

FINAL REPORT

A Sensor Web Approach to Geo Sensing

Degree Program:

Master Information Technology & Systems Management

Submitted by:

Tanja Malitz

Head of Faculty: FH-Prof. DI Dr. Gerhard Jöchtl

Supervisor: DI (FH) Thomas Lampoltshammer, MSc

Salzburg, August 2013

 2

Affidavit

Herewith I, Tanja Malitz, declare that I have written the present thesis fully on my own and

that I have not used any other sources apart from those given.

Passages that I have adopted, whether in sense or literally from other published or non-

published works have been marked as such.

The present thesis has, in the same or in similar form, never been handed in to another board

of examination.

16
th

 September 2013

Date Signature

 3

Acknowledgements

I want to thank the international office of the Salzburg University of Applied Sciences.

Without their help and getting the Marshall-Plan scholarship it would not have been possible

to write this thesis in Honolulu, Hawaii.

Secondly, a big “Thank You” to the Hawaii Pacific University for their help with the

infrastructure. I got a great office to work and always help from the teachers around. Special

thanks to Mr. Curt Powley, Ph.D., chair of the department of Mathematics and Computer

Science at HPU.

Thank you to Samuel Joseph, my supervisor from HPU. He is living in the UK, but

nevertheless, he was always available for questions. And thanks for the great idea with

writing a blog of my progress. I did not like the idea at first, but in the end, it was really

useful.

Another “Thanks” to Thomas Lampoltshammer, my supervisor from Salzburg. It is

challenging to supervise if you are located over 7,000 miles away from each other with a time

difference of 12 hours.

Moreover, I want to thank the many new friends I made during that semester. It was not

always easy to say “I have to study” instead of going to the beach.

But most of all, thank you to my family and friends at home. It is not easy to leave your home

country, fly 25 hours and live for nearly 6 months abroad. Without your support this would

not have been possible.

Thank you!

 4

Details

First Name, Surname: Tanja Malitz, BSc

University: Salzburg University of Applied Sciences

Degree Program: Master Information Technology & Systems Management

Title of Thesis: A Sensor Web Approach to Geo Sensing

Academic Supervisor: DI (FH) Thomas Lampoltshammer, MSc

Abstract

Geo-sensing is a topic that has become more and more important in the past few years. The

wireless technology is by now reaching remote areas and the technology for sensor devices,

software and network protocols got improved. Therefore, new efficient methods for querying,

processing, mining and analyzing environmental real time data are required. There still exists

a lack in that area.

If geo-sensor data can be analyzed and processed more effectively, new insights in the

particular area of research can be gained. Thus, this thesis sets a special focus on the

combination of existing data streams to new aggregations with the help of version control

systems. It tries to find out if there are appropriate ways for handling near real time

geo-sensor data with existing version control systems instead of using databases. Version

control systems offer simple ways to store branches of data, to compare data with each other

and to track changes over time.

For achieving this goal, the thesis analyses the state of the art regarding sensor web platforms.

It moves on by evaluating existing version control systems. Out of that a prototypical

implementation is developed. The prototype is able to combine data streams to new

constructs, store constructs for later use and it offers a graphical representation of current

data.

The outcome of the thesis is a comparison between using version control systems or databases

for handling real time geo-sensor data. Moreover, various advantages and disadvantages

between the existing version control systems are described. In addition, different visualization

methods are applied for representing data stored in version control systems.

 5

Table of Contents

1. Introduction and motivation .. 12

1.1. Methodology .. 12

1.2. Research Question ... 13

1.3. Ambition and Structure .. 13

2. Geo-Sensing in a general context .. 15

2.1. History of geo-sensing ... 15

2.2. Internet of Things .. 15

2.3. Geo-Sensor Networks .. 16

2.4. Fields of application .. 17

3. Availability of Sensor Data ... 19

3.1. Computing platforms ... 19

3.2. Software ... 21

3.3. Network protocols ... 21

3.4. Sensors ... 22

3.5. Data standardization initiatives .. 22

3.5.1. INSPIRE .. 22

3.5.2. Global Earth Observation System of Systems (GEOSS) 23

3.5.3. Copernicus ... 23

3.5.4. Shared Environmental Information System (SEIS) 23

3.5.5. Global Spatial Data Infrastructure Association (GSDI) 24

3.6. Data Collection .. 24

4. Standardized interfaces and exchange protocols ... 26

4.1. Initiatives for Standardization .. 26

4.2. Benefits of standards .. 29

5. Version Control Systems ... 30

 6

5.1. Centralized version control systems .. 30

5.1.1. Advantages ... 31

5.1.2. Disadvantages .. 31

5.2. Distributed version control systems ... 32

5.2.1. Advantages ... 32

5.2.2. Disadvantages .. 32

5.3. Evaluation and comparison of existing version control systems 33

5.3.1. Apache Subversion (SVN) ... 34

5.3.2. Mercurial .. 35

5.3.3. Git .. 35

5.4. Selection of two suitable systems for implementation .. 36

6. Visualization of Sensor Data ... 37

6.1. Terminology .. 37

6.2. Visualization Taxonomy .. 37

6.3. GIS (Geographic Information Systems) .. 39

6.3.1. Autodesk .. 40

6.3.2. ESRI (Environmental Systems Research Institute) 40

6.3.3. GRASS GIS ... 41

6.3.4. Google Earth .. 41

6.4. Sensor Networks and GIS .. 41

6.4.1. Sense Web project .. 41

6.4.2. PermaSensorGIS .. 42

6.4.3. City Sense .. 42

7. Perspectives and Challenges ... 43

7.1. Data .. 44

7.2. Hardware .. 45

7.3. Software ... 45

7.4. Sensor Networks .. 45

 7

7.5. Issues and Problems ... 46

7.5.1. Privacy ... 46

7.5.2. Data Ownership and Pricing .. 47

7.5.3. New Focus ... 47

8. Requirements for a Prototype .. 48

8.1. General Description ... 48

8.1.1. Product Perspective .. 48

8.1.2. General Functions .. 48

8.1.3. User Characteristics ... 50

8.1.4. Restrictions .. 50

8.1.5. Assumptions and Dependencies .. 50

8.2. Specific Requirements ... 50

8.2.1. Non-functional requirements ... 50

8.2.2. Actors ... 51

8.3. Data Model .. 51

8.3.1. Use Cases ... 51

8.3.2. Sequence-Diagrams ... 56

8.4. Test Data .. 58

8.5. Online repositories ... 59

8.6. Programming language .. 59

8.7. Simulation of a Geo-Sensor ... 60

9. Actual Implementation with Subversion and Git .. 63

9.1. Start Screen .. 63

9.2. Adding a geo-sensor .. 64

9.3. Editing a sensor .. 64

9.4. Linking sensors or constructs .. 65

9.5. Visualization of data .. 67

9.6. Settings .. 71

 8

9.6.1. Subversion .. 72

9.6.2. Git .. 73

10. Results ... 75

10.1. Comparison of Subversion and Git .. 75

10.2. Comparison between VCS and databases .. 76

11. Conclusion ... 78

 9

List of Figures

Figure 1 - Examples of Geo-Sensors [1] .. 15

Figure 2 - Overlaps of the Internet of Things with other Research Areas [4] 16

Figure 3 - Processing of Sensor Data [5] ... 17

Figure 4 - TMote-Sky Components ... 20

Figure 5 - Real-time Deadlines .. 25

Figure 6 - Standards [11] .. 26

Figure 7 - A Standardized Sensor Network [14] .. 28

Figure 8 - Centralized Version Control System [17] ... 31

Figure 9 - Distributed version control systems [17] ... 32

Figure 10 - Overview: Version Control Systems ... 34

Figure 11- Taxonomy of Buja [19] .. 38

Figure 12 - Future Directions [26] ... 44

Figure 13 - Primary Use Cases ... 52

Figure 14 - Sequence Diagram: Add Sensor .. 56

Figure 15 - Sequence Diagram: Delete Sensor .. 57

Figure 16 - Sequence Diagram: Add Meta Construct .. 57

Figure 17 - Sequence Diagram: View Data ... 58

Figure 18 - Test Data File Example ... 59

Figure 19 - Simulation .. 61

Figure 20 - Tab control "SVN" .. 61

Figure 21 - Tab Control "Git" .. 62

Figure 22 - Start Screen .. 63

Figure 23 - GUI of adding a sensor .. 64

Figure 24 - GUI of editing a sensor .. 64

Figure 25 - GUI for linking data .. 65

Figure 26 - New constructs .. 66

Figure 27 - Proxy .. 66

Figure 28 - GUI for data visualization ... 67

Figure 29 - GUI 2 for data visualization .. 67

Figure 30 - Curve ... 68

Figure 31 - Visualization: Pie Chart ... 69

Figure 32 - Visualization: Bars .. 69

 10

Figure 33 - GUI for saving visualizations .. 70

Figure 34 - GUI for loading visualizations .. 71

Figure 35 - Alert box for unique key violations ... 71

Figure 36 - Settings .. 72

Figure 37 - Start Screen VCS ... 72

Figure 38 - Service Subversion .. 73

Figure 39 - Workflow of linking sensors ... 73

Figure 40 - Service Git ... 74

Figure 41 - Show Log ... 77

 11

List of Tables

Table 1 - Use Case 1: Add sensor .. 53

Table 2 - Use Case 2: Delete sensor ... 54

Table 3 - Use Case 3: Generate Meta Construct .. 55

Table 4 - Use Case 4: View Meta construct ... 56

Table 5 - Test Data [29] ... 58

Table 6 - Comparison Subversion and Git ... 75

1. Introduction and motivation 12

1. Introduction and motivation

In recent times there have been several trends in the field of geo-sciences, which make the

development of suitable sensor web platforms more and more important. For example, the

wired information structure is now reaching remote areas, even those that may not have

access to power supply. There has also been progress regarding power consumption, sensor

materials and miniaturization of the devices [1].

These innovations bring a lot of new possibilities for environmental monitoring. Examples are

bio-chemical sensors for air-pollution monitoring, vibration and sound sensors for volcano

monitoring and even sensors for watching the growth of orchards. Not only are terrestrial

ecology sensor systems possible; the new generation of smartphones can also be used for

gathering geo-data. Users can act like sensors for monitoring environmental changes such as

actual weather conditions or the occupancy of a car park. A huge advantage in this direction is

the spread of smartphones all over the world [2].

Sensor web platforms are necessary to handle the huge amounts of new data being generated.

Analysts should be able to filter out only the information of interest to them. Therefore, sensor

data should be organized so that it is available for specific application development. There are

already existing standardized exchange protocols and interfaces, however there is a gap

relating to data management. The querying, processing, mining and analyzing of real-time

data streams should be made more convenient for sensor web platform development. The aim

of this thesis is therefore the evaluation of possible methods and a prototypical software

implementation using version control systems for reaching that goal.

1.1. Methodology

The methodology of this thesis is to survey the state of the art on the topic of geo-sensing. In

addition the thesis tries to optimize the analyzing of real-time data streams. To this end, a

prototype which uses version control systems is developed.

The goal of the thesis is to compare which version control system is best suited for this task.

There is also made a comparison to existing GIS (Geo Information Systems) which mainly

use databases for data storage.

1. Introduction and motivation 13

1.2. Research Question

This paper tries to answer the following research questions:

 How can data management concerning analyzing near real-time data streams be

improved?

 Are there appropriate ways for handling real time geo-sensor data with existing

version control systems?

 Which versioning system is the most suitable for handling data?

 Are version control systems a good alternative for storing geo-sensor data instead of

databases?

 What are suitable techniques for displaying real time data streams for analysis?

1.3. Ambition and Structure

The paper starts with a general overview of the topic geo-sensing. Terms like “Internet of

Things” or “Geo-Sensor networks” are introduced. It also provides an overview of common

fields of application.

Furthermore, this thesis deals with the availability of sensor data. That includes available

computing platforms, software, network protocols and sensors. It also investigates collection

methods for data and places a special focus on real-time data.

Standardized interfaces and exchange protocols are reviewed. The paper introduces initiatives

for standardization and mentions benefits of standards.

The practical part of this thesis deals with a prototypical implementation for improving the

processing of sensor data. To support this, an overview of version control systems is included

and also a comparison of existing solutions.

Moreover, the prototypical part includes some options for visualization. Therefore a general

overview of visualization methods is given. Geo Information Systems (GIS) are introduced.

1. Introduction and motivation 14

The theoretical part of this thesis ends with an overview of current perspectives and

challenges in the field of geo-sensors. Following from that, the next chapter deals with

requirements for a prototypical implementation. It gives a general overview of the developed

prototype, the data model, test data used and the technologies used to support development.

The next chapter of the thesis introduces the finished prototype in more detail. The GUI and

the functionality are also described. The differences between the used version control systems

are highlighted to support a comparison between those systems. Finally a closer look is taken

at the differences between version control systems and databases.

2. Geo-Sensing in a general context 15

2. Geo-Sensing in a general context

This chapter provides a general overview of geo-sensing. It tries to answer how

geo-information technology developed, the connection to the catchphrase “Internet of Things”

and what geo-sensor networks are. Moreover it introduces common fields of application.

2.1. History of geo-sensing

Historically geomaticians were known as land surveyors. Land surveying makes use of a great

deal of mathematics and physics. The German mathematician Carl Friedrich Gauss

(1777-1855) spent about 20 years of his life establishing a geodetic coordinate system. The

use of photogrammetric techniques for collecting geo-data has been going on since the 19th

century. Geo-data is the most important prerequisite for conducting research in the field of

geoscience and for achieving a detailed understanding of Earth-related processes [3].

Today geo-information technology is becoming increasingly widespread. Data are mostly

collected via airborne and orbiting sensors using photogrammetric techniques.

Figure 1 - Examples of Geo-Sensors [1]

Geo-sensor networks have created a lot of new opportunities for collecting a great variety of

geo-data. Figure 1 shows some examples of current geo-sensor devices.

2.2. Internet of Things

Geo-sensor devices belong to the “Internet of Things”; a catchphrase for technologies that

makes it possible to connect the physical world (things like sensors) to the Internet
1
.

1
 Contiki project, http://www.contiki-os.org (August 2013)

http://www.contiki-os.org/

2. Geo-Sensing in a general context 16

Figure 2 shows an overview of which fields of research are related to the “Internet of Things”.

Figure 2 - Overlaps of the Internet of Things with other Research Areas [4]

“Ubiquitous spatial computing” is a related term that means that computation is moved to

everyday devices through embedded technology and always-on connectivity [5].

2.3. Geo-Sensor Networks

Geo-sensor networks are a combination of small sensors and tiny computers [5]. They are

sensor enabled small devices and can be distributed throughout a geographic environment [6].

Thus geo-sensor networks can be defined as networks that monitor phenomena in a

geographic space [7].

If geo-sensor networks are using real-time data they can be considered as a sort of

“environmental microscope” [5].

The nodes of those networks have the following tasks:

 Production of sensor data streams

 Processing of data streams locally

 Processing of aggregated data (for the minimization of the communication)

The nodes can relay information, but they can also process it locally. Therefore the nodes are

reusable, re-programmable systems [5].

Internet
of

Things

Internet of
People

Intranet or
Extranet of

Things

Embedded
Device

Application

Ubiquitous/

Pervasive
Computing

Internet
Protocol

Communication
Technology

2. Geo-Sensing in a general context 17

Figure 3 - Processing of Sensor Data [5]

Figure 3 shows an example how data processing in sensor networks can work.

2.4. Fields of application

Geo-sensor networks open a wide range of new possibilities such as [5]:

 Coastal monitoring and ocean exploration

o Mapping ocean floor

o Coastal monitoring

 Drought management

 Forest fire detection

 Precision agriculture

 Habitat monitoring

In general, three application types can be distinguished based on their observation

characteristics [1]:

 terrestrial ecology observing systems

 geological observation systems

 aquatic observation systems

The following paragraphs will explain each of these systems in more detail.

2. Geo-Sensing in a general context 18

Continuous monitoring is common in systems that observe terrestrial ecologies like the

observation of the growth or the health of plants. In Australia from 2006 to 2008 a project

monitored the growth circumstances of a nectarine orchard. The orchard has been covered

with about 270 sensors and a gateway connected to the internet [1].

Geological observation systems describe real-time detection applications like a volcano

sensor network deployment. For example, the volcano Mount Pinatubo on the island of Luzon

in the Philippines erupted on June 15th 1991 after about 600 years of dormancy. Scientists

were interested in monitoring the mud flow which is a kind of dynamic spatial field. With the

help of geo-sensor networks they can find out if one of the major tributaries has split or if the

mud flow is still expanding [6].

The group of aquatic observing systems includes geo-sensor systems that are mobile or

attached to mobile objects. Mobile objects include things such as cars, animals and ocean

buoys. Also in this group are tsunami early warning systems or coastal and ocean observation

systems [1].

3. Availability of Sensor Data 19

3. Availability of Sensor Data

This chapter introduces methods to collect sensor data. Available computing platforms,

software, network protocols and sensors for that purpose are presented. There also exist data

standardization initiatives that try to make it easier to share data between different institutions.

The chapter ends with presenting possible types of data collection with an emphasis to real-

time data collection.

In 1999 Neil Gross expressed the following vision:

“In the next century, planet earth will don an electronic skin. It will use the Internet as

a scaffold to support and transmit its sensations. This skin is already being stitched

together. It consists of millions of embedded electronic measuring devices: thermostats,

pressure gauges, pollution detectors, cameras, microphones, glucose sensors, EKGs

and electroencephalographs. These will probe and monitor cities and endangered

species, the atmosphere, our ships, highways and fleets of trucks, our conversations, our

bodies - even our dreams.” [9, p. 1] [8, S. 1]

Gross’ vision looks close to being realized. As matter of fact, there have been several research

efforts since the 1990s towards the design of tiny computing platforms as well as on

appropriate operating systems that run on these platforms. There have been huge

improvements regarding miniature, low-cost microelectronic and mechanical systems. These

systems have limited on board processing capabilities, limited storage and short-range

wireless connections [1].

3.1. Computing platforms

The goal for miniature computing platforms is to reduce them to the size of sand grains. This

will enable development of a sensor network that consists of thousands or even millions of

sensors that are coated with micro-sensors as small as a 1,000th millimeter. This would create

an “environmental microscopic” view of geophysical phenomena [1].

The following paragraphs introduce some of the commercially available computing platforms

Mica Mote series, Dust networks and TMote Sky.

3. Availability of Sensor Data 20

Mica motes are commercially available from a company called Crossbow. Motes are also

known as smart dust and wireless sensing networks. A Mica mote can work up to one year

powered by two AA batteries [9].

Dust networks offers several ways to connect smart devices. The company’s portfolio consists

of wireless embedded products with advanced network management, security features and

ultra-low power consumption for wire-free operations
2
.

Figure 4 shows a picture of a TMote Sky computing platform.

Figure 4 - TMote-Sky Components
3

TMote Sky has been programmed by three students from the University of California,

Berkeley who founded the Moteiv Corporation which has then been acquired by Sentilla.

TMote Sky is a mote for sensor network applications with the goal of low power operation

and long term deployment
4
.

2
 Linear Technology, http://www.linear.com (August 2013)

3
 IPFW, www.etcs.ipfw.edu (August 2013)

4
 VB Profiles, http://venturebeatprofiles.com (August 2013)

http://www.linear.com/
http://www.etcs.ipfw.edu/
http://venturebeatprofiles.com/

3. Availability of Sensor Data 21

3.2. Software

Because of the decreased size of the computing platforms it is also necessary to rethink and

evolve the supporting software. TinyOS and Contiki are examples for operating systems that

have been developed especially for wireless sensor networks.

TinyOS is an event-based operating environment. It needs only a few kilobytes of code to

store the entire operating system and only a few hundred bytes of RAM to run it. It is

available as open source [1]. TinyOS is based on the programming language NesC (network

embedded systems). NesC is an extension to the programming language C. It has been

designed to support the concepts and the execution model of TinyOS [10].

Contiki is another open source operating system. It offers communication for tiny,

battery-operated, low-power systems with the internet. It can be used for city sound

monitoring, streetlights, industrial monitoring or alarm systems
5
.

3.3. Network protocols

The network connection between sensor nodes has also undergone improvements. There is a

need for low-power, robust and ad-hoc communication protocols between sensor nodes.

Normally, a node has a reliable communication range between 10 to 100 meters. Therefore

messages have to be sent in a multi-hop fashion from sensor to sensor until they reach their

destination. Network protocols are required to help route messages from a node to its

destination reliably using the least amount of energy. Sensor networks are

resource-constrained, so that data collection, message routing and the coordination between

nodes have to be integrated on one chip. As a consequence, these networks are difficult to

program, debug and test [1].

Although there has been a lot of progress and the research domain is in an active state,

experience with small-scale geo-sensor networks is still limited. Many applications are still

prototypes and sensor nodes are often rather match-boxed than sub-millimeter sized. In the

future, ideal geo-sensor networks will be able to work without wires for power or

communication. This would make it easier to deploy them in remote areas [1].

5
 Contiki Project, http://www.contiki-os.org (August 2013)

http://www.contiki-os.org/

3. Availability of Sensor Data 22

3.4. Sensors

New sensors have been developed using semiconductor fabrication technologies. MEMS

(micro-electro-mechanical systems) sensors consist of components between 1 to 100

micrometers in size. They are made from silicon, polymers or metals like gold, titanium and

platinum [1].

Sensors for temperature, humidity, light, acoustic and vibration are also available for

geosciences today. There are also micro-chemo sensors for the detection of small

concentrations of certain gases in the air and bio-chemical micro sensors for the detection of

spores or bacterial growth in certain locations [1].

However, all these tiny sized sensor platforms will not replace larger scaled platforms. Rather,

the variety of sensor platforms will increase. Not every type of application needs small

sensors. There will be appropriate platforms for every area of interest. The research field of

new sensor is very active at the moment. Soon there will be new sensor types commercially

available [1].

3.5. Data standardization initiatives

As an effect of the enormous improvement of the computing platforms, software, network

protocols and the sensors themselves, the amount of available spatial data in digital form has

been exploding. Various national and international efforts towards establishing spatial data

infrastructures (SDI) exist. They promote and share geospatial information throughout

governments, public and private organizations and universities [11].

Several initiatives try to simulate the sharing and reuse of expensive geographic information,

as the following paragraphs show.

3.5.1. INSPIRE

INSPIRE (Infrastructure for Spatial Information in the European Community) is a directive

from the European commission for developing a spatial information infrastructure. The goal

of the initiative is the sharing of environmental data between official organizations and

institutes between Europe. The directive has entered into force on the 15th May 2007. The full

implementation is required for the year 2019. INSPIRE is based on a set of principles

3. Availability of Sensor Data 23

including things such as requiring data to only be collected once and kept where it can be

maintained most efficiently
6
.

3.5.2. Global Earth Observation System of Systems (GEOSS)

GEOSS is an initiative for developing a global and flexible network of content providers. It is

a “system of systems” that should link together existing and planned observing systems all

over the world. It should also support the development of new systems where gaps currently

exist. A goal is to work with common technical standards so that data from different

institutions can be linked. GEOSS should help to empower the international community to

protect itself against natural and human-induced disasters, for understanding environmental

sources of illnesses, managing energy resources and many more environmental related

topics
7
.

3.5.3. Copernicus

Copernicus is a system like GEOSS, but for Europe. It consists of a set of systems for

monitoring the Earth. Sources are earth observation satellites and in-situ sensors. In-situ

sensors are sensors like ground stations, airborne or sea-borne measurements. Copernicus was

called GMES (Global Monitoring for Environment and Security) before December 2012
8
. It

got the name Copernicus in memorial for the European scientist and observer Nicolaus

Copernicus who searched for a better understanding for the world in the 16
th

 century [12].

3.5.4. Shared Environmental Information System (SEIS)

SEIS has been launched by the European Environmental Commissioner Stavros Dimas in

January 2008. SEIS wants to improve the usage of ICT technologies for collaboration

between organizations. The collaboration between European public sectors should help to

increase growth, security, jobs, freedom and health and to create a safe environment for

Europe. INSPIRE and GMES are initiatives for the realization of SEIS [12].

6
 INSPIRE, http://inspire.jrc.ec.europa.eu (August 2013)

7
 GEOSS, http://www.earthobservations.org/geoss.shtml (August 2013)

8
 Copernicus, http://copernicus.eu (August 2013)

http://inspire.jrc.ec.europa.eu/
http://www.earthobservations.org/geoss.shtml
http://copernicus.eu/

3. Availability of Sensor Data 24

3.5.5. Global Spatial Data Infrastructure Association (GSDI)

GSDI is one of the first organizations that tried to encourage an international cooperation

between spatial institutions. GSDI is supported by the U.S. Geological Survey (USGS). It

tries to set up local, national and international SDIs (Spatial Data infrastructures) [11].

3.6. Data Collection

Collecting sensor data consists of monitoring the entire covered region of interest and

reporting any data of interest.

Two types of monitored phenomena can be distinguished: continuous and discrete

monitoring. Continuous monitoring means for example the monitoring of a toxic cloud within

a city. Discrete monitoring can be the checking if a car did pass or not [5].

Furthermore, there can be distinguished between the following types of data collection

tasks [5]:

 Raw data queries

 Aggregation queries (e.g. min, max, average)

 Data estimation queries (e.g. the estimation of an toxic cloud)

 Qualitative queries (e.g. trying to find an event)

Regarding real-time systems, one can make a distinction between hard-, firm- and soft-

systems [13]:

 Soft

If response-time constraints of soft real-time systems are not met, the performance of

these systems is degraded but not destroyed.

 Firm

In a firm real-time system a few missed deadlines do not lead to a total failure. But

missing several deadlines may lead to complete or catastrophic system failure.

 Hard

If one response-time constraint of hard real-time systems is not met this leads to

complete and catastrophic system failures.

3. Availability of Sensor Data 25

Figure 5 shows each type of real-time system graphically.

Figure 5 - Real-time Deadlines

Within the context of geo-sensor systems the word “real-time” is often not a pre-set numerical

time, but more often means a qualitative expression such as “immediately” or “ad-hoc” [14].

This thesis presents an implementation of a system dealing with weather data which does not

require hard deadlines. As a consequence the implementation will be restricted to soft

deadlines.

4. Standardized interfaces and exchange protocols 26

4. Standardized interfaces and exchange protocols

The following chapter deals with initiatives for standardization and introduces the “Open

Geospatial Consortium” (OGC). It also points out the benefits of standards.

Earth systems, like the atmosphere, the hydrosphere or the biosphere, are connected to each

other. Thus it is very important to share information between several geospatial disciplines.

Scientists seek to manage water, waste, energy, pollution, forests, oceans, climate and more

data in a standardized way [15]. Therefore, standards are a prerequisite for the creation of

interoperable and portable infrastructures. They help to achieve a maximum interoperability if

they are applied throughout the whole workflow [11].

4.1. Initiatives for Standardization

There are efforts of different institutions for the standardization of geospatial data and

services. The following figure shows a good overview:

Figure 6 - Standards [11]

“De facto”-standards are standards or commonly used technological specifications. Often hese

are specified by the World Wide Web Consortium (W3C) and developed “on-demand”. “De

jure” standards are domain-specific definitions and mostly legally binding [11]. The “Open

Geospatial Consortium” (OGC) was founded in 1994 as a bridge between these two areas. It

is the leading institution for the establishment of geospatial standards and moreover a

4. Standardized interfaces and exchange protocols 27

nonprofit organization. It involves universities, research organizations, NGOs, companies and

government organizations working together to develop institutional information sharing

standards [15].

The OGC also develops standards for other domains such as aviation, business intelligence,

emergency response, mobile internet or sensor webs [15].

One group of standards, developed by the OGC concerning sensor networks, is called

“Software Web Enablement” (SWE) [14]. It consists of following standards [14], [15]:

 Sensor Model Language (Sensor ML)

This standard specifies models and XML encoding for specifying the geometric,

dynamic and observational characteristics of sensor systems. Low level definitions of

atomic process models and process chains allow the specification of many different

types of sensors from simple visual thermometers to earth observing satellites. The

processes and components are all defined in GML (Geographic Markup Language).

Sensor ML supports discovering different types of sensors and the processing and

analysis of the retrieved data.

 Observations & Measurements (O&M)

O&M specifies a description of sensor observations in the form of general models and

XML implementations. Several terms for the measurements and the relationship

between them are labeled. The measurement results are expressed as quantities,

categories, temporal or geometrical values, arrays or composites of these. The

framework provides document models for exchanging information of observation acts

and their results within different scientific and technical domains.

 Transducer Model Language (TML)

TML provides a method and a message format describing how raw transducer data

should be interpreted.

 Sensor Observation Service (SOS)

This standard defines a web service interface for querying observations, sensor

metadata and representations of observed features. It also provides a standard for

4. Standardized interfaces and exchange protocols 28

registering and removing sensors.

 Sensor Planning Service (SPS)

The SPS supplies an interface for planning an observation query. A feasibility check is

performed while data from several sensors is set up.

 Sensor Alert Service (SAS)

SAS identifies predefined events and then generates and sends alerts in a standardized

protocol format.

 Web Notification Service (WNS)

This service delivers alerts to end-users using e-mails or text messages. It also

provides an open interface so that services can exchange asynchronous messages with

each other.

 Sensor Web Registry

This registry stores metadata such as the location of a sensor, what they measure or

whether they are static or mobile.

The following figure shows how the different standards work together in a sensor network:

Figure 7 - A Standardized Sensor Network [14]

4. Standardized interfaces and exchange protocols 29

The OGC is currently working to specify a common namespace for these standards. It is

hoped that this will help minimize redundancy and improve reusability of the various

standards [11].

4.2. Benefits of standards

Applications can benefit in several ways by using standards. The following list shows some

examples [11].

 Interoperability between services and different heterogeneous data sources is

improved.

 The extensibility of the system increases.

New data sources can be integrated more easily if the system is built in a modular

structure.

 Automated machine-to-machine (M2M) communication becomes easier.

Computers can use well-known interfaces for combining services.

 With uniform interfaces request consistency is guaranteed.

This is important for the implementation of client applications.

Although using standards has a lot of advantages, developer should consider that using them

increases the effort for establishing the system when first deploying it. Implementing a

standard can be quite time consuming. Nevertheless, over the long-term, the operation,

administration and transaction costs should be minimized [11].

5. Version Control Systems 30

5. Version Control Systems

For the practical part of the paper an introduction to version control systems is necessary.

Therefore, this chapter introduces different types of version control systems: centralized and

distributed systems. It points out advantages and disadvantages of each system and makes a

comparison between existing software solutions. The chapter ends with a selection of two

suitable systems for the practical implementation.

Version Control Systems (VCS) are tools that help developers to manage changes in their

software. They are used for documentation, sharing and merging of code. This is an essential

part of software development and effective use of VCS contributes to the success of projects.

Software is usually developed in teams where members work parallel on the same code. So it

is very important to have a tool for sharing and merging changes [16].

Because this task is so important, there are already a lot of tools available. In this thesis the

author examines using these systems for managing real-time geo-data. The process of

merging geo-data streams with each other is not completely dissimilar to merging code of

several developers to each other. Also documentation is needed for handling sensor data.

In general there can be made a classification of two types of version control systems:

distributed and centralized systems.

5.1. Centralized version control systems

Centralized version control systems consist of one single server that contains all the versioned

files and a number of clients that are allowed to check out and import files to that server. This

architecture has been a standard for many years [17].

5. Version Control Systems 31

Figure 8 - Centralized Version Control System [17]

Figure 8 shows graphically the structure of a centralized version control system.

5.1.1. Advantages

A big advantage of centralized version control systems is the easier way of learning how to

use them. They don’t offer so many features so that the learning curve of new users is really

quick. Another advantage is that everybody in a project knows what the others are doing at

the moment. It is not possible for one user to hide his work. For administrators a central

version control system is easier to deal with than a decentralized one. It can also be seen as

advantage that centralized version control systems are very common in companies and

therefore the existence of a huge know how basis.

5.1.2. Disadvantages

The centralized server is a single point of failure. When the server goes down for one hour,

nobody can work with the version control system any more. Another disadvantage is, that if

the hard disk, where the central server is stored on, becomes corrupted, all the data are lost.

When using central version control systems making proper backups of the server is essential.

Examples for centralized version control systems are Subversion, CVS or Perforce.

5. Version Control Systems 32

5.2. Distributed version control systems

In a distributed version control system, each client fully mirrors the whole repository like

figure 9 shows [17].

Figure 9 - Distributed version control systems [17]

This composition brings different advantages and disadvantages compared to centralized

version control systems.

5.2.1. Advantages

Every checkout of a client when using a decentralized system is a full backup of the

repository. If the repository goes down, any of the client repositories can be copied back on

the server and fully restores the system. Another advantage is that a hierarchical model for

workflows is possible. So it is possible to work with different people in different groups

within the same project. Decentralized systems also show an increase on speed. Storing the

data to the local repository can happen really fast.

5.2.2. Disadvantages

Decentralized systems are sometimes considered as more complex to learn [18]. For storing

the data to the remote connection a SSH key has to be used. The setup for administrators is

5. Version Control Systems 33

more difficult in the beginning. However, decentralized version control systems also offer

more features than centralized ones.

Examples for decentralized version control systems are Git (this software can also be used as

centralized version control system), Mercurial, Bazaar or Darcs.

5.3. Evaluation and comparison of existing version control systems

This chapter introduces existing version control systems and evaluates them. Out of that

evaluation two systems will be chosen for subsequent implementation of a geo-data

processing system.

The following table shows a general overview of existing centralized and decentralized

systems:

 Initial

Release

Developer Platform License Repository

model

Subversion
9
 2000 Apache

Software

Foundation

Unix,

Windows,

Mac

Open source centralized

Perforce
10

 1995 Perforce

Software Inc.

Unix,

Windows,

Mac

Proprietary centralized

Team Foundation

Server
11

2005 Microsoft Windows Proprietary centralized

GIT [17] 2005 Junio Hamano Posix,

Windows,

Mac

Open source decentralized

Mercurial
12

 2005 Matt Mackall Unix,

Windows,

Mac

Open source decentralized

9
 Subversion, http://subversion.apache.org (August 2013)

10
 Perforce, http://www.perforce.com (August 2013)

11
 Microsoft, http://www.microsoft.com (August 2013)

12
Mercurial, http://mercurial.selenic.com (August 2013)

http://subversion.apache.org/
http://www.perforce.com/
http://www.microsoft.com/
http://mercurial.selenic.com/

5. Version Control Systems 34

Bazaar
13

 2005 Canonical Ltd. Unix,

Windows,

Mac

Open source decentralized

Figure 10 - Overview: Version Control Systems

For further evaluation the author chose three of the versioning systems in the table. The

version control systems Subversion, Git and Mercurial have been picked, because they appear

to be the most widely used systems and they are open source applications [16].

5.3.1. Apache Subversion (SVN)

CollabNet founded the Subversion project in October 2000. In February 2010 it became an

open source Apache Software Foundation Project. SVN is a centralized version control

system. Collaboration with other developers, even in remote locations, is possible since SVN

uses HTTP. HTTP (Hypertext Transfer Protocol) is a standard protocol which is allowed by

most firewalls [18].

SVN offers a lot of features such as a merging tool, branching support, commit messages and

a whole lot more. It tries to solve conflicts if two developers have being working on the same

place in a file. SVN also features true atomic commits. That means that either a whole commit

completes or nothing is committed, which prevents repositories ending up in a corrupted

state [18].

Because SVN is open source, easy to learn and offering a lot of features that other version

control systems had not previously offered, it found a wide adaption by a large number of

companies. That results in a wide support with third-party applications. Nevertheless,

Subversion suffers from the disadvantages of centralized systems as discussed in chapter

5.1.2. If using a slow internet connection the speed of updating or committing data goes down

rapidly. Also SVN merging abilities suffer if a file is not cleared of the additional code

generated [18].

13
 Bazar http://bazaar.canonical.com/en (August 2013)

http://bazaar.canonical.com/en/

5. Version Control Systems 35

5.3.2. Mercurial

After the free version of Bit Keeper was removed from the market the Mercurial project was

started in April 2005 by Matt Mackall. Mercurial is open source and is a decentralized

versioning system that includes all the advantages and disadvantages of those kinds of

systems. For example changes are usually pushed to the local repository which gives a huge

speed increase. Secure Shell (SSH) can be used to push to remote locations. SSH is very

similar to the standard HTTP protocol but more secure. That can be an advantage if all HTTP

ports are closed in a locked-down network [18].

Mercurial is written in Python, which ensures good cross-platform compatibility. It is mostly

a command line tool but there are also graphical implementations available. Mercurial offers

also more features such as allowing change to be exported to a file. Another user can import

that file to a remote repository still under the original name of the first user. This can be useful

if new code has to be reviewed and approved of other team members before committing [18].

Because of all these features Mercurial found a wide number of users including the companies

Mozilla, Netbeans and Growl.

5.3.3. Git

Git started to be developed around the same time as Mercurial. Linus Torvalds, the inventor

of the Linux kernel, programmed the first version of Git in just four days. Git was developed

for managing the source code for the Linux kernel development with two core ambitions:

speed and security. It is a decentralized version control system [18].

Git takes a special focus on rapid branching. In Git it is possible to make separate branches

for special features that can be merged back in the repository after they have been finished.

Git is also very scalable. Even managing a huge project will not slow it down [18].

The local use of Git is quite impressive. As one disadvantage it can be said, that the set up and

learning curve of Git is perhaps more difficult than for other systems. The communication

with a remote Git repository requires having SSH keys for the local and the remote machine.

Nevertheless, there are a lot of books and online resources available for getting to know this

versioning system [18].

5. Version Control Systems 36

5.4. Selection of two suitable systems for implementation

For the practical part of the paper, the implementation of version control systems for the

processing of real-time geo-data, the author of the thesis decided to use Subversion and Git.

These two systems were chosen to provide a comparison between centralized and

decentralized systems. They are two very popular systems which are used in many companies.

Git won over Mercurial because it is faster and offers more (branching) features [18].

6. Visualization of Sensor Data 37

6. Visualization of Sensor Data

This chapter focuses on the visualization of sensor data. The visualization taxonomy of Buja

et al (1996) is introduced. GIS (Geographic Information Systems) are described in more detail

through presenting existing software solutions. Moreover, a connection of GIS with sensor

networks is made.

6.1. Terminology

Visualization not only means the construction of graphs but also the process of interacting

with the parameters of the graph. Many graphical views of a data set should be provided for

understanding and gaining better insight into the data [19].

Visualization is especially important for spatial data, because graphical tools are often more

intuitive for non-specialists. Thus people, who have knowledge of the subject, even if they are

not statisticians, are better able to participate in the process of getting data insight [19].

Data visualization in general is concerned with graphical tools. For spatial data visualization,

such as a map display, cartographic tools are needed. This is called “cartographic

visualization” [19].

It is possible to make a distinction between categorical and quantitative visualization methods.

Examples for categorical systems are bar charts or mosaic plots. Whereas examples for

quantitative systems are boxplots, histograms, dot-plots, quartile-plots, residual-plots or time

series plots [19].

Categorical visualization methods are more difficult to show by graphical approaches.

6.2. Visualization Taxonomy

Buja et al (1996) created a taxonomy of the current research on visualization of high-

dimensional data [20]. They divided data visualization into two parts: rendering and

manipulation [20].

Rendering means the decision of what to show in a plot and what type of plot to use for the

data. This means for example techniques for displaying distributions. There is also a division

made between univariate and multivariate data [19].

6. Visualization of Sensor Data 38

Manipulation of data refers to operations on each plot and how to organize multiple plots for

exploring data [19]. The following tasks for data exploration can be defined: finding gestalt

(identifying patterns, shapes …), posing queries and making comparisons [20].

Linking multiple views means a mechanism that links the graphical query to the graphical

response. A user should be able to pose a query graphically and the computer should present

the response graphically too [20].

“Pattern perception” refers to the detection and assembly of geometric objects for discovering

patterns in the encoded data. Table lookup is about the task of making queries on individual

cases [19].

Figure 11- Taxonomy of Buja [19]

Figure 11 shows the taxonomy of Buja et al (1996): the interface between visualization tasks

and the development of visualization techniques.

6. Visualization of Sensor Data 39

6.3. GIS (Geographic Information Systems)

Geographic Information Systems or so called GIS are software tools helping to manage and

visualize spatial data. There exist many definitions of those systems.

Blakemore (1986):

“Computer packages, which integrate the storage, manipulation, analysis, modeling and

mapping of digital spatial information [21].”

Burrough (1986):

“Powerful sets of tools for collecting, retrieving at will, transforming and displaying

spatial data from the real world [22].”

Anenucci (1991):

“Computer system that store and link non-graphic map features to allow a wide range of

information processing and display operations, as well as map production, analysis and

modeling [23].”

In general, GIS consist of five functional components [24]:

 Data acquisition and data verification

 Data storage and database management

 Data transformation and analysis

 Data output and presentation

 User interface

There are a lot of different GIS software systems on the market. Examples for commercially

available GIS are:

 Autodesk

 ESRI

 Bentley Systems

 Intergraph

 Mapinfo

Examples for open-source GIS are:

6. Visualization of Sensor Data 40

 GRASS GIS

 Quantum GIS

 Open JUMP

Examples for Online-GIS are:

 Google Maps

 Google Earth

 Open Street Map

The following sections describe some well-known GIS in more detail.

6.3.1. Autodesk

Autodesk Inc. is an American software development company for 2D and 3D-design,

engineering and entertainment software. It introduced the software AutoCAD in 1982, but it

has also a broad portfolio with other software for the global market. For example AutoCAD

Map 3D is a model-based GIS- and mapping-software. It offers features like point cloud tools

for importing, visualizing and styling large sets of 3D laser scanning or LIDAR data. It also

includes conversion functionality for GIS and CAD to industry models. Planning and analysis

tools make it possible to perform queries, create thematic maps and topologies and to create

reports
14

.

6.3.2. ESRI (Environmental Systems Research Institute)

ESRI (Environmental Systems Research Institute) is an American company situated in

California. It sells geo-information systems. Its best known system is called ArcGIS. This is a

platform for designing and managing solutions through the application of geographic

knowledge. ESRI Location Analytics offers data visualization and geographic intelligence.

With the product ESRI data the company also provides a range of ready-to-use data for GIS

visualization and analysis
15

.

14
 Autodesk, http://www.autodesk.com (August 2013)

15
 ESRI, http://www.esri.com (August 2013)

http://www.autodesk.com/
http://www.esri.com/

6. Visualization of Sensor Data 41

6.3.3. GRASS GIS

GRASS (Geographic Resource Analysis Support System) GIS is an open-source GIS for data

management, image processing, graphics production, spatial modeling and visualization of

different types of data. It was originally developed by the US Army Construction Engineering

Research Laboratories for land management and environmental planning of the military. The

software evolved to offer a wide range of applications in many areas. It is currently used in

many US governmental agencies and in academic and commercial settings all over the

world
16

.

6.3.4. Google Earth

Google Earth is a software product of the company Google. It is a virtual globe, map and

geographic information system. The standard version is free, but there also exist

commercially available versions called Google Earth Pro and Google Earth Enterprise. The

commercial versions offer more feature such as measuring tools for distances, the ability to

import huge vector-data or building of customized maps. Because the standard version is free,

there are already millions of users worldwide. Google Earth is one of the best known GIS
17

.

6.4. Sensor Networks and GIS

There exist several approaches for joining sensor information in GIS applications [11].

6.4.1. Sense Web project

Sense Web is a research project of Microsoft. The aim of the project is to establish a

Wikipedia-like sensor platform. Users are allowed to include their own sensors in the system.

This is helping to get a “community effect” of building a dense network of sensors by

aggregating existing and newly deployed sensors within the application. A disadvantage of

that project is that it is not based on open (geospatial) standards. It is only based on standard

web services [11].

16
 Grass GIS, http://grass.osgeo.org (August 2013)

17
 Google Earth, http://www.google.com/earth/index.html (August 2013)

http://grass.osgeo.org/
http://www.google.com/earth/index.html

6. Visualization of Sensor Data 42

6.4.2. PermaSensorGIS

PermaSensorGIS has been developed by several companies. Its goal is to combine sensor

systems with GIS-based visualization technologies. Its sensing devices measure rock

temperature at ten minute intervals. They have been developed for optimal resource usage like

for example data aggregation, power consumption or the communication within the sensor

network. In the current implementation a number of open standards and open-source services

are used [11].

6.4.3. City Sense

The City Sense project uses sensors to show the overall activity level of a city or activity

hotspots in real-time. It also links Yelp and Google to show venues that are operating at

specific locations. It uses an urban sensor network for measuring data
18

.

18
 Sense Networks, https://www.sensenetworks.com (August 2013)

https://www.sensenetworks.com/

7. Perspectives and Challenges 43

7. Perspectives and Challenges

This part of the thesis deals with perspectives and challenges concerning geo-sensor

applications. A forecast of the future development of sensor data, hardware, software and

network protocols is made. In addition, issues and problems that can occur like privacy, data

ownership or pricing, are mentioned.

GIS are a powerful mechanism for managing information. They started with humble origins;

only a set of simple ideas and rather inefficient software. GIS have grown into a sophisticated,

global industry in only a few decades. GIS play a dual role. They function as mainstream

technology for the management of geographic information and also as a tool for the effective

use of resources [25].

Figure 12 shows the development of geo-information systems. The evolution has been more

cyclical than linear. In the 1970s the focus was on computer mapping, what means just the

visualization of the data. This leaded to spatial data management. The focus was then on the

management of data structures. Geo-references mean the linking of digital maps to databases

for querying. Today, GIS focus is on multimedia mapping with 3D and virtual reality

visualization which represents a cyclical return to the beginning. The next innovation

according to the cycle will likely be focused on data structures and analysis [26]. As said in

the introduction, there is a lack of support for querying, processing, mining and analyzing of

real-time data streams. This thesis attempts to address this problem.

7. Perspectives and Challenges 44

Figure 12 - Future Directions [26]

The following sections explain in more detail some perspectives and challenges of geo-sensor

networks and GIS.

7.1. Data

In the future, there will most probably exist an easier access to digital data. This is one of the

greatest opportunities for GIS. Data delivery has already been revolutionized by the Internet

and search tools built upon its structure [25].

There will be a lot of new types of data, more complete data, higher-resolution data and more

timely data. One opportunity is the increasing high-resolution data that is coming from

aircraft and spacecraft such as NASA’s Earth Observation in the form of remote sensing data.

GPS data can also be used since their precision has increased over time and is now standard

equipment in many devices such as in public and private vehicles as well as mobile

phones [25].

7. Perspectives and Challenges 45

7.2. Hardware

There have been at least four revolutions concerning hardware for GIS in the last decade: the

workstation, network, microcomputer and mobility revolution. Certainly, that development

will move on [25].

The power and the storage to work with massive databases are likely to continue increasing.

Networks are now able to include many new types of computers, such as microcomputers.

Nearly every computer is connected to the Internet or can use networks. The internet is the

primary source for data exchange, information search and retrieval. Already many GIS’s have

developed online modules like the ESRI Internet Map Server or Intergraph GeoMedia

WebMap. Microcomputers are getting more and more inexpensive and the platforms are

becoming more and more widely distributed. There is also a trend towards mobility. This

generates a lot of new GIS applications [25].

7.3. Software

Software is getting more intelligent and more mainstream as examples like Google Earth

already show. The challenge for GIS software is to make it able to intelligently convert data

between structures without intervention of the users.

7.4. Sensor Networks

Regarding the following characteristics of sensor networks, there are several challenges [5]:

 Constrained (Energy, computing power, communication and bandwidth are limited)

 Untethered

 Failure prone

General challenges:

 The design, deployment and management of robust and massively distributed systems

which consist of hundreds or thousands of physically-embedded devices

 Ad-hoc communication and collaboration of sensor nodes

 Adaption and self-configuration of the network based on events

 Self-healing skill in case of hardware failure

7. Perspectives and Challenges 46

Local challenges (for each sensor node):

 Local energy management

 Local sensing, data collection and processing

 Collaboration and coordination with neighbor nodes

Global challenges (the sensor network as a whole):

 System lifetime and energy management

 Large phenomena sensing and tracking

 Global change detection processing

In the past there has been a paradigm shift concerning the organization of the network. The

decision making and collaboration became a local task. Each sensor nodes has a so called

“self-organization” [5].

This paper focuses on the global challenge of “detection processing”, which means the mining

and analyzing of the data after each node has finished its work. This will be evaluated with

the use of version control systems. These systems are described in more detail in chapter 5.

7.5. Issues and Problems

Although geo-information system offer a lot of possibilities for the future, there are also some

issues and problems which should be considered.

7.5.1. Privacy

With geo-sensor networks it is possible to link private data like personal income, information

about the family or health records to geographic locations [25]. For example many cities have

public property records that give property and owner information. Fears appear that such data

could be used in damaging ways. Laws and legal procedures have to be reconsidered [27].

7. Perspectives and Challenges 47

7.5.2. Data Ownership and Pricing

There are different opinions about the price and ownership of geo-sensor data. It is very

expensive to produce data, but copying is nearly for free. Some people say that if federal

government creates data at the public’s expense, copies should be given out for free.

Otherwise they would have charged a second time for the data. Others say data are a product

protected by copyright and patent and should be sold for profit [25].

In general, there currently exist two different pricing strategies: cost-based pricing and

value-based pricing. Cost-based pricing means that the price of a product consists of the costs

of the production and a markup. This strategy leads to relatively high prices. Hence, it can

stop the further development of new geo information products. Nevertheless, a large number

of firms currently use this pricing technique. Value-based pricing sets the price according to

the value a potential buyer attaches to the product. This technique is more suitable for

environmental data [28].

7.5.3. New Focus

Geo-sensor networks are based on change. Global climate change, global warming, the ozone

hole and other impacts of people on the environment will open a lot of new areas for that

technology [25].

8. Requirements for a Prototype 48

8. Requirements for a Prototype

This chapter evaluates if version control systems are suitable for improving the processing,

mining and analyzing of real-time geo-data streams. For that purpose, a prototypical

implementation using the version control systems Subversion and Git has been developed.

Before presenting the prototype, the requirements of the developed software have to be made

clear. The following chapters show the implementation requirements.

8.1. General Description

The general description includes the product perspective, general functions, user

characteristics, restrictions and assumptions and dependencies.

8.1.1. Product Perspective

At the moment, as far as the author knows, there exists no geo-sensor data approach using

versioning systems. Versioning systems already contain a lot of features that are helpful to

simplify the mining, processing and analyzing of real-time data streams. Therefore the

creation of such a system seems to fill a market gap.

8.1.2. General Functions

General functions and requirements for the software are:

 [RQ-1] MUST

Sensors generate data that are stored via a version control system

Example for a related user story:

John is a meteorologist. He has many sensors in a field study each generating

temperature readings. In order to conduct his research he must securely store all the

data reliably as it comes in from the sensors.

 [RQ-2] MUST

A scientist combines different sensors to a new meta construct

8. Requirements for a Prototype 49

Example for a related user story:

John likes to create visualizations that combine humidity data with data on wind speed

that another scientist has been storing. He wants to save these combinations of data

securely to show them to his colleagues in a few weeks.

 [RQ-3] MUST

Another scientist combines meta constructs to meta-meta constructs

Example for a related user story:

Alfred, a colleague of John, sees Johns work. He has another idea of a good

combination of weather data. He combines John’s construct of humidity and wind

speed with sensor data of air pressure for getting an even better weather forecast.

 [RQ-4] MUST

A scientist can view the data via a graphical representation

Example for a related user story:

Alfred wants to view his new data combination to John graphically to show him his

results.

 [RQ-5] MUST

Two scientists perform different analysis methods and fuse their work

Example for a related User Story:

Anna, another meteorologist, sees the work of John and Alfred. She uses both of their

combinations of weather forecasts for her own work related to tsunami forecasts.

 [RQ-6] CAN

If graphical representations are stored as well in the version control system, a piece of

software, like a “time machine” can be created for quick access

Example for a related user story:

Mary, the head meteorologist of the company, wants to view the work of her

8. Requirements for a Prototype 50

employees for a presentation at a conference. She can check out the work of each

meteorologist in the past weeks and sees how their work is evolving.

8.1.3. User Characteristics

The expected users of the system are scientists in the field of geography. They should have

expert knowledge about the specific geo-data and about how to combine different geo-data

streams. It is expected that they know how to handle a software program with a common

known user interface in windows.

8.1.4. Restrictions

The system will be developed in C#. Although it is possible to run a .NET program using

different operating systems, the version of this thesis will be a prototype that can only be used

under windows. The C# program will not be available as an online version. To run the

software, a usual in trade internet connection has to be provided. The minimal display

resolution is 1024x768.

8.1.5. Assumptions and Dependencies

For using the system one of the following version control systems has to be installed:

 Apache Subversion

 Git

It is possible to switch between the two versioning systems. The system allows working with

different kind of geo-data. For example data of a weather station or data from a volcano

measurement can be used. Therefore the accuracy of new meta constructs is not checked.

8.2. Specific Requirements

Specific requirements include non-functional requirements and the specific actors.

8.2.1. Non-functional requirements

As non-functional requirements, following aspects of the hardware, the software and design

constraints have to be available:

8. Requirements for a Prototype 51

 Hardware

Standard specification trade computer

Minimal 2 GB RAM

Minimal Display resolution 1024x768

Broad band internet connection

 Software

Operating System Microsoft Windows 7 or higher

Version control system Subversion or Git

Access to real-time geo-sensors

 Design Constraints

A modern, appealing design will be used. The UI will be easy to use with common

techniques like drop-down-menus, the mouse or the keyboard. The GUI will be

ergonomic designed and stick to common standards.

8.2.2. Actors

For using the software, just one type of actor is involved: scientists who want to handle

real-time geo-data.

8.3. Data Model

For analyzing the data model of the implementation use case and sequence diagrams have

been created.

8.3.1. Use Cases

Figure 13 shows a general overview of the considered use cases.

8. Requirements for a Prototype 52

Figure 13 - Primary Use Cases

The tables 1 to 4 provide a more detailed description of each use case.

Use Case ID 1

Use Case

Name

Add geo-sensor to system

Actors User (Scientist)

Description The user selects a button called “Add Sensor” for adding a new geo-sensor

to the system. After that, he is able to choose an existing sensor from his

file system. The chosen sensor file has to be already added to an existing

version control systems repository. The version control systems “Apache

Subversion” or “Git” are possible options to choose. After confirmation,

the system displays the data in the geo-sensor file. The display view will

be refreshed in a specific interval, so that new data which has been added

to the VCS-file in the background will get displayed.

Pre-Conditions User selects a versioning system: Git or SVN

User must have access to the repository of the specific versioning system

 uc Primary Use Cases

System

User

Add geo-sensor

Delete geo-sensor

Generate Meta-construct

View v isualization of the

data

8. Requirements for a Prototype 53

Post-

Conditions

Selected geo-sensor data is displayed

Normal Flow 1. Select versioning system

2. Choose specific input stream

3. Give the stream a name

4. Confirm action

Exceptions  Data Stream not available

 Unknown data format

Priority High

Frequency of

Use

High

Business Rules Number of sensors which can be added to the systems is unlimited

No login necessary. User is identified through versioning system account.

Table 1 - Use Case 1: Add sensor

Use Case ID 2

Use Case

Name

Delete geo-sensor from system

Actors User (Scientist)

Description The user selects a “Delete sensor”-option. Existing geo-sensors or meta-

constructs are displayed. The user can select one or more sensors or

constructs he wants to delete. After that he presses a confirmation button.

If the user selected a geo-sensor, the sensor will no longer be viewed in the

system. If the user selected a meta-construct, it will also no longer be

viewed, but also no longer be saved to the version control system in the

background.

Pre-Conditions Geo-sensor must have been added to the system

8. Requirements for a Prototype 54

Post-

Conditions

Geo-sensor isn’t displayed any more.

Existing meta-construct with that sensor are still available

Normal Flow 1. Select existing sensor

2. Press “Delete button”

3. Display is refreshed, sensor is not visible any more

Exceptions -

Priority Medium

Frequency of

Use

Medium

Business Rules Every added sensor can be deleted.

No login necessary. User is identified through versioning system account.

Table 2 - Use Case 2: Delete sensor

Use Case ID 3

Use Case

Name

Generate a new meta construct

Actors User (Scientist)

Description The user selects a “make new construct”-option. A new window for doing

that will be displayed. The user can now select one or more existing geo-

sensors or meta-constructs of the system. He also has to insert combination

rules for the sensors and give the new construct a meaningful name. After

that, the user has to confirm his action. The new construct will now be

saved to the version control system in the background. The standard view

will appear again and the new construct is visible.

Pre-Conditions Geo-sensors must have been added to the system.

Post- New meta-constructs will be stored in system.

8. Requirements for a Prototype 55

Conditions

Normal Flow 1. Select existing geo-sensors or meta-constructs

2. Define rule for connection

3. Give the new connection a name

4. Confirm action

Exceptions  No rule defined

 Defined rule is not legal

Priority High

Frequency of

Use

High

Business Rules Number of constructs which can be added to the systems is unlimited.

New constructs can be built out of existing constructs.

Table 3 - Use Case 3: Generate Meta Construct

Use Case ID 4

Use Case

Name

Graphically view meta construct

Actors User (Scientist)

Description The user selects a “View Data”-option. He sees possible options for

displaying the data. The possible options will vary with the data of the

sensor. E.g. for numerical data different views are possible like for alpha-

numeric data. The user selects a view and one geo-sensor or meta-

construct of the system. He then confirms his action. After that a new

window will be opened displaying the data in the specific format.

Pre-Conditions Geo-sensors have been added to the system

Post-

Conditions

New windows opens that displays the data

8. Requirements for a Prototype 56

Normal Flow 1. Select one geo-sensor or meta-construct

2. Select a specific kind of view

3. Confirm action

Exceptions  Specific view is not available for this kind of data

Priority Medium

Frequency of

Use

Medium

Business Rules Not every view suits for every kind of data.

Table 4 - Use Case 4: View Meta construct

8.3.2. Sequence-Diagrams

Possible interactions between the user, the system and the specific version control system are

displayed from figure 14 to 17 with the help of sequence diagrams.

Figure 14 - Sequence Diagram: Add Sensor

 sd AddSensor

User System VCS

Select VCS repository

from file system()

Check availabil ity of chosen VCS()

Send data to system()

Display sensors in chosen

repository()

Choose Geo Sensor

from List()

Ask for specific data()

Send data to system()

Display chosen sensor()

8. Requirements for a Prototype 57

Figure 15 - Sequence Diagram: Delete Sensor

Figure 16 - Sequence Diagram: Add Meta Construct

 sd DeleteSensor

User System VCS

Chose "Delete option"()

Show existing sensors and meta-constructs()

Select sensor/construct to be deleted()

if construct: stop writing to VCS()

Confirmation()

Delete sensor/construct from viewing()

 sd addMetaConstruct

User System VCS

Press "New

Meta-Construct"-Option()

Display new Window()

Chose Sensors from list()

Check availabil ity of chosen sensors()

Confirmation()

Define a combination-rule()

Add construct to VCS()

Confirmation()

Show new meta-construct in l ist()

8. Requirements for a Prototype 58

Figure 17 - Sequence Diagram: View Data

8.4. Test Data

The implementation can be used with any kind of geo-sensor text data. For the concrete

examples in this thesis, data from a weather station in Germany has been used. Data are

available in a period of five minutes for the years 2005 until 2012 [29].

These parameters are available in a CSV-format as table 5 shows.

Table 5 - Test Data [29]

In a real environment it is not usual to have all the data in one file. Normally a lot of different

sensors are delivering the data. Therefore each parameter was stored in a separate txt-file.

Figure 18 shows an example of one test file:

 sd ViewData

User System VCS

Select sensor or construct to be viewed()

Get data()

Send Information()

Show possible viewing-options()

Select one option()

Display data in new window()

8. Requirements for a Prototype 59

Figure 18 - Test Data File Example

The timestamp and the value are stored in the file separated by a semicolon.

Data are usually stored in a database to support further processing. This thesis evaluates if it is

possible to use a version control system instead.

8.5. Online repositories

Subversion and Git repositories can be created in free online hosts. These are used to store the

data for the prototype system.

Google provides free Subversion hosting through the website “Googlecode”
19

 which allows

free project hosting for open source projects, while free Git repositories are provided by

Github
20

.

8.6. Programming language

Prior to developing the prototype the programming languages C# and Java were evaluated as

alternatives.

Both languages offer libraries for the implementation of the selected version control systems:

 SVNKit

SVNKit is a pure Java toolkit for implementing all features of Subversion into Java

19
 Google Code, http://code.google.com/intl/de (May 2013)

20
 Github, https://github.com (May 2013)

http://code.google.com/intl/de/
https://github.com/

8. Requirements for a Prototype 60

code using an API. It is free to use for open source projects
21

.

 JGit

JGit is the same like SVNKit for implementing Git in Java applications. It is hosted by

Eclipse
22

.

 SharpSVN

SharpSVN is a Subversion client api for .Net applications. It is licensed under the

Apache 2.0 license. That means it is allowed to use it in open source and commercial

projects
23

.

 GitSharp

GitSharp connects Git to .Net and Mono. It is fully compatible to the original Git and

should function as a light weight library for C# applications
24

.

After developing four test programs with each versioning library, it was clear that there were

not a lot of differences between the implementations. Nevertheless, the programming

language C# was chosen. The prototype should be able to visualize sensor data and the user

interface should be easy to develop. In the opinion of the author, Visual Studio offers more

support for these tasks than Eclipse.

A disadvantage of using C# and .NET is that the developed interface is not web based. This is

a drawback concerning long term stability and sharing the application. Nevertheless, this is

not the focus of this paper. The prototype is developed for proving the theory of using version

control systems for geo-sensor networks.

8.7. Simulation of a Geo-Sensor

For writing this thesis, no real time geo-sensor has been available. As a consequence a

simulation of a sensor was developed.

The user interface of the simulation is shown in figure 19.

21
 SVNKit, http://svnkit.com (August 2013)

22
 Eclipse JGit, http://eclipse.org/jgit (August 2013)

23
 CollabNet, http://sharpsvn.open.collab.net (August 2013)

24
 GitSharp, http://www.eqqon.com/index.php/GitSharp (August 2013)

http://svnkit.com/
http://eclipse.org/jgit/
http://sharpsvn.open.collab.net/
http://www.eqqon.com/index.php/GitSharp

8. Requirements for a Prototype 61

Figure 19 - Simulation

The following paragraphs describe the functionality of the simulation software.

In the group box called “Sensor” the user can store the description of the current sensor. For

example, if a user is working with weather data, this can be “humidity”. In the field “sensor

origin” the user much place a path to a .txt-file, where the data of the sensor is stored. This

can be done with the use of the “Browse…” button. There is the possibility to specify a

specific interval, in which the sensor file is read in units of seconds. If no specific interval is

given, the software works with a one second interval.

In the tab control section, the user can choose if the current simulation works with Apache

Subversion or Git. Figure 20 shows the tab control view for Subversion.

Figure 20 - Tab control "SVN"

In the field “Local Destination” the user must specify a path to a file in the local system

containing an existing versioning system repository. This is the directory, where the data

should be stored and committed to the versioning system. It is necessary to provide a commit

message for the versioning system. This should be a meaningful, short phrase.

8. Requirements for a Prototype 62

Upon pressing the start button, the system starts to import the data from the sensor file to the

versioning system in the given interval. The imported data are displayed on the right section

of the user interface. The fields “timestamp”, “value” and “description” are filled in. It is

possible to stop this process by pressing the button “Stop”.

Figure 21 shows a similar tab control, but for the versioning system Git.

Figure 21 - Tab Control "Git"

For the version control system Git, a local repository path is needed. It has to be a path on the

local file system where a Git repository is already cloned. As with Subversion, the local

destination of the sensor file and a commit message must also be provided. The button “Start”

starts the import of the data from the sensor and the button “Stop” stops it.

To exit the whole application, a user can press the button “Quit”.

9. Actual Implementation with Subversion and Git 63

9. Actual Implementation with Subversion and Git

The following section describes the concrete implementation of the prototype using the

versioning systems Apache Subversion and Git. The available screens and settings are

presented as well the visualization options of the data.

9.1. Start Screen

Figure 22 shows the start screen of the application.

Figure 22 - Start Screen

The group section called “Sensors” contains a description, a type and a destination column.

The description column contains the name of the sensor or the construct. This name can be

chosen freely. The user is not allowed to store two sensors in the system with the same

description.

The system distinguishes between two types of sensors: “real” sensor data and

meta-constructs.

If adding a sensor with the button “Add”, the software expects a real sensor. If linking two or

more sensors or constructs with the button “Link”, the software stores the new construct with

the type “Construct”.

9. Actual Implementation with Subversion and Git 64

In the column “Destination” the path to a file in the local versioning system is displayed. It is

a path to a Subversion or Git repository. From this location the commit to the system is

executed.

9.2. Adding a geo-sensor

Figure 23 shows the user interface to add a new sensor to the system:

Figure 23 - GUI of adding a sensor

A local repository destination has to be provided. This has to be a local path to an existing file

in a Subversion or Git directory. The description that is chosen for characterizing the sensor

has to be a unique name. No sensor can occur twice in the system.

Before adding a sensor to the system, the simulation software descripted in chapter 8.7 has to

be started. After clicking the button “Add” the new sensor is displayed on the start screen of

the system.

9.3. Editing a sensor

Figure 24 shows the mask for editing a sensor.

Figure 24 - GUI of editing a sensor

It is only possible to edit sensors, but not constructs. The reason is that constructs start a

windows service in the background. It is not possible to edit an already working windows

service. It has to be stopped and installed again for that purpose.

9. Actual Implementation with Subversion and Git 65

This mask allows editing the local repository destination and the description of a sensor. The

description of a sensor has to be a unique name in the system. Therefore this mask can be very

useful.

9.4. Linking sensors or constructs

In figure 25 the GUI of linking sensors is displayed.

Figure 25 - GUI for linking data

By default, after clicking the button “Add” the selected sensors or constructs from the start

screen will be shown in the field “Link” connected by a plus-sign (+). The user can change

this default view. For example in figure 25, the two sensors get multiplied by 3. In the

background, this functionality is realized with a code library called “Math Parser .NET C#”

from the website “Code Project”
25

.

In the field “Destination” the path to a local file in the repository has to be stored. Every new

construct has to be given a unique name too. Like with adding sensors, it is not allowed to

have two or more sensors or constructs with the same name.

After clicking the “Add” button, the new construct will be stored to the versioning system.

This is realized in the background with using windows Services. Windows Services are

described in more detail at the end of that chapter.

The operation can also be aborted by clicking the button “Cancel”. Then the start screen

shows up again. After clicking the button “Add”, the result of the link is saved in a .txt-file.

25
 Code Project, http://www.codeproject.com/Tips/381509/Math-Parser-NET-Csharp (May 2013)

http://www.codeproject.com/Tips/381509/Math-Parser-NET-Csharp

9. Actual Implementation with Subversion and Git 66

The timestamp and the calculated value are saved, separated by a semicolon, as figure 26

shows.

Figure 26 - New constructs

Windows services are applications that run in the background of the operating system

Windows. They can be started automatically by booting the system, manually from a user

using the Service control panel applet or by an application that uses service functions. They

can execute even when no user is logged in the system [14].

In the prototypical application, windows services are used to store meta-constructs to a

version control system in the background. The service functions as a proxy to the version

control system, like figure 27 shows.

Figure 27 - Proxy

For each new construct, a new service is installed and started. Depending on the settings of

the application, either a service using Apache Subversion or Git is started.

 class System

MetaConstructServ ice

Simulation

Subv ersion / GIT

Windows Serv ice

9. Actual Implementation with Subversion and Git 67

9.5. Visualization of data

Figure 28 shows how data can be visualized. One or more sensors or constructs have to be

selected before clicking the button “Show” on the start screen.

Figure 28 - GUI for data visualization

Per default, by opening the dialogue, the name of the selected sensor is displayed in the field

description.

If only one sensor or construct is selected, the destination and data fields are filled with

values. The destination space displays the local path where the sensor or construct file is

stored. In the section data, the content of the sensor file is displayed. If more than one sensor

or construct should be displayed, this section looks like figure 29. Most of the time it is

necessary to compare more than one data stream with others.

Figure 29 - GUI 2 for data visualization

9. Actual Implementation with Subversion and Git 68

After pressing the button “Refresh”, the sensor file is imported again and the data section is

updated.

For visualization three options are available: a Curve, a Pie Chart or the Bar view. After

selecting one option and pressing the button “Show” a new window with the visualization

opens.

Figure 30 shows the graphical representation of the test data in a curve. On the x-axis the time

intervals are displayed (distance 1 between each interval). On the y-axis the value is

displayed.

Figure 30 - Curve

The example shows a comparison between the humidity and temperature from the test data.

Scientists can so easily compare different sensors and find new connections in them (e.g. for

new constructs).

Figure 31 shows the visualization option “Pie Chart”. The pie shows how often each value

occurs.

9. Actual Implementation with Subversion and Git 69

Figure 31 - Visualization: Pie Chart

In figure 32 the bar view is displayed. In this example, the values of humidity and temperature

are compared.

Figure 32 - Visualization: Bars

9. Actual Implementation with Subversion and Git 70

The graphical representation has been realized using a .NET library called “Charting” from

the website Code Project
26

.

It is also possible to save visualizations. This makes sense, if one scientist wants to store his

results and show them to one of his colleagues (see user story for requirement 5 in chapter

8.1.2).

After clicking the button “Save” the window displayed in figure 33 opens.

Figure 33 - GUI for saving visualizations

A file name and a destination for storing the visualization can be chosen. After clicking the

button “Save” the needed data are stored in a .txt-file on the local file system.

If another scientist wants to load a stored visualization again, the button “Load” has to be

clicked like represented in figure 34. It is only required to know the path to the stored file.

26 Charting, http://www.codeproject.com/Articles/5431/A-flexible-charting-library-for-NET (May 2013)

http://www.codeproject.com/Articles/5431/A-flexible-charting-library-for-NET

9. Actual Implementation with Subversion and Git 71

Figure 34 - GUI for loading visualizations

The loaded sensors have to have a unique name. If this is not the case, the loading fails with

the error massage displayed in figure 35.

Figure 35 - Alert box for unique key violations

The existing sensor has to be renamed or a new name for the loaded sensor has to be chosen

and the transaction can be started again.

9.6. Settings

Figure 36 shows the mask for saving the settings of the current simulation.

9. Actual Implementation with Subversion and Git 72

Figure 36 - Settings

Either Subversion or Git must be used in the simulation. A mix of the two versioning systems

is not possible.

If the user chooses the option “Subversion”, a Subversion repository, a path to the install-,

uninstall- and config-files have to be stored. All this values are stored as default settings by

opening this window. The install-, uninstall- and configuration-file point to the currently

using windows service.

When using the Git option, the same values are also presented as default. The only difference

in that option is that the version control system Git is used and therefore a different windows

service is started up.

Figure 37 - Start Screen VCS

The current setting is displayed on the start screen on the top right corner like figure 37

shows.

9.6.1. Subversion

When adding a new construct to the sensor using Subversion, a new windows service

especially for that version control system is installed and started. This process can be viewed

in the windows service control panel like figure 38 shows.

9. Actual Implementation with Subversion and Git 73

Figure 38 - Service Subversion

The windows service for Subversion uses the C# library Sharpsvn. The last line of each

sensor text file is read. The value is connected according to the link definition and calculated

using the library “Math Parser .NET C#”. This workflow is illustrated in figure 39.

Figure 39 - Workflow of linking sensors

By evaluating the software solution using Subversion following problems and issues have

been encountered.

Subversion is very slow. It takes quite a long time to commit to a remote repository. The

commit time of Subversion and the timestamp of each sensor file can be very far apart.

The solution of using the last line of each .txt-file is not failure free. There are mistakes in the

result, if one sensor file gets updated every 10 seconds and the second one every minute.

If a user is working on the local Subversion repository while the sensor is committing, locks

can easily occur (Failure massage: SVN_ERR_WC_LOCKED). This can be resolved with

making a Subversion “Cleanup” of the project folder manually.

9.6.2. Git

If the user links a new construct using Git as preferred version control system, the workflow is

similar to Subversion.

A Windows service using Git is started, like figure 40 shows.

9. Actual Implementation with Subversion and Git 74

Figure 40 - Service Git

Following issues have been discovered using the version control system Git:

Changes are committed to the local repository. Thus, this solution is very fast. There is no big

time difference between the .txt-timestamps and the commit-file. Nevertheless, the windows

Git client doesn’t support to push to the remote repository. This has to be done manually. This

has the advantage that the user can control the file before it is pushed to the remote repository.

Making changes afterwards is very complicated with the Subversion solution.

Concerning the fitting of sensor data, the same problems occur as with the Subversion

implementation. Git is more stable than Subversion. Locks of the working repository nearly

never occurred during testing.

10. Results 75

10. Results

The results of the actual implementation using Subversion and Git are described in the

following paragraphs. There is made a comparison between Subversion and Git as well a

comparison between version control systems in general and databases.

10.1. Comparison of Subversion and Git

Table 6 shows a quick overview of the advantages and disadvantages of the two used version

control systems.

 Subversion Git

Advantages  Save to remote repository:

immediate backup

 Speed

 Reliability

 Check new constructs on local

file system before pushing to

remote repository

Disadvantages  Working copy locks occur more

often

 Difficult mapping between

.txt-files (which lines belong to

each other?)

 No checking of new constructs

possible before pushing to the

remote repository

 Difficult mapping between

.txt-files (which lines belong to

each other?)

 No direct pushing to remote

repository possible. Push has to

be made manually with using a

SSH-key.

Table 6 - Comparison Subversion and Git

These results have already been described in more detail in chapter 9.6.1 and 9.6.2.

In general, there are not many differences between the two version control systems. The only

huge difference is the centralized and decentralized architecture which has been introduced in

the theoretical part of this paper.

10. Results 76

Regarding the result of this thesis, Git is a better solution for using version control systems for

real time geo-sensor networks. The system is faster and the user has the possibility of

checking and controlling of new meta-constructs before pushing them to a remote directory.

10.2. Comparison between VCS and databases

Nevertheless, the use of no database brings several disadvantages.

 Selection of the data

General approved methods of selecting data (SQL) cannot be used when working with

.txt-files. It is difficult to know, which lines of data belong to each other.

 Standards

Standards concerning geo-data are referring to the use of databases or XML-schemas.

They cannot be applied to .txt-files which are stored in a versioning system.

 Big data

Databases are built for handling a huge amount of data. Version control systems are

built for managing software development history. Thus, databases work better with big

amounts of data.

 Connection to GIS

Nearly every available geo-information system provides a connection (interface) to a

database.

But there are also advantages using a version control system for processing of geo-data.

 View log

Despite for databases, it is very easy to show the history of several versioning

branches. A log overview is implemented in Subversion and Git, like figure 41 shows.

10. Results 77

Figure 41 - Show Log

 Meta Constructs

The storing of meta constructs can be easily implemented using versioning systems,

like the practical implementation described in chapter 8 and 9 shows.

 Costs

Most of the versioning systems are available as open source. Thus, they are much

cheaper to implement than a database solution.

 Lightweight implementation

Version control system implementations don’t need a lot of resources. Most of the

systems offer a library for integrating them in common programming languages. In a

lot of companies version control systems are already used for code management. So it

is easy to integrate new software using version control systems.

There appear different advantages and disadvantages with version control systems and

database solutions. As result of this thesis no solution is better than the other, for each

application type a suitable implementation has to be chosen.

11. Conclusion 78

11. Conclusion

The key objective of this thesis was to find out, if data management concerning analyzing

near real-time data streams can be improved by using version control systems to store data.

Version control systems are a good alternative for smaller implementations. Using version

control systems instead of data warehouses has the advantage of a lightweight

implementation. Most of the version control systems are available as open source, thus the

costs of implementation are much lower. It is also simple to integrate a new sensor in the

system with version control systems. The user just has to make a commit of a sensor file, it is

not necessary to adjust data to a specific database schema.

Moreover, version control systems offer good possibilities for data aggregation and data

fusion. For example different data streams can easily be connected to each other and stored in

the system as new branches. The systems already offer options to check the history of

branches and to compare branches to each other.

Programming software which uses version control systems is not too difficult, because most

of the systems are available as open source and they offer libraries to integrate them in

common programming languages. Besides, a lot of companies already use version control

systems for their code management. This makes it simple to integrate those systems in a

company environment.

It does not make a big difference which version control system is used. The thesis made an

evaluation of different existing systems. The only big difference is the distinction between

centralized and distributed systems. It depends on the preferences of a user which system he

or she should choose. In general, nearly every version control system on the market is suitable

for a geo-sensor implementation.

Thus, for small sensors or solutions that are not used worldwide, version control systems are a

suitable solution. But, if exchanging protocols with other institutes, a solution based on

standards (like from the OGC) is the better alternative. They are all based on xml- or database

standards and offer better integration options to other software parts. Moreover, with using a

database it is easier to query data with tools like SQL. Anyway, all that options come with

higher costs and a much more difficult integration in a company environment.

11. Conclusion 79

As new research questions, after having the results of this thesis, the following can be

formulated:

How can geo-sensor data that is stored in version control systems be integrated to existing

GIS?

How can geo-sensor data that is stored in version control systems meet common geo-sensor

standards (e.g. standards from the OGC)?

How can querying geo-sensor data that is stored in version control systems can be made

easier?

In conclusion it can be said that it depends on the kind of purpose of the used geo-sensor data

to decide which possibility is the best. If a lightweight, cheap and easy-to-integrate solution

that is not shared worldwide is needed, version control systems are a good alternative.

Bibliography 80

Bibliography

[1] Nittel, S. (2009). A survey of geosensor networks: Advances in dynamic environmental

monitoring. Sensors, 9(7), 5664-5678.

[2] Grosky, W. I. et al. (2007). SenseWeb: An infrastructure for shared sensing. Multimedia,

IEEE, 14(4), 8-13.

[3] Lemmens, M. (2011). Geo-information: Technologies, Applications and the Environment.

New York: Springer.

[4] Uckelmann, D., Harrison, M., & Michahelles, F. (2011). Architecting the internet of

things. New York: Springer.

[5] Nittel, S. (2008). Geosensor Networks: New Challenges in Environmental Monitoring

using Wireless Sensor Networks. Available Online:

http://www.academia.edu/2791581/Introduction_to_advances_in_geosensor_networks [cited

17.08.2013]

[6] Duckham, M., Nittel, S., & Worboys, M. (2005). Monitoring dynamic spatial fields using

responsive geosensor networks (pp. 51-60). Presented at the 13th annual ACM international

workshop on Geographic information systems. 31 October-5 November 2005, Bremen,

Germany.

[7] Nittel, S., et al. (2004). Report from the first workshop on geo sensor networks. ACM

SIGMOD Record, 33(1), 141-144.

[8] Gross, N. (1999). Businessweek Online. Available Online:

http://www.businessweek.com/1999/99_35/b3644024.htm [cited 17.08.2013]

[9] Brain, M. (2004). How Motes Work. Available Online:

http://computer.howstuffworks.com/mote.htm [cited 17.08.2013]

[10] Dishongh, T. J., McGrath, M., & Kuris, B. (2009). Wireless sensor networks for

healthcare applications. Norwood: Artech House.

[11] Resch, B. (2009). Live Geography - Standardised Geo-sensor Networks for Real-time

Monitoring in Urban Environment. Doctoral dissertation, University of Salzburg.

Bibliography 81

[12] European Commission (2012). Copernicus: new name for European Earth Observation

Programme. Available Online: http://europa.eu/rapid/press-release_IP-12-1345_en.pdf [cited

17.08.2013]

[13] Laplante, P. A. (2004). Real-time systems design and analysis. Canada: Institute of

Electrical and Electronics Engineers.

[14] Resch, B. et al. (2009). Urban Sensing Revisited – Common Scents: Towards

Standardised Geo-sensor Networks for Public Health Monitoring in the City (pp. 16-18).

Presented at the 11th International Conference on Computers in Urban Planning and Urban

Management - CUPUM2009. 16-18 June 2009, Hong Kong, China.

[15] Opengeospatial Consortium (2013). OGC Standards and Supporting Documents.

Available Online: http://www.opengeospatial.org/standards [cited 17.08.2013]

[16] Kleine, M., Hirschfeld, R., & Bracha, G. (2012). An abstraction for version control

systems. Potsdam: Universitätsverlag Potsdam.

[17] Chacon, S. (2009). Pro Git. New York: Apress.

[18] Kemper, C., & Oxley, I. (2012). Foundation Version Control for Web Developers. New

York: Apress.

[19] Haining, R. P. (2003). Spatial Data Analysis: Theory and Practice. Cambridge:

Cambridge University Press.

[20] Buja, A., Cook, D., & Swayne, D. F. (1996). Interactive high-dimensional

datavisualization. Journal of Computational and Graphical Statistics, 5(1), 78-99.

[21] Blakemore, M. (1986). Geographical Information Systems. In R. J. Johnston et al. (Eds.)

Dictionary of Human Geography (p. 18). Oxford: Blackwell.

[22] Burrough, P. A. (1986). Principles of Geographic Information Systems for Land

Resources Assessment. Oxford: Clarendon Press.

[23] Antenucci, J. C. et al. (1991). Geographic information systems: A guide to the

technology. New York: Springer.

http://europa.eu/rapid/press-release_IP-12-1345_en.pdf

Bibliography 82

[24] Melnick, A. L. (2002). Introduction to geographic information systems in public health.

Maryland: Aspen Publishers.

[25] Fazal, S. (2008). GIS Basics. New Delhi: New Age International.

[26] Berry, J. K. (2013). Beyond Mapping III. Available Online:

http://www.innovativegis.com/basis/mapanalysis/ [cited 17.08.2013]

[27] Davis, B. E. (2001). GIS: A visual approach. Albany: OnWord Press.

[28] Krek, A. (2006). Geographic Information as an Economic Good. In M. Campagna (Ed.),

GIS for sustainable development. Boca Raton: CRC Press.

[29] Radl, P. (2013). Private Wetterstation 61169 Friedberg/Hessen. Available Online:

http://wetter61169.de/download/ [cited 17.08.2013]

List of Abbreviations 83

List of Abbreviations

NesC network embedded systems C

MEMS micro electro-mechanical systems

SDI spatial data infrastructure

INSPIRE Infrastructure for Spatial Information in the European Community

GEOSS Global Earth Observation System of Systems

GMES Global Monitoring for Environment and Security

SEIS Shared Environmental Information System

GSDI Global Spatial Data Infrastructure Association

USGS U.S. Geological Survey

W3C World Wide Web Consortium

OGC Open Geospatial Consortium

SWE Software Web Enablement

SVN Apache Subversion

VCS Version Control System

GIS Geographic Information Systems

Sensor ML Sensor Model Language

O&M Observations & Measurements

TML Transducer Model Language

SOS Sensor Observation Service

SPS Sensor Planning Service

SAS Sensor Alert Service

WNS Web Notification Service

M2M machine-to-machine

ESRI Environmental Systems Research Institute

GRASS Geographic Resource Analysis Support System

