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Abstract

This Marshall Plan Scholarship report is a shortened version of the masters thesis Real-

Time Processing of Ultrasonic Video Streams [37] which has been created during the research

stay at Graduate Center of the City University of New York. It presents real-time approaches

for image processing of ultrasonic video streams, especially focusing on the problem of object

tracking. Existing top-down tracking approaches are being classified and evaluated in terms

of real-time techniques. The approach of parallel processing for computation time reduction

of object tracking pipelines is being evaluated considering multi-device pipelines such as GPU

computing and their technology bottlenecks. Additionally, an information reduction approach

is being analyzed in terms of achievable speedup and remaining tracker performance, covering

downsampling, regions of interest and sparse processing methods.
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1 Chapter 1

Introduction

Computer aided image processing offers a wide range of algorithms to process medical im-

ages. According to Jähne [35], digital image processing comprises for example averaging

operations, edge detection or neighborhood based operations. However, depending on the

imaging modality, huge amounts of data may be involved. The processing of one image with

a pipeline comprising multiple algorithms therefore could take several seconds or minutes,

depending on the algorithms and the computational power of the underlying hardware. Nev-

ertheless, time could be a critical factor when processing medical images. Especially in the

field of video stream processing, the involved single images or frames need to be processed

in a way that guarantees a desired framerate τ . This imposes an upper limit τ−1 on the

processing time that is available for a single frame. Encoding and compression algorithms

such as the H.2641 standard try to overcome this limitation by reducing the amount of stream

data. However, medical procedures often require the preservation of small details that may

represent key factors for diagnosis and subsequent treatment. Thus, lossy compression algo-

rithms cannot be considered for the input to the given problem. Therefore, this thesis has

its focus on alternative strategies for real-time processing of medical video data.

Video streams that are generated by an ultrasonic (US) imaging modality rise addi-

tional challenges. Regarding to Birkfellner [8], the US modality has lesser resolution, tends

to include artifacts and present a lesser overall image quality compared to other imaging

modalities such as x-ray computed tomography (CT). Additionally, US devices often apply

image enhancements such as stated by Edelman [22] before providing the output data to a

viewing platform or image processing framework. The applied image enhancements tend to

differ across various suppliers of US devices. Therefore, frameworks for image processing of

US frames face various different tasks such as local image processing (e.g. sharpening, edge

detection) or global image processing (e.g. histogram stretching).

1.1 Motivation and Problem Statement

Several different pipeline models for object tracking have been presented by various

authors in the last years. Popular applications comprise video surveillance systems or fa-

cial recognition for cameras. However, very little research has been focusing on medical

1http://www.itu.int/rec/T-REC-H.264
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1. INTRODUCTION 1.2. THESIS STRUCTURE

video streams such as generated by the US modality. Whilst many of the object tracking

approaches for face tracking and movement detection have proven to be real-time capable,

US video stream analysis has shown to be more computationally expensive due to heavy

preprocessing requirements. Although some of the existing approaches comprise real-time

capability, only a very limited amount of publications present research on common factors

that influence the speed of such a pipeline and that may be used for future applications.

The key motivation of this thesis therefore is to find patterns in speedup and performance

enhancement in existing approaches and implementations and to test their applicability on

US video streams. Therefore, different processing pipelines, methods and strategies are being

examined in terms of their suitability under real-time constraints.

The key problem that is being analyzed in this thesis, is the question of how image

processing for US video streams can be realized to meet real-time requirements. Those re-

quirements include the frame processing time τ−1, the memory consumption or the robustness

of the approach which represents also its determinability. In order to provide answers to the

research problem, it has been split up into several sub-problems. Those comprise research on

state of the art object tracking pipelines and image processing algorithms, a classification of

the different methods in terms of parallel processing and the exploration of an information

reduction approach in order to limit the amount of processed data.

Real-time processing of medical video data requires different concepts with respect to

the applied algorithms for various medical problem cases. Even a simple approach such as

parallel processing requires a detailed insight into the utilized algorithms and the bottlenecks

of the underlying technologies such as central processing unit (CPU) multithreading or mas-

sively parallel processing on a graphics processing unit (GPU) which are being addressed by

this thesis.

1.2 Thesis Structure

The report is structured as follows: Chapter 2 comprises background information on

the ultrasonic modality and a selection of algorithms that are being used throughout this

thesis. Common image and video stream generation is described for the US modality along

with the achievable image quality, including possible artifacts and noise. Also, the technology

of general purpose graphics processing unit computation (GPGPU) and its applications are

being presented to the reader.

Chapter 3 analyzes various object tracking pipelines that have been presented over the

last years. Also, an attempt for classification of these pipelines is being made and a selection

of pipelines is being presented in detail.

In Chapter 4, image processing algorithms are being analyzed in terms of their degree of

complexity. The analysis is based on the perspective of parallel processing. Time expenditure

and memory consumption and separability of the algorithms are being analyzed in terms of

how the algorithms can be split up in parallel processable parts. Also bottlenecks of current

2



1. INTRODUCTION 1.2. THESIS STRUCTURE

parallel processing technologies such as GPGPU are being evaluated.

Chapter 5 deals with a different approach to the real-time problem, focusing on informa-

tion reduction for speedup. A selection of information reduction methods is being presented

and their effect on the complexity of an object recognition pipeline is being analyzed.

Chapter 6 summarizes the results and observations.

3



2 Chapter 2

Background Information

This chapter contains background information on the subjects of this thesis that is essential

for the understanding of the presented key concepts. In the first section, the generation of US

images comprising the emergence of image artifacts is being presented. The second section

comprises information about GPGPU. The last section introduces a mathematical notation

that is being used throughout the remainder of this thesis.

2.1 Ultrasonic Modality

As has been stated by Hoskins et al. [33], US imaging can be subdivided into multiple

modes. The A-mode thereby stands for a 1-dimensional line scan where a single transducer

emits soundwaves into the body, recoding the echos. The B-mode is a 2-dimensional mode

using a linear array of transducers that allow for a planar scan. The most important mode

concerning this thesis is the M-mode, that utilizes a successive A or B-mode scan, creating an

infinite discrete stream of US frames. According to Hoskins et al. [33], modern US systems

use improved concepts such as the Doppler mode that allows for a visualization of blood flow.

Sending the sound waves at different angles provides a basis for 3-dimensional US scans.

However, due to the fact that only the M-mode in combination with B-mode imaging allows

for an infinite 2D video stream, which is also the most commonly used mode in diagnostic

ultrasonography, this thesis focuses only on the B-M mode [33].

During the generation of the US images, the physics of the emitted soundwaves allow

for the emergence of artifacts in the produced images. According to Edelman [22], these

artifacts comprise reverberation effects, ring down artifacts, mirrored objects, reflections,

acoustic shadows, enhancement artifacts and statistical noise. All of those artifacts affect

the US image quality and increase the difficulty of object segmentation as well as object

tracking. Hence, they increase the amount of preprocessing that is needed and for this reason

their presence may also increase the required processing time tframe for a single frame.

Regarding to Aldrich [1], reverberation effects are caused by sound that is bouncing

between tissue boundaries before returning to the receiver and they emerge as equally spaced

lines along the ray direction. Resonating air bubbles can produce additional sound that

irritates the system and leads to unusually bright areas at the bottom of these bubbles,

called ring down artifacts. The enhancement artifact is similar to the ring down effect but

caused by sound traveling through various mediums with different attenuation. Reflections

4



2. BACKGROUND INFORMATION 2.2. GPGPU

and mirror images both create duplicated structures at misleading positions in the resulting

images. Those artifacts may pose the most critical threat in medical terms and can only

be detected by utilizing additional knowledge (e.g. kidney stones can only appear inside the

kidney region). The attenuation or shadow artifact produces darker regions below strongly

attenuating objects such as kidney stones. However, this effect may not only harmfully modify

the image but can also be used for identifying such objects. Speckle noise is a random,

deterministic and statistically distributed interference pattern in US images that affects the

visible image quality and complicates object tracking through movement detection. Some of

the potentially emerging artifacts are depicted in Figure 2.1 [1][22].

(d)(c)

(b)

(a)

Figure 2.1: Artifacts in US images of the kidney region, showing ring down (a), reverberation
(b), attenuation (c) and enhancement (d) effects.

2.2 GPGPU

This section provides a short introduction into the history and principles of general

purpose graphics processing unit (GPGPU) computations and massively parallel processing

technologies. According to Kirk an Hwu [38], 3D graphics pipeline hardware became avail-

able on workstations and PCs in the time between the early 1980s to the late 1990s. Since

then, the performance of graphics accelerators has increased continuously. Kirk and Hwu

describe GPGPU as intermediate step between using the GPU as graphics accelerator and

GPU computing. The term GPGPU therefore refers to using the GPU to solve computa-

tional problems via graphics application programming interfaces (API) such as DirectX and

OpenGL. However, in order to solve programming problems, algorithms had to be translated

into native graphics operations such as vector calculations. The subsequent development of

programmable shader processors with increased instruction memory and related APIs such

5



2. BACKGROUND INFORMATION 2.2. GPGPU

as NVIDIA CUDA1 or OpenCL2 is referred to as GPU computing. Though, for the sake of

simplicity, the term GPGPU is being used throughout this thesis also for GPU computing

[38].

Concerning its architecture the GPU is a designated device for massively parallel com-

putations. Regarding Sanders and Kandrot [60], applications embrace medical imaging tasks

such as 3D US video generation, fluid dynamics computation and environmental science tasks

such as molecular simulations. The architecture of a modern GPU is according to Kirk and

Hwu [38] built on an array of highly threaded streaming multiprocessors (SM) that allow for

a huge number of parallel computations on the internal streaming processors (SP). Each of

those SMs is connected to a small but fast accessible cache memory and to the large global

memory of the GPU. Along with a high memory bandwidth, the SMs outperform a modern

CPU in terms of parallelism. The architecture of a typical G80 GPU is shown in Figure 2.2.

However, the GPGPU technology also comprises drawbacks. Compared to the fast internal

Figure 2.2: Architecture of a G80 GPU according to [63].

memory access, the transfer of data between the main memory of the PC and the global

graphics memory is slow. Typically, the program instructions or kernels have to be trans-

ferred from the CPU to the GPU and are being scheduled to the SMs at run-time. Thereby

the CPU is often referred to as host and the GPU is referred to as device. In the best case

scenario, maximal one transfer of the input data and one transfer of the output data between

host and device should be designated [38][60].

Another fact is that the program code has to be redesigned and programmers have

to apply different concepts in order to take advantage of the parallel computation power.

1http://www.nvidia.com/object/cuda_home_new.html
2http://www.khronos.org/opencl/
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2. BACKGROUND INFORMATION 2.3. NOTATION

According to McCool et al. [50] two different strategies for scalable parallelism are available.

Data parallelism thereby describes the task of splitting the data into multiple parts that can be

processed by different threads. Multiple threads may execute identical or different procedures

at the same time. Regarding the definition of McCool et al. the number of threads increases

with the size of the data. Kowalik and Puzniakowski [40] also use the term single program

multiple data to describe this procedure. The other strategy is functional decomposition,

which describes the process of splitting a task into sub-tasks that do not depend on each

other and letting them process the data in parallel. Functional decomposition is also known

as multiple programs multiple data [40][50].

2.3 Notation

This section introduces the notation that is being used throughout the thesis. Let

S = (V, π) be a digital space that is defined by a grid V and an adjacency relation π between

elements g ∈ V . Let I = (V, π, ϕ) be a digital image that is defined by the digital space (V, π)

and a function ϕ that maps elements g ∈ V to a field such as R.

A digital 2D grayscale frame in an infinite stream of video data is denoted as

f = (V, π, ϕf )

where

V = {g1, g2, ..., g|V |}, gi ∈ Z2

represents a set of 2D pixels gi defined by coordinates (gi,x, gi,y). The following neighborhood

relations N4 and N8 are also defined for any point g∈ Z2:

N4(g) = {h ∈ Z2 : |hx − gx|+ |hy − gy| ≤ 1}

N8(g) = {h ∈ Z2 : max(|hx − gx|, |hy − gy|) ≤ 1}

similar to a definition by Couprie and Bertrand [19]. The edge-adjacency between the pixels

in the square grid is represented by

π = {(g, h) : g ∈ V, h ∈ V, h 6= g, h ∈ N4(g)}

and a mapping of pixels into a grayscale value is defined by

ϕf : V → [0, 255]

An ordered set of frames in time is denoted as F = (f1, f2, ..., fn), n ∈ N accordingly. For

neighborhood based image filters such as a mean filter or a median filter, a square neighbor-

7
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hood with radius r is represented by

S(g, r) = {h ∈ Z2 : max(|hx − gx|, |hy − gy|) ≤ r}

and a rectangular neighborhood with rx and ry respectively is represented by

R(g, rx, ry) = {h ∈ Z2 : |hx − gx| ≤ rx, |hy − gy| ≤ ry}

A segmentation of V in a frame f is a function σ that maps each g ∈ V into a set of non-empty

distinct objects O = (o1, o2, ..., on : oi 6= Ø, oi 6= oj , i 6= j), n ∈ N and is denoted as

σf : V → O

8



3 Chapter 3

Object Tracking Pipeline Analysis and
Classification

Object tracking in US video streams has been continuously researched, as has been shown

by various authors [53, 13, 2, 54] in the past few years. In 2008, Nascimento and Marques

[53] presented a model based robust approach for shape tracking in US images. Carneiro et

al. [13] proposed a method for automatic detection and measurement of fetal anatomies in

the same year. However, object tracking is not only an issue in medical image processing but

instead comprises a wide range of applications. According to Challa [14], some of the most

popular object tracking applications include air space monitoring, video surveillance, weather

monitoring and face tracking. Air space monitoring is used to keep track of flying objects in

controlled air spaces for security reasons or national defense. Weather monitoring may be used

to generate forecasts. Video surveillance and face tracking are related in the security sector

but may also be used for e.g. manufacturing processes. Additionally, the military industry

provides purpose for object tracking, e.g. for targeting systems. In 2006, Yilmaz et al. [76]

have presented a survey about object tracking, comprising a list of applications. According

to them, object tracking is used for human identification, automated surveillance, video

indexing, human-computer interaction, traffic monitoring and vehicle navigation. Systems

for human identification may identify persons by reference to gait or facial features and could

be used for enterprise security or airport surveillance. Video indexing could be utilized for

automated annotation and search of videos in large database systems. Gesture recognition

and eye gaze tracking are both subcategories of human-computer interaction with state of

the art applications in the sector of video games. Traffic monitoring systems may be utilized

for congestion prevention or police actions. Vehicle navigation keeps track of traffic signs

and the course of the road and may be used to warn drivers about dangerous conditions.

Nevertheless, Challa and Yilmaz et al. do not claim to provide complete lists but try to give

an insight into the large variety of applications. Beside popular applications, there is also

literature on specialized applications such as presented by Lin et al. [46] involving object

tracking in geo-coordinates [14][76].

All the mentioned applications provide for different scenarios for the object tracking

systems. The complexity of object tracking is influenced by many factors. As has been

stated in Chapter 2 of this thesis, US video streams comprise a large number of artifacts

that lower the image quality. Whereas video surveillance applications may deal with a static

background and moving target objects, the US video application includes at least patient

9



3. OBJ. TR. PIPELINE ANALYSIS

movement such as respiration which conducts a non-linear transform on the frames, thus

leading to a separate movement of both, background and target objects. Additionally, the

transducer may be moving as well, leading to background movement, partially visible objects

or objects moving completely outside the capture region. Since a B-scan of the US modality

is a planar scan, a movement of the transducer may position the sectional plane such that it

does not intersect with the target object anymore whereas the background remains mostly

constant. Many of the presented applications also involve creating a model of the desired

object. Although, this can be a simple task for applications such as player tracking in sports

casts using static templates, deformable objects in US videos require dynamic models, thus

complicating the modeling task. Other factors that exacerbate the tracking process comprise

occlusion effects when tracking multiple objects. Player objects in sports video streams may

be subject to occlusion as described by Yilmaz et al. [76]. However, these occlusion effects

may also occur in US videos, depending on the application.

Despite the differences between the listed applications, common characteristics can be

extracted. All of them start with a set of input frames Finput in a finite or infinite video

stream. According to the type of application and the involved artifacts, pre-processing may

be required e.g. to remove noise, hence this step is optional. It is followed by a segmentation

of objects Oseg = {o1, ..., on}, n ∈ N and a subsequent extraction of features such as edges or

histograms according to the objects. These two stages may be repeated multiple times in order

to refine the results. Object based image analysis (OBIA) as described by Blaschke et al. [9]

could be seen as multiple iterations of segmentation and feature extraction. Afterward, the

extracted object descriptions and related features are submitted to a model that is used to

select relevant objects and predict their future locations. In a last step, the predicted objects

are being marked in output frames Foutput ⊆ Finput. A visualization of this abstract process

can be found in Figure 3.1. This pipeline is similar to the image engineering framework

as has been stated by Patil and Deore [56], consisting of image processing, image analysis

and image understanding. Pre-processing or image processing thereby represents the lowest

layer, followed by a middle layer consisting of image segmentation, object detection and

feature extraction algorithms which are part of image analysis. The highest level, named

image understanding, eventually comprises the modeling and prediction tasks.

However, according to Nummiaro et al. [55] this pipeline represents only one of two

different classes of trackers, namely bottom-up approaches. There is also the class of top-

down trackers which utilize a sort of reverse approach to the bottom-up trackers. Thus, a

top-down approach generates object hypotheses from an initial model first and tries to verify

them by using the input images Finput before marking the objects in the output images Foutput

and updating the model. A visualization of a top-down pipeline is shown in Figure 3.2.

10
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Input
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Optimized
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Objects (c) Features (d)

Model (e)
Predicted
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[pre-processing] segmentation feature extraction

[possible loopback]

update

object selection marking

Figure 3.1: Generic bottom-up object tracking pipeline, showing the processing steps between
the input frame (a) and the output frame (g) including optional stages such as
pre-processing (a�b).

3.1 Detailed Pipeline Analysis

The abstract generic pipeline is instanced each time in a different way by a wide range

of approaches for each of the fields of application. In 2012, Kolarov et al. [39] have made

an attempt to categorize various object tracking approaches. Therein, they followed a basic

scheme that has been introduced by Yilmaz et al. [76] before. They have split the problem of

object tracking in a first stage by the form of object representation and they distinguish be-

tween shape based and appearance based representation. According to Kolarov et al. [39] and

Yilmaz et al. [76], shape based representation includes models such as object contours, skele-

tal models, geometric shapes and points. Object contours thereby refer to the boundary of

an object with the object silhouette inside that region. Together with skeletal representations

which are area reduced versions of contours, they are suitable for tracking complex nonrigid

objects. Point based representations mostly rely on the centroids of objects and therefore can

be used only to track relatively small objects. Related tracking methods therefore could be

based on techniques such as Kalman filtering [45, 34], particle filtering [29, 58, 49] or active

contour methods [44, 30]. Furthermore, Kolarov et al. [39] and Yilmaz et al. [76] mention

probability densities, templates, active appearance models and multiview appearance models

among the appearance based object representation. Whereas probability densities comprise

only parametric densities, nonparametric densities or histogram information, templates add

geometric shape or contour information of a single view. Therefore these models are suit-

able only for non-deformable objects whose appearance does not change considerably during

tracking. Active appearance models and multiview active appearance models need a train-

ing phase for simultaneous modeling of the object shape and appearance in a single view or

11
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Figure 3.2: Generic top-down object tracking pipeline, showing the processing steps between
the initial model (a) and the output frame (e). Therein, hypotheses (b) are being
generated and applied to the input frames (c) in order to predict objects and to
verify them (d). Finally, the objects are being marked in output frames (e).

multiple views. Associated tracking methods comprise sparse variants such as based on point

descriptors (e.g. SIFT, SURF, KLT) [6, 68] or dense manifestations such as histogram based

trackers (e.g. mean shift, CAMSHIFT) [17, 10, 25]. In Figure 3.3 the basic attempt for a

categorization is visualized in tree form [39, 76]. Nevertheless, this attempt is not the only

way of a categorization of object tracking approaches. Yang et al. [75] for example distinguish

between deterministic and stochastic methods [39][76].

3.1.1 Filtering

The different approaches to object tracking comprise pipelines that include various

filters which are being applied to one or more of the frames fi ∈ Finput or to outcome of

intermediate steps of the pipeline such as oi ∈ Oseg. Those filters can be of various type such

as image processing filters or machine learning algorithms. Especially if pre-processing is

required, image processing algorithms are involved. Authors such as Jähne [35] or Bankman

[4] categorize image processing algorithms into global and local applicable filters. In global

image processing thereby every output value is dependent on all values of the image, thus

comprising algorithms such as histogram generation or mean value computation. Let gi ∈ V
be an indexed pixel in the grid of a frame f consisting of n pixels. The computation of the

mean value µ of all pixels in V can be defined as

µ =
1

n

n∑
i=1

ϕf (gi)

Thus, the algorithm generates one output value that depends on all pixels of the image.

Considering local image processing methods, every output value g′i depends only on a single

pixel gi or on a neighborhood, e.g. N8(gi). Local image processing comprises algorithms such

as a intensity changes or mean filtering. A change of the image intensity by a value of ∆ can

12
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Figure 3.3: Categorization of object tracking techniques as proposed in [39] and [76].

be defined as

∀gi ∈ V : ϕf (g′i) = ϕf (gi) + ∆

and hence only dependent on one observation. A neighborhood based mean filter can be

defined as

∀gi ∈ V : ϕf (g′i) =
1

|N8|
∑

gj∈N8(gi)

ϕf (gj)

and therefore depends on a set of pixels that can range from a single pixel gi to the whole

set of pixels V . Both types require different strategies when considering parallel processing,

as is being discussed in Chapter 4 [35][4].

The following subsections present three different top-down approaches to object track-

ing that are being used throughout this thesis as examples of object tracking pipelines in

contrast to the bottom-up approach. Since there is no general way of a categorization and

since there is a vast amount of different approaches to the subject of object tracking, this part

of the thesis only considers three approaches that have been popular in terms of publications

over the last years. The chosen approaches have also been used in the field of ultrasound video

streams already and may therefore be suitable for the given problem of nephrolith tracking.

The following subsections introduce the approaches of mean-shift tracking, particle based

tracking and active contour tracking, focusing especially on the pipeline models behind.

3.1.2 Mean-Shift Tracking

The mean-shift method has been presented originally by Fukunaga and Hostetler [26]

in 1975. It is based on the idea of a non-parametric estimation of a density gradient that

13
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is related to a probability density function (PDF) which is not well defined in terms of the

available knowledge about the function or its form. The algorithm represents an iterative

procedure of mode seeking as has been stated in 1999 by Comanicu and Meer [18]. They

have used the algorithm for image segmentation in the spatial domain of gray-scale images.

In 2003, Comanicu et al. [17] have presented an approach for kernel based object track-

ing which utilizes the mean-shift method. This approach falls into the section of appearance

representation based object tracking and into the subsection of template based representation

as has been stated in Section 3.1. As this method is based on a density gradient, it is suitable

for gradient based optimization. They have chosen the histogram for representing a non-

parametric density estimation. A target model has been defined as q̂ = {q̂u}u=1...m of m-bin

histograms and target candidates at position y have been defined as p̂(y) = {p̂u(y)}u=1...m.

In order to measure similarity between the model and a candidate, Comanicu et al. [17] have

proposed a metric d(y) that is shown in Equation 3.1 based on the Bhattacharyya coefficient

[7].

d(y) =

√√√√1−
m∑
u=1

√
p̂u(y)q̂u (3.1)

By using this metric, the distance between the model and a candidate can be minimized as

they have described in [17]. According to them, the tracking pipeline consists of 6 steps which

are visualized in Figure 3.4.

Initialized
Model (a)

Weights (b)
Candidate

Location (c)
Similarity
Value (d)

New Target
Position (e)

weight determination

location calculation compute similarity check for convergence

[if similarity value dropped:
update location by computing

the gradient and moving one step]

[start over with new position if not converged]

Figure 3.4: Mean shift pipeline according to [17]. (a) Initialization of the model with position
ŷ0. (b) Derivation of weights. (c) Search for the next location for a candidate
ŷ1. (d) Computation of similarity between candidate and model. (e) As long as
similarity is lower than at the original position, set ŷ1 ← 1

2(ŷ0 + ŷ1). (f) Leave
the pipeline in case of convergence or start over with ŷ0 ← ŷ1 otherwise.

There have been adaptions such as the continuously adapting mean-shift (CAMSHIFT)

algorithm that has been presented by Bradski [12] for special applications such as face track-

ing. Thereby, the original mean-shift algorithm is embedded into a parent pipeline that

adjusts a region of interest (ROI) regarding to the mean-shift output and updates the model

accordingly. A simplified version of the CAMSHIFT pipeline is shown in Figure 3.5.

Mean-shift and CAMSHIFT have been extended by various authors in order to improve
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mean-shift

Figure 3.5: CAMSHIFT pipeline according to [12]. This mean-shift extension comprises an
additional ROI that is used for the calculation of the PDF (a). After the mean-
shift step, the output includes an updated ROI (b) and the locked target (c).

the processing time or the robustness of the approach. Bleiweiss and Werman [10] for ex-

ample have added the use of image depth information to the histogram information in order

to make the approach more robust to effects of occlusion. Santner et al. [61] have merged it

with a tracking-by-detection approach in order to avoid the drifting problem of on-line learn-

ing. Exner et al. [25] have proposed an efficient GPU implementation of the CAMSHIFT

algorithm. Moreover, the algorithms have also been adapted to specific applications such as

video surveillance, as has been done by Hsia et al. [34]. Thereby, the CAMSHIFT approach

has been embedded into another pipeline that is responsible for pre-processing and creating

time-difference images, as can be seen in Figure 3.6. It can be seen in the depicted pipelines

that the usage of the mean-shift approach can lead to complex pipeline systems, depend-

ing on which extension has been chosen. The complexity also depends on the application

and whether there is pre-processing required. Nesting of pipelines additionally introduces

increased complexity for programmers, software designers and software architects. Hidden

internal dependencies might slow down the overall approach when not considered during the

development of the tracking application.

3.1.3 Particle Filter Based Tracking

Particle filter based tracking approaches use according to the categorization in Sec-

tion 3.1 a point based object representation. Therefore, those approaches are clearly sep-

arated from appearance based approaches such as mean-shift, that has been discussed in

Section 3.1.2. Regarding to Kroese et al. [41], particle filtering is a subset of Monte Carlo

methods or more specifically a subset of sequential Monte Carlo methods. It has applica-

tions in combinatorial problems, Bayesian likelihood estimation and complex simulations.

Especially the application of Bayesian likelihood estimation is relevant for object tracking.
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Figure 3.6: Video surveillance pipeline based on CAMSHIFT according to [34]. Special char-
acteristics of this pipeline are the calculation of the temporal difference (a) and
the use of pre-processing (b). In (c) the histogram is being generated and used
for the CAMSHIFT algorithm to lock the target (d).

Thereby, particles which represent random values of a state-space variable are being gen-

erated, used as a description in a model of the tracker and finally weighted to determine

their likelihood of being a representative particle. Therefore, a set of particles approximately

describes a PDF of the target. Since that PDF approximation can be used in other tracking

approaches such as in the mean-shift method as an alternative to histogram based target

models, particle filter based tracking is not only a standalone tracking approach [41].

Kroese [41] has defined a sequential Monte Carlo algorithm in a generic form that

samples approximately from a given density function. It consists of four major steps: ini-

tialization, importance sampling, selection and a stopping condition. There are also more

advanced versions of such a particle filter but this simple form is sufficient for showing the

pipeline behind this approach. The initialization step comprises a, possibly random, sampling

of a measurement vector from the initial distribution such as the frame histogram. In the

next step, a second vector is sampled from an importance distribution and weights are being

calculated as well as normalized. The importance sampling is a critical step in the pipeline,

leading to more particles being sampled in important regions. However, unbiasedness of the

estimator is being preserved by including the importance distribution not directly but in the

form of normalized weights. Importance sampling theory has been discussed extensively in

the literature, e.g. by Kroese [41]. A practical implementation from Lozano and Otuska [49]

for face tracking utilizes a feature map of a 3D human face model as an importance distri-

bution. Using this weighted sample, replacement particles are then being sampled from the

initial distribution. Next, the whole process is being repeated beginning from the second

step, until a specific number of iterations has been made. A simple pipeline that represents

the initialization part of the tracker visualizes this algorithm in Figure 3.7 [41].

In 2008, Lozano and Otsuka [49] have presented a combination of a particle filter and
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Figure 3.7: Sequential Monte Carlo pipeline according to the algorithm of [41] as an initial-
ization for the tracker. An initial distribution (a), e.g. frame histogram, as well as
an importance distribution (b), e.g. feature map of a template model, are being
sampled. Subsequently, weights (c) are being calculated and normalized before
the initial distribution is being resampled using the weights (d).

an active appearance based model for a real-time multiple face tracking system. In their

approach, they have utilized the massively parallel computation power of GPGPU in order

to realize the particle filter. Thus, they have shown that a particle filter can be designed effi-

ciently multithreaded. They also state that particle filters require high arithmetic throughput

and have low communication and storage costs, which makes them suitable for parallel com-

putation. Their tracker comprises three steps: an initialization phase, the tracking itself

and a subsequent output generation. The initialization stage is performed continuously in

a separate thread on the CPU. It is responsible for scanning the incoming frames for new

faces, utilizing a Viola and Jones boosting algorithm [70] for detection. It also extracts a

sparse description template that is used as initial model in the tracking stage. The tracking

stage itself comprises the particle filter and runs partially on the CPU and on the GPU.

Lozano and Otsuka [49] claim that only the weighting part of the algorithm has been moved

to the GPU because it is the computationally most expensive part. The output generation

phase eventually comprises an averaging of the best results of the tracker before marking the

output. A visualization of this implementation is given in Figure 3.8 [49].

Input
Frames (a)

Initial
Models (b)

Predicted
Objects (c)

Output
Frames (d)

template extraction adding averaging

continous trackingcontinous detection

Figure 3.8: Particle filter based tracking pipeline according to [49]. Input frames (a) are
being continuously searched for new faces and models (b) are being extracted to
initialize continuous tracking of those objects (c) before averaging the results and
marking them in output frames (d).

In 2003, Nummiaro et al. [55] have presented another application of particle filters
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for object tracking. Instead of an active appearance representation such as has been used

by Lozano and Otsuka [49], they proposed a combination of a particle filter and the Bhat-

tacharyya coefficient [7] which is commonly being used in mean-shift approaches. They

claimed to have brought together efficient tracking components. Following that, in 2004

Deguchi et al. [20] proposed a combination of a particle filter and the whole mean-shift algo-

rithm. Instead of an improved performance however, they have searched for a more robust

tracking solution. This approach includes tracking with the mean-shift method and sub-

sequent avoidance of local maxima by using a small number of samples of a particle filter

[55][20].

3.1.4 Active Contour Tracking

Active contour based tracking falls into the category of contour based object represen-

tation regarding the categorization in Section 3.1. Active contour models or snakes haven

been mentioned first by Kass et al. [36] in 1988. They have used energy minimization as a

framework for designing low level energy functions which provide in their local minima a set

of alternative solutions available to high level image processing. Snakes are commonly being

used for edge detection, line detection and contour detection as well as for motion tracking

of those objects. Gunn and Nixon [30] claim that snakes incorporate a global continuity

and curvature based edge detection combined with a local edge strength feature. Leymarie

[44] describes snakes as deformable curves or contours that are composed of elastic materials

making them resistant to stretching and bending. According to Kass et al. [36], snakes rep-

resent a general technique to match a deformable model to a given frame by minimizing its

energy function. The original snake energy term Esnake of a contour v(s) as shown in Equa-

tion 3.2 represents according to Kass et al. a controlled continuity spline under the influence

of internal and external forces.

Esnake(v(s)) =

ˆ 1

0
[Eint(v(s)) + Eimg(v(s)) + Econ(v(s))]ds (3.2)

Thereby, Eint represents the internal energy of the snake, consisting of two weighted terms

that make the snake behave like a membrane and like a thin plate respectively. The image

forces Eimg ensure that the snake moves towards line, edge or contour features of the image.

The external constraint forces Econ eventually locate the snake near the desired local mini-

mum. The local optimization task can be carried out by various different algorithms such as

gradient descent or downhill simplex methods, thus presenting an opportunity for introduc-

ing parallel computable strategies. A simplified pipeline for active contour based tracking is

shown in Figure 3.9 [36].

As has been stated by Leymarie [44], active contour tracking comprises the problem of

selecting an initial position of the snake in the first frame. Sargin et al. [62] referred to this

problem as tracing in contrast to the adjustment of the contour points which they refer to

as tracking. The tracing can be solved by either utilizing an automatic segmentation of the

desired contour in the first frame or by using a user defined shape. In subsequent frames, the
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Figure 3.9: Active contour based tracking pipeline. Starting with an input frame (a) and an
initial contour (d), the contour energy (c) is being calculated and minimized by
an optimizing algorithm. Beforehand, the input frame may be subject to pre-
processing. When the energy function converged to a local minimum, the contour
is being marked in an output frame and set as the initial contour for subsequent
frames.

optimal snake position of the preceding frame may be used as an initial position. However,

large deformations between frames may lead to a situation where the snake loses its focus

around the desired object and drifts off. Robust implementations therefore may be required

to repeatedly validate the initial position. Gunn and Nixon [30] have presented a robust snake

implementation which is based on a dual active contour procedure. Their approach utilizes

two contours, one of them inside and one outside the feature of interest. In a first stage, both

contours are searching for a energy minimum where their energy function converges and they

behave stationary. A second stage then applies additional forces in order to alternately push

the contours towards each other until both contours have found the same optimal solution.

The authors claimed to provide therewith an approach that is robust to weak local minima.

There have been various criticisms and extension of the original formulation of active

contours. In 2011, Sargin et al. [62] have criticized the applicability of active contour based

tracking to open contours such as often found in biomedical image analysis. They proposed

an alternative by mapping contour positions to a hidden Markov model. Shih and Rose

[65] presented a similar approach for tracking cell contours, including a merging and splitting

detection. Gai and Stevenson [27] addressed in their paper the level set method as a variation

of the snake model in combination with geodesic active contours. A level set based real time

tracker has also been presented by Shi and Karl [64], utilizing a fast level set implementation.

However, with reservations most approaches can still be mapped into the simple pipeline

model presented in Figure 3.9.
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4 Chapter 4

Parallel Processing

In order to speed up the processing of a video stream pipeline, a common approach is to

use massively parallel computations such as carried out by GPGPU. In this chapter, parallel

executable versions of image processing filters are being introduced, their computational

complexity is being analyzed and effects on object tracking pipelines are being discussed

subsequently.

The parallel approach has been shown in the past by Webb [73] to work well on local

image processing filters but also to provide issues for global image filters. According to

Webb, some global image operations cannot be executed in parallel due to a specific order of

execution that is required for a correct result. However, he also showed that reversible global

operations such as the computation of image histograms can be executed in parallel by using

a split and merge strategy. Thereby the global image region is split into multiple sub-regions.

Each of the parallel processing threads is then being executed on one of the sub-regions and

the results are being merged subsequently. A visualization of the split and merge strategy

for a small pixel grid is shown in Figure 4.1 . However, there are limitations for the split and

split merge

Figure 4.1: Split and merge strategy as presented in [73] for a 6x6 image and 4 threads,
showing the processing after the split (left) and the merge operation (right).

merge strategy. If there is a number of threads nthreads and a image to process consisting of

a number of values nvalues such that nthreads = nvalues, the split and merge strategy will have

no effect on the processing time. This due to the fact that the merging operation in that

specific case would have at least a complexity of O(nthreads). Hence, nthreads has to be chosen

carefully and related to both, thread capacity and the number of operations to perform. Webb

states that for a sequential combination of partial results, the optimal number of threads is

nthreads =

√
tprocess · nvalues

3 · tcombine
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where tprocess is the time that is required for processing one result value and tcombine stands

for the time that is required for combining two results [73].

4.1 Parallel Image Processing

The following examples show how the processing time and memory consumption of

image filters are being affected by the application of a parallel computing design. In order

to proof the concept of Webb [73] for image processing algorithms, local, neighborhood-

local and global image filters are being analyzed. Both, time and memory consumption are

being measured by using the big O notation, e.g. O(n), to describe their limiting behavior.

However, the big O notation is being used in this chapter to present theoretical growth

behavior of the algorithms for a number of threads nthreads → ∞ and a number of pixels

npixels →∞, in order to show the independence of the kernel functions from both variables.

All examples of algorithms are given in pseudo-code. Therefore, no constraints of specific

programming languages or bottlenecks of specific technologies such as GPGPU or of their

underlying hardware, e.g. G80 GPU, have to be considered. Local image processing is being

represented by an intensity alteration function. The neighborhood-local image processing

examples comprise mean filtering and median filtering operations. Global image processing

algorithms are being represented by histogram generation. All of these filters represent simple

low-level algorithms that are being used often in a pre-processing step of an object tracking

pipeline. In case of a subsequent processing step depending on results of preceding stages and

therefore presenting a strictly iterative behavior, these parts of a pipeline by definition cannot

efficiently be parallelized. Thus they are not suitable for a parallel processing approach.

Depending on the structure of the algorithm, some high-level machine learning procedures

or prediction steps may present such a behavior. In the following subsections, presented

algorithms are named kernel functions if they are designed to be executed in a multi-threaded

environment, given an index of the current position to be processed by a single thread.

4.1.1 Local Image Processing

Local image processing comprises all filters that are being applied to an image pixel by

pixel and that do not depend on other surrounding pixels in order to complete their task. This

applies to many filters such as intensity adjustments, binary thresholding or the application

of arithmetic and logic operators. As a simple example, intensity adjustments have been

chosen for this section.

Intensity Adjustments The basic formulation of a global adjustment of the intensity of a

frame f can be defined as ∀gi ∈ V : ϕf (g′i) = ϕf (gi) + ∆g. A related sequential algorithm

is shown in Algorithm 4.1. The complexity of the shown algorithm concerning processing

time can be considered linearly growing O(n) for frames comprising n pixels to process. The

memory consumption can be considered constant O(1) due to the fact that no additional
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space is needed when increasing the number of pixels.

When the same algorithm is being designed for parallel computations, the loop over all

pixels is being replaced by an index parameter that specifies the position to work on for the

current thread. Such a kernel is shown in Algorithm 4.2. The memory consumption of the

algorithm is still constant O(1), but the time complexity has been decreased. Assuming that

there is a number of threads nthreads such that nthreads = npixels, the growth of the processing

time can be stated as constant O(1).

Algorithm 4.1 Adjusting the image intensity

1: procedure AdjustIntensity(f,∆g) . f is the frame that should be altered by ∆g

2: for all gi ∈ V do
3: ϕf (gi) = ϕf (gi) + ∆g

4: end for
5: end procedure

Algorithm 4.2 Adjusting the image intensity (kernel)

1: procedure AdjustIntensityKernel(f,∆g, i) . i represents the current index
2: ϕf (gi) = ϕf (gi) + ∆g

3: end procedure

4.1.2 Neighborhood Image Processing

Neighborhood image processing comprises filters that are being applied to an image

pixel by pixel but for every pixel they depend on a group of other pixels in a defined neigh-

borhood. Hence, the access to single pixels is not as simple as with local image filters, but

has to be controlled. If the filters are designed to work in-place on an image, the values

of the neighborhoods have to be copied to another place in order to prevent distorting the

computation of subsequent iterations by overwriting values. In terms of parallel processing,

simultaneous read and write access to the same memory blocks has to be prevented as well.

Neighborhood image filters comprise for example mean filtering, median filtering, adaptive

histogram equalization or morphological filters such as dilation and erosion filters. For this

section, mean filtering and median filtering have been chosen to represent simple instances

of those filters.

Mean Filter Mean filtering computes the average value in a given neighborhood of a pixel gi

and assigns the computed average to the pixel itself. A sequential algorithm for mean filtering

of a 2D frame f by using 8-connected neighborhoods N8(gi) is shown in Algorithm 4.3.The

given simple mean filter could be extended by a parameter r that defines the radius of

the considered neighborhoods. However, the simple version is sufficient for stating that the

processing time grows linearly with the number of pixels, which can be expressed as O(n).

The inner loop in this case can be neglected as it has a constant processing time O(1) for the

given neighborhood size |N8|. The memory consumption in this example grows linearly with
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the number of pixels O(n) because the original pixel values have to be stored separately from

the output in order to produce correct results.

A version of the same filter, designed for massively parallel computation is given in

Algorithm 4.4.The memory consumption and processing time of the kernel function can both

be considered constant O(1). However, regarding the overall process, the growth of memory

consumption is still O(n). Additionally, the decrease of the growth of processing time to a

constant value is only valid under the assumption of nthreads = npixels.

Algorithm 4.3 Mean filtering

1: procedure MeanFilter(f)
2: for all gi ∈ V do
3: sum = 0
4: for all gj ∈ N8(gi) do
5: sum = sum+ ϕf (gj)
6: end for
7: ϕf (gi) = sum/|N8|
8: end for
9: end procedure

Algorithm 4.4 Mean filtering (kernel)

1: procedure MeanFilterKernel(f, i) . i represents the current index
2: sum = 0
3: for all gj ∈ N8(gi) do
4: sum = sum+ ϕf (gj)
5: end for
6: ϕf (gi) = sum/|N8|
7: end procedure

Median Filter Median filtering computes the median value of a given neighborhood of a

pixel gi and assigns the computed value to the pixel itself. Although, the basic structure of

this filter is similar to mean filtering, a major difference is the median value computation

which comprises sorting the values of the neighborhood before picking the middle one as

the output value. A sequential algorithm for median filtering of a 2D frame f by using 8-

connected neighborhoods N8(gi) is shown in Algorithm 4.3.Whereas the memory consumption

is equal to the mean filter O(n), the growth of the processing time is additionally dependent

on the sorting algorithm that is being used. In the case of a constant sized neighborhood,

the complexity of the sorting may be considered constant as well, leading to a linear overall

complexity O(n). However, if the size of the neighborhood is depending on a radius r, the

use of a slow sorting algorithm such as bubble-sort brings in a complexity of O(r4), leading

to an overall growth of O(n · r4).
The design of a kernel version for median filtering is similar to the mean filtering kernel

and stated in Algorithm 4.6.The kernel version has the same effect of removing the factor

n from the complexity. It has to be stated that the given version of median filtering is a
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primitive example. There has been research on temporal optimized median filters such as

multivariate versions [5].

Algorithm 4.5 Median filtering

1: procedure MedianFilter(f)
2: for all gi ∈ V do
3: X = Sort(N8(gi))
4: ϕf (gi) = ϕf (Xmedian)
5: end for
6: end procedure

Algorithm 4.6 Median filtering (kernel)

1: procedure MedianFilterKernel(f, i)
2: X = Sort(N8(gi))
3: ϕf (gi) = ϕf (Xmedian)
4: end procedure

4.1.3 Global Image Processing

Global image processing comprises filters that for every output value depend on all

input values. Therefore, these algorithms cannot be split easily into separately processable

parts. However, the split and merge strategy can be applied to decrease computation time.

Histogram generation When computing a m-bin histogram of a given frame f , the whole

range of possible pixel values is equally split into m parts. Each of the pixels in V is then being

assigned to the correct bin by computing its bin index and counting the number of occurrences

for each index. A sequential version of histogram generation is presented in Algorithm 4.7.The

temporal complexity of this algorithm is linearly dependent on the number of pixels O(n)

whereas the memory consumption is constant O(1).

Algorithm 4.7 Histogram generation

1: function ComputeHistogram(f,m)
2: for all gi ∈ V do
3: index = ComputeIndex(gi,m)
4: histindex = histindex + 1
5: end for
6: return hist
7: end function

A parallel processable version of the histogram generation using the split and merge

structure is shown in Algorithm 4.8. The parallel executable version splits the frame f into

a set of non-overlapping regions R ⊆ V that can be processed in parallel, creating a set

of partial histograms H. After that, the partial results are being combined to the final

histogram. As can be seen, the temporal complexity of computing a partial histogram is now
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only linearly dependent on the size of the partial regions O(|R|). The temporal complexity of

the combination operation is linearly dependent on the number of splits O(nsplit), assuming

that the number of bins for the histogram is constant. This leads to an overall growth of

processing time of O( n
nsplit

+ nsplit), which is in the case of no splits at all O(n). In case of

the maximum number of splits nsplit = n it is also O(n), but in between these two cases the

temporal complexity is lower. However, the growth of memory consumption has increased to

O(nsplit) due to the fact that the partial results have to be stored.

Algorithm 4.8 Histogram generation (kernel)

1: function ComputePartialHistogram(R,m)
2: for all gi ∈ R do
3: index = ComputeIndex(gi,m)
4: parthistindex = parthistindex + 1
5: end for
6: return parthist
7: end function
8: function CombinePartialHistograms(H,m)
9: for all parthisti ∈ H do

10: for all m ∈ parthisti do
11: histm = histm + parthisti,m
12: end for
13: end for
14: return hist
15: end function

4.2 Multi-Device Pipelines

Concerning massively parallel computations, Ahmdahl’s law [3] and Gustavson’s law

[31] have to be considered. Both formulations consider the maximum possible speedup of

a program when using parallel processing with nthreads parallel threads or processors, the

proportion pparallel of the code that can be parallelized and accordingly pserial = 1− pparallel
of serial computations. Ahmdahl’s law as stated in Equation 4.1 thereby proposes an upper

limit to the potential speedup that is defined by the serial proportion.

s(nthreads) =
1

pserial +
pparallel
nthreads

(4.1)

The plot in Figure 4.2 visualizes Ahmdahl’s law for three different configurations of pparallel

and pserial. Thus, according to Ahmdahl, even if it would be possible to design one of the

pipelines of either Section 3.1.2, Section 3.1.3 or Section 3.1.4 to be executed in a massively

parallelized environment such as in GPGPU, and even if there would be a unlimited number

nthreads → ∞ of SMs available, the serial proportion of the code would limit the possible

speedup to a finite factor. Concerning a practical implication of this law, it can be stated
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Figure 4.2: Ahmdahl’s law, showing the maximum achievable speedup with distributions of
serial and parallel proportions of (1): 50%,50% (2): 20%,80% and (3): 80%,20%.

that a single object tracking pipeline comprising a fixed amount of data as input can only be

speeded up to a specific factor, regardless of the number nthreads available.

Gustavson’s law as presented in Equation 4.2 is a criticism of Ahmdahl’s law. In

contrast to the latter, it is based on the assumption of the parallel proportion of the work

pparallel varying linearly with nthreads.

s(nthreads) = nthreads − pserial · (nthreads − 1) (4.2)

The plot in Figure 4.3 visualizes Gustavson’s law for the same three configurations of pparallel

and pserial. Thus, according to Gustavson, increasing the number of available threads is rais-
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Figure 4.3: Gustavson’s law, showing the maximum achievable speedup with distributions of
serial and parallel proportions of (1): 50%,50% (2): 20%,80% and (3): 80%,20%.
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ing the amount of data that can be processed in the same time. Regarding the presented

object tracking pipelines, this would imply that if it is possible to design one of those pipelines

such that it can be executed in a massively parallel environment and if the amount of con-

currently processed frames rises linearly with the number of available threads, the theoretical

speedup factor for nthreads → ∞ is not limited. Of course, regarding practical GPGPU en-

vironments, the amount of SMs is always a finite number and regarding a practical video

stream source such as a US modality, the framerate τ is also limited. Nevertheless, consid-

ering Gustavson’s law, a practical implication of a massively parallel environment would be

that a increase of τ can simply be compensated by increasing nthreads [3][31].

From a practical point of view, Ahmdahl’s law can be utilized to estimate the maxi-

mum possible speedup of an partially parallel executable application. Using an estimation

of the serial and parallel proportions of the code, the finite theoretical speedup factor can be

approximated by calculating

lim
nthreads→∞

s(nthreads) = p−1serial

However, the computed value can only serve as an indication of the possible speedup as pserial

can only be estimated approximately and as the computation does not include technological

factors. Practical implications of Gustavson’s law on the other hand may comprise design

instructions for parallel processable pipelines. In order to prepare a partially parallel exe-

cutable pipeline to be efficiently scalable with the underlying hardware, the amount of input

data has to be varied with the amount of available threads. In case of bottom-up object

tracking in video streams, the size of frames is typically fixed but the amount of parallel

processed frames can be adjusted. In order to allow for parallel computed frames, a design

guideline could comprise removing internal dependencies of the pipeline such as a required

order of frames.

Bottlenecks There are many types of parallel processing, e.g. multi-threading on a CPU,

cluster computing, cloud computing or GPGPU. Each of those technologies comprises specific

bottlenecks that have to be considered when designing algorithms or computation pipelines.

As this thesis focuses on GPGPU which has been presented in Section 2.2, the specific bot-

tlenecks of this technology have to be considered for an optimized object tracking pipeline.

Kirk and Hwu [38] state in their book that on the one hand, the potential performance

of many-core GPUs is continuously rising from around 100 gigaflops in 2005 to approximately

1 teraflops in 2009, but on the other hand these numbers represent not necessarily achievable

application speeds. They also state that as of 2009 the floating point calculation throughput

of GPUs was at a ratio of 10 to 1 compared to CPUs . The G80 architecture as has been

shown in Section 2.2 comprises around 128 SPs and modern GPUs have multiplied this

number. Thus, one important issue is memory bandwidth. The G80 architecture comprised

a 86.4 GB/s bandwidth to its global memory which represents the largest but also slowest

accessible internal memory. Data can be sent from the CPU to the GPU only by using
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this global memory. However, the communication bandwidth for such a transfer is only

around 8 GB/s for the G80. There is also a hardware managed L1 register memory and a

user managed shared memory per SM with significantly more bandwidth up to 1 TB/s for

modern GPUs. However, these memory parts are comparably small in size and hence have

to be used with purpose. Typically, a huge block of data is being transferred from the host

memory to the device global memory first. Next, the data is split into smaller portions,

e.g neighborhoods when concerning image processing, which are being transferred to the

individual shared memory. After that, the data portions are being processed by the SPs

before writing them back to the global memory. As a last step, the entire chunk of data is

being transferred back to the host memory. The transfer process is visualized in Figure 4.4.

In this process, the transfer between the host and the device can clearly be considered a

Main
Memory (a)

Global
Memory (b)

Shared
Memory (c)

SMs

host device

∼ 8-10 GB/s

∼ 50-150 GB/s ∼ 1 TB/s

Figure 4.4: CPU to GPU data transfer pipeline between host and device memory with de-
scriptions of available bandwidth.

bottleneck that limits the maximum achievable speedup [38].

Bottlenecks and limitations of the GPU acceleration approach have been researched

in the literature in the past. Vuduc et al. [71] for example examined the boundary between

CPU and GPU performance. They stated that in addition to the computational costs of an

algorithm, there are costs of moving data to the GPU and costs of data reorganization if the

optimal data structure for parallel computation differs from the data structure for serial com-

putation. Stratton et al. [67] have analyzed the continuously changing architecture of modern

GPUs, including programming concepts such as tiling or binning that have been introduced

with newer generations of GPUs. They state that improvements of up to additional factor

of 5 have been made by introducing these concepts. Conversely, this means that bottlenecks

can also emerge from the coding point of view, when using a former generation of GPUs and

APIs accordingly. Ryoo et al. [59] have been working on automated optimizations that avoid

performance loss through misguided resource allocation [71][67][59].

For the case of object tracking, this raises the question of how to distribute compu-

tations between host and device such that memory bandwidth based bottlenecks have the

lowest possible impact on the performance.
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4.3 Pipeline Approaches Revised

This section comprises a summary of the observations that have been made in the

previous sections. Furthermore, real-time versions of the top-down object tracking pipelines

presented in Section 3.1 are being analyzed in terms of the observations that have been made.

Summarizing the previous sections, the following statements can be made about parallel

processing concerning an object tracking pipeline:

� Massively parallel computations are a common way of speeding up image processing

tasks.

� Not all image processing tasks can efficiently be performed in parallel. However, local

and neighborhood-local operations can always be designed for parallel execution. Global

image operations may sometimes be executed in parallel when using strategies such as

split and merge.

� When designing algorithms for parallel processing, the maximum theoretically achiev-

able speedup is limited by the remaining serial proportion of the code, as stated by

Ahmdahl’s law. In designing the optimal distribution of parallel and serial proportions

of a pipeline in a practical setting, technology bottlenecks such as memory access band-

width and time consumption of bulk data transfers between associated processors have

to be taken into account. These variables may decrease a significant theoretical parallel

processing speedup to an insignificant value or even to increase time consumption.

� The theoretical speedup factor can be further increased with the number of available

processors when there is a way of processing multiple frames concurrently, as proposed

in Gustavson’s law. In a practical setting, parallel processing efficiency gains can be

increased by minimizing internal dependencies in object tracking pipelines, e.g. through

a frame order independent redesign of all algorithms, allowing for a parallel computation

of multiple frames.

Regarding the top-down object tracking approaches that have been presented in Section 3.1,

there has been notably work on real-time solutions so far. Considering for example the mean-

shift approach, in 2010 Santner et al. [61] have presented an optical flow based mean-shift

object tracker. However, they have not changed the mean-shift pipeline itself, but instead

they have used a dense optical flow field as an input for the mean-shift procedure. As has

been stated by Santner et al., the optical flow vectors can be computed massively parallel

on the GPU whereas the tracking itself is being carried out on the CPU. For the purpose of

robustness, the have added two components which supervise the mean-shift tracking approach

and prevent it from drifting off. An online random forest classifier thereby overrules the mean-

shift tracker if both results are not overlapping. A normalized cross-correlation procedure

prevents the online random forest approach from making too many wrong updates. Both of

the additional parts allow according to Santner et al. for GPU implementations due to their

parallel structure of computation [61].
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Also in 2010, Exner et al. [25] have presented a GPU based robust version of the

CAMSHIFT extension to the mean-shift procedure. In their approach, they utilize accu-

mulated image histograms in order to generate back projected probabilities and subsequent

image moments. All of these computations have been implemented as massively parallel

executable algorithms and are being executed on the GPU in their approach. The CPU is

then only responsible for initializing the tracking procedure, uploading the current frames to

the GPU and recomputing the ROI that is used in the CAMSHIFT approach. Thus, Exner

et al. have limited the required transfers of data between the host and the device. The cur-

rent frame data and the computed ROI are being uploaded to the GPU only once per frame,

and there is only the image moments and the matching probability being downloaded to the

CPU. A simplified version of the pipeline of Exner et al. is visualized in Figure 4.5 [25].

Current
Frame

Current
Frame

ROI

Locked
Object

Image
Moments

Histogram

Match
Probability

host device

compute histogram

send frame

compute back proj. prob.
and image moments

send image moments

send ROI

match with target histogram
send matching

probability

no match

update until
convergence

Figure 4.5: Data transfers of a GPU based CAMSHIFT approach, according to [25].

In 2008 Lozano and Otuska [49] have proposed an approach of particle filter based

tracking that utilizes the massively parallel computation power of a GPU. However, instead

of moving the majority of the computations to the GPU as has been done by Exner for

the CAMSHIFT approach, they have decided to develop only the weight calculation of the

Monte Carlo simulations for the GPU. According to them, this part is the most suitable for

massively parallel computations. Hence, each new frame requires only one transfer of its data

to the GPU and a transfer of the computed weights back to the CPU. A selection of particles

has to be sent to the GPU only for the initialization of the procedure. Thus, the approach

of Lozano and Otuska is focused on developing only the computationally most costly part of

the pipeline for parallel execution and also on using the least amount of transfers possible

[49].

Although, there has been research on real-time tracking before, it seems that most of

it is focused on top-down approaches rather than on bottom-up tracking. Since top-down
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approaches are based on prediction of a future state that is related to a preceding state,

they comprise per definition an internal dependency. The analyzed papers have not included

research on the effect of this dependency on the application of Gustavson’s law. Hence, an

open question is if it is possible to process multiple frames at different stages of the tracking

pipeline at the same time, leading to a maximum workload for the hardware.
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5 Chapter 5

Information Reduction

In order to speed up the processing time of an object tracking pipeline, there are alterna-

tives available to the approach of a multithreaded execution. One of these alternatives is

the technique of reducing the amount of input data that has to be processed by the algo-

rithms. Thereby, the available information is being reduced to a form where only the minimal

required information for tracking is remaining. However, dangers arise from removing too

much information which may lead to wrong tracking results. This chapter therefore con-

tains an introduction of various approaches for information reduction and an analysis of their

impact on the computational complexity of object tracking pipelines.

Considering a typical bottom-up object tracking pipeline, an ideal solution would com-

prise a reduction of data in every processing step of the pipeline such that every intermediate

result contains only the least amount of information that is required for the next step. In

Figure 5.1 such an ideal pipeline is shown.

Input
Frame (a)

Optimized
Frame (b)

ROI (c) Objects (d)

information reduction
e.g. downsampling

information reduction
e.g. ROI selection

information reduction
e.g. change of representation

Figure 5.1: Ideal information reduction for an object tracking pipeline which recurs in every
processing step, even though by using varying techniques.

There are multiple types of how information reduction can be performed when having an

infinite stream of video data for object tracking. This chapter covers a selection of approaches

of spatial information reduction such as downsampling, regions of interest and sparse image

processing. Thereby, downsampling refers to a modification of the pixel grid V of a frame f

such that the pixel size is being increased but the physical image dimensions remain constant.

Hence, the number of pixels npixels to process is being decreased. Downsampling has been

described for example by Bovik [11] or Jähne [35]. A specification of a region of interest

on the other hand refers to a modification of V such that only a subset X ⊆ V is used for

processing. ROI based tracking has been implemented for example by Deguchi [20] and a

robust general ROI determination by visual rhythm analysis has been presented by Chi et

al. [15]. Sparse processing refers to a more advanced approach of limiting the amount of

data to process. Therein, only a few pixels of V are being considered relevant, e.g. by Monte

Carlo sampling or particle injection, and further processing is based on this small sample
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only. Sparse processing based object tracking has been implemented for example by Lozano

and Otuska [49]. Alternative approaches to a reduction of spatial information may include

a change of the representation, e.g. from pixels to object representations such as have been

stated in Section 3.1, relatively early in the pipeline.

5.1 Downsampling

Downsampling provides an effective way of decimating the number of pixels in V .

Thereby, the grid of the original image Vo is being replaced by a new grid Vd and intensities

for the positions in Vd have to be estimated by using the known intensities in Vo. In this

process, the locations of the pixels may not only be reduced but also their positions may be

altered. Also, when reducing the amount of pixels in the grid, their size is being increased

in order to retain the original dimensions of the frame. A typical downsampling process is

shown in Figure 5.2.

Vo

downsample

Vd

Figure 5.2: Downsampling of a frame, showing the original grid (left) Vo and the desired
grid (right) Vd. Pixel center positions are being shown by black dots whereas
the surrounding squares represent the size of the pixels. The pixels are not only
being decimated but also their positions are being changed and their size is being
increased.

Bovik [11] describes downsampling or decimation as a process consisting of low-pass

filtering and subsampling. Thereby, the original image is being convolved with the impulse

response of a low-pass filter before discarding unused pixels of the image. Downsampling

involves a loss of information due to aliasing effects which is being reduced by the low-pass

filter. The low-pass filter restricts the bandwidth of the signal in order to satisfy the Nyquist-

Shannon sampling theorem. In theory, an ideal digital anti-aliasing filter with infinite length

could be used for that. However, in real image processing applications short finite impulse

response (FIR) filters are being utilized. Bovik also states that the opposite operation, named

upsampling or interpolation, consists typically of an upsampling operation which inserts zeros

between the pixels of the image and a subsequent low-pass filtering [11].

Let Vo be the original grid of a frame f and let Vd be a desired downsampled grid. Let

φ be a filter on Vo which intersects it with a square neighborhood

φ : Vo ∩ S(g, r)
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The function ϕ′f which maps elements g′ ∈ Vd into a field can be denoted as convolution

ϕ′f = ϕf ? φ

A subsequent subsampling onto Vd leads to the desired downsampled frame.

Jähne [35] states that interpolation is required when transformed grid points are not

coinciding with the original grid points. Thus, this interpretation of interpolation is true for

both, upsampling and downsampling. Additionally, interpolation can be used for arbitrary

transforms of a grid such as rotation or shearing. Goshtasby [28] describes the same pro-

cedure as image resampling, wherein interpolation is used to determine image intensities at

new grid positions. Jähne states that the sampling theorem provides the basis for interpo-

lation. A general framework for interpolation therefore has to reconstruct the continuous

image from the discrete version and perform a subsequent sampling of the new grid points.

Since the reconstruction of the continuous image in practice can be performed only approx-

imately, practical implementations utilize constraints for optimization. Jähne [35] describes

in his book linear interpolation, polynomial interpolation, spline-based interpolation and a

least-squares approach. Goshtasby [28] lists the following interpolation approaches: nearest-

neighbor resampling, bilinear interpolation, cubic convolution, cubic spline interpolation and

compactly supported radial functions. However, this set of interpolation functions can only

be considered a small subset of available approaches since many specialized interpolation

functions such as convolution interpolation [57] have been introduced in publications. In this

thesis, an analysis regarding the computational complexity of nearest-neighbor resampling,

linear interpolation and b-spline interpolation is being performed, since these interpolators

are commonly being used.

5.1.1 Nearest-Neighbor Resampling

One of the simplest versions of interpolation is nearest-neighbor resampling. According

to Goshtasby [28] it preserves image intensities, thus leading to similar histograms before and

after resampling. Given a original grid Vo and a new downsampled grid Vd, the algorithm

computes the value of the nearest-neighbor pixel in g ∈ Vo for each of the pixels p ∈ Vd.

Therefore, the resampled image will not contain any new intensity values that are not existing

in the original image. According to Goshtasby, nearest-neighbor resampling does not blur

the image but may produce aliasing effects.

Let Vo be the original grid of an image with pixels g ∈ Vo and Vd be the desired

downsampled grid with pixels p ∈ Vd. Moreover, let (gx, gy) be coordinates of the pixels g,

let (px, py) be coordinates of the pixels p and let (pu, pv), u ∈ Z, v ∈ Z be coordinates which

can represent only integer values. A function for the determination of the nearest-neighbor

pixel (gx, gy) of a desired pixel (px, py) is being denoted as

SelectNearestNeighbor(p) = arg min
g∈X

d (p, g) (5.1)
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where d(p, g) represents a distance metric between two pixels, e.g. Euclidean distance, and

X is a neighborhood of (pu, pv) such that

X = {(gu, gv), (gu+1, gv), (gu, gv+1), (gu+1, gv+1)}

An algorithm for nearest-neighbor resampling of a frame f from Vo to Vd is subsequently

being defined as shown in Algorithm 5.1. If there are no pixels in the grid Vo and nd pixels

Algorithm 5.1 Nearest-neighbor resampling

1: procedure ResampleNearestNeighbor(f)
2: for all p ∈ Vd do
3: pu = bpxc, pv = bpyc
4: g = SelectNearestNeighbor(p) . according to Equation 5.1
5: ϕf (p) = ϕf (g)
6: end for
7: end procedure

in the grid Vd, the complexity of this algorithm can be considered linear O(nd). Also, the

following algorithms of the pipeline will have to process nd pixels rather than no.

A kernel version of the same interpolation, designed for massively parallel execution is

shown in Algorithm 5.2. As can be seen, the complexity has been reduced from O(nd) to a

constant complexity of O(1).

Algorithm 5.2 Nearest-neighbor resampling (kernel)

1: procedure ResampleNearestNeighborKernel(f, i)
2: pi,u = bpi,xc, pi,v = bpi,yc
3: gi = SelectNearestNeighbor(pi) . according to Equation 5.1
4: ϕf (pi) = ϕf (gi)
5: end procedure

In comparison, a subsample of the frame f from Vo to Vd would only allow downsampling

by an unsigned integer factor, due to the fact that no interpolation of inter-grid values is being

performed. The resulting algorithm requires even less code but has still complexity O(nd).

An example is given in Algorithm 5.3.

Algorithm 5.3 Subsampling

1: procedure Subsample(f)
2: for all p ∈ Vd do
3: gx = px, gy = py
4: ϕf (p) = ϕf (g)
5: end for
6: end procedure
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5.1.2 Linear Interpolation

Linear interpolation of the intensity value of a point p involves a determination of the

weighted sum of intensities of its neighboring pixels. There are multiple versions of linear

interpolation available such as linear interpolation itself, bilinear interpolation or trilinear

interpolation. For a 2D image, the most commonly used interpolation method is bilinear

interpolation, thus covered in this section. According to Goshtasby [28], bilinear interpolation

reduces the effect of aliasing at the cost of a blur effect on the image. Thus, repeatedly

resampling an image with linear interpolation will destroy details. As image intensities are

being adjusted for the new grid positions, the histogram of the image will most likely change

as well.

A bilinear interpolation of an image can be denoted by using the same notation as in

Section 5.1.1, comprising Vo, Vd, g ∈ Vo, p ∈ Vd, (px, py), (pu, pv), (gx, gy) and X. Additionally,

weights at grid positions of Vo are being defined using the weight function ω(g, p). According

to the definition of Goshtasby, the bilinear interpolation of a point p can be denoted as

ϕf (p) =
∑
g∈X

ω(g, p)ϕf (g) (5.2)

where the weight function is defined as the distance metric d(p, g), e.g. Euclidean distance,

between the point p and a pixel gj that presents the opposite pixel of gi in the neighborhood

X, denoted as

ω(gi, p) = d(p, gj) : gj ∈ X, gi,x 6= gj,x, gi,y 6= gj,y

The pseudo-code for resampling a frame f with a bilinear interpolation is shown in Algo-

rithm 5.4. As can be seen, the computational complexity of bilinear interpolation is also

Algorithm 5.4 Resampling using bilinear interpolation

1: procedure ResampleBilinear(f)
2: for all p ∈ Vd do
3: pu = bpxc, pv = bpyc
4: X = (pu, pv), (pu+1, pv), (pu, pv+1), (pu+1, pv+1)
5: sum = 0
6: for all g ∈ X do
7: sum = sum+ (ω(g, p) ∗ ϕf (g))
8: end for
9: ϕf (p) = sum

10: end for
11: end procedure

O(nd), although bilinear interpolation may require slightly more computation time than

nearest-neighbor interpolation. A parallel executable version of bilinear interpolation can be

constructed by using the same pattern as has been used for the kernel version. Thereby, the

computational complexity is being reduced to a constant value O(1). However, the kernel
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version is not being explicitly shown in this section.

5.1.3 Cubic Spline Interpolation

Unser [69] described splines as piecewise interpolation polynomials that are being con-

nected smoothly at joining points. For cubic spline interpolation, basic splines or B-splines

provide an effective way of approximating intensity values. As has been stated by Unser,

B-splines of degree n are symmetrical, bell-shaped functions constructed from the n+ 1 fold

convolution of a rectangular pulse. Thus, a B-spline of order 0 that is being used for interpo-

lation can be seen as nearest-neighbor interpolation. A B-spline of order 1 represents linear

interpolation. A cubic spline has degree 3 and order 4 as has been stated by Goshtasby [28].

For interpolation of discrete images, a discrete B-spline kernel has to be sampled from the

continuous B-spline function. Given intensity samples of an image, the coefficients β(p) of

the B-spline model at a point p in the image can be determined. According to Goshtasby

[28], for a 1D image the intensity ϕf (p) at a point 0 ≤ p ≤ 1 can be estimated by taking

into account a neighborhood of pixels X = {gi : i = −1, 0, 1, 2}. The estimation is shown for

reasons of simplicity only for 1D images and is denoted as follows:

ϕf (p) =
2∑

i=−1
ϕf (gi)βi(p) (5.3)

where

β−1(p) = (−p3 + 3p2 − 3p+ 1)/6

β0(p) = (3p3 − 6p2 + 4)/6

β1(p) = (−3p3 + 3p2 + 3p+ 1)/6

β2(p) = (p3)/6

Thus, the intensity at p is a weighted sum of the intensities in X similar to the approach

of linear interpolation. Therefore, in 2D images the estimation is based on the squared

neighborhood [69, 28].

Goshtasby [28] additionally states that the estimation of the intensity of p is not the

final interpolation. Instead, new intensities have to be found such that when these intensities

are being used as control points, the original sample points can be evaluated by the resulting

B-spline curve. According to Goshtasby, thereby the entire set of control points has to be

computed collectively, leading to an overall complexity of the algorithm ofO(n2). However, he

also mentions that there are faster local implementations of cubic spline interpolation existing

and also parallel computable versions are available. For example computing the interpolation

in Fourier space will reduce the complexity to O(n log n). Cubic spline interpolation has been

shown to be computationally more complex than linear interpolation but also produces more

accurate results which might be of interest for applications where small details have to be

preserved [28].
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5.1.4 Information Measurement

As the proposed methods for image downsampling reduce the amount of pixels in the

grid, also the information contained in the images may be reduced to a certain extent. In

order to determine how much information is lost by a downsampling operation, a measure

for the amount of information contained in an image is required. As has been stated by

Bankman [4], a common measure for information in image processing is the Shannon-Weiner

entropy. Let b represent a single bin of the image histogram B and let pb be the probability

of such a bin. For image processing applications, the entropy measure H can be denoted as

H = −
∑
b∈B

pb log2 pb (5.4)

The probability can be computed as

pb =
nb

npixels

where nb is the number of pixels in the bin and npixels is the overall number of pixels in the

image.

In order to compare the entropy measures of an original frame and a downsampled

frame, the Kullback-Leibler (KL) divergence as has been proposed by Kullback and Leibler

[42] can be utilized. It is a non-symmetric measure of the information loss between two prob-

ability distributions where one of them is an approximation of the other. Let the probability

distributions be represented by a histogram of the original frame Bo and a histogram of a

downsampled frame Bd comprising an equal number of bins. The KL divergence can be

computed similar to the Shannon-Weiner entropy and is denoted as

DKL(Bo ‖ Bd) =
∑

b∈Bo,q∈Bd

pb log2
pb
pq

(5.5)

The output is a non-negative value which is 0 in the best case if and only if Bo = Bd. The

higher the output value is, the more information is lost through the process of downsampling.

The original intended purpose of the KL divergence is the measurement of the expected num-

ber of extra bits that are required to code samples from the original probability distribution

using the approximated probability distribution. However, as it is a measure of difference

between the two distributions it can also be used as measurement of information loss.

5.2 Regions of Interest

According to Handels [32], a region of interest (ROI) describes a selected region inside

a given image that is of particular interest for medical staff. Bovik [11] states that most

diagnosis algorithms begin with a specification of a ROI. In the case of kidney stone tracking
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in US videos for example, a region of interest in a single frame could comprise the kidney

region. ROIs are commonly being used for limiting the amount of data that has to be

processed in subsequent stages of a processing pipeline. Another reason for the creation of

ROIs is the exclusion of information that is irrelevant for subsequent processing, thus limiting

the risk of processing misleading information such as US artifacts. Handels [32] states that

the shape of ROIs depends on the application and the structure of the image. Commonly

used shapes in 2D image processing include squares, rectangles, circles, elliptical shapes or

polygonal structures. Squares, rectangles and circles can be described in a discrete image

for example by a specification of a center pixel and a radius such as S(g, r) or R(g, rx, ry).

As has been stated by Handels, a square can alternatively be described by two points which

represent two opposite corners, e.g. S(g1, g2). A polygon can be described by a set of points

which form a closed region. However, the determination of pixels inside and outside the

polygonal region is not as simple as when using rectangular shapes. The usage of a square

ROI is depicted in Figure 5.3 [32].

Vo

ROI extraction

Vr

Figure 5.3: Region of interest (ROI) extraction, showing the original grid (left) Vo including
the ROI (thick line) and the extracted grid (right) Vr.

Let S(g, r) be a defined ROI in a frame f with g ∈ Vo. A subsequent filter to the ROI

definition with a complexity of O(no) would have to check for all g if they are inside the

ROI which can be denoted by g ∈ Vo ∩ S. Thus, the complexity of the filter would not be

decreased. However, if the intersection of the original grid with the ROI is stored in a new

grid Vr = Vo∩S, the subsequent filter has a reduced complexity of O(nr). Since the extraction

algorithm appends additional complexity to the pipeline, depending on its implementation,

it has to be decided for a specific case if the reduction process will reduce the amount of

processing time or if it will increase time consumption.

Considering a ROI approach to object tracking, an additional computational complexity

arises not only from the representation of the ROI but also from the process of ROI selection.

In most cases, the selection of a ROI for a frame is dependent on the application. In 2009, Chi

et al. [15] have presented a robust ROI determination for multimedia content by analysis of

visual rhythms. In that approach, the detected visual rhythms are being matched with user

attention models in order to locate attention attracting ROIs. For the application of kidney

stone tracking in US videos, the ROI will most likely be determined as the kidney region.

However, there are also other possibilities for a ROI including a reduction to a specific renal

calix which is a part of the whole kidney region. In order to locate such a ROI, the frame
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may have to be analyzed and segmented which introduces additional time complexity to the

pipeline. However, the ROI approach can be combined with a downsampling approach in

order to reduce the number of pixels which are being considered for ROI detection.

5.3 Sparse Image Processing

Sparse image processing has been researched continuously over the last years. The tech-

nique of sparse image processing comprises a sparse representation of images and subsequent

processing steps that are capable of using the sparse representation instead of the full image

grid. By using a sparse representation, the number of values to process is being decreased,

thus nsparse < npixels. However, in contrast to downsampling approaches, comprised essential

information is being preserved. As this procedure is dependent on the application, informa-

tion measures such as the entropy metric may not be reasonable in every case. Starck et al.

[66] introduce the terms of strictly sparse images and compressible images. A strictly sparse

image can be modeled as a linear combination of elementary waveforms or atoms and can be

reconstructed exactly. A compressible image can only be approximated by a linear combina-

tion of atoms and therefore can be reconstructed with a certain, ideally minimized, loss of

information. Starck et al. list representations such as wavelets, bandlets, curvelets or local

discrete cosine transforms which present a backbone of popular applications of sparse image

processing such as compression standards, e.g. JPEG, JPEG-2000, MP3, AAC or MPEG.

Bandlets have for example been researched by Le Pennec and Mallat [43]. Contourlets for

multiresolution image representation have been introduced by Do and Vetterli [21].

According to Starck et al. [66], sparsity terminology consists of four basic terms. Atoms

represent elementary waveforms such as sinusoids, wavelets or gaussians. From these, more

complex waveforms can be constructed by linear superposition. A dictionary D is an indexed

collection of atoms such as the Fourier dictionary or the wavelet dictionary. Thus, it can be

seen as a N × K matrix where K is the number of included atoms and N is the number

of elements inside the atoms. Analysis is an operation that decomposes an image f into a

coefficient vector ~α wherein each coefficient is linked to an atom in D. Synthesis on the other

hand is the operation of reconstructing f from α and D. This relationship can be denoted as

f ≈ αD

Thus, an image can be represented sparse by finding its coefficients in α, given a dictionary

D such that the number of nonzero elements in the new representation α is minimal and

therefore, subsequent algorithms have to process only a fraction of the amount of data that

was in the original image. The stated procedure is visualized in Figure 5.4. However, this

procedure results in an remaining error ε due to compression [66].

According to Elad [23] a remaining problem is to find α such that ε is minimal and

also the number of non-zero elements in α is minimal. One way of measuring ε could be
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f [N ]

≈

D [K ×N ]

×

α [N ]

analysis

synthesis

Figure 5.4: Sparse representation analysis and synthesis of f ≈ αD. The size of the depicted
elements is stated in square brackets.

to determine the squared difference of the approximated image αD and the original image

f . Another option is to compute the information loss between the two images. This can be

done by utilizing for example the KL divergence which has been presented in Equation 5.5

of Section 5.1.4. In order to measure and penalize the number of non-zero elements in α

which is also referred to as sparsity, Elad utilizes the `0-pseudo-norm which can be denoted

as ‖α‖0 = lim
p→0
‖α‖pp, thus counting the number of non-zero elements. In order to solve the

problem, either ε can be specified as a maximum error that is allowed in order to find the

minimum sparsity, or the maximum sparsity L which is also referred to as support can be

specified in order to find the minimum ε. The former is shown in Algorithm 5.5. Therein,

Algorithm 5.5 Sparse representation analysis that is limited by a maximum error εmax of
the approximation.

1: procedure FindSparseRepresentation(f,D, εmax)
2: L = 0 . set support to minimum
3: while ε ≥ εmax do
4: L = L+ 1 . increase support
5: α̂ = MinimizeAlpha(D,L)
6: end while
7: return α̂
8: end procedure

the support is being set to the minimum at the beginning and being increased during the

iterations of the algorithm until the desired error has been reached. The latter can be denoted

as in Equation 5.6.

α̂ = arg min
α

(
1

2
‖αD − f‖22

)
: ‖α‖0 ≤ L (5.6)

Regarding to Elad [23], this represents a combinatorial problem of gathering
(
K
L

)
support

values which leads to a complexity class of NP-hard. This means that it cannot be solved in
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polynomial time and therefore would not be suitable for real-time processing. However, there

has been considerable work on this problem and real-time capable practical implementations

of sparse processing are available which utilize for example greedy approaches. Elad also

mentions patch-processing of an image for retrieving a sparse representation. Thereby, patch-

processing stands for neighborhood-local processing of the image which might be suitable for

parallelization. From the point of view of memory consumption, the given algorithms need

additional space for storing D but every frame f can be represented by its compressed version

α. In theory, α has the same size as f but in practical implementations it can be stored

efficiently by using specific data structures such as kd-trees [23].

Another problem that has been pointed out by Stack et al. [66] is the selection of a

dictionary. They state that for example the Fourier dictionary has fast operators and there-

fore is a suitable candidate for analyzing. However, other dictionaries may lead to sparser

representations, depending on the images. Another option is to learn a dictionary instead

of using a predefined version. In 2006, Elad and Aharon [24] have shown an approach for

sparse representations of grayscale images with learned dictionaries. They have used the

K-SVD algorithm to obtain a dictionary that describes a given image efficiently. The algo-

rithm develops a dictionary iteratively by updating it after a new image has been processed.

However, the update stage proposes additional time consumption to the overall process. In

2008, Mairal et al. [48] have extended the algorithm for color images to use it for an image

restoration application.

Elad [24] listed in his book applications for sparse image processing comprising for

example image denoising, image compression, deblurring or restoration tasks. These proce-

dures may be interesting for object tracking in terms of preprocessing of the incoming frames.

Especially when tracking objects in US images, denoising may be a critical process in order

to increase the signal to noise ratio (SNR). However, some of the implementations of sparse

image denoising are only capable of removing additive noise. Therefore, the usefulness of

sparse processing for tracking has to be decided for each particular case. Lucas et al. [47]

have used sparse processing for image segmentation. They have presented a multi-object

level set method that is computationally efficient and is based on a geodesic active contour

representation. According to them, the time complexity of the algorithm is linearly grow-

ing with the number of pixels in the images but independent of the number of segmented

objects. In 1998, Whitaker [74] has presented a level set approach for reconstructing shapes

of 3D objects. The proposed level set approach is based on a sparse-field algorithm which

tracks active pixels in a set of linked lists. According to Whitaker the time complexity of this

algorithm is less than the complexity of the original level set approach.

The presented sparse processing approach is based on an information preserving internal

representation of the given images. Particle injection based approaches, such as discussed in

Section 3.1.3 on the other hand use an extremely sparse representation of only the most

important parts of the frame. These representations reject a major part of the information

comprised in a frame. Nevertheless, this often allows for fast and robust tracking and avoids

occlusion effects when tracking multiple objects as has been shown in the past in [49] and [75].

42



5. INFORMATION REDUCTION 5.4. INFORMATION REDUCTION REVISED

Particle injection is frequently used for top-down object tracking approaches but can also be

utilized for bottom-up trackers. Chowdhury et al. [16] have proposed a cell tracker based on

bipartite graph matching techniques. They assume that the cell objects in each frame have

been segmented already and utilize cell centers as vertices of a bipartite graph. The graph is

is being utilized for matching cells in subsequent frames which runs in polynomial time. The

preceding segmentation could possibly be replaced by Monte Carlo particle injection, resulting

in a tracker that is completely based on sparse processing. However, only a small amount of

literature seems to exist about a combination of these techniques for object tracking.

Sparse processing has also been used for other object tracking applications in the past.

In 2011, Mei and Ling [51] have presented a robust visual tracker that uses a sparse approx-

imation in a particle filter framework similar to the work of Lozano and Otuskta [49] that

has been presented in Section 3.1.3. Neighborhood-local sparse patches have been utilized by

Wang et al. [72] for online discriminative object tracking. They claim that patch processing

associated with a learned dictionary resulted in increased robustness for the approach. Ob-

ject tracking by using a sparse level set approach has been implemented by Mosaliganti et

al. [52]. They have utilized the ITK framework for the implementation which has also been

used by Altinger et al. [2] for US nephrolith tracking. The presented tracker has been shown

to be capable of real-time cell tracking.

5.4 Information Reduction Revised

This section summarizes the observations that have been made in the preceding sections

about information reduction approaches to object tracking. Moreover, the presented tracking

pipelines of Section 3.1 are being analyzed in terms of information reduction.

Considering the information that has been presented in the preceding sections, the

following statements about information reduction approaches for object tracking can be given:

� Information reduction is a well researched area comprising various fields of applications

including object tracking.

� All of the introduced approaches imply an additional complexity that contributes to the

overall pipeline complexity. The added complexity also leads to an increased processing

time.

� However, the processing time of succeeding steps in the pipeline may be reduced by a

considerable factor even when adding the extra complexity of information reduction.

� Some of the demonstrated downsampling operations as well as the sparse processing

approach produce an approximated version of the image comprising altered histogram

information. Thus, the result of an object tracker might be compromised by removing

information.

� Sparse processing in comparison with downsampling or ROIs involves considerably more

additional complexity but may reduce the amount of information further than the other
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approaches.

Regarding the top-down object tracking approaches of Section 3.1, some of the work reflects

information reduction approaches. The CAMSHIFT extension for the mean-shift procedure

such as has been presented by Bradski [12] for example uses a ROI for tracking. The internal

mean-shift method therefore only works on a reduced region of the frame, thus speeding up

the internal part of the pipeline. However, costs are arising from calculating and updating the

ROI for each frame. Regarding to Bradski the main intention of using a ROI was to increase

the robustness of the approach. Additionally, CAMSHIFT does not solve the problem of

finding an initial ROI for tracking. Nevertheless, given an initial ROI the algorithm uses the

centroid of the detected object as the center of the next ROI and image moments for deciding

on the size of the following ROI.

Particle filter based object tracking by definition utilizes a sparse image representation

for tracking. The particle filter such as described by Kroese [41] thereby utilizes a set of

particles for filtering. The set of particles can be seen as the coefficient vector α that,

when combined with a dictionary such as a PDF, approximately describes the image and

allows for filtering. The implementation of Lozano and Otuska [49] indicates that not only

the massively parallel computation but also the limited number of particles led to a real-time

tracking solution. Parallel computations have been used as countermeasures to the additional

computation time that is required for picking the particles.

Although, there has been considerable research on information reduction strategies for

object tracking, only a small amount of the publications involves downsizing the input data

by downsampling. Hence, an open question is if downsampling in a preprocessing stage of a

bottom-up tracking approach affects the tracker such that the accuracy of the result is being

decreased massively.
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6 Chapter 6

Summary & Outlook

This thesis presents real-time approaches for image processing of US video streams, especially

focusing on the problem of object tracking.

The thesis comprises in Chapter 3 an evaluation of existing top-down object tracking

pipelines. They have been classified and a sample of approaches has been analyzed in terms

of real-time techniques and pipeline structure. The resulting knowledge about existing ap-

proaches has been subsequently utilized throughout the thesis. Chapter 4 focuses on the

approach of parallel processing for a pipeline speedup. Based on literature, various image

processing algorithms have been evaluated in terms of computational complexity and their

applicability to the given problem. Multi-device pipelines for massively parallel computations

have been analyzed considering fundamental computing science laws and arising technolog-

ical bottlenecks. As an interim result, the distribution between serial an parallel executed

code as well as bottlenecks such as memory bandwidth have been stated to be critical factors

to the achievable speedup. Chapter 5 focuses on the approach of information reduction for

speedup. Based on literature, the techniques of downsampling, ROI definition and sparse

image processing are being evaluated in terms of their suitability for object tracking. As an

interim result, it has been stated that although the given approaches reduce the complexity

of the pipeline, they produce approximated versions of the frames which may lead to false

tracking results.

The practical part of the thesis including an implementation and analysis of the pro-

posed methods is available through the masters thesis Real-Time Processing of Ultrasonic

Video Streams [37] at the Salzburg University of Applied Sciences.
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