al. 1999). SOM

Analyst was developed from a student project and serves as toolbox for data

preprocessing and SOM training in ArcMap, using SOM_PAK as training core. The

map can be visualized with common ArcGIS tools. This provides on one hand a

great flexibility for combining geospatial data and applying geoprocessing functions,

but on the other hand most popular and necessary SOM visualization techniques are

missing. At that point, SOM Toolbox for MATLAB suits better, which has a lot more

visualization capabilities. But, the toolbox requires basic understanding of the

MATLAB environment and also of its syntax for more sophisticated training and

visualization. The SOM Toolbox comes with simple GUI frames that offer common

functions for data preprocessing, training, and visualization. As MATLAB is widely

used environment for technical and statistical data analysis and representation, this

toolbox is a popular SOM software in that domain. Visualizations cover various kinds

of SOM topologies and vector projections including the most common techniques to

color the SOM space. Geographic maps cannot be loaded or linked which is a

remarkable difference to SOM Analyst and thus makes it less suitable for geo-

referenced training data.

Conclusion. The variety of SOM tools is as large as their range of functionalities.

There is no one-for-all solution which is fast to learn, easy to use and offers all

functions for the analysis of spatial and non-spatial datasets. Each of the mentioned

software tools has its strengths for one more particular purpose. This is exactly

what drives the usability, functionality, and complexity aspects of the tools. Even

though most of them have their own data formats, common SOM_PAK files are

occasionally supported by newer software. One reason might be that the data

formats follow a similar content structure. Interesting approaches are the

component-oriented framework of composing functional modules with JavaBeans in

GeoVISTA and the workflow-oriented data processing and evaluation in SOMine.

Another important fact was the introduction of project files. The more complex and

comprehensive a software, the more it makes sense to read and save these settings

and processing statuses into separate files. This saves time and is convenient for

keeping track of training and visualization parameters and such. Further, SOM

16

extensions for ArcMap and MATLAB are doing a good job, but require some

knowledge of how to use these products before being able to run the SOM add-ons.

A powerful aspect here is, that the data can be further processed in the given

software environment. There are also simple tools available, but they have a very

limited application area as described for the SOMVis software. But simple does not

automatically mean bad; it comes with great SOM coloring methods and fast

clustering results for the attribute and geographic space. Unlike SOMVis, there is

usually a long learning curve to get used to the software and to understand the

processing workflow. The present thesis work is intended to bridge the gap between

expert and novice users. The use of a SOM tool will always require domain

knowledge to a certain degree, but there are ways to simplify the file handling, SOM

control and interaction for a fair amount of visualizations.

2.2 Visualization Techniques

There are basically three groups of SOM visualizations, introduced by Skupin and

Agarwal (2008). Visualizing the SOM grid itself, mapping data onto the SOM and

linking data from the SOM to other visualizations. Another category is encountered

during this thesis research and added as fourth group, which describes projections

from the SOM space to other representations. Vesanto already came up with three

categories of SOM visualizations in 1999, but they are slightly different to the ones

used in this thesis and do not consider linking to geographic visualizations.

2.2.1 Visualizing the SOM itself

The SOM itself allows visualizations showing component planes, clusters through

applied cluster algorithms, as well as interneuron distances and density in the data

space.

Component Planes. This popular visualization method slices the SOM into separate

component planes to see how the values of certain attribute, also called component,

vary on different locations on the map (Himberg et al. 2001). Each plane contains

the values of a single variable of the input vector in each node of the SOM. When

using component planes, the number of maps increases according to the selected or

displayed number of variables. Component planes are perfect visualizations for

correlation detection because even partial relationships or correlations can be found

by visually side-by-side comparison of different planes (see figure 2). An intelligent

way for correlation hunting through a rearrangement of the component planes was

shown by Vesanto (1999). Based on their correlation, similar looking component

planes are automatically placed near each other, which results in a more efficient

comparison capability.

Figure 6: Component planes of a high

Vector Fields. Two kinds of SOM cluster structure visualizations based on vector

fields are developed by Pölzlhuber et al. (2006). On the one hand, there is the

gradient field visualization which projects an arrow on each of the neurons that

points to the center of a ne

length and direction of the arrow is based on the prototype vector, the map

topology, and the size of the neighborhood kernel.

a smoothed vector field which outlines clusters in the map. On the other hand, there

is the borderline visualization which shows an alternative representation of the

cluster boundaries. It is derived from the gradient field, but doesn’t use arrows for

representation. Instead, it draws the orthogonal of each arrow as a line from both

sides of the center. The length of the lines has the same purpose as the length of

the arrow. It depicts the ma

map in Figure 7(b), this representation forms a kind of cluster boundaries in the

map.

Figure 7: Vector fields. (a) Arrows are pointing to a cluster center and result in a smooth
gradient field. (b) Similar method showing cluster boundary lines (Pölzlbauer et al. 2006).

(a)

17

Component planes of a high-resolution SOM constructed from climate data
 (Skupin and Esperbé 2008).

Two kinds of SOM cluster structure visualizations based on vector

fields are developed by Pölzlhuber et al. (2006). On the one hand, there is the

gradient field visualization which projects an arrow on each of the neurons that

points to the center of a nearby located homogeneous area. The calculation of

length and direction of the arrow is based on the prototype vector, the map

and the size of the neighborhood kernel. Figure 7(a) illustrates the result,

a smoothed vector field which outlines clusters in the map. On the other hand, there

is the borderline visualization which shows an alternative representation of the

s derived from the gradient field, but doesn’t use arrows for

representation. Instead, it draws the orthogonal of each arrow as a line from both

sides of the center. The length of the lines has the same purpose as the length of

the arrow. It depicts the magnitude of cluster separation. When looking at the entire

(b), this representation forms a kind of cluster boundaries in the

Vector fields. (a) Arrows are pointing to a cluster center and result in a smooth
gradient field. (b) Similar method showing cluster boundary lines (Pölzlbauer et al. 2006).

(b)

resolution SOM constructed from climate data

Two kinds of SOM cluster structure visualizations based on vector

fields are developed by Pölzlhuber et al. (2006). On the one hand, there is the

gradient field visualization which projects an arrow on each of the neurons that

arby located homogeneous area. The calculation of the

length and direction of the arrow is based on the prototype vector, the map

(a) illustrates the result,

a smoothed vector field which outlines clusters in the map. On the other hand, there

is the borderline visualization which shows an alternative representation of the

s derived from the gradient field, but doesn’t use arrows for

representation. Instead, it draws the orthogonal of each arrow as a line from both

sides of the center. The length of the lines has the same purpose as the length of

gnitude of cluster separation. When looking at the entire

(b), this representation forms a kind of cluster boundaries in the

Vector fields. (a) Arrows are pointing to a cluster center and result in a smooth
gradient field. (b) Similar method showing cluster boundary lines (Pölzlbauer et al. 2006).

18

Cluster Connections. This technique draws a grid of connected nodes onto the

SOM with edges showing their mutual similarity (Merkl and Rauber 1997). The

degree of connectivity is based on the distance between two neighboring neurons.

Neurons are connected if they are similar to each other and thus belong to the same

cluster. The similarity threshold can be parametrically adjusted. If they are outside

or along a cluster boundary, no connection is drawn. A grey-scale coloring

represents the distances. This visualization method looks similar to the distance

matrix or U-Matrix. Figure 8 shows the result on a SOM with rectangular topology.

Figure 8: Cluster connection visualization where nodes from same clusters

are connected. The color of an edge indicates the distance between the neurons
(Merkl and Rauber 1997).

U-Matrix and other Distance Matrices. The unified distance matrix or U-Matrix

calculates the Euclidian distance from each unit center to all of its neighbors. The

distance to adjacent neurons is presented using a gray scale or color range

representation on the map grid. It is an effective method to find clustering

structures. Data clusters can be seen as valleys and borders are depicted as

mountains or ridges (Himberg et al. 2001). There are different types of distance

matrices, where two of them are called U-Matrix. The original U-Matrix keeps the

dimensionality of the SOM grid. Another kind of U-Matrix is visualized with

interpolated neurons between each pair of neurons which creates a larger grid than

the original one. The third type is a distance matrix which preserves the

dimensionality but draws the neurons in relation of the distance to adjacent

neighbors. Examples for these three kinds of distance matrix are shown in Figure 9,

where (a) is showing an original U-Matrix. Based on another dataset, (b) is an

interpolated U-Matrix and (c) shows the distances using the size of the neurons.

19

Figure 9: (a) U-Matrix without interpolated neurons, (b) U-Matrix with interpolated neurons,
(c) distance matrix resizing the SOM neurons to their interneuron distances (Vesanto 1999).

P-Matrix. The P-Matrix was introduced by Ultsch (2003) as new visualization

method for the ESOM tool (Databionic 2007). This visualization method measures

the data’s density structure using the pareto density estimation, which is a special

case of the kernel density estimation with a fixed kernel bandwidth (Ultsch and

Mörchen 2005). At each neuron position, a density estimation for the data space is

displayed. Taking a closer view on figure 10 it seems that most but not all of the

patterns of the P-Matrix are the inverse of the U-matrix (Ultsch 2003).

U*-Matrix. This method is a combination of the distance-based U-Matrix and the

density- based P-Matrix described above. The U*-Matrix disregards local distances

in dense regions where they do not matter inside a cluster, keeps the values in

average density areas, and emphasizes sparse regions of the SOM data space

(Ultsch and Mörchen 2005). This brings a much clearer outline of clusters compared

to the U-Matrix. Figure 10 allows a comparison of the visualized results using the U-

Matrix, P-Matrix and U*-Matrix for a given dataset.

The close relationship between the distance and the probability density of the SOM

vectors is coming from a SOM characteristic. It is known as magnification factors

(Pampalk et al. 2002) and expresses that areas with high density of vectors are

described with more detail than sparse ones. The same principle is used for the

visualization in the next paragraph.

(c) (b) (a)

20

Figure 10: Comparing the visualization results from U-matrix (b), P-matrix (c) and

U*-matrix (d) applied on the same dataset (a) to find cluster regions
(Ultsch and Mörchen 2005).

Smoothed Data Histogram. Pampalk et al. 2002 developed this technique to

parametrically visualize clusters in SOMs. The smoothed data histogram (SDH)

method tries to find clusters through estimation of the probability density of the

data on the map. The idea is that clusters are areas in the data space with a high

density of data items. The smoothing parameter s allows changing the membership

degree and thus affects the cluster building, visually explained in Figure 11. While a

U-Matrix representation with large distances might represent lower distances and

possible clusters less significant, the various cluster shapes of the SDH show a more

precise hierarchical structure of the clusters in the data (Pampalk et al. 2002).

Figure 11: Effects on cluster detection by changing the value of the smoothing
parameter s for the SDH (Pampalk et al. 2002).

2.2.2 Projections onto the SOM

The examination of new data with the map is

belongs to the SOM space.

input data. Further, it is a popular method for

where data samples other

map. Match-accuracy is another important topic in SOM visualization. How it

made visible on the map is

Data Histograms. One might want to know the distribution of the input data

on the SOM grid, respectively on the neurons. The visualization of hits per neuron

can be done by simply doing a BMU search and mapping the input vectors onto the

matching neurons. Euclidean distance is commonly used for measurement type. If

there are multiple items on the same neuron, a data or hit histogram is obtained.

The visualization can be done in several ways. Figure 1

histograms on a rectangular and hexagonal grid topology. There is an interpolated

heat map used in (a), (b) has proportional markers placed on the center of the

neurons, and (c) colors the neurons in relation to their hit count in

range. An issue with this representation, where simply the BMU is pointed out, is

the fact that it shows no detail in the accuracy of the neuron match. Therefore,

more enhanced visualizations, such as the sky

Figure 12: Types of data histogra

interpolated density coloring

Sky-Metaphor. The sky-metaphor

a hit histogram, with used techniques from

subsection 2.2.1), but provides more detail

over the neurons, and especial

histogram, the center of the neuron is use

present approach shifts th

(a)

21

Projections onto the SOM

The examination of new data with the map is used to see how the training data

space. This is utilized to find similarities and correlations in the

Further, it is a popular method for novelty detection

other than the ones used for training are associated with the

is another important topic in SOM visualization. How it

is described at the end of this subsection.

One might want to know the distribution of the input data

on the SOM grid, respectively on the neurons. The visualization of hits per neuron

can be done by simply doing a BMU search and mapping the input vectors onto the

matching neurons. Euclidean distance is commonly used for measurement type. If

are multiple items on the same neuron, a data or hit histogram is obtained.

The visualization can be done in several ways. Figure 12 shows three types of hit

histograms on a rectangular and hexagonal grid topology. There is an interpolated

heat map used in (a), (b) has proportional markers placed on the center of the

neurons, and (c) colors the neurons in relation to their hit count in

range. An issue with this representation, where simply the BMU is pointed out, is

the fact that it shows no detail in the accuracy of the neuron match. Therefore,

more enhanced visualizations, such as the sky-metaphor, were developed.

histograms, showing the distribution of hits per neuron

coloring, (b) markers, (c) color range (TU Vienna 2013

metaphor visualization (Latif and Mayer 2007)

, with used techniques from the P-Matrix and the SDH

, but provides more detail about how the input data is distributed

over the neurons, and especially how hits are scattered on a single

histogram, the center of the neuron is used for placing the input vectors. T

approach shifts the input vectors towards the closest neighboring

(b) (c)

used to see how the training data

similarities and correlations in the

novelty detection (Marsland 2003),

ining are associated with the

is another important topic in SOM visualization. How it can be

described at the end of this subsection.

One might want to know the distribution of the input data items

on the SOM grid, respectively on the neurons. The visualization of hits per neuron

can be done by simply doing a BMU search and mapping the input vectors onto the

matching neurons. Euclidean distance is commonly used for measurement type. If

are multiple items on the same neuron, a data or hit histogram is obtained.

shows three types of hit

histograms on a rectangular and hexagonal grid topology. There is an interpolated

heat map used in (a), (b) has proportional markers placed on the center of the

neurons, and (c) colors the neurons in relation to their hit count in a unique color

range. An issue with this representation, where simply the BMU is pointed out, is

the fact that it shows no detail in the accuracy of the neuron match. Therefore,

metaphor, were developed.

of hits per neuron with (a)
TU Vienna 2013, Vesanto 2002).

(Latif and Mayer 2007) is similar to

and the SDH (see

how the input data is distributed

a single neuron. In a hit

d for placing the input vectors. The

towards the closest neighboring neuron,

22

based on their distance. This is resulting in a better visual differentiation of vectors

on the same map unit as well as to in a better detection of similarities between

vectors across neuron boundaries. For the creation of the night sky effect, neurons

are colored in black and input vectors are mapped as white stars onto the map.

Smoothed density histogram visualization at the top of the black neurons creates

the galaxy effect. Further, interconnections can be automatically or manually be

drawn as connected lines between the mapped input vectors. Figure 13(a) allows a

closer look onto mapped vectors within the neurons, together with drawn

interconnections. The whole map with four galaxies is shown in (b).

Figure 13: Sky-metaphor. (a) Detailed view of the map, with input vectors mapped as stars

onto the neurons, some of them connect to trails. (b) The entire map with four galaxies
 (Latif and Mayer 2007).

Component Charts. A possibility of showing multiple vector components is

generating charts and projecting them onto the map. Attributes from codebook

vectors as well as from input vectors can be used for multivariate symbolization.

This representation is limited to a small number of components. Popular chart types

are pie or bar charts. Figure 14 shows both types, (a) applied on projected inputs

vectors and (b) used as component bars describing SOM neurons. A more enhanced

method which uses cross-symbolization for different data spaces is explained in

subsection 3.1.3. Moreover, special types of glyphs are able to visualize the

multi-dimensional SOM vectors, for example fan plots or Chernoff’s face (Vesanto

2002).

(a) (b)

23

Figure 14: Component charts. Projecting (a) input vector attributes as pies charts and
(b) codebook vector attributes as bar charts (Skupin and Fabrikant 2003, SOM Toolbox for

MATLAB 2013).

Trajectories. If there is an interest in following a selected input vector on the map

during the training process, trajectories can be created by drawing connected lines

between the changing positions of the BMU. This visualization is also named

projection of the multi-dimensional state space (Himberg et al. 2001). The

trajectory is drawn according to the updated BMU position of the input vector during

certain training iteration steps. Figure 15 shows such trajectories mapped onto a

SOM, created from three input vectors. As labeled in the map, the state of each

vector was recorded once every 10,000 iterations (Skupin and Agarwal 2008). The

trajectory visualization approach can basically be used for many other purposes to

show connections between input vectors (see sky-metaphor) or to show movement.

More enhanced research work based on SOM trajectories is given in section 3.1.3.

Figure 15: Visualizing the SOM training. Three input vectors are recorded every 10,000
training iterations and connected at each BMU position (Skupin and Agarwal 2008).

(a) (b)

24

Metro Map. This approach utilizes the well-known metro map metaphor to project

multiple component lines onto the SOM (Neumayer et al. 2007). A component line is

drawn from the center of discretized areas in a component plane, depicted in Figure

16(a). Line connections are done from the lowest to the highest component value

with mutable steps in between. As the main concept of metro maps, lines show a

simplified, skewed representation of the underlying data. Other functions are the

aggregation of highly correlated component lines together with line snapping and

the representation of metro stations as markers scaled to the number of

intersections. Hierarchical clustering is used for aggregation. Figure 16(b) illustrates

a metro map on the SOM, showing four colored and snapped component lines. All in

all, this visualization provides extensive calibrating and scaling possibilities for the

chosen component planes.

Figure 16: (a) Trajectory connecting the centroids of discretized areas of one component
plane. (b) Metro map showing four component lines (Neumayer et al. 2007).

Neighborhood Graphs. Graph-based visualizations of the SOM input data can be

used to determine the mapping topology and how relations are preserved after

projection (Pölzlbauer et al. 2005). Clusters can be indicated which are close in

input space, but moved further apart after training. Two methods are introduced.

The first graph structure is generated by nearest neighbor calculations of the input

data. The second one uses pair-wise distances between vectors in input space. The

first method makes an efficient use of the space in large SOMs with a lower number

of input vectors, whereby the second approach has its advantages in the detection

of outliers and dense areas. Figure 17 shows the nearest neighborhood graph

representation of input vectors projected onto a SOM with rectangular topology.

(a) (b)

Figure 17: Neighborhood graph representation

Minimum Spanning Tree

relationship visualization method

nodes on the SOM (Mayer and Rauber 2010)

projected input vectors can be visualized

the distance between connected nodes. Figure 1

representation for both the SOM space (a) and projected input space (b). The line

thickness of the edges is related to their weight values.

visual interpretation of clusters

related method is the neighborhood graph,

subsection.

Figure 18: MST Visualization of (a)
are scaled according to their weight

Class Map. If the input data is assigned to classes

possible to visualize clusters and similarities

It uses a graph-based coloring where the detected regions are first subdivided into

(a)

25

Neighborhood graph representation of the projected input data
 (Pölzlbauer 2005).

Minimum Spanning Tree. The minimum spanning tree (MTS) is

relationship visualization method used to connect similar vectors, represented as

(Mayer and Rauber 2010). Both codebook vectors as well as

can be visualized. The edges are basically weight

distance between connected nodes. Figure 18 depicts a weighted

for both the SOM space (a) and projected input space (b). The line

thickness of the edges is related to their weight values. This approach

visual interpretation of clusters, cluster connections and vector correlations

related method is the neighborhood graph, described in an earlier

MST Visualization of (a) SOM codebook vectors and (b) input vectors
are scaled according to their weight values (Mayer and Rauber 2010).

If the input data is assigned to classes, this representation

clusters and similarities between distributed

based coloring where the detected regions are first subdivided into

(b)

of the projected input data onto the SOM

spanning tree (MTS) is a similarity

vectors, represented as

. Both codebook vectors as well as

. The edges are basically weights showing

depicts a weighted MST

for both the SOM space (a) and projected input space (b). The line

This approach provides

and vector correlations. A

described in an earlier part of this

codebook vectors and (b) input vectors. The edges
Mayer and Rauber 2010).

representation makes it

distributed classes in the map.

based coloring where the detected regions are first subdivided into

26

Voronoi diagrams (Mayer et al. 2007). Then, imaginary lines are drawn, which

connect regions containing same classes. Pixel-wise color-assignment along the

connection lines and across borders is used to visualize classes that span over

multiple regions. To create a smooth partitioning at the border transitions, the line

segments are weighted at both ends. Figure 19 shows different abstraction levels of

a class map, projected onto a SOM grid with rectangular topology. The granularity

can be modified by setting a minimum class threshold value.

Figure 19: Levels of class granularity. The minimum class threshold was set to 0%, 50%
and 100% contribution fraction (Mayer et al. 2007).

Response Surface. The BMU search has the purpose to find the best matching

neuron, but usually there are other neurons which might be almost as good as the

BMU. Additionally, a projection onto the BMU gives no detail about the hit accuracy.

The accuracy issue was already visually tackled by the sky-metaphor method (see

Figure 13). Response surfaces (Vesanto 1999) can solve both problems through

highlighting potential matches on the map. This visualization shows the relative

goodness of each neuron to a given input vector by coloring the neurons from black,

which is the best, to white, corresponding to the worst possible match (see Figure

20). The quantization error is used as indicator for the matching goodness. The

quantization error measures the distance between an input vector and its BMU.

Figure 20: Response surfaces. (a) Good match, (b) poor match, (c) average match. Black

color associates the best response and white signalizes the worst (Vesanto 1999).

(a) (b) (c)

27

There are two ways to determine the accuracy: First, by calculating the average

quantization error, and second (used for independent data measures) by getting the

average distance of each neuron to its neighbors. Finally, the quantization errors

need to be scaled with the accuracy. As depicted in Figure 20, a good match can be

recognized as a clear cluster, highlighted as dense black spot. An average match

may be highlighted as cluster which is cut along the border of the SOM. Maps with

scattered dark cluster structures indicate that there is a poor match of the input

vector, because a large number other potential BMUs exist.

Position Accuracy Marker. Other than the response surface, which uses the whole

map to show match accuracy for one input vector, position accuracy markers

indicate match accuracy for multiple vectors by rescaling the size of each sample

marker. The position of the marker shows the BMU and the size the quantization

error (Vesanto 1999). Figure 21 shows an example for calculated accuracy markers.

The smaller the diameter of a circle, the better is the BMU accuracy.

Figure 21: Position accuracy markers placed on top of a distance matrix (Vesanto 1999).

2.2.3 Projections from the SOM

Sometimes it can be useful to project the data from SOM output into another space

to get a better insight into distances and correlations between neurons or to

visualize the distribution of vector attributes. Among other possibilities, two

common methods are presented here. The first approach projects the units from

SOM space into a distance-preserving low-dimensional space. The second method

generates a parallel coordinate plot from codebook vector attributes and clusters.

Both types require color-coding to be able to track neurons and clusters over space.

Distance-Preserving Visualizations. This technique is commonly used when, for

some interest, the contraction and expansion effects of the SOM training need to be

visualized. As already mentioned, the topology-preserving SOM grid doesn’t keep

28

interneuron distances. A distance-preserving projection of neurons using Sammon’s

mapping and PCA is shown in Figure 22. In (a), smooth topology-based coloring of

the grid is done, the neurons are then projected into the 3D space. The distribution

of neurons within clusters can be seen in (b), using a two-dimensional plane. More

information about these two projection methods and related improvements of the

SOM algorithm is given in subsection 3.3.1. Color-coding is the best way to

recognize the nodes after projection into another space. Distance-preserving

projections also allow a data space distance visualization of the SOM (Himberg

1998). An example can be seen in Figure 23, where in (a) the SOM neurons are

projected using Sammon’s mapping. Then, based on interneuron distances in this

projection, the coloring of the SOM is adjusted in (b). Another purpose of combining

a SOM with such projections is to find out correlations between pairs of vectors. An

accurate comparison of values in component planes is almost impossible (Vesanto

et al. 1998). Two-dimensional functional plots allow a more detailed comparison

between two components. SOM can be used to reduce noise in the data, then as

further step the component vectors are laid out in the function plot to depict their

related distances.

Figure 22: Distance-preserving projecting of SOM neurons (a) into three-dimensional space
to see interneural distances, or (b) into two-dimensional space to see the distribution within

clusters (Gorricha 2009, Vesanto 2002).

Figure 23: Data space distance visualization of SOM neurons
using projection and back projection (Himberg 1998).

(b) (a)

29

Parallel Coordinate Plot. The parallel coordinate plot (PCP) is a popular method

for the visualization of multivariate patterns (Guo et al. 2005, 2006). In

combination with SOM, this tool provides a powerful data exploration technique.

SOM clusters, or data vectors, are projected into the PCP and linked with the

corresponding colors in the map. The PCP uses nested-means scaling, which divides

each axis into equal-length portions, where the mean value is always in the center

(see Figure 24). This method makes diverse vectors and value ranges comparable.

The lines can be scaled in relation to the cluster size, or as another possibility, to

the variance within each cluster (Guo et al. 2005). Therefore, a PCP provides great

insight into the characteristics of each cluster. An interactive highlighting at the

SOM neuron or cluster level with corresponding lines in the plot can improve its

usability.

Figure 24: Parallel Coordinate Plot showing SOM clusters.
The line thickness is scaled to the cluster size (Guo et al. 2005).

Remark: The mentioned techniques for projecting data from the SOM can of course

be applied to input data as well, which makes sense to explore the original input

space.

2.2.4 Visualizations linked from the SOM

Linking SOM Data to Geographic Maps. A method for linking geo-referenced

SOM data back into the geographic space was presented by Skupin and Argwal

(2008). Gorricha and Lobo (2012) used the same methodology for referencing the

geographic map features with label colors obtained from 3D SOM instead of a two-

dimensional one. No matter if a 2D or 3D SOM is used, the results follow the same

principle. Figure 25 shows a geographic map, colored in relation to the

corresponding BMU of the neurons in a high-resolution SOM. This method of linking

different data projections allows an interactive and efficient way to recognize and

associate areas in the map. This combined representation provides valuable

30

conclusions for geospatial data analysis as the result from attribute space is

transferred to an actual real-world location.

Figure 25: Linking the BMU colors from SOM space to their
corresponding geographic map features (Skupin and Esperbé 2011).

3.

 Literature Review

There is a lot of related research done within a broader context of this thesis work,

reaching from sophisticated visualizations to intelligent color-coding algorithms. GIS

is heavily employed to the related research work in the area of SOM visualizations

presented throughout this chapter. Further, k-Means and hierarchical clustering of

SOM space is discussed. Finally, other interesting SOM algorithms are given, which

have an effect on the visualization as well.

3.1 Related Work

Spanning from common representations to more enhanced methodologies, the next

five subsections show impressive SOM visualizations and coloring results.

3.1.1 Spatialization

During the research on Self-Organizing Maps an expression called spatialization

appeared. Spatialization is a comprehensive term which refers to spatial metaphors

which are used to describe an abstract concept. These metaphors include basic

geographic concepts, such as location, distance, pattern, or scale. Spatialization is

31

defined as the methodology for knowledge construction by applying dimensionality

reduction and spatial layout on large, multi-dimensional datasets (Skupin and

Fabrikant 2003). Spatio-temporal techniques developed and applied in GIS are also

applicable in spatialization. The data can be geo-referenced or not, and it does not

matter if it is unstructured, semi-structured or structured. In other words, it is

possible to visualize and map almost every domain of interest. In case of non geo-

referenced sources, spatialization works on implicit relationships derived from

quantifiable notions of distance and similarity (Skupin and Fabrikant 2007). The

SOM is a central element in such a spatialization procedure. But how does it work?

According to Skupin and Fabrikant (2007), there is no single method to apply

spatialization. Reasons therefore are the mostly very inhomogeneous data and the

different disciplines for which the workflows are developed. Figure 26 shows the

spatialization procedure for the visualization of abstracts presented at the annual

meeting of the Association of American Geographers (AAG).

Figure 26: Spatialization process used to visualize AAG conference abstracts
 (Skupin and Fabrikant 2007).

Many different methods are used to create the final spatialized map. There is an

extensive preprocessing task to get the abstract data into the right format. Then,

the most frequent terms are extracted and a term-document matrix is created. The

SOM algorithm is used for dimensionality reduction and spatial layout. Hierarchical

clustering generates the boundaries. GIS software is used to transform the

spatialized geometry and other elements. The scale dependence and symbolization

32

relies on cartographic principles. The result of this workflow is a map with a

geographic look where the most occurring terms are spatially grouped and aligned

according to their mutual relationship. The scaling of the labels shows their

magnitude and clusters can be identified using different border styles (see Figure

27).

Figure 27: Extracted part of the resulting map from the AAG spatialization procedure
showing five levels of hierarchical clustering (Skupin and Fabrikant 2007).

3.1.2 Novel Projections and High Resolution SOM

As already seen in the previous subsection, GIS provide powerful tools for creating

sophisticated multidisciplinary SOM visualizations. Besides the described knowledge

visualization approach, there are other research works which use SOM to create new

map projections and visualizations by applying typical GIS techniques onto input

and output data.

Skupin (2003) introduced a novel map projection where he trained the grid node of

a SOM with geographic coordinates expressed in latitude and longitude instead of

using high-dimensional feature vectors. Regular sampled coordinates, derived from

a Shapefile, were used as input data source. This Shapefile had an equal-area

projection and consisted of land mass locations on the entire earth, forming its

continents with 14,500 points. After training the SOM, using Euclidean distance

measure and a 2:1 neuron grid shape ratio to be able to compare the output to the

initial projection, the result was then postprocessed and visualized with GIS

software. The result of the SOM-based visualization in attribute space is depicted in

Figure 28. In this representation, several layers such as border lines and country

outlines, as well as the latitude-longitude grid, were projected onto the SOM with

best matching unit search.

33

Figure 28: SOM-based visualization of the earth with projected cartographic input layers
and trained with geographic coordinates using Euclidean distance measure (Skupin 2003).

Continents are filling the space of the oceans, because they were left out for

training. Distortions come from the fact, that a Self-Organizing Map does not

preserve relative distances. Especially on the edges, where most of the input

vectors are laid out, a useful determination of recognition of areas is not possible.

Also spherical distance was used for comparison, which did not lead to any

meaningful results.

Another research work of Skupin and Esperbé (2011) is interesting in this context,

which creates a holistic representation of the United States using 200,000 census

block groups containing data from 6 different input types, such as population,

climate, soil, or topography. These were visualized on a SOM consisting of 250,000

neurons. Data integration of all inhomogeneous sources was extremely difficult

considering that both continuous and discrete data was used and various extents

and granularities had to be unified. In the end, they had 69 attributes describing

each geographic feature. The resulting high resolution SOM was then used for

various visualizations besides the traditional component planes and U-Matrix

representations. Through clustering the neurons with k-Means and SOM

postprocessing using GIS software, an interesting map could have been realized.

This map, shown in Figure 29(b), has the boundaries of 25 k-Means clusters as

overlay on a density landscape, created from the neuron vectors. Blue colors can be

anticipated with lower elevation and indicate low density, where brownish colors

represent higher elevations and high density.

34

Figure 29: (a) Linked representation of the color-coded k-Means clusters in SOM and
geographic space. (b) Cluster boundaries as line feature overlay on a neuron vector density
landscape. (c) Cluster areas in the zoomed geographic space (Skupin and Esperbé 2011).

Another advantage of such a high-resolution SOM with multivariate attributes can

be seen in Figure 29 (a) where the clustered neurons are projected from attribute

into geographic space. This geographic regionalization can then be analyzed in

detail. For example, if one zooms into specific regions on the map, as depicted in

Figure 29 (c), block group clusters are represented in finer granularity. Such a side-

by-side analysis of visualizations in different spaces and various zoom levels

provides a valuable insight into multidisciplinary high-dimensional data.

3.1.3 Cross-Symbolization and Travelling in Attribute Space

Besides simply mapping input vectors as points onto the SOM, there has been the

method of displaying attributes as glyphs onto the neurons (Vesanto 2002).

Recently, another way to show multiple attributes describing these units using cross

symbolization was introduced by Burns and Skupin 2009. Pie charts or bar charts

are utilized to visualize multiple dimensions simultaneously. After determining the

best matching units, the symbology is assigned to the mapped points on the SOM.

The placement can be relative to one attribute space and its symbology is then

derived from another attribute space. This requires having two separately trained

SOMs. Figure 30 illustrates two kinds of cross-symbolized visualizations. The left

one shows pie charts which are geometrically ordered by their population attributes.

(a)

(b) (c)

35

The symbology shows nine utterance terms for each matching unit, the size is also

derived from a chosen attribute. The SOM visualization on the right uses the same

principle with bar charts, showing six utterance terms in another attribute space.

Figure 30: Cross-symbolization, showing multiple dimensions and attributes spaces
simultaneously (Burns and Skupin 2009).

Travelling in attribute space is a fascinating idea of how changes in time and space

can be visualized using SOM. In this approach, multi-temporal observations are

linked to a spatialized representation in high-dimensional SOM space (Skupin and

Hagelman 2005). It uses a neuron grid with a vast number of neurons, having

enough space to project the input vectors without too much overlap. The

demographic data used for training and projection is stored in a multi-year

database. GIS is used for the whole visualization process, where each geometric

data layer is stored as separate feature class. A trajectory is drawn as a directed

and non-branching graph connecting time stamps represented as vectors in

attribute space. Figure 31 shows two highlighted pairs of linked temporal vertices

which indicate parallel development based on their multi-dimensional attributes.

Figure 31: Multi-temporal trajectories showing parallel development of two pairs

 of cities in Texas (Skupin and Hagelman 2005).

36

An advantage of such trajectories is the capability of getting a quick and explicit

visual representation of spatio-temporal changes and relationships through linking

to other attributes. A criterion is the placement of the temporal vertices onto the

neurons where one has to consider if the center, a random placement inside the

neuron, or another method is used to get suitable results. Additionally, Skupin and

Hagelman (2005) also describe a method for trajectory clustering and insertion of

additional time vertices. Visualization is not limited to demographic changes; other

spatio-temporal phenomena such as tornado touchdowns and hurricane paths can

be mapped onto climate driven spatializations (Skupin and Esperbé 2008). The tri-

space approach, lately reintroduced by Skupin (2010), uses the SOM technique with

mapped data trajectories as one part of its multi-space transformation and analysis.

3.1.4 Adding a Third Dimension

The present thesis work does not apply SOM visualizations in 3D. Therefore, an

excerpt to SOM representations in the third dimension is shown in this subsection.

To enhance the visualization capabilities and detect clusters by observing the overall

shape of the SOM, Vesanto et al. (1998) showed an example using Sammon’s

projection (Sammon 1969) representing the data in three dimensions.

Figure 32: Mesh representation of SOM data in (a) 2D and (b) 3D, and (c) color coded
component planes projected into (d) 3D (Vesanto et al. 1998).

Figure 32 shows juxtapositions where in the first approach, the neighboring un

were connected with lines which resulted in a

approach was done with color

vector units. When projecting into the third dimension, the 2D projection has folded

and makes a two-dimensional representation useless for correct info

extraction. Where in the first approach

in the mesh, the color-coded version makes it easier to deduce from the two

dimensional SOM grid.

For the projection from two into three dimensions, typically dis

values are taken. Takatsuka (2001) for instance used the distances from the

distance matrix to visualize a SOM grid in 3D (see

visualization figure was created with

Gahegan 2002). When using the height, the distances no longer need to be

normalized. Thus it is easier to find and interpret clusters

view. The visual recognition of clusters and boundaries can be enhanced by applying

common cartographic colors to the surface. Interactive rotation functions make

to an intuitive exploration tool.

the third dimension it is the largest that human beings can easily grasp (Vesanto et

al. 1998). The conclusion from SOM projections in 3D is that whenever possible and

suitable, a three-dimensional projection can be used for further data exploration.

Figure 33: Creating a 3D SOM distance matrix from it
using the distances as height values

Other three-dimensional SOM approaches are mentioned in the

this chapter as well.

37

shows juxtapositions where in the first approach, the neighboring un

were connected with lines which resulted in a mesh presentation. The second

approach was done with color-coded component planes instead of connecting the

vector units. When projecting into the third dimension, the 2D projection has folded

dimensional representation useless for correct info

extraction. Where in the first approach, some effort is needed to find certain areas

coded version makes it easier to deduce from the two

For the projection from two into three dimensions, typically dis

values are taken. Takatsuka (2001) for instance used the distances from the

distance matrix to visualize a SOM grid in 3D (see Figure

figure was created with GeoVista Studio software (Takatsuka and

When using the height, the distances no longer need to be

Thus it is easier to find and interpret clusters in the three dimensional

The visual recognition of clusters and boundaries can be enhanced by applying

common cartographic colors to the surface. Interactive rotation functions make

to an intuitive exploration tool. From the point of visual perception and cognition,

it is the largest that human beings can easily grasp (Vesanto et

al. 1998). The conclusion from SOM projections in 3D is that whenever possible and

dimensional projection can be used for further data exploration.

Creating a 3D SOM distance matrix from its equivalent 2D representation
using the distances as height values (Takatsuka 2001).

dimensional SOM approaches are mentioned in the next

shows juxtapositions where in the first approach, the neighboring units

presentation. The second

coded component planes instead of connecting the

vector units. When projecting into the third dimension, the 2D projection has folded

dimensional representation useless for correct information

some effort is needed to find certain areas

coded version makes it easier to deduce from the two-

For the projection from two into three dimensions, typically distance or density

values are taken. Takatsuka (2001) for instance used the distances from the

Figure 33). The 3D SOM

GeoVista Studio software (Takatsuka and

When using the height, the distances no longer need to be

in the three dimensional

The visual recognition of clusters and boundaries can be enhanced by applying

common cartographic colors to the surface. Interactive rotation functions make this

point of visual perception and cognition,

it is the largest that human beings can easily grasp (Vesanto et

al. 1998). The conclusion from SOM projections in 3D is that whenever possible and

dimensional projection can be used for further data exploration.

equivalent 2D representation
(Takatsuka 2001).

next two sections of

38

3.1.5 Coloring the SOM Space

Indicating metrical relationships through spatial positioning is one advantage of

SOMs. Coloring its neurons is the other way to achieve similarity encoding. The

color-coding could be simply done by manually or randomly assigning colors or color

ranges to the neurons and clusters, but this is not very intuitive. Therefore, different

methods for SOM color-coding and color projections have been elaborated. Used

color spaces are RGB (Red Green Blue), HSB (Hue Saturation Brightness) and

CIELab. See references (Joblove and Greenberg 1978, CIE 1986, Wikipedia 2013)

for further information about each color space. Basically, the intention is to get a

perceptual difference in the neurons of the SOM space by approximating distances

in suitably defined color spaces (Kaski et al. 2000). The coloring methods are as

follows:

1) Color-coding based on the topological order of the neurons in the SOM

This type assigns colors to each SOM unit according to its position in the SOM

space, without respect to relative distances between the neurons. One way is to

generate a color plane and stretch it over the SOM grid. The plane can have four

base colors at the edges and every transition color in between is calculated.

Basically, a small number of colors results in discrete coloring. A large number of

colors together with higher SOM dimensions results in smooth coloring of the grid.

Himberg (2001) used the simplest form of this technique with four levels of gray for

coloring equal quadrants of the SOM. The other way is to create a color plane from

RGB space and let each neuron of the SOM grid pick its associated color in the plane

(Himberg 1999). Figure 34 shows an example of a smoothly colored SOM grid

following it topology.

Figure 34: Coloring of SOM neurons based on their

topological order in the grid (Vesanto 1999).

Guo et al. (2005) have developed a very complex and well-thought technique that

creates 2D color schemes from the 3D CIELab space. This method constructs a two-

39

dimensional array of differentiable, logically ordered colors using variations in hue

and lightness. Therefore, a square grid is laid onto the CIELab color plane and lifted

to the shape of a certain geometric object, like a bell or ellipsoid. The elevation of

the intersection where the grid meets the surface of the geometric object defines

the lightness. The coordinates of the grid on the color plane results in the associated

hue (Guo et al. 2005). Figure 35 illustrates this method creating a 5x5 diverging-

diverging color scheme based on an ellipsoid model. This approach is utilized in the

SOMVis tool (Guo 2013).

Figure 35: Diverging-diverging color scheme created from an ellipsoid model

in the CIELab space.

2) Similarity-based coloring using distance-preserving projections

These methods use different non-linear projections of the codebook vectors for

assigning colors to the SOM neurons based on their mutual distances. One approach

uses the popular Sammon’s mapping (Himberg 1999) together with the RGB color

space. Another more sophisticated projection method was developed by Kaski et al.

(2000) which transforms into CIELab color space. Both methods let the neurons pick

their associated color based on their location in the projected color space. The

CIELab colors require a calculated hue value, non-saturated colors where left out

and lightness got a fixed value. Finally, the determined colors are linked back to the

SOM neurons (see Figure 22 as an example). Besides RGB and CIELab space, there

is the possibility to use the HSB circle and detect colors based on calculated hue

values (Vesanto 2002); saturation and brightness have fixed values in this

technique too. Figure 36 applies the latter of the mentioned coloring methods to the

SOM neurons.

40

Figure 36: Similarity coloring of a SOM based on

interneural distances (Vesanto 1999).

3) Similarity-based coloring through a one-dimensional color SOM

The SOM itself can be used to order the neurons in a diverging manner, as

described by Vesanto (2002). First, a one-dimensional SOM is trained from the

codebook vectors. Then, colors from the hue circle in HSB space are calculated for

each neuron in the 1D SOM. Colors can be detected equidistant from each other or

relative to the distance of neighboring vectors. As last step, each neuron in the SOM

grid gets the color of its BMU in the color SOM. This method is used for this thesis

implementation. Further descriptions can be found in subsection 4.5.1.

3.2 K-Means, Hierarchical, and Geo-Clustering

Clustering has been mentioned many times before this section. Visual

representation of clustering can be gained from SOM visualization methods such as

the U-Matrix. The next pages give some more explanation about the two most

common clustering techniques applied to SOM, namely k-Means or hierarchical

clustering. Vesanto (2002) provides the definition of clustering as: “Clustering

algorithms divide, or partition, data into natural groups of objects. The term natural

usually means that the objects in a cluster should be internally similar to each

other, but differ significantly from the objects in the other clusters.”

While the k-Means algorithm is often directly compared to SOM as a related

technique in multi-dimensional space (Bacao et al. 2005), it can also be a useful

method in combination with Self-Organizing Maps. As already described in the

previous sections, k-Means is applied to SOM by showing clusters through color

coding and cluster boundaries as overlay. The algorithm divides objects into k

clusters where each objects depends to the clusters with the nearest mean. It starts

with the initialization of the k number of means, also called seeds, which are

randomly created within the data space. Then, all objects are associated with their

nearest centroid by calculating the Euclidean distance from each object to each of

41

the k means. The partitions then represent Voronoi diagrams. After the first

clustering, the centroid of each of the clusters becomes the new mean. This

iterative process is then repeated until convergence. The result can be seen in

Figure 37. There is an improved algorithm, called k-Means++, which uses a more

sophisticated seeding of the initial k means. Arthur and Vassilvitskii (2007) describe

the procedure to initialize the centroids before proceeding with the standard k-

means iteration process.

Figure 37: K-Means result, showing 5 Voronoi cluster cells (k=5) and their centroids

(image source: http://www.mathworks.com/MATLABcentral/fx_files/19344/1/k_means.jpg).

Another technique besides k-Means partitioning is hierarchical clustering.

Generating cluster hierarchies allows exploring the vector space from different

granularities. The representation of such clustering is done in a tree diagram, a so

called dendrogram. There are two types, namely the bottom-up, or agglomerative,

approach as well as the top-down, or divisive, approach. In the agglomerative

approach, each object has its own cluster in the beginning and those clusters are

merged when moving up the hierarchy. The divisive approach starts having all

objects in one cluster and recursively splitting up in smaller ones when moving

down the hierarchy. Clustering algorithms are based on distance measures. The two

general distance measures used are within-cluster distances and between-cluster

distances (Vesanto 2002). Within-cluster distances measure the spreading in the

cluster and between-cluster distances, also called linkage criteria, determine the

separation between clusters. The corresponding formulas are given in Table 2.

42

Table 2: Clustering distances (Vesanto 2002)

The agglomerative hierarchical clustering algorithm can be explained in four main

steps: 1) assign each object to its own cluster, 2) calculate the distances between

all clusters based the chosen linkage criteria, and 3) merge the two clusters which

are closest to each other. Finally, repeat the whole process beginning at step two

until only one cluster is left. The top-down approach goes into the other direction.

Agglomerative algorithms produce binary trees which have at least one extra

intermediate cluster which need to be pruned out (Vesanto 2002). Figure 38 shows

a hierarchical clustering result where the SOM is colored according to the calculated

base cluster hierarchy from the dendrogram. The colors of superordinate-clusters

are simply calculated as averages from their subordinate-clusters.

Figure 38: Hierarchical clustering of a Self-Organizing Map (Vesanto 2002).

43

There has also been a big effort in finding improvements for SOM clustering.

Gorricha and Lobo (2012) provided interesting research work about the visualization

of clusters in geo-referenced data. In their approach they use the width of the

border line between geo-referenced vectors in SOM space to represent the distances

from the vectors in input space to their BMUs. The clustering structure was detected

by considering a cut distance and manipulating the width of the border lines. The

SOM units were colored according their topological order in the SOM space. This

methodology was tested with 2D and 3D SOM (Bacao et al. 2005a, 2005b)

topology, whereby the 3D SOM (see subsection 3.3.2 for additional explanation)

showed significantly better results (Gorricha and Lobo 2012). Finding homogeneous

areas using this approach is quite efficient, because the border lines allow an

identification of different zones where the color-coding from SOM space is not

sufficient enough for clustering purposes. Figure 39 shows the clustering using a 3D

SOM model and projecting the results to a geographic map.

Figure 39: Cluster detection using a 3D SOM model with color-coded neurons and
manipulated border line width representing the distance between geo-referenced
vectors. The resulting clusters are projected into the geographic map on the right

(Gorricha and Lobo 2012).

However, sometimes the membership degree in a particular SOM cluster may not be

easy to judge. Therefore, fuzzy clustering algorithms (Bezdek and Pal 1992) can be

applied to deal with partial membership problems.

3.3 Improved SOM Algorithms

The basic SOM algorithm is limited to factors such as not preserving the distance in

attribute space, or sticking to the rectangular and hexagonal topology. The next two

subsections provide an insight into the improvements done beyond traditional

SOMs.

44

3.3.1 Dimensionality Reduction and Distance Preserving

As already mentioned in the introduction, SOM is a popular technique for non-linear

dimensionality reduction. Other widely used methods are the principle component

analysis (PCA) and multidimensional scaling (MDS). PCA (Johnson and Wichern

1992) is a linear data analysis method that projects data from high-dimensional

space into a commonly two-dimensional principle plane. This is done by reducing

data variables through eliminating minor components and finding orthogonal

principle directions along the components with the largest variances. A major

limitation of PCA is that it cannot find non-linear relationships defined by other than

the first and seconds-order statistics (Yin 2002). In other words, it comes to a

significant loss of information when dealing with data in higher dimension.

Extensions to non-linear PCA exist, but are not exemplified here. MDS (Shepard

1965) is more appropriate for dimensionality reduction as it tries to preserve the

distances between components from the input space when projecting to the lower

dimensional output space. It needs to be mentioned that PCA and MDS are not at

the same level, as PCA can be used as a projection method for MDS, which is more

a class of analysis. Sammon’s mapping as MDS method attempts to minimize the

differences between interneuron distances in the input and output space (Sammon

1969). When speaking of input and output space, the original and projected vector

space is meant. Even though Sammon’s mapping shows better results than PCA, it

has some issues with consecutive data input as it needs to recalculate every time.

Prediction of new points is impossible. Another well-known method of MDS, and

related to iterative algorithm of Sammon’s mapping, is curvilinear component

analysis (CCA). Demartines and Hérault (1992) introduced this algorithm, which

also preserves original distances as much as possible through searching for small

distances in the output space. Sammon’s mapping, in contrast, focuses on small

distances in the input space. All these algorithms are also not directly performing

clusters, unlike SOM does. SOMs are totally different as it is based on a topology-

preserving approach, making an efficient use of the available output space by

accepting distortions of interneuron distances projected from input space. There is

no attempt to keep the original distances after projection which creates distortions.

Here provides the visualization-induced SOM (ViSOM) a solution, where the

interneuron distances from input space are preserved as faithfully as possible both

in the map as well as in the topology (Yin 2002). ViSOM is as simple and similar in

structure as the SOM. It constrains the lateral contraction force and controls the

resolution of the map by using the regularized interneuron distance as parameter.

This produces a smooth and regularly graded mesh from the data points. A further

improvement of ViSOM, since it does not assign any cost function, is the

probabilistic regularized SOM (PRSOM). Figure 40 shows how the mentioned

techniques relate to each other. The methods are horizontally ordered according to

their capability of preserving the interneuron distances.

45

Figure 40: Diagram of dimensionality reduction methods. Ordered and aligned in
relation to their capabilities of preserving topology and distances after projection

 from high-dimensional input space into low dimensional output space.

According to Wu and Chow (2005), PRSOM extends the sequential weight-updating

rule from ViSOM with an optimization of a cost function. A color-coded area in the

output space shows the accumulated probability for each neuron. PRSOM is a

hybridized technique, which includes SOM and MDS into one. This makes it to an

effective methodology that leads to improved visualization results compared to the

other dimensionality reduction techniques SOM, ViSOM, CCV, and Sammon’s

mapping (see Figure 41).

Figure 41: Visualization of a dataset with (a) PRSOM, (b) SOM, (c) ViSOM, (d) non-linear

mapping by CCA, and (e) non-linear mapping by Sammon’s mapping (Wu and Chow 2005).

46

3.3.2 About Spherical SOM and Geo-SOM

The traditional SOM topology is either hexagonal or rectangular. These topologies

are coming along with a special problem, the so-called border or edge effect.

Neurons at the border of the grid have fewer neighbors which results in a reduced

interaction with other neurons during training and higher distortions may occur. A

solution for that problem is the spherical SOM (Wu and Takatsuka 2006, Schmidt

2008). This topology does not only tackle the edge effect problem, it can also

reduce the average distortion by up to two thirds (Wu and Takatsuka 2006). An

illustration of a spherical SOM is given in Figure 42. The spherical SOM is shown in

3D (a), projected to a 2D plane (b), and for comparison, a conventional 2D SOM

was trained and visualized with the same dataset (c). The spherical SOM shows

significantly better results, especially by exploring the traditional SOM which has

distortions at the neurons near the boundaries and corners of the grid, indicated by

colored circles.

Figure 42: The trained spherical SOM (a) in 2D view, the white line indicates the cut for
projection (b) into a 2D plane, and (c) a conventional SOM trained with the same dataset.

The colored circles show distortions in the map (Wu and Takatsuka 2006).

Bacao et al. (2005a) developed an improved SOM algorithm that takes into account

spatial dependency. The Geo-SOM architecture detects clusters in geo-referenced

data which are geographically close. Homogeneous zones, as well as spatial borders

are indicated. The algorithm works in a way that the BMU search consists of two

steps. In the first step, the BMU search uses only the geographical coordinates of

the input vectors. The neighboring units in the output space are then used for the

second phase BMU search, comparing that area to all input vectors. The update

procedure is the same as for the standard SOM. The neighborhood of the first BMU

step can be declared with a geographical tolerance value. Increasing this tolerance

creates a radius of potential BMUs in the output space. The implementation was

done in MATLAB (Bacao et al. 2005b). Figure 39, illustrated earlier in this chapter,

shows a variant of the Geo-SOM algorithm applied on a 3D SOM to detect clusters

and cluster distances in geo-referenced data.

47

4.

Methodology

This chapter deals with the technical implementation of the SOM visualization

toolset. Basic decisions are answered at the beginning. Then, the software concept,

the given sample dataset, as well as the specified data format are described in

detail. All visualization methods, third-party libraries, algorithms, and system design

approaches used for this work are explained throughout the following sections. At

the end, used methods for the classification of SOM visualizations are given.

4.1 Fundamental Decisions

Three essential questions have to be answered before starting with the development

of the software. First, what is the main purpose of this SOM visualization tool? Then,

which visualizations need to be implemented? And third, based on the performance

and functional support, for which technology platform should the application be

developed.

Purpose of Use. This software aims to be used as a standalone SOM visualization

tool, as well as for integration into extensive data mining workflows. Thus, the

implementation is split into two separate parts: the library and the application.

Scientists and students are major target groups that will work with the tools. The

intention of continuous improvement of this work requires well-defined interfaces

and explicit documentations.

Visualization Types. Component planes, hit histogram, k-Means clustering,

intelligent SOM coloring, and the integration of geographic maps are chosen as

important visualization methods. Further, animation functions for showing a SOM

evolution and U-Matrix implementation are also considered. Each visualization has

its own parameters which affect the user interface design discussed later in this

chapter. The visualizations are chosen based on the needs of the target groups.

Application Platform. Processing provides various deployment options for its

sketches (Processing 2013). Among others, it can run as JavaScript, Java applet, or

be integrated into Java projects. Java itself allows the execution as Java Web Start

or as standalone application (Oracle 2013). Therefore, a test sketch with simple

user interface that does basic SOM calculations was implemented. Random SOM

initialization and BMU search were then tested in Java and JavaScript. Java itself

showed no performance differences

standalone application. The speed of J

used browser. Figure 43

JavaScript running in the

indicates that Java is a lot faster than JavaScript, which has a fluctuating

performance in the different browsers.

conclusions for the further

were best fulfilled by the Java application. JavaScript offers

platform-independent web

functional support is still not sophisticated enough

purpose, with multiple windows and partitioned layout,

SWING components instead of

this software should primarily be used offline and performance is an essential issue

with large input files and

application with the embedded SOM visualization library is implemented in Java.

Figure 43: Java versus JavaScript.
 and BMU search in a Java application and running as JavaScript in five popular

 web browsers.

4.2 SOMatic Viewer

After basic decisions are made

toolset. It is necessary to know that this thesis work has a counterpart

student implements a tool

the title SOMatic, with the T

Therefore, the Processing

the common name SOMatic Viewer

purpose of this software is

patterns, similarities, and

48

showed no performance differences whether running as an Ap

The speed of JavaScript, on the other hand,

43 shows the performance test for Java

in the five commonly used internet browsers.

that Java is a lot faster than JavaScript, which has a fluctuating

performance in the different browsers. The tests gave some important

further implementation. Performance and functional support

led by the Java application. JavaScript offers good

web-applications but is limited to the browser and its

is still not sophisticated enough. Also, the user interface

windows and partitioned layout, is easier to create using Java

SWING components instead of using web scripting languages.

this software should primarily be used offline and performance is an essential issue

with large input files and Processing as resource-consuming visualization core, the

embedded SOM visualization library is implemented in Java.

Java versus JavaScript. Performance results of random SOM initialization
and BMU search in a Java application and running as JavaScript in five popular

web browsers. 4000 neurons and 20 input vectors were used.

 Software Concept

made, there is the time to find a name for the visualization

It is necessary to know that this thesis work has a counterpart

tool which does the SOM training. The whole SOM project h

the title SOMatic, with the Trainer on the one side and the Viewer on the other side.

Processing SOM visualization library and the Java application

SOMatic Viewer, with the supplements lib and app

software is exploring and visualizing SOM files

and relationships in high-dimensional datasets

an Applet, Web Start, or

avaScript, on the other hand, depends on the

shows the performance test for Java compared to

browsers. The bar chart

that Java is a lot faster than JavaScript, which has a fluctuating

some important insights, with

erformance and functional support

good opportunities for

applications but is limited to the browser and its

the user interface for this

is easier to create using Java

 Given the fact that

this software should primarily be used offline and performance is an essential issue,

consuming visualization core, the

embedded SOM visualization library is implemented in Java.

Performance results of random SOM initialization
and BMU search in a Java application and running as JavaScript in five popular

were used.

a name for the visualization

It is necessary to know that this thesis work has a counterpart. Another

which does the SOM training. The whole SOM project has

er on the other side.

library and the Java application have

supplements lib and app. Again, the

files for finding hidden

dimensional datasets. Figure 39

49

shows the entire process of such visual data mining process. The training file (.dat)

and map file, so called codebook (.cod), are saved from the SOM training software

and then used for visualization and knowledge discovery in the viewer. SOMatic

Trainer (Spöcklberger 2013), SOM_PAK (Kohonen 1995), or any other software

which produces files in the specified format can be used. Then, the created files are

feed into the SOMatic Viewer toolset. The map file describes the SOM grid

dimension, its topology type and holds the high-dimensional attributes for each SOM

neuron. Input vector files, for example the one used for training, which contain

related information, can be mapped onto the SOM. Generally, the datasets used for

analysis with SOMs may be of any domain. There is the possibility to link neurons to

a Shapefile which contains the same geographic IDs as the spatially referenced

input dataset. With this method, the SOM space and geographic space can be

connected. The different visualization methods provided by the SOM Viewer give

valuable insights and intelligible visual output for high-dimensional datasets.

Interactive highlighting and selection functions improve the exploration capabilities

of the software.

Figure 44: The entire SOM knowledge discovery workflow from data preprocessing, training

to visualization. SOMatic Viewer requires three input files, of which two are specifically
created with SOM training software (SOMatic Trainer or SOM_PAK).

4.3 Carinthian Census Dataset

For practical application and further discussions, a real world dataset is trained with

SOMatic Trainer and then visualized with SOMatic Viewer. Census records for the

region of Carinthia, Austria, are used as sample data. Figure 45 depicts the chosen

area on the map. Statistik Austria, a governmental organization, collected the data

in 2001 and it was last updated in 2004. This dataset contains demographic

information for 132 municipalities with

reach from administrational

population data. In addition

WIGeoGIS GmbH, containing geographic features for each municipality

region. The dataset is going to be

implemented SOMatic Viewer application in

together with further thoughts

Figure 45: Map of Austria.
 is used for real world data

4.4 Enhanced SOM_PAK

SOMatic Viewer uses the SOM_PAK

enhancements. As SOM_PAK

added using the existing

identifiers considered in the basic format.

which is read by SOMatic Viewer. This enables to join the

the input data file with geographic features in a Shapefile. Figure

SOM_PAK file format together with the enhanced version used for SOMatic Viewer.

The software can read and process both formats.

Germany

50

132 municipalities with 46 different attributes. The

reach from administrational information, to various quantitative and

In addition, there is a polygon Shapefile of Carinthia

, containing geographic features for each municipality

region. The dataset is going to be properly preprocessed and

implemented SOMatic Viewer application in section 6.2. The results

together with further thoughts and conclusions, are discussed there

Map of Austria. A census records dataset for the selected
ed for real world data analysis (image source: http://www.locationaustria.at)

_PAK File Format

SOM_PAK file format (Kohonen 1995) with some additional

SOM_PAK does not contain any attribute names, this

existing comment line definition. Also, there are no

considered in the basic format. Therefore, a geographic ID can be added

which is read by SOMatic Viewer. This enables to join the referenced vectors

with geographic features in a Shapefile. Figure

file format together with the enhanced version used for SOMatic Viewer.

The software can read and process both formats.

The given attributes

, to various quantitative and proportional

Shapefile of Carinthia, produced by

, containing geographic features for each municipality in the

properly preprocessed and analyzed with the

results of the analysis,

there.

selected region of Carinthia
(image source: http://www.locationaustria.at).

with some additional

does not contain any attribute names, this feature is

. Also, there are no further

a geographic ID can be added

referenced vectors from

with geographic features in a Shapefile. Figure 46 shows the basic

file format together with the enhanced version used for SOMatic Viewer.

51

 (a) Enhanced SOM_PAK data file (c) SOM_PAK data file

 (b) Enhanced SOM_PAK map file (d) SOM_PAK map file

Figure 46: Comparison of the two SOM_PAK file format version. (a) Shows the enhanced
version of the SOM_PAK data file (.dat) and (b) is the new version of the map file (.cod).

(c) Shows the conventional SOM_PAK data file and (d) the corresponding map file.
Both formats can be used with SOMatic Viewer.

The first line declares the vector dimensionality (integer), the grid topology type

(string), the map dimension in x and y direction (integer), and the defined

neighborhood type (string). The input data file needs to contain only the vector

dimensions, the rest is optional. For the map file all parameters are mandatory,

except the neighborhood type. The parameters need to be defined in the first line

and have to occur in the given order. Then, where SOM_PAK only has a normal

comment line recognition, using ’#’, the new version can read vector attribute labels

by adding the ’att’ suffix without space to the comment declaration. Figure 41(c)

and (d) shows the added lines, highlighted in red. The purpose behind that is to

guarantee backward compatibility and to keep the existing notations. The

subsequent lines contain numerical values in floating-point format, describing each

vector in the given dimension. Input data files can have an optional string at the

end of each line which describes the vector name. The enhanced version allows

adding another string right after the label. It is used as identifier of vectors in a

geo-referenced dataset. As depicted in Figure 41, the map file looks same, without

vector label and additional geographic ID string. If there are missing values in the

dataset, the numerical value is substituted with an ’x’. During calculations they are

simply ignored by the software.

4.5 Implementation

The entire implementation is done in Java. As Processing uses a simplified Java

syntax, it is not counted as separate programming language. Two projects are

created within the non-commercial IDE Eclipse (2013): the SOM visualization

52

library, called SOMatic Viewer library, and the Java SWING tool, named SOMatic

Viewer application. The library is a referenced project of the application and can also

be exported as Java Archive File (JAR). Open-source libraries are used for both

Eclipse projects (see Figure 56).

4.5.1 SOM Visualization Library in Processing

Processing is Special. The implementation of a Processing library requires some

understanding of how Processing 2.0 works and how the file structure has to look

like. Within the referenced core library, the PApplet is the parent class which

provides access to the Processing methods and variables. It can further be seen as

the drawing sketch itself. Two methods are important, the setup() which works as

constructor and initializes the sketch, and the draw(), which contains everything

that needs to be painted to the canvas. Then, as only one class can hold a sketch

and extend PApplet, all other classes are using a reference of it. In other words, the

PApplet is passed as parent object to any class constructor which uses Processing

features for drawing on the same sketch. When developing outside of the Processing

IDE, there are some other modification required which are not specifically explained

here, but can be read in the official documentation (Processing 2013). As this

project should also result in a contributed library which is going to be published to

the community, the folder structure and content is critical and has to meet the

Processing guidelines.

Component Model. An overview about the main components of the SOMatic

Viewer library and how they are related to each other is illustrated in Figure 47.

Four different files can be read. An input vector and codebook file is mandatory for

the visualizations. There is the option to load a polygon Shapefile containing

geographic features of the input vectors. Further, a project file, which contains file

paths, settings, and default values, can be loaded and saved separately. Data is

read into memory and kept during runtime. The file reader initializes the neuron and

input vector arrays and assigns the associated data. The central element is the

SOMatic Globals class, a Singleton-pattern class containing all global variables. After

data is in memory, the SOM grid is created from the neuron array. Input vectors are

mapped to their best matching neurons in SOM space using BMU search. Another

main component is the coloring, which is fundamentally an abstract group for all

visualizations methods of the SOM. The reason why BMU search is also used for

coloring relates to one of the SOM grid representation techniques. The GeoMap

communicates with the SOM through the Globals. K-Means is feed with the neurons

of the SOM. During cluster iterations, a color scheme is created, which is then

dynamically applied to the grid.

53

Figure 47: SOMatic Viewer Library component model

The SOM Grid. Several classes are involved and nested for drawing the SOM grid.

There is the SOMGrid class, which is used to instance the top by defining the

dimension in x and y direction, the given topology type and optional border spacing.

Then, based on the specified parameters, the grid controller class determines the

available space within the sketch according to its current width and height and

scales the grid to fit best into the defined area. This provides flexible grid resizing

when the sketch dimensions change. The calculated radius for each SOM neuron

within the available space is passed to the topology class, which arranges the

neurons based on the chosen topology type and grid dimensions. As both the

rectangular and hexagonal topology require different offsets, this is handled here.

Finally, the neurons are drawn at their position in the grid with the determined

extent, offset, and geometry based on the topology type. Each geometry class

inherits styling parameters, such as fill color, or stroke width and color, from the

shape class. Once a neuron is drawn, its geometry is held within the associated

instance. This is useful, as each neuron’s geometry and appearance can be accessed

and modified independently. The neuron geometry can return its center coordinates,

inner and outer radius, as well as current fill and stroke settings. These parameters

are useful for labeling or mapping objects onto the grid. Figure 48 depicts the

described SOM drawing sequence based on a nested class hierarchy.

54

Figure 48: A SOM grid is drawn by a sequence and hierarchy of classes.

Hit Projection and Hit Histogram. The projection of input vectors onto the map

grid is accomplished by the BMU search, where each input vector is compared to all

neurons of the SOM based on the distance between their attributes in the same

high-dimensional space. The neuron with the smallest distance to the given input

vector is the BMU. Euclidean, Cosine, and Manhattan distance are provided for the

BMU search. One neuron can have 0 to n matching input vectors. Once a BMU is

found, both objects keep the index of each other. Figure 49 shows a class diagram

of the neuron and input vector entity in unified modeling language (UML)

representation. A hit can be drawn as number, quantifying the hits per neuron, or

as point marker, scaled by the number of hits per neuron. As additional feature, the

hits can be labeled. If enabled, the names of the vector are placed next to the hit

marker on the neuron. This function has some limitations. Labels cannot be fully

display with increasing number of hits per neuron, because they would overlap

other elements in the sketch. The hit histogram is simply determining the minimum

and maximum hit count of all neurons, assigning two different colors to these values

and then calculating the color values for the number of hits in between. The

lerpcolor() function in Processing does this job. Light colors can be used for the

minimum hit count and rich colors for the maximum. The resulting map visualization

55

provides an understandable representation of the distribution and number of hits

per neuron with bright areas for low hit density and darker areas for high hit

density.

Figure 49: Class diagram of the two SOM entities, neuron and input vector.

Component Planes. Since the SOM itself contains valuable information about the

data used for training, there is an interest of visualizing each attribute as a sliced

piece of the SOM. Each neuron is holding an n-dimensional vector of attributes.

Based on the number of selected attributes, a SOM for each component plane is

drawn. The neurons are colored with the same method used for the hit histogram,

two different colors are assigned to the minimum and maximum value and all colors

in between are calculated. This method requires a normalization of the values first.

Component planes are a popular technique for side-by-side comparison of the data

distribution. SOMatic Viewer has a flexible layout on top of the component planes.

This means that the grids do not only adjust automatically to the available sketch

dimensions, they also get proportionally rearranged. As an example, six component

planes are displayed and the frame width and height changes from 400x400 to

600x200 pixels. Then the component planes are rearranged from formerly 3 on the

56

x-axis and 2 on the y-axis, to 6 on the x-axis and 1 on the y-axis. A minimum

spacing parameter between the grids can be set. Each component plane is labeled

with the given attribute name.

GeoMap. The geographic map uses MapThing (Reades 2013), an external

Processing library. MapThing itself imports methods of the comprehensive GeoTools

Java library (OSGeo Project 2013). These toolsets offer all necessary functions to

draw and manipulate Shapefiles in Processing. What MapThing does not provide is a

method to automatically get the extent of the Shapefile. This was self-made with

some functions from GeoTools. The geographic map needs one parameter for

correct interaction with the SOM, which is the field name for the geographic ID from

the attribute table. Additionally, the attribute category for labeling needs to be

defined. The GeoMap communicates with the SOM through the global variables

Singleton-pattern class. It reacts on every change in the SOM. Whenever another

visualization method is applied, the GeoMap gets updated. The coloring is done by

linking the colors from SOM space into the geographic space. As each feature in the

GeoMap has an associated input vector projected onto the SOM, the color can be

retrieved from the corresponding BMU. Another function is the interactive selection,

where connected features and neurons are highlighted if one of them is selected.

This selection works with an ArrayList that holds the indices of the currently

selected neurons or features. Whenever there is a change in the list, both views get

updated. More details about the interactive selection and highlighting are given in

the next subsection 4.5.2.

U-Matrix. The unified distance matrix shows interneuron distances in the map,

where each neuron is colored in relation to the distance to its neighbors. As an

example, the creation of a U-Matrix from a 3x3 grid with hexagonal topology works

as follows. To get the distances of one neuron to its neighbors, imaginary neurons

are inserted. Figure 50 shows an illustration. The 3x3 grid results in a 5x5

interpolated matrix with new neurons in between. The {x,y} elements are holding

the distance between neuron x and y and the values in {x} elements are the mean

of the surrounding values. In the given example: {4,5} = distance(4,5) and {4} =

mean({1,4},{2,4},{4,5},{4,7}). Euclidean is used for distance measures. The

same principle is applied to a rectangular topology, with the distinction that a

neuron can have the maximum of four neighbors compared to six in the hexagonal

topology. In the map, the interpolated neurons disappear and only the mean

distances for each neuron are visualized. Assigning light gray colors to low distances

and dark ones to larger distances results in a representation where light areas are

considered as clusters and black ridges indicate cluster boundaries.

57

Figure 50: The U-Matrix uses interpolated cells (blue color) for interneuron
distance calculation.

K-Means Clustering. The standard k-Means algorithm, explained in section 3.2, is

applied for SOM clustering. Initial centroids are randomly chosen. Each iteration

step during k-Means calculation affects the coloring of the map which leads to an

animation of the cluster evolution. Euclidean is used as distance measure between

vector attributes.

SOM Coloring Methods. Two different methods for SOM grid coloring are applied.

The first one uses the topological order of the neurons as done by Himberg et al.

(2001), whereas the second one is based on similarities between neurons, colored

according to their BMU in a one-dimensional color SOM as described by Vesanto

(2002). The topological order coloring approach uses a 2D color plane in RGB color

space. The plane contains four quadrants in the lowest resolution, painted in green,

red, blue, and dark magenta. With increasing resolution, transition colors are

calculated in between. This plane is then stretched over the SOM grid. Depending on

the resolution of the color plane and the dimensions of the SOM, a discrete or

smooth coloring is the result. Figure 51 shows snapshots of this method.

Figure 51: SOM coloring based on the topological order or the neurons.

58

The similarity-based coloring technique uses the SOMatic Trainer library

(Spöcklberger 2013) to create a diverging one-dimensional SOM from the codebook

vectors. Each component in the 1D SOM gets a distinct color. The color assignment

itself is split into two separate methods. The first method uses diverging color tables

from the giCentreUtils library. The second one automatically picks colors from the

HSB hue circle (Vesanto 202). Both techniques use the equidistance of neurons for

color assignment. An illustration of the SOM coloring procedure utilizing the HSB

hue circle is given in Figure 52.

Figure 52: Process of similarity-based SOM coloring using a 1D HSB color SOM.

Training Animation. An animation of SOM training can be easily accomplished

with the use of this library. After import of SOMatic Viewer library, an array of

neuron objects together with all necessary SOM parameters, such as grid dimension

and topology, need to be created. The chosen SOM visualization needs to be

initialized, which references the former created array of neurons. Then, the

associated neuron vector attributes can be update during an interval of training

steps. Through the continuous drawing of the SOM sketch the visualization changes

whenever new vector attributes are available. This results in an animation of the

SOM training. Based on the chosen visualization, it can be seen how the SOM

algorithm works and how the weights are updated in the SOM. An example is

illustrated in the proof of concept, subsection 6.1.

Design and Extendibility. The aim was to implement an extendable and flexible

toolset. Flexible in the meaning of as simple to use as possible, but also with access

to basic classes and methods where one can create an individual SOM by putting

pieces of code together. As an example, when importing the library, there is the

option whether to create a new instance of the MainSOM object which already

59

contains all visualization methods, or to build a customized SOM by inheriting from

the BasicSOM class, which provides common controls and selection functions.

Sample code can be found in the Processing examples folder. The extendibility

aspect is accomplished by providing programming interfaces which make it easier to

write and integrate new classes. Figure 43 describes interfaces for the SOM grid

creation. There are other interfaces for customizations such as for SOM coloring.

When implementing an interface, all necessary methods are automatically created in

Eclipse. The standardized method signature guarantees that new classes can

communicate properly with the rest of the system. Class inheritance, mentioned

above, is another way of providing a simple way to create new parts and extend a

software application by accessing common methods and variables. Having a parent

controls class thus makes sure that a SOM always has the same behavior in terms

of interaction and events. Figure 53 shows an excerpt of the SOMatic Viewer class

diagram for SOM control and coloring with implemented interface and inherited

classes.

Figure 53: Class diagram showing the use of an interface for SOM coloring
and class inheritance for common SOM controls and selection methods.

Project File. The project file is used to simplify the file input and to save

parameters used for a single project. It can also be seen as a settings file containing

file paths, default values and visualization preferences. A saved state of the project

can be restored from the file. Moreover, the same project file can be used for

SOMatic Trainer (Spöcklberger 2013). The structure is simple. It can contain

comments and searches for explicit keys and values. See the example in Figure 54

below. Values are updated when saving the file. If a key is missing, the application

adds it together with its associated value to the end of the file.

60

Figure 54: Excerpt of a SOMatic project file.

4.5.2 The Java Application

SWING and Processing. Java SWING API is used for the graphical user interface

(GUI) and thus works as presentation layer of the SOMatic Viewer application. The

SWING toolkit provides a varied range of GUI components to create platform-

independent software applications. The SOMatic Viewer sketches are embedded into

panels. GUI components call methods of the sketch, listeners detect if there is an

interaction with the sketch, and variables are updated. There is no direct reference

from the sketch to the rest of the application; everything is loosely coupled. The

GUI frames as well as the sketches are resizable. Visualizations automatically adjust

to the given frame dimensions. An embedded sketch has to be initialized and

started. After that it keeps running until the application is closed. There is also the

possibility to stop it programmatically.

Attribute Tables. For better data exploration reasons, two attribute tables are

integrated. The codebook vector and input vector data is read from memory and

added to the table frames, which can be handled independently from each other.

Both tables have an attribute search function with auto-completion. The column

containing the search result is automatically focused and highlighted. Both tables

are connected to the SOM visualizations. Their selections get mutually updated. The

interactive selection process is described in the next paragraph.

Interactive Selection. Already a common feature in other SOM software, the

interactive selection and highlighting between various data representations was

implemented in SOMatic Viewer. This function is provided for the visualizations as

well as the attribute tables. The SOMatic Viewer Globals class holds variables which

are sequentially called and updated from all presentation components. These

components can be seen in Figure 55. The sketches simply use their draw()

method, which is called in an infinite loop and thus continuously updates the global

61

selection parameters. In case there is no continuous drawing done, the depending

selection methods are called after certain events. Slightly more complicated is the

method for the attribute tables as they are part of the GUI. Because of loose

coupling reasons there is no direct reference to any of the events within each

sketch. The solution comes from mouse listeners which detect if the user has clicked

into a sketch panel and consequently updates the selection variables. Multiple

selection can be done by holding the CTRL key while selection neurons in the SOM,

features in the geographic map, or rows in the attribute tables.

Figure 55: Abstraction of the presentation components which sequentially access and
update the global variables used for interactive selection. To guarantee a loose coupling

between the GUI and the library, the attribute tables use click listeners on the panels which
contain the sketches.

External Libraries. SOMatic Viewer uses several external libraries, which are

depicted in Figure 56. The Java application imports two libraries, which are the

suggest field, used for searching through attribute tables, and XSwing, which offers

some sophisticated GUI elements such as the collapsible panel, used for the SOM

controls in the main frame. The SOMatic Viewer Processing library is a referenced

project of the application that includes six more libraries. There is the SOMatic

Trainer library which is used together with color tables from giCentreUtils to create

SOM-based coloring. Processing core is the heart of the toolset with its sketching

capabilities. Cloning makes deep-copies of objects and finally there is the MapThing

library, which references GeoTools. These two in combination provide extensive

Shapefile handling and visualization functions.

62

Figure 56: External libraries used for SOMatic Viewer.

4.6 Visualization Classification

First, getting a complete list of SOM visualizations is even after extensive literature

review and software testing simply not possible. But, an appropriate classification

can be done based on the different types of visualizations that were found. An

important remark is that the only visualizations that are considered are those which

do not require a sequence of software tools or complex preprocessing and

visualization workflows. In other words, only reproducible visualizations are

classified. Further, SOM grid coloring methods are also not considered, even though

they can be seen as distinct visualization techniques.

In total, ten classification characteristics for 23 different SOM visualization

techniques have been elaborated. They are clearly described as follows:

Codebook Vectors / Input Vectors. These two determine which types of vectors

are used for the visualization. Component planes, for example only use codebook

vectors as only the SOM itself is visualized. Hit histograms solely visualize the input

vectors, projected onto the map. Other visualizations require both for a more

enhanced representation of the input and output space.

Cluster Indication. The visualization shows clusters through coloring and other

methods of separation or agglomeration. Therefore, trajectories may identify

clusters where hit diagrams do not, because there is no cluster delineation.

Distance. The representation visualizes distances between neurons using colors,

connections, or a distance-preserving projection.

63

Density. The representation visualizes neurons density using colors, contours, or

markers showing the magnitude.

Cluster Connections. Visualizes the connection or correlation between clusters

based on certain characteristics. Usually, lines are used to connect two or more

related clusters.

Movement. Shows the movement of vectors or attributes through the SOM space.

Parameterization. This describes if the visualization can be calibrated by

modifying certain parameters. These can be the number of clusters, value of

significance, or distance threshold and so on. Coloring or marker settings are not

considered as parameterization. Also different distance measures for hit projection

are left out.

Vector Correlations. Explicitly visualizes the correlation between single vectors in

the SOM or projected space by connecting them with a line or using some sort of

color differentiation.

Match Accuracy. Determines the accuracy of BMU search results for vector

projection.

Based on these ten criteria, a classification matrix is created. The results are given

at the end of the next chapter.

5.

Results

The SOMatic Viewer toolset serves as technical result of this thesis work. It consists

of a Processing library for SOM visualization and the Java application. The software

provides interactive functionalities for SOM data visualization and exploration.

A classification matrix for SOM visualizations is the other research outcome.

5.1 SOMatic Viewer Processing Library

The SOMatic Viewer Processing library comes as JAR file which can be imported into

a Processing sketchbook or Java application. It has the folder structure for official

contribution to the Processing community together with all other necessary files,

such as documentation, source, and sample code files. The library import and

visualization of SOM files requires just a few code lines. Visualization parameters

can be set from a user interface, which does not come with the library.

64

The following visualizations are available:

• Hit projection
o Hit histogram
o Hit diagram

� Numerical hit count
� Marker showing the location and magnitude of hits
� Labeling of the projected vector names

• U-Matrix

• Component planes
o Automatic plane arrangement within sketch dimensions

• SOM coloring
o Discrete or continuous coloring from 2D color plane, following the

toplogical order of the neurons in the SOM
o Similarity-based coloring with diverging-diverging colors schemes and

HSB colors

• GeoMap
o Labeling of the map features

• k-Means clustering

Visualizations can be embedded into separate frames for simultaneous view and

independent resizing. The library provides several interaction and map control

features for each visualization:

• Map controls

o Zooming
o Panning
o Key events

• Interactive selection and highlighting
o Single or multiple neuron selection (see Figure 59)
o Selection gets updated in connected visualizations (see Figure 57)

Project files (.sprj) can be loaded and saved. These files contain the parameters and

file paths of a single SOMatic project.

5.2 SOMatic Viewer Java Application

This platform-independent Java application comes as runnable JAR with integrated

SOMatic Viewer library project. It can be executed without installation. Technical

details of the software are given below:

• Multiple data visualization and exploration windows (see Figure 57)

o Main frame containing the main SOM grid

o Component planes

65

o Attributes tables

o Geographic map (see also Figure 58)

• Interactive Selection and Highlighting between multiple representations (see
Figure 57)

Figure 57: SOMatic Viewer application updates the selection in multiple windows. The main
frame shows a zoomed view of the SOM grid (upper left), the attribute table sets its focus to
the row of the selected neuron, the geographic map provides a linked view of the SOM with
the highlighted region, and component planes (lower left) identify the selection in all slices

of the SOM.

• Graphical User Interface (see Figure 59)

o Toolbars with map controls

o Preferences window

o Visualization controls

o SOM coloring panel

o Hit info panel

o Status bar

File dialogs are used for input or output actions. Implemented functions are:

• Sketch export as image or PDF

• Loading of codebook and input vector files

• Loading and saving of project files

• Loading of Shapefiles with attribute field selection

66

Figure 58: The SOMatic Viewer geographic map window provides several controls.

Figure 59: SOMatic Viewer main frame. (1) Toolbar with shortcuts for the project, map, and
visualizations, (2) collapsible control panels for grid control, SOM coloring, hit information,

and k-Means clustering, (3) selection of multiple neurons in the grid, (4) status bar.

(1) (2)

(4)

(3)

67

5.3 SOM Visualization Classification

21 types of SOM visualizations characterized by 10 classification criteria, described in section 4.6, are ordered into four
visualization categories. Based on extensive literature research, the resulting classification matrix looks as follows:

Visualizing the SOM itself

SOM Space Cluster Space Distortion Space

Component

Planes k-Means Hierarchical
Vector
Fields

Cluster
Connections U-Matrix P-Matrix U*-Matrix

Smoothed
Density

Histogram

 Codebook Vectors � � � � � � � � �

 Input Vectors x x x x x � � � �

 Cluster Indication � � � � � � � � �

 Distance x x x x � � x � x

 Density x x x � x x � � �

 Cluster
 Connections x x x x � x x x x

 Movement x x x x x x x x x

 Parameterization x � � � � � � � �

 Vector
 Correlations x x x x x x x x x

 Match Accuracy x x x x x x x x x

Table 3: Classification matrix for SOM visualizations. Part 1: Visualizing the SOM itself.

6
7

68

Projections onto the SOM

Hit Projection

Multivariate
Symbolization

Graph Representation Path Visualization Classes

Data Histogram

Sky
Metaphor

Component
Charts

Neighborhood
Graph

Minimum
Spanning Tree

Trajectories Metro Map Class Map

 Codebook Vectors x x � � � � � x

 Input Vectors � � � � � � x �

 Cluster Indication x � x � � � � �

 Distance x � x x � x x x

 Density x � x x x x x x

 Cluster
 Connections x x x � � x x �

 Movement x x x x x � � x

 Parameterization x � � x � � � �

 Vector
 Correlations x � � � � � � �

 Match Accuracy x x x x x x x x

Table 4: Classification matrix for SOM visualizations. Part 2: Projections onto the SOM.

6
8

69

Projections onto the SOM Projections from the SOM Linking from the SOM

Match Accuracy Distance Preserving Low-Dimensional Space Ordered 2D Space Geographic Space

Response
Surface

Position Accuracy
Marker

Sammon’s
Mapping

Principal Component
Analysis

Parallel Coordinate
Plot Geographic Maps

 Codebook Vectors x x � � � �

 Input Vectors � � � � � �

 Cluster Indication x x x x x �

 Distance x x � � x x

 Density x x x x x x

 Cluster
 Connections x x x x x x

 Movement x x x x x x

 Parameterization x x x x x x

 Vector
 Correlations x x � � � �

 Match Accuracy � � x x x x

Table 5: Classification matrix for SOM visualizations. Part 3: Projections onto the SOM,
Projections from the SOM, Linking from the SOM.

6
9

70

6.

 Data Analysis
and Discussion

This chapter is mainly about the analysis of the Carinthian census dataset. Another
major part is the proof of concept, where the implemented visualizations are
compared with results produced by other SOM tools. A short excursion about a
possible parallelization of processing and visualization tasks is given at the end.

Before starting with the proof of concept, there should be said that no user testing

was possible for the SOMatic Viewer toolset. The major reasons were first, the focus

on the technical and theoretical research of SOM visualizations together with

functional implementation priorities, and second, the fact that proper user testing

would have been very time-consuming at the expense of other, more essential parts

of this thesis work.

6.1 Proof of Concept

The proof of concept intends to show that the implemented visualizations are

working properly and are giving correct results. One part deals with the integration

for training animation into SOMatic Trainer. The other subsection compares the

visualization results with those from other SOM software. The Carinthian census

data was used as input dataset for all of the given examples.

6.1.1 Training Animation

A required function was to provide the ability of training animation. Therefore, the

SOMatic Viewer Processing library was integrated into SOMatic Trainer for animation

of the entire training process. Component planes and the U-Matrix can be selected

as visualization. Figure 60 show the evolution of a 50x50 hexagonal SOM with

400,000 iterations in 4 training phases, visualized as U-Matrix. The initialization

state is depicted in (a). In the training phase, it can be seen how weights are

updated after BMU search. Circles identify the current neighborhood radius (b). The

resulting U-Matrix identifies clusters in the map by visualizing the mean distance

from reach neuron to its neighbors (c).

71

Figure 60: Animation of SOM training in SOMatic Trainer. Three training states for
the Carinthian census dataset are shown: (a) random seeding of the neuron vector,

(b) BMU search during training, (c) the resulting U-Matrix cluster structure.

6.1.2 Comparison with Java SOMToolbox and SOMine

The purpose behind this comparison is to show that the visualizations provide

correct results. Of course, there is never a 100 percent similarity, but similar

regions should be identified and visualized in the map. Also the position and

distribution of projected hits can be compared. This is done in the first example. A

30x30 rectangular SOM was trained with 100,000 iterations in SOMatic Trainer and

visualized in SOMatic Viewer. The same settings were used for the training of a

Growing SOM in Java SOMToolbox. Moreover, Euclidean distance was used for the

projections in the hit histogram visualization of SOMatic Viewer. Even though Java

SOMToolbox uses another SOM algorithm, the results are surprisingly similar. In

Figure 61, the orange rectangle in the upper left corner identifies the cities

Klagenfurt (corner) and Villach in both hit histograms. Additionally, only two

municipalities have the same BMU, which are Feistritz ob Bleiburg and St. Paul im

Lavanttal. Both SOMs show them on the same neuron in almost the same region,

marked with a gray rectangle.

Figure 61: Hit histogram comparison in SOMatic Viewer (left) and Java SOMToolbox (right).

72

Another comparison was done with the identical SOMs from above, but visualizing

distances between neurons using the U-Matrix (see Figure 62). Again, both matrices

show the same large distances detecting a small, well separated cluster in the upper

left corner. The overall cluster structure is somehow related, but the resolution is

quite different, as the Java SOMToolbox uses a more detailed U-Matrix visualization

for each neuron.

Figure 62: U-Matrix visualization comparison in SOMatic Viewer (left)
and Java SOMToolbox (right).

Finally, the component plane representation is compared with the one in Viscovery

SOMine. For this case, the same map file is used as input for both the SOMatic

Viewer and SOMine because the proprietary software is able to read codebook files.

The SOM has a hexagonal topology and the dimension of 30x30. In Figure 63, two

component planes were visualized. In both applications, cluster areas were outlined

in exactly the same regions with exactly the same color intensity. The difference

here is that SOMine provides a sequential color schema, whereas SOMatic only

interpolates the range between two colors from the minimum to the maximum

value.

Conclusion. The conclusion of these comparisons is that the entire SOMatic toolset

bundle works correctly and delivers results which can, to a certain level, compete

with comprehensive SOM software applications.

73

Figure 63: Comparison of component plane visualizations in

SOMatic Viewer (upper) and Viscovery SOMine (lower).

6.2 Analysis of Carinthian Census Data

This is an example of how SOMatic Viewer can be used for highly dimensional real-

world data analysis. The results might have practical relevance for the regional

government and public institutions. For instance, the development and change

within the population among the municipalities can be tracked down. The described

procedure of this analysis can serve as reference for follow-up research activities.

Some basic information about the Carinthia census records are given in section 4.3.

6.2.1 Preprocessing

Data preprocessing is the first step to get correct and meaningful results. For every

variable it is necessary to decide carefully whether it is important to include it and

how it should be preprocessed such that meaningful comparisons can be made

between geographic objects. The Carinthia census records contain 43 quantitative

attributes. Population density was manually added. In total, 21 attributes were

chosen for SOM training. Table 6 and 7 provide an overview about the census

dataset attributes, which variables are used for training and how each of them is

normalized. All 132 Carinthian municipalities are described through these attributes.

74

Attribute Name English Description
Used for

Training
Normalized to

Flaeche_m2 Area in square meters

Umfang_m Perimeter in meters

Anzahl_der_Haushalte Number of households

Anzahl_der_Einwohner Number of population

Anzahl_der_Maenner Number of male

Anzahl_der_Frauen Number of female

Anzahl_der_bis_19_jaehrigen_Personen Number of persons with age 19 and younger

Anzahl_der_20_bis_39_jaehrigen_Personen Number of persons with age between 20 and 39

Anzahl_der_40_bis_59_jaehrigen_Personen Number of persons with age between 40 and 59

Anzahl_der_ab_60_jaehrigen_Personen Number of persons with age 60 and older

Anzahl_der_Einpersonenhaushalte Number of one-person households

Anzahl_der_Zweipersonenhaushalte Number of two-person households

Anzahl_der_Drei-_und_Mehrpersonenhaushalte_(Familien) Number of three- or more-person households (families)

Anzahl_der_Personen_mit_Universitaetsabschluss Number of persons with university degree

Anzahl_der_Personen_mit_Matura Number of persons with high school certificate

Anzahl_der_Personen_ohne_Matura Number of persons without high school certificate

Anzahl_der_ledigen_Personen Number of unmarried persons

Anzahl_der_verheirateten_Personen Number of married persons

Anzahl_der_verwitweten_Personen Number of widowed persons

Anzahl_der_geschiedenen_Personen Number of divorced persons

Anzahl_der_Personen_mit_oesterreichischer_

Staatsangehoerigkeit
Number of persons with Austrian citizenship

Anzahl_der_Personen_mit_EU-

Staatsangehoerigkeit_(ohne_oesterr.)
Number of persons with EU citizenship (without Austrian)

Anzahl_der_Personen_mit_sonstiger_Staatsangehoerigkeit Number of persons with other citizenship

Table 6: Carinthia census records attribute breakdown table, part 1. Variables not used for training.

7
4

75

Attribute Name English Description
Used for

Training
Normalized to

Anteil_der_Maenner Proportion of male � Anzahl_der_Einwohner

Anteil_der_Frauen Proportion of female � Anzahl_der_Einwohner

Anteil_der_bis_19_jaehrigen_Personen Proportion of persons with age 19 and younger � Anzahl_der_Einwohner

Anteil_der_20_bis_39_jaehrigen_Personen Proportion of persons with age between 20 and 39 � Anzahl_der_Einwohner

Anteil_der_40_bis_59_jaehrigen_Personen Proportion of persons with age between 40 and 59 � Anzahl_der_Einwohner

Anteil_der_ab_60_jaehrigen_Personen Proportion of persons with age 60 and older � Anzahl_der_Einwohner

Anteil_der_Einpersonenhaushalte Proportion of one-person households � Anzahl_der_Haushalte

Anteil_der_Zweipersonenhaushalte Proportion of two-person households � Anzahl_der_Haushalte

Anteil_der_Drei-_und_Mehrpersonenhaushalte_(Familien) Proportion of three- or more-person households (families) � Anzahl_der_Haushalte

Anteil_der_Personen_mit_Universitaetsabschluss Proportion of persons with university degree �
Σ (Anzahl_Uni + Anzahl_Matura +

Anzahl_ohne_Matura)

Anteil_der_Personen_mit_Matura Proportion of persons with high school certificate �
Σ (Anzahl_Uni + Anzahl_Matura +

Anzahl_ohne_Matura)

Anteil_der_Personen_ohne_Matura Proportion of persons without high school certificate �
Σ (Anzahl_Uni + Anzahl_Matura +

Anzahl_ohne_Matura)

Anteil_der_ledigen_Personen Proportion of unmarried persons � Anzahl_der_Einwohner

Anteil_der_verheirateten_Personen Proportion of married persons � Anzahl_der_Einwohner

Anteil_der_verwitweten_Personen Proportion of widowed persons � Anzahl_der_Einwohner

Anteil_der_geschiedenen_Personen Proportion of divorced persons � Anzahl_der_Einwohner

Anteil_der_Personen_mit_oesterreichischer_

Staatsangehoerigkeit
Proportion of persons with Austrian citizenship � Anzahl_der_Einwohner

Anteil_der_Personen_mit_EU-

Staatsangehoerigkeit_(ohne_oesterr.)

Proportion of persons with EU citizenship (without

Austrian)
� Anzahl_der_Einwohner

Anteil_der_Personen_mit_sonstiger_Staatsangehoerigkeit Proportion of persons with other citizenship � Anzahl_der_Einwohner

Durchschnittliche_Haushaltsgroesse Average size of household � Anzahl_der_Einwohner / Haushalte

Bevölkerungsdicht_km2 Population density in square kilometers � Anzahl_der_Einwohner / Flaeche

Table 7: Carinthia census records attribute breakdown table, part 2. Variables used for training.

7
5

76

Basically, the order of suitable variable preprocessing is:

1. Choose which variables to use.

2. For each variable, decide whether it should be used on its own or within a

composite variable.

3. Normalize/standardize with the goal of accounting for magnitude differences.

Since total counts of population variables are highly correlated with total population,

it makes no sense to include them for training. Instead, solely proportional

attributes are used which allow a meaningful comparison and should also lead to

spatial clusters. All attribute variables are normalized in the range between 0 and 1.

6.2.2 Training

The SOMatic Trainer tool, implemented by Spöcklberger (2013), is used for training.

To get a detailed SOM for the given input dataset, a resolution of 50x50 neurons is

chosen. Generally, the size of a neuron lattice should be chosen that each input

vector has the possibility to occupy at least one single neuron (Kohonen 1998). In

this case a significantly larger lattice is used to get a SOM with higher granularity

and more detailed cluster structure. The training is split up into three consecutive

cycles. After each cycle, learning rate and neighborhood radius gets decreased and

the number of training runs gets increased. The first training cycle is establishing

broad, global structures and the second and third cycle firm up regional and local

structures in the SOM. All attributes are equally weighted. The used SOM training

parameters for the given analysis are as follows:

SOM: 50x50 neurons, hexagonal topology, random initialization,

 Euclidean distance measure, neighborhood function = bubble

1st cycle: 100,000 runs, learning rate = 0.05, neighborhood radius (alpha) = 20

2nd cycle: 200,000 runs, learning rate = 0.05, neighborhood radius (alpha) = 15

3rd cycle: 300,000 runs, learning rate = 0.03, neighborhood radius (alpha) = 8

The average quantization error (AQE) after training shows a value of 0.002, which is

a good result. The quantization error measures the matching goodness between an

input vector and its BMU. In other words, the lower the AQE the better is the match.

6.2.3 Results

The SOM visualizations in Figure 64 give interesting insights into the trained census

records codebook file. All input vectors are surprisingly regular spread over the

entire SOM without many accumulations. The overall structure in the U-Matrix

shows rather small clusters containing a low number of hits. These characteristics

indicate a quite balanced dataset with a few strong local relationships. When taking

77

a closer look into the SOM, as depicted in Figure 65, the view gets more detailed.

The lower right corner with significant clusters shows mostly municipalities from the

areas around the biggest lakes in Carinthia, namely the Woerthersee, Ossiacher

See, and Millstaetter See. The two largest cities Klagenfurt and Villach can be found

in this corner as well. They are divided by clusters with average distances but seem

to have a lot in common. Hermagor, St. Veit/Glan and Spittal/Drau complete the

assumption that large Carinthian cities tend to have strong relationships. Mallnitz is

the only exception here, which is totally different than the other municipalities

nearby in geographic space.

Figure 64: Hit histogram (left) and U-Matrix visualization (right) of the

Carinthia census records.

Figure 65: Zoomed view to the lower right corner of the U-Matrix.

78

To find out what is the reason behind these matching results, it is important to

break down the SOM into its single attributes. The component planes are used for

that. A side-by-side representation of component planes allows finding similar

patterns and from there, conclusions to the hits in the map can be done. As an

example, Figure 66 shows twelve component planes, where some of them contain

almost identical patterns in the map. The two yellow rectangles mark clusters of

high values for average size of household and proportion of unmarried persons

which seem to highly correlate. The municipality located in the corresponding area

in the SOM is Steuerberg. The same procedure can be used to determine the

correlation of single-households, widowed persons, and people older than 60 years,

marked with green rectangles. The two almost identical areas refer to Huettenberg,

Koetschach-Mauthen as well as Eisenkappel-Vellach. Moreover, high correlation can

be found for divorced people and population density in the area around Klagenfurt,

highlighted with the two red rectangles. Mallnitz has by far the highest number of

people with university degree. This is one remarkable difference to all other

municipalities in Carinthia. Krumpendorf, as another example, has the highest

proportion of EU citizen. All these attribute values affect the matching position.

Figure 66: Selected component planes, similar occurrences are marked with rectangles.

To be able to see relationships not only in attribute but also in geographic space,

the geographic map visualization can be used. Figure 67 illustrates the color-coded

k-Means clustering results linked from the SOM. Five clusters were calculated.

79

Figure 67: K-Means cluster visualization of Carinthian municipalities
linked to the geographic map (k = 5).

Figure 68: Similarity-based visualization linked to the geographic map using a
diverging-diverging color scheme (number of colors in range = 20).

80

Municipalities in light blue, located around the brownish colored cities of Spittal,

Villach, and Klagenfurt tend to be very similar. Municipalities in the Moelltal (black

rectangle) and the Liesertal together with the Maltatal (green rectangle) as well as

in the Gurktal and Metnitztal (red rectangle) show also strong relationships. When

using another visualization method with more accurate measurements, the

similarities among municipalities in the red rectangle seem to decrease. Figure 27

shows the results of the similarity-based SOM coloring approach with a range of 20

diverging-diverging colors. While the relationships in the areas with the black and

green rectangle still persist is the homogeneous coloring in the former red rectangle

disappeared. Nonetheless, the dataset shows a few spatial clusters which can be

identified with most of the visualization techniques applied to the SOM. As a

conclusion of this analysis, apart from larger cities and their neighboring communes

together with municipalities near the biggest lakes in Carinthia which have common

relationships, municipalities from rural areas can mostly be found in small clusters

all over the map. The U-Matrix in Figure 64 shows best how the input data are

distributed within the SOM space. When going through the component planes it

turns out that many attributes have no significant patterns. All this leads to such

fine grained separation rather than to large clusters.

The analysis could be much more detailed, but this is just be an example to give

some helpful information about how to interpret SOM visualization results and how

to use the toolset for visual data analysis of highly dimensional real-world data.

6.3 Parallelization

The implementation of threading and design patterns for parallel processing would

have been a favorable enhancement of this toolset, but due to the higher priority of

other functionalities this was not accomplished. Threading can be implemented for

time- and resource-consuming processes in order to improve the performance of

the software. Interactive visualizations require real-time frame rates. In some cases

the data may be too big for the available memory or CPU (Central Processing Unit),

so it is better to increase physical memory size by using shared-memory or in case

of multi-core CPUs to partition the data into smaller chunks and to distribute parallel

jobs to the different cores. Java provides an extensive range of parallelization

methods. As an example, the k-Means clustering could be done in parallel, as

described by Chandramohan (2012). The component planes provide another useful

integration possibility of parallel processing. Right now the sketch gets slowed down

if large SOMs need to be visualized. As Processing allows running other threads

independently from the main animation thread, this task could be done in parallel,

where a proportion of component planes is drawn by a number of available threads.

Moreover, after extensive testing it turned out that the BMU search is a major

bottleneck with increasing amount of data. Therefore, it is the perfect case for

parallelization. This is one of the most required improvements in the future.

81

7.

Conclusion

This is a review of what has been found out and accomplished within this thesis

work. The conclusion sums up technical and theoretical insights and allows a brief

answering of the research questions.

It has been demonstrated that the implementation of a comprehensive SOM

visualization library in Processing is possible and benefits from the powerful drawing

capabilities of the Processing core library. SOMatic Viewer provides an easy to use

toolset with interactive visualizations for SOM analysis. Ten different visualizations

reaching from visualizing the SOM itself, projecting input data onto the map, to

linking from the SOM to geographic space are implemented. These cover three of

the four main SOM visualization categories. The PApplet handling as the single

parent object which is passed to the rest of the visualization classes brought some

challenges. Also, the fact that multiple connected visualization instances need a

synchronized access to a central class holding common variables became much

clearer at an advanced state of this thesis work. SOMatic Viewer serves

programming interfaces for future enhancements, such as adding new coloring or

visualization methods. The library works well and shows a consistent performance

for small and medium sized SOMs. Large SOMs with the dimension of 100x100 and

more, and consisting of hundreds of vector attributes, already show the limits of

this toolset, where it takes some time for redrawing the sketch. The final stable

release of the library is already in the required structure for getting contributed to

the Processing community. Creating a Java application was the favored choice after

testing SOM sketches running in JavaScript. The library is used as referenced

project. Sketches are embedded into SWING panels and loosely coupled to the GUI

controls elements. Attribute tables serve as a method for further data exploration.

The tables and visualizations are interactively selectable. Further, the GUI provides

different file input and output dialogs, preferences can be set, and the visualizations

can be controlled and modified in various ways. As the Processing sketches are

running in an infinite loop, the application can become resource-consuming quickly.

Another issue is that Processing sketches do not start or stop from time to time or

freeze after certain events. This needs some further testing and debugging.

The SOM visualization classification, the first of its kind in SOM research, contains

four main categories with 23 different visualization types divided into further

subgroups. This can be seen as prototypical method as most visualization types

vary in their implementation, which may affect the classification results. All in all, it

gives a neat overview about the current research state for SOM visualization

82

techniques, their data exploration capabilities and possible combinations with other

representation methods.

The practical example, applying SOMatic Viewer to the real-world data analysis of

Carinthian census records, showed that the software already provides a good

variety of visualizations for an extensive data analysis. In combination with SOMatic

Trainer (Spöcklberger 2013), the toolset has lots of potential for future applications.

Besides the common name, both projects also share the same logo, which is

illustrated in Figure 69, at the end of the next page.

8.

Outlook and Future Work

The SOMatic Viewer tools are already in use; future continuous improvements are

planned. As this toolset is the foundation for further implementations it provides a

lot of potential, especially for the Processing library. Besides a list of suggestions for

improvements, the next possible software evolution steps are given.

SOMatic Viewer works well, but not without occasional errors. As this is the first

release, there are many ways to improve the software. Performance reasons are on

the one side; algorithmic and functional enhancements are on the other side. Some

suggestions for improvements are given below.

SOM Coloring. The coloring of the SOM space can be enhanced by using more

advanced algorithms for picking colors from different color spaces. As an example,

the current SOM-based coloring uses equidistant steps for color picking, which can

be changed by using steps of relative distances between neighboring neurons in the

color SOM (see Vesanto 2002).

User Interface. A potential integration of a flip or rotate function of the map would

make it easier to compare the SOM with results from other software. It would also

solve the issue that the current version of SOMatic starts drawing the first neuron in

the upper left corner, which is usually done in the lower left one.

Clustering. Threading can be implemented to speed up the clustering process.

Further, there is an algorithm which uses a more sophisticated initial seeding, called

k-Means++. It would be a useful replacement to the basic k-Means algorithm. Then,

as there is currently no information about the cluster characteristics, this could be

integrated. For example, where are cluster boundaries, what makes one cluster

different to the other, etc. The integration of hierarchical clustering would be vast

enhancement. The user could scroll with a slider through the dendrogram and see

cluster hierarchies visualized in the SOM.

Performance. There is an urgent need to find out how the continuously runni

Processing sketches affect the software performance

disabling the infinite draw() loop

visualizations require modification

parallelization of certain processes, such as the BMU search or drawing of

component planes can sign

Visualizations. Most of the visualization methods of SOMatic

different colors assigned to

these two are interpolated. To

table approach used for coloring the SOM space can

visualizations, maybe with the additional function of replacing different

the table. Moreover, the visualizations need a legend, which shows the applied color

schema together with its value range.

useful improvement for the software.

Training Animation. The implemente

projection of trajectories which draw the path of a component during SOM training.

GeoMap. The geographic map has one issue right now. It does not proportionally

resize to the frame dimensions.

SOM Grid Export. There m

This can be elaborated. The current export to image results i

resolution; an improvement would be to integrate a method for higher image

resolution export.

Project File. There is also a lot of potential in the project file approach. Right now

the software is using it in a very simplistic way. Based on the fact that it contains

variables for both SOMatic Viewer and Trainer, settings such as

parameters can be used for visualizations and analysis techniques.

Input Files. Currently, only one input file can be loaded and visualized. It would be

useful to project and compare more input data sample

What comes next? There might be the possibility of fully combining the SOMatic

Viewer and Trainer projects

As the currently implemented visualizations provide more or less basic algorithms,

there might be the possibilit

techniques. The GUI in the application

nested menus. The SOMatic Viewer library might be further developed by

Processing community members, which is the best cas

source software. True to the motto: T

83

There is an urgent need to find out how the continuously runni

sketches affect the software performance and robustness

disabling the infinite draw() loop might show some significant results. But then the

modifications too. As mentioned in section 6.3, the

certain processes, such as the BMU search or drawing of

component planes can significantly speed up the software.

Most of the visualization methods of SOMatic Viewer

assigned to the minimum and the maximum value. C

these two are interpolated. To see more detailed patterns in the SOM, the color

used for coloring the SOM space can also be applied

visualizations, maybe with the additional function of replacing different

the table. Moreover, the visualizations need a legend, which shows the applied color

schema together with its value range. Especially trajectory visualizations would be a

useful improvement for the software.

The implemented methods make it easy to integrate a

projection of trajectories which draw the path of a component during SOM training.

The geographic map has one issue right now. It does not proportionally

resize to the frame dimensions.

There must be a way to create a Shapefile from the SOM grid.

This can be elaborated. The current export to image results in a rather low image

an improvement would be to integrate a method for higher image

There is also a lot of potential in the project file approach. Right now

using it in a very simplistic way. Based on the fact that it contains

variables for both SOMatic Viewer and Trainer, settings such as

be used for visualizations and analysis techniques.

Currently, only one input file can be loaded and visualized. It would be

useful to project and compare more input data samples at the same time.

There might be the possibility of fully combining the SOMatic

Viewer and Trainer projects. This would result in a homogeneous SOM application.

ly implemented visualizations provide more or less basic algorithms,

there might be the possibility to enhance those and integrate other visualization

techniques. The GUI in the application would then need more control elements and

nested menus. The SOMatic Viewer library might be further developed by

community members, which is the best case scenario for any open

True to the motto: This is just the beginning…

Figure 69: SOMatic software logo.

There is an urgent need to find out how the continuously running

and robustness. Maybe

show some significant results. But then the

As mentioned in section 6.3, the

certain processes, such as the BMU search or drawing of

Viewer use only two

value. Colors between

more detailed patterns in the SOM, the color

applied to the other

visualizations, maybe with the additional function of replacing different colors within

the table. Moreover, the visualizations need a legend, which shows the applied color

Especially trajectory visualizations would be a

d methods make it easy to integrate a

projection of trajectories which draw the path of a component during SOM training.

The geographic map has one issue right now. It does not proportionally

ust be a way to create a Shapefile from the SOM grid.

n a rather low image

an improvement would be to integrate a method for higher image

There is also a lot of potential in the project file approach. Right now

using it in a very simplistic way. Based on the fact that it contains

variables for both SOMatic Viewer and Trainer, settings such as the normalization

be used for visualizations and analysis techniques.

Currently, only one input file can be loaded and visualized. It would be

at the same time.

There might be the possibility of fully combining the SOMatic

. This would result in a homogeneous SOM application.

ly implemented visualizations provide more or less basic algorithms,

y to enhance those and integrate other visualization

more control elements and

nested menus. The SOMatic Viewer library might be further developed by

e scenario for any open-

84

References

Literature

Arthur, D., Vassilvitskii, S., 2007. k-means++: The Advantages of Careful Seeding,

Proceedings of the 18th annual ACM-SIAM symposium on Discrete algorithms,

Society for Industrial and Applied Mathematics Philadelphia, 1027-1035.

Burns, R., Skupin, A., 2009. Visualization of Attribute Spaces Involving Places,

People and Utterances, Proceedings of the 24th International Cartographic

Conference, Santiago de Chile.

Bacao, F., Lobo, V., Painho, M., 2005. Self-Organizing Maps as Substitutes for K-

Means Clustering, Proceedings of the ICCS, 476-483.

Bacao, F., Lobo, V., Painho, M., 2005a. The Self-Organizing Map, the GeoSOM, and

relevant variants for geosciences, Computers and Geosciences, 31, Elsevier, 155-

163.

Bacao, F., Lobo, V., Painho, M., 2005b. Geo-SOM and its Integration with

Geographic Information Systems, Proceedings of the Workshop on Self-Organizing

Maps, 505-512.

Bezdek, J. C., Pal, S. K., 1992. Fuzzy Models for Pattern Recognition: Methods That

Search for Structures in Data, IEEE Press, New York, 1992.

Chandramohan, A. P., 2012. Parallel K-means Clustering, Course Presentation at

the University of Buffalo, New York, USA.

CIE, 1986. Colorimetry, 2nd Ed., CIE Publication No. 15.2.

Demartines, P., Hérault, J., 1997. Curvilinear component analysis: a self-organizing

neural network for nonlinear mapping of data sets, IEEE Transaction on Neural

Networks, 8 (1), 148–154.

Dykes, J., MacEachren, A., Kraak, M.-J., 2005. Exploring Geovisualization, Elsevier

Science, Amsterdam, Netherlands.

Fayyad, U., Piatesky-Shapiro, G., Smyth, P., 1996. From Data Mining to Knowlegde

Discovery in Databases, AI Magazine, American Association of Artificial Intelligence,

37-54.

Gorricha, J., 2009. Visualization of Clusters in Geo-referenced Data Using Three-

dimensional Self-Organizing Maps, Dissertation for the Degree of Master in Statistics

and Information Management, Universidade Nova de Lisboa.

85

Gorricha, J., Lobo, V., 2012. Improvements on the visualization of clusters in geo-

referenced data using Self-Organizing Maps, Computers and Geosciences, 43, 177-

186.

Guo, D., Gahegan, M., MacEachren, A. M., Zhou, B., 2005. Multivariate Analysis and

Geovisualization with an Integrated Geographic Knowlegde Discovery Approach,

Cartography and Geographic Information Science, 32 (2), 113-132.

Guo. D., Chen, J., MacEachren, A. M., Liao, K., 2006. A Visualization System for

Space-Time and Multivariate Patterns (VIS-STAMP), IEEE Transactions on

Visualization and Computer Graphics, 12 (6), 1461-1474.

Joblove, G. H., Greenberg, D. P., 1978. Color Spaces for Computer Graphics,

Computer Graphics.

Johnson, R. A., Wichern, D. W., 1992. Applied Multivariate Statistical Analysis,

Englewood Cliffs, New Jersey.

Himberg, J., 1998. Enhancing SOM-based data visualization by linking different data

projections, Intelligent Data Engineering and Learning, Springer, 427-434.

Himberg, J., Ahola, J., Alhoniemi, E., Vesanto, J., Simula, O., 2001. The Self-

Organizing Map as a Tool in Knowledge Engineering, Pattern Recognition in Soft

Computing Paradigm, World Science Publishing Company, Singapore, 38-65.

Kaski, S., Venna, J., Kohonen, T., 2000. Coloring that reveals cluster structures in

multivariate data, Australian Journal of Intelligent Information Processing Systems,

82-88.

Keim, D. A., 2002. Information Visualization and Visual Data Mining, IEEE

Transaction on Visualization and Computer Graphics, 7 (1), 100-107.

Kohonen, T., Hynninen, J., Kangas, J., Laaksonen, J., 1995. SOM Pak – The Self -

Organizing Map Program Package, Document of the Laboratory of Computer and

Information Science, Helsinki University of Technology, Espoo, Finland.

Kohonen, T., 1998. The self-organizing map, Neurocomputing, 21, 1-6.

Koua, E. L., 2003. Using self-organizing maps for information visualization and

knowledge discovery in complex geospatial datasets, Proceedings of the 21st

International Cartographic Conference, 1694-1702.

Lacayo, M., Skupin, A. 2007, A GIS-based Visualization Module for Self-Organizing

Maps. Proceedings of 23rd International Cartographic Conference, Moscow, Russia,

CD-ROM.

Latif, K., Mayer, R., 2007. Sky-Metaphor Visualization of Self-Organizing Maps,

Proceedings of the 7th International Conference on Knowledge Management, 400-

407.

86

MacEachren, A. M., Kraak, M. J., 2001. Research Challenges in Geovisualization,

Cartography and Geoinformation Science, 28 (1), 3-12.

Marsland, S., 2003. Novelty Detection in Learning Systems, Neural Computing

Surveys.

Mayer, R., Aziz, T. A., Rauber, A., 2007. Visualising Class Distribution on Self-

Organizing Maps, Proceedings of the International Concerence on Artificial Neural

Networks, 359-368.

Mayer, R., Rauber, A., 2010. Visualizing Clusters in Self-Organising Maps with

Minimum Spanning Trees, Proceedings of the International Conference on Artificial

Neural Networks, 426-431.

Merkl, D., Rauber, A., 1997. Alternative Ways for Cluster Visualization in Self-

Organizing Maps, Proceedings of the Workshop on Self-Organizing Maps, 106-111.

Mongini, F., Italiano, M., 2001. TMJ disorders and myogenic facial pain: a

discriminative analysis using the McGill Pain Questionnaire, Pain, 91 (3), 323-330.

Neumayer, R., Mayer, R., Pölzlbauer, G., Rauber, A., 2007. The Metro Visualization

of Component Planes for Self-Organising Maps, International Joint Conference on

Neural Networks, 2788-2793.

Pampalk, E., Rauber, A., Merkl, D., 2002. Using Smoothed Data Histograms for

Cluster Visualization in Self-Organizing Maps, Proceedings of the International

Conference on Artificial Neural Networks.

Pölzlbauer, G., Rauber, A., Dittenbacher, M., 2005. Advanced visualization

techniques for Self-Organizing Maps with graph-based methods, Proceedings of the

second international symposium on neural networks, 75-80.

Pölzlbauer, G., Dittenbach, M., Rauber, A., 2006. Advanced visualization of Self-

Organizing Maps with vector fields, Neural Network Science, 19, 911-922.

Sammon, J. W., 1969. A nonlinear mapping for data structure analysis, IEEE

Transactions on Computers, C-18 (5), 401-409.

Schmidt, C. R., 2008. Effects of Irregular Topology in Spherical Self-Organizing

Maps, Thesis for the Degree Master of Science in Geography, San Diego State

University, San Diego, USA.

Shepard, R. N., Carroll, J. D., 1965. Parametric representation of nonlinear data

structures, Proceedings of the International Symposium for Multivariate Analysis,

561–592.

Skupin, A., 2003. A Novel Map Projection Using An Artificial Neural Network,

Proceedings of the 21st International Cartographic Conference, 1165-1173.

87

Skupin, A., Fabrikant, S. I., 2003. Spatialization Methods: A Cartographic Research

Agenda for Non-geographic Information Visualization, Cartography and Geographic

Information Science, 30 (2), 95-115.

Skupin, A., Hagelman, R., 2005. Visualizing Demographic Trajectories with Self-

Organizing Maps, GeoInformatica, 9 (2), 159-179.

Skupin, A., Fabrikant, S. I., 2007. Spatialization, The Handbook of Geographical

Information Science, Blackwell Publishing, London, Great Britain, 61-79.

Skupin, A., Agarwal, P., 2008. Introduction: What is a self-organizing map? Self-

organising maps: Applications in geographic information science. Wiley, Chapter 1,

1–20.

Skupin, A., Esperbé, A., 2008. Towards High-Resolution Self-Organizing Maps of

Geographic Features, Geographic Visualization: Concepts, Tools and Applications,

Wiley, Chapter 2, 159-181.

Skupin, A., 2010. Tri-Space: Conceptualization, Transformation, Visualization. Sixth

International Conference on Geographic Information Science (GIScience 2006),

Zürich, Switzerland.

Skupin, A., Esperbé, A., 2011. An alternative map of the United States based on an

n-dimensional model of geographic space, Journal of Visualization Language in

Computing, 22, 290-304.

Spöcklberger, M., 2013. SOMatic Trainer: Implementation of a Self-Organizing Map

Tool with Parallel Training for Processing applied to Carinthian Municipality Census

Data, Thesis for the Degree Master of Science in Engineering, Carinthia University of

Applied Sciences, Villach, Austria.

Takatsuka, M., Gahegan, M., 2002. GeoVISTA Studio: A Codeless Visual

Programming Environment For Geoscientific Data Analysis And Visualization,

Computers and Geosciences, 28, 1131-1141.

Takatsuka, M., 2001. An application of the self-organizing map and interactive 3-D

visualization to geospatial data, GeoComputation ’01—Sixth International

Conference on Geocomputation, Brisbane, Australia, CD-ROM.

Tobler, W., 1970. A computer movie simulating urban growth in the Detroit region,

Economic Geography, 46 (2), 234-240.

Ultsch, A., 2003. Maps for the Visualization of high-dimensional Data Spaces,

Proceedings of the Workshop on Self Organizing Maps, 225-230.

Ultsch, A., 2004. U*-Matrix: a Tool to visualize Clusters in high dimensional Data,

Technical Report 36, CS Department, Philipps-University Marburg, Germany.

Ultsch, A., Mörchen, F., 2005. ESOM-Maps: tools for clustering, visualization, and

classification with Emergent SOM, Technical Report of the Department of

Mathematics and Computer Science, University of Marburg, Germany, 1-7.

88

Vesanto, J., Himberg, J., Siponen, M., Simula, O., 1998. Enhancing SOM based data

visualization, Proceedings of the 5th International Conference on Soft Computing

and Information/Intelligent Systems, Methodologies for the Conception, Design and

Application of Soft Computing, 1, 64-67.

Vesanto, J., Himberg, J., Alhoniemi, E., Parhankangas, J., 1999. Self-organizing

map in MATLAB: the SOM Toolbox, Proceedings of the MATLAB DSP Conference,

Espoo, Finland, 35-40.

Vesanto, J., 1999. SOM-based data visualization methods, Intelligent Data Analysis,

3 (2), 111-126.

Vesanto, J., 2002. Data Exploration Process Based on the Self-Organizing Map,

Dissertation for the Degree of Doctor of Technology, Acta Polytechnica Scandinavia,

Mathematics and Computing Series No. 115.

Vlissides, J., Helm, R., Johnson, R., Gamma, E., 1995. Design patterns: Elements of

reusable object-oriented software, Addison-Wesley, Book.

Wu, S., Chow, T. W. S., 2005. PRSOM: A New Visualization Method by Hybridizing

Multidimensional Scaling and Self-Organizing Map, IEEE Transactions on Neural

Networks, 16 (6), 1362-1380.

Wu, Y., Takatsuka, M., 2006. Spherical self-organizing map using efficient indexed

geodesic data structure, Neural Networks, 19, Elsevier, 900-910.

Yin, H., 2002. A Novel Method for Multivariate Data Projection and Structure

Visualization, IEEE Transactions on Neural Networks, 13 (1), 237-243.

Online Literature

ICA, 2013. International Cartographic Association, Available from: http://icaci.org

[Accessed 8 July 2013].

Databionic, 2006. Databionic ESOM Tools, Available from: http://databionic-

esom.sourceforge.net [Accessed 2 February 2013].

Eclipse, 2013. Eclipse – The Eclipse Foundation open source community website,

Available from: http://www.eclipse.org [Accessed 27 February 2013].

Guo, D., 2013. SOMVis: Multivariate Mapping and Visualization, Available from:

http://www.spatialdatamining.org/software/somvis [Accessed 12 May 2013].

OpenProcessing, 2013. OpenProcessing, Available from: http://openprocessing.org

[Accessed 3 February 2013].

Oracle, 2013. Java SE Overview - at a Glace, Available from:

http://www.oracle.com/technetwork/java/javase/overview/index.html [Accessed 30

March 2013].

89

OSGeo Project, 2013. GeoTools The Open Source GIS Java Toolkit, Available from:

http://www.geotools.org [Accessed 13 May 2013].

PennState, 2013, GeoVISTA Studio Project, Available from:

http://www.geovistastudio.psu.edu [Accessed 28 July 2013].

Reades, J., 2013. The MapThing Processing Library, Available from:

http://www.reades.com/2013/04/01/the-mapthing-processing-library/ [Accessed 26

June 2013].

Processing, 2013. Processing 2.0. Available from: http://processing.org [Accessed

1 February 2013].

TU Vienna, 2013. Data Mining with the Java SOMToolbox, Institute of Software

Technology and Interactive Systems, Vienna University of Technology, Austria.

Available from: http://www.ifs.tuwien.ac.at/dm/somtoolbox/index.html [Accessed

2 February 2013].

Viscovery, 2013. Viscovery SOMine 5.2. Viscovery Software GmbH, Vienna, Austria.

Available from: http://www.viscovery.net/somine/ [Accessed 31 January 2013].

Wikipedia, 2013. HSL and HSV, Wikipedia – The Free Enzyklopedia,

http://en.wikipedia.org/wiki/HSV_color_space [Accessed 14 June 2013].

90

List of Abbreviations

AAG Association of American Geographers
AQE Average Quantization Error
ANN Artificial Neural Network
API Application Programming Interface
BMU Best Matching Unit
CCA Curvilinear Component Analysis
CIE Commission international de l’éclairage
CPU Central Processing Unit
GIS Geographic Information System/Science
GUI Graphical User Interface
HSB Hue Saturation Brightness
IDE Integrated Development Environment
JAR Java Archive File
KDD Knowledge Discovery in Databases
LVQ Learning Vector Quantization
MDS Multi Dimensional Scaling
MST Minimum Spanning Tree
PCA Principle Component Analysis
PCP Parallel Coordinate Plot
PDE Processing Development Environment
PS PostScript
RGB Red Green Blue
SDH Smoothed Data Histogram
SHP Shapefile
SOFM Self-Organizing Feature Map
SOM Self-Organizing Map
UI User Interface
UML Unified Modeling Language
US United States

List of Figures

Figure 1: Regular two-dimensional SOM topologies, using (a) rectangular or (b)
hexagonal arrangement. ... 3

Figure 2: Structure of a SOM. First, initial values are given to the weight vectors
from the input layer. During training phase the BMU is determined on the
competition layer. A visual representation of the results is done on the output layer
(image source: Mongini and Italiano 2001). ... 3

Figure 3: The competitive learning process from initialization of the neurons (a) to
the adjusted weights (e) from four input vectors after best matching unit search
(Skupin and Agarwal 2008). .. 4

Figure 4: Non-linear projection of a 5x5 SOM, where the nodes are iteratively
moved towards their best matching units in multi-dimensional input vector space
(image source: http://www.peltarion.com/doc/index.php?title=Self-
organizing_map). .. 5

91

Figure 5: Data exploration and knowledge discovery using a SOM data mining and 7

Figure 6: Component planes of a high-resolution SOM constructed from climate data
(Skupin and Esperbé 2008). ... 17

Figure 7: Vector fields. (a) Arrows are pointing to a cluster center and result in a
smooth gradient field. (b) Similar method showing cluster boundary lines
(Pölzlbauer et al. 2006). .. 17

Figure 8: Cluster connection visualization where nodes from same clusters are
connected. The color of an edge indicates the distance between the neurons (Merkl
and Rauber 1997). .. 18

Figure 9: (a) U-Matrix without interpolated neurons, (b) U-Matrix with interpolated
neurons, (c) distance matrix resizing the SOM neurons to their interneuron
distances (Vesanto 1999). ... 19

Figure 10: Comparing the visualization results from U-matrix (b), P-matrix (c) and
U*-matrix (d) applied on the same dataset (a) to find cluster regions (Ultsch and
Mörchen 2005). .. 20

Figure 11: Effects on cluster detection by changing the value of the smoothing
parameter s for the SDH (Pampalk et al. 2002). .. 20

Figure 12: Types of data histograms, showing the distribution of hits per neuron
with (a) interpolated density coloring, (b) markers, (c) color range (TU Vienna
2013, Vesanto 2002). ... 21

Figure 13: Sky-metaphor. (a) Detailed view of the map, with input vectors mapped
as stars onto the neurons, some of them connect to trails. (b) The entire map with
four galaxies (Latif and Mayer 2007). ... 22

Figure 14: Component charts. Projecting (a) input vector attributes as pies charts
and (b) codebook vector attributes as bar charts (Skupin and Fabrikant 2003, SOM
Toolbox for MATLAB 2013). .. 23

Figure 15: Visualizing the SOM training. Three input vectors are recorded every
10,000 training iterations and connected at each BMU position (Skupin and Agarwal
2008). .. 23

Figure 16: (a) Trajectory connecting the centroids of discretized areas of one
component plane. (b) Metro map showing four component lines (Neumayer et al.
2007). .. 24

Figure 17: Neighborhood graph representation of the projected input data onto the
SOM (Pölzlbauer 2005). .. 25

Figure 18: MST Visualization of (a) SOM codebook vectors and (b) input vectors.
The edges are scaled according to their weight values (Mayer and Rauber 2010). . 25

Figure 19: Levels of class granularity. The minimum class threshold was set to 0%,
50% and 100% contribution fraction (Mayer et al. 2007). 26

Figure 20: Response surfaces. (a) Good match, (b) poor match, (c) average match.
Black color associates the best response and white signalizes the worst (Vesanto
1999). .. 26

Figure 21: Position accuracy markers placed on top of a distance matrix (Vesanto
1999). .. 27

Figure 22: Distance-preserving projecting of SOM neurons (a) into three-
dimensional space to see interneural distances, or (b) into two-dimensional space to
see the distribution within clusters (Gorricha 2009, Vesanto 2002). 28

Figure 23: Data space distance visualization of SOM neurons using projection and
back projection (Himberg 1998). ... 28

92

Figure 24: Parallel Coordinate Plot showing SOM clusters. The line thickness is
scaled to the cluster size (Guo et al. 2005). .. 29

Figure 25: Linking the BMU colors from SOM space to their corresponding
geographic map features (Skupin and Esperbé 2011). 30

Figure 26: Spatialization process used to visualize AAG conference abstracts
(Skupin and Fabrikant 2007). ... 31

Figure 27: Extracted part of the resulting map from the AAG spatialization
procedure showing five levels of hierarchical clustering (Skupin and Fabrikant
2007). .. 32

Figure 28: SOM-based visualization of the earth with projected cartographic input
layers and trained with geographic coordinates using Euclidean distance measure
(Skupin 2003). ... 33

Figure 29: (a) Linked representation of the color-coded k-Means clusters in SOM
and geographic space. (b) Cluster boundaries as line feature overlay on a neuron
vector density landscape. (c) Cluster areas in the zoomed geographic space (Skupin
and Esperbé 2011). .. 34

Figure 30: Cross-symbolization, showing multiple dimensions and attributes spaces
simultaneously (Burns and Skupin 2009). ... 35

Figure 31: Multi-temporal trajectories showing parallel development of two pairs of
cities in Texas (Skupin and Hagelman 2005). .. 35

Figure 32: Mesh representation of SOM data in (a) 2D and (b) 3D, and (c) color
coded component planes projected into (d) 3D (Vesanto et al. 1998). 36

Figure 33: Creating a 3D SOM distance matrix from its equivalent 2D representation
using the distances as height values (Takatsuka 2001). 37

Figure 34: Coloring of SOM neurons based on their topological order in the grid
(Vesanto 1999). ... 38

Figure 35: Diverging-diverging color scheme created from an ellipsoid model in the
CIELab space. .. 39

Figure 36: Similarity coloring of a SOM based on interneural distances (Vesanto
1999). .. 40

Figure 37: K-Means result, showing 5 Voronoi cluster cells (k=5) and their centroids
(image source:
http://www.mathworks.com/MATLABcentral/fx_files/19344/1/k_means.jpg). 41

Figure 38: Hierarchical clustering of a Self-Organizing Map (Vesanto 2002). 42

Figure 39: Cluster detection using a 3D SOM model with color-coded neurons and
manipulated border line width representing the distance between geo-referenced
vectors. The resulting clusters are projected into the geographic map on the right
(Gorricha and Lobo 2012). ... 43

Figure 40: Diagram of dimensionality reduction methods. Ordered and aligned in
relation to their capabilities of preserving topology and distances after projection
from high-dimensional input space into low dimensional output space. 45

Figure 41: Visualization of a dataset with (a) PRSOM, (b) SOM, (c) ViSOM, (d) non-
linear mapping by CCA, and (e) non-linear mapping by Sammon’s mapping (Wu and
Chow 2005). .. 45

Figure 42: The trained spherical SOM (a) in 2D view, the white line indicates the cut
for projection (b) into a 2D plane, and (c) a conventional SOM trained with the
same dataset. The colored circles show distortions in the map (Wu and Takatsuka
2006). .. 46

93

Figure 43: Java versus JavaScript. Performance results of random SOM initialization
and BMU search in a Java application and running as JavaScript in five popular web
browsers. 4000 neurons and 20 input vectors were used. 48

Figure 44: The entire SOM knowledge discovery workflow from data preprocessing,
training to visualization. SOMatic Viewer requires three input files, of which two are
specifically created with SOM training software (SOMatic Trainer or SOM_PAK). 49

Figure 45: Map of Austria. A census records dataset for the selected region of
Carinthia is used for real world data analysis (image source:
http://www.locationaustria.at). ... 50

Figure 46: Comparison of the two SOM_PAK file format version. (a) Shows the
enhanced version of the SOM_PAK data file (.dat) and (b) is the new version of the
map file (.cod). (c) Shows the conventional SOM_PAK data file and (d) the
corresponding map file. Both formats can be used with SOMatic Viewer. 51

Figure 47: SOMatic Viewer Library component model 53

Figure 48: A SOM grid is drawn by a sequence and hierarchy of classes. 54

Figure 49: Class diagram of the two SOM entities, neuron and input vector. 55

Figure 50: The U-Matrix uses interpolated cells (blue color) for interneuron distance
calculation. .. 57

Figure 51: SOM coloring based on the topological order or the neurons. 57

Figure 52: Process of similarity-based SOM coloring using a 1D HSB color SOM. ... 58

Figure 53: Class diagram showing the use of an interface for SOM coloring and
class inheritance for common SOM controls and selection methods. 59

Figure 54: Excerpt of a SOMatic project file. ... 60

Figure 55: Abstraction of the presentation components which sequentially access
and update the global variables used for interactive selection. To guarantee a loose
coupling between the GUI and the library, the attribute tables use click listeners on
the panels which contain the sketches. .. 61

Figure 56: External libraries used for SOMatic Viewer. 62

Figure 57: SOMatic Viewer application updates the selection in multiple windows.
The main frame shows a zoomed view of the SOM grid (upper left), the attribute
table sets its focus to the row of the selected neuron, the geographic map provides
a linked view of the SOM with the highlighted region, and component planes (lower
left) identify the selection in all slices of the SOM. .. 65

Figure 58: The SOMatic Viewer geographic map window provides several controls.66

Figure 59: SOMatic Viewer main frame. (1) Toolbar with shortcuts for the project,
map, and visualizations, (2) collapsible control panels for grid control, SOM coloring,
hit information, and k-Means clustering, (3) selection of multiple neurons in the
grid, (4) status bar. .. 66

Figure 60: Animation of SOM training in SOMatic Trainer. Three training states for
the Carinthian census dataset are shown: (a) random seeding of the neuron vector,
(b) BMU search during training, (c) the resulting U-Matrix cluster structure. 71

Figure 61: Hit histogram comparison in SOMatic Viewer (left) and Java SOMToolbox
(right). ... 71

Figure 62: U-Matrix visualization comparison in SOMatic Viewer (left) and Java
SOMToolbox (right). .. 72

Figure 63: Comparison of component plane visualizations in SOMatic Viewer
(upper) and Viscovery SOMine (lower). .. 73

Figure 64: Hit histogram (left) and U-Matrix visualization (right) of the Carinthia
census records. .. 77

94

Figure 65: Zoomed view to the lower right corner of the U-Matrix. 77

Figure 66: Selected component planes, similar occurrences are marked with
rectangles. .. 78

Figure 67: K-Means cluster visualization of Carinthian municipalities linked to the
geographic map (k = 5). .. 79

Figure 68: Similarity-based visualization linked to the geographic map using a
diverging-diverging color scheme (number of colors in range = 20). 79

Figure 69: SOMatic software logo. ... 83

List of Tables

Table 1: SOM Terminology. ... 6

Table 2: Clustering distances (Vesanto 2002) .. 42

Table 3: Classification matrix for SOM visualizations. Part 1: Visualizing the SOM
itself. .. 67

Table 4: Classification matrix for SOM visualizations. Part 2: Projections onto the
SOM. .. 68

Table 5: Classification matrix for SOM visualizations. Part 3: Projections onto the
SOM, Projections from the SOM, Linking from the SOM. 69

Table 6: Carinthia census records attribute breakdown table, part 1. Variables not
used for training. .. 74

Table 7: Carinthia census records attribute breakdown table, part 2. Variables used
for training. ... 75

