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Abstract:

This research paper presents a rotordynamic analysis of a refiner-rotating-unit, used in the paper
and fiberboard industry. Due to the very stiff refiner rotor and the short bearing spacing of the
rotating unit, the bearing dynamics has a significant influence on the critical speeds of the system.
Previously, linear substitute stiffnesses were used for the modeling of the roller bearings and the
computation of the systems’ natural frequencies, which led to conflicting data results between
simulation and measurement. By substituting the bearing system with this simplified modeling,
the complex contact mechanics is generally modeled insufficiently and the bearing clearance as
well as the nonlinear load distribution are not considered. In the scope of this paper the dynamic
analysis and consequently the computation of critical speeds of an overhung refiner rotor is carried
out under consideration of the bearing nonlinearities. Therefore a multibody simulation model of
the machine, which considers the flexural characteristics of the refiner shaft, is built up in
ADAMS and the newly developed roller bearing plug-in ‘Bearing AT’ is deployed. The obtained
results are compared to analysis results of the model using linear stiffness and verified by a
detailed test run on the refiner test stand of the Andritz AG.
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1 Introduction

Studies on rotating machinery date back to the second half of the nineteenth
century, when the increase of the operating speed made it necessary to include rotation
into the analysis of the machines’ dynamic behavior. Since then, steadily increasing
requirements regarding power, speed and productivity have led to a variety of more or
less complex rotating systems in almost every industry. Rotordynamics has become its
own field of studies and is considered a special field within machine dynamics. Its
studies are basically concerned with analysis of rotating structures as well as their
interaction with their environment. These structures range from turbines and
turbomachinery to pumps, fans, hard disks and refiners in the pulp and paper industry.

A rotating machine usually consists of several components, including rotor,
bearings, support frame and drive systems, which are all influencing the dynamic
behavior of the system. Traditional rotor dynamic research deals mainly with the
stability and natural frequencies of such rotor-bearing systems. W. Rankine correctly
states in his paper, “On the centrifugal force on rotating shafts”, published on
“The Engineer” in 1869 that a flexible rotating system has a speed, at which very large
vibration amplitudes are encountered. In modern rotordynamic literature the common
understanding is that when the rotational speed of a machine increases, the vibration
amplitude often passes through maxima which are defined as critical speeds. These
vibration maxima can be excited by the rotor’s unbalance or other non-idealities in the
rotor-bearing system. The non-idealities may also cause critical resonances that occur
when the speed of rotation is a fraction of the natural frequency of the system.
Resonances can influence the quality of the final product when they are within the

operating speed range of a machine. Further, an operation in resonance condition can
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lead to excessive wear or even irreparable damage. In order to study the natural
frequencies of a rotor system it is necessary to take the entire dynamic system into
consideration. In practice, this can be achieved by studying the physical machine
through modal analysis or by the use of computer simulation. If the simulation
approach is used, it must be assured that the simulation model is precise enough so
that the non-idealities of the rotor and bearings as well as the coupling between these
elements are captured correctly. The powerful application of the finite element analysis
(FEA) has also deeply influenced the field of rotordynamics. Thus, specialized FEA
codes are necessary which capture the gyroscopic effects. Nowadays, commercial
FE-Software providers like ANSYS or NASTRAN have added rotordynamics to their
tool. Their implemented numeric algorithms solve the linearized equations of motion of
the rotor system. Although linearity is only an idealization of the actual behavior of
any system, and real-world rotors always deviate, rotors can often be considered linear
in their nominal conditions, at least if the displacements remain within the allowable
limits in operation. Other components like bearings or dampers can have a significant
nonlinear behavior. If they are neglected or linearized, the obtained results show an
unsatisfactory harmonization in many cases.

A good example is the nonlinear stiffness characteristic of roller bearings, which
is often approximated with substitute stiffness. If the rotor-bearing system is a
combination of stiff refiner rotor and short bearing spacing, substantial displacements
occur within the bearing when the shaft is bending. Hence, the system’s dynamic
behavior is strongly influenced by the bearing characteristic; specifically the bearing
stiffnesses have a major impact on systems’ natural frequencies. The strong abstraction
of these highly nonlinear impacts with linear substitute stiffness causes simulation and

measurement results to diverge.
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The engineering department of the pulp and paper division of Andritz AG is
currently facing this problem when designing high consistency (HC) refiners. HC
refiners are machines rotating at speeds of 1500 rpm and above, used for reducing a
variety of feedstocks to pulp or fiber in the paper and fiberboard industry. The
material is refined between two sets of refiner plates, one fixed set and one set mounted
on a rotating refiner disc. The rotating refiner disc is attached to a shaft and supported
by roller bearings. The goal at Andritz AG is now to develop a computational method
where the Refiner’s natural frequencies and consequently the critical speeds of the

machine can be confidently determined during the design phase.

1.1 Scope of Work

The goal of this paper is now to look at the dynamic analysis of a
refiner-rotating unit, including the Andritz bearing concept for overhung rotors by
combining a detailed rotor and bearing model in a new multibody simulation approach.
Therefore an applicable simulation model of the refiner has to be generated in
MSC/ADAMS using the newly developed roller bearing subroutine. The natural
frequencies of the rotor-bearing system are calculated and compared with results
generated by a FE-Simulation. Further, the simulation results should be also evaluated

against the measurement results obtained by a refiner test run.



University of Applied Sciences Wiener Neustadt FH }}

Faculty of Mechatronics and Microsystems Engineering

Wiener Neustadt

1.2 Outline of the Paper

The accomplishment of the described scope of work requires a broad
understanding of rotordynamic effects and the available simulation techniques to
compute them. Therefore the first part of the paper is aimed towards the dynamics of
rotating machinery and the thereby occurring effects.

Currently, Andritz uses the finite element analysis to simulate the dynamic
behavior of refiners. In order to compare the additional benefits of a nonlinear
multibody simulation with the existing FE results, the differences in both approaches
have to be analyzed by evaluating a simple rotor-bearing model and comparing it to an
analytical solution. To do so, the theoretical backgrounds of both computation methods
will be reviewed in chapter 3 before the actual assessment of the FEA and MBS with
the analytical solution is carried out in chapter 4. In the course of comparing the
results of the simple rotordynamic system, the effect of isotropic and anisotropic
bearings stiffness will be also analyzed.

As mentioned in the introduction, the implementation of linear stiffnesses to
substitute the dynamic behavior of rolling element bearings creates insufficient
simulation results. Hence, the nonlinearities of roller bearings will be described in
chapter 5, as well as the modeling approaches of roller bearing dynamics, especially the
one of the newly developed roller bearing toolkit for ADAMS.

Simulation results have to be verified with testing results in order to justify their
quality. Therefore, the techniques to measure vibrations on rotating machinery and the
interpretation of the acquired data are addressed in chapter 6.

The actual computation and measuring of the refiner is carried out in chapter 7.
All the previously described work is necessary to ensure a correct understanding of the

applied concepts on the Andritz machinery.

4
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2 Dynamics of Rotating
Machinery

A multitude of books and papers are dedicated to describe methods for
analyzing rotordynamic phenomena (e.g. [1], [2] & [3]). Most of them are focused on
the calculation of critical speeds and stability regions, balance, vibration analysis and
the steady state response due to unbalance excitation. The simplest way to study and
analyze the flexural characteristics of a rotor-bearings system is by using the Laval-
Jeffcott model, in the following referred to as Jeffcott rotor. It is a model of a flexible
rotor consisting of a rigid disc mounted on an elastic, massless shaft and supported by

two rigid bearings (Figure 2.1).

v v
A A

Figure 2.1: Jeffcott rotor

Based on this oversimplification of real-world rotors, the dynamic behavior of rotor
systems such as mode shapes, the dependence of critical speeds on the rotational speed
and gyroscopic effects can be analyzed. However, for a better approximation of a
physical rotor, a modified rotor model with more degrees of freedom will be used in the
following sections.

The goal of this chapter is primarily to introduce dynamic effects of rotating
machinery from a less mathematical perspective. Instead a detailed analytical solution
of an overhung rotor can be found in chapter 4. The used information and images are

basically all retrieved from [4], [5] and [6].
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2.1 Natural Frequencies and Mode Shapes

The fundamental basis to understand vibration analysis is the simple spring-
mass-damper system shown in Figure 2.2. Such a system can be easily analyzed in the

time domain as well as in the frequency domain.

a) b)

t Ji)

Figure 2.2: Spring-Mass-Damper System (a) with displacement vs. time diagram (b)

The equation of motion can be compiled by the examination of the system’s
equilibrium. It is assumed that a spring force according to f, = kx and a viscous
damping force f; = k x are acting on the rigid mass. Through the application of the

dynamic law the differential equation of motion is:

mx+dx+kx=f(t) (2.1)
This equation is often written in the standard format for damped vibrations
X+ 2{wox + wyix = % (2.2)

in which wg is the free vibration frequency of the undamped system,

Wy = \/% (2.3)

(= (2.4)

and ¢ is the damping factor.




University of Applied Sciences Wiener Neustadt FH }}

Faculty of Mechatronics and Microsystems Engineering

Wiener Neustadt

If damping is considered, the displacement versus time diagram is a sinusoidal function
which decreases exponentially as shown in Figure 2.2b.

When f(t) in Figure 2.2a is a sinusoidal force with a constant amplitude and its
frequency is slowly increased, the exciting frequency will pass the natural frequency of
the system. Thus, the appearing peak response frequency is approximately the damped

natural frequency (see Figure 2.3).

L4

b=

2

=

g :

< Low Damping

=

o

E

o

1]

a

[-%

a : :

= Medium Damping
High Damping

Excitation Frequency (w)

Figure 2.3: Frequency response of spring-mass-damper system?

Going from the single mass system to systems with more degrees of freedom, they
basics do not change. For each DOF an own natural frequency and unique mode shape
exist which are both still primarily related to mass and stiffness, with some changes
due to damping. Consequently different parts of the structure are vibrating at different
amplitudes and differing phases relative to one another.

Hence, a mass continuum can be treated as a system with an infinite number of
single spring-mass-damper systems. Considering a simple beam structure supported by
pin joints at each end, a closed-form solution to the natural frequencies and mode
shapes is possible. The first three mode shapes are shown in Figure 2.4 and are

basically of the same shape as those of a non-spinning Jeffcott rotor.

'14], p. 11
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Figure 2.4: First three mode shapes of pinned-pinned beam?

2.2 Rotating Mode Shapes and Whirling

For the introduction of rotordynamic phenomena a simple rotor model
(Figure 2.5) with a rigid central steel disc, a shaft with stiffness and mass and two
bearings with isotropic stiffness is used. Isotropic stiffness means equal stiffness in

horizontal and vertical direction.

Centered, Rigid Rotor

Isotropic Isotropic
Bearing Bearing

Figure 2.5: Basic rotor model®

At first the non-spinning rotor will be reviewed with three different degrees of bearing
stiffness. The comparison in Figure 2.6 reflects the significant impact of the bearing
stiffness on the mode shapes. Further, they are also influenced through the ratio of
bearing stiffness to shaft stiffness. An increase in bearing stiffness or a decrease in shaft

stiffness leads to higher bending.

*[4], p.11
3 cf. ibid., p.11
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Mode 1 e A —— 1. 3 S — o JE——

Soft Bearings Intermediate Bearings Stiff Bearings
1e7 [N/m] 1e8 [N/m] 1e9 [N/m]

Figure 2.6: Mode shapes versus bearing stiffness, shaft not rotating?*

Another interesting characteristic of the mode shapes is the movement of the
centered disc. When oscillating in the first mode, the disc is translated without tilting,
in the second it tilts without translation. This general characteristic repeats itself as
the frequency increases. If the disc is moved off center, the motion is a mixture
between tilting and translation.

Next, rotation is added to the rotor model. The resulting modes are similar to
the nonrotating ones, but have now a circular motion rather than a planar. The mode
shapes for the first vibration form related to bearing stiffness are displayed in

Figure 2.7.

tcf. [4], p. 12
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Shaft Shape

L Path Orbit Shape

Soft Bearings Intermediate Stiffness Bearings Stiff Bearings

Figure 2.7: 1st mode shapes when shaft rotates®

For a better visualization of the spinning rotor’s motion it is helpful to imagine a

rope while skipping. Thereby the rope traces the outline of a bulging cylinder. If viewed

from the side, the rope appears to be rocking up and down around the center.

In contrast to skipping, the rotor is spinning during the whirling motion.

Generally two cases can be differentiated:
1. Whirling motion and shaft rotation occur in the same
> “forward whirl® (FW)
2. Whirling motion and shaft rotation occur in the opposite

2> “backward whirl“ (BW)

Whirl Whirl

T=0 T=0
0%~ -0%90-
©‘0. .0°0.
T=5 T=2 T= T=5
00 0

T=-4 T=3 T=3 T=-4
Forward Whirl Backward Whirl
(Shaft spin direction (Shaft spin direction
same as whirl direction) opposite of whirl direction)

Figure 2.8: Forward- und Backward-Whirl¢

5 cf. [4], p. 12
6 ibid., p. 12

- 10 -
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Figure 2.8 indicates the rotor’s cross section over the course of time for forward and
backward whirl. Depending on the bearing stiffness, the excitation of both mode shapes
can result from unbalance. To get an idea how the rotor speed effects the whirling
motion of the first mode, the result of a modal analysis from standstill to high-speed is
presented as damped natural frequency vs. speed plot (or Campbell Diagram) in

Figure 2.9.

Stiff: 1st Mode Forward Whirl
6l Stiff: 1st Mode Backward Whirl

Int.: 1st Mode Forward Whirl

41 Int. 1st Mode Backward Whir]
(hidden by forward)

Soft: 1st Mode Forward Whirl

1] Soft: 1st Mode Backward Whirl
(hidden by forward)

Natural Frequency (kcpm)
w

0 5 10 15 20 25 30 as 40 45 50
Operating Speed (krpm)

Figure 2.9: Effect of operating speed on 1st mode of Jeffcott
and basic rotor (centered disc)”

It can be recognized that the rotor’s speed has no significant influence on the natural
frequencies of the first vibration mode.

After the detailed analysis of the first mode, the following section explores the
influence of rotation on the 2" mode. This vibration form is sometimes referred to as

“conical” or “rocking” mode.

Solt bearings Siilf bearings

Figure 2.10: Second mode when shaft is rotating®

- 11 -
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Reusing a modal analysis from standstill to high speed, Figure 2.11 shows a clear
change of eigenfrequencies with increasing speed and the occurring forward and

backward whirls.

1200 -

1000 -

800

600

MNatural Frequency (Hz)

400

200

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Operating Speed (rpm)

Figure 2.11: Effect of operating speed on 2nd mode®

The explanations for the strong change of natural frequencies over speed are gyroscopic
effects that occur whenever the mode shape has an angular component.

Considering the forward whirl, these effects act through the increasing speed like a stiff
spring on the disc and raise the natural frequency. The backward whirl causes a

softening in return.

6], p. 20

- 12 -
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2.3 Gyroscopic and Mass Effects

While the previous section explored the implications of gyroscopic effects on the
rotor’s eigenfrequencies, the upcoming chapter will address the impact on rotors with

different disc alignment and different disc masses.

2.3.1 The symmetric Rotor

For a rotor with centered disc (Figure 2.12) the following conclusions can be drawn:
e An increased mass reduces the natural frequencies of the first mode.
e An increased mass doesn’t change the second mode.
e A reduced moment of inertia doesn’t change the first mode.
e A reduced moment of inertia increases the eigenfrequencies of the second mode

and decreases the impact of the gyroscopic effect.

- ’_]/AddedMass
[ ] [ o ] |
i i i U i i L i
£ 30 — £ 30 e 30
a = 1 o ]
225 £ 251 2 o251
g 20! S 20] 3204
2y S 151 g
2 154 2 151 2 154~
9 (] I+ @ "-_
& 10} -, L 103 i [0 S
A T £ 5] R
20 2 o 20

0 20 40 60 0 20 40 60 0 20 40 60
Operating Speed, krpm Operating Speed, krpm Operating Speed, krpm

Nominal Heavier Disk Diametral Inertia = 0.65 |d
Mass = 2x Nominal  Polar Inertia = 0.53 Ip
Ip/ld Ratio = 0.79
M = Nominal

Figure 2.12: Comparison of different disc properties, center disc configuration'®

" [4], p.13

- 13-
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2.3.2 Overhung Rotor

For the overhung configuration (Figure 2.13), the disc is moved to one end of the shaft

and the bearing moves in exchanged towards the center. A comparison of the different

disc configuration results in the below mentioned conclusions:

decreases the impact of the gyroscopic effects.

An increased mass reduces the eigenfrequencies of the 1*' and 2" mode.

44

Neustadt

A reduced moment of inertia increases the eigenfrequencies of both modes and

- Added Mass
|
F 3 X X i
e 16 e 16
g 141 8 144
2 3 ¥ g
= 12 = 12-/
(o] [&]
$ 103 S 104
S 81 S 8"
LE 6} T 6 °
g 2“ “-'-'l-- CZU 2‘--‘--‘-—"'--.
0 : : 0 . .
0 20 40 60 0 20 40 60
Operating Speed, krpm Operating Speed, krpm
Nominal Heavier Disk
Mass = 2xNominal

Natural Frequency

20 40

60

Operating Speed, krpm
Diametral Inertia = 0.65 Id

Polar Inertia = 0.53 Ip
Ip/Id Ratio = 0.79
M = Nominal

Figure 2.13: Comparison of different disc properties, overhung configuration!!

" 4], p. 13
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2.4 Orthogonal Anisotropic Bearings

Rotating machines with horizontal shafts generally have unequal bearing
stiffness in vertical and horizontal direction due to the use of roller bearings and the
layout of the supporting frame. Different bearing stiffness leads to varying natural
frequencies in the particular directions and to a separation of the mode pairs (Figure

2.14 and Figure 2.15).

g 301 oF

S

n 4

=

2

@

2

o

o

1

®

3

)

=

0! ; : ; |

0 5 10 15 20 25 30 35 40 45 50
Operating Speed, krpm

Figure 2.14: Natural frequencies vs. speed, basic model,

vertical stiffness = 2x horizontal stiffness!?

Wl
(A

Figure 2.15: Unbalance Response for anisotropic bearings'?

2 [4], p. 15
5 1], p. 105
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Furthermore the circular orbits will become elliptical through the anisotropic support
and the yielding whirling motion is a superposition of forward and backward whirls.
This means that forward and backward mode can no longer be considered as strictly
separate and the mode shapes have forward as well as backward fractions.
Rotordynamic theory often concludes that unbalance can only excite forward modes,
but as the whirling is a superposition, also backward modes can become resonant.

Figure 2.16 shows the orbit motion and the whirling senses for different rotor speeds, in
which w,, and w, characterize the first two natural frequencies of the system, Q is the
rotational speed and 1 expresses the ratio of speed to eigenfrequency w for isotropic
bearing stiffness. In terms of critical speed is w,, defining the horizontal critical speed

and w, the vertical critical speed.

i‘r;:O'? !"_I =(),81 Wy
ETA ¥ . T ¥
—~ < g G ———
! | Z) |
2t z z1
Forward Whirl 0<01< wy
e n=0,895 n=0,82 @,
7=0,8 ) /i\ i
V4 ~ [ ]\
P y N y ( \ ¥ y
1 1 tH—
- e \
AN // \ }
\1}-- \\../
z z ! z ! 2 !
n=vu,Tve? )7
Backward Whirl wy<Q< W,
n=0,99 n=2
Ii! \\ L I_.{
]
y y
\/
z ! z !
Forward Whirl ez <1<

Figure 2.16: Forward and backward modes with orbit motion
w=,s/m n=0w (w,=0.85w; w,=095w)"

1 [1], p. 107

- 16 -
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2.5 Critical Speeds

When the phrase “critical speed” is applied, it usually refers to the speed at
which a bending mode of the rotor is excited. As commonly defined, critical speeds
occur through excitation of a systems natural frequency triggered by the shaft’s
unbalance. The obvious consequences are very large amplitudes, controlled only by the
system damping. For the visual explanation in Figure 2.17 a simplified Campbell
Diagram of an overhung rotor (compared to Figure 2.13) with isotropic bearings (no

separation of FW and BW at 0 rpm) will be used.

2FW

2. Mode

2 BW

Critical Speeds

Natural Frequency f [Hz]

1. Mode

Operating Speed [rpm]

Figure 2.17: Campbell Diagram showing critical speeds

The displayed diagram shows the rotors’ eigenfrequencies of the first and second mode
with the distinct whirling motions. Assuming the rotor speed passes both natural
frequencies of the first mode pair during run up from standstill to operating speed, its
intersections with the natural frequencies are defined as critical speeds. In this manner
the critical speeds could also be seen as “peak response” speeds.

Thus, the goal of machinery design is to avoid speeds which cause high vibration
amplitudes. Most machine specifications require a minimum separation between

operating speed and any critical speed.

_17-
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3 Simulation of Dynamic Systems

Through the application of computational tools it has become possible to
investigate the dynamics of complex mechanical systems. For the numeric simulation of
those systems basically the finite element analysis (FEA) and the multibody simulation
(MBS) have established themselves as effective ways to convert and solve real world

problems with mathematical models.

3.1 Finite Element Analysis (FEA)

The finite element analysis is based on the principle of virtual work and
represents a powerful technique for the calculation of boundary value problems [7]. The
basic idea of the method is to divide an examined flexible structure into a finite
number of small segments with established properties. Thus, the continuums’ infinite
number of degrees of freedom is reduced to a finite number of DOF on the connection
points of the elements. Each small segment gets an applicable displacement formulation
assigned, which has to meet the kinematic boundary conditions. The arising algebraic
equations are then assembled to a global system of equations. The final result of the

assembly process for linear elastostatic problems is the master stiffness equation

Ku=f (3.1)
where K is the stiffness matrix, u the vector of node displacements and f is the vector

of node forces. By imposing the displacement and force boundary conditions, the

system is solved for the unknown node displacements.
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3.1.1 Dynamic Analysis'®

All parameters of the static analysis in the previous section are independent of
time. This kind of analysis is also applied to quasi-static scenarios, where the state
varies so slowly with time that inertial and damping effects can be ignored. When these
effects cannot be neglected a dynamic analysis has to be performed.

The essence of the computation of dynamic problems caused by dynamic loads is
the increasing importance of the node displacements. Embedding inertial and damping
effects means including acceleration and velocity in the force balance statement and
those are temporal derivatives of displacements.

The analysis of dynamic problems may be performed in the time domain or in
the frequency domain. Whereby, the latter is limited in its application due to the
modal transformation. It applies only to linear structural models, or to linearized
fluctuations about an equilibrium state (i.e. small vibration amplitudes). The frequency
domain is usually used to study vibrations. Solving dynamic FE models in the time
domain requires much more computational effort than in the frequency domain.
Therefore a frequency domain solution is preferred when the damping effect of the
system is from lower significance. Either way the initial equation for the structural

dynamic FEA based on Newton’s second law is

Mig +Cup +Kuy = f(t) (3.2)

where M, C and K are the mass, damping and stiffness matrices which are constant
with time. Whereas, the unknown nodal displacements and rotations u vary with

time. The underlying concept is again the principle of virtual displacements, which is

15 ¢f. [21], chapter 30, p. 3ff.
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also valid for structural dynamics. Through the time dependence of the system a
discretization of the time is required.

If the second order differential algebraic equation (3.2) is solved with the FEA, the
corresponding system of equation can get capacious. Unfortunately only a few methods
for an efficient computation exist. These methods use either implicit or explicit time
integration. Generally the continuous function of time has to be calculated for certain
points of time what implicates a loss of information. Therefore requirements regarding
stability, efficiency and accuracy have to be met.

One of the commonly used implicit integration procedures is the Newmark
procedure which assumes that all system variables (u,, i) are known for the starting
point 0 and the value of these variables for discrete points of time after the time period
At is searched for. In between those intervals the ability of a linear interpolation is
assumed. The most important explicit time integration procedure is the Central
Difference Method (CDM). It basically computes the equation 3.2 at the current time ¢

and extrapolates it to t+At.

3.1.2 Modal Analysis'®

Before performing a transient dynamic analysis in the time domain it is
advantageous to run a modal analysis because a structure’s vibration characteristics
determine how it responds to any type of dynamic load. When computed in the
frequency domain, the dynamic responses of the structure are defined as eigenmodes

and eigenfrequencies.

16 ¢f. [20], chapter 3
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The modal analysis distinguishes between free and forced vibrations. As
described in Chapter 2.1 there is no external force acting on the elastic structure when
free vibration is analyzed. The response u(y is only determined by initial conditions.

For undamped free vibrations

Miug +Kup =0 (3.3)
the general solution is obtained by using an exponential initial condition, which
assumes harmonic motion:

ug) = Xe/®t (3.4)
Here X is a time independent, complex column vector which has to be adjusted to the

initial conditions. Replacing il in equation 3.3 with —w?X e/“f leads to
(—w?>M+K)X e/t = (3.5)

Because X cannot be a null vector and e/®t # 0, this equation is an algebraic
eigenvalue problem in w. The eigenvalues A; = w? are the roots of the characteristic
polynomial indexed by i

det(—w*M+K) =0 (3.6)
Each eigenfrequency w; has its corresponding eigenmode ¥!, which can be found by
inserting the eigenfrequencies in equation 3.5. All eigenfrequencies are defined exactly
for the eigenproblem, whereas the eigenmodes have to be found with an under-
determined equation system, i.e. if the vector of eigenmodes W® fulfills the
eigenproblem, also the multiples of W® do. The number N of resulting solutions
indicates that a system with N degrees of freedom has also N solutions for the free
vibration. Therefore, the resulting vibration response can be found by superposition of

the N free vibrations,

N
Uy = z a; PO et (3.7)

i=1
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The second scenario which is of interest in practice is the forced vibration. The
system is then subjected to a time dependent force f4). The response uyp is determined
from the linear dynamics equation 3.2. Of particular interest in resonance studies is
when f) is periodic in time

f(t) = Fe/®t, (3.8)
Due to the periodicity of the force this kind of analysis is called harmonic analysis. It
generates a response transfer function, i.e. for a specified load amplitude and location a
response at another location is found over a specified frequency range. Hence, it also
assumes periodic displacements ug) = X e/t and if damping is not considered equation

3.5 for forced vibrations can be rewritten as
(—w?> M+ K) X e/®t = F g/®t (3.9)

with X and F as complex vectors of amplitudes. The transfer function H(w) is defined
as the ratio of displacement to force

Hew) = % = (—w*M+K)?! (3.10)
and requires a matrix inversion for every eigenfrequency. Because this is a very
inefficient and time consuming computation, a formulation based on modal

segmentation is used. When a modal transformation is applied, the transformed mass

and stiffness matrix will show a diagonal form.

$TM ¥ = diag(m;) (3.11)

YT K W = diag(k;) (3.12)

Because the mode shape matrix is not exactly defined, it is possible to normalize the

matrix of eigenvectors related to the mass matrix.
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The resulting normalized matrix is defined as

b = [cp(l)’...’q)(N)] (3.13)
and complies the relationship
™ =1 (3.14)
as well as the equation
®TK & = diag(w;?) . (3.15)

The undamped equation of motion for forced vibration can be transformed to modal

coordinates by using u = ® q resulting in

Mdgqg+Kdbq=f1. (3.16)
In order to make use of the orthogonal characteristics (3.14 and 3.15) the equation 3.16

has to be multiplied with ®T from the left side
®T™M P g+ PTKP q = ®TF. (3.17)
The consequential equation
q+Qq=f, (3.18)
is totally decoupled and provides in its rows the independent modal equations of

motion

Gi + wi® q; = fo; - (3.19)
These N independent equations can be solved with the methods of the simple
spring-mass-damper system. Matrix Q = diag(w,?%,-:-,wy?) contains the necessary
eigenfrequencies and fq = ®T f is the vector of the modal forces. The external loads
emerge through the projection of the load vector on the matrix of mode shapes ®T.

If the external load can be divided in a constant distribution function fy and a common

time function g¢(t) the modal load is

fo=@"f, gt) = f g(t). (3.20)
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The components of the participation vector f determine the excitation of the system,
while the time function g(%) is responsible for the time course of the excitation.

In the harmonic analysis the computed modal displacements ¢ are converted
back into geometric displacements wu (the system response to the loading). The actual

dynamic response is obtained by the superposition of all individual modal responses.

3.1.3 Rotordynamic Analysis'”

The initial equation for rotordynamic systems is again equation 3.2. The mass
matrix M is a combination of the element matrices and single mass matrices. Hereby,
the element mass matrices MP contain the continuous distribution of mass over the
particular shaft part. The diagonal mass matrix M3 includes the masses and inertias of
the fitted discs. The total mass matrix is a positive definite matrix with speed
independent elements.

M = MB + MS (3.21)
The matrix of the speed proportional forces C is composed of the damping matrix and
the gyroscopic matrix:

C = G(Qg) + D(QR) (3.22)
The matrix G considers the gyroscopic effect of the elements and is anisometric and

speed dependent.

The damping matrix D would be positive definite for a system with viscous damping.

Due to the rotor support, nonsymmetrical and speed dependent damping terms are
added.

7 cf. [22]
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The stiffness matrix is assembled with the speed independent stiffness matrix KB of the
elements, as well as the speed dependent stress stiffening matrix K5 and the speed
dependent bearing stiffness matrix K. If the rigid body motions are suppressed, the

stiffness matrix K is defined positive:
K = KB + K5(QRr) + KX (QR) with kf = kB and k& # K (3.25)

For the rotor system the general dynamic system is generated using the described
system matrices. The computation can be carried out in the time or frequency domain

using the methods described in Chapter 3.1.1 and 3.1.2.

3.2 Multibody Simulation

The computation of multibody systems is very different to those of the FEA.
While the FE-model is solved by predefined border conditions holding the system in a
certain position, the multibody simulation codes are based on the principles of Eulerian
and Lagrangian dynamics. Although there are several important approaches to solve
those equations, this chapter will introduce the solution techniques implemented in the
MSC/ADAMS Software. The following descriptions and derivations are basically based
on [8] and [9].

In principle, a multibody system consists of a finite number of rigid or elastic
bodies which are coupled through passive or active elements (Figure 3.1). At the same
time kinematic constraints appear through supports, guides or joints. On all bodies
external forces or moments can be applied. For the dynamic analysis of such a
multibody system, the inertial forces, the constraining forces and any externally applied
forces must be kept in equilibrium. This property provides the foundation for the
equation of motion which is formulated in terms of expressions for the kinetic and

potential energy of the mechanical system.
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Figure 3.1: Multibody System

3.2.1 The Equations of Motion

For motion in space, the kinetic energy of a rigid body system is given by

N
K= lz mis® i@ + 0®T @5 w® (3.26)

2 i=1
where N is the number of bodies, @g; is the rotational inertia matrix around their
centers of gravity, I"S(i) are the vectors of the translational center velocities and w® are
the vectors of rotational center velocities. Usually, some of the externally forces which

are acting on the dynamic system (e.g. gravity) cause a potential energy V.

The difference between the kinetic and potential energy
L=K-V (3.27)

is called the Lagrangian of the dynamical system. For multibody dynamics the

Lagrangian becomes

N
L= z KO _—y® (3.28)
i=1

- 96 -



University of Applied Sciences Wiener Neustadt FH }}

Faculty of Mechatronics and Microsystems Engineering

Wiener Neustadt

Where K® and V® are the kinetic and potential energy for each of the N parts which
comprise the system. In the following discussion, the derivation of the equations of
motion in terms of the Lagrangian will be explained for the case N=1.
According to the laws of Lagrangian dynamics, the motion of a multibody
system is governed by
i(a_L>_a_L+CT;L=Q (3.29)
dt \ 9% ; '
where § is the column matrix of generalized coordinates. These generalized coordinates
need to definitely describe the position of a body for every point of time but are not
fixed to a distinct coordinate system. Though, it can be a lot easier to describe the
equation of motion in a suitable coordinate system.
More generally, & contains all of the n coordinates of the bodies which make up a
mechanical system. The value is n =6 N in the three dimensional case if the model

consists of N rigid bodies. The Lagrangian L is a scalar and & is an array. Hence,

oL
7
oL | oL
3% | 9% (3.30)

ot .
)
oL

L
is also an array of length n. Similarly, 3_§ is an n by 1 array. Each element of 6_§

indicates the sensitivity of the Lagrangian for the mechanical system to one of the
coordinates which define its motion.
The column matrix Q contains the externally applied, non-potential forces in

the model. It is balanced against the three terms on the left-hand side of equation 3.29.
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d (0L
The expression pn (6_2) represents the acceleration of the mechanical components. The

potential forces are contained in — .*®

ot -’
Due to the coupling of the N bodies within the multibody system, the motion is
constrained by kinematical constraints. For example, if the system’s motion is

constrained by p kinematical constraints of the form
(pj(fp"';fr; t) = 0 _]= 1;‘”;p (331)

it possesses f =6N —p DOF. Figure 3.2 illustrates two examples for kinematic
constraints. Assuming that the z and y direction are both generalized coordinates, the

constraint equations comply with equation 3.31.

a) Slide bearing b) Joint
ALS y
y A A
m 49) m,
h
rﬂ(l) = rﬁ(z)
> Y > X
constraint: constraint:
C=yA_h=0 C=AT=P‘.\(2)—I’A(1)=0

Figure 3.2: Kinematic constraints for a slide bearing (a) and a joint (b)

The Jacobian matrix

_ac

€ =5

(3.32)

of the constraint equations is made up of the partial derivatives of the expressions for

the constraints with respect to the generalized coordinates. In Lagrangian mechanics,

oL
8 In MSC/ADAMS/Solver the force of gravity is the only component of ;E
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CET is the n by m rectangular array which couples the constraint conditions into the
force-balance equations. The constraint forces are supplied by Cng where A is the
column matrix of m (<n) Lagrange multipliers. CgT can be interpreted as the directions
of the constraint forces while A contains the amplitudes. Using the Lagrange’s
multiplier method the system of equations forms a completely defined second order
initial value problem.

In the general case, the system of equations becomes

M§+M£—1£T6—ME+6—V+CT1—Q (3.33)
2° 98 > ot V7T '

where, if there are n second order differential equations and m constraint equations,
e M is the n by n mass matrix,
J % éT Z—l: E is the total kinetic energy,
e I/ is the potential energy in the system,
e Cg is the n by m Jacobian matrix of the constraints and

e (Q represents the applied forces in a column matrix of length n.

.oy 1T M g . . .
Note that the expression ME— - § F & is needed because the mass matrix M is not

necessarily constant and can also depend on the coordinates & and /or the time.

The system of equations (3.23) contains second order differential equations. The
ADAMS simulation code makes use of the standard order reduction method by
introducing a new dependent variable for each higher derivative and hence, formulates

all equations as first order DAE’s. These DAE’s can be rewritten in an implicit form as

G(Y,Y,t) =0 (3.34)

where G represents the column matrix of function of the unknowns.
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The system as a whole is nonlinear. The implicit system of DAE’s is not easily

transformable into an explicit system of ordinary differential equations in the form
Y = f(Y,t) (3.35)

to which standard solvers such as Runge-Kutta or the ADAMS-Bashforth-Moulton
integrators can be applied. Thus, ADAMS/Solver employs integrators which do accept
systems of equations in the implicit form. For the implicit integration algorithm, the
DAE’s are transformed into a system of nonlinear equations by approximating each
derivative in the column matrix Y with a backward differentiation formula (BDF). The
explanation of the predictor-corrector integration techniques used in ADAMS/Solver to
solve the implicit DAE’s in the time domain would be beyond the scope of this research

paper and is therefore referenced to [8].

3.2.2 Integration of Flexible Bodies

The mathematic principles explained in 3.2.1 are also applicable for flexible
bodies. In that case the mass matrix dependents on the generalized coordinates & and
on time. For the analysis of the flexible motion the floating frame of reference
formulation is used, which separates the flexible body motion into a reference motion
and deformation. Thereby, the deformation of the body is usually described by the
superposition of the vibration modes that are obtained from a finite element solution.
Thus, FEA software tools like ANSYS have their own interface which allows exporting
the mode shapes to ADAMS. The following mathematical explanation of the floating

frame of reference formulation is taken from [10] and [11].
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The Kinematics of a Flexible Body

A flexible body consists of particles, the locations of which can be described using a
local coordinate system. The local coordinate system is attached to the body, and the
deformation of the body is defined with respect to the local, body fixed coordinate
system. The local coordinate system can undergo large nonlinear translation and

rotation to the fixed global coordinate system.

z
A

x

Figure 3.3: Global position of an arbitrary particle P

The global position of an arbitrary particle P, in the flexible body 7 can be
expressed as:

r' =R+ Aluf =R + A (U, +uy) (3.36)
where U,' is the position vector that defines the undeformed position of the particle,
U is the position vector that defines the deformation of the particle and Al is the
transformation matrix which transforms the u! from the local coordinate system to the

global coordinate system.
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Flexible bodies have an infinite number of degrees of freedom that define the
position of every particle of a body. For computational reasons, the deformation vector
must be defined using a finite number of coordinates. The approximation can be

carried out using the FEA:

Uy = @' pi, (3.37)
where ®! is a shape matrix and p! is the vector of elastic coordinates. In practice, the
shape matrix can be most completely obtained using the methods described in chapter

3.1.2. Hence, the vector of generalized coordinates of the flexible body q can be written

as follows:
q=[RT AT p'T], (3.38)

with R representing the position vector of the origin of the local coordinate system and
Al is the transformation matrix as described earlier. A' is determined in ADAMS
through a 3-1-3 set of Euler-angles.
The velocity of an arbitrary particle P can be obtained by differentiating equation 3.36
with respect to time through

=R +Alu + Ay, (3.39)
and by using the time derivative of the position vector in the local coordinate system

u=®p.
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Solving The Shape Matrix Using FEA

The shape matrix ®! in equation 3.37 can be constructed using the finite element
shape function. However, in most engineering applications, the structure under analysis
is rather complex and the finite element model of the entire structure may contain a
large number of nodal variables. From a computational perspective, it is not
practicable to perform a dynamic analysis based on the complete finite element model.
As mentioned earlier, it is possible to exactly determine every arbitrary deformation by
using the modal superposition of all eigenmodes of a system. Though, all modes must
be Free Interface Normal Modes, which result from a modal analysis of the free,
unconstraint flexible body. Due to the fact that mechanical vibrations are usually
within a range of 1 to 1000 Hz, the first couple of resulting mode shapes and
eigenfrequencies within this range are from higher significance than the occurring mode
shapes at higher frequencies. As stated in chapter 3.1.2 the transformation matrix ® is
not exactly defined and by applying information of the initial equation 3.3 to fill the
matrix, the number of degrees of freedom can be reduced without diluting the first
eigenmodes and eigenfrequencies of the system. In doing so problems with the modal
superposition can erupt when complex constraints must be applied on the Free
Interface Normal Modes. One method to solve this kind of problems is the Craig-
Bampton method in which the structure is divided into interior and boundary degrees
of freedom.

This method requires defined interface-nodes of the FE structure before the
modal segmentation is carried out. Further, the defined nodes form the interface to
other MBS substructures after the integration of the flexible body in the multibody

system.
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The transformation matrix @ is made up of two different kinds of modes. One
part of the matrix is filled with the Fixed Interface Normal Modes, which are
calculated through an eigenvalue analysis, in which all interface-nodes are fixed. The
second part is built from Interface Constraint Modes. These actually cannot be
considered as real modes because they do not possess an eigenfrequency. They are
rather displacement conditions which occur when a unit displacement is separately
applied to each DOF of one interface-node while all other interface DOF are fixed (e.g.
8 interface-nodes with 6 DOF will result in 48 Interface Constraint Modes). The
combination of Interface Constraint Modes and Fixed Interface Normal Modes now
allows describing every dynamic deformation of the flexible body. The prerequisite
therefore is that all Interface Constraint Modes are conserved after the modal
segmentation.

Because all interface-nodes must be defined before the modal segmentation, all
DOF of the vector ug (containing the elastic deformations of all nodes of the FE

structure) can be separated into two groups, namely the Boundary DOF u® and the

Interior DOF ul.

B
us = [“I] (3.40)

u
In this context it is important that forces can be only applied to the Boundary DOF.
This emphasis the necessity that the interface DOF are also available for the modal
coordinates q. Hence, the vector of modal coordinates can be divided in two

subvectors q¢ and qVN, whereby the first is identic with u®. Accordingly, Equation 3.37

can be rewritten as:
uB] 11 o07|q¢(=uP)
[u' = [q)lc q,lN] gV (3.41)

= P q (3.42)
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Now, the transformation matrix @ can be used to segment the mass matrix M and the
stiffness matrix K, resulting in the generalized mass matrix M and the generalized

stiffness matrix K of the flexible body:

MBB MBI

M=d"M® = [q)llc cb'N] [MIB M"] [q)lc o] = mzﬁ l%'gi] (3.43)
K=®TK®d = [(DIIC (DIN] Il((l:: Il((l[;ll] [q,lc q,lN] [KCC RNN (3.44)

The indices I, B, N and C stand for the Interior DOF, the Boundary DOF, Fixed
Interface Normal Mode and Interface Constraint Mode. Note that these generalized
matrices are the Craig-Bampton representation of the original system. It is important
to emphasize that the mode shapes in equation 3.41 are not orthogonal with respect to
the mass and stiffness matrices. As a result the Craig-Bampton method cannot be
directly used for the application in MBS software like ADAMS. One arising issue which
limits its direct application is that the method also describes the rigid body motion as a
linear combination of Interface Constraint Modes. Because ADAMS computes its own
nonlinear motions of the body fixed coordinate system, the six rigid body DOF which
are included in the set of Interface Constraint Modes have to be eliminated. However,
all problems associated with the direct application of the Craig-Bampton method can
be easily overcome through the orthogonalization of the modes by solving the

eigenvalues from the Craig-Bampton representation of the structure as follows:

[RK-a@,*M]q=0 (3.45)
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The new orthogonal mode shape can be summarized within a quadratic (m z m) matrix
N, which works as a transformation matrix to describe the relationship between the

modal coordinates qand the modified modal coordinates q*.
q=Nq" (3.46)

The modal superposition of the physical degrees of freedom u can be determined by

applying equation 3.46 to the basic formula 3.37.
u=9®q=®Nq" =o'q" (3.47)

where ®@* is the matrix of orthogonalized Craig-Bampton modes, which is needed when
the modified modal coordinates q* have to be converted back to the physical
coordinates q.

As a result of the orthogonalization procedure, the modified, generalized mass and

stiffness matrices become diagonal:

M*=NTMN =1, (3.48)
K* = NTKN = diag(@,°, -+, @, ") (3.49)

A useful side effect is that all the modes have an associated frequency for their
frequency contribution to the dynamic system. The orthogonalized Craig-Bampton
modes are different to the eigenvectors of the original system and include approximate

free-free modes and the vibration modes of the Boundary DOF.

- 36 -



University of Applied Sciences Wiener Neustadt FH }}

Faculty of Mechatronics and Microsystems Engineering

Wiener Neustadt

The System’s Fqguation of Motion

The Lagrangian Equation 3.33 can now be adjusted for the flexible multibody system:

e . 1 . 0M_ dV : T
M§+M£—§£ a—E£+a—E+KE+fg+DdE+C§ A=0Q, (3.50)

Where fg is the gravitational force and Qe is the vector of the generalized external

forces. The stiffness matrix K and the damping matrix Dgq can be written as

0 0 O 0 0 O
K=10 0 O, D=0 0 O (3.51)
0 0 K° 0 0 D°

where 0 are null matrices and matrix D* contains modal damping ratios. Using the

expressions
.. 1. oM. dV
Q=-Mg—- & ot ¢t ar (3.52)
Qr=Q.—K§—f, —Dy§ (3.53)
the equation of constrained motion takes the following form:
M{+Ce'A=Qg+Qy, (3.54)

where Q, is a vector of quadratic velocity inertia forces that includes the gyroscopic
and Coriolis forces. The vector of the quadratic velocity inertia forces is a nonlinear
function of the system’s generalized coordinates and velocities. The force vector Qg

includes the descriptions of both conservative and non-conservative forces.
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4 Rotordynamic Analysis of a

simple Overhung Rotor

As described in the previous chapter, the FE-Simulation and the MBS use

different approaches to solve the equations of a dynamic system. The aim of this

chapter is on the one hand the evaluation of the solutions of both methods regarding

rotordynamics by analyzing the eigenfrequencies of a simple rotordynamic system and

comparing it to the analytical solution and on the other hand the investigation of a

change in the linear bearing stiffness. For the FEA the simulation environment ANSYS

Classic will be used, while the MBS will be carried out in ADAMS.

The examined system is a simple overhung rotor with a massless shaft and a

rigid rotor disc supported by two bearings (Figure 4.1). The assumed geometrical

dimensions in respect of actual refiner dimensions are provided in Table 4-1.

t+
[
[
[
[
[
i
i
i
i
|
D t
l
l
|
HH

A
Y

Figure 4.1: Model of overhung rotor
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dw 0.1 m
h 0.1 m

Table 4-1: Dimensions of the
model
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4.1 Analytical Solution

In order to formulate and to understand the dynamic system of equations for
the overhung rotor, the first part of the analytical solution is dedicated to the general
derivation of the motion equations by using a simple Jeffcott rotor. The following
examination also considers the gyroscopic effects mentioned in chapter 2.3 and is

established on the derivations of [1].

Figure 4.2: DOF of the rotating Jeffcott rotor!®
For the formulation of the system’s equation of motion, the relationship between the
displacements and rotations at the disc fit and the resulting forces and moments are

needed. This linear relationship can be described in matrix form as

[P'Z k11 k12 0 0 w
M, _|k21 k22 0 0 Py (A1)
Fy 0 0 kll _k12 v :
MZ w 0 0 _k21 kzz (pZ
f, = K Xw (4.2)

Because the forces and moments in f; only cause deformations in their acting plane,

the coupling terms of the stiffness matrix K are blank and due to Betti’s theorem,

ki, = k,; is applicable.

19 [1], p. 160
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The influence of the rotating motion and the gyroscopic effects can be determined by
using the principle of the conservation of angular momentum?®. It states that the
resulting moment of all external acting forces and the temporal change of the angular
momentum are in equilibrium. In order to establish the angular momentum equations,
a body-fixed coordinate system (x', y', z') is introduced, which has its point of origin in
the center of the disc. Though, the x'-axis matches the symmetry axis of the disc

(Figure 4.3).

Figure 4.3: x', y', z'-principal coordinate system on the rotation-symmetric disc?

This coordinate system moves with the center of the disc in the translational directions
w and v and pitches with the disc around the y and the z axis but without rotation
around the x'-axis. Hence, the angular momentum is
Lxl G)P(.px
L' = Ly, = @a(py (43)
Ly 0,9,
where ©p is the polar moment of inertia and 0, is the geometrical moment of inertia.
Because the angular momentum is now described in a body-fixed coordinate system it

is necessary to transform it back into the space-fixed coordinate system x, y, z.

2 conservation of angular momentum £ deut. Drallsatz

21 1], p. 164
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Figure 4.4: Components of the angular momentum in the space-fixed coordinate system??

Through the transformation with ¢, = —Q = const. equation 4.3 can be written as
L, —0pQ
L=|Ly]|= Lyr cos(@zs) + Ly, sin(@,s) (4.4)
L, L, cos(<py5) —L,, sin((pys)

By assuming small angles, the angular momentum equation can be simplified through
linearization of the trigonometric functions, i.e. sing@ = ¢ respectively cos¢@ = 1.
_@PQ _OPQ

L= Lyr + LZl(pZS = G)a‘-'pys - G')PQQDZS (4.5)
Lzr + Lxl(pys Ga(pzs + GPQ(pys

The principle of the conservation of angular momentum determines that the time
derivative of the angular momentum is equal to the acting moment, hence
0 M,
L= Ga(pys — 0p@,s | = My (4.6)
Ga(pzs + ®Pﬂ¢y5 MZ
The terms ©,¢,s and ©,¢,5 describe the moments resulting from the rotating inertia,
which is acting against the inclination. They are also present if the shaft is not

spinning (@ = 0). The terms —Q0p¢,; and QOp ¢, reflect the gyroscopic influence.

2 (1], p. 165

- 41 -



University of Applied Sciences Wiener Neustadt FH }}

Faculty of Mechatronics and Microsystems Engineering

Wiener Neustadt

Not only the moments M, and M, are influencing the dynamic behavior of the
disc, besides them also the external forces F, and F, are acting. Thus, the principle of
linear momentum for the external forces F, and F, must be added to equation 4.6 in
order to get a complete equation of motion. F, and F, can be formulated according to
Newton’s dynamic law as F, = m - Us and F, = m - ws.

This relationship can be summarized in matrix form as

F; m 0 0 07[Ws 0 0 0 0 wy

My [0 6, 0 0 []9y 0 0 0 —Q6p|[® (4.7)
E| o o m of|s|F]o o o o ||s '
M, Lo 0 0 6]y 0 Q6 0 0 [[¢p
f; = M Ky + G X (4.8)

The equation 4.8 contains all externally acting forces and moments within the column
matrix fgs. According to Newton’s third postulate “actio=reactio”, the complete

dynamic system can now be expressed as a combination of equation 4.1 and 4.7

0 Ws T

Q

m 0 0 O0][Ws] [0 0 0

0 6, 0 0||dys| [0 0 o0

0 0 m 0‘ li;‘s Tlo o o o ||n|T
0 0 0 6lg.d lo ag 0 o [lg.l
ka1 ko 0 0 Pys

0 0 k11 _k12 v
0 0 _k21 kzz _(pZS

(4.9)

=0

For further examination of the system of equations it is practicable to combine the
translational and rotational component to a complex expression, because it will halve

the number of unknowns.

(4.10)

Ty = Ws + jug Ps = Pzs + JPys (4.11)
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As a consequence equation 4.9 can be rewritten as

5 ol ol +lo ol lal+ i Lo
2+ , S+ = 0. 4.12
0 ol li*lo —epal L) * iy, s | Lo (4.12)
Due to the disc’s eccentricity ¢, its center of gravity S and the point of intersection
between the shaft and the disc W do not coincide and cause an unbalance U = m ¢.

Through the shaft’s rotation the unbalance is leading to an unbalance force which

forces the shaft to bend.

Figure 4.5: Shaft deflection due to unbalance force??

In case of a uniform shaft rotation, the deflection of the disc’s center of gravity ry and
the bending of the shaft r can be combined by 1, = r + € e/ @B If the disc is not
exactly perpendicular to the shaft axis, also the angles of the shaft ¢ and the disc g
must be distinguished. When a is the inclination angle between the shaft and the disc,
the completely analogue relation s = @ + ae/@*Y) g valid.

Considering the eccentricity and the resulting unbalance force the motion equations for

the Jeffcott rotor (4.12) are transformed to

0 Ol 1@l 10 —jOpQ] [@] " ljkyr  kyp 119

meelf ] jat

(4.13)
[ma —0p)aelr]®

= 02

% [1], p. 40
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4.1.1 Solving the DAE System

For the computation of the shaft’s free vibrations the homogeneous solution of

4.13 has to be found. This can be achieved by using the exponential approach

[;] - [(rﬁ] elot, (4.14)

Employing equation 4.14 to the linear homogenous equation system yields to

_mwz + k11 _jklz f' it
. 2 ~| e’ = 0. (4 15)
jkoq —0,w*+0pQw + k,,1 1P :
This has only a nontrivial solution if the coefficient determinant dissolves.
_m(l)z + k11 _jklz
e |-o |
1 jky —0,02+0pQw + kyy (4.16)

Solving the determinant leads to the following characteristic equation
m@a(l)4 - m@PQa)3 - (mkzz + Qakll)a)z + @pknﬂw + k11k22 - k122 == 0, (417)

which can now be easily implemented in MATLAB.

4.1.2 Computation of the free vibrations in
MATLAB

Before the eigenfrequencies of the spinning rotor can be computed, the moments
of inertia, stiffnesses and masses have to be calculated. Table 4-2 contains the assumed

material properties.

Material Properties

Young’s modulus E =210-10°Pa
Density p = 7850 kg/m3
Poisson’s ratio 0.3

Table 4-2: Material properties of the overhung rotor

- 44 -



University of Applied Sciences Wiener Neustadt FH }}

Faculty of Mechatronics and Microsystems Engineering

Wiener Neustadt

The geometrical moment of inertia of the shaft can be calculated with
dy\*
w=(3) % (4.18)
while for the moments of inertia of the disc

=1 2

Lo (3R? + 12) (4.20)

Gazﬁ

are used.

Until now, all derived equations are valid for the Jeffcott rotor as well as for the
overhung rotor shown in Figure 4.1. The difference between the centered rotor system,
the Jeffcott rotor is representing, and the overhung rotor model lies in the stiffness
matrix K. Bearing conditions and the position of the disc fit mainly influence the
shaft’s deflection. In order to solve the characteristic equation (4.17) the stiffness
matrix of the shaft for the described overhung rotor model has to be derived. Therefore
the analytical methods for analyzing beam systems will be used since the shaft can be

considered as beam with constant bending stiffness FI

e

w A B
=

Figure 4.6: Equivalent statical system of overhung rotor model

Figure 4.6 shows the equivalent statical system of the overhung rotor model. The rotor

disc is substituted with the acting force and moment caused by the weight of the disc.
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The following DAE’s show the general relationship between the derivatives of the
deflection w and distributed load ¢, shear force (@), bending moment M and bending

angle ¢ for a constant EI

227 4.21
ETwiy = e (4.21)
(4.24)

W(’x) =P
Now, wy) can be derived for a known q) by integration. Due to the discontinuity

generated by the bearing force B in the load distribution, the Foppl-symbol is used in

the following equations.

—~ — —~~ —
' =
[\] DO
~ (=)
~ ~— — —

Ely Wiy = =M@ = —B{x =)' + Cix + C,

Ely Wiey = —El @(y = =2 (x = 1) + 222 + Cpx + C
Ely Wiy = —2 (x = 1) + 223 + 2x2 + Cx + G, (4.29)
The unknown integration constants C; to C, can be determined by establishing the

system’s border conditions and inserting them into the suitable equations:

1. x=0: Wey=0 > (=0
Mgp=0 > =0
2. x =1 wy=0 > CG=-21
3.x=l+c  Quo=F > C=B-F
> Mgg=-Bc+B-F)(+c > p="2H
961=FCI_M
9C.3:(M—Fc)l

6
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After all integration constants and the bearing force B are expressed in terms of M

and F equation 4.28 and 4.29 can be stated as
12 1
Ely W =F [5c2(L+ )| + M [~2c(2l+30)| and (4.30)
_ 1 1
El,p=F [—EC(2l+3C)] +M [gc(l+3c)], (4.31)
resulting in the matrix formulation
1 1
[V_V] 1 gcz(l+c) —gc(2l+36) [F]
¢l Elw —éc(2l+ 3¢c) ic(l+ 3c) | M
L J

T

N

(4.32)

The stiffness matrix K equals the inverse matrix of the compliance matrix N-Z

12 (1+3¢) 6 (2143¢)

c3 (414+3¢c) c?(4143¢) (4.33)
6:(21+3¢) 12 (I+c) |’

c? (4143c¢) ¢ (41+30)

K=N1!=El,

containing the stiffness coefficients summarized in Table 4-3.

Stiffness Matrix Coefficients

" 12 (1 + 3¢)
11 c3 (41 + 3¢)

6 (21 + 3¢)
ki = ko "~ c2 (4l + 30)

12 (1l +c¢)
ko c (41 + 3c¢)

Table 4-3: Stiffness matrix coefficients

All constants necessary to solve the free vibration problem of the overhung rotor can

now be calculated in MATLAB (see Appendix).
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Next, the four eigenfrequencies of the system are computed for a speed range from
N =0 rpm to N =3000 rpm by solving equation 4.17. The resulting Campbell-

Diagram is shown in Figure 4.7.

Campbell-Diagram of Analytical Solution

150_,,,,,,“““........:.....,,,,,.,,,,,,““E ..................... e e ;
— 1x speed : : I . :
2nd BW & FW mode : : : : K
15t BW & FW mode : : : : P
I | T T T R —
L : e 5
- L z z
o et s H 4
g — ! ] }
S il g ] !
3 T —— : ] :
o —_—— : :
£ A e ;
: = : : T
5 : - S
o ] :
"] i i l l '
0 500 1000 1500 2000 2500 3000

Rotor Speed [rpm]

Figure 4.7: Campbell-Diagram of Analytical Solution

The critical speeds occur at 750 rpm and 1300 rpm, when the speed of the rotor passes

the first horizontal and vertical mode.

4.2 FE-Calculation in ANSYS Classic

For the modeling of the simple overhung rotor in ANSYS Classic, the geometry
of the rotor’s disc and shaft are discretized with beam elements. A line model is used as
basic geometry, while the cross-section information of shaft and disc is defined by using
two different sections. This cross-section information is assigned to the beam189
elements before the actual meshing procedure. Through the meshing, all the
information is applied to the line structure. Note that the density defined for the shaft

is almost zero in order to realize the massless shaft. The support conditions can be
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implemented by constraining the nodes where the bearings are acting. After doing so,
the modal rotordynamic analysis can be started. Therefore commands have to be added
to the modal analysis for the computation of eigenfrequencies for different rotational
speeds and the Stationary Reference Frame has to be activated (see Appendix). The

ANSYS model and the resulting Campbell-Diagram are summarized in Figure 4.8.

Campbell-Diagram of ANSYS Solution

134

Shaft Density ~0 _—

80.4

53.6

= {/’

0 600 1200 1800 2400 2999
300 200 1500 2100 2700
Spin velocity (rpm)

Frequency (Hz)

Figure 4.8: ANSYS model and Campbell-Diagram of ANSY'S Solution

4.3 Multibody Simulation in ADAMS

The multibody analysis of the flexible rotor in ADAMS requires the
orthogonalized Craig-Bampton modes of the flexible structure. Because the rotor disc
can be considered rigid, only the mode shapes of the flexible shaft are needed.
Therefore the ANSYS-ADAMS interface is used. Before the modal analysis of the
massless shaft is performed, the interface nodes and the number of modes to extract
must be defined, and all forces and constraints on the model must be removed. In the
case of the overhung rotor both nodes where the bearing forces are acting and the node

where the disc center is connected to the shaft are defined as interface nodes. The
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resulting modal neutral file (.mnf) of the structure can then be easily imported in
ADAMS and is automatically aligned in the x-y-z global coordinate system as it was

modeled in ANSYS.

T THORSION_SPRING_1 stosce
PRty =

Figure 4.9: ADAMS model with flexible shaft and rigid rotor

Next, the rigid disc is modeled according the assumed geometric data, and
connected through a fixed joint to the interface point of the flexible shaft. The bearing
constraints are realized via point motions which block the translational DOF. The
actuator for the rotating motion and the flexible shaft are connected by a very stiff
torsion spring and the rotational speed is defined through a general variable. Despite
the coupling between the actuator and the flexible shaft, the rotational speed of the
flexible body must be defined separately to assure that the rotating motion of the shaft
follows the motion of the actuator. For the acquisition of the MBS Campbell-Diagram
eleven simulations are computed with an increasing rotational speed starting from 0 Hz
in 5 Hz steps until 50 Hz. Each simulation runs for 5 seconds followed by an eigenvalue
calculation in order to get the eigenfrequencies of the system. Figure 4.10 shows the

resulting diagram.
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Figure 4.10: Campbell-Diagram of ADAMS solution

4.4 Comparison of Analyses

After all eigenfrequency analyses have been carried out the results

FE-simulation, the MBS-simulation and the analytical solution are plotted.

Eigenfrequencies w [Hz]

150

-
=
=

w
=]

Comparison of Eigenfrequency Analyses

1% speed

— ANSYS Solution
ADAMS Solution

Analytical Solution

i
0 500

i I i i i
1000 1500 2000 2500 3000

Rotor Speed [rpm]

Figure 4.11: Comparison of eigenfrequency analyses
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Figure 4.11 shows clearly that all first backward (BW) and forward (FW) modes are
identical. The second BW and FW mode shapes of the ADAMS and ANSYS solution
are also identical but deviate slightly from the analytical solution (error ratio = 2%).

In the next step, mass is added to the flexible shaft. Obviously the resulting

eigenfrequency change a little but the MBS and FE solution are alike again.

4.5 Eigenfrequency Analyses with Isotropic
Bearing Stiffness

In this section an eigenfrequency analysis will be performed on the overhung
rotor model with isotropic bearings. The fixed bearing and the floating bearing of

Figure 4.1 are exchanged for bearings with isotropic stiffness (Figure 4.12).

Rear End Bearing Front End Bearing

Figure 4.12: Overhung rotor model with isotropic bearings

The geometrical parameters are the same as noted in Table 4-1, while the added
horizontal and vertical bearing stiffnesses are assumed with 1e N/m. For the
realization of the linear bearing stiffness in ANSYS the COMBI214 element is applied.

It has longitudinal as well as cross-coupling capability in 2-D applications.
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Figure 4.13: Function principle of the COMBI214 element?*

The COMBI214 element is a tension-compression element with up to two
degrees of freedom at each node: translations in any two nodal directions (x, y, or z).
There is no bending or torsion considered. The stiffnesses k;; and ks can be defined
through “real constants”. Unfortunately the element is not available in the ANSYS
Classic GUI and must be entered in code form.

The COMBI214 element has to be defined between two nodes. In case of the
overhung rotor FE-model two Keypoints are defined at the bearing positions on the
shaft center line, and 2 additional Keypoints are offset in z-direction to them. Note
that the Keypoints on the shaft center line have to be used also by the BEAMI189
elements because otherwise no connection between them and the COMBI214 is

established (Figure 4.14).

COMBI214 Elements

Figure 4.14: ANSYS model with COMBI214 elements

# ANSYS Help
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In ADAMS, the isotropic bearings are implemented by removing the point
motions and constraining the interface points of the flexible shaft with linear springs

(Figure 4.15). The linear spring stiffness can be assigned by modifying the stiffness

coefficient of the spring element.

.U.UI.F.I.IJ_I!é:.- :

Figure 4.15: ADAMS model with linear springs
It has to be noted that in both, the ANSYS and the ADAMS model, the translational
movement in the direction of the rotation axis is also constrained.

After performing the same modal analyses as described in chapter 4.2 and 4.3

the resulting Campbell-Diagrams are compared again.

A s s e e e e e e B e e e e B S e e
= 1x speed
— ANSYS solution
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=
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Figure 4.16: Comparison of eigenfrequency analyses with isotropic bearings
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Figure 4.16 indicates that the change of eigenfrequencies over increasing rotor speed is
the same in ANSYS and in ADAMS. The critical speeds can be identified at 735 rpm
(12.25 Hz) and 1280 rpm (21.3 Hz). In order to support the results obtained with the
eigenfrequency analyses, an unbalance response plot will be calculated in both

applications.

Comparison of Unbalance Response

Possible vibration excitations of a rotating structure caused by the rotating
velocity w are most likely from the rotor’s unbalance or coupling misalignment. While
the unbalance excites a frequency spectrum from 1x the rotational speed, the coupling
misalignment excites a spectrum of 2x the rotational speed. Because the maximum
admissible unbalance force of rotating machinery is usually specified in design rules, it
is common to do an unbalance response study during the design phase of a machine.

Due to the periodicity of the unbalance force, a harmonic analysis can be carried
out in ANSYS. As stated in chapter 3.1.2 a harmonic analysis is a resonance study
when the system is subject to cyclical loads (f) = Fe/®t). This analysis technique
calculates only the steady-state, forced vibrations of a structure. The transient
vibrations, which occur at the beginning of the excitation, are not accounted for in a
harmonic response analysis. Generally, all loads as well as the structure’s response vary
sinusoidal at the same frequency.

A rotational unbalance is defined as:

U=m,e (4.34)
where m, is the eccentric mass and e is the distance between the eccentric mass and

the rotation axis (Figure 4.17).
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Figure 4.17: Unbalance force

Due to the rotating motion, the resulting unbalance force can be described in a

x-y-coordinate system.

cos wt ) (4‘35)

fi, =me w? ( )

® sin wt
The unbalance for the analysis will be assumed with U=0.018 kgm. In ANSYS the
complex rotating force is defined by applying U to the node at the disc’s center point

in x- and y-direction. After doing so, the harmonic analysis can be started (see

Appendix).

Figure 4.18: Overhung rotor model with applied unbalance force
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In order to obtain the unbalance response in ADAMS with a transient analysis,
an eccentric mass will be added to the disc. The eccentricity is assumed with
e=0.25 m. Together with the given unbalance used in ANSYS of U=0.018 kgm, the
unbalance mass results in m=0.072 kg. This mass is modeled as point mass, which is
attached to the rotating system through a rigid joint on the interface node at the disc

center (Figure 4.19).

Figure 4.19: ADAMS model of overhung rotor with unbalance mass

As mentioned before, the harmonic analysis in ANSYS doesn’t consider the transient
vibrations, which occur at the beginning of the excitation. Thus, the transient run-up
in ADAMS is performed stationary. This means the rotor gets a particular speed
between 0 and 50 Hz assigned and its dynamic response due to the assigned rotational
speed is simulated for 5s until a steady-state is reached. The resulting peak values of
the cyclical displacements in the radial directions are measured at the front end bearing
and can be evaluated. The step width for increasing the rotational speed is 0.5 Hz.
After all displacement values are gathered, the results of the simulations in the time

domain can be compared to the harmonic analysis.
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Figure 4.20: Comparison of unbalance response

The unbalance response function in ADAMS and ANSYS slightly diverge in the
resonance region in terms of amplitude and frequency due to different damping
principles in the computation methods. Further, the unbalance response computed in
ADAMS shows its peak at 21.4 Hz, exactly where it was identified in Figure 4.16. An
unbalance force cannot excite a backward mode when the system contains isotropic
bearing stiffness. Consequently, the unbalance response plot (Figure 4.20) solely shows
a resonance peak when the forward mode is excited. Overall, both calculations show

similar results and converge before and after the resonance region very good.
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4.6 Eigenfrequency Analyses with
Anisotropic Bearing Stiffness

Regarding the examination of the influence of anisotropic bearing stiffness on
the dynamic behavior of the rotor-bearing system, the horizontal stiffness of the front
end bearing (Figure 4.12) is changed from 1e¢” N/m to 3¢” N/m. All other bearing
stiffnesses are held constant. The following diagrams show the comparison of the
eigenfrequency analyses in ADAMS and ANSYS, as well the evaluation of the

identified critical speeds with the harmonic analysis in ANSYS.

Comparison of Eigenfrequency Analyses with Anisotropic Bearing
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1x speed : : :
ANSYS solution | : :
""""" ADAMS solution |:
) ] ; : H ;
L. : : ! H :
P e e e e e e B PR * :
@ : : :
= : ; :
o 2 H H
£ + i :
s . 4 :
=2 H H
2 i ; i
i 3 ; :
w i i ' :
! 3 ; [ :
: ————— ! : |
 R———y : . . -
0 ] | - [ i 1 1 ]
0 500 ] 1000 | 1500 2000 2500 | 3000
| | Raotor Speed [rpm] |
| I |
| | |
x 10 | Harmonic Analysis with Anisotropic Bearing in ANSYS |
18 g T
18 b el
| |
14 gee-
12— Ao
4
E
€
Sos
&
S 086
04
0.2
0
Rotor Speed [rpm]

Figure 4.21: Eigenfrequency analyses with anisotropic bearings

The Campbell-plot of both, the FE and the MBS computation, show identical results
and the same characteristics. The separation of the mode pairs due to the unequal

stiffness of the front end bearing is reflected correctly in both simulations. Because the
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backward mode of the second mode pair has shifted downwards, three critical speeds
occur. The unbalance response plot of harmonic analyses in ANSYS shows peak
amplitudes exactly at the critical speeds. Apparently, an intersection of the rotor speed

with a forward mode leads to higher vibration amplitudes as opposed to the backward

modes.
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5 Simulation of Roller Bearings

The highly non-linear load distribution and the internal clearance in roller
bearings have a significant impact on the dynamic behavior of the rotor-bearing
system. Thus, the representation of the bearings as linear or non-linear springs or
bushings is a strong abstraction of reality. By substituting the bearing system with this
simplified modeling, the complex contact mechanics is generally modeled insufficiently,
which often leads to conflicting data results between simulation and measurement. The
first part of this chapter aimes to examine the internal load distribution of a roller

bearing before conventional and new dynamic simulation approaches will be reviewed.

5.1 Static Load Distribution in Roller

Bearings

The internal load distribution in roller bearings will be examined by assuming a
pure radial load R applied on an ideal single-row bearing. Under the assumption of a
zero clearance bearing with elastic rollers, the load distribution on the individual roller
elements results from their elastic properties. As illustrated in Figure 5.1, the highest
load acting on the rolling elements is in plane with the applied external force.
Considering a static loading, the sum of all vertical load components of the stressed

rollers equals the radial force (R = }; FR(i)).
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Figure 5.1: Internal load distribution in an ideal radial bearing

The loads carried by rolling-element bearings are transmitted through the rolling
element from one race to the other. Apparently, the magnitude of the load carried by
an individual rolling element depends on the internal geometry of the bearing and the
location of the element at any instant.

The complex contact mechanics of elastic bodies was first described by Heinrich
Hertz in 1882. He defined analytical expressions for stress maxima in terms of load for
elastic bodies. The Hertzian law states that the shape and size of a developing contact
area depends on the applied load, the elastic properties of the materials and the
curvatures of the surfaces. The latter causes either a point or a line contact. Generally,
the contact between two spheres will start with a point contact and through increasing
load an elliptical contact area will develop, while the contact between two cylinders
with parallel axes (Figure 5.2a) will result in a line contact and transform into an

rectangular contact patch.
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Figure 5.2: Contact between two cylinders with parallel axes (a)

and resulting Hertzian stress (b)

For the example of the two cylinders pressed together in Figure 5.2b, the maximum

Hertzian stress is defined as:

E' Fy
5. — 5.1
on JZan(l—vZ) (5:1)

where v is the Poisson’s ratio, the combined young’s modulus is

,_ 2EE, 52)
E\+E, '
and
r_r. 1 (5.3)
R nn n,

By definition, the Hertzian stress is a compression stress on the contact area, with a
resulting force equal to the acting normal force. Because the compression stress
disappears at the edges of the contact patch and the stress maxima appears at the

acting line of external force, an elliptical compression stress distribution over the width

- 063 -



University of Applied Sciences Wiener Neustadt FH }}

Faculty of Mechatronics and Microsystems Engineering

Wiener Neustadt

of the contact area can be assumed. In general it is correct to conclude, that the bigger
the contact area is due to the curvature, the less Hertzian stress occurs.

In addition to Hertz, Lundberg and Sjévall determined the contact deformation
for an ideal line contact condition (Equation 5.4), while Palmgren developed a contact
deformation equation (Equation 5.5), which also takes the crown of the roller into

consideration [12].

2Fy (1 —v?) mE' 12
= n = (5.4)
nE'l Fy(1—-v)(1 +y)
F. 09
— -5 _N
§=384 x 107 —z (5.5)

Having an equation for the elastic deformation, a load-deflection relationship can be

formed. In the general form it can be written as

F =K;6/ (5.6)
in which j=1.5 for ball bearings and 1.0 for roller bearings. By reforming this

relationship the bearing stiffness can be calculated for any assumed radial load.

Radially loaded Roller Bearings with Radial Clearance®®

In reality, rolling element bearings are not as ideal as assumed in the previous
case. Virtually all of them are designed with a specific internal clearance in order to
provide free rotation of the rolling elements, a compensation for thermal expansion and
an optimum load distribution. Clearance, no matter how large, adds more non-linearity
to the load-deflection relationship. A radially loaded roller bearing with a diametral
clearance of 2 X ¢, is illustrated in Figure 5.3. In the concentric position shown in
Figure 5.3a. a uniform radial clearance between the rolling elements and the races of c,

is evident.

% cf. [18] p.21ff
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Figure 5.3: Radially loaded rolling-element bearing. (a) Concentric arrangement.

(b) Initial contact. (c) Interference.
The application of a small radial load (G) to the shaft (or the shafts weight) causes the
inner ring to move a distance ¢, before contact is made between a rolling element
located on the load line and the inner and outer races. At any angle, there will still be
a radial clearance ¢ that, if 2 X ¢, is small as compared with the radius of the tracks, it

can be expressed with adequate accuracy by:

¢ =(1-cosy)c, (5.7)
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On the load line where ¥ = 0, the clearance is zero, but when 1 = 90° the clearance
retains its initial value of c,. The application of further load (F) will cause elastic
deformation of the rolling elements and the elimination of clearance around an arc of
2y. If the interference or total elastic compression on the load line is &pax, the
corresponding elastic compression of the roller &y, along a radius at angle 1 to the load
line will be given by:
8y = (8max cosP — ¢) = (8max + ¢) COSY — ¢ (5.8)

This assumes that the races are rigid. Now, it is clear from Figure 5.3¢ that(6y.x + ¢;)

represents the total relative radial displacement of the inner and outer races. Hence:

8y = b cosy —c, (5.9)
The relationship between load and elastic compression along the radius at angle ¥ to
the load is given by equation 5.6 as:
Fy = K;8,) = K;(8 cosyp — c,) (5.10)
For static equilibrium, the applied load (F. =G + F) must equal the sum of the

components of the rolling-element loads parallel to the direction of the applied load.
E, =ZF¢ cos¢=KjZ(6cos¢—cr)j cos i (5.11)

Through the analysis of the static load distribution under consideration of the
radial bearing clearance, it becomes apparent that the load-deflection relationship
shows strong non-linear behavior. Different stiffness diagrams in x- and y-direction
must be taken into account when horizontal and vertical forces are acting. For
example, if the shaft’s weight already eliminates the radial clearance in y-direction due
to gravity, the stiffness in y-direction will be much higher than in x-direction, where

the load has to overcome the existing clearance first.
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5.2 Modeling Approaches for Roller Bearing

Dynamics

Rolling element bearings are systems in which various parts are interacting with
each other. The past section introduced the complexity of load-deflection relationship
without considering dynamics. In order to examine the dynamics of mechanical systems
containing rolling element bearings and further the influence of these on the system, it
is necessary to have a model which additionally takes the kinematics of the elements as
well as dynamic loading into account. Increasing scientific research addressing the
dynamics of roller bearings, especially ball bearings has been carried out since the
Lundberg-Palmgren life prediction theory, published in 1947. An extensive amount of
information and data on the performance of roller bearings is provided in
manufacturers’ catalogs. Most of these data is empirical in nature, obtained from the
testing of products or from information in various standards publications (ANSI, DIN,
ISO, etc.). Unfortunately, these information pertain only to bearing applications
involving slow-to-moderate speed, simple loading, and nominal operating temperatures.
Tedric A. Harris [12], a former managing director of the Engineering & Research
Center at SKF and professor of mechanical engineering at the Pennsylvania State
University, published in his book “Rolling Bearing Analysis” the principles of roller
bearing design and operation. It provides the basic knowledge of roller bearings and
contains also information for complex bearing applications and bearing performance
analysis.

By reviewing scientific papers addressing the modeling of roller bearing
dynamics it can be observed that the majority of them rely on the formulas presented
by Harris and the Hertzian contact theory. Furthermore, the papers referring to

nonlinearities in bearings can be basically grouped into the three major causes of
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nonlinearity. These are the contact between the elements, the bearing clearance and
the waviness or defects of the rings. The latter is the source for bearing induced
vibrations which occur at a fraction of the nominal speed of the rotor. A detailed
analysis of the waviness effects would go beyond the scope of the paper and is therefore
assumed to be ideal for the bearing application in the refiner simulation.

The main emphasis of this work lies on adding bearing nonlinearities to the
flexible multibody model through consideration of clearance and complex element
contacts. Tiwari et. al. [13], [14] studied the effect of the ball bearing clearance on the
dynamic response of a rigid rotor with a theoretical simulation model based on the
Hertzian contact formulation and the ball bearing kinematics described by Harris. In
[13], the varying compliance effect was the only excitation in the simulation model,
whereas, in [14], unbalance was also included. The authors concluded that the radial
internal clearance is an important parameter for determining the dynamic response, as
they observed that with increase in clearance the regions of unstable and chaotic
response become wider. Furthermore, the peaks developed from their simulation and
experimental results shift down with the increase in clearance, which points to a
decrease in the dynamic stiffness of the bearing. They also noted that the decrease in
clearance increases the linear characteristics of the system.

Kappaganthu and Nataraj [15] analyzed a theoretical deep groove ball bearing
model similar to Tiwari et al. and concluded that clearance is a practically important
source of nonlinearity and has to be modeled accurately and in detail.

Mourad et al. [16] performed a theoretical and an experimental nonlinear
stiffness ball bearing study in static and dynamic mode. Their theoretical study was
also built up on the Hertzian contact theory. By comparing their analytical results with
the ones from the simulation, they observed strong similarities but they also draw the

attention to difficulties related to mechanical bearing testing devices.
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In recent years the study of roller bearings became more and more influenced by
the FEA. Though, the dynamic FE-simulation presents itself as computation intensive
due the multitude of elements a roller bearing consists of. Combined with a rotor
numerous of nonlinear contacts exist which rise the computation time more
significantly. As a result, there is no procedure right now, how to simulate a high
spinning dynamic system containing roller bearings to a satisfying extend with the
FEA.

Scientific approaches to simulate roller bearing dynamics were also made by
applying multibody simulation techniques in MSC/ADAMS. Fritz, Basler and Seemann
[17] developed a ball bearing subroutine in ADAMS which allows to attach other parts
to it. They modeled the bearing with several rigid elements (balls, races and cage), and
connected them by constraints and forces. On basis of [18] they approximated the
contact by a Hertzian contact. Unfortunately their model was only validated against a
quasi-static model and not with measurements.

The first major commercial software provider which has recently developed an
add-on plugin for its application is MSC. The new roller bearing plug-in for ADAMS is
made to support the application engineer when it comes to the consideration of the
bearing nonlinearities in a multibody simulation model. The next section will examine
the necessary background in order to apply it to the multibody model of a refiner’s

rotating unit.

- 069 -



University of Applied Sciences Wiener Neustadt FH }}

Faculty of Mechatronics and Microsystems Engineering

Wiener Neustadt

5.3 MSC/ADAMS Roller Bearing Plug-in

The ADAMS Bearing AT (Added Toolbox) is designed to enable fast and
accurate modeling of rolling element bearings. Fast modeling is possible by automated
design, whereas accuracy is achieved by fine FE-meshes for deriving the compliances
between ring and rolling element. Thus, the Bearing AT needs to access NASTRAN
(FEA software by MSC) which means that an application of the Bearing AT
automatically requires an installation of NASTRAN.

Upon completion of the installation of NASTRAN and the Bearing AT, the
plug-in has to be activated in ADAMS under the main tab tools = plugin manager.
After doing so, Bearing AT should be a fixed tab in the menu bar. Currently ball,
roller and needle bearings are implemented in the plug-in. All input data for the
bearings is in units of newton, millimeter, kilogram and seconds. However, the user can
work with different units in ADAMS.

The modeling process consists of several steps as illustrated in Figure 5.4.

Step 1 Step 2
Data input Compliance AS;ep 3
Meshing & Nastran analysis ams

g —

—> Nastran

Figure 5.4: Bearing modeling process

In the first step the geometric and material data which defines the rolling element
bearing can be inserted through particular masks for roller, rings and material, and are

stored in the roller property file (*.xpf). Depending on the bearing type, ‘x’ will be
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replaced by ‘b’ for a deep groove ball bearing, ‘r’ for cylindrical roller bearing and ‘n’
for needle bearing. After completion of all inputs, the user can proceed with the
meshing. The built-in mesher of ADAMS Bearing AT reads the roller property file and
creates NASTRAN input files (*.dat). Thereby, it utilizes symmetry in modeling the
contact problem and creates only a quarter model of the rolling element and a section
of the ring for inner and outer race. In a normal application, these NASTRAN input
files are automatically submitted to a Nastran SOL101 analysis. The results of these
analyses are stored under NASTRAN punch files (*.pch).

In step two the compliances of the rolling element against the ring are computed
by a high performance contact algorithm. The contact processor takes the stiffnesses
calculated in step 1 into account and builds up contact maps between the roller and
the rings, which are used for interpolation in ADAMS. The user defines a maximum
penetration for inner and outer ring, which represents the overlap between the rigid
roller and the rigid ring. The user inputs are stored in the *.xcf file and as soon as the
processing is started, a .log file will be created. The roller is than pushed in 20 steps

into the ring to the maximum value of penetration (Figure 5.5).

Pitch centre
diameter

|
penetration |

Figure 5.5: Compliance analysis

For ball bearings, the first compliance analysis starts in pure radial direction;
subsequent analyses are rotated by 5 degrees till the direction of motion falls outside

the race.
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The compliance analysis for the outer and inner ring is in principle identical. The
resulting compliance forces are stored in the *.xif file for the inner race and the * xof
file for the outer race.

After step 1 and 2 are completed successfully, the preprocessing is finished and
the bearing can be implemented. The Bearing AT allows the user now to adjust the
number of rollers compared to the input for the preprocessing and to add the total
radial clearance. It has to be noted that the reference frame is coincident with the
bearing coordinate system. The z-axis of this coordinate system represents the

rotational axis.

Figure 5.6: Roller bearing created with Bearing AT

Damping is also considered in the model. It is applied per ball, when the compression

of the ball is increasing. The damping force is defined according to Equation 5.12.

Damping Force = Ball Load X Compression Velocity X Damping Factor (5.12)
After the simulation a results file (*.res) of the bearing is created, which contains the
acting forces and torques on the shaft as well as the movements of shaft. The request

file (*.req) in contrast, contains the roller positions and loads.
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6 Vibration Analysis of Rotating
Machinery

In general a run-up or coastdown analysis is performed in order to analyze the
vibration behavior of a rotating machine where vibration levels are changing with speed
or time. The analysis of run-up or coastdown processes focuses on critical speeds, speed
orders, instabilities of the rotor-bearing system and the detection of large speed ranges.
The data acquisition is carried out by measuring accelerations in respect to the rotating
speed of the machine.

The data analysis is usually attained by using the Fast Fourier Transformation
(FFT) to transform the acquired acceleration signal from the time domain into the
frequency domain. In general, the FFT assumes a stationary condition regarding
amplitude and frequency and contains no time information of the signal. In case of a
non-stationary signal, like the vibration change due to a speed change within the
examined timeframe, the original spectral component will be diluted over multiple
spectral lines. Instead of one intense spectral line, a number of lines with less intensity
will emerge and be distributed over the frequency band. However, to overcome this
problem a few analyzing methods have been established. In the following the two most

suitable methods for the vibration analysis of the Andritz refiner will be introduced.

6.1 Cascade Analysis

A cascade analysis can be used to observe frequency changes versus rotational
speed. The result is a cascade plot which consists of a series of spectra acquired at
consecutive speeds, either increasing or decreasing (Figure 6.1). The rotational speed

functions as the reference input of each, single acquired spectrum.
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Figure 6.1: Cascade plot of a spectral range

Figure 6.1 shows that the speed independent structure resonances will occur
within the same frequency channel when a speed dependent data acquisition is carried
out. The speed orders run angular to them as they change for each speed. Order is
defined as the normalization of the rotational speed. The first order is the rotational
speed and order n is m times the rotational speed. In most cases the first order will be
the most distinctive one. The first order and its subsequent harmonics are excited by
different non-idealities of the dynamic system. For instance, first order components are
excited through the unbalance of rotating parts and second order components are
mostly excited by the shaft’s misalignment. When a speed order crosses a structure
resonance a resonance peak appears which indicates a critical speed of the machine.

Cascade plots can be acquired either manually or automatically. If the rotor
speed of the machine can be manually held at specific speeds for sufficient time to
acquire spectrum data, a cascade plot can be constructed consisting of spectrum plots
in a multiple or stacked spectra format. Special software programs are available that
provide the capability to record spectra during coastdown and display the data in a
cascade plot format. Since significant time may be required to obtain a large number of

spectra, the coastdown time of the machine must allow for data acquisition.
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Another way to identify speed dependent vibrations is the spectrogram. It can
be interpreted as the top view of the cascade plot, whereas the value of the amplitude
is indicated with different color shades. The spectrogram represents a complete, two

dimensional display of the course of spectra over time.
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Figure 6.2: Spectrogram

Overall, cascade plots and spectrograms can reveal a resonant frequency too
close to running speed, capture transient process disturbances, and record vibration

magnitudes in relation to varying running speeds.

6.2 Order Analysis

Order analysis is a further powerful tool to study, design and monitor rotating
or reciprocating machinery for which the rotational speed changes over time. Thereby,
the time signal is provided digitally from independent, equidistant momentary values
which are proportional to the rotation angle. The result of an applied FFT on this
signal is a spectrum in dependence to an equidistant order axis. Therefore, the accrued
spectrum is referred to as order spectrum. In most cases the speed reference is the

rotational speed of the rotor.
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Figure 6.3: Rotating sampling rate?®

Basically two methods have established for order analysis:

1. The data acquisition is triggered externally. This means, that the sampling points
are controlled for instance by an incremental encoder, which delivers a constant
number of impulses per rotation. This method raises particular requirements to the
data acquisition hardware but results in a relative easy way to develop the spectra.
A regular FFT can be used, which uses the sample points correlating to the rotor’s

rotation instead of the time (Figure 6.4).

__ Trigger Positions

Lnn- External
4 Sampling
1:S= N f!ci
Analog/
> } — Digital-  }————
- Converter
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Figure 6.4: Synchronous sampling?”

% ¢ f. [23]
27 [19], p. 270
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2. A time triggered data acquisition is executed with a high frequency rate, while the
speed information is recorded simultaneously. Subsequently, the time signal is
manipulated computationally by using the independent speed channel for the

interpolation of a new speed dependent signal.

An order analysis can also be displayed with a cascade plot. As shown in Figure 6.5,
the individual speed orders are the straight running peak rows, whereas the structure

resonances are running elliptical.

Orders

15t order resonance

Corresponding
2™ order resonance
at half speed

g - —-
[ Y

Harmonic Orders

Figure 6.5: Cascade plot of a FFT order analysis?®

2 [19], p. 274
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7 Study Structure Overhung

Refiner

The examined refiner is a typical single disc (SD) refiner used in thermo-
mechanical pulping processes. In refiner mechanical pulping, the raw material — usually
in form of wood chips — is ground in the narrow gap between two metal discs with a
grooved pattern. At least one of the discs is rotating with high speed. Figure 7.1
illustrates the principle involved.

The core components of a SD-refiner are the rigid and the rotating disc, both
equipped with grinding plates on the face side. One of the discs can be axially adjusted
in order to control the gap between the two discs. The gap is a key parameter within
the refining process and is in the range of 0.1 — 2 mm, depending on pressure and type
of wood. The axial movement is usually realized through hydraulic pistons or an
electric motor with worm gear. Concurrently, the required axial grinding pressure is
generated.

rotating rigid

disc \ disc

Grooved
pattern

Figure 7.1: Principle of mechanical pulping with SD refiners
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When entering into the refiner through the opening in the right disc in the
picture, the chips are accelerated by the large bars near the center of the fast-spinning
opposite disc. The chips start to rotate with the revolving disc and are simultaneously
broken up to smaller fragments and fibers due to the heavy mixing and the abrasive
action of the bars of the opposite disc. When these wood particles start to rotate with
high speed, a considerable centrifugal force starts to act on them. Because of this
centrifugal force, the wood raw material is pressed outward through the narrowing gap
between the discs and is refined between the finer and finer structure of the grinding
plates to a pulp of desired fineness. The residence time in the refining zone is less than

a second.

7.1 Rotordynamic Analysis with linear

substitute stiffness

The information about the rotordynamic behavior of the refiner is from
significant importance for the machine’s design. Especially critical speeds can have a
negative impact on the operation when they are within the range of the operational
speed. This chapter concentrates on the transformation of the ANSYS model to
ADAMS, where the implementation of the newly developed subroutine for rolling

element bearings (see chapter 5.3) can be realized with little modeling effort.

7.1.1 Analysis in ANSYS Workbench

First the refiner is modeled with ANSYS Workbench, similar to the modeling

procedure of the simple overhung rotor in chapter 4.2.
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CAD Model Rotating Unit FE Model Rotating Unit
Rotating Disc Point mass (coupling hub)
Coupling hub \
= Linear substitude stiffness

(tapered roller bearing)

Tapered Roller Bearing /f b 5

[> Shaft (line model))

Point mass with inertias

Thrust bearing (Thrust bearing collar)

collar Cylindrical Roller

Bearing Linear substitude stiffness

(cylindrical roller bearing)

Figure 7.2: Transformation of the rotating unit from CAD-model to FE-model

The refiner shaft is modeled as a line model where each section has a different
circular cross-section according to the geometric properties of the shaft. In doing so, the
shaft can be discretized by using beam189 elements. The geometrical information of the
different cross-section is assigned to the beam elements before the actual meshing
procedure. The geometry of the rotor disc is imported as .step file from INVENTOR
and meshed with solid186 elements. Refiner disc and shaft have the same material
properties (steel; E=2.0 e"' N/mm? p=7850 kg/m?* v=0.3) and are connected through
a rigid joint.

The influences of the coupling hub and the thrust collar of the thrust bearing,
which are also parts of the rotating unit, are considered with mass elements, whereby
inertias around all three coordinate axes are additionally defined for the thrust collar.

The support condition of the rotating unit can be implemented by joining the
shaft to ground with two combi214 elements at the positions of the two radial bearings.
Each element has stiffnesses defined for the two directions lateral to the shaft’s main
axis. These stiffnesses are a combination of the bearing stiffnesses provided by the
manufacturer and the frame stiffnesses derived from the FE model of the support
frame. Using linear stiffnesses for the frame as opposed to the entire model of it is

feasible and leads to significant advantages regarding simulation time. In ANSYS
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Workbench, the combi2l4 element is assigned to a longitudinal spring by using
commands. The stiffness properties given for the cylindrical roller bearing and the

tapered roller bearing are summarized in Table 7-1.

Cylindrical Roller | Tapered Roller
Bearing® Bearing
Vertical Stiffness [N/m] 2.56 €’ 6.0 ¢’
Horizontal Stiffness [N/m)] 5.4 ¢ 6.0 ¢’

Table 7-1: Bearing properties provided by manufacturer

As described in chapter 5.1, rolling element bearings do not have a constant stiffness
for the entire circumference. The stiffness of the bearings depends to a high degree on
the applied load and the bearing clearance. Table 7-1 shows a significant higher
stiffness rate in vertical direction for the cylindrical roller bearing. This difference
results because the weight of the rotating unit distributes the static load to the lower
half of the bearing and eliminates the bearing clearance as illustrated in Figure 5.3. For
the tapered roller bearing a simply isotropic stiffness is assumed as the bearing is pre-
stressed. This assumption is acceptable because the superposition principle is applicable
for the radial force and the axial force of the pre-load. The resulting force eliminates
the complete radial clearance and all rolling elements contribute to the load
transmission.

The stiffness data for the support frame is obtained by applying a general force
at the bearing positions in the FE model and measuring the resulting displacements.
Out of the linear relationship between F = K - U, the stiffness can be calculated. The

frame is modeled with a young’s modulus of Ej.e = 1.7 €' N/mm? for cast iron.

2 One-sided bearing clearance of 110pum
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Frame Stiffnesses out of Finite Element Model
Horizontal Stiffness Feed End Bearing [N/m] 6.1¢€°
Vertical Stiffness Feed End Bearing [N/m] 8.5 ¢*
Horizontal Stiffness Drive End Bearing [N/m] 1.2 ¢
Vertical Stiffness Drive End Bearing [N/m] 3.1¢

Table 7-2: Frame stiffness out of finite element model

As all linear substitute stiffnesses for the bearings and the frame are available, the
combined stiffness can be calculated. Therefore the springs are connected in series as
illustrated in Figure 7.3. The resulting combined stiffnesses for the feed end (FE) and

the drive end (DE) bearing are shown in Table 7-3.

Figure 7.3: Combining of bearing and frame stiffness

Combined Bearing Stiffnesses
Horizontal Stiffness Feed End Bearing FEu[N/m] 2.86 €*
Vertical Stiffness Feed End Bearing FEy [N/m] 6.38 €*
Horizontal Stiffness Drive End Bearing DEg [N/m] 1.0 ¢
Vertical Stiffness Drive End Bearing DEv [N/m] 2.04 ¢’

Table 7-3: Combined bearing stiffnesses
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After the combined bearing stiffnesses are defined for the combi2l4 elements,
the geometry is meshed and the kinematical border conditions are defined. In case of
the refiner model, the displacements along the rotating axis are constrained.
Subsequently the rotordynamic analysis can be started. Thus, commands have to be
added to the modal analysis for the computation of eigenfrequencies for different
rotational speeds and the Stationary Reference Frame has to be activated.

The course of the first four eigenfrequencies of the rotating unit is displayed in the

Campbell Diagram in Figure 7.4.

Campbell Diagram ANSYS with linear stiffness

— 1x speed

— 1BW mode I
— 1FW mode

—2BW mode
—2FW mode

Eigenfrequencies w [Hz]
——

Speed[Hz]

Figure 7.4: Campbell Diagram of first 4 eigenmodes out of ANSYS modal analysis

7.1.2 Analysis in ADAMS

In order to perform a multibody analysis of the rotating unit in ADAMS the
flexible structure of the shaft has to be integrated in the MBS enwvironment. The rotor

disc can be considered rigid and only the mode shapes of the flexible shaft are needed.
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Hence, the rotor shaft is modeled in ANSYS Classic the same way as in ANSYS
Workbench. A line model is created and the cross-section information is assigned
through beam189 elements. Before the ANSYS-ADAMS interface is used to create the
modal neutral file (.mnf), which contains the free-free eigenmodes of the structure, the
interface nodes have to be defined. It is important to specify all points where other
parts are acting, forces are applied and constrains are set. For the examined refiner,
these points are the center of the refiner disc, the center of the thrust collar, both
points where the FE- and DE-bearing are acting and the connection to the coupling
hub. For the computation of the .mnf-file the number of eigenmodes to extract is set to
20 and it has to be assured that no forces and constraints are defined. The resulting file
of the flexible shaft can then be easily imported in ADAMS and is automatically
aligned in the x-y-z global coordinate system as it was modeled in ANSYS. In order to
consider all dynamic properties of the flexible body, the inertia modeling of the part
must be set to “Full Coupling”. Due to the modeling with beam elements, the shaft

appears as line model.

Thrust Collar —, FE Bearing -
(rigid ring disc) (linear springs) |

Coupling Hub —,
(point mass)
\

Drive \
(dummypart]\ \ |
\
AU, ‘\)

Flexible Shaft —/ Refiner Disc —/
= (linear springs)  (integrated as .mnf) (integrated as step file)
’4

! /. .'"III
s DE Bearing

Figure 7.5: MBS-Model of the rotating unit with linear bearings stiffness

-84 -



University of Applied Sciences Wiener Neustadt FH }}

Faculty of Mechatronics and Microsystems Engineering

Wiener Neustadt

Figure 7.5 shows the MBS model of the rotating unit with linear bearing
stiffnesses. The steps listed in the following describe the modeling process:

o After the flexible shaft is integrated as .mnf-file, the refiner disc is implemented as
.step-file. For the correct positioning of the disc, the disc’s center marker is aligned
with the foremost interface node and rigidly joined to the flexible shaft. By
assigning material properties to the geometric part, the corresponding mass and
inertias are calculated automatically by the program.

e Next, the thrust collar is modeled according the geometric data as a rigid ring disc
and connected through a fixed joint to the designated interface point.

e The bearing constraints are realized via linear springs with constant bearing
stiffnesses according to Table 7-3. They act between the interface nodes and
ground markers.

e The coupling hub is modeled as a simple sphere with the same defined mass of half
the coupling as in ANSYS.

e The actuator for the rotating motion is a dummy part without mass and inertias,
and connected to ground by a revolute joint. The rotating motion is transferred
from the drive to the shaft by a constant velocity joint.

e Despite the coupling between the shaft and the actuator, a rotational velocity
initial condition (IC) has to be defined for the flexible body so that the rotating
motion of the shaft follows the motion of the actuator with little settling time. This
condition basically sets the rotating motion to the same initial rotational speed of
the actuator.

e For simplification reasons, a general variable containing the desired rotational

speed in Hertz is determined and assigned to the drive and the shaft’s IC.
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e The support effect of the thrust bearing must not be neglected. Therefore a point
motion is applied to the interface node of the thrust collar, which constrains the

movement in direction of the rotation axis.

The MBS Campbell-Diagram is acquired through a stationary run-up, whereby an
eigenvalue computation is started for each velocity step. Figure 7.6 displays the

resulting diagram in comparison to the obtained results from the FE-Simulation.

Comparison of Campbell Diagram ANSYS vs. ADAMS
with linear bearing stiffness
160 -

1x speed
140 4 — ANSYS modes 2= 2FW
=== ADAMS modes

120 1

=
<
5 100
8
U ot s i e e - 2BW
=
o
o
5
& 601
w
1FW
40

20 1

Speed [Hz]

Figure 7.6: Comparison of Campbell Diagram ANSYS vs. ADAMS

Through the assessment of the Campbell Diagrams resulting from frequency
analysis in ANSYS and in ADAMS it can be concluded that the dynamic behavior of
the models is identical. Only the 4" mode of the rotating unit shows a slight difference
but as the operating speed only crosses the first and second mode, the small shift is
from little significance.

One very important note in relation to the computation of the linear modes for

rotordynamic problems in ADAMS must be made at this place. The gyroscopic effects
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of the overhung structure only occur when the FORTRAN solver is used. Even though
the C++ solver is very powerful in the time domain it does not include the gyroscopic

effect in the eigenfrequency characteristic correctly.

Simulation Settings for Eigenvalue Computation in ADAMS
Executable Solver FORTRAN
Dynamic Solver GSTIFF 13
Error=1e? Hmax=1e"
Step Size 0.01s

Table 7-4: Simulation settings for eigenvalue computation

As the equality of the ADAMS and ANSYS model in terms of dynamic behavior
can now be guaranteed, the drive mechanism of the system will be modified to fit the
real design condition in the next step. Because the coupling hub allows the shaft to
move in direction of the rotating axis and the drive shaft can only transmit rotational
motion and constrains the translational movements of the shaft’s interface point for the
current model, an alteration of the actuator is necessary. Thus, two massless,
cylindrical parts are added to the system and coupled with a translational joint which

allow the shaft to move back and forward.

Figure 7.7: Modified actuator arrangement
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In the new drive arrangement, illustrated in Figure 7.7, the pink cylinder with the
rotating motion represents the drive shaft which transmits the rotational velocity to
the blue cylinder via a constant velocity joint. The blue body in contrast is coupled
with a translational joint to the red cylinder assuring adjustments in direction of the x-
axis. At last, the red cylinder transmits the rotating motion to flexible shaft using a
constant velocity joint.

Consequently to the system modification a new frequency analysis is essential.
The analysis is performed exactly the same way as described earlier and Figure 7.8
contains the results compared to the previous model. The impact of the drive alteration
shifts the first two eigenfrequencies slightly upwards, whereas the eigenfrequencies of
the second mode pair are little lower in relation to the results of the model with the

simple drive.

Comparison of Campbell Diagrams in ADAMS
using different drives

1x speed
| |——ADAMS modes previous drive |
====ADAMS modes with modified drive

2FW

™
5
3
9
B o i i 2BW
P
g
5
&
................. - 1 FW
1BW

.| L i i i i i i L J

Speed [Hz]

Figure 7.8: Comparison of Campbell Diagrams with different drives
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The main purpose of using a MBS for the computation of the system’s dynamic
behavior is to take advantage of the calculation in the time domain. While critical
speed ranges can be clearly identified in the frequency domain with the Campbell
diagram by looking at the intersections between rotor speed and eigenfrequencies, the
idea of an analysis in the time domain is to excite the systems natural frequencies
through an additional unbalance. Thus, a very small unbalance is added to the refiner
disc of model, which triggers the excitation of the eigenfrequencies during a run-up.
The peak responses of the displacements of the interface node of the feed end bearing
should indicate the critical speeds in the unbalance response plot.

Because the displacement amplitudes are very sensitive regarding the input
energy of the unbalance weight and the damping of the flexible shaft, the unbalance
weight has to be from low value and a damping function is required. These measures

are necessary in order to obtain acceptable results and an efficient simulation time.

Simulation Settings for Unbalance Analysis
Damping function of the STEP(TIME,0,100,1,0)+
flexible shaft STEP(FXFREQ,1000,0.02,2000,1.0)
Motion function for run-up 2*pi*rpm+2*pi*time
Executable Solver C++
Dynamic Solver HHT I3

Error=1¢™ Hmax=1e®

Step Size 0.001 s

Table 7-5: Simulation settings for unbalance analysis

The damping function noted in Table 7-5 is assigned to the flexible shaft and causes a
strong damping of the initial displacement amplitudes due to the impacts of gravity
and further damps all free-free natural frequencies of the shaft beneath 1000 Hz with a

factor of 2% before it changes slowly to 50% at 2000 Hz. The motion function is
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defined for the drive shaft and determines that with each second of simulation the
rotational speed rises by 1 Hz. The general variable rpm holds the initial speed of the
shaft and is set separately.

The results of the run up simulation are compared to the eigenvalue analysis in
Figure 7.9. The frequency analysis leads to the identification of critical speeds at 2.0
and 3.46, whereas the unbalance weight excites the eigenfrequencies at 2.04 and 3.5.
With a divergence of less than 2% to each other, both methods can be considered
acceptable for the computation of critical speeds.

However, the quality of a simulation can only be determined by comparing its
results to measurements. Hence, a vibration measurement on the refiner is carried out

in the next chapter.

Campbell-Diagram refiner model with linear bearing stiffness

1x speed
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Figure 7.9: Comparison of Campbell diagram and unbalance response plot
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7.2 Vibration Measurements on the Refiner

7.2.1 Measurement Procedure

Basis of the vibration analysis are two test runs with the refiner on the Andritz

refiner test stand. Thereby the dynamic behavior is measured by:

e 3 stationary run-up test,

e a coastdown and

e a continuous operation run.
The accelerometer probes for the vibration measurements are mounted on four housing
positions close to the DE- and FE-bearing. The vertical and horizontal accelerations
are recorded independently for both bearings using a two-channel measurement. The
signal of the rotational speed is detected by an optical incremental encoder pointing to
the motor shaft. All measurement data is acquired with the (CSI 2130 Machinery
Health Analyzer from Emerson Process Management. The detected accelerations are
automatically integrated and captured as effective velocities. All measurement data is
captured for refiner configurations with and without main grinding plates mounted on
the refiner disc. Because the simulation results are obtained without considering the
weight of the main grinding plates, the focus lies on the related measurements.

As noted in chapter 6, vibration tests on rotating machinery require a run-up or
coastdown test. In order to perform the run-up test, the rotating speed of the refiner is
slowly increased via frequency converter and the accelerations are detected at each
incremental step. The coastdown test is performed directly after the run-up, by turning
of the motor power at the highest measured run-up speed. Through coasting to
standstill the rotors’ unbalance excites all frequencies and resonance frequencies can be

detected. Further, order analysis techniques are used to analyze the vibration signals.
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Figure 7.10: Waterfall plot of run up test with main plates

Figure 7.10 shows all measured spectra related to speed of the run-up test with main
plates. It is a rough approximation of a waterfall diagram. 1** and 2™ order of the
rotational speed can be clearly identified and are indicated in blue. The first order is
the rotational speed and the second order is two times the rotational speed. Normally
the first order is excited by the rotor’s imbalance while misalignment excites 1** and 2"

order components. The red and green lines show the assumed development of 1% and

2" mode.

Considerations regarding measurement procedure:

1. Previous data from run-up tests with other Andritz refiners with overhung design
as well as various FE-Simulations of these machines show that the frequencies of
the 2 mode (vertical, FW) are higher than the operational speed of the refiner.

Thus the rotor’s unbalance will not excite the 2"! mode.
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2. Due to the orthogonal anisotropic bearing stiffness of the refiner support, the whirl
is always a superposition of a backward and forward motion. This means that there
is no strict separation between forward and backward modes and each mode
contains forward and backward components. As described in rotor dynamic theory
unbalance will just excite the forward whirl, but due to the superposition the

backward modes become also resonant.

Taking the two considerations into account, the focus of the 1** order analysis lies on
the excitation of the first mode (horizontal, BW), which is indicated with the red line
in Figure 7.10. A further obvious conclusion out of Figure 7.10 is that a 2" order trace
will cross the 1*' and 2™ mode.

Unfortunately it is not possible to make a complete order analysis with the
current licensed operating system on the CSI 2130, but it is possible to trace single
order components for a coastdown. As a result the coastdown tests for the
measurements with and without main plates are performed two times, first by

observing the 1** order and second by observing the 2" order.

7.2.2 Measurement Results

A review of run up and coastdown results leads to the interpretation that the
coastdown results for 1*' and 2" order trace are more accurate and reliable than the run
up results due to the continuity of the test. Hence, only results of the coastdown
measurements will be shown in the following. It has to be noted that the coastdown

measurement is only performed on the feed end bearing housing.
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Figure 7.11: 1st order trace of coastdown without main plates

The 1°* order trace of the coastdown without main grinding plates shows a significant
resonance peak as well as a characteristic phase shift at 1.77 for both measurements.
These are typical indicators for a resonance frequency. The comparison of the
horizontal and vertical vibrations (see Figure 7.12) illustrates a higher horizontal

amplitude, which is evidence for an horizontal (BW) mode.
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Figure 7.12: Comparison of vertical and horizontal amplitudes for 1st order trace

The 2 order trace shows several resonance peaks, whereat the 15 and 2™ rise will be

analyzed in detail. Both resonance peaks at 0.91 and 1.29 have distinct phase shifts

which are indicated in Figure 7.13.
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Figure 7.13: 2nd order trace of coastdown without main plates
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Figure 7.14: Comparison of vertical and horizontal amplitudes for 2nd order trace

The comparison of the horizontal and vertical vibrations (see Figure 7.14) illustrates a
higher horizontal amplitude for the first resonance frequency and a higher vertical
amplitude for the second. Regarding Figure 7.10 the first resonance frequency can be
interpreted as the eigenfrequency of the 1 mode (horizontal, BW) and the 2" is the
eigenfrequency of the 2™ mode (vertical, FW). Because 2™ order means two times
rotational speed, the 2™ order crosses the eigenfrequencies at 1.82 (2x0.91) and 2.59

(2x1.29).

7.2.3 Conclusions of Measurement Analysis

The order analysis of the measurements shows major divergences for the
intersections of 1% and 2™ order with the first mode pair as compared to the results of

the MBS model (Table 7-6).
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MBS model Measurement Error
Intersection 1% mode 90 177 11.5%
(horizontal, BW) ' ' o
1 order -
Intersection 2"! mode
. 3.46 - _
(vertical, FW)
Intersection 1% mode 593 1.82 18.34%
q (horizontal, BW) ' o o
2" order -
Intersection 2"! mode 391 5 50 19.44%
(vertical, FW) ' ' o

Table 7-6: Comparison MBS results to measurements

In order to match the results of the MBS model to the measurement results, the linear

substitute stiffnesses have to be adjusted. The best match is obtained with the values

listed in Table 7-7.

Original Stiffness | Adjusted Stiffness | Deviation
Value [N/m] Value [N/m] [%]
Feed End Bearing FEu 3.97 &® 2.235 ¢® 43.7
Feed End Bearing FEy 1.56 ¢’ 5.2 ¢€* 66.66
Drive End Bearing DEx 1.2 ¢ 1.0 ¢’ 16.67
Drive End Bearing DEy 2.33 ¢’ 2.24 ¢’ 3.86

Table 7-7: Adjusted stiffness values

Figure 7.15 illustrates the results of the frequency analysis with the modified stiffnesses.

Due to safety issues it is not possible to run the refiner with a speed close to the

excitation of the 1% vertical mode and therefore no measurement data for intersection

of 1% order and 1* vertical mode is available. Thus, the analysis of the Campbell

diagram projects that the 2™ critical speed is around 2.70.
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Figure 7.15: Campbell diagram of MBS model with adjusted linear bearing stiffness

Since the deviation in combined bearing stiffness values is unacceptable, the application
of using linear substitute stiffnesses must be reconsidered. The major reason why
simulation and measurement differ to such a high degree is that the strong nonlinear

behavior of the bearings is not included in the computation.
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7.3 Simulation with ADAMS Bearing AT

The functional principle of ADAMS Bearing AT is already explained in chapter
5.3. This chapter is aimed to describe the application of the plug-in on the refiner
model and to see how the integrated nonlinearities influence the results of the
unbalance response in the time domain. As the major impact on the dynamics of the
refiner model comes from the stiffness characteristic of the feed end bearing, only the
cylindrical roller bearing will be modeled with Bearing AT and the drive end bearing

will remain substituted with linear spring stiffnesses.

7.3.1 Modeling of the cylindrical roller bearing

At first, the CAD data of the bearing is downloaded from the bearing
manufacturer’s homepage. Out of that file, the major geometrical data can be
extracted. The manufacturer’s know how about specific geometrical parameters as the
curvature of the rolling elements is kept secret.

A new roller property file (‘.rpf’) is created for the cylindrical roller bearing by
going to Bearing AT in the menu bar and opening Bearing AT = Roller Bearing =2
Preprocessing = Mesh. Figure 7.16 shows an illustration of the required input

parameters in order to build up a finite element mesh of the bearing.
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Figure 7.16: Illustration of Bearing AT input parameters for cylindrical roller bearings
The input mask is grouped in four registers: one for the roller element, two for inner

and outer ring and the fourth for material data. Table 7-8 summarizes the necessary

parameters and emphasizes if they are provided or the data has to be assumed.

Parameter Provided by CAD data
Length of roller yes
.iﬁ Effective length no/assumed
“2 Chamfer length yes/uncertain if actual value is used
Q% Chamfer angle yes/uncertain if actual value is used
g Roller diameter yes
= Crown drop no/assumed
Number of rollers yes
Inside diameter yes
kS Inner race diameter yes
g Inner collar diameter yes
2 Inner width yes
Eo Inner effective length no/assumed
&= Inner width collar yes
g Inner crown drop no/assumed
= Inner race chamfer A yes/uncertain if actual value is used
Inner fillet radius yes/uncertain if actual value is used
Inner contact angle no/assumed
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% Outer collar diameter yes

% Outer race diameter yes

Q% Outside diameter yes

oD Outer width yes

2= Outer width collar yes

o

55) Outer fillet radius yes/uncertain if actual value is used
O Outer contact angle no/assumed
..g Young’s modulus no/assumed
D‘ Poisson ratio no/assumed
=

o Mass density no/assumed

Table 7-8: Input parameters for cylindrical roller bearings

For the reason of short CPU-times, Bearing AT utilizes symmetry in modeling the contact
problem between roller and ring for inner and outer race (see Figure 7.17). The contact

angle for inner and outer race defines the size of the contact patch on the roller surface.

Contactangle

Figure 7.17: FE geometry of roller with defined contact patch

After all inputs are completed, the meshing is activated followed by a NASTRAN

analysis.

In the next step, the compliance analysis is started with the selection of Bearing
AT 2 Roller Bearing =2 Preprocessing 2 Contact. Figure 7.18 shows the input mask
for the contact preprocessor and explains the variables for the inner ring with graphical

illustrations.
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Figure 7.18: Input mask for contact preprocessor with graphical explanation

The contact processor takes the stiffnesses calculated in step 1 into account and builds
up contact maps between the roller and the rings, which are used for interpolation in
ADAMS. The user inputs a maximum penetration for inner and outer ring, which
represents the overlap between the rigid roller and the rigid ring. Unless negative steps
are defined, the roller is pushed 20 steps into the ring to the maximum value of
penetration. If the roller has a slight misalignment, a contact between roller and ring
would already exit at the initial step. So as to ensure that the calculation starts
without contact, it is possible to define a virtual clearance by setting negative steps. In
case of the examined bearing five negative steps are defined, leaving a total penetration
of 25 steps in vertical direction. Furthermore, a maximum misalignment angle can be
defined. As noted in the input mask in Figure 7.18, the contact maps for the
misalignment are calculated in five steps. Consequently a misalignment angle of 0.05°
means that all 25 vertical contact calculations are carried out for a misalignment of
-0.05°, -0.025°, 0°, 0.025° and 0.05°. The same is valid for the maximum axial
displacement of 0.01 mm. All 125 contact calculations are also performed for an axial
displacement of -0.1 mm, -0.05 mm, 0 mm, 0.05 mm and 0.1lmm. The compliance

analysis for the outer and inner ring is in principle identical and the resulting contact
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forces are stored in the *.rif file for the inner ring and the *.rof file for the outer ring.
The “scale factor” for the inner and outer race corrects the computed contact force by

¢

their respective values. The option “yes” for “run contact preprocessor” ensures that
the entire progress is reported on screen. All displayed output is stored in a *.log file.
The contents of the log-file or the display of the compliance should be reviewed,
because it allows validation of the selected definitions for the contact angles and for the

penetration. The compliance analysis displays the contact map for each load step and

the computed resulting contact forces.

... processing load step 6 = 0.00780 for beta = 5.0
6 NXXXXXXXXXXXXXXXXXXXXXXXX
S NGOG KKK X
4 NN - = = MK K
3 NXXXXXX==========- KXXKKRK
2 N a f i XKXKKX
1T NN e mcmmmmnans XXXKXX
. processing load step 7 = 0.00910 for beta = 5.0
B NXOOOOOOOOOON KKK
S NXXOOOOO NN RK
4 NXXXXKXKK=====-~ KHXRXARKAKXK
3 NDOKNRemmmasnnae XKXKKX
P e e e XXXXX
1 NXXXK--=--=====mmmm- KEAAK

Figure 7.19: Contact map

The contact map in Figure 7.19 shows the state of grids in the contact patch, where

W

“X” means no contact, means contact and “N” indicates that contact of the roller
falls outside the race surface.

When the maximum penetration is reached, the contact processor reports the
resulting forces and their curve-fitted values. At the end of all contact computations,
the *rif and *rof files are created for use by ADAMS.

As soon as the previous modeling steps are completed successfully, the roller

bearing element can be integrated in ADAMS. Thus, a rigid shaft part is needed on

which the roller bearing is acting. Although a flexible shaft already exists it is
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necessary to build a massless, rigid dummy shaft for the roller bearing. The center
marker of that part has to be aligned according to the bearings coordinate system to
assure a correct position. This means the z-axis of the center marker (CM) has to point
in the direction of the rotating axis. Additionally, the CM is aligned concurrent to the
feed end interface node. After preparing the model for the implementation, the user has

to open: Bearing AT =2 Roller Bearing 2 Element 2 New.

e ot sy I, e
Beasing Name ...
Reference Coordinate [ shaft cm
Shat Part [ shan
Shaft center marker Btock Part [round
Roller Property File [
Shaft Number of Rollers 19

Total Radsal Cleasance I‘O‘}‘?—

Damping factor for translation luozi
H.Danw limit for translation ’07

Damping factor for misalignment ’M?i
Damping limit for misalignment [0
Aoaal clearance to inner collar ﬁ
Adal contact stifiness ’DB—
Max. Load (Graphic only) W

Graphic Outer Ring Angle Extent |m.n
Bearing Specifications
= ok | Ay Cancel

Figure 7.20: Implementing the cylindrical roller bearing in ADAMS

Bearing AT allows the user now to define name, reference frame, shaft part and block
part. Temporarily ground will be set as block part because a supplementary model of
the frame will be added later, which takes the linear frame stiffness into account. Next,
the created roller property file is specified and all afore calculated and defined values
are assigned to the bearing. Now it is possible to adjust the number of rollers compared
to the preprocessing input and to add the total radial clearance. In case of the
implemented bearing a C3 clearance is defined, which is around 220 pm. Damping is
considered with a 2% factor and set for translation as well as misalignment. All entered

values for the creation of the cylindrical roller bearing are displayed in

Figure 7.20.
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7.3.2 Integration of Supplementary Frame Model

Through the direct attachment of the bearing to ground, vertical and horizontal
stiffness are much higher when compared to the model with linear substitute stiffnesses
(chapter 7.1). Hence, the frame stiffness has to be considered in the model. This can be
achieved by creating an auxiliary body in form of a circular ring around the bearing
and joining it to ground with linear springs (Figure 7.21). Whereat the springs get the
linear frame stiffness assigned and the new part functions as block part for the bearing.
Since only lateral movements of the block part are allowed, the translational DOF in
direction of the rotation axis as well as all rotational DOF's are constrained by applying

a point motion to the part’s center marker.

Bearing shaft part
(dummy shaft)

Horizontal frame stiffness

000

AAX_

Cylindrical Roller Bearing Bearing block part

Vertical frame stiffness /;;

Figure 7.21: Supplementary frame model

- 105 -



University of Applied Sciences Wiener Neustadt FH }}

Faculty of Mechatronics and Microsystems Engineering

Wiener Neustadt

7.3.3 Run-up Simulations with integrated
Cylindrical Roller Bearing

Figure 7.22 shows the final MBS model in which the cylindrical is implemented

and the linear frame stiffness is considered.

6.1e8N/m
1.0e" N/m \

|!lI!|_!_|I

/

8.5 e N/m /

lr‘.
2.04¢* N/m—

-

A

~——

Figure 7.22: Final MBS model of the refiner with the cylindrical roller bearing

By performing the same run-up simulation as described in chapter 7.1.2 with the
identical settings for the flexible shaft, DE-bearing and the unbalance, ADAMS

computes the following unbalance response plot:

Refiner Model with Cylindrical Roller Bearing - simulated run-up in ADAMS

——~Cylindrical Roller Bearing horizontal Displacement ] 275

Displacement (mm)

Speed (rpm)

Figure 7.23: Unbalance response plot of final MBS model
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1% critical speed 214 critical speed
Measurement results (Figure 7.15) 1.77 2.7 (projected)
Model with cylindrical roller bearing 1.76 2.75
Deviation 0.62 % 1.7 %

Table 7-9: Comparison of critical speeds with adjusted frame stiffness

The run-up simulation indicates clearly two regions of peak resonances (

Refiner Model with Cylindrical Roller Bearing - simulated run-up in ADAMS

——Cylindrical Roller Bearing horizontal Displacement | 275

Displacement (mm)

Speed (rpm)

Figure 7.23), the first one at 1.76 and the second at 2.7. A comparison of the acquired
results with the measurement data reveals very little deviation. As Table 7-9 shows,
the 1st critical speed only differs to 0.62 % and the 2nd critical speed to 1.7%. A
notable weakness of this comparison is that the 2nd critical speed from the
measurements results is actually a projected value, obtained by computation with
adjusted linear substitute stiffnesses. These findings implicate that the nonlinear

stiffness characteristic of the cylindrical roller bearing is very well implemented through

ADAMS Bearing AT.
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8 Summary

The purpose of the research was to determine the effect of nonlinear stiffness
distribution and clearance in roller bearings on the dynamic behavior of rotating
machinery. In the course of the research two different simulation approaches were
deployed to compute the natural frequencies and critical speeds of an Andritz refiner.
Furthermore, vibration measurements were carried out on the machine to evaluate the
simulation results.

As the modal FEA is the usual method of choice at Andritz, it was used first to
investigate the refiner’s rotating unit in the frequency domain. Therefore the bearing
behavior was linearized with substitute stiffness values provided by the bearing
manufacturer. The subsequent comparison of the resulting critical speeds and the
resonance frequencies identified by an order analysis of the measurements revealed a
significant deviation. As a consequence, the rotor-bearing assembly was modeled in the
multibody simulation environment MSC/ADAMS. A model test with the same linear
substitute stiffness applied instead of the bearings leaded to the same results as the FE-
computation. The main reason for choosing the MBS as second simulation approach
was the application and assessment of the newly developed bearing subroutine Bearing
AT. This new feature enabled a complete modeling of the complex contact mechanics
of the refiner’s feed end bearing, which has the most impact on the systems’ natural
frequencies. By performing a run-up simulation in the time domain, the results from

the measurements could be matched.
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9 Conclusion

The critical speeds identified with ADAMS using the Bearing AT plug-in
enhance the understanding of the impact of bearing nonlinearities on simulation results.
Taken together, the results of the transient run-up simulations suggest that it is
possible to project the excitation speeds of natural frequencies through an unbalance
response analysis in the time domain because acquired measurement results were
matched with the performed computations. Arguably, the utilization of a projected 2"
critical speed adds uncertainty to the comparison of measurement and simulation.
Nevertheless, the fact that the correctly modeled nonlinear bearing contact maps as
well as the integrated clearance lead to significant lower critical speeds as in the FE-
simulation with substitute stiffnesses, and actually comply with test-run data, provides
confidence in the new simulation technique. Comparing the modeling effort between
the currently used rotordynamic analysis in ANSYS and the MBS approaches in
ADAMS it obviously can be said that modeling and simulation in ADAMS is more
time consuming.

Finally, two limitations to this pilot study need to be acknowledged. Firstly, the
referenced measurement points were only attained by using order traces. For the
elimination of this weakness the testing of the machinery should be performed again
with an order analysis. The results in form of a color map and a waterfall plot would
be a better confirmation, whether or not the simulation results are from good quality.
Secondly, the new simulation results were only verified for one machine. In order to
gain further confidence in the MBS simulation procedure, comparisons between
measurement and simulation data of at least one additional refiner is necessary. It is

strongly recommended that the impact of these factors is considered in future studies.
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Appendix

Matlab Code for Analytical Solution of the simple Overhung Rotor:

%%%%%%%%%%%%%%%%%%% Parameters  %%%%%%%%%%%%%%%%%%%%
% Material Data

E=210e9; %Pa
v=0.3;

roh=7850; %kg/m"3
% Shaft

1s=1.50; Y%m
ds=0.1; %m
1=(ds/2)"*pi*0.25; %m~N4

% Rotor

dr=1; %m
hr=0.1; %m

mr=(dr/2)"2*pi*hr*roh; %kg
% Bearing Positions

1=1; %m
c=0.5; %m

%%%%%%%%%%%%%%% Inertias and Stiffnesses  %%%%%%%%%%

Jp=0.5*mr*(dr/2)"2; Y%kgmn2
Ja=1/12*mr*(3*(dr/2)"2+hr"2); Y%kgmn2
k11=12*E*1*(1+3*c)/(c"3*(4*1+3*C)); %N/m
k12=-6*E*1*(2*1+3*c)/(c"2*(4*1+3*c)); % =k21 %N/m
k22=12*E*1*(1+c)/(c*(4*1+3*C)); %N/m

9%%%%%%%%%%%%%%%%%%%  Solving the DAE  %%%%%%%%%%%%%%%

W=0:10:3000; %Vector of shaft speeds in rpm
W=W*2*pi/60;

for i=1:length(W)
syms w;
eigenfreq(i, :)=solve(mr*Ja*w -mr*Jp*W(i)*w 3-(k22*mr+kl11*Ja)*w"2 . ..
+k11*JIp*W(i)*w+(k11*k22-k1272), "w™);

end

%9%%%%%%%%%%%%%%%%%%%%% Plot  %%%%%%%%%%%%%%%%%%%%% %%
speed=W*30/pi;

figure

hold on

title("Comparison of Eigenfrequency Analyses®, "FontWeight®,"bold");
plot(speed,speed/60,°g");
plot(speed,abs(eigenfreq(:,1))/(2*pi), "b")
plot(speed,abs(eigenfreq(:,2))/(2*pi), "b")
plot(speed,abs(eigenfreq(:,3))/(2*pi), "b")
plot(speed,abs(eigenfreq(:,4))/(2*pi), " "b")
grid on

xlabel ("Rotor Speed [rpm]*)

ylabel ("Eigenfrequencies \omega [Hz]")
axis([0 3000 0 150]);

hold off
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Code for Rotordynamic Modal Analysis in ANSYS Classic:

Vit Modal Analysis (Omega Steps) ####H#H#H#HHHIH

/solu

antype,modal Imodal analysis

modes = 6 Trequest 6 modes

steps = 50

omega_max = 3000*3.14159/30

modopt,qrdamp,modes, , ,0n IUse the QRDAMP eigensolver and specify complex eigensolutions
coriolis,on,,,on IStationary Reference Frame is activated

Vit cal c #HHH#HIH
*do,1,1,steps
n = (i-1)*(omega_max/(steps-1))
omega,n,,,0
mxpand,6,,,0n
solve
*enddo
finish
Vit Plot Campbell Diagram ####H#H##HHHH

/postl
plcamp,on,1,rpm,1

Code for Unbalance Response Analysis in AINSYS Classic:

Vit Harmonic Analysis (Unbalance Response) #####HEH#H#HH
/SOLU

antype,harmic

omega,0

synchro, ,ROTOR

nsubst, 500

harfrqg, ,50 Timplicitly defines OMEGA for Coriolis calculation
kbc,1

dmprat,0.1

cmomega,ROTOR, 100

coriolis,on,,,on IStationary Reference Frame is activated
solve

fini

Vit Unbalance Response Plot #i##H#H#H#HHHH#H
I output: amplitude at front end bearing as a function of the frequency
/POST26

nsol,2,2,U,Y,UY

nsol,3,2,U,Z,UZ

realvar,4,2,,,UYR

realvar,5,3,,,UZR

prod,6,4,4,,UYR_2

prod,7,5,5,,UZR_2

add,8,6,7, ,UYR_2+UZR_2

sqgrt,9,8,,,AMPL1

plvar,9

fini
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