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1 Introduction 

Portable communication devices and music players allow users to communicate and 

enjoy music wherever they want. However in many environments, ambient noise might be 

so loud that it masks the music or communication signal and/or forces the user to harmfully 

loud playback volumes. Closed headphones with ear-cups already show a good passive 

attenuation of high-frequency ambient noise, but there is hardly any attenuation of the low-

frequency noise. Headphones with Active Noise Cancellation (ANC) fill this gap and reduce 

the low-frequency noise with ‘anti-noise’ that destructively interferes with the ambient 

noise.  

In this report the strengths and drawbacks of different ANC methods are reviewed 

and new contributions to the field of ANC for headphones are presented. The methods that 

are used for ANC headphones can on the one hand be divided into feedforward and 

feedback methods and on the other hand into digital and analogue methods. Feedforward 

means that ambient noise is sensed outside of the headphone and is fed forward as inverted 

‘anti-noise’ to the loudspeaker of the headphone. Feedback means that the noise which 

already penetrated the headphone is sensed inside the headphone. The sensed and inverted 

‘anti-noise’ is thus fed back to the loudspeaker. 

Both, feedback and feedforward structures can be implemented analogue or digital. 

Analogue technology has the advantage of being delayless and inexpensive. Digital 

technology on the other hand has the advantage of being able to adapt to different (acoustic) 

situations. In this report, new ways of reducing the time delay of digital systems and new 

efficient algorithms to adapt to different acoustic conditions are presented. In the beginning 

however, the problem of assessing ANC headphones will be addressed and a robust and 

reliable measurement procedure is presented.  
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2 Optimal Measurement Procedure 

The performance of Active Noise Cancellation (ANC) headphones is measured by 

putting the headphone on a measurement device (e.g. a dummy head), playing back a 

measurement signal from outside, and comparing the residual noise at the measurement 

device with and without activated ANC. However, experience has shown that the measured 

results strongly depend on the measurement device. A same ANC-headphone can lead to 

good results on one measurement device and to poor results on another. 

The goal is to define a measurement procedure that leads to realistic and reliable 

results. Realistic results in a sense that they would match the opinion of the users. 

Therefore, a listening test was conducted to evaluate the opinion and judgment of 

(experienced) users on different ANC-headphones. In parallel, the ANC of the very same 

headphones was measured with different measurement devices.  A comparison of these 

measured results with the subjective evaluations leads to a conclusion about which 

measurement procedure best reflects the user judgment. 

  

2.1 ANC Measurement with Different Measuring 
Devices  

Five headphones are measured with four different measurement devices for the 

comparison with the subjective evaluation of the users.  

The four used measurement devices are depicted in Figure 2.1. 

         

Figure 2.1: Measuring devices. 

 

  



Report Marshallplan Scholarship                                                           Markus Guldenschuh 

 

 Seite 6 

 

The measurements were done in a semi-anechoic chamber, where a loudspeaker, 

which played back the measurement noise, was placed approximately 1 m ahead of the 

measurement device with the ANC-headphone. The loudspeaker was placed in the 

horizontal plane of the headphones, and measurements were done for different azimuth-

angles of incident signals. (From 0° to 350° in 10° steps.) 

 

The median noise reduction of one sample headphone is shown in Figure 2.2. The 

amount of noise reduction slightly depends on the measurement directions and might vary 

+/- 5dB. More relevant than the dependency on the measurement direction is, that the five 

measurement devices deliver different results for one and the same headphone as can be 

seen in Figure 2.3, where the median values over all directions of incident sound are 

displayed. 

  

Figure 2.2: Median reduced noise level of an 

exemplary headphone. The amount of noise 

reduction slightly depends on the 

measurement direction. The upper and 

lower quartile of the measured noise 

reduction is marked with the dotted and 

dashed line. 

Figure 2.3: Median ANC performance of one 

headphone on four different measurement 

tools. 
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2.2 Subjective ANC Evaluation in a Listening Test  

In a listening test, 26 persons were asked to give a subjective evaluation over the 

ANC performance of the five headphones presented above. The listening test comprises 

three parts, each of which is described below. 

 Listening Test Part I 2.2.1

For the first part of the listening test, residual ANC noises were pre-recorded. The 

five ANC-headphones were put on a dummy head while noise was played back by a 5.1 

surround system. The surround system created an uncorrelated diffuse sound-field. This 

way, recordings of residual ANC noises were done under exactly the same conditions for 

each of the five headphones. Three different kinds of noise have been recorded: 

 Aircraft noise (broadband noise) 

 Train noise (impulse noise) 

 Speech noise (small-band noise) 

The chosen noises on the one hand all represent typical situations where ANC would be 

used; on the other hand they differ in their sound characteristics. 

In the listening test, the subjects then judged the ANC performance of the 

headphones based on these recordings. The advantage of the pre-recorded residual noises is 

that the subjects could fast and easily switch from one headphone to the other, which 

facilitates the comparison. The subjects compared the five headphones for each of the three 

different noises via the recordings. The results of the subjective evaluation are shown in 

Figure 2.4. 
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Figure 2.4: The boxplot displays the variability among the perceived noise reduction for 5 

different headphones. The red bar indicates the median value; the blue box frames the 1st and 

the 3rd quartile. The ranking of the headphones is independent of the noise source. 

 

 Listening Test Part II 2.2.2

The first part of the listening test was not only important to see the influence of the 

noise pattern to the ANC evaluation; it was also a training of the subjects for the second part. 

In the second part, the very same sound-field that was generated for the recordings in part 

one was produced again for only one of the three noises. In this sound-field, the subjects 

evaluated the real ANC-headphones. The ANC-headphones were placed on the subjects’ 

head from behind such that they could not see or touch the headphone. 
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Figure 2.5: Listening test, part II. A test person judges an ANC headphone. The headphones are 

put onto the test person’s head by a tutor, such that the test person cannot recognize the 

brand of the headphone. 

 

The results from the 2nd part differ slightly from those in the 1st part, as can be seen 

in Figure 2.6. This figure shows the median value above all answers disrespect the kind of 

noise that has been played back. This is justified as a multifactorial ANOVA shows that the 

noise source does not have a significant influence onto the results. All differences in the 

headphone ranking are statistically significant, except for one pair. However, this pair is not 

significantly equal either. 

        

Figure 2.6: The second part of the listening test shows different results from the first ones. 

Headphone Nr 4 and 5 changed places. All differences in the ranking are significant except for 

the headphones Nr.2 and Nr. 5. 
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 Listening Test Part III 2.2.3

In the third part of the listening test, the ANC headphones were presented visibly to 

the subjects. The subjects than evaluated the headphones in four categories (see also Figure 

2.7): 

 Noise reduction 

 Wearing comfort 

 Design 

 Sound quality 

 Price estimate 

 

        

Figure 2.7: In the last part of the listening test, the subjects could see the 5 ANC headphones 

and judged noise reduction, comfort, design, sound quality by awarding a different amount of 

stars. Additionally, an estimate about the price could be given. 
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The results in the noise reduction category once again show the same ranking as the 

blind evaluation in part 2. Also, the ranking in terms of comfort is the same, as can be seen in 

Figure 2.8. The only category where headphone Nr. 1 is not ranked in the first place is sound 

quality. The price estimation finally reflects the overall judgment.  

 

 

 

Figure 2.8: Subjective judgment in five categories. The category noise reduction shows the 

same results as the blind 2nd part of the listening test. 

 

2.3 Regression between Measurements and Subjective 
Evaluation 

Figure 2.9, once again, shows the differences between part 1 and 2 of the listening 

test. Headphone Nr. 4 and 5 changed places. Apparently, the headphone Nr. 5 does not 

match very well on the Brüel & Kjaer HATS. Therefore the recordings that were made with 

this coupler reached less ANC. On the other hand, headphone Nr. 4 seemed to fit better on 

the HATS than on real person’s ears. This finding once again urges to examine the 

correlation of the coupler results with subjective evaluations.  
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Figure 2.9: The ratings of the 5 headphones (over all three noises) differ from part one to part 

two of the listening test. The results of part 2 are used for the regression. 

 

In order to get more differentiated regressions, the measurement data from different 

angles of incident sound are divided into six groups including measurements from 

  -40° to    40° (frontal direction) 

   50° to  130° (left lateral direction) 

 140° to  220° (dorsal direction) 

 -50° to -130° (right lateral direction) 

 from all directions 

 from surround positions (0°, +/- 30°, +/-110°) 

Additionally they are post processed in five different ways: 

 Broad band (BB): Logarithm of the signal power from   20 Hz -   20 kHz 

 Low band (LB): Logarithm of the signal power from   20 -   100 Hz 

 Mid band 1 (MB1): Logarithm of the signal power from 100 -   700 Hz 

 Mid band 2 (MB2): Logarithm of the signal power from 700 - 3000 Hz 

 Sone:   loudness over the broadband signal 

With all four measurement tools, this leads to a total of 120 predictors that are used in a 

stepwise regression to represent the subjective evaluations. 
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 Stepwise forward Regression 2.3.1

A stepwise forward regression starts with one predictor that best explains the 

variability of the target (the subjective evaluations) [1]. In every following step another 

predictor is included or removed from the model, always with the goal to increase the 

coefficient of determination (R2), which relates the residual sum of squares (prediction error 

variance, SSerr) with the total sum of squares of the target (sample variance, SStot) 

tot

err

SS

SS
R  12

.  (1.1) 

The result of the stepwise forward regression can be seen in Table 1.1. Three 

predictors are used for the regression: 

 Logarithm of the signal power from 20 Hz - 20 kHz, measured with artificial 

ear Nr. 2 with the measurement signals coming from all directions. 

 Logarithm of the signal power from 100 - 700 Hz, measured again with 

artificial ear Nr. 2. 

 Logarithm of the signal power from 20 Hz - 100 Hz, measured artificial ear 

Nr. 3 with the measurement signals coming from surround positions. 

 

Table 1.1: Results of the stepwise forward regression. Out of 120 predictors, three are 

chosen for the regression. The maximal Cook’s distance has the extreme large value of 25 

451. 

Artificial ear direction post-processing b R2 max D 

   -9.123 0.79 25 451 

2 all log(P(20-20 000Hz)) 1.273   

2 all log(P(100-700Hz)) -2.778   

3 surround log(P(20-100Hz)) -0.846   

 

The coefficients of the predictors have different signs, which means that one 

measurement result is subtracted from the other to yield a prediction of the perceived noise 

reduction. As all measurements should have the same tendency (less sound pressure with 

better ANC), it is questionable if this regression is not over fitting the data. A robustness 
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measure of regressions is the Cook’s Distance D. It compares the regression results, when 

observation points (evaluation-data for one headphone) are missing. D should not be 

greater than 1, however, for the above regression it is over 25 000 in the worst case. Also 

stepwise regressions with predictors of only one headphone are not more reliable. 

Therefore a simple regression with only one predictor is proposed. 
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3 Analogue ANC 

3.1 Analogue Feedback ANC 

Most commercial ANC-headphones use an analogue feedback (also called closed 

loop) from a microphone inside the ear cup to the loudspeaker [2,3,4], as depicted in Figure 

3.1. The advantages of the closed loop approach are that it does not require much hardware 

and that the ANC is independent of the incident sound direction. The drawback is that a 

closed loop can run unstable if the filter H in the feedback loop is not designed very 

conservatively. 

 

Figure 3.1: Block diagram of an ear cup with analogue feedback ANC. The microphone signal 

inside the ear cup is fed back to the loudspeaker via the filter H and inverted with the gain k. 

Block S denotes the transfer path from the speaker to the microphone (also called secondary 

path). The passive noise reduction due to the ear cup is represented by the block Hc. 
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 Stable Feedback Design 3.1.1

The transfer function of the closed loop in Fig. 3.1 reads as 

kHS

H

N

N cres




1
                                    (2.1) 

and the goal is to reduce Nres. This can be done by increasing the denominator, hence the 

gain factor k. The noise is reduced because the feedback signal is added with opposite phase 

(-k) to the entered noise Nin. However, if the phase of the feedback loop turns another 180°, 

the signals at the summation point superpose constructively and the feedback loop runs into 

a resonance catastrophe. The filter H is inserted to attenuate the frequency, where the phase 

of the open loop has turned to 180°. Thus, H is designed with respect to the frequency 

response of the open loop to keep the closed loop stable [5,6]. 

Figure 3.2 shows the open loop frequency response of an exemplary headphone 

without any filter H and for k= -1. Three different wearing situations from very leaky to tight 

are considered. The wearing situation changes the acoustic impedance of the headphone 

and has especially influence on the low frequencies of the secondary path. 

 

Figure 3.2: Magnitude and phase response of the secondary path S for three differently leaky 

wearing conditions. Two things can be observed: 1. The leakier the headphone, the stronger is 

the amplitude roll off at low frequencies. 2. The phase response of the tight headphone stays in 

a +/-45° range around 180° until 1300 Hz. A phase shift of another 180° is reached at 3500 Hz. 

At this frequency the magnitude is at -2 dB. Hence there is no room to increase the gain factor 

k. 
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The phase of the inverted secondary path turns to -360° (and is in phase again) at 

3500 Hz. At this frequency, the magnitude response should lie clearly below 0 dB.  As the 

magnitude at this frequency is at -2 dB only, the gain factor k cannot be increased anymore; 

hence hardly any ANC is possible. Inserting a low pass filter H, helps to boost the low 

frequencies, while attenuating the high ones. A shelving filter even works better, because it 

has a flatter phase response. It allows a gain factor of 15 dB for low frequencies and still 

attenuates the critical frequencies for 10 dB, as it can be seen in Figure 3.3. 

 

Figure 3.3: Magnitude and phase response of the stabilization Filter H and its consequences on 

the open loop response for different wearing conditions. The phase of the open loop does now 

reach the -360° already at 2500 Hz because of the phase drop of the shelving filter. However, 

the magnitude is attenuated 10 dB at this frequency, while the lower frequencies are amplified 

to approximately 15 dB, depending on the tightness of the wearing condition. 
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With the proposed feedback loop, an ANC of 15 dB up to 400 Hz can be expected for 

tight headphones, as it is shown in the ANC simulation of Figure 3.4.  

 

Figure 3.4: Simulation of the ANC performance with the proposed filter H 

in the feedback loop for different wearing situations. For a tight 

headphone an attenuation of 15 dB in a bandwidth up to 400 Hz is 

expected. The overshoot at very low frequencies and above 1000 Hz is 

very small. Hence, a stable feedback loop is expected. 

 

In order to increase the bandwidth of ANC, the phase of the open loop response 

would need to have a flatter slope.  This could be reached by a linearization of the 

loudspeakers, as described in the following section. 
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 Loudspeaker linearization 3.1.2

The magnitude as well as the phase response of a loudspeaker can be flattened, if the 

loudspeaker is damped. Damping can be increased by reducing the total resistance of the 

loudspeaker, e.g. by making the source resistance of the amplifier negative [7]. This can be 

achieved via a feedback of the loudspeaker current, as depicted in Figure 3.5. 

 

Figure 3.5: Loudspeaker linearization with current feedback according to Turner 

& Wilson [7]. 

 

The undamped transfer function of a loudspeaker can be simulated with the Thiele-

Small-parameters. The Thiele-Small-parameters of an exemplary headphone are listed in 

Table 2.1. 

Table 2.1: Thiele-Small-Parameters of the prototype headphone. 

Thiele-Small-Parameter Abbreviation value unit 

Total electrical resistance RT 25.1 Ohm (Ω) 

Force factor Bl 1.836 Tm 

Voice coil inductance LE 0.2 mH 

Mass M 0.0773 g 

Coefficient of friction KF 0.0158 Ns/m 

Spring stiffness KS 176.51 N/m 

 

 



Report Marshallplan Scholarship                                                           Markus Guldenschuh 

 

 Seite 20 

 

The loudspeaker transfer function from voltage U(s) to the voice coil velocity V(s), 

where s is the Laplace transform operator, reads as 

22 )())(( BlsKsKMssLR

sBl

U

V

SFET 
 .                              (2.2) 

The transfer function of the loudspeaker with and without the current feedback of Figure 

3.5 is compared in Figure 3.6. The components are chosen to be: 

 G1 = 1, 

 G2 = -8 and 

 RF = 3 Ω. 

 

Figure 3.6: Comparison of the loudspeaker transfer function with and 

without current feedback. With current feedback, the magnitude as 

well as the phase response is flattened. The reduced resistance RT 

increases the influence of the voice coil inductance onto the transfer 

function. This can be seen in the peak at 2200 Hz. 
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The current feedback flattens the magnitude and phase response, but it increases the 

influence of the voice coil inductance onto the impedance of the loudspeaker. This 

inductance now causes a resonance at 2200 Hz. In order to attenuate this resonance, 

another low pass filter would be needed in the ANC feedback loop. This low pass however 

would again cause a stronger phase roll off. Hence the positive effect of the loudspeaker 

linearization is undone. It is therefore easier and more efficient to design the feedback ANC-

headphone without loudspeaker linearization. 
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3.2 Analogue Feedforward ANC 

 Analogue feedforward (open loop) ANC only needs a microphone outside the ear 

cup [19,20]. It has a fixed analogue filter that simulates the transfer function form outside 

the ear cup to inside. However this transfer functions varies with the direction of incident 

sound. Open loop ANC headphones therefore either work very well for one dedicated 

direction of incident sound, or they work on average for all possible directions of incident 

sound.  

 

Figure 3.7: Open Loop headphones have only one fixed filter H that should simulate all 

possible transfer functions from outside to inside. 

 

 Ideal Open Loop Filter 3.2.1

It shall be investigated which measurement direction is most representative for all 

other directions of incident sound. The ratio K=P1/P2 was measured for eight angles of 

elevation (from 0° to 90°) and twelve angles of azimuth (0° to 330°). 

-HP2

P1

S
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Figure 3.8: Setup to measure the open loop transfer functions for 8 angles of elevation and 12 

angles of azimuth. 

An exemplary set of transfer functions K is shown in Figure 3.9. They all show low-

pass characteristics because of the headphone’s passive attenuation of high frequencies. 

  

Figure 3.9: Magnitude and phase response of the ratio K=P1/P2 for 8 angles of elevation and 0° 

azimuth (frontal direction). Especially the phase response varies remarkably above 1200 Hz. 

 

With the measurement data, ANC is simulated with the difference K - H, where H is 

the chosen open-loop filter. In order to figure out which direction of incident sound is most 

representative for all the other directions, we plug in different Kj for H, whereas the 

resulting frequency response is reduced to a Phon value. Thus 

Rij=phon{Ki(ω) –Kj(ω)}, 

where R is the ANC residual in Phon and i and j vary from 1 to 85 (corresponding to 

the 85 measured directions of incident sound). The resulting matrix R is symmetric and the 

sum over all columns (or rows respectively) is a measure on how well the transfer function 
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of the corresponding direction cancels all other transfer function. The comparison shows 

that the frontal transfer function for 39° elevation reaches the best median ANC over all 

directions of incident sound. Table 3-1 lists the three transfer functions with the best 

median ANC. All three transfer functions come from elevated angles, whereas +39° elevation 

is predominant. The first two transfer functions have a frontal direction and the third one 

comes dorsal, whereas frontal and dorsal transfer functions are very similar due to the 

head-(phone) symmetry. It can thus be concluded that frontal transfer functions from 

approx. 40° of elevation are the best representation of the overall transfer functions. 

 

Table 3-1: Directions of the transfer functions with the strongest median noise-reduction. The 

frontal transfer function from 39° elevation reaches the best median noise reduction of 9.4 

Phon (evaluated in a bandwidth of 2500 Hz). 

Elevation Azimuth Noise Reduction 

39° 0° 14.3 Phon 

39° -30° 13.8 Phon 

51° -150° 13.5 Phon 

 

 

Figure 3.10 compares the ANC of the ideal transfer functions with transfer 

functions from either lateral or horizontal directions. The difference in the median ANC is at 

least 6 Phon. 

 

Figure 3.10: Noise reduction level of three different transfer functions over all directions of 

incident sound in Phon. The worst ANC is reached with lateral transfer functions. Also transfer 

functions from the horizontal plane (0° elevation) do not reach the best ANC. 
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If several open loop filters are combined, more directions of incident noise can be 

optimally fought. The combination of the different open loop filters can be adaptive via 

adjustable filter gains. 

 

A Principal Component Analysis (PCA) is used to find those eigenvectors which 

best explain the variability in the measured transfer functions. The PCA in the bandwidth of 

2500 Hz shows that four (mathematically derived) transfer functions account for almost 

99% of the variability in the measured transfer functions (See Figure 3.11). These four 

transfer functions are modeled as IIR filters. As the modeled filters differ from the original 

PCA-transfer-functions, one cannot expect the same results in the explanation of the 

variability. Therefore, four diverging measured transfer functions are additionally modeled 

as IIR filters. The frequency response of the eight modeled filters is shown in Figure 3.12. 

The difference between a modeled filter and a measured transfer function can be seen in 

Figure 3.13. 

 

Figure 3.11: The explanation of the measured transfer function variability in dependence on 

the number of used PCA eigenvectors. With four eigenvectors already more than 98% are 

explained. 
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Figure 3.12: Magnitude and phase response of the 8 modeled IIR filters. 

 

  

Figure 3.13: Difference of a measured transfer function and the modeled IIR filter in the 

frequency response. 

 

A weighted combination of the eight modeled filters shall now explain the 

variability of all transfer functions over all measured directions. A stepwise forward 

regression is used to determine in which order the filters are added into the model. This 

way, it can be compared how much improvement is reached by adding another filter. This 

comparison is shown in Figure 3.14. Every additional filter brings a statistically significant 

improvement to the ANC, except for the second filter. The median ANC over frequency is 

shown in Figure 3.15. It can be seen that an increased amount of filters brings up to 5 dB 

more broadband ANC. 
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Figure 3.14:  ANC over all directions of 

incident sound dependent on the number of 

used filters in Phon (evaluated up to 2500 

Hz). With one filter, a median noise reduction 

of 16.2 Phon is reached. With 8 filters, 24 

Phon are reached.  

Figure 3.15: Median ANC frequency response 

over all directions of incident sound 

dependent on the number of combined filters. 

 

Adaptively weighted analogue filters allow the adaptation to different sound-fields 

and do not have the latency problem of digital ANC headphones. In order to design the 

parallel analogue filters, transfer functions K(jω)from the outside-to the inside microphone 

were measured. Fig. 3.10 shows their amplitude and phase variance.  

 

 

Figure 3.10 Amplitude and phase distribution of the measured transfer functions 

 

The dominant transfer functions were extracted via a Principal Component 

Analysis (PCA) and then modeled as a third order IIR filter H(jω). With a matrix of all 

measured transfer functions K and a matrix of modeled IIR Filters H the matrix of least 

squares weights for the filters read as  

W =(HTH)−1HTK. 

The residual error follows to 
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E = K − HW 

The frequency dependent residual error is calculated for 1 to 8 modeled Filter 

H(jω) and expressed as a single Phon value. The contribution of each additional Filter to the 

ANC performance is shown in Fig. 3.11.. It can be seen that only the second additional filter 

brings a statistically significant ANC improvement. The amplitude and phase response of the 

first two filters is shown in Fig. 3.12. The ANC performance in the LMS approach is shown in 

Fig. 3.13.  
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 Figure 3.11: Contribution of additional parallel filters to the ANC performance.  

 

 

 

Figure 3.12: The two filters which are modeled from the first two PCA transfer functions.  

 

 

Figure 3.13: Analogue Feedforward ANC with one static Filter of 6th order and two adaptively 

combinable Filters of 3rd order. 
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4 Adaptive ANC 

Digital ANC has the advantage that it can be adapted to different conditions, like the 

fitting of the headphone or the directions of the incident noise. However, it suffers from the 

latency that is caused by the AD- and DA-conversion. Therefore, with common audio 

converters, ANC is more or less limited to periodic signals. 

 

4.1 Adaptive Feedforward ANC 

 An adaptive filter needs two inputs. Besides the reference signal (e.g. the noise 

outside the headphone), it also needs an error signal that gives feedback about the 

performance of the filter. In an ANC headphone, this error signal is sensed with a 

microphone inside the ear cup, where the noise should be reduced. (See Figure 4.1.) 

 

 

Figure 4.1: The adaptive-feedforward ANC-headphone needs two 

microphones. One for a reference noise signal and another one that 

tracks the residual error of the ANC inside the ear cup. 
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The filter coefficients are adapted with the reference input and the error signal, as 

indicated in Figure 4.1. There are several algorithms for the coefficient update, among which 

the Normalized Least Mean Squares (NLMS) algorithm is the most popular one. It is easy to 

implement, does not require much resources and is more stable than most of the other 

adaptive algorithms [8]. The coefficient update equation reads as  

)()('

)(
)()()1(

nxnx

nx
nenwnw 




 ,                                     (2.4) 

where w


is the vector of filter coefficients, n is the time index, x


 is a vector of noise input-

samples and µ is the learning rate that lies in the interval [0, 2]. As can be seen in this 

equation, the error signal e and the input signal x need to arrive at the same time basis n. 

Figure 4.2 shows, that the input x is delayed by one AD conversion. The error e is delayed by 

the same ADC, but additionally by a DAC, the secondary path S and another ADC. Thus, the 

same additionally delay has to be introduced to x for the coefficient update in the LMS 

algorithms. Therefore an estimate of the secondary path Ŝ has to be implemented. This 

modified structure is called filtered x LMS (fxLMS). 

  

 

Figure 4.2: Block diagram of ANC with the filtered x LMS algorithm. The 

outside microphone measures the noise x, that comes along the direct 

transfer path P2. The inside microphone measures the superposition of 

x that entered the headphone via P1 and the anti-noise signal played 

back by the loudspeaker (over the secondary path S). The input signal 

x has to be delayed with two times the conversion time and an estimate 

of the secondary path Ŝ before it comes to the coefficient update in the 

LMS block. 
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 Latency Influence on ANC 4.1.1

On the one hand side, there is a gain of sound travel-time from the outside 

microphone to the error microphone in the ear cup. It is the group delay of the ratio P1/P2.  

Because of the enclosure, this group delay is rather independent of the direction of incident 

sound. As depicted in Figure 4.3, it is almost the same for frontal sound as for lateral (where 

the largest group delay is expected). However, this gain of time decreases, if the headphone 

is leaky. Figure 4.4 shows that it can even become negative, which means that the noise 

arrives at the error microphone before it arrives the outside microphone. 

 

 

Figure 4.3 The group delay of P1/P2 

represents the gain of sound travel-time from 

the outside microphone to the error 

microphone. Due to the tightness of the 

enclosure, it does not depend on the direction 

of the incident sound. 

 

Figure 4.4 Group delay of P1/P2 for frontal 

sound and differently tight headphones. The 

gain of time is lost, if the enclosure is leaky. 

 

On the other hand side, there is the delay of signal x and e due to the AD- and DA 

conversion and the group delay of the secondary path S, which is above 0.5 ms for 

frequencies below 100 Hz. (See Figure 4.5.) So the gain of time of about 0.4 ms faces a loss of 

time, which is usually much larger. Thus, the adaptive filter has a causality problem. In this 

case, the fxLMS algorithm acts as a predictor. The ANC then depends on the predictability of 

the noise.  

10
2

10
3

-0.2

0

0.2

0.4

0.6

0.8

Groupdelay P
1
/P

2

m
s

Hz

 

 

frontal

lateral

10
2

10
3

-0.2

0

0.2

0.4

0.6

0.8

Groupdelay P
1
/P

2
m

s

Hz

 

 

tight

1 leak

2 leaks



Report Marshallplan Scholarship                                                           Markus Guldenschuh 

 

 Seite 33 

 

Figure 4.6 compares ANC simulations for different latencies. The simulations are 

done with recorded airplane noise with real measurement data for S, P1 and P2. The 

direction of incident sound (P1/P2) changes from 0° to 90° azimuth in the middle of the 

simulations, which lasts one second in total. The simulations show that effective ANC can 

only be reached with latencies below 250 µs. (See also [10:13].) Optimal ANC is reached 

with about 60 µs latency. 

 

 

Figure 4.6: The simulation on the left compares the SPL of airplane noise at the ears without 

headphones (no HP), with a passive headphone, and with ANC of different latencies. The 

right figure shows the influence of pure active noise cancellation. 
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Figure 4.5: Group delay of the secondary path for differently tight 

headphones. The group delay is mostly around 0.2 ms. For 

frequencies below 100 Hz, it increases rapidly, especially for leaky 

headphones. 
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 Tightness Influence on ANC 4.1.2

Figure 4.4 and Figure 4.5 showed that the gain of time from the outside microphone 

to the inside microphone and the group delay of the secondary path depend on the tightness 

of the headphone. A leaky headphone has two times negative influence on ANC. On the one 

side, it decreases the gain of sound travel-time, on the other hand it also decreases the group 

delay of the secondary path and hence the reaction time of the system. Figure 4.7 compares 

the ANC performance of differently tight headphones with a latency of 60µs. Again 

measured S, P1 and P2 are used for the simulation. The increased leakage deteriorates the 

performance drastically.  

 

Figure 4.7: ANC simulation for differently tight headphones at a latency of 60µs. 

The leakage deteriorates the performance drastically. 
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4.2 Adaptive Feedback ANC 

 Feedback fxLMS 4.2.1

There also exists a feedback strategy for adaptive noise cancellation [14], like 

depicted in Figure 4.8. In this strategy only the error microphone inside the ear cup is 

needed. Adaptive feedback ANC works under the assumption that we know the anti-noise 

signal that is played back by the headphone. Hence the noise can be regenerated from the 

error signal as 

yexin
ˆˆ  ,                                       (2.5) 

where ŷ is an estimate of the loudspeaker signal. The advantage of the feedback strategy on 

the one hand is, that it takes the entered noise as reference input instead of the noise 

outside the headphone and that this entered noise is already low pass filtered, which makes 

some processing steps, like anti-aliasing filtering easier. On the other hand, it completely 

loses the gain of time that the outer microphone had with respect to the inner one. 

 

 

Figure 4.8: Adaptive Feedback ANC. The reference input signal inx̂ is generated 

from the error signal e. Hence, only one microphone inside the ear cup is 

needed. 

 



Report Marshallplan Scholarship                                                           Markus Guldenschuh 

 

 Seite 36 

 

Figure 4.9 compares the feedback with the feedforward ANC. Because of the low 

pass filtered input, the feedback method generates less error at higher frequencies. 

However the general performance of the feedforward structure is - calculated according to 

[15] - almost 3 Phon better.  

 

 

Figure 4.9: This simulation of combined active and passive noise attenuation compares the 

feedback- and the feedforward ANC-algorithm. Latency was set to 250µs. Although the 

feedforward method generates a larger prediction error around 3000 Hz, it over all still 

performs better than the feedback method. 

 

 Feedback ANC with Kalman Filters 4.2.2

The feedback structure does not generate as large prediction errors as the 

feedforward structure at high frequencies. Still the feedforward structure of the fxLMS 

reaches a better ANC. In literature [16], a Kalman filter is proposed as predictor. However, 

the Kalman filter does not predict better, it only is more robust against measurement noise. 

In Figure 4.10, the influence of the Kalman filter is compared for sensor noise that is 40 and 

20 dB under the noise inside the headphone. If the sensor noise is large (-20 dB) the Kalman 

filter stabilizes the adaptive filter and prevents it from producing large errors at high 

frequencies. 
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Figure 4.10: ANC simulations with and without Kalman filter and a latency of 250µs. For the 

left figure, the sensor noise is 40 dB below the actual noise in the headphone. The Kalman 

filter has hardly any effect here. For the right figure, the sensor noise is only 20 dB under the 

actual noise. In this case, the Kalman filter prevents the adaptive filter to generate large errors 

at high frequencies. 

 

 

 Feedback Active Noise Control with sparse update of the prediction 4.2.3

filter 

The latency of conventional audio converters severely limits the ANC performance. 

In these cases, the adaptive filter has to predict the noise to compensate for the delay. In the 

feedback ANC approach, the prediction is based on noise that actually entered the 

headphone. This has two advantages. Firstly, ANC is independent from the direction of 

incident noise and also works in diffuse sound-fields [17, 18]. And secondly, the upper 

frequencies of the entered noise are damped by the ear cup. This low-pass characteristic is 

advantageous when it comes to signal prediction [19]. 

In literature, prediction is mostly done by different kinds of the least mean squares 

(LMS) algorithm [20, 21] or by iterated one-step-ahead predictions [16]. Both algorithms 

are based on sequential updates of the prediction filter. In this section, it is shown how a 

direct multi-sample prediction leads to improved ANC results while the computational 

burden can still be kept low. In particular, the fact that noise signal statistics mostly change 

little is exploited to reduce the amount of updates. In the case of broadband noises, the 

signal characteristic is determined by the passive damping of the ear cups. Hence, the 

prediction filter can be designed a priori and no real-time computation is needed at all. 
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Headphones with feedback ANC, as depicted in Figure 4.11, only require one 

microphone inside each ear cup. This microphone measures the residual error signal e(t) 

which is the superposition of the entered noise x(t) and the played-back anti-noise y(t). With 

omitted time dependency, e = x + y. 

 

 

 

Figure 4.11: Digital feedback ANC: An estimate of the noise inside the ear cup )(ˆ nx is used as 

input for the prediction unit. The inverted output is played back to cancel the entered noise 

x(t). 

 

 

Since y should equal x with an inverted phase, an estimate of x is required. This 

estimate x̂ can be obtained by subtracting the played-back anti-noise from the sensed 

residual error, .ˆˆ yex   The actual anti-noise y is digitally unavailable. This is because the 

digital noise cancellation signal is digital to analogue converted and modified by the 

loudspeaker transfer-function S(s), also called secondary path. Thus, an estimate ˆy is 

generated by means of a secondary-path measure )(ˆ zS . 

The resulting noise estimate x̂ is delayed by the digital to analogue converter (ADC) 

and the final anti-noise y will be delayed once again by a DAC and the group delay of S(s). To 

compensate for these delays, the prediction unit tries to predict future samples. If ADC and 

DAC each have a latency of N samples, at least 2N samples have to be predicted.  
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Assuming that a correct estimate of x is given, )(ˆ nx equals x(n − N). With this, the 

prediction unit builds a weighted sum of the available past samples to predict the future 

noise sample 







1

0

)()(
L

i

i iNnxwNnx     (2.6) 

with L being the prediction order and wi the coefficients of a linear prediction filter. The 

residual error e follows as 

e(n) = x(n) − wTSx(n − D),     (2.7) 

 

where w is the vector of filter coefficients, S is a convolution matrix of the secondary-path 

impulse response and x is a signal vector starting from D = 2N samples in the past. The 

minimum of the expected squared error leads to the well-known Wiener-Hopf equation [8] 

and to the solution of the optimal prediction filter 

 

wopt = (SRxST)−1r,      (2.8) 

 

where Rx is the autocorrelation matrix of the latest available noise samples 
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and r is a vector of autocorrelation elements starting from lag D 
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The matrix inversion in eq. (2.8) can be avoided with the Levinson-Durbin algorithm 

[22], but only if D = 1. The resulting one-step-ahead predictor can still be used for a delay of 

2N samples when the linear prediction of eq. (2.6) is iterated 2N times. However, since the 

prediction filter is stable, the recursive one-step-ahead prediction converges to zero. Thus, 

the filter outputs have to be amplified to get a reasonable multi-sample prediction. 
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To avoid this problem, gradient search algorithms are often used for prediction 

problems with more than one sample delay. Gradient search algorithms like the normalized 

LMS use the noise estimate and the error signal to recursively calculate the prediction filter 

 

xx

x
ww

T ˆˆ

ˆ)(
)()1(

ne
µnn      (2.9) 

 

where μ is the step size parameter which determines the speed of convergence. In the LMS 

algorithm, the convergence speed has to be held rather low to keep the recursion stable. 

 Instead of a recursive procedure, we suggest to directly invert the autocorrelation 

matrix of eq.(2.8). The computational burden can still be kept low, if the prediction filter is 

updated only sparsely. This is practicable as long as the noise field is stationary; and in ANC 

applications, as e.g. in airplanes, noises are often long time stationary. Furthermore, noises 

with prominent spectral peaks are easily predicted with only a few coefficients. Thus, the 

matrix to be inverted can be kept small. 

The most important benefit of the feedback ANC approach however is that a part of 

the noise characteristic is always known. The upper frequencies of the outside noise u (as in 

Figure 4.11) will always be damped by the physical barrier P(s) of the ear cup. This passive 

attenuation can be written down as a convolution operation 

 

x = Pu, 

where P is a convolution matrix of a low-pass impulse response that simulates the passive 

attenuation. With this, the autocorrelation matrix Rx follows to 

 

Rx = PRuPT.     (2.10) 

 

When u has a flat spectrum, its autocorrelation matrix Ru reduces to an identity 

matrix and Rx solely depends on P. The calculation of the optimal prediction filter (eq.(3)) 

then simplifies to 

 

wopt = (SPPTST)−1p,     (2.11) 

 

where p is column number D of the low-pass autocorrelation matrix PPT. This equation 

allows for an a priori filter design where no real-time calculation of the filter coefficients is 
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needed because all required data (S(ω) and P(ω)) can be measured and designed in advance. 

The prediction filter that follows from this a priori calculation can be used as a default filter 

in the ANC headphone. 

 

The following simulations are based on measurement data from an exemplary 

headphone. Its passive damping and the low-pass filter that is used to derive the default 

prediction filter are displayed in Figure 4.12. The pass-band of the low-pass filter is chosen 

to be narrower than the one of the ear-cup damping. On the one hand, this increases the 

prediction error for the upper frequencies, but on the other hand it leads to better 

prediction in the low frequency band. 

 

 

Figure 4.12: Transfer function P(ω) of the passive attenuation by the ear cup and the second 

order low-pass that is used for the default prediction filter. 

 

 

In order to reduce computational load, the DSP might be sampled down to 24kHz. 

Lower sampling frequencies are not advisable because they would reduce the spectral 

information of the passive attenuation. Common audio codecs have a talk through latency of 

about 170μs at 192 kHz. At 24kHz this corresponds to a total delay of approximately 4 

samples. 

 In the first simulation, the default prediction filter is used for airplane noise and its 

ANC performance is compared with adaptive methods like LMS and one-step linear 

prediction. Figure 4.13 shows the spectrum of the airplane noise and the spectra of the 

residual noises after ANC. 
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Figure 4.13: Spectrum of the airplane noise x that entered the headphone and the residual 

noises after ANC with the proposed default filter, an LMS filter and after iterated 1-step ahead 

prediction. The default filter performs best between 100 and 1000 Hz. The deteriorated ANC 

below 80 Hz comes due to the long group delay of the loudspeaker in the low frequency band. 

 

 Above 2000 Hz, the LMS algorithm and the iterated one-step-ahead prediction 

produce a lower error than the proposed default prediction filter, but the ANC performance 

of the proposed filter between 100 and 1000 Hz is superior to the other two methods. As the 

passive noise attenuation above 1000 Hz is already very pronounced, the ANC of the default 

predictor is preferable. 

 In the second simulation (Figure 4.14), the noise of an accelerating engine is used 

for the ANC comparison. The default prediction filter still leads to a slightly better 

performance, although the engine-noise is narrowband. An update of the default filter by an 

autocorrelation of x̂ did not lead to further ANC improvement. 

 

Figure 4.14: Engine noise x that entered the headphone and the residual noises after ANC with 

the three compared methods. Again, the default filter performs slightly better, although it is 

designed a priori and does not change during runtime. 
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 For the third simulation, another narrowband noise is used. This time, pink noise 

was filtered with a forth order Butterworth bandpass filter with cut-off frequencies at 100 

and 270 Hz. The spectra of the noise and the residual noises after ANC are shown in Figure 

4.15. 

 

Figure 4.15: Narrowband noise x ant the residual noises after ANC with the compared 

methods. Here, the default prediction filter needs to be updated with a noise autocorrelation. 

The resulting updated 4th order prediction filter yields the best ANC again. 

 

 In this case the one-step-ahead predictor and especially the LMS yield better 

results than the default filter. An update of the filter is required to improve the ANC. The 

first 150 available noise samples are taken to perform an autocorrelation. From this 

autocorrelation, only four samples (beginning form time lag 0) are taken for the 

autocorrelation matrix Rx and four further samples, starting from lag 2D = 4, are taken for r. 

Thus an inversion of a 4x4 matrix is required to calculate the prediction filter coefficients. 

This updated 4th order prediction filter again performs better than the iterated one step-

ahead prediction and the LMS prediction. 

 

 In this section, we showed that a main part of the noise characteristic is 

determined by the passive attenuation due to the ear cups. With this information, we design 

an a-priori prediction filter that does not need any real-time adaptation. Simulations show 

that this filter reaches better results than adaptive prediction methods like the LMS or an 

iterated one-step-ahead linear prediction, for a broad-band noise like airplane noise and 

also for a narrowband noise, like from an accelerating engine. The proposed prediction filter 

might also be used in hybrid ANC systems like proposed in where it is expected to lead to 

improved ANC results too. 
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 Comparison of different extrapolation methods 4.2.4

Four different predictive methods are compared for the feedback ANC structure of Fig. 2.18. 

1. Normalized fxLMS  

2. Default prediction filter based on the transfer function of the passive damping by the 

ear cup  

3. Slepian Extrapolation  

4. Iterated 1-step-ahead prediction  

 

The design of the default prediction filter as well as the LMS and LPC prediction are 

explained in the previous section. Slepian extrapolation is based on the property that the 

Fourier transform of any Prolate sequence ψm of order m and length(N +1) is a scaled 

version of the Prolate function itself.  

   [ ]  ∑   [ ]        

   

      

 

 

Hence, if the Prolate function is known in the Fourier domain from -1 to 1, it is 

entirely known in the time domain. Any time-and frequency concentrated signal x[n] can be 

expressed as a weighted sum of orthonormal Slepian functions. The weights are derived as 

   
 

  
∑  [ ]  [ ] , 

where λm are the eigenvalues of the Slepian functions. With these weights, the signal x[n] 

can be extrapolated to  

 [   ]  ∑     [   ] . 

 

Fig. 2 shows the results of the 4 extrapolation methods for a broadband airplane 

noise. The default prediction filter performs best, although it is not adapted during run-time.  
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Figure 4.16: ANC of different extrapolation methods. The default prediction filter performs 

best, although it is not adapted during run-time. 
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5 Hybrid ANC 

The implementation of a low latency adaptive ANC headphone would be very 

promising, but there is no ready to use hardware solution available on the market. Another 

strategy is a hybrid ANC-headphone, where an analogue feedback cancels low broadband 

noise and a digital adaptive path cancels periodic noises as this is also possible at large 

latencies [23,24]. The analogue feedback (as in Section 3.1.1) is combined with the adaptive 

feedforward structure in Figure 5.1. 

 

Figure 5.12: Hybrid ANC solution. It consists of an analogue feedback and an adaptive 

feedforward path. 

 

A circuit for such a hybrid solution has been assembled. It comprises an analogue 

shelving filter and auxiliary in- and outputs for the digital path. For the following 

measurements, the digital processing was done with the software program “pure data” 

using a rme fireface as audio interface and a Brüel & Kjaer dummy head as measurement 

device. 

For the measurements with the hybrid ANC solution, white noise was combined 

with three sinusoidal tones at 440, 1500 and 2500 Hz. The white noise was filtered with a 

4th order lowpass at a cut off frequency of 2000 Hz. Figure 5. shows the results of the 

measurement. The hybrid solution is very efficient in cancelling this combination of noises. 
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Figure 5.43: ANC measurement with the hybrid solution. The analogue feedback cancels the 

broadband noise below 1000 Hz and the adaptive path cancels sinusoidal components at 

arbitrary frequencies. 
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6 Secondary Path Identification 

6.1 Identification of Secondary Path Irregularities via 
the Adaptive ANC-Filter in Feedback Applications 

 

Headphones with Active Noise Control (ANC) cancel ambient noise by playing back 

destructively interfering ’anti-noise’. It can be distinguished between feedforward ANC-

headphones that pick up the ambient noise outside the headphone and feedback ANC-

headphones that sense the residual noise inside the headphone, which is especially 

advantageous in diffuse sound fields. Figure 6.1 shows a typical realization of a digital 

feedback ANC-headphone. It uses a model  ̂     of the secondary path (i.e. the transfer 

function from the loudspeaker to the microphone inside the ear cup) to estimate the entered 

noise     . This internal model controller (IMC) is preferably used in digital feedback ANC 

because the noise cancelling filter       can be designed as a feedforward controller and 

therefore also as adaptive filter. This is beneficial when facing noises with changing spectral 

characteristics.   

 

Figure 6.1 Feedback ANC with an internal model controller (IMC): The internal model  ̂     of 
the secondary path is used to derive an estimate  ̂[ ] of the noise. 

  

However the performance and stability of this feedback ANC-system depends on 

the accuracy of the model  ̂    . An initial nominal model can easily be determined off-line 

by injecting an appropriate broadband signal (e.g. a swept cosine) into the headphone and 

measuring the system response with the microphone inside the ear cup. The secondary path 

      however changes considerably once the headphone is lifted or pulled away 

completely. The deviation of       from the nominal  ̂     can then drive the system 
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unstable. In [20], they show that an additional analogue feedback-controller can reduce the 

deviation from the nominal model, but the analogue controller design is non-trivial and 

stability cannot be assured in general. Consequently, the controller has either to incorporate 

an uncertainty about the secondary-path model or an on-line secondary-path estimation 

that tracks changes in       has to be implemented. While the first suffers from a loss of 

performance under optimal conditions, the latter only works for slow and minor changes in 

      and is more suitable for feedforward ANC headphones where a reference microphone 

outside the ear cup is available. Also, these methods inject additional noise into the 

headphone to identify the secondary path; an approach that is counterproductive for a 

noise-cancelling application.  

We introduce a simple and efficient method to identify changes in the secondary 

path without the need of an extra reference microphone and without the need of injecting 

additional noise. In particular, we show that lifting and pulling away the headphone mainly 

affects the low frequencies of       and that the adaptive filter       which tries to invert 

      can be used to detect those low frequency changes. Once this irregularity in       is 

detected, the adaptive filter changes to a robust stable default-setting before it starts a least 

mean square (LMS) adaption again. This way, we yield optimal ANC performance as long as 

the headphone is worn properly, and we still can avoid instabilities even during sudden 

changes in      .  

 

The sensitivity function       (i.e. the transfer function from the input noise   to 

the residual error  ) of the feedback system in Fig. 1 reads as (from now on with omitted 

dependency on   )  

   
 

   
 

   ̂ 

 
    ̂

     ̂    
  (6.1) 

In the case of    ̂, the denominator of the sensitivity function   vanishes and the 

filter   should become     ̂   in order to minimize | |. However, the inverse of  ̂ in 

general will not exist since  ̂ willnot have minimum phase. Thus the filter   can only try to 

compensate for the phase delay and the dynamics of  ̂ e.g. in an    or    optimal sense. The 

accuracy of the compensation depends on the bandwidth in which  ̂ shall be compensated. 

It is easier to compensate for the phase delay and the magnitude at a single frequency than 

in a broad bandwidth. Thus, the optimal filter   depends on the current spectral 

characteristic of the input noise  . It is therefore advantageous to implement an adaptive 
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filter   that yields the compensation in the band where it is currently needed. Note that the 

adaptive filter tries to do a system identification of the inverse secondary-path. This fact will 

be used later to detect changes in the secondary path.  

The adaptive filter is most commonly adapted with the Least-Mean-Square (LMS) 

algorithm for it has a low computational complexity. In applications with dynamically 

varying excitation and a non-negligible delay in the secondary path, the Normalized 

Filtered-x LMS (NFxLMS) is used to yield stable convergence.  

 

The LMS (and so the NFxLMS) is a gradient based adaptive algorithm that 

eventually converges to the Minimum Mean Square Error (MMSE). Figure 6.2 shows the FIR 

filter   of the MMSE solution for white input noise that was filtered with a second-order 

low-pass at a cut-off frequency of 500Hz. The second-order filter simulates the passive 

attenuation of the headphone and the filter   has      taps at 44.1 kHz sampling 

frequency. Since there is no high-frequency excitation, the filter   has a lot of freedom in 

the upper frequency band. This results in a boost of the high frequencies which is not 

applicable in real life condition, where e.g. sensor noise or estimation errors of  ̂ would be 

stronglyamplified.  

 

Figure 6.2 The filter   tries to match the inverse of  . Without constraints, it has the freedom 
to heavily boost the high frequencies since there is no noise excitation in this band. The leaky 
LMS (with        ) minimizes the filter’s energy which leads to a desirable roll-off at high 
frequencies. 

  

  



Report Marshallplan Scholarship                                                           Markus Guldenschuh 

 

 Seite 51 

 

It is therefore necessary to penalize the energy of  . The cost function shall not 

only include the squared error but also the weighted norm of the filter’s tap-weight vector 

 . This extended cost function                results in the leaky LMS algorithm. Its 

normalized filtered-x version has the following coefficient update:  

                    
     ̂ ̂

 ̂  ̂
  (6.2) 

where   is the discrete time index,   is a stepsize parameter,  ̂ is the convolution 

matrix of the secondary-path model and  ̂    is a vector of the latest   estimated noise 

input-samples as in Fig. 2.24.  

Figure 6.2 also compares the solution of the converged leaky NFxLMS to the MMSE 

solution. The leaky NFxLMS matches the inverse of   less accurately but it prevents the filter 

from excessively amplifying the high frequencies. It still yields ANCup to 15 dB as can be 

seen in Figure 6.3. The leaky LMS version is also more robust against mismatches of the 

secondary-path model  ̂, which is very important as will be shown in the following section.   

 

Figure 6.3 Sensitivity function of the leaky NFxLMS for    ̂. Negative dB values denote noise 

cancellation, positive values denote noise enhancement. 
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 Stability of the Adaptive Feedback Loop 6.1.1

 

In the given adaptive feedback-ANC-system, two stability issues arise:  

 1 Stability of the NFxLMS adaptation.  

The stability of the recursive adaptation depends mainly on the phase error between   and 

 ̂ which has to stay below 90° for the usual NFxLMS algorithm. However, the leakage factor 

  prevents the adaptive filter from diverging also for larger mismatches. A larger   leads to a 

more robust stability on the one side, but increases the MMSE on the other side.  

 2. Stability of the feedback loop.  

The stability of the feedback loop depends on the poles of the sensitivity function   in eq. 

(6.1) that all have to lie within the unit circle. It thus depends on  ̂      the additive 

uncertainty of the secondary-path model, and on the adaptive filter  .  

 

In both cases, the stability depends on the deviation of   from  ̂. We therefore will 

have a closer look on the variations of the secondary path in the following and treat the two 

stability issues in more detail in the following paragraphs.  

 

The biggest change in   and thus the greatest uncertainty and the greatest phase 

error is expected when the headphone is pulled away from the ears. We therefore measured 

the secondary-path response on a dummy head for four different leakage situations.  

- A tight sitting headphone.  

- A situation where a leak of 105 mm3 is introduced between the ear and 

the headphone. 

- A situation where two such leaks are introduced between the ear and 

the headphone.  

- A completely loose headphone.  

Figure 6.4 shows the bode plots of the measurements. It can be seen that an 

increased leakage leads to an increased drop-off at low frequencies.  
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Figure 6.4 Frequency response of the secondary-path for a tight, leaky and completely loose 

headphone. The increased leakage leads above all to a magnitude drop-off at low frequencies. 

 

The tight wearing situation is the regular use-case; consequently the secondary-

path measure under tight condition will be the nominal model  ̂. This however implies that 

there is a high uncertainty on this model if the headphone is lifted as shown in Figure 6.5.  

 

  
(a) Additive Uncertainty   (b) Phase Error 

Figure 6.5 Magnitude of the additive uncertainty and the phase error of differently leak 

headphones for the nominal model  ̂ of a tight sitting headphone. 

 

Figure 6.5 b shows that the largest phase-error occurs at 1300 Hz if the headphone 

is completely loose. A narrowband excitation at this frequency is therefore the first choice to 

test if the leaky NFxLMS stays stable. The second and third test scenario are broadband 

excitations for the open headphone and for the headphone with two inserted leaks. The 

broadband excitation is again white noise that is filtered with a second order low-pass 

(which simulates the passive attenuation of the ear cups.) We test the leaky NFxLMS in open 

loop condition in order to decouple the convergence of the filter from the possible feedback 
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instability. The stepsize is set to         and the leakage factor to        . Figure 6.6 

shows that the adaption stays stable in all three scenarios. In the broadband cases, the filter 

even yields a small noise reduction. In the narrowband case, the filter causes an 

amplification of the input noise of 1.4 dB which on the one hand proofs that the NFxLMS 

does not converge to the optimal solution anymore, but on the other hand the simulation 

also shows that the filter coefficients stay bounded because of the leakage factor  .  

 

 

Figure 6.6 The energy of the residual error   in relation to the excitation energy for 3 worst 

case scenarios: A narrowband excitation at 1300 Hz and  ̂ of the open headphone (HP), and a 
broadband excitation for the open headphone and for the headphone with 2 inserted leaks. 
The excitation at 1300 Hz causes an error which is 1.4 dB over the excitation level, but the 
adaption stays stable in all three cases. 

 

As stated earlier, the feedback loop is stable if all poles of   lie within the unit circle. 

This is the case, if (and only if) the product    does not encircle the point -1 in the Nyquist 

plot. It cannot encircle -1 if the absolute value |  |   . This would be a sufficient (yet not 

necessary) condition for stability, but taking a look at the converged filter   from Figure 6.2 

and the additive uncertainties   of Figure 6.5 it is already clear that this condition does not 

hold. Figure 6.7 combines said   and   to show that their magnitudes violate or closely 

violate this condition in almost the entire frequency range.   
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Figure 6.7 Magnitude of the converged filter   and the additive uncertainties  . Stability of 

the feedback loop is assured if     , thus if the added dB values are below 0. This is clearly 

not the case e.g. around 2000 Hz and only marginally fulfilledat the low frequencies. 

 

It is hence necessary to examine the stability condition in more detail. The 

uncertainty   could be derived through measurements and is static, but the filter  , which 

also accounts for the stability, is adaptive and depends on two conditions: the input signal   

and the actual secondary path  . We therefore examine the stability with computer 

simulations for various input noises:  

- Sinusoidal excitation at 50 Hz and in 100 Hz steps from 100 Hz to 1400 

Hz.  

- Narrowband excitation with white noise passed through a 2nd order 

peak filter with a quality factor of     and centre frequencies as above.  

- Broad band excitation with white noise.  

- Broad band excitation with pink noise.  

Each of the excitation signals is filtered with the mentioned 2nd order filter of passive 

attenuation and run through the leaky NFxLMS simulation with  

- an initial worst-case   and for  

- a sudden change from    ̂ to the worst case  .  

The worst case   depends on the frequency and is the one with the highest uncertainty as in 

Fig. 5. For the broadband excitation both,   with 2 leaks and   of the open headphone, are 

used. The NFxLMS is run with simulated white sensor noise of -60dB relative to the 

excitation level and with the same   and   as in the previous section.  
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All simulations show instabilities or ringing except for excitations between 400 Hz 

and 800 Hz. The poles of    which cause the instabilities can be grouped in three frequency 

bands:  

1. Poles around 100 Hz. These poles appear whenever the input noise   

includes excitation around 100 Hz, be it narrow- or broadband.  

2. Poles around 1000 Hz. These poles appear only for narrowband 

excitations below 100 Hz. It is thus not the excitation x but the sensor 

noise that causes the instability.  

3. Poles above 1200 Hz. These poles appear for any excitation signal with 

frequency content above 1200 Hz.  

 

Figure 6.8 shows exemplary sensitivity-functions for each of the three cases and 

Figure 6.9 compares the derived filters W with the maximum additive uncertainty U.   

 

Figure 6.8 Sensitivity function of the unstable feedback loop due to poles outside the unit 
circles. These pole locations are indicated by peaks in the magnitude response that come with 

a positive phase shift. 
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Figure 6.9 Exemplary filters W for the three cases of instabilities and the maximum value of U. 
     is violated below 200 Hz for excitations including 100 Hz, around 1000 Hz in the case 

of a narrowband 50 Hz excitation and around 2000 Hz for the high frequency excitation. 

 

Instabilities due to case 3 can be avoided by restricting ANC to frequencies below 

1200 Hz. The error e can be filtered by a first-order low-pass filter H which then also has to 

be considered in the secondary-path model as in Figure 6.10. The new model G’ will then be 

GH. The additional filter H increases the group delay of the system and will consequently 

degrade the ANC performance a little bit. Apart from that, H hardly restricts the ANC 

bandwidth compared to Fig. 2.26 because above 1200 Hz the phase change is too fast for 

broadband ANC anyway. In addition, the ear cups already yield more than 15 dB passive 

attenuation above 1200 Hz.  

 

Figure 6.10 Block diagram of the adaptive feedback system with a low-pass filter that prevent 
instabilities due to high frequency uncertainties. 
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Cases 1 and 2 however, are a severe problem since they affect frequency bands 

where ANC is most desirable. In the following section we show how the adaptive filter W 

can be used to detect the changes in G and keep the feedback loop stable.  

 

As stated above, W does a system identification of a causal version of G-1 if  ̂    

In the case of large mismatches between  ̂ and G, this is not generally true because the 

convergence of W to the optimum Wiener solution is not assured anymore.  

Still, Figure 6.11 shows that the filter W changes clearly when the secondary path 

changes from tight to loose. The figure compares the adaption result of all the simulations 

whose excitation noise x includes low-frequency content up to 300 Hz. In the loose cases, 

the low frequencies of G drop off and (as a counter reaction) the filter W amplifies the low 

frequencies. An analysis of variances (ANOVA) shows that this low-frequency gain differs 

significantly (with a p-value<0.001) between the tight and the loose cases.   

 

Figure 6.11 Amplitude distribution of W under stable condition (on the left of each frequency 
grid) and under instable conditions when the headphone is strongly leaky or loose (on the 

right of each frequency grid). The boxes include the magnitude of 50% of the derived filters 
and the whiskers show the distribution limits except for the outliners which are marked as 

crosses. The bars in the middle of the boxes denote the median value and the notches indicate 
the confidence interval. The low frequency behavior between the two cases differs 

significantly. 
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Figure 6.12 compares the filter gains with the additive uncertainty U and shows that 

the amplification of the low frequencies violates |WU|<1 which leads to the observed 

instabilities.  

 

Figure 6.12 As long as the sum of the dB values of W and U are below 0 (i.e. |WU|<1 in linear 
notation) the feedback loop cannot become unstable. This condition holds as long as the 

headphone sits regularly tight, but is violated if the headphone is very leaky or loose because 
the filter W tries to compensate the low-frequency amplitude drop-off in G. 

 

These instabilities can be avoided if the low-frequency gain of W is constrained. 

The low-frequency gain of W is very constant up to 300 Hz since a 73 ms long filter does not 

allow for a lot of variations in the low-frequency response. Therefore it is sufficient to 

constrain the direct-current (DC) gain of the filter. This is especially beneficial because the 

constraint can be formulated in the time domain as ∑      , where wi are the filter 

coefficients and β is the threshold of the constraint which in our case is set to 0.14 

(equivalent to -17dB). Figure 6.12 also shows that the adaptive filter exceeds this threshold 

in a tight and stable condition too in some cases. Therefore ANC should not be turned off 

completely when the threshold is exceeded. Instead, the filter W should change to a stable 

default filter that works for the tight as well as for the leaky case.  

From Figure 6.9 it is clear that the default filter W should have a magnitude 

response of -20 dB in almost the entire frequency range to assure |WU|<1.  A trivial choice 

for the default filter is thus an impulse that is scaled to -20 dB. In order to prevent time 

invariances during the filter process, W should not change abruptly, but converge to the 

scaled impulse smoothly. In particular, the current filter coefficients w shall converge within 

40 samples (at 44.1 kHz) to the scaled impulse.  

  



Report Marshallplan Scholarship                                                           Markus Guldenschuh 

 

 Seite 60 

 

The whole adaptive feedback-ANC algorithm can be summarized as follows:  

1. Filter the error e with a 1st order low-pass H with a cut-off frequency at 

1200 Hz.  

2. Update the coefficients of w via the leaky NFxLMS algorithm as in eq. 

(2.13).  

3. Check if ∑      . If yes:  

o Calculate the gradient which leads to the stable default filter.  

o For the next 40 gradually change w to the scaled impulse. 

o After the 40 samples continue the usual algorithm beginning with 

step 1.  

Apart from possible short breaks of 40 samples, the NFxLMS is constantly running 

also if the headphone is lifted or loose for a longer time. In that case, the filter starts growing 

again and it eventually exceeds the threshold β too again. It thus will constantly grow and 

scale back to the stable impulse.  

 

We tested the algorithm again for the same excitation signal as above. In the loose 

case, the DC gain of W eventually always exceeds -17dB, and it exceeds β always early 

enough to prevent instabilities and ringing. A more thorough test of the algorithm follows in 

the following.  
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 Experimental Results  6.1.2

To evaluate the algorithm, we asked two persons to put on the headphone in 

differently leaky or lifted positions. For all positions we measured the secondary path with a 

sine sweep of one second. It gives us 16 different measurements in total that can be seen in 

Figure 6.13.   

 

Figure 6.13 Magnitude response of the secondary paths measured on two persons with 
differently leaky headphones. 

 

In the evaluation of the algorithm, the measured secondary-paths are randomly 

replaced by each other every 0.5 seconds. As secondary-path model, we still use G which we 

derived from the tight measurement on the dummy head. The excitation signal again is 

white noise which was filtered by a second-order low-pass.  

First, we show that the headphone starts to ring and become unstable without our 

detection algorithm. Then for the same sequence of secondary-path changes, we 

demonstrate that the detection algorithm keeps the feedback loop stable. Figure 6.14 

compares the residual errors of the trial without and with detection algorithm.  

  

(a) without detection   (b) with detection  

Figure 6.14 The DC-detection algorithm clearly keeps the feedback loop stable. 
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The sensitivity function of the stable trial is shown in Figure 6.15. The algorithm 

prevents the error from increasing more than 3 dB below 100 Hz. It therefore avoids ringing 

and instabilities. The loss of performance compared to Fig. 2.26 comes due to the additional 

group delay of H, but the system still yields ANC of 10 dB.   

 

Figure 6.15 Sensitivity function of the trial with the proposed detection algorithm. In the tight 
cases, the system still yields 10 dB of noise reduction. At the same time it does not let peak the 

error more than 3 dB below 100 Hz. 

 

We further tested the algorithm with narrowband excitations around 50 Hz and 

100 Hz. Again, the excitation signal is white noise filtered with a 2nd order peak filter with a 

quality factor of Q=8. Without detection algorithm, the ANC system becomes unstable as can 

be seen in Figure 6.16. 

  

(a) 50 Hz excitation   (b) 100 Hz excitation 

Figure 6.16 Without DC-detection, the residual error starts ringing and the system becomes 
unstable for both excitation signals. 
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Figure 6.17 and Figure 6.18 show the sensitivity function and the residual noises 

when our DC-detection algorithm is used. Again in both cases, the stability of the system can 

be preserved and at the same time optimal ANC is possible in the cases of a tight sitting 

headphone.   

  

(a) Sensitivity function  (b) Excitation and error spectra 

Figure 6.17 Narrowband excitation around 50 Hz. The detection algorithm prevents strong 
peaks in the sensitivity function. The amplification above 2000 Hz that can be seen on the left 
hand side can be neglected because there is hardly any excitation in that frequency range as 

can be seen on the right hand side. 

 

 

  

(a) Sensitivity function  (b) Excitation and error spectra 

Figure 6.18 Narrowband excitation around 100 Hz. The detection algorithm prevents peaks in 
the sensitivity function and yields more than 10 dB noise reduction if the headphone sits 

regularly tight. Again, the noise enhancement above 3000 Hz is acceptable because there is no 
excitation in that frequency band. 
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6.2 Secondary Path Identification with an Infrasonic 
Measurement Signal for Feedback ANC 

Now, we introduce another method to identify such violent changes in G without 

the need of injecting additional white noise. We propose an 18 Hz excitation as 

measurement signal. It is an infrasound frequency that cannot be heard by humans but it is 

sufficient to detect irregularities in the secondary path soon enough to prevent instabilities. 

 

In order to investigate the influence of changes in the secondary path, we 

measured the secondary path of a prototype headphone in a tight, a lifted, and in a loose 

situation, as in the previous chapter. The tight situation was measured on a measurement 

mannequin, and two leaks of 105 mm² each were inserted between the headphone and the 

artificial ear of the mannequin for the lifted situation. Figure 6.19 shows the magnitude 

responses of the measured secondary paths. The most prominent difference between the 

three cases is the magnitude drop-off at low frequencies. In the tight wearing condition, the 

headphone can be considered as a pressure chamber with the consequence that all low-

frequent radiation energy stays within the headphone. Once the headphone is lifted, the 

low-frequency sound pressure diminishes since the omnidirectional low-frequent sound 

radiation leaks outside. This is not so much the case for the high-frequent radiation because 

it is much more directed to the ear and to the error microphone inside the headphone, 

respectively. 

 

Figure 6.19 Magnitude responses of the secondary path measured under a tight, a leaky and a 
loose condition. 
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The stability of the feedback loop depends on the poles of the transfer function 
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The stability thus depends on the filter W and on additive uncertainty of the model 

U =  ̂ -G. The model  ̂ is the secondary-path under tight measurement conditions. Thus 

under proper wearing conditions there will be no notable uncertainty and the denominator 

of eq. (1) will approximately be 1. However once the headphone is lifted, the uncertainty 

grows and the poles of WU might fall outside the unit circle. 

The filter W can either be designed as a static ANC filter or as an adaptive FIR filter. 

Figure 6.20 shows a filter realization for broadband noise-excitation that was derived with 

the leaky Filtered-x-Least-Mean-Square (FxLMS) algorithm under tight wearing situation. 

 

Figure 6.20 Magnitude Response of a 0.73 ms long adaptive FIR-filter W that converged with 
the leaky FxLMS algorithm for white input noise. 

 

For a suddenly lifted headphone, we consider the converged filter W form Figure 

6.20 and the leaky or lifted secondary path from Figure 6.19. The system is stable if and only 

if the Nyquist plot of WU does not encircle the point -1. Figure 6.21shows that this condition 

is violated for both deviations of the secondary path, for the leaky and for the completely 

loose case. This means that the feedback ANC system would drive unstable, if the headphone 

is abruptly lifted. 
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Figure 6.21 The Nyquist plot of the product WU encircles the point -1 in both cases, the leaky 
and the completely loose headphone. This means that the feedback loop is unstable. 

 

The previously demonstrated changes in the secondary path have to be detected 

early enough to prevent instabilities. As already mentioned, the most prominent difference 

between the tight and the lifted headphone is the amplitude drop-off at low frequencies. 

Identifying the low-frequency response of the secondary path would thus be enough to 

detect that the headphone is being lifted. Instead of injecting white noise to identify the 

whole frequency response of G, it is thus sufficient to inject an 18 Hz sinusoid only which 

has the big advantage that it cannot be heard by humans. 

 

Figure 6.22 Block diagram of the feedback ANC system with a test signal to detect changes in 
the secondary path. 

 

The error microphone inside the headphone does then not only sense the 

penetrated noise x, but also the 18 Hz test-signal v’ that was passed through the secondary 

path as depicted in Figure 6.22. The mix e+v’ is correlated with the filtered test-signal  ̂. The 

original test-signal v is filtered with  ̂ such that v’ and  ̂ have the same group delay. This 

maximizes the correlation gain under tight conditions. If the headphone is lifted, the 

secondary path G suppresses the 18 Hz sinusoid and the correlation gain decreases. The 
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correlation gain is attained by a leaky integration over the sample-wise multiplication of 

vve ˆ*)'(  . Since v’ is corrupted by the residual noise e, the test-signal has to be played 

back with +6dB relative to the low frequency sound pressure of e to get an acceptable signal 

to noise ratio. Figure 6.23 compares the correlation gain between the tight and the lifted 

headphone. Within 0.3 the two cases can clearly be distinguished. The filtered test-signal v̂  

is then also subtracted from the microphone signal to avoid a closed loop and to prevent the 

filter W from adapting to the test signal. 

 

Figure 6.23 Correlation gain for the tight, the leaky and the loose headphone. The lifted 
headphone can be clearly distinguished from the regularly tight wearing situation. 

 

From Figure 6.23, it can be seen that a correlation gain of 1.5 can be taken as 

threshold to distinguish between the tight and the lifted headphone. If the correlation gain 

falls below the threshold, the filter coefficients w have to be scaled down to keep the 

feedback loop stable and to avoid ringing. The filter can be scaled as ][]1[ nn ww  (with n 

as time index and γ < 1) in order to prevent time invariances that would occur when the 

filter would be changed abruptly. 

Simulations show that the detection algorithm with the suggested threshold and 

the filter scaling with γ = 0.99 is sensitive and fast enough to keep the feedback loop stable. 

The simulations are run with a leaky FxLMS and with white noise that is filtered with a 

second order low-pass at 500 Hz cut-off frequency. This filter simulates the passive 

attenuation of the headphone. The simulations run 1 second and after 0.5 seconds the 

secondary path is changed from the tight to the leaky or loose version respectively. First, the 

simulation is run without detection algorithm. Figure 6.24 shows that the feedback loop 

starts ringing when G is changed. 
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Figure 6.24 Residual error e for the simulation without detection algorithm when the 
secondary path changes form tight to lifted after 0.5 seconds. 

 

With detection algorithm, the feedback loop stay stable as can be seen in Figure 

6.25. Figure 6.26 shows the spectral magnitude of the input noise x and the output which is 

heard by the user. In the regular tight use case the ANC headphone reduces noise up to 10 

dB. If the headphone is lifted, the filter W converges to zeros and no active noise cancellation 

is yielded. Denote that the 18 Hz peak of the test-signal can only be seen in the tight case. In 

the lifted case, the headphone does not radiate that much low-frequency energy towards the 

error microphone.  

 

Figure 6.25 With detection algorithm, the feedback loop stays stable and no ringing occurs in 
the residual error. 
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Figure 6.26 Spectral magnitude of the input noise x and the microphone signal (e+v’). The 
latter is also the signal that is heard by the user. The microphone signal is shown for the 

regularly tight and the lifted use case. 
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6.3 Secondary Path Models for Feedforward ANC 

Active-Noise-Control (ANC) systems sense disturbance-noise in a reference point 

and filter it (invert its phase mainly) to get an 'anti-noise'. The anti-noise is played back over 

a secondary path and interferes destructively with the primary noise in a target point. 

Digital adaptive noise-control-systems also sense the residual error in the target point 

which allows adapting the noise-cancelling filter automatically to e.g. the optimum Wiener 

solution [25]. The Least-Mean-Square (LMS) algorithm is very efficient and widely used for 

adapting the filter coefficients [8]. However in headphone applications (as in most others), 

the secondary path introduces a non-negligible phase delay. As a consequence, the reference 

signal and the error signal are out of phase which impedes the correct filter update. The 

solution is to filter the reference signal with a model of the secondary path too which is then 

called the filtered-x-LMS (FxLMS) [26, 27]. 

Analyses of the FxLMS [28, 29, 30] show that the algorithm is robust against errors 

in the secondary-path model as long as the phase error stays below 90°. However, the 

secondary path of a tight sitting headphone differs from a lifted headphone by more than 

90° as will be shown in the following. Thus, the FxLMS would diverge, if the headphone is 

lifted. 

There are four main approaches to overcome the problem of changing secondary 

paths in FxLMS applications, but they all have severe drawbacks and/or limitations.   

    • An additional analogue feedback controller can reduce the phase deviation 

[24]. However, it increases the hardware complexity and its design is non-trivial.  

    • Online secondary-path estimation as in [31, 32, 33, 34, 35, 20, 36, 37] aims to 

track changes in the secondary-path. However these methods fail in large and sudden 

changes, and/or they inject white noise into the headphone which is counter-productive for 

a noise-cancelling application.  

    • Constraints or penalties on the norm of the adaptive-filter prevent the filter 

from diverging completely [38, 39, 40, 41, 42]. However, they do not avoid wrong filter 

updates.  

    • Keeping the norm of the secondary-path model smaller than the actual 

secondary path increases the robustness of the FxLMS [43]. However, manipulating the 

norm only does not prevent divergence if the phase error exceeds 90.  
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We present three solutions that are simple to implement, that do not require white 

noise injection and that yield robust noise-control with a correct update by the FxLMS 

algorithm. All solutions base on secondary-path measurements under different conditions 

reaching from a very tight to a completely loose headphone. First, we design a secondary-

path model whose phase does not differ more than 70° from all measured secondary-paths. 

Secondly, we improve the convergence by implementing the two extreme cases of the 

secondary-paths measurements in parallel and weighting their contribution to the FxLMS 

dependent on the relation between the error and the reference input. Thirdly, we improve 

the robust performance by using an infrasonic test signal that detects when the headphone 

is being lifted. The results are compared with the system of [24, Zhang], because it combines 

two of the previously mentioned approaches, and finally, experiments proof the robustness 

of the proposed method. 

 

 FxLMS with Online Secondary Path Modelling 6.3.1

In this section, we review feedforward ANC with the FxLMS and the common way 

of online secondary-path estimation. We take the system proposed by [38, Zhang] as 

reference for it greatly eliminates the effects of the injected white noise, and it is the only 

one that takes sudden big changes in the secondary-path into account. 

Fig. 6.27 shows the block diagram of the method of [38, Zhang]. The adaptive filters 

(    and  ̂) each minimize the squared error between their output and the output of the 

original plant that they should imitate. The LMS updates the adaptive filters with the 

negative gradient of this squared-error. For the adaptive filter   e.g., the vector of filter 

coefficients   is updated as  

         
   

 

  
  

 With 
   

 

  
       [8], the normalized LMS (which updates all adaptive filters in 

[38, Zhang]) reads as  

             
      

     
  

 where   is a stepsize parameter that controls the speed of convergence and    is a 

vector of the latest   input samples (as in Fig. 6.27).  
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Figure 6.27 Block diagram of Zhang's method. 

  

 

In the case of the adaptive noise-control-filter  , the LMS input    is not directly 

the same as the reference input to the plant  . The LMS input is the reference   that has been 

filtered by  ̂, a model of the secondary path. Due to this filtered reference signal, this 

approach is called the filtered-x LMS. 

The filter  ̂ introduces the same phase delay to the reference input as the real 

secondary-path   to the anti-noise signal. This shall make sure that the error sample    is 

correlated with the reference sample that actually caused this error. Only this time-aligned 

correlation is a correct gradient for the LMS update. 

If  ̂ deviates from  , the correlation between the filtered reference    and the error 

   deviates from the real gradient too. For small deviations, the gradient is slightly wrong, 

but the LMS will still converge. For large deviation, (i.e. for phase differences     ), the 

gradient points into a completely wrong direction and the LMS diverges. 

Therefore, white noise   is injected into the headphone to identify the secondary-

path via the adaptive filter  ̂. If  ̂ converges to the real secondary-path  , the effect of the 

white noise onto the adaptive noise-control filter   is eliminated. This however does not 

mean that   is eliminated from the residual error  , too. The injected white noise will still be 

heard by the user unless it lies below the masking level of the residual disturbance. 
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A third adaptive filter   is implemented to eliminate the effects of the incoming 

noise   onto the secondary-path identification. A comparison between the control-error 

power and the input-noise power is used to schedule the level of the injected white noise. In 

addition, the norms of the adaptive filters are constrained with a simple if-request to avoid 

divergence in case of a fast changing secondary-path  . 

Instead of a white noise injection with two additional adaptive filters, norm 

computations, and norm constraints, we propose to measure the variation of the secondary-

path off-line. The measured variety of secondary-paths will allow determining robust 

models  ̂ that prevent divergence of the FxLMS in all situations. 

 

 Secondary Path Measures 6.3.2

As stated above, small mismatches of the secondary-path model  ̂ do not matter 

much in the FxLMS [9]. However, fast and violent changes, e.g. when the headphones are 

suddenly lifted, can drive the adaptive filter unstable. We therefore measured the secondary 

path of a prototype headphone as already explained before on a dummy head under four 

very different conditions:   

    1.  The headphone sits tightly on the artificial ear.  

    2.  A leak of 105 mm3 is introduced between the artificial ear and the 

headphone.1  

    3.  Two such leaks are introduced between the artificial ear and the headphone.  

    4.  The headphone is completely loose.  

 

Figure 6.28 once again shows the bode plots of the measurements. It can be seen 

that an increased leakage leads to an increased magnitude drop-off at low frequencies and 

to a positive phase shift.  

 

 

 

                                                

 
1
 The leak is electrically equivalent to approx. 0.8 M  and 2.6 kH at 100 Hz. 
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Figure 6.28 Frequency response of the secondary-path for a tight, leaky and completely loose 
headphone. The increased leakage leads above all to a magnitude drop-off at low frequencies. 

 

 

The secondary path under tight conditions is assumed to be the regular use case. 

The phase error from the tight secondary path to the leaky and loose secondary-paths is 

shown in Figure 6.29. The phase error exceeds 90° for the secondary path with two leaks 

and the completely loose secondary path. As a consequence the FxLMS would diverge when 

the headphone is suddenly lifted (and the secondary path would change from tight to very 

leaky or completely loose.)  

 

Figure 6.29 Phase error between the tight and the leaky/open secondary paths. For the 
secondary path with two inserted leaks, the error slightly exceeds 90° around 150 Hz. For the 

completely open secondary path, this phase-error tolerance is violated above 400 Hz. 

   

Online secondary-path estimations without restriction on the filter-update are too 

slow to react on such fast changes. In the following, we present three solutions to prevent 

divergence of the FxLMS without restricting the filter-update. 
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 Robust Secondary Path Models 6.3.3

6.3.3.1 Secondary Path Design from Phase Information 

The easiest way to prevent divergence of the FxLMS is to omit the online 

estimation and to implement a secondary-path model whose phase differs less than 90° 

from all measured scenarios. This is possible, since the maximum difference between the 

phases of the measured secondary-paths is always smaller than 180° as can be seen from 

Figure 6.28 and Figure 6.29. 

However, it is still favorable if  ̂ resembles the tight secondary-path for this is the 

regular use case of the ANC-headphone. Therefore, we choose a phase response   ̂    that 

minimizes the error norm to the phase response of the tight secondary-path        
    and 

keeps a phase difference of less than 70° to all measured secondary paths. This can be 

derived by constrained convex-optimization as  

   |  ̂         
|
 

 

   subject to 

  ̂         
       

  ̂         
        

 

 where      
 and      

 are the maximum and minimum value of all measured 

phase responses per frequency bin  . 

From the phase response   ̂   , a causal FIR sequence  ̂    is derived over a fixed-

point iteration as in [44]. In this approach, an initial  ̂    is computed over an inverse 

Discrete Fourier Transform (DFT) from | ̂    | 
   ̂    where | ̂    | is an initial guess of the 

magnitude of  ̂, e.g. the magnitude of the tight secondary-path measure. In an iterative 

process, the second half of the time domain sequence  ̂    is forced to zeros to insure its 

causality. Then, the magnitude of the DFT of  ̂    is taken as new initial guess for | ̂    |. 

The magnitude and phase of the converged  ̂ is shown in Figure 6.30, and the phase 

error from   ̂ to the 4 measured secondary-paths is depicted in Figure 6.31. As forced in the 

constrained convex optimization, the phase error stays below 70° in the whole bandwidth.  
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Figure 6.30 Frequency response of the measured secondary-paths and the chosen secondary-
path model  ̂. 

 

 

 

Figure 6.31 Phase error between  ̂ and the measured secondary-paths. The phase error to all 
measured scenarios stays below 70. 

 

 ̂ is close to the tight secondary-path, but it deviates by 45° at 1000 Hz and by 

approximately 7 dB between 30 and 1000 Hz. Thus in the beginning of the FxLMS adaption 

(when the headphone sits regularly tight), the correlation between    and   will not be as 

strong as when the secondary path is perfectly modeled. As consequence, there is less gain 

on the coefficient update and the FxLMS will converge slower. A comparison of the 

convergence-speeds will follow later on. 
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6.3.3.2 Two Secondary Path Models with Noise-Cancelling Analysis 

To improve the speed of convergence, two secondary-path models can be 

implemented in parallel.  ̂  for the regular tight use-case and  ̂  for the lifted headphone. 

The latter is derived over a fixed-point iteration (as [44]) of the mean phase between the 

secondary-path measure with 2 inserted leaks and the one with the completely open 

headphones. Its frequency response is shown in Figure 6.32.  

 

Figure 6.32 Frequency response of the measured secondary-paths and the chosen secondary-path 
models  ̂  and  ̂ . 

    

Dependent on the use-case, the contribution of each secondary-path model  ̂  to 

the FxLMS is weighted with an adaptive gain    as in Figure 6.33. The use-case itself can be 

identified by comparing the residual-error power with the input power.  

 

 

Figure 6.33 Parallel Implementation of two secondary-path models.  ̂  is for the regular tight use case 
and  ̂  is for the lifted headphone. Dependent on the use-case, the adaptive weights    and    control 
the contribution of each secondary-path model. The use-case itself can be identified by analyzing the 

noise-cancelling performance. The parallel arrangement of the filters only illustrates the idea; on a DSP 
it will be more beneficial to implement a single time-varying filter  ̂          ̂        ̂ . 
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If the headphones sit regularly tight, the ear-cups build a pressure chamber which 

is important to reproduce enough low frequency sound pressure. If the headphones are 

lifted, the low-frequency sound leaks outside and the reproduction of the low-frequency 

anti-noise fails (compare Figure 6.28). As a consequence, the noise-cancelling performance 

is severely degraded, even if a perfect secondary-path model is available. 

Figure 6.34 shows the relation between the residual error   and the input noise   

in third-octave bands. The FxLMS is simulated with the 4 measured secondary-paths and the 

passive attenuation   of the prototype headphones is approximated by a second-order 

lowpass with a cut-off frequency of 500 Hz.  ̂ is chosen to always perfectly model the 

current secondary-path. Nevertheless, the passive attenuation is the only noise reduction 

that can be noticed if the headphones are lifted. Thus, the relation between the input power 

and the residual-error power below 500 Hz is a good indication whether the headphones 

sits regularly tight or not.  

 

Figure 6.34 Relation between the residual error   and the input noise   in 3rd octave bands. In the tight 
case, good ANC is possible between 50 and 1000 Hz. In the very leaky and completely open case 
however, the only noise reduction that can be noted comes due to the passive attenuation  . As a 

comparison, the pure passive attenuation   is indicated as dots. 
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The input noise   and the residual error   are both filtered with a second-order 

low-pass with a cut-off frequency at 500 Hz. The power of the input noise    is calculated 

over a leaky integral as  

                ̃      (3) 

 where   is the leakage factor and  ̃ is the filtered input. The error-power    is 

calculated equivalently and   is chosen to be 0.999 in both cases. If the relation 
  

  
 is small, 

noise has been effectively be cancelled which means that the headphones sit regularly tight. 

Consequently more weight has to be given to  ̂ , the model of the tight secondary-path. If 
  

  
 

is close to 1, hardly any noise has been cancelled which means that the headphones are 

lifted and more weight has to be given to  ̂ , the model of the loose secondary-path. 

On the one hand, noise cancellation is already very pronounced if 
  

  
 is below -10 

dB (which corresponds to the linear factor    ). In this case, we want weight    to be close 

to 1 and    close to 0. On the other hand, we expect at least -5 dB (factor 0.3)if the 

headphone sits regularly tight. Above that level, we want    to be close to 1 and    close to 

0. Hence we calculate the weights    and    as  

             

      

  
  

       

       

 

 but we restrict the weights to the interval [0,1]. If the weights should lie outside 

this interval they are rounded to 0 or 1 respectively. 

Denote that the relation between    and    can also be used to detect divergence of 

the FxLMS when      ; and note also that a single time-varying filter  

 ̂          ̂        ̂  (4) 

 can be implemented instead of the two parallel filter which saves computational 

power. 

The filter   is initialized with a low-pass FIR. Therefore, an appropriate anti-noise 

is generated from the beginning of the usage. Consequently, also the relation between    and 

   is valid from the beginning of the usage. However, this noise cancelling analysis is only 

valid if there is a low-frequency noise excitation below 500 Hz. This is mostly the case when 

ANC-headphones are used, e.g. in airplanes, in traffic-noise and also in speech-noise, but 

might be situations where a user is exposed to high frequency disturbances only. In the 

following, we present an identification of the secondary-path for ambient noise with little 

low-frequency excitation. 
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6.3.3.3 Two Secondary Path Models and Infrasonic Secondary-Path 
Identification 

In literature, a complete identification of the secondary-path is done with the 

injection of white noise. However, from Figure 6.28 it is clear that it suffices to identify the 

low-frequency response to be able to distinguish between the regular tight and the lifted 

use-case. In fact, it suffices to identify the magnitude at a single low frequency only. We 

propose to measure the secondary-path with a 18 Hz sinusoid for it is an infra-sound that 

cannot be heard by humans. 

The 18 Hz test-tone is injected into the headphone as in Figure 6.35. Then the error 

signal   (which consists of the residual noise and the injected test-tone) is correlated with a 

delayed version of the original test-tone. The delay corresponds to the group delay of the 

tight secondary-path at 18 Hz such that the two signals are in phase if         . Thus, the 

correlation gain reaches its maximum when the headphones are worn regularly tight.  

 

Figure 6.35 A 18 Hz tone detects whether the headphones are regularly tight or lifted and loose. 

   

The correlation gain   is calculated over a leaky integral as  

                       

 where    is the delayed version of the test-tone and   is the leakage factor which is 

set to 0.99996. The signal-to-noise-ratio (SNR) of the correlation suffers from the residual 

ambient noise. The SNR can either be increased by the integration time or by the level of   

within the error  . We have to set the level of   10 dB above the level of the input noise 

because the test-tone already has a long periodicity and the application requires a fast 

detection of changes in the secondary path. Therefore the input noise   is filtered with a 

second order low pass at 50 Hz and the power of the filtered input  ̃ (calculated as above) 

schedules the level of   to approximately +10 dB. Although this playback-level is rather 
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high, it does not disturb the listener and it does not deteriorate the FxLMS as will be shown 

in the following. 

The correlation-gains for the four measured secondary-paths are shown in Figure 

6.36. They are normalized such that the maximum correlation gain is around 1. This 

maximum occurs for the tight sitting headphone. In the leaky cases,   varies around 0. The 

filter weights are therefore defined as  

       [   ]   

             
 

 where  [   ] is the normalized correlation gain with the negative values set to 0.  

 

Figure 6.36 Correlation gain over time for the 4 measured secondary-paths. If the headphones sit tight, 
the 18 Hz tone is played back loud enough and yields a large correlation gain. In the other cases, 

especially for the very leaky and the open headphones, the 18 Hz tone is hardly played back. This is 
why the correlation gain varies randomly around 0. The tight and the leaky cases can be distinguished 

after about 0.2 seconds. 

 

 

6.3.3.4 Two Secondary Path Models with a Combined Detection Approach 

Approaches 6.3.3.2 and 6.3.3.3 both rely on a pair of secondary-paths models that 

are derived from laboratory-measurements. The model  ̂  is designated for the regular tight 

use-case and  ̂  for the lifted headphones. On the one hand, approach 6.3.3.2 identifies the 

current use-case over the relation between the input-power and the residual-power. 

However, this relation is only a meaningful measure if there is enough low frequency 

content in the ambient noise. On the other hand, approach 6.3.3.3 injects an infrasonic test-

tone into the headphones and detects the current use-case via a single correlation. However, 

its drawback is a poor correlation-SNR if there is a lot of very low-frequency content in the 

ambient noise. Since one approach benefits from a strong low-frequency excitation and the 

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

time/s

c
o
rr

e
la

ti
o
n
 g

a
in

 

 
tight

1 leak

2 leaks

open



Report Marshallplan Scholarship                                                           Markus Guldenschuh 

 

 Seite 82 

 

other from a low, it is obvious to combine both approaches to yield an optimal use-case 

detection for all kind of disturbance noises. 

Both approaches measure the low-frequency power of the input noise anyway. We 

define a threshold of this power as      dBA. If the input-power is above 60 dBA, there is 

enough low-frequency excitation to do the noise-cancelling analysis of approach B. If the 

low-frequency input-power is below 60 dBA, the 18 Hz test-tone can be played back with up 

to +20dB which yields a very good correlation-SNR and consequently a very fast detection 

of changes in the secondary-path as can be seen in Figure 6.37.  

 

Figure 6.37 Correlation gain over time for the 4 measured secondary-paths with +20 dB SNR. The 
regular use-case can be distinguished earlier and more clearly as with the -10 dB SNR from Fig. 10. 

   

The increased play-back level requires a new value for the leakage factor  . In 

general, the normalized correlation gain  ̃ can be formulated as  

 ̃      ̃               
   

  
 

 with the linear signal-to-noise-ratio SNR and with  

    
   

    
  

 

In the following section, we compare the performance of the 3 approaches whereas 

the latter approaches are used depending on the low-frequency excitation as proposed here 

in the combined approach. 
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 Results 6.3.4

To evaluate the proposed approaches, we simulate the FxLMS with         for 5 

seconds. We are interested in the FxLMS behavior when the phase of the secondary path 

changes more than 90°. Therefore, we change the secondary-path every second according to 

the following sequence:                                   . The comparison is done 

for  

- white noise input,  

- for a high-pass filtered white noise and  

- for a narrow-band noise input. For the narrow-band input, we filter white noise 

with a second-order peak filter around 800 Hz. 

 

As passive attenuation P, we choose a second-order low pass filter again. In case of 

the white noise input, there is a strong low frequency excitation. Therefore, the noise-

cancelling analysis is taken for the combined approach. The normalized squared residual-

error is shown in Figure 6.38. It is normalized by the power of the noise which entered the 

headphone.  

 

Figure 6.38 Relation between the residual-noise power    and the noise that entered the headphone in 
dB. The excitation signal is white noise. Negative values denote active noise cancellation whereas 

positive values mean that the noise inside the headphone is being amplified. 

 

If the tight measurement is taken as secondary path model, the residual error is 

amplified by 6 dB if the secondary path changes to         and the FxLMS diverges 

completely when the secondary-path changes to        Zha  ’     ho     p   h  al or  h  

stable, but our secondary-path model SΦ which is designed form the phase information 
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yields better results when the headphones are lifted. Even better results are obtained, if two 

secondary path filters are implemented and weighted according to the noise-cancelling 

analysis.  

In the next simulation, the white excitation noise is filtered with a second-order 

high-pass. In this case, there is not enough low-frequency excitation to apply the noise-

cancelling analysis. Therefore, the infrasonic test-tone is used instead. The results are 

shown in Figure 6.39. Again, without precautions about the secondary-path model, the 

FxLMS would drive unstable if the secondary-path changes to        Zha   ’     ho     p  

the FxLMS stable, but its residual-error power is 1-2 dB larger than with our proposed 

model SΦ. Implementing two secondary-path models and weighting them according to the 

correlation gain of the injected infrasonic signal brings another improvement of ~2 dB, if 

the headphones sit regularly tight. 

 

Figure 6.39 Relation between the residual-noise power    and the noise that entered the headphone in 
dB. The excitation signal is white noise that is high-pass filtered. 

 

 
Finally, we test the algorithms with a narrowband excitation around 800 Hz. Figure 

6.40  ho    ha  Zha  ’     ho   o    o      r    bu     har ly y  l   A C co par    o our 

approaches. Denote too, that for this narrow band excitation, the implementation of the two 

secondary-path models does not have so much benefit. It yields a better ANC if the 

secondary-path changes to      , but its performance is slight worse than the approach 

6.3.3.1 if the secondary-path changes to        . 
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Figure 6.40 Relation between the residual-noise power    and the noise that entered the headphone in 
dB. The excitation signal is narrowband noise around 800 Hz. 

 

 

The results show that the proposed methods keep the FxLMS stable, even for 

abrup  a     ol    cha         h    co  ary pa h  Co par    o Zha  ’     ho       o  o  

constrain the filter update and therefore we yield improved ANC results. Since the 

secondary-path models can be implemented as IIR filters, our approaches are also more 

cost-efficient and easier to implement.  
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7 Conclusion 

In this report, several techniques of ANC for headphones are reviewed. An 

analogue feedback prototype is presented and new procedures are introduced for both, 

analogue feedforward filter-design and for the assessment of ANC. The dependency of 

digital feedforward ANC on the latency of the converters is examined and a further 

prototype for a hybrid digital/analogue solution is presented, and the performance of digital 

feedforward and digital feedback ANC are compared. 

Adaptive feedback-ANC is a very powerful solution for headphone applications, but 

(as all feedback systems) it suffers from the risk of instabilities. We present an algorithm 

that avoids these instabilities and preserves all the benefits from adaptive feedback ANC at 

the same time.  

In particular, we examine how the secondary path changes when the headphone is 

lifted and demonstrate that these changes affect the stability of the FxLMS adaption and the 

feedback loop. We propose to use the leaky FxLMS to overcome the first stability issue. We 

show that the leaky FxLMS keeps the adaption stable even during the biggest changes in the 

secondary path. To overcome the feedback stability issue, we study the pole locations that 

cause the instabilities under different wearing- and noise conditions. In this study, we 

identify three different frequency bands where the poles of the feedback loop exceed the 

unit circle. The poles at frequencies above 1200 Hz can easily be controlled by a first-order 

low pass filter that hardly affects the ANC bandwidth.  

To control the poles in the two lower frequency bands, we develop an algorithm 

that detects changes in the secondary path. We use the fact that the adaptive filter increases 

its low-frequency gain if the headphone is lifted. We show that this low-frequency 

amplification is independent form the excitation-noise characteristic and that it is sufficient 

to check the filter’s DC-gain to identify a lifted headphone. Once the lifting is identified, the 

adaptive filter is gradually changed to a stable default filter from which the leaky FxLMS 

adaption starts again.  

We tested our algorithm for various use cases and show that it yields robust ANC 

when the headphone sits regularly tight and still preserves stability if the headphone is 

suddenly lifted. The algorithm is derived from measurement data on a prototype 

headphone, but it can also be generalized since the effects of leakages between the ear and 

the ear-cup are the same for all headphones.  
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8 Appendix – Preliminary Empirical Study on the 
Secondary-Path Influences 

Headphones with ANC (Active Noise Cancellation) have at least one microphone 

for each side (left and right respectively), which deliver information about the ambient 

noise in order to create an adaptive filter for a noise cancelling system (basically an 

inversion of the phase). The reproduced noise-cancelling-signal by the loudspeakers in the 

headphones will cancel itself with the incoming noise from outside the headphones. The 

adaptive filter that changes and adapts itself accordingly to the angle of the arriving noise, 

will be controlled by a LMS algorithm. This algorithm requires, besides the reference signal 

(noise signal), also an error signal which will provide information about the remaining noise 

(residual noise) after the noise cancellation process. The reference and error signals must 

thereby have the same time displacement. The error signal will, during active noise 

cancellation, always be delayed. This is a consequence of the AD- and DA-conversions that 

will take place during the ANC process as well as the group delay of the transmission path 

from the loudspeaker to the error-microphone (the so-called secondary path). The reference 

signal must therefore be artificially delayed. Whereas the conversion time of the AD and DA 

converters does not change, the group delay of the secondary path may constantly vary, 

depending on the current case and will be different every time one puts on the headphones. 

The effects of a changing secondary path as well as the estimation accuracy of latter on the 

ANC are to be analyzed.  

 

We will take a look at the importance of knowing the secondary path   and the 

accuracy needed in order to create a good anti-noise signal. This will be done by reducing 

the length of the transfer function of the secondary path and by using an estimation of   ̂, e.g. 

when the headphones are not correctly positioned. This last effect can be simulated by 

generating a leakage of air when measuring the secondary path. We will show the effects of 

not knowing the secondary path accurately for an ANC-system. 
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For the first considerations, we assume the transfer function of the secondary path 

to be TF_tight. This was made by measuring the secondary path when the headphones were 

put on in a leak-proof manner. The estimated secondary path  ̂ will be a shorter version of 

the original secondary path. For the windowing process a Hanning window was used and 

the length was chosen by default to be one quarter of the length of the original secondary 

path.  

 

 

Figure 8.1. Noise, anti-noise and residual error in a feedforward LMS application with a 
headphone that was pulled tight to the artificial ear. 
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For the next case  ̂ = TF_onhead, meaning the estimated transfer function of the 

secondary path will be described when the headphones are put on an artificial head. For this 

simulation it is necessary to change the learning rate to 0.01 in order to get stable results. 

The impact of this factor will be analyzed later on.  

 

Figure 8.2. Noise, anti-noise and residual error in a feedforward LMS application with 
headphone that was regularly put on a dummy head. 
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For the next case we assume that  ̂ = TF_3mm, which means that the headphones 

were again not put on in a leak-proof manner. An opening of 3mm was made for simulating 

an air leakage by separating the headphones from the artificial head. 

 

 

Figure 8.3. Noise, anti-noise and residual error in a feedforward LMS application with a 
leaky headphone. 
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When simulating the next case, 2 conic slots where inserted to the sides of the 

headphones pads for the measurement of the secondary path. Apparently a small leakage of 

air is worse than actually separating the headphones from the surface.  

 

Figure 8.4. Noise, anti-noise and residual error in a feedforward LMS application with a 
very leaky headphone. 
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We now want to simulate the real case when using ANC headphones. For this 

purpose we will assume that tf_hat (meaning the estimated secondary path implemented in 

the algorithm) to be tf_tight (this represents the measurement of the secondary path on an 

artificial head when headphones are densely worn). Interesting for us is to know how 

exactly we need to know the secondary path. This will be simulated by decreasing the length 

of tf_hat.  

For the actual secondary path, we take different transfer functions in order to 

simulate the different cases when using the headphones (concretely, when the headphones 

are not worn in a leak-proof manner). The length of this transfer function will not be 

changed (4096 taps).  

This comparison is done for two different conversion times. At first, we’ll take a 

look at it, for a conversion time of 0,7 ms and then for a more real conversion time of 21ms. 

These conversion times are valid for each conversion unit in the system. 

At last we examine the error signal in the frequency domain for a better 

understanding of the achieved anti-noise signal. 
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• Case n°1 conversion time of 0,7 ms 

TF_real = tf_1sl (1 conic slot simulates that the headphones are worn in a  non leak-

proof manner) 

 The plots show that the error signal stays similarly for most of the different 

lengths. There is nonetheless a kind of maximum in the error signal to be found in all cases 

but for a length of 512 taps. We can see that there is no big difference between 2048 and 

256 taps in the error signal (see scaling of y-axis).  

 

 

(a) 
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(b) 

 

(c) 

 



Report Marshallplan Scholarship                                                           Markus Guldenschuh 

 

 Seite 95 

 

(d) 

(e) 

Figure 8.5. Comparison of the anti-noise and the residual error in a feedforward LMS 
application with an estimated secondary path of different length. The length is given in 
taps at 44.1 kHz: (a) 2048, (b) 1024, (c) 512, (d) 256, and (e) 128 taps. The actual secondary 
path is derived from the measurement with one conic leakage (whereas the estimate is 
taken form the tight measurement). The conversion time is 0.7 ms. 
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Now the actual secondary path is changed to TF_real = tf_2sl (2 conic slots simulate 

that the headphones are worn in a non leak-proof manner). For this particular case, the 

length of the estimated secondary path (tf_hat) does not have any influence at all. The 2 slots 

make a fast adaptation impossible.  

 

 

(a) 
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(b) 

 

(c) 

 

(d) 
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(e) 

Figure 8.6. Comparison of the anti-noise and the residual error in a feedforward LMS 
application with an estimated secondary path of different length: (a) 2048, (b) 1024, (c) 512, 
(d) 256, and (e) 128 taps. The actual secondary path is derived from measurements with 
two conic leakages. The conversion time is 0.7 ms. 
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For the following simulation, TF_real = tf_2mm (a distance of 2 mm between 

headphones and artificial head is kept in order to simulate an air leakage). Again, no big 

influence is to be seen between all the different lengths chosen for the implemented 

secondary path.  

 

(a) 

 

(b) 
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(c) 

 

(d) 
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(e) 

Figure 8.7 Comparison of the anti-noise and the residual error in a feedforward LMS 
application with an estimated secondary path of different length: (a) 2048, (b) 1024, (c) 
512, (d) 256, and (e) 128 taps. The actual secondary path is derived from measurements 
with a 2 mm leakage between the headphone and the artificial ear. The conversion time 
is 0.7 ms. 
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TF_real = tf_4mm  (a distance of 4 mm between headphones and artificial head is 

kept in order to simulate an air leakage. For a distance of 4mm we get a similar result as 

with the 2mm leakage. 

 

(a) 

 

(b) 
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(c) 

 

(d) 
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(e) 

Figure 8.8 Comparison of the anti-noise and the residual error in a feedforward LMS 
application with an estimated secondary path of different length: (a) 2048, (b) 1024, (c) 512, 
(d) 256,  and (e) 128 taps. The actual secondary path is derived from measurements with a 
4 mm leakage between the headphone and the artificial ear. The conversion time is 0.7 ms. 
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In order to have a good reference, we present the results when the headphones are 

worn in a leak-proof manner. Thus, TF_real = tf_tight . This case only reassures the behavior 

we have seen before. The length of the estimated secondary path does not have a 

considerable influence on the ANC behavior.  

(a)  

(b)  
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(c)  

(d)  
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(e)  

 

Figure 8.9. Comparison of the anti-noise and the residual error in a 
feedforward LMS application with an estimated secondary path of different 
length: (a) 2048, (b) 1024, (c) 512, (d) 256, and (e) 128 taps. The actual 
secondary path is derived from measurements under tight condition (and 
so is the estimated secondary path). The conversion time is 0.7 ms. 
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