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(Patrick Frischmann)

Abstract

This paper presents a supervised machine-learning framework for automated segmenta-
tion of prostate tissue to include localization and the further zonal segmentation of the
prostate gland within an MRI volume of the human body. The proposed image-processing
algorithm in combination with high detection accuracy of prostate structures o�ered by
MRI enables accurate evaluations of prostate volume; thereby improving prostate cancer
assessment and treatment planning. Volumetric measurements following this technique
are superior to an estimation of prolate ellipsoid volume based on orthogonal measure-
ments, while simultaneously time-consuming manual segmentation of prostate zones is
eliminated.

Segmentation is performed utilizing a pattern recognition approach based on classifica-
tion of features that are extracted from the input data. Method accuracy was compared
to prostate contours outlined by expert radiologists and median Dice similarity coe�-
cients of 0.84 for the central gland and 0.70 for the peripheral zone were recorded. On
average, the predicted volume matches the ground truth by 97% with a fluctuation range
of less than ±15%. Results are averaged over a data set of 100 random patient cases
that are subject to variations in magnetic field strength, image resolution and usage of
endorectal coils. The proposed completely automated algorithm enables fast prediction
times for prostate zone labels and is generalizable to other anatomical structures in the
human body as well.

Key words: automated prostate zone segmentation, prostate volume estimation, neu-
ral network, random forest, three-dimensional feature classification



(Patrick Frischmann)

Kurzfassung

Diese Masterarbeit beschreibt ein Anwendungs-Framework zur automatischen Segmen-
tierung von Prostatagewebe in MRT-Schnittbildern. Der Ansatz basiert auf überwachtem
maschinellen Lernen und unterstützt die Lokalisierung und weiterführende Zonensegmen-
tierung der Prostata. Der vorgestellte Bildverarbeitungsalgorithmus ermöglicht in Kom-
bination mit der genauen Darstellung von Prostatastrukturen durch die Magnetresonanz-
tomographie eine präzise Evaluierung des Volumens der Prostata. Dadurch werden die
medizinische Beurteilung und Behandlungsplanung von Prostatakrebs unterstützt. Die
vorgestellte volumetrische Messmethode ist der Volumenschätzung basierend auf einem
gestreckten Rotationsellipsoid im Genauigkeitsgrad überlegen und zudem sind keine zeit-
intensiven manuellen Segmentierungen der Prostata erforderlich.

Das Segmentierungsproblem wird durch Klassifikation von Merkmalen gelöst, welche
aus den Eingangsbildern extrahiert werden. Die Genauigkeit dieser Methode wird
über den Vergleich mit manuellen Segmentierungen (durchgeführt von Radiologen)
beschrieben, wobei mittlere Dice-Koe�zienten von 0,84 für die zentrale Zone und 0,70
für die periphere Zone erreicht wurden. Im Mittel stimmte das prognostizierte Volumen
zu 97% ± 15% mit den Ground Truth-Daten überein. Diese Resultate wurden über einen
Datensatz von 100 zufällig gewählten Patientenakten gemittelt, wobei sich die einzel-
nen MRT-Aufnahmen unter anderem durch die genutzte magnetische Feldstärke, Bildau-
flösung und Verwendung von endorektalen Spulen unterscheiden. Der vorgestellte voll-
automatische Segmentierungsalgorithmus ermöglicht schnelle Prognosen für die Bestim-
mung von Prostatazonen und ist generalisierbar für die Anwendung auf andere anatomis-
che Gewebestrukturen im menschlichen Körper.

Suchbegri�e: automatische Segmentierung von Prostatazonen, Volumenschätzung der
Prostata, Neuronales Netzwerk, Random Forest, dreidimensionale Merkmalserkennung



Acknowledgements

I would like to express my gratitude to my supervisors Marvin D. Ho�and and Naveen
Garg for their useful comments, remarks and engagement throughout the project work of
this master thesis. I really appreciate the support and guidance, which helped me a lot
during my research and writing of this thesis.

In addition, I would like to thank the Austrian Marshall Plan Foundation1 and Indus-
triellenvereinigung Kaernten2 for their trust and financial support. This research project
was made possible due to the Marshall Plan scholarship and Exzellenzstipendium 2013
that I thankfully received.

1Austrian Marshall Plan Foundation, Marshallplan Jubilaeumsstiftung, Walcherstrasse 11A, 1020 Vi-
enna, Austria, http://www.marshallplan.at, date accessed: October 2013.

2Industriellenvereinigung Kaernten, Dr.-Franz-Palla-Gasse 21, 9020 Klagenfurt, Austria, http://www.
iv-kaernten.at/, date accessed: October 2013.

http://www.marshallplan.at
http://www.iv-kaernten.at/
http://www.iv-kaernten.at/


Contents

1 Introduction 1
1.1 Medical background of the prostate gland . . . . . . . . . . . . . . . . . . 2
1.2 Technical background and related work . . . . . . . . . . . . . . . . . . . . 3

2 Theoretical imaging and image processing framework 6
2.1 Prostate gland anatomy and MR imaging appearance . . . . . . . . . . . . 6
2.2 Segmentation, classification and supervised learning . . . . . . . . . . . . 9

2.2.1 Supervised learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 Inference and decision-making . . . . . . . . . . . . . . . . . . . . . 11
2.2.4 Linear basis function model . . . . . . . . . . . . . . . . . . . . . . 12
2.2.5 Generalized linear model . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.6 Linear discriminant function . . . . . . . . . . . . . . . . . . . . . . 13
2.2.7 The perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.8 Neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.9 Decision trees and random forest . . . . . . . . . . . . . . . . . . . 17

3 Materials and methods 21
3.1 Characteristics of the MR image database . . . . . . . . . . . . . . . . . . 21

3.1.1 Remarks on variations between 1.5 T and 3 T image sets . . . . . . 22
3.2 Development of an image viewer for visualization of image and label data . 24
3.3 Development of the segmentation algorithm . . . . . . . . . . . . . . . . . 25

3.3.1 Preprocessing of input data . . . . . . . . . . . . . . . . . . . . . . 26
3.3.2 Feature extraction and input transformation . . . . . . . . . . . . . 28
3.3.3 Classification in the feature space . . . . . . . . . . . . . . . . . . . 33
3.3.4 Motivation for a two layer topology . . . . . . . . . . . . . . . . . . 40
3.3.5 Postprocessing of the prediction result . . . . . . . . . . . . . . . . 42

3.4 Framework development . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.5 Description of error metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5.1 Dice coe�cient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.5.2 Hausdor� distance . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.5.3 Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.5.4 Specificity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

I



CONTENTS II

4 Results 48
4.1 Evaluation setup and characteristics of result visualization . . . . . . . . . 49
4.2 Random forest evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.1 Number of random variables to sample at each decision split in a tree 53
4.2.2 Comparison of algorithm modes . . . . . . . . . . . . . . . . . . . . 54
4.2.3 Assessment of the influence of the neighborhood size for regional

features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3 Neural network evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.1 Evaluation of hidden layer topology . . . . . . . . . . . . . . . . . . 57
4.3.2 Evaluation of neural network train function variation . . . . . . . . 58
4.3.3 Results with final neural network setting . . . . . . . . . . . . . . . 59

4.4 K-means evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.5 Naive Bayes evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.6 Volumetric measurements and comparison to other techniques . . . . . . . 62

5 Discussion and conclusion 65



Chapter 1

Introduction

The research described in this paper is concerned with the development of a supervised
machine learning framework for segmentation purposes. An approach to achieve auto-
mated medical image segmentation tasks based on magnetic resonance (MR) images of
the human body is presented. The motivation for this research in terms of medical and
technical aspects as well as related studies are addressed in this introductory chapter.

Due to increased interest of the radiology department of the MD Anderson Cancer
Center and the participation at the 2013 ISBI1 Grand Challenge for Automated Segmen-
tation of Prostate Structures2, this paper strongly focuses on prostate tissue. Therefore,
Chapter 2 provides insights into medical prostate imaging and prostate gland anatomy.
Despite focusing on a specific organ throughout the development, the presented approach
is generalizable to other structures in the human body as well, because the input transfor-
mation and resulting representation are universally applicable. Chapter 2 also provides
a fundamental background for image segmentation, classification and supervised learning
techniques. These theoretical background sections should improve the reader’s under-
standing for upcoming sections and proposed methodology.

Materials and methods utilized to achieve automatic segmentation tasks are described
step-by-step in Chapter 3. The integration of the whole segmentation chain into a frame-
work enables high usability for further research purposes. Functionality includes a viewer
for medical images that o�ers the possibility to draw contours for regions of interest. Var-
ious classifiers are implemented and methods for error metric calculations are provided to
o�er objective, reliable and reproducible evaluations.

Experiments have been made with various classifier implementations, di�erent settings
and multiple test sets. The respective results are discussed in Chapter 4, utilizing sev-
eral plots for output visualization. This chapter also includes evaluations of volumetric
measurements.

The thesis finalizes with a result discussion and conclusion in Chapter 5. Benefits of
this automatic segmentation approach are explained and limitations are demonstrated.
An outlook on future possibilities is provided and the work is summarized.

12013 ISBI Grand Challenges, International Symposium on Biomedical Imaging, http://www.
biomedicalimaging.org/2013/program/isbi-challenges/, date accessed: June 2013.

2National Cancer Institute, The Cancer Imaging Archive research projects, https://wiki.
cancerimagingarchive.net/x/8QRp, date accessed: June 2013.

1
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1.1 Medical background of the prostate gland
Prostate cancer is the most frequently diagnosed cancer in men after skin cancer and

the second leading cause of cancer deaths in men in the United Kingdom and the United
States [1],[2],[3]. Based on incidence rates, an estimated 238,590 new cases of prostate
cancer are expected to occur in the United States in 2013 and according to the American
Cancer Society 29,720 men will die of the disease in 2013 [1]. The death rate has dropped
since the mid 1990s, which may be a result of performing early screening and treatment
improvements [2], [4]. The 5-year survival rate at local and regional stages amounts to
100% but drops significantly to 28% in case of distant metastases [1]. The slow natural
disease progression and di�culty in accurate staging make prostate cancer management
a complex and controversial issue [5]. There are multiple treatment options including
radical prostatectomy, hormonal treatment and various forms of radiation therapy [2],
[5]. Similar to other types of diseases, prostate cancer is most e�ectively treated when
diagnosed early [4], [6].

The commonly used methods for early prostate cancer detection are prostate-specific
antigen (PSA) screening and/or digital rectal examination (DRE) [2], [4]. If either the
serum PSA value is elevated or DRE findings are abnormal, the presence of carcinoma is
indicated and performing a biopsy for confirmation is highly recommended [2], [7]. The
universally approved method and current gold standard for prostate cancer diagnosis
is a transrectal ultrasound (TRUS)-guided biopsy followed by a histopathological
examination [2], [6], [8]. Due to the limited visualization capabilities of ultrasound
imaging, a sextant approach is commonly used to increase the likelihood of obtaining
actual cancer tissue and thus reducing the need of repeated biopsies [2], [6]. Nevertheless,
studies showed that approximately 20% of repeated biopsies show cancer in men with
elevated PSA levels above 4.0 ng/mL following negative initial biopsy results [8], [9],
[10]. It has also been found that biopsy-detected prostate cancer is not rare among men
with normal levels of serum PSA (less than 4.0 ng/mL) [11], [12]. Overall it is estimated
that the false negative rate of TRUS-guided biopsies lies between 15% and 34% [6]. In
these cases where pathological diagnosis cannot be confirmed despite indications of can-
cer by PSA/DRE tests, magnetic resonance imaging (MRI) was found to be helpful [6], [8].

MRI o�ers advantages over ultrasound and is considered to be the most sensitive
imaging modality for displaying anatomical regions of the prostate [6], [13]. On
multiplanar T2-weighted images the zonal anatomy is well shown and tumor-suspected
areas within the peripheral zone are identifiable [2], [3], [8]. The clear picture can also
show if the cancer has spread outside of the prostate into the seminal vesicles or other
structures that are located nearby [4]. By incorporating MRI, the prostate cancer
detection sensitivity for predicting positive biopsies lies between 57% and 100% with
specificity values in the range of 44% to 96% [8]. For cancer detection, MRI o�ers notably
higher sensitivity compared to TRUS; however, low specificity values limit its use and are
the reason that transrectal biopsy currently cannot be replaced as a diagnosis step [6], [8].
Taking this into consideration, MRI still has a high value in treatment planning and as a
staging tool [3]. At the same time it helps to detect prostate cancer in patients with prior
tumor-negative TRUS-guided prostate biopsies [3], [8], [14]. Since 2000, MRI-guided
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biopsies have gained increasing popularity and studies have shown that prostate cancer
was detected in more than 40% of patients with one or more previous negative TRUS-
guided biopsy sessions (compared to 20% to 35% from conventional repeated biopsies) [8].

Due to its high detection accuracy of prostate structures compared to ultrasound, MR
imaging allows a better assessment of prostate volume (PV) [6], [15], [16]. Prostate vol-
ume is an important parameter especially as an indicator for treatment outcome and as
a component of treatment planning for radiation therapy [6], [17], [18]. With the current
transrectal ultrasound standard, three orthogonal measurements are performed and the
PV is estimated according to a formula for ellipsoid volume calculation [15]. In contrast
to this method, which is subject to erroneous discrepancies, MRI o�ers the possibility
of accurate segmentations [15]. However, manual segmentation is time consuming and
rather subjective to the respective radiologist and is therefore prone to bias and drift [15],
[19], [20]. Thus, automatic segmentation approaches of the prostate in MRI is of increas-
ing interest and has already shown better correlations to manual expert segmentations
compared to automated evaluations involving ultrasound imaging [15], [16].

1.2 Technical background and related work
Abnormality detection in medical images plays a key role in image interpretation and

hence provides vital information for the ability to make a diagnosis [21]. However, the
detection of abnormalities in images is a high-level image processing step that is enabled
by performing previous tasks, e.g. object segmentation [22]. Segmentation denotes the
separation of an object from the background in an image [13]. For medical diagnosis,
tissue segmentation is the first step for image analysis applications [19]. The easiest and
at the same time most reliable way to obtain segmentation results of regions of interest
is manual segmentation through visual observation by medical doctors [23]. This manual
task is very time consuming and therefore practically not feasible in the majority of
patient cases due to the high number of imaging examinations. Hence, it is important
to provide software applications that are capable to achieve automated medical image
segmentation [19], [23], [24]. If regions of interest are segmented within an image,
properties that describe the structure can be extracted. Those characteristics can be
compared to what are considered normal values and abnormalities can be detected [22].
The validity of the final result strongly depends on the accuracy and robustness of the
initial segmentation that enabled the high-level image analysis [23].

In this work a supervised machine-learning framework for medical image segmentation
is proposed. Hence, research has been conducted to enable a good segmentation
capability within magnetic resonance images in order to either provide a basis for
high-level image processing tasks or to directly support medical doctors in making their
diagnosis or evaluation. To be useful in practical clinical applications, an automated
algorithm must be accurate similar to an expert, has to o�er reasonably fast processing
time and has to be robust in terms of diverse datasets [16], [19]. However, computer-aided
prostate segmentation (whether automated or semi-automated) is a very challenging task
due to strong inter-patient variabilities in shape, size and deformations of the prostate
gland [18], [20]. In addition, noise, imaging artifacts and inhomogeneities in intensity
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values inside the prostate regions are introduced by the imaging device [20]. Moreover,
research publications in this field are limited as well [16].

Despite ultrasound being the dominant imaging modality for prostate diagnosis,
approaches for MRI have been developed [13]. For example, Zwiggelaar et al. in
[25] proposed a semi-automated technique to perform 2D contouring of MRI slices
in polar-transform space (to take advantage of the elliptical shape of the prostate).
Likewise, Vikal et al. in [26] utilize a 2D approach to find a region of interest on
each slice and afterwards form a 3D surface. However, one major part of the problem
of prostate segmentation in MR images is achieving a shape constraint of the final
segmentation result [13]. Some authors have tried to solve this problem through the
use of active shape models. Zhu et al. published a hybrid approach employing a 2D
active shape model and 3D optimization to achieve segmentation, described in [27] and
[28]. Allen et al. extended the technique to combine 3D shape modeling with voxel
classification in [15] and [29], similar to Makni et al. who in addition use Markov fields to
describe contextual information [30]. Extended approaches involving deformable models
are also used recently, amongst others proposed by Gao et al. in [13] and Toth et al. in [31].

Over the last years, reasonable results have been achieved in the field of atlas-based
prostate segmentation as well, e.g. by Martin et al. in [16] and [32], Dowling et al. in
[33] and Klein et al. in [34]. These approaches involve the construction of an atlas from
training shapes of the prostate and the subsequent matching of this atlas under local
constraint criteria, which is an image registration problem.

More recently, progress has been made in the field of utilizing machine learning (ML)
approaches for medical image analysis. Machine learning is a field of computer science
that is concerned with the development of systems that are capable to learn from a
provided input. The goal is that knowledge gained from observed samples contributes to
improve decision-making tasks for similar new input in the future [35]. ML is extensively
used in face detection/recognition [35] and speech recognition [36] tasks. In order to
be able to make class assignments, algorithms for classification tasks need to learn to
automatically recognize complex patterns [35]. Therefore, this method performs well as
long as pattern recognition is feasible in the input (feature) space and class labels are
su�ciently distinguishable [37].

Experimental research for medical segmentation problems has been performed with
various classifiers. Decision forests are utilized for example by Ghose et al. in [20] and
Geremia et al. in [38]. Also support vector machines (SVMs) [39], [40] and neural
networks [19], [41] have been applied to solve medical segmentation problems. So far,
none of the classifiers shows superior performance over another and comparisons are hard
to achieve as classification results almost solely rely on input selection. However, it can be
said that supervised learning based segmentation methods that use manually segmented
training data as a reference show superior performance and are computationally e�cient
[37].

This work is important because automated prostate structure segmentation provides



CHAPTER 1. INTRODUCTION 5

information about the size, shape, position and volume of the prostate. These charac-
teristics increase the knowledge of the gland, which in turn could a�ect multiple clinical
routines like prostate cancer treatment selection and treatment planning procedures. Be-
sides, the prostatic volume correlates with the presence of prostate cancer and is important
for pathologic staging [42], [43]. Moreover, interventional techniques such as MR-guided
biopsies could be influenced and diagnostic uncertainties might be reduced [6].



Chapter 2

Theoretical imaging and image
processing framework

In this chapter, the basic theoretical background of the issues addressed in this thesis is
provided. Firstly, a brief overview of prostate gland anatomy is given for better under-
standing of zonal segmentation goals. Moreover, the MR imaging appearance of prostate
tissue is illustrated in Section 2.1. Secondly, Section 2.2 concentrates on explanations of
machine learning principles and the basics of segmentation and classification, including
the mathematical background. Lastly, the concepts of two major classifiers, namely neural
networks and random forest are explained.

2.1 Prostate gland anatomy and MR imaging ap-
pearance

This section addresses the anatomy of the prostate gland as this knowledge is crucial
for image interpretation. Figure 2.1 shows a schematic illustration of the gland’s zonal
anatomy. The prostate can be separated into glandular and non-glandular regions. The
main non-glandular elements are the anterior fibro-muscular stroma and the prostatic
urethra that runs vertically through the prostate from its base to apex. The glandular
prostate is subdivided into an inner component, which is basically comprised of the
transitional zone and into outer components. The outer components consist of central
and peripheral zones [3].

As it can be seen in Figure 2.1, the peripheral zone (PZ) is the largest part of
the prostate, making up 70% of its volume in young men. The peripheral zone is
located predominantly lateral and posterior to the central zone, which is the second
largest component and accounts for about 25% of prostate tissue in young men. The
remaining 5% form the transition zone. Due to the fact that prostate zones are defined
histologically, many prostatic diseases have a zonal distribution. Seventy percent of
adenocarcinomas arise in the peripheral zone, 20% in the transition zone and only 10%
in the region of the central zone [2], [3], [44].

On T1-weighted MR images, prostate zones cannot be distinguished because the
normal prostate gland is represented with uniform intermediate-to-low signal intensity

6
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Figure 2.1: Schematic illustration of prostate zonal anatomy in sagittal view. [2]

[2], [3], [5]. Similar to computed tomography (CT), the soft-tissue contrast resolution
of T1-weighted MR imaging is insu�cient to visualize the intra-prostatic anatomy [3].
However, on a T2-weighted image the prostatic zones are well depicted, mainly because
of the shorter T2 relaxation time of the central zone [2], [3], [5], [7].

Figure 2.2 shows a series of T2-weighted MR images from one patient case. Throughout
this paper the terms image stack (referring to the series of images comprising one
case) and image slice (denotes one image out of the stack) are used. The peripheral
zone demonstrates high T2 signal intensity and is subject to an age-related intensity
increase [2]. A thin rim of low signal intensity, referred to as the anatomic or true
capsule surrounds the peripheral zone [2], [3]. Compact smooth muscle fibers and
sparse glandular elements are the reason for short T2 relaxation times that lead to low
signal intensities of the central and transition zones [2], [44]. They both have similar
signal intensities and therefore can be identified best when considering their anatomical
locations [3]. Due to the respective MR imaging appearance in further sections of this
work, the terms central gland (CG), which refers collectively to the periurethral, central,
and transition zones, and peripheral gland (includes only the peripheral zone) are used.
An additional reason for this region grouping is that for clinical use the anatomical
distinction between central and peripheral glands is of most importance [44].

The current clinical standard is to perform prostate MRI at magnetic field strengths of
at least 1.5 tesla (T) [2]. Endorectal coils are used to obtain high-resolution images for
accurate localization and staging of prostate cancer [2]. For cancer assessment, usually
a conventional T1 and T2-weighted MRI is combined with functional techniques such
as MR spectroscopy, di�usion-weighted imaging or dynamic contrast-enhanced MRI to
improve sensitivity and specificity [2], [3], [7].
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 2.2: MR prostate imaging example of a 50-year-old man. SV = seminal vesicle, BL
= urinary bladder, CG = central gland (central zone and transition zone), PZ
= peripheral zone, FS = anterior fibro-muscular stroma, NV = neurovascular
bundle, V = verumontanum, U = urethra. (a)-(f): axial T2-weighted images, (g):
parasagittal T2-weighted image, (h): coronal T2-weighted image. Zonal anatomy
is shown at the level of seminal vesicles in (a), base of prostate gland in (b), mid
gland in (c) and (d), apex of gland in (e) and membranous urethra in (f). [2]
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2.2 Segmentation, classification and supervised
learning

Segmentation is the process of dividing an image into regions with reasonably similar
properties such as gray-level or texture [24]. In the field of medical image analysis, several
objectives for performing a segmentation can be identified, such as

• study of anatomical structures

• identification of a certain region of interest (e.g. abnormalities like tumors)

• assistance in treatment planning (e.g. in radiation therapy to calculate dose of
radiation)

• measurement of treatment outcome (e.g. tissue volume that reflects tumor size).

Automatic segmentation of medical images is a di�cult task because structures in the
human body rarely have any homogeneous properties when they are recorded with
an imaging device. There is a high chance that soft-tissue regions which belong to
di�erent anatomical structures have very similar intensity values. Moreover, the pres-
ence of artifacts and the partial volume e�ect further increase the problem complexity [24].

Classification in contrast to segmentation aims at the assignment of a tissue class
to each point in the image, where the classes are specified in advance. In cases of the
brain for example, the classes gray matter, white matter and cerebrospinal fluid can be
identified. The two problems of segmentation and classification are closely linked to
each other as a classifier implicitly segments an image and a segmentation implies a
classification. In this work, a segmentation result is achieved by classification of image
pixels. Every pixel is categorized according to the properties that identify it as a member
of a particular tissue class. This subsection explains the basic concept of utilizing
machine learning for classification problems. The theoretical background provided in
this section is strongly based on the books of C. M. Bishop [45] and R. O. Duda et al. [46].

In the field of pattern recognition, computer algorithms are used to automatically
discover regularities within the data used. These regularities are then used to
partition the data into a finite number of di�erent categories. Despite uncertainties
that arise during the partitioning process, optimal decisions should be made in
every situation. Suppose an input vector x and corresponding target vector t are
available. The targets represent the di�erent categories, also called class labels.
Uncertainties associated with these variables are described by the joint probabil-
ity distribution p(x, t). The classification goal is to predict t̂, given a new value x̂.
Predicting t̂ is equivalent to assigning x̂ to one of K discrete classes Ck, where k = 1, ..., K.

Consider, for example, the recognition of handwritten digits. A program should be
developed that takes an input image x representing a handwritten digit and assigns classes
0, ..., 9 as an output. Due to the high variability of handwriting this is a very hard
problem. Hence, many handcrafted rules based on shapes need to be combined to achieve
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proper di�erentiations; however, in practice such an approach is not feasible and emerging
exceptions of rules may lead to errors and poor results.

2.2.1 Supervised learning

Given these kind of problems, better results can be obtained through the implementation
of a machine learning approach. The purpose of ML is to generate an adjustable model
that represents the input data and alter its parameters using a large training set. Suppose
X denotes the input space and T is the output space. Assume that a set D of training
examples of N observations of x, written x = (x1, ..., xN)T œ X , is given together with
corresponding targets t = (t1, ..., tN)T œ T :

D = {(x1, t1), ..., (xN , tN)} (2.1)

Applications where the training data are comprised of a set of input vectors along with
their respective targets are called supervised learning problems. In order to obtain the
correct categories represented by targets tn, usually a manual labelling process needs to
be performed through individual inspections of inputs xn.

The purpose of a learning algorithm is to find a decision function g : X æ T out of a
space of possible functions G, usually called hypothesis space. This function g represents
the characteristics of the input-to-target mapping. It can also be represented by a scoring
function f : X ◊T æ R to define g through the returning value of t that gives the highest
score:

g(x) = arg max
t

f(x, t) (2.2)

Once a decision function is found utilizing the training set, predictions of a target value
t̂ for a new input value x̂ can be made. These new inputs that di�er from the training
set are referred to as the test set. Due to the high variability of input vectors in practical
applications, a training set will only cover a small fraction of all possible inputs. Thus,
it is important to achieve generalization to correctly classify novel examples out of a test
set [36], [45].

2.2.2 Feature extraction

To reduce the variability within the input data, typically a preprocessing step is intro-
duced to transform the original input values to a new space, illustrated in Figure 2.3.
The goal of this transformation „ is to ease the pattern recognition problem by reducing
the dimensionality when operating in the new space. This step is referred to as feature
extraction. It involves finding appropriate representations for real world objects in order
to map them into the feature vector space. It is essential to choose the right character-
istics for input representation to encourage the formation of groups (or clusters) in the
feature space. An ideal feature extractor would result in a representation that makes the
classifier job trivial. It is important to note that once following this technique, also the
test data need to be preprocessed by performing the same steps used for the training data.
In addition to reducing the complexity of the classification problem, preprocessing is also
performed to increase the computational e�ciency [36], [45].
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Figure 2.3: Illustration of input to feature space mapping for a two-class problem. By enforcing
the transformation „, inputs are converted to the feature space where classification
tasks ideally are easier to achieve. In this case an optimal hyperplane for linear
separation is found that solves the originally non-linear decision problem. [47]

2.2.3 Inference and decision-making

The remaining problem is to partition the feature space into separate regions by mak-
ing optimal input assignments. This decision problem can be solved in one of three ways:
using generative models, discriminative models or discriminative functions. Basically,
classification is a task of recovering the model that generated some kind of explorable
patterns; thus, the usability of di�erent techniques depends on the type of underlying
models. Statistical properties of the patterns are generally expressed in probability den-
sities illustrated in Figure 2.4.

Figure 2.4: Example of class-conditional densities for two classes having a single input variable
x (left plot) together with corresponding posterior probabilities (right plot). The
green vertical line in the right plot represents the optimal decision boundary. [45]

1. Generative models
With the use of generative models, the classification problem is basically solved in
three steps. Within the inference step the training data are used to determine class-
conditional densities p(x|Ck) and class priors p(Ck). Afterwards, Bayes’ theorem is
used to find the posterior class probabilities p(Ck|x). Figure 2.4 illustrates proba-
bilities for a two-class case with one input value. In the decision step, optimal class
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assignments can be made by using the learned posterior probabilities. This is the
most demanding approach because it involves finding the joint probability p(Ck, x).
In addition, the training set has to be very large for high-dimensional data in order
to determine the class-conditional probability densities to reasonable accuracy.

2. Discriminative models
If only classification decisions should be made, it can lead to a waste of computa-
tional resources to obtain class-conditional densities as they might contain many
structures that have little e�ect on posterior probabilities. Hence, it might be
enough to solve the inference problem of finding the posterior class probabilities
p(Ck|x) and directly model them to class labels.

3. Discriminant functions
It is also possible to solve these multiple steps at once. For this approach the training
data are used to determine a discriminant function that directly maps inputs x to
class labels Ck. In this case no probability estimation is necessary. In cases of one-
dimensional data this corresponds to finding a certain threshold value that gives the
minimum error rate classification (finding the x-value marked with a green line in
Fig. 2.4).

This work primarily uses neural networks and decision trees for classification purposes;
hence, the main focus lies on discriminant models and functions. The principles of the
linear discriminant function will be described in the following paragraphs.

2.2.4 Linear basis function model

The simplest form of a linear function model is comprised of a linear combination of
input variables

y(x, w) = w0 + w1x1 + ... + wDxD (2.3)

where x = (x1, ..., xD)T is the input vector. The fact that y is modeled as a linear function
of the input variables xi poses a limitation to the model. This constraint can be bypassed
through a model extension, where linear combinations of fixed nonlinear functions of the
input „(x) are formed resulting in

y(x, w) = w0 +
M≠1ÿ

j=1
wj„j(x). (2.4)

The total number of parameters is given with M . The parameter w0 that is excluded from
the sum represents a constant o�set in the data. The o�set w0 is also referred to as bias
parameter. If „ is nonlinear, y can now be a nonlinear function. The fixed quantity of
nonlinear functions „j(x) is referred to as basis functions. If the basis function is defined
in a way that „0(x) = 1, the model can be defined as

y(x, w) =
M≠1ÿ

j=0
wj„j(x) = wT

„(x) (2.5)
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where w = (w0, ..., wM≠1)T and „ = („0, ..., „M≠1)T . The basis functions „j(x) denote
the feature extraction step, where the original variables form the vector x. If nonlinear
basis functions are used, the function y(x, w) is a nonlinear function of the input vector
x. However, y(x, w) is a linear function in w and therefore called a linear model.

2.2.5 Generalized linear model

Considering the model prediction y(x, w) from Equation 2.4 for the case where it is
linear in the input variables, the model can be written as

y(x) = wT x + w0 (2.6)

where y results in a real number. However, for classification problems discrete class labels
should be predicted; thus, y needs to be mapped to discrete values. This transformation
is achieved using a nonlinear activation function f( · ), resulting in

y(x) = f(wT x + w0). (2.7)

Models of this class are called generalized linear models. They are no longer linear in the
parameters w because of the transformation introduced by the nonlinear function f( · ).

2.2.6 Linear discriminant function

The goal of implementing a discriminant function is to directly assign each input vector
x to a specific class Ck. A linear discriminant function y(x) for a two-class problem is
obtained using the linear model of the input variables from Equation 2.6, where w is the
weight vector and w0 is the bias (also called threshold). Class assignments of the input
vector are performed according to the function output. If y(x) Ø 0, x is assigned to class
C1 and otherwise to C2.

This formulation of linear discriminants can be extended to K > 2 classes by encom-
passing K linear functions in the form

yk(x) = wT
k x + wk0 (2.8)

where k = 1, ..., K. The input x is then assigned to class Ck, if yk(x) > yj(x) for all
j ”= k, thus

Ĉk = arg max
k=1,...,K

yk(x). (2.9)

Hence, the classifier can be represented as a network that computes multiple discriminant
functions and selects an output category corresponding to the largest discriminant. An
illustration of such a network is provided in Figure 2.5. To reach more complex decision
surfaces, additional terms need to be added to the decision function. The original linear
discriminant function can be written as

y(x) = w0 + wT x = w0 +
Dÿ

i=1
wixi (2.10)
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Figure 2.5: Functional structure of a general statistical pattern classifier that includes d inputs
and c discriminant functions gi(x). Input categorization is performed by obtaining
the maximum of the discriminant values incorporating costs of decision errors. The
arrows show the information flow direction. [46]

with wi being the respective components of the weight vector w. The addition of terms
involving the products of pairs of components of x results in the quadratic discriminant
function

y(x) = w0 +
Dÿ

i=1
wixi +

Dÿ

i=1

Dÿ

j=1
wijxixj. (2.11)

The decision surface of the quadratic discriminant function is a hyperquadratic surface.
The class of polynomial discriminant functions can be obtained by continuing to add
terms like wijkxixjxk.

2.2.7 The perceptron

One example for a linear discriminant model is the perceptron (cf. Rosenblatt, 1962).
It is based on linear combinations of fixed basis functions. The perceptron is a two-class
model similar to the one described in Equation 2.7. The di�erence is that in this case
a nonlinear transformation is used to transform the input vector x to the feature vector
„(x). This results in the generalized linear form of the perceptron model

y(x) = f(wT
„(x)) (2.12)

where f( · ) is a nonlinear activation function. A bias „0(x) is typically included in the
feature vector „(x). The activation function f( · ) is a step function of the form

f(a) =
Y
]

[
+1 if a > 0
≠1 if a < 0.

(2.13)

The perceptron is a learning machine that learns from training vectors. During the
training phase the weights w are altered according to minimize an error function, known
as the perceptron criterion. If the output error is minimal, the optimal weights are found.
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However, in order for the perceptron algorithm to converge, the target classes need to be
linearly separable. A drawback of the perceptron is that it does not provide probabilistic
outputs; hence, information about the degree of certainty or uncertainty is lost. Moreover,
it does not generalize to K > 2 classes. Aside from these properties, the perceptron is
also subject to the same limitation as the previously discussed models, which is that they
are based on linear combinations of fixed basis functions. The di�culty is that the basis
functions „j(x) are fixed prior to an observation of the training set. Hence, M basis
functions along each dimension of the D-dimensional input space require a total of M

D

basis functions. This is known as the curse of dimensionality.

2.2.8 Neural networks

For real-world problems involving demanding applications, classification models that
comprise linear combinations of basis functions are not general enough. There are
many problems for which the use of linear discriminants is not su�cient to achieve
results with minimal error. In order to minimize the error in such cases, nonlinear
basis functions need to be used [46]. The parameters defining those functions are
learned and adjusted during training [45]. The feed forward neural network is an exam-
ple for these kind of models. In the following, the basic neural network model is explained.

A neural network can be represented similarly to a linear model but with generalized
basis functions „j(x) as

y(x, w) = f

Q

a
Mÿ

j=1
wj„j(x)

R

b
. (2.14)

Neural networks use a fixed number of nonlinear basis functions in parametric form. Dur-
ing the network training, the parameters of the basis functions „j(x) are adjusted together
with the coe�cients {wj}. The parametric nonlinear basis functions are constructed in a
way that they follow the basis function form in Equation 2.14. Every nonlinear function
„j(x) is a linear combination of D inputs. The coe�cients in the linear combination are
adaptive parameters. This leads to the definition of the first network layer.

Given the input variables x1, ..., xD, a total of M linear combinations of the input are
constructed in the form

aj =
Dÿ

i=1
w

(1)
ji xi + w

(1)
j0 (2.15)

where j = 1, ..., M and the superscript ( · ) denotes the network layer. In this case, (1)
indicates that the corresponding parameters are part of the first layer of the network.
Similar to the nomenclature used to describe the linear discriminant function, w

(1)
ji refers

to the weights and w

(1)
j0 represents the biases.

A di�erentiable, nonlinear activation function h( · ) is then used to transform the acti-
vations aj, which results in

zj = h(aj). (2.16)
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Figure 2.6: Network diagram for a two-layer neural network corresponding to Equation 2.22.
The input variables xd, hidden variables zm and output variables yk are represented
by nodes. All weight parameters w are illustrated by links between the nodes. Bias
parameters are represented by links originating from additional input and hidden
variables x0 and z0. The green arrows denote the flow of information through the
network during forward propagation. [45]

The quantities zj are called hidden units. These hidden units correspond to the outputs
of the basis functions „j(x) in Equation 2.14. Other than using a step function as in
the perceptron model (cf. Equation 2.13), sigmoidal functions are used for the nonlinear
activation functions h( · ).

The hidden units are followed by K output units. First, the output unit activations ak

are obtained by linear combinations of the hidden unit outputs zj. This gives

ak =
Mÿ

j=1
w

(2)
kj zj + w

(2)
k0 (2.17)

where k = 1, ..., K. These hidden unit transformations are performed in the second
network layer, denoted by (2). In order to determine the final network outputs yk, the
activations ak are again transformed utilizing a proper activation function:

yk = ‡(ak) (2.18)

The type of activation function ‡( · ) is chosen depending on the underlying dataset and
target value distribution. For binary classification tasks a logistic sigmoid function is used
where

‡(a) = 1
1 + exp(≠a) . (2.19)

For classification problems involving multiple classes (i.e. K > 2), a softmax activation
function is used. The softmax function is a generalization of the logistic function to
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multiple variables. It basically provides an approximation of the maximum operation and
at the same time ensures that the output values are between 0 and 1 and also sum up to
1. Given an input a and K nodes in the softmax layer, the activation function is given
by

‡(a, k) = exp(ak)
qK

j=1 exp(aj)
. (2.20)

The smoothed version of the maximum function is achieved because if ak ∫ aj for all
j ”= k, then yk ƒ 1 and yj ƒ 0.

All of these previous stages can be combined to form the overall network function. For
sigmoidal output unit activations, this results in

yk(x, w) = ‡

Q

a
Mÿ

j=1
w

(2)
kj h

A
Dÿ

i=1
w

(1)
ji xi + w

(1)
j0

B

+ w

(2)
k0

R

b (2.21)

where the vector w represents the set of all weight and bias parameters. Both activation
functions ‡( · ) and h( · ) are incorporated. This nonlinear neural network function
basically maps a set of inputs {xi} to a set of output variables {yk}. This mapping is
controlled by the vector w of adjustable parameters. Figure 2.6 illustrates the network
diagram that represents the forward propagation through the network (i.e. evaluation of
Equation 2.21). By incorporating bias values into new variables x0 and z0 as shown in
Figure 2.6, the overall network function becomes

yk(x, w) = ‡

Q

a
Mÿ

j=0
w

(2)
kj h

A
Dÿ

i=0
w

(1)
ji xi

BR

b
. (2.22)

The network diagram shown in Figure 2.6 illustrates a neural network topology that
consists of two processing steps that are defined by Equation 2.22. Each of these steps
corresponds to the perceptron model represented by Equation 2.12. Therefore, the neural
network model is also referred to as the multilayer perceptron. However, there is an
important di�erence between the processing stages of a neural network and a perceptron.
The perceptron uses step-function nonlinearities whereas the neural network implements
continuous sigmoidal nonlinearities in the hidden units (cf. Equation 2.16). This variation
is significant because it makes the neural network function di�erentiable with respect to
the network parameters.

2.2.9 Decision trees and random forest

Decision trees are an alternative model to solve classification problems. The goal of
implementing a classification tree is to create a model that predicts a target class based
on sequential decisions on a number of input variables (observations). As illustrated in
Figure 2.7, these series of successive binary selections are made when traversing through
the tree structure. A tree consists of a top node called the root element, followed by
leaves and branches. In Figure 2.7, leaves are denoted A ≠ E and represent class labels.
They are the outcome associated with combinations of features that lead to those labels,
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represented by branches.

Figure 2.8 shows a two-dimensional input space that has been partitioned into five
regions using the binary tree illustrated in Figure 2.7. Algorithms for decision trees
usually work from top to bottom by choosing a "best" feature variable at each step that
splits the input in the most optimal way. Various di�erent approaches of determining
the "best" feature at each node exist depending on the algorithm. In this example, first
the entire input space is divided into two regions, depending on if x1 Æ ◊1 or x1 > ◊1.
◊1 is a model parameter that represents a threshold for the feature x1. This threshold
initially creates two subregions that are in further consequence treated separately. Each of
these independent subregions are then split up further. The region x1 Æ ◊1, for example,
is subdivided depending on whether x2 Æ ◊2 or x2 > ◊2, resulting in an assignment to
regions A and B. The region assignment for a new input x is made by starting at the
root node of the tree and following down the branches according to the decision criteria
until a certain leaf node is reached. Each region is then assigned to a target class.

Figure 2.7: Binary decision tree for input partitioning corresponding to Figure 2.8. Through
sequential decisions inputs are assigned to classes A - E, whereby x and ◊ represent
inputs and thresholds, respectively. [45]

During the training step the structure of the tree model needs to be learned. This
involves choosing a certain input feature variable xi as well as a threshold ◊i for the
split criteria at each node. Given a D-dimensional vector of input feature variables
x = (x1, ..., xD)T , the goal is to predict a single target t. The training data are comprised
of input vectors {x1, ..., xN} together with corresponding target labels {t1, ..., tN}.

The problem is how to determine the structure of the decision tree (including feature
and threshold selection at any given node) that optimizes the assignment of classes. Min-
imizing a performance error for a tree consisting of a fixed number of nodes is usually not
feasible due to the large amount of di�erent input combinations. Therefore, a di�erent
solution is generally used. A tree for the whole input space is grown one node at a time,
starting at the root node. Every time a node is generated, one input feature variable
as well as the respective threshold value are chosen. This selection step is repeated for
all of the D input variables at that node and for each of the possible combinations the
performance error for the current configuration is calculated. The optimal input feature
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variable at that respective node is the one out of D variables that splits the input best,
and thus, results in the smallest error.

Figure 2.8: Illustration of partitioning of a two-dimensional input space into five regions using
a binary decision tree. Note that axis-aligned boundaries are used for the spacing.
[45]

The issue that remains when using this technique is when to stop adding nodes to the
tree. A simple approach is to use an error threshold as a stopping criterion. However, it
has been found empirically that often even if the overall error remains almost constant
despite adding new nodes, after some additional splits, a significant error reduction still
occurs [45].

Therefore, the common practice is to grow a large tree (whereas the size depends on the
characteristics of the input data) and afterwards prune the resulting tree. The criterion
used for this pruning step is based on balancing the error against the overall complexity of
the model. Suppose the initially created tree is denoted by T0. Then the subtree T µ T0
is gained by eliminating nodes from T0, thus combining the respective regions. Leaf nodes
are denoted with · , where · = 1, ..., |T | and |T | represents the total amount of leaves. A
leaf node · represents the region R· of an input space with N· data points. For a given
region R· , the optimal prediction outcome is then given by

y· = 1
N·

ÿ

xnœR·

tn. (2.23)

For classification trees, two performance error measures are commonly used: the cross-
entropy and the Gini index. If p·k is defined as the proportion of data points that lie
in region R· and are assigned to class k, where k = 1, ..., K, then the cross-entropy is
defined as

Q· (T ) =
Kÿ

k=1
p·k ln p·k (2.24)

and the Gini index as

Q· (T ) =
Kÿ

k=1
p·k(1 ≠ p·k). (2.25)
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Both measures have a maximum at p·k = 0.5 and vanish for p·k = 0 and p·k = 1. The
cross-entropy and the Gini index are both di�erentiable, which enables the application of
gradient based optimization methods.

Random Forest

A Random Forest (cf. Breiman, 2001 [48]) classifier grows multiple decision trees in
order to improve the classification rate. Trees are grown using a random set of the input
variables (with the same distribution for all trees). To achieve a classification result, a
new input vector is traversed through each of the trees in the forest. Every single tree
then provides a class assignment. It is said that a tree "votes" for a class. The overall
result of the forest is then chosen according to the class that received the most votes. The
definition of a random forest by L. Breiman in [48] is as follows:

”A random forest is a classifier consisting of a collection of tree-structured
classifiers {h(x, �k), k = 1, ...} where the {�k} are independent identically
distributed random vectors and each tree casts a unit vote for the most popular
class at input x.” [48]

The procedure of growing a tree is as follows:

1. Given an original training set including N cases, randomly sample N cases with
replacement. These sampled cases will be the training set for growing the tree.

2. Suppose the input vector x consists of M feature variables. For the k-th tree Tk,
a random vector �k is generated by selecting m < M out of the M variables. The
random vector �k is thereby independent of the past random vectors �1, ...�k≠1. At
each node the one variable out of m that best splits the data is selected. The value
of m specifying the amount of randomly chosen feature variables remains constant
for the whole forest growing process.

3. Each tree is grown to the largest extent that is possible and no pruning is performed.

Due to the fact that a di�erent random sample of input variables is used for the con-
struction of each tree, there is no need for cross-validation or a separate test set to get
an unbiased error estimate. For the construction of the k-th tree, about one-third of the
input cases are left out. Those cases internally serve as the test set and are then used to
obtain a classification result. The resulting error that can be computed is called the out-
of-bag (oob) error estimate. Similarly, the variable importance of feature variables
can be assessed. Using the oob cases the number of correct class votes is counted. This
procedure is repeated with randomly permuted values of variable m. The two resulting
scores (number of votes in each case) are subtracted and averaged over all trees to obtain
the raw variable importance score.



Chapter 3

Materials and methods

In this chapter materials and methods used for the segmentation framework development
are addressed. The segmentation problem is solved utilizing a supervised learning ap-
proach; hence, it is important to have a set of training data available in order to be
able to train a classifier. For the application targeted by this research, a proper training
set consists of images and corresponding ground truth markups of the region of inter-
est. The properties of the provided MR image recordings are described firstly in Section
3.1. Section 3.2 then addresses the development of a multi-purpose image viewer that
allows the user to view MR image slices as well as draw manual contours within these
images. Section 3.3 focuses on the main part of the project, which is the development
of the segmentation algorithm. The algorithm is thereby described step-by-step, starting
at preprocessing and concluding with postprocessing. This chapter also includes remarks
on the creation of a final framework in Section 3.4. In addition, Section 3.5 explains the
scoring metrics that are used for segmentation accuracy evaluations. Code development
for this project was performed using MATLAB.1

3.1 Characteristics of the MR image database
The segmentation algorithm was developed and tested using 50 anonymized patient

cases with biopsy confirmed cancer acquired as T2 weighted magnetic resonance axial
pulse sequence. An imaging example is illustrated in Figure 2.2. Half of the patient cases
were obtained at the Boston Medical Center with a Philips Achieva at 1.5 T using an
endorectal receiver coil. The other half at 3 T with a Siemens TIM and a surface coil
at Radboud University Nijmegen Medical Center, Netherlands. Datasets acquired with
a field strength of 3 T consist of 15+ slices with 4 mm thickness. 1.5 T recordings have
28+ adjacent axial cross-section cuts with 3 mm slice thickness. For the training set,
markups in Nearly Raw Raster Data (NRRD) 2 format defining the central gland (CG)
and peripheral zone (PZ) of the prostate are available in addition to the respective Digital
Imaging and Communications in Medicine (DICOM) image files. The NRRD library and
file format is designed to support scientific visualizations and image processing involving

1MATLAB and Image Processing Toolbox Release 2013a, The MathWorks, Inc., Natick, Mas-
sachusetts, United States.

2NRRD - Nearly Raw Raster Data, http://teem.sourceforge.net/nrrd/, date accessed: August
2013.
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N-dimensional raster data. Each file contains a multi-line text header including meta
information and the current raster data. The header also describes the orientation of
the raster grid in respect to some kind of surrounding space. In this case, the relative
orientation of the MRI volume to the patient coordinate system is specified. NRRD files
are imported to MATLAB using the NRRD Format File Reader provided by Je� Mather
3. Patient cases are available from the National Cancer Institute via The Cancer Imaging
Archive.4 An example image slice with expert labeled prostate structures is illustrated in
Figure 3.1.

Figure 3.1: 3 T MR image slice with expert labeled CG (red) and PZ (orange) structures

3.1.1 Remarks on variations between 1.5 T and 3 T image sets

The utilization of di�erent magnetic field strengths during image recording introduces
variations in image characteristics. In addition to di�ering resolution and intensity values,
additional disparities that a�ect the development of a segmentation algorithm are present.
During the development it was found that the position of the prostate within an MR
image stack is subject to variations. It seems that the two institutions which provided the
anonymized magnetic resonance recordings used a di�erent axial range for the imaging
procedure. This circumstance in addition to the smaller slice thickness is the reason why
on average 1.5 T cases consist of twice as much slices than 3 T cases. Considering the
anatomical space (patient coordinate system), this means that there are significant shifts
within the axial plane. On average and compared to 3 tesla recordings, axial slices of 1.5
tesla recordings start with an o�set to the inferior end of the human body. They also
monitor a broader region of the body which again results in a stretch into the direction
of the superior end. This extended range a�ects the relative number of image slices that

3NRRD Format File Reader, http://www.mathworks.com/matlabcentral/fileexchange/
34653-nrrd-format-file-reader, date accessed: August 2013.

4National Cancer Institute, The Cancer Imaging Archive, https://wiki.cancerimagingarchive.
net/x/8QRp, date accessed: April 2013.

http://www.mathworks.com/matlabcentral/fileexchange/34653-nrrd-format-file-reader
http://www.mathworks.com/matlabcentral/fileexchange/34653-nrrd-format-file-reader
https://wiki.cancerimagingarchive.net/x/8QRp
https://wiki.cancerimagingarchive.net/x/8QRp
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actually show prostate tissue.

(a) (b)

(c) (d)

Figure 3.2: Visualization of MR image slices and prostate bounding boxes. Axial image slices
are plotted in z-axes direction. Fig. (a) shows the same 1.5 T case as Fig. (d) with
a di�erent viewing angle. Fig. (c) shows image slices of a chosen 3 T patient case.
Fig. (b) illustrates ground truth labels for the prostate central gland (yellow) and
peripheral zone (green) corresponding to (a). A maximum bounding box for the
prostate structures is outlined in blue color in all figures. A red bounding box
indicates an average prostate position. Green and yellow cuboids mark prostate
positions of single cases.

Figure 3.2 illustrates exemplary image stacks out of the training cases. An average
three-dimensional prostate position has been calculated for both 1.5 T and 3 T recordings
throughout all respective training cases (indicated as a red box in Figures 3.2(c) and
3.2(d)). The prostate position is denoted by a normalized three-dimensional bounding
box. This bounding box applied to a 15-slices patient case out of the 3 T set shows that
the prostate is on average visible on slices 2 to 14 (see Fig. 3.2(c)). This means that
the prostate is visible starting at the second slice throughout to the second last slice,
which equals 86% of all slices. Plotting the bounding box for patient cases recorded at
a magnetic field strength of 1.5 T shows a di�erent situation. Having 32 image slices,
Figure 3.2(d) indicates that only slices 9 to 22 actually visualize the prostate. This
basically shows that in these cases, less than half of the available images contain prostate
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tissue.

Similarly to the average position, a maximum three-dimensional bounding box is cal-
culated that includes the entire prostate structure on every image slice throughout all
training cases. Given any image slice out of the training cases, this means that if prostate
tissue is visible on that specific slice, the entire prostate tissue region will be embedded in
the maximum bounding box. The plots of this bounding box in Figures 3.2(c) and 3.2(d)
also indicate that in contrast to 3 T cases certain slices of the 1.5 T images never contain
prostate tissue.

Suppose that out of all training cases and without considering the magnetic field
strength, one image slice is chosen to serve as the current input to the algorithm. Fur-
thermore, assume that this image is the 10th slice out of a certain case. Considering the
3 T training images, there is a 100% chance that prostate tissue is visible on that image
slice. However, if this slice was taken from the 1.5 tesla set, chances are that there is no
prostate tissue included at all. In fact, in some of the 1.5 T cases the first image that
includes one of the prostate zones is the 11th slice (see yellow box in Fig. 3.2(d)). Even
then, obviously only few pixels represent prostate tissue as the inferior part of the gland
(apex) viewed as a cross-sectional cut is small in diameter (compare Fig. 2.1).

3.2 Development of an image viewer for visualization
of image and label data

An important initial part of the project was the development of a graphical user
interface (GUI) that serves as an image viewer. As mentioned in Section 3.1, patient
files are available in the DICOM format. The DICOM standard is described in [49].
A DICOM file contains a header and the image data. The included header stores
information about the type of scan, the image position and dimension, slice thickness,
pixel spacing and other data referring to the properties of the imaging device, setup of
the recording and the patient.

The viewer enables the radiologist to load and display all DICOM images out of an
available patient case. Images are thereby shown slice by slice whereas it can be scrolled
through them by pressing a key on the keyboard or by clicking on the next image in the
list. If the respective information is available in the header, all MR images are sorted by
SliceLocation. Otherwise their InstanceNumber is used to provide a proper arrangement.
This sorting routine was necessary to avoid errors introduced by inconsistencies in the
naming of files (image files were not always named in succession).

The GUI o�ers basic image processing functions that a�ect the visibility of the images.
These options include gray-value adjustment and histogram equalization. Furthermore,
the window level can be adjusted to enhance the visibility of certain tissues. Window
level settings can be saved to ensure maximum usability.

Another very important functionality in addition to the image viewing capability is
that manual contours can be drawn using this GUI. As described in Section 2.2.1, the
training data for a supervised learning algorithm consists of input vectors along with their
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Figure 3.3: GUI of image viewer.

corresponding targets. To collect proper targets for this application, tissue contours need
to be drawn by an expert. In case of the prostate, a radiologist needs to mark central
gland and peripheral zone on every image slice that shows these regions throughout all
patient cases. The outcome of this process for one slice is shown in Figure 3.1.

The image viewer that has been developed allows the radiologist to name all new con-
tours and save them to MAT-files as well as store them in NRRD format. Existing
contours can be edited as well. This editing process is simplified by providing the ability
to add or subtract parts to/from the marked region. These options prevent the need to
redraw the whole contour.

Tissue markups are visualized as an overlay of the image, whereas only region boundaries
are shown (illustrated in Figure 3.3). All available contours for a specific image slice can
be displayed at the same time whereas certain ones might be hidden as well. However, it
is only possible to edit one contour at a time. The current choice is specified through a
selection in the drop-down menu. The final contours need to be stored as a single NRRD
file in the same folder together with the images of the corresponding patient case.

3.3 Development of the segmentation algorithm
Having a complete training set available, a segmentation algorithm based on a super-

vised machine learning approach was developed. In this section, the most important
considerations for the development of this algorithm are described. A segmentation result
is achieved by processing three major steps: preprocessing, feature extraction and classi-
fication. Every step is explained in the following subsections. Afterwards the algorithm
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pipeline is illustrated and in addition the reasons for implementing a multi-layer topology
are explained in Section 3.3.4.

3.3.1 Preprocessing of input data
The first major part of the algorithm is a preprocessing step. This step is necessary

to gain prior knowledge of the input dataset characteristics and to perform adaptations
on the input that facilitate subsequent computations. The input dataset in this case
denotes a collection of one or more patient cases. Each patient case consists of multiple
MR image slices. As indicated in Section 3.1, the amount of slices thereby varies
depending on the imaging device and setup of the recording. Similarly, di�erences in
image resolution are present as well throughout the sets of patient cases. These and other
variations within the training set that have been addressed in Section 3.1.1, increase the
problem complexity. In case of the training set, expert labels of the prostate structure
are available in addition to the MR images.

The goal of preprocessing is to reduce variations within the image sets. Figure 3.4
illustrates the basic steps that are performed throughout this procedure. In order to
reach this goal it was found necessary to apply image adjustments and cropping methods.
In terms of image adjustments, mainly gray-level corrections are performed in order to
reach a certain homogeneity level of intensity values throughout di�erent patient cases.
Such window level corrections are applied to all images by reading windowCenter and
windowWidth parameters from the respective DICOM headers. The respective level
settings depend on the configuration of the imaging device used for the recordings.
Furthermore, a rescaled and smoothed representation of every image is formed in order to
eliminate noise artifacts and to further reduce data size. To suppress noise while preserv-
ing edges a median filter with a kernel size of 3◊3 pixels is used for the smoothing process.

The cropping step on the other hand is mainly introduced to reduce the amount of
input data for subsequent computations. In addition, it helps to compensate the prob-
lem of prostate position variations. Within this sequence, a maximum three-dimensional
bounding box is calculated that includes the whole prostate structure on every image slice
throughout all training cases (see Fig. 3.2). The resulting normalized cuboid position and
size are used to crop every image stack to reject unimportant structures. As visualized in
Figure 3.2(d), the cropping will especially a�ect all 1.5 T cases. The resulting image stack
has the same dimensions as the blue bounding box in Figure 3.2(d) and is illustrated in
Figure 3.4.

After this sequence the relative, averaged prostate position of patient cases recorded
at 1.5 tesla better matches with the positions in 3 T cases. This technique significantly
contributes to data reduction as well, because the prostate region of interest on body
MRI is commonly only visible on small sections of the image (e.g. see Fig. 3.1 where only
the outlined regions are of concern). The remaining parts of the image are unimportant
in the context of this application and referred to as background pixels throughout this
work.

Consider for example a patient case with image stack dimensions of 500 ◊ 500 ◊ 34.
After the cropping step with the bounding box, the stack is reduced to a size of
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160 ◊ 140 ◊ 14. The subsequent filtering and down-sampling process again reduces the
stack dimensions to a final size of 80 ◊ 70 ◊ 14. In this exemplary case the number of
pixels in the input stack is reduced from 8,500,000 to 78,400, which is a hundredfold
reduction.

Besides input size reduction, important information for succeeding feature extraction
is obtained throughout this preprocessing step. In addition to the bounding box that
includes the prostate structure, an average three-dimensional weighted center of the
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Figure 3.4: Preprocessing pipeline. The upper left figure shows the structure of the input
dataset. Exemplary cases out of the 1.5 T as well as 3 T set are shown. Training
cases are provided together with corresponding expert labels for the prostate cen-
tral gland (CG) and peripheral zone (PZ). In this illustration, the CG is colored
in blue and the PZ is represented in magenta. Utilizing the training labels, a max-
imum bounding box for the structure of interest is calculated (shown in the upper
right figure). The red cuboid represents the original calculation but in regard of
future testing cases that di�er from the training set, a tolerance is added result-
ing in the blue maximum bounding box. All images are resized and smoothed
to suppress noise artifacts. In order to minimize the amount of input data, all
pixels outside the bounding box are rejected as they are considered unimportant
for this application. The outcome of the preprocessing step are cropped versions
of the image stacks and the results for the weighted center point for each prostate
structure in the training set.
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prostate is computed. This center point is essential as a reference point for calculation
of distance measures (as described in Section 3.3.2).

All of the operations described above are possible because ground truth expert labels
are available for all training cases. The outputs of the preprocessing step are:

• For each original image stack, a cropped and smoothed version of every image in
this stack. A maximum three-dimensional bounding box (with added tolerance)
that includes the prostate on every patient case is calculated to obtain the cropping
limits. Only the cropped version of the stack is used for subsequent computations.

• A weighted center for each prostate structure in the training set.

For the generation of the test set, image stacks are cropped utilizing the constraints of
the bounding box obtained through the training step.

3.3.2 Feature extraction and input transformation

Feature extraction described in this section is important to create a good internal
representation of the visual information presented at the input. As no low-dimensional
clustering appears in the original input space (raw pixel values) it is not feasible for
the classifier to partition the image into the desired anatomical regions (cf. Fig. 2.3).
Therefore, a feature representation is created where nonlinear classification is made
possible for the learning algorithm. The algorithm should ideally be capable to label
every pixel with the category of the structure it belongs to. This process is known as
scene labeling or scene parsing [50].

To be able to later assign a class to a certain pixel, a feature vector for every input
pixel needs to be formed. The original pixel information is solely its gray-value intensity.
However, labeling each image pixel by only looking at it or a small region around it is
di�cult [50]. The category of a pixel may depend on various additional information
including its orientation in space and broader neighborhood context. Therefore,
additional properties that are relevant for a description of prostate zones are added to
each image pixel. These properties are referred to as features.

Features are extracted utilizing a feature extraction function f

I on each pixel within
the image stack Iq(i, j, l) as denoted in Equation 3.1. The feature extraction function is
applied to both train and test cases to generate a consistent input for a certain classifier
object.

X = f

Iq

Q

a
Qÿ

q=1
I(i, j, l)

R

b (3.1)

Q indicates the total number of cases. The final feature matrix then has a dimension
of the total number of pixels in all training cases u times the amount of features v. The
steps necessary to obtain this matrix are illustrated in Figure 3.5. The generated u ◊ v

feature matrix is denoted as X. The output T is either a u-dimensional vector or a u◊K
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dimensional matrix depending on the target coding scheme, which is addressed in Section
3.3.3. X and T are denoted in Equation 3.2.

X =

Q

ccccccca

xT
1

xT
2
...

xT
u

R

dddddddb

=

Q

ccccccca

x11 x12 x13 · · · x1v

x21 x22 x23 · · · x2v

... ... ... . . . ...
xu1 xu2 xu3 · · · xuv

R

dddddddb

and T =

Q

ccccccca

t1

t2
...

tu

R

dddddddb

(3.2)

X and T need to have the same amount of rows for the training phase. The final
training set D is generated by a combination of X and T, resulting in

D =
Ó1

xT
i , tT

i

2Ôu

i=1
or D = (X, T) . (3.3)

This approach results in a very large representation, which is why decreasing the amount
of input pixels during the preprocessing step accelerates all following computations. All
features are manually chosen and implemented, whereby all extraction methods are com-
bined in one feature extraction function f

I.
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Figure 3.5: Feature extraction pipeline. The figure to the left shows the structure of the input
dataset, obtained by performing the preprocessing step. Exemplary cropped cases
and center points out of the 1.5 T as well as 3 T set are shown. The feature matrix
X is obtained by executing the feature extraction function f

I. Every row in X

represents a single image pixel pi, where i = 1, ..., u. u denotes the total amount
of image pixels, summed over all cases Q in the train or test set, respectively. A
total of v features are calculated per pixel pi, resulting in the final matrix with
feature values x.

The remaining part of this section is dedicated to explain how these individual features
are obtained and why they are considered important to enable input clustering. Pixel
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characteristics that were implemented in this work include statistical parameters, two-
dimensional and three-dimensional neighborhood properties, distance and angle measures.
All feature values are normalized to reach an invariance in terms of image resolution,
image stack dimension (amount of slices) and gray-value distribution/range. The most
important features are described in the following paragraphs.

a) A priori and a posteriori probability maps

Considering all training cases, a normalized probability distribution for every target
label is calculated. A priori class probabilities for every image pixel are mapped onto a
cuboid and are averaged throughout all training cases. The size of the cuboid is deter-
mined by the average size of the image stacks used for training. A certain value (between
0 and 1) in the cuboid for the central gland structure represents the average probability
for a pixel on this position to belong to the central gland.
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Figure 3.6: Probability map for central gland (left) and peripheral zone (right) prostate struc-
tures, averaged over 50 training cases. (c) and (d) correspond to (a) and (b),
respectively, with some slices being hidden for better visibility. Red indicates high
and blue represents low class probabilities.

In Figure 3.6 exemplary probability map cuboids are illustrated. Obviously, if a pixel
is located near the weighted center of the structure, it has a very high probability to
belong to that structure. On the other hand, picking a pixel near the object boundary
results in lower probabilities as structure boundaries vary within the training cases which
in turn introduces uncertainties.
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To use this feature for one specific case for the first classification layer, the normalized
cube is resized in three dimensions to fit the current image stack. The second layer extends
the influence of this feature as a weighting of a priori probabilities is performed. Weighting
becomes possible by utilizing additional a posteriori class probabilities obtained from the
prediction result of the first layer. For detailed information on the layer architecture
see Section 3.3.4. This weighting step improves the accuracy of the probability map for
the current case by still maintaining average structure likelihoods to enhance the overall
prediction outcome.

Magnetic field strength

A value between zero and one is assigned according to the magnetic field strength of the
device used for image recordings. In this case this value is either 0 or 1 as only two cases
exist. Including this feature is important due to the di�erences in image characteristics
introduced by variations in magnetic field strength (cf. Sec. 3.1.1).

3D distance measures

During the preprocessing step described in Section 3.3.1, a weighted mass point for all
prostate structures included in the training set is determined. This center point informa-
tion is utilized to calculate distance features. 3D distance measures include the Euclidean
distance of the current pixel’s position to the weighted center of prostate structures in
millimeters. The conversion from pixels to millimeters is essential because of variabilities
in pixel spacing within the patient cases.

(a) (b)

(c) (d) (e)

Figure 3.7: Distance and position feature distributions. (a): Euclidean distance, (b): Man-
hattan distance, (c) and (d): y- and z distances, (e): Y position. Red indicates
high values at a large distance whereas blue represents small ones.

This distance measure was found to be helpful due to the approximately spherical
shape of the prostate. x, y and z distances from the center are also taken into account
to learn the average position of the prostate within an image stack. Besides measures
with respect to the center point which are all subject to symmetrical properties it was
found helpful to also include x and y positions according to the Cartesian coordinate
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axes as well as the current slice number. The symmetrical distance properties lead to
problems in properly detecting the peripheral zone position. To additionally enhance
the accuracy, the Manhattan distance is added which sums up x and y displacements.
Representative distributions of distance and position features are illustrated in Figure 3.7.

The mode of these distance calculations is di�erent depending on the input, which is
directly related to the algorithm condition. Basically, the two main states of the algorithm
are training and testing.

Within the training step, expert labels that are considered ground truth are available
corresponding to the images. For each case, the weighted center of the prostate can
therefore directly be deduced from the labels and the distance measures can be computed
with maximum accuracy.

In contrast to this situation, no labels are provided with the testing cases. This makes
sense as the goal is to predict labels utilizing an already trained algorithm. In this case,
the center points obtained within the preprocessing step during training are averaged to
gain a reference point for distance computations. Measurements calculated utilizing this
normalized, median center point are less accurate considering individual cases.

Spherical coordinates

In addition to distance measurements, spherical coordinates are used to describe the
position of a pixel in reference to a center point. The position of a pixel P is thereby
specified by three numbers: the radial distance r of that point from a fixed origin and
its angular displacement specified by elevation angle and azimuth angle (see Figure 3.8).
The elevation is thereby measured from the x-y plane, that means if elevation = 0, the
point is in the x-y plane. These parameters are particularly helpful for the detection of
the peripheral zone and are normalized in a way to profit from its common symmetrical
properties.

(a) (b) (c) (d)

Figure 3.8: Illustration of spherical coordinate feature distributions. (a): mapping from three-
dimensional Cartesian coordinates to spherical coordinates.5For the purpose of this
work the origin was translated to the weighted center point. (b): radial distance,
(c): elevation angle, (d): azimuth angle. Angles have been normalized to promote
certain symmetrical properties.
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Pixel gray-values

Within the preprocessing step described in Section 3.3.1, the original image stack is
resized and cropped resulting in an image stack with smaller dimensions. For the purpose
of this explanation this stack is denoted �1. In addition to dimensionality reductions,
window level adjustments are performed. This windowed version of the stack is labeled
�2.

In addition to �1 and �2 that have been obtained during preprocessing, a third image
stack �3 is now created. MATLAB’s medfilt2 function is used to apply median filtering
in a 3 ◊ 3 neighborhood on �2. The reason for choosing a median filter is that it reduces
"salt and pepper" noise while at the same time it preserves edges.

The gray-value of one pixel is then taken from the original but resized stack �1, the
windowed version �2 and the filtered version �3 of the image stack, resulting in a total of
three intensity values for one pixel.

3D neighborhood median and standard deviation

Beside single pixel gray-values, statistical parameters within a certain three-dimensional
neighborhood (e.g. 3 ◊ 3 ◊ 3 pixels) are considered. For this purpose, standard deviation
and median in a predefined pixel neighborhood are determined. Due to the cropping of
image slices during preprocessing the homogeneity of the prostate zones mostly exceeds
the homogeneity of surrounding tissue regions, leading to classification improvements
when implementing these neighborhood features.

In addition to the statistical representations it was found helpful to also include raw
intensity values of neighborhood pixels in the feature vector. Suppose a 3 ◊ 3 ◊ 3 pixel
neighborhood is chosen, then an additional 27 values are added to the feature vector of
the current pixel.

Feature adjustment and rounding

In a last step, a histogram equalization is applied to all characteristics in the final
feature vector to achieve equally distributed values utilizing the maximum range.
Moreover, all values are rounded to a certain amount of decimals.

3.3.3 Classification in the feature space

To achieve classification in the feature space, a classifier needs to be trained on pixel
features computed from the 50 cases training set. The features that are utilized are
described in detail in the previous Section 3.3.2. Besides features that represent the
classifier input X, also targets T are required for a supervised classifier training. A target
vector maps pixel characteristics (feature patterns) to the desired labels. Targets are
represented using a 1-of-K coding scheme resulting in a vector t of length K. If the
correct class is given with Cj, then all elements tk of t are zero except element tj, which

5MATLAB Release 2013a Documentation, The MathWorks, Inc., Natick, Massachusetts, United
States., http://www.mathworks.com/help/matlab/ref/cart2sph.html, date accessed: May 2013.

http://www.mathworks.com/help/matlab/ref/cart2sph.html
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is assigned value 1. Suppose K = 3 classes, namely background (class 1), peripheral zone
(class 2) and central gland (class 3) are available. Each pixel is a member of exactly one
of these regions. For instance, a pixel representing peripheral zone tissue (class 2) would
then be assigned the target vector

t = (0, 1, 0)T
. (3.4)

While some of the classifiers require the usage of this 1-of-K coding scheme, others need
a single-valued target. In this case that would result in

t = 2. (3.5)

The main task of the classifier is to determine patterns amongst the features that
characterize pixels. Pixels that are members of di�erent classes should be distinguishable
by varying feature patterns. The level of disparity between feature patterns of di�erent
class members directly influences the decision strength of the classifier. This property is
influenced by the manual feature selection process which is why the type of implemented
characteristics were chosen according to their validity.
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Figure 3.9: Distribution of radial distance feature for one case in the second layer, illustrated
as a scatter plot in (a) and a histogram plot in (b). In both plots blue visualizes
background, green represents central gland and red denotes peripheral zone class
membership. During the feature extraction step the radial distance is calculated
for every image pixel. The resulting values for all pixels within one patient case are
plotted on the horizontally-aligned x-axis. Values are normalized and range from
0 to 1. Every dot in Figure (a) represents an image pixel that is colored according
to its target label and vertically positioned depending on its radial distance value.
A noise o�set in vertical y-axis direction has been added for better visibility. Sim-
ilarly, in Figure (b) the amount of pixels having a certain radial distance value are
summed up, resulting in a histogram plot. In both plots it can be seen that pix-
els having large radial distance values are most likely representatives of the class
background whereas small distance measures indicate prostate membership.

For example Figure 3.9 illustrates the distribution of the radial distance feature for one
patient case out of the 3 T training set. Radial distances for all pixels are calculated with
respect to the mass point and mapped to a range of zero to one. The resulting values
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are plotted and colored depending on their target class. It appears that pixels located
away from the mass point, thus having a large radial distance, belong to the background
(colored blue in Figure 3.9). As desired, pixels located close to the mass point are most
likely a member of the prostate gland.

In Figure 3.9, points plotted in green belong to the central gland and points colored
in red are associated with peripheral zone tissue. Both classes mainly appear in the
lower distance range. Due the relatively low overlap of background and prostate gland
pixels it is assumed that the radial distance is a good feature for the classification
process. It helps to detect pixels belonging to the prostate; however, it is less useful
for distinguishing between prostate zones. This is the reason why multiple features are
added together to achieve optimal conditions for the classifier input.

The goal of the classifier training phase is to learn a model or decision function g that
maps the input to the correct output. The form of the model is determined based on the
training set D. Subsequently, the function g can be applied to novel input XÕ where no
label data (class assignment) are available. This procedure is referred to as prediction
step (see Equation 3.6). The ability to predict outputs given unknown input data is made
possible through generalization of the model, which is an important goal in this case. The
accuracy of the prediction output depends amongst others on the amount of samples for
each class that are included in D.

training: D = (X, T) æ g prediction: T̂ = g(XÕ) (3.6)

Transferred to this application, the goal is to train a model based on existing MR
patient cases and corresponding expert labels to enable predictions of prostate zones on
novel patient cases. To achieve this goal, various classifiers have been implemented and
an extensive evaluation is provided in Chapter 4. In the following, a brief explanation of
classifier implementations is provided.

Random Forest

The random forest classifier is implemented using MATLAB’s TreeBagger class to
create an ensemble of decision trees for either classification or regression. To construct the
class, a number of parameters need to be specified. For this application, the TreeBagger
class is constructed and trained as follows:

Listing 3.1: Construction of TreeBagger object
1 % train
2 rf = TreeBagger (...
3 NumTrees ,... % number of decision trees grown
4 trainingset .features ,... % features
5 trainingset . targetsSingleColumn ,... % targets
6 ’Method ’, ’classification ’ ,... % method used by trees
7 ’NPrint ’, NumPrint , ... % for console output (# cycles )
8 ’NVarToSample ’, sNVarToSample ,... % number of random variables at split
9 ’Options ’, paroptions , ... % options structure

10 ’oobpred ’, LogPredictionConvergence , ... % set either ’on ’ or ’off ’
11 ’oobvarimp ’, LogVariableImportance ... % set either ’on ’ or ’off ’
12 );
13

14 % predict
15 [YFIT , scores ] = predict ( rf , testcase . features );
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The NumTrees parameter hereby specifies the number of decision trees that should be
constructed in the ensemble. Computed features and targets coded using scheme (3.5)
are contained in the training set and accessed through trainingset.features and
trainingset.targetsSingleColumn respectively.

Another very important parameter is NVarToSample. It specifies the number of features
that are selected at random for each decision split. By default, this value is set to the
square root of the total number of feature variables (cf. V1-VN in Fig. 3.5).

The Options structure specifies computational options. In this case the Parallel Com-
puting Toolbox™ is used to open a matlabpool to compute decision trees in parallel,
following the code in Listing 3.2.

OOBPred and OOBVarImp parameters are used to assess out-of-bag class probabilities
and to estimate out-of-bag feature importance in the ensemble (described in Sec. 2.2.9).
Both values are only set to ’on’ for evaluation purposes. For more information regarding
out-of-bag estimates it is referred to L. Breiman’s descriptions in [48].

Listing 3.2: Parallel options
1 matlabpool ( ... % open a MATLAB pool by specifying
2 ’local ’, ... % matlabpool profile and
3 12 ... % matlabpool size
4 )
5 paroptions = statset ( ’UseParallel ’, true );
6

7 % ... construct and train classifier ...
8

9 matlabpool close

Neural network

The framework includes three di�erent implementations of neural networks. For fast
prototyping the current version of this software application makes use of either the
DeepLearnToolbox (DLT)6 developed by R. B. Palm [51] or MATLAB’s Neural Network
Toolbox™. Using the DeepLearnToolbox, a multilayered feedforward backpropagation
neural network is initialized as shown in Listing 3.3.

Parameter values in Listing 3.3 do not reflect values of the final setup; however, they
provide a general idea of the configuration process. One major part of setting up the
neural network is to specify its topology. The first layer contains neurons equal to the
amount of input features and is called the input layer. If, for example, the pattern for
one pixel consists of 40 features, this layer is comprised of 40 neurons.

Similarly, the number of nodes in the output layer are determined by the amount of
target classes. In case of this application, three target classes exist. The only neuron count
that is specified by the user is the amount of hidden neurons as well as the number of
hidden layers. In Listing 3.3 three hidden layers, each with either 150, 100 or 50 neurons
are defined. There is no universally applicable rule to determine the "best" number of
layers and neurons, respectively. The network topology that works best for a specific
application can only be assessed by performing experiments. Evaluations for this work
can be found in Chapter 4.

6The DeepLearnToolbox by R.B. Palm is available at https://github.com/rasmusbergpalm/
DeepLearnToolbox, date accessed: July 2013.

https://github.com/rasmusbergpalm/DeepLearnToolbox
https://github.com/rasmusbergpalm/DeepLearnToolbox
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Listing 3.3: Neural network implementation using the DLT
1 % configure number of neurons in each layer
2 inputsize = size( trainingset .features ,2); outputsize =
3 size( trainingset . targetsMultiColumn ,2); NumHidden = [150 100 50];
4 NeuronsPerLayer = [ inputsize NumHidden outputsize ];
5

6 % set up neural network
7 nn = nnsetup ( NeuronsPerLayer );
8

9 nn. normalize_input = 0; % input normalization disabled ; already normalized
10 nn. learningRate = 1; % learning rate parameter
11 nn. activation_function = ’sigm ’; % Sigmoid activation function
12 opts. numepochs = 4; % Number of iterations through the training data
13 opts. batchsize = 20; % Take a mean gradient step over this many samples
14

15 % train network
16 nn = nntrain ( ...
17 nn , ... % network that has been preconfigured
18 trainingset .features , ... % features
19 trainingset . targetsMultiColumn , ... % targets in 1-of -K coding scheme
20 opts );
21

22 % predict
23 prediction = nnpredict (nn , testcase . features ); scores = prediction . scores ;
24 labels = prediction .i;

Network training is performed during multiple epochs defined by opts.numepochs
with the goal of reducing the overall mean squared error. The DLT requires
the target vector to be formatted in the 1-of-K coding scheme; therefore, the
trainingset.targetsMultiColumn set is used.

When configuring the batchsize parameter it is important to know that the total
number of input samples has to be divisible by the batchsize value with a remainder of
0. However, the number of samples varies depending on the composition and amount of
training cases. Therefore, the developed framework only allows a desired value for the
batch size to be set and internally determines the maximum size that can be used and
treats the desired value as a limit. Thus the actually used batchsize might be smaller
than intended by the user.

Neurons use sigmoidal activation functions and weights are adjusted by back-
propagating the error at the output units. Label prediction is accomplished by executing
a feed-forward step with pixel features for current patient cases as network inputs. Final
labels are assigned according to the maximum of resulting class probabilities. One
drawback of this toolbox is that it does not directly support the use of parallel computing.

In addition to a feed-forward network, a Deep Belief Network (DBN) is implemented
using the DLT. The configuration process of a DBN is shown in Listing 3.4. For the
usage in this application, the main di�erence to the feed-forward network is the network
setup. As it can be seen in Listing 3.3, the feed-forward net is set up using the nnsetup
method. As a result, neurons within all layers are initialized with random weights. Thus,
each time a feed-forward network is initialized the network parameters are di�erent and
might produce a di�erent solution. Introducing the additional step of training a DBN on
the other hand ideally leads to better initializations of weights.

Notice that the deep belief network in Listing 3.4 is set up and trained by basically
utilizing only the features as input. This type of network is capable of recognizing patterns
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and performing input clustering without requiring any targets and thus represents an
unsupervised learning approach. In fact, this is the strength of a deep belief network. In
many applications it replaces the time-consuming manual feature selection process and
enables input clustering using raw input data. However, within the application described
in this work, the network input is comprised of the feature matrix obtained during the
feature extraction step. The goal here is to obtain a better pre-initialization of the weight
matrix. Using dbnunfoldtonn, which replaces nnsetup, the DBN network is unfolded to
create a feed-forward network and the following steps remain unchanged.

Listing 3.4: Deep belief network implementation using the DLT
1 % configure number of neurons in hidden layers
2 NumHidden = [100 100];
3

4 % set up deep belief network
5 dbn. sizes = NumHidden ; % set up a 100 -100 hidden unit DBN
6

7 dbn. normalize_input = 0; % input normalization disabled ; already normalized
8 dbn. learningRate = 1; % learning rate parameter
9 dbn. activation_function = ’sigm ’; % Sigmoid activation function

10 opts. numepochs = 4; % Number of iterations through the training data
11 opts. batchsize = 20; % Take a mean gradient step over this many samples
12 opts. momentum = 0; opts. alpha = 1;
13

14 % perform DBN setup and training
15 dbn = dbnsetup ( dbn , trainingset .features , opts ); dbn = dbntrain ( dbn ,
16 trainingset .features , opts );
17

18 % use DBN weights to initialize a NN
19 nn = dbnunfoldtonn ( dbn , size( trainingset . targetsMultiColumn , 2) );
20 nn. activation_function = ’sigm ’;
21

22 % train neural network
23 nn = nntrain ( nn , trainingset .features , trainingset . targetsMultiColumn , opts
24 );
25

26 % predict
27 prediction = nnpredict (nn , testcase . features ); scores = prediction . scores ;
28 labels = prediction .i;

In addition to the implementations above using the DeepLearnToolbox, a neural network
is created with the MATLAB toolbox for neural networks (cf. Listing 3.5). The process
is similar but with the advantage of native support for parallel computing.

A patternnet is related to a feedforwardnet with the exception that it uses a hyper-
bolic tangent sigmoid transfer function in the last layer. A network is trained according to
nn.trainFcn and nn.trainParam. The training stops if the maximum number of epochs
specified through nn.trainParam.epochs is reached or a performance goal is met. Vali-
dation is performed internally.

Listing 3.5: Neural network implementation using the Neural Network Toolbox™

1 % configure number of neurons in hidden layers
2 NumHidden = [100 100];
3

4 % set up patternnet
5 nn = patternnet (
6 NumHidden , ... % set up a 100 -100 hidden unit NN with
7 ’trainscg ’ ); % Scaled Conjugate Gradient training function
8

9 nn. trainParam . epochs = 2000; % maximum number of training iterations
10 nn. trainParam .show = 1;
11 nn. trainParam .time = 2000; % maximum training time
12 nn. trainParam . showWindow = 1;
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13

14 % train neural network
15 matlabpool ( ’local ’, 12 ) % open matlabpool
16

17 nn = train (nn , ... % preconfigured network
18 trainingset .features ’, ... % features ( transposed )
19 trainingset . targetsMultiColumn ’ ,... % targets ( transposed )
20 ’useParallel ’,’yes ’ ,... % calculation on parallel workers
21 ’showResources ’,’yes ’ ,... % command line resource usage output
22 ’useGPU ’,’yes ’); % calculations on gpu device if suported
23

24 matlabpool close ; % close matlabpool
25

26 % predict
27 scores = nn( testcase .features ’ ); labels = vec2ind ( scores ) ’;

K-means

In Listing 3.6 the creation of a k-nearest neighbor classification object is shown. The
distance metric and the number of neighbors can be specified using key-value argument
pairs of Distance and NumNeighbors parameters, respectively. Predictions are made by
calling the predict method. Note that the ClassificationKNN object contains all the
data used for training.

Listing 3.6: K-means implementation
1 % train
2 km = ClassificationKNN .fit( ...
3 trainingset .features , ... % features
4 trainingset . targetsSingleColumn , ... % targets in single column format
5 ’BreakTies ’, ’nearest ’, ... % if multiple classes have the same smallest

cost
6 ’Distance ’, ’euclidean ’, ... % distance metric
7 ’DistanceWeight ’, ’equal ’, ... % specifies distance weighting function .
8 ’NumNeighbors ’, 1, ... % number of nearest neighbors
9 ’prior ’, ’empirical ’ ); % prior probabilities for each class

10

11 % predict
12 [labels , scores ] = predict ( km , testcase . features );

Naive Bayes

With the training samples this method estimates the parameters of the probability
distribution of features given the corresponding class labels. After the classifier has been
trained, it can compute posterior class probabilities for unseen test samples. Test samples
are classified according to the largest posterior probability. The general implementation
process is described shortly in Listing 3.7.

Listing 3.7: Naive Bayes implementation
1 % train
2 nb = NaiveBayes .fit( ...
3 trainingset .features , ... % features
4 trainingset . targetsSingleColumn , ... % targets in single column format
5 ’Distribution ’, ’normal ’, ... % distribution for data modeling
6 ’Prior ’, ’empirical ’ ); % prior probabilities for each class
7

8 % predict
9 labels = nb. predict ( testcase . features ); scores = posterior ( nb ,

10 testcase . features );
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3.3.4 Motivation for a two layer topology

This section presents the algorithm pipeline and addresses details in terms of topology.
Considering the features described in Section 3.3.2, one can see that many of them
are distance-based. Hence, the computation strongly relies on the prostate mass point
and bounding box calculations and subsequent image stack cropping performed during
preprocessing (cf. Section 3.3.1). Due to the fact that the prostate gland is subject
to strong inter-patient variabilities in size and shape, the variance within the distance
feature values of di�erent patient cases is significant.

Consider for example the radial distance feature. If the prostate gland is small relative
to the bounding box, a normalized radial distance of 0.4 will not include prostate tissue
any more. On the contrary, in case of a large gland, even a radial distance value of 0.8 may
include one of the prostate zones. This characteristic leads to di�culties within the clas-
sifier training phase, because in one case a feature value of 0.4 indicates a member of the
background class, whereas in the other case this value is far from representing background.
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Figure 3.10: This figure illustrates the algorithm pipeline and two layer topology. In a first
preprocessing step, dataset knowledge is extracted in the form of an average
mass point and a maximum bounding box (1). This information is bundled in
�Localization and the available training cases are then used to generate the training
set DLocalization (2). Afterwards, the first classifier is trained utilizing DLocalization.
In an analogous manner the classifier of the labeling layer can be trained (3, 4).
The main di�erence is in computing �Labeling. The second classifier requires
a more accurate bounding box based on a previous localization of the prostate.
This localization is simulated by an exact bounding box computation based on the
ground truth labels. Once the classifiers are trained, novel input can be processed.
Steps A to D indicate this procedure. Firstly, a new input stack is cropped based
on the previously determined maximum bounding box and a feature matrix X

Õ

is calculated that serves as an input for the first classification layer (A). Based
on the output results, a new bounding box is obtained that is more accurate
(B). Feature values are adjusted and a label prediction is performed through
the second classifier (C). After postprocessing, the final segmentation output is
obtained (D).
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During testing it was found that one classification layer does not produce satisfying
results. It is considered that distance features have a high impact on the decision-making
process; however, the calculations su�er from the problems described above. To overcome
this inaccuracy, a second classification layer is designed that works on the results of the
first layer, resulting in a hierarchical topology. The basic concept is illustrated in Figure
3.10. The aim of the first classifier is to locate the prostate within the image stack,
therefore it is called localization layer. Due to its responsibility for outlining the prostate
zones, the succeeding classifier is then denoted labeling layer.

It is important to note that now both of the classifiers need to be trained, based on
varying training sets. The most important aspect is that the first layer uses a maximum
bounding box (calculated over all training cases) for the cropping procedure, which has
an impact on all distance features. On the other hand, training of the second classifier
is based on an exact bounding box for each case that is obtained from the ground
truth labels. This step is necessary as it simulates prior knowledge of the prostate
location. In the prediction phase this knowledge is determined by the output result of
the localization layer. Besides the bounding box, the mass point computation is a�ected
by this hierarchical model as well (average mass point vs. true mass point for each case).

Steps A to D in Figure 3.10 describe the prediction phase of the algorithm that can be
performed once all classifiers are properly trained. The proposed algorithm is capable of
executing a prediction for one case at a time. Hence, for n cases steps A-D have to be
repeated n times. A new image stack I(i, j, l) is cropped utilizing the maximum bounding
box obtained during preprocessing in the training phase, resulting in IÕ(i, j, l). In addition
to cropping, other preprocessing steps are executed including gray-level transformations
and down-sampling. Next, feature extraction XÕ

1 = f

I (IÕ(i, j, l)) is performed to generate
the input XÕ

1 for the first classifier and consequently to produce a prediction result T̂1 =
g1(XÕ

1).
Utilizing the bounding box computation based on T̂1, the original input I(i, j, l) is

cropped obtaining IÕÕ(i, j, l). IÕÕ(i, j, l) is then smaller in terms of dimensions than IÕ(i, j, l)
of the first layer. Moreover, the actual mass point of the predicted prostate structure
in T̂1 is determined. Features are then extracted from IÕÕ(i, j, l) by additionally using
the information of the prediction result to gain XÕ

2 = f

I (IÕÕ(i, j, l)). XÕ
2 serves as input

for the second classifier in order to predict T̂2 = g2(XÕ
2). After a minor postprocessing

routine the final prediction result T̂ is obtained.

The proposed algorithm does not require user interaction of any kind and consequently
represents a fully automated approach for prostate zonal segmentation. The framework
is capable of simulating di�erent topologies; thus, algorithm modes have been developed.
Figure 3.10 shows the A2 mode, which identifies an automated mode incorporating two
classification layers. For comparison purposes, an A1 mode has been preserved where
only the first localization layer is used. Naturally, this mode provides the least accurate
results due to the variabilities of the prostate discussed before. However, the A1 mode
is still very important as the result of the first layer directly a�ects the second classifier
input. Hence, special focus is directed to the robustness of the first layer and the A1
mode therefore enables a separate simulation.
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The third mode represents an interactive approach and is called I mode. It is common
practice amongst radiologists at the MD Anderson Cancer Center to mark the extent of
the prostate structure within an MR image stack with a measurement on the sagittal,
coronal and transversal planes. This tree-axis linear dimension measurement of expert
markups directly corresponds to the bounding box computation performed for the au-
tomated modes. Consequently, this knowledge can be incorporated to crop every image
stack with high accuracy. Hence, novel test cases can be cropped precisely due to the ad-
ditional information regarding the prostate position. Note that cropping for the A2 mode
is based on the prediction outcome of the first layer and therefore is subject to inaccura-
cies. The I mode was denoted interactively because in case these dimensional markups are
not available, they could be added on the fly by a user (assuming the GUI supports this
kind of interaction). This minimal interaction results in the most accurate segmentation
outcome. This can be seen in Section 4.2.2, which provides a result comparison for the
three algorithm modes.

3.3.5 Postprocessing of the prediction result

The proposed algorithm solves the segmentation problem by means of pixel classifica-
tions. The output T̂ therefore consists of raw pixel assignments. To obtain a smooth
surface or volume, minor postprocessing tasks are necessary. The predicted image stack
includes labels for central gland ("CG") and peripheral zone ("PZ"). In a first step, two
binary image stacks Icg and Ipz are created that include either central gland labels or
peripheral zone assignments, respectively.

Icg(i, j, l) =
Y
]

[
1 if T̂(i, j, l) = "CG"
0 otherwise

Ipz(i, j, l) =
Y
]

[
1 if T̂(i, j, l) = "PZ"
0 otherwise

(3.7)

To remove pixel outliers and to close holes within the predicted structure of the re-
spective prostate zone, morphological erosion and dilation are applied to each individual
slice l in Icg and Ipz. Secondly, it was found that the overall robustness of the output
result could be increased by smoothing the zonal shape of the prostate. Hence, a three-
dimensional Gaussian smoothing is performed on both binary image stacks utilizing a
3◊3◊3 dimensional filter kernel. Afterwards, the processed Icg and Ipz are again merged
to form one label stack. This output is then rescaled to the original image dimensions to
undo the size reductions performed during cropping and down-scaling (see Section 3.3.1).

The result represents the final algorithm segmentation output and is then saved as
NRRD file for further consideration (e.g. inspection with the image viewer presented in
Section 3.2). The NRRD save function was implemented in MATLAB and developed for
the purpose of this work.

3.4 Framework development
Upon completion of the algorithm development, the segmentation routine has been ap-

plied and tested on a variety of datasets. It has been found that the algorithm code is very
inconvenient to use and to configure for all kinds of situations. Hence, the development
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was continued to generate a framework that incorporates the segmentation algorithm and
image viewer presented in sections 3.3 and 3.2, respectively. The goal is to provide an
easy-to-use interface to test and adopt the segmentation routine on novel data.

property name type description

PATH_TRAINING_CASES char Path to the respective training images and labels.

PATH_TESTING_CASES char Path to the respective testing images (if needed).

CALCVOLUME logical Enable/Disable volume calculation.

CLASSIFIER_MODE char Algorithm mode (’A1’,’A2’ or ’I’).

CLASSIFIER_TYPE char Type of classifier (e.g. ’RF’ = Random Forest).

CLASSIFIER_SETTING structure Contains settings for the chosen classifier type (e.g. number of trees).

FEATURE_SELECTION_LOCALIZATION structure Incorporated features and neighborhood size for the localization layer.

FEATURE_SELECTION_LABELING structure Same as above but for the labeling layer.

FRACTION_TRAINING numeric Fraction training/validation for cross-validation purposes (e.g. 0.85).

NUM_ITERATION_EVALUATION numeric Number of cross-validation cycles.

ALL_REGIONS_LOCALIZATION logical Should the local. layer distinguish between structure regions or take the whole object.

Table 3.1: Properties of the MedObjSegmentation class.

Basically, the classification algorithm and all input and output generation processes
have been integrated into one MedObjSegmentation class. During the construction of an
object of the class MedObjSegmentation, default property values and paths are set. In
addition, public properties then allow the configuration of this object and tasks can be
executed via public function calls.

Table 3.1 lists primary class properties that are used mainly for configuration purposes.
Public methods are listed in Table 3.2. Most of the class methods are designed for
evaluation tasks, for example, cross-validation and error computation functions. They
are used to test the algorithm performance on di�erent datasets to find a robust setting.
Once this setting is found, a classifier object can be generated, trained on a training set
and saved to the hard drive (or external storage device).

function name description

generateTrainingSet Generate a training set (involves feature extraction using images and corresponding labels).

loadTrainingSet Loads an existing training set (a training set can be saved).

generateTestingSet Generate a testing set.

loadTestingSet Loads an existing testing set.

loadExistingClassifier Loads a pretrained classifier object.

performClassifierTraining Perform classifier training using a generated training set as input.

performPrediction Predict labels for a certain test set.

performCVStep Perform one cross-validation step.

performPassThrough Combines train and test set generation, classifier training and output prediction.

loadResult Loads an output result for further processing.

plotResult Plots an output result showing all respective MR image slices.

getPredictionError Computation of error metrics (requires ground truth labels).

evaluateClassifier Performs certain amount of CV steps optionally with varying training set size.

plotCase Plots one case with three-dimensional volume view.

saveNRRDs Save output result (labels) as NRRD file.

Table 3.2: Methods of the MedObjSegmentation class.

The image viewer is able to create or work with instances of the MedObjSegmentation
class. For instance, it can load images of a patient case and call prediction functions that
use the pretrained classifier object to generate an output. The output result can then be
viewed directly with the image viewer as contours of the predicted structure regions are
plotted onto each image slice. The short overview of the most important public class
methods listed in Table 3.2 together with the large variety of configurations through class
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properties demonstrates the possibilities of the framework for further research purposes.

3.5 Description of error metrics
Despite visual inspection being considered as the best evaluation process, the

calculation of various error metrics has been implemented to enable reliable result
comparison. It is important to note that these calculations can only be performed for
the training set because ground truth labels need to be available. Hence, the metrics
are used mainly for cross-validation purposes. Computations are applied to both of the
predicted prostate zones following the scheme illustrated in Algorithm 1.

Suppose the ground truth targets T and predicted class assignments T̂ are available.
Both of them consist of the label stacks Lq(i, j, l) or L̂q(i, j, l), whereby q = 1, ..., Q and
Q represents the total amount of predicted patient cases. Each of these label stacks can
then be split according to the class memberships to generate Lq,k(i, j, l) or L̂q,k(i, j, l) with
k = 1, ..., K. K thereby indicates the total number of class labels.

This partitioning is performed to evaluate the segmentation outcome for the
two prostate zones separately. Error metrics are then calculated for the central
gland and peripheral zone class labels throughout all test cases. The final score
for the Dice similarity coe�cient (DSC) ÷k,dice per label k is obtained by averaging
the individual case scores ÷q,k,dice over all patient cases. Analogous, other scores are
determined. The following subsections describe the calculation of individual error metrics.

Algorithm 1 Error calculation process.
Require: T, T̂ Û ground truth and prediction result for patient cases 1 to Q

T æ qQ
q=1 Lq(i, j, l) æ qQ

q=1
qK

k=1 Lq,k(i, j, l)
T̂ æ qQ

q=1 L̂q(i, j, l) æ qQ
q=1

qK
k=1 L̂q,k(i, j, l)

for q Ω 1 to Q do Û for all patient cases
for k Ω 1 to K do Û for all class labels

÷q,k,dice Ω DiceSimilarity2DImage(Lq,k, L̂q,k)
÷q,k,Hausdor� Ω HausdorffDist(Lq,k, L̂q,k)
...

end for
end for

÷k,dice Ω 1
Q

qQ
q=1 ÷q,k,dice Û average error over all patient cases

÷k,Hausdor� Ω 1
Q

qQ
q=1 ÷q,k,Hausdor�

...
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3.5.1 Dice coe�cient

The Dice coe�cient is used to compare the similarity of ground truth segmentation and
prediction result. Given two images X and Y , the index ÷dice is calculated as

÷dice(X, Y ) = 2 |X fl Y |
|X| + |Y | . (3.8)

In terms of false positive (FP), false negative (FN), true negative (TN), and true positive
(TP) counts, this formula may also be written as

÷dice = 2 ◊ TP

(FP + TP ) + (TP + FN) . (3.9)

The higher the value for ÷dice, the better is the match between the segmentation result
and the manually generated expert labels. A value of 0 denotes no overlap and a value
of 1 indicates perfect agreement. In terms of this work, the Dice coe�cient is computed
following Dr. Rex Cheung’s implementation7 (cf. Listing 3.8).

Listing 3.8: Dice coe�cient computation
1 % Copyright (c) 2012 , Rex Cheung
2 % All rights reserved .
3 function DiceCoef = DiceSimilarity2DImage ( img1 , img2 )
4 %1. set one image non -zero values as 200
5 img1(img1 >0) =200;
6

7 %2. set second image non -zero values as 300
8 img2(img2 >0) =300;
9

10 %3. set overlap area 100
11 OverlapImage = img2 -img1;
12

13 %4. count the overlap100 pixels
14 [r,c,v] = find( OverlapImage ==100) ;
15 countOverlap100 =size(r);
16

17 %5. count the image200 pixels
18 [r1 ,c1 ,v1] = find(img1 ==200) ;
19 img1_200 =size(r1);
20

21 %6. count the image300 pixels
22 [r2 ,c2 ,v2] = find(img2 ==300) ;
23 img2_300 =size(r2);
24

25 %7. calculate Dice Coef
26 DiceCoef = 2* countOverlap100 /( img1_200 + img2_300 );
27 end

3.5.2 Hausdor� distance

The Hausdor� distance represents a measure of the greatest of all the spatial distances
from a point in one set to the closest point in the other set in a Euclidean metric
space. Suppose set A = {a1, ..., ap} contains all points of the prediction result and set
B = {b1, ..., bq} all points of the ground truth segmentation. For one point a1 in A, the

7DiceSimilarity2DImage(img1, img2) by Dr. Rex Cheung is available at http://www.mathworks.
com/matlabcentral/fileexchange/36322-inspire-utility-to-calculate-dice-coefficient, file
version: April 23, 2012, date accessed: July 2013.

http://www.mathworks.com/matlabcentral/fileexchange/36322-inspire-utility-to-calculate-dice-coefficient
http://www.mathworks.com/matlabcentral/fileexchange/36322-inspire-utility-to-calculate-dice-coefficient
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distances to all points bj in B (1 Æ j Æ q) are calculated. Amongst the resulting values,
the minimum distance is found and saved. This process is repeated for all other points
ai in A, where 2 Æ i Æ p. Following this, the overall largest of these minimum distances
then determines the value of h(A, B), referred to as the directed Hausdor� distance [52].

In mathematical terms, the directional Hausdor� distance is defined as

h(A, B) = max
aœA

3
min
bœB

(Îa ≠ bÎ)
4

. (3.10)

As desired, the function h(A, B) finds the point a within the prediction set A that is
farthest from any point in B and measures the distance from a to its nearest neighbor
in B. Analogous, h(B, A) is computed finding the point b œ B that is farthest from its
corresponding point (point of minimal distance) in A. The final score ÷Hausdor� for the
Hausdor� measure is then defined as

÷Hausdor� = max (h(A, B), h(B, A)) . (3.11)

The Hausdor� distance quantifies how well prostate boundaries in a prediction output
correspond to boundaries in the ground truth segmentation by indicating worst case
deviation. Calculation of the Hausdor� distance is performed using a MATLAB imple-
mentation by Zachary Danziger8.

3.5.3 Sensitivity

The sensitivity measure indicates the fraction of true positives that were included in a
segmentation and is calculated using the formula

÷sensitivity = TP

TP + FN

. (3.12)

The best score would be 1, suggesting that all pixels in the ground truth segmentation
were also included in the segmentation result. While this measure basically represents the
fraction of true positives that were correctly detected, it does not consider false positives
and true negatives. Due to this characteristic, sensitivity should never be used without a
specificity measure to describe the segmentation quality.

3.5.4 Specificity

Specificity measures the fraction of negatives that are correctly detected determined by
the formula

÷specificity = TN

TN + FP

. (3.13)

For the prostate segmentation task described in this work, a score of 1 for specificity
indicates that all non-prostate pixels were labeled as background; a value of 0 suggests

8HausdorffDist(P,Q,lmf,dv) by Zachary Danziger is available at http://www.mathworks.com/
matlabcentral/fileexchange/26738-hausdorff-distance, file version: April 3, 2013, date accessed:
July 2013.

http://www.mathworks.com/matlabcentral/fileexchange/26738-hausdorff-distance
http://www.mathworks.com/matlabcentral/fileexchange/26738-hausdorff-distance
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that all non-prostate pixels were labeled as either one of the prostate zones. Again, the
specificity measure should be accompanied by a sensitivity score to achieve reliable and
informative results. Both sensitivity and specificity are computed using classperf as
shown in Listing 3.9.

Listing 3.9: Evaluating classifier performance using MATLAB’s classperf
1 % create classifier performance object and extract error measures of interest
2 CP = classperf ( groundTruthLabels , classifierPrediction ) % Evaluate classifier

performance
3

4 % Correctly Classified Positive Samples / True Positive Samples
5 Sensitivity = CP. Sensitivity ;
6

7 % Correctly Classified Negative Samples / True Negative Samples
8 Specificity = CP. Specificity ;
9

10 % Correctly Classified Positive Samples / Positive Classified Samples
11 PositivePredictiveValue = CP. PositivePredictiveValue ;
12

13 % Incorrectly Classified Samples / Classified Samples
14 ErrorRate = CP. ErrorRate ;



Chapter 4

Results

An evaluation of the first prototype of the initial one-layer framework (basically A1
mode described in Section 3.3.4) was performed through the participation at the
2013 NCI-ISBI Grand Challenge on Automated Segmentation of Prostate Structures.
This approach used a feed-forward neural network for classification purposes. The
classification algorithm was pretrained using patient cases of the training set described in
Section 3.1. A testing set of 10 new prostate MRI cases was provided for label predictions
during the on-site challenge. The execution of training and prediction routines was
automated, thus requiring absolutely no user interaction.

In total, five error metrics were considered for comparison and accuracy mea-
surement of label prediction results and ground truth (expert) markups. All metrics
were averaged over the 10 testing cases to obtain final scores. The developed algorithm
ranked third out of five international approaches, reaching average DSCs of 0.38 for
the PZ and 0.68 for the CG. For consideration of worst case scenarios and outliers the
Hausdor� distance of boundaries was computed, which resulted in values between 9 mm
to 10 mm for both of the prostate zones. Specificity results were 0.997 for PZ and 0.999
for CG, representing the overall robustness of the algorithm.1

In further course of the development the accuracy of the algorithm was enhanced
amongst others by adding a second network layer (cf. Section 3.3.4) and the interac-
tive (I-) mode. Moreover, additional features were incorporated to improve the quantity
of descriptive information that is extracted from the input data. An extensive evaluation
of the current algorithm performance is provided in the following sections. At first, an
overview of the experimental setup for all framework evaluations is provided. This includes
a description of the cross-validation concept, computer hardware and result visualization
properties.

Afterwards, the suitability of various implemented classifiers for prostate zonal segmen-
tation in magnetic resonance images is proven based on di�erent training and testing
data. All classifiers o�er certain options for configuration purposes; thus, test runs were
performed to ascertain a robust setting with maximum prediction accuracy. These ex-
periments include an analysis of the number of random variables at each decision split in

1MIDAS Digital Archiving System provided by Kitware Inc., NCI-ISBI 2013 Prostate Challenge,
http://challenge.kitware.com/midas/community/5, date accessed: April 2013.
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a decision tree, presented in Section 4.2.1. In addition, Section 4.2.2 evaluates the label
prediction accuracy for each of the three di�erent algorithm modes, termed A1, A2 and
I, based on a random forest classifier.

In terms of neural networks, one of the major properties that can be specified by the user
is the hidden layer topology. This setting as well as the proper choice for the network train
function are addressed in Section 4.3.1 and Section 4.3.2, respectively. Lastly, sections
4.4 and 4.5 assess the applicability of k-means and Naive Bayes classification methods for
the segmentation approach presented in this work. Furthermore, other aspects to judge
the practicality of this approach, such as temporally extending the algorithm training and
label prediction as well as computing hardware requirements are discussed in this chapter.

4.1 Evaluation setup and characteristics of result vi-
sualization

To generate reliable and reproducible results, the setup for all experiments is described
in this section. A cross-validation concept is implemented to estimate the model
accuracy and to assess the result generalization to independent datasets. A repeated
random sub-sampling validation is used, whereby the training data D are randomly
partitioned into two subsets. For this purpose, the subset Dtrain µ D comprised of 85%
of the total training cases is created. In every iteration, the data in Dtrain are used to fit
a model. The remaining 15% of the training data D produce the validation set Dvalidate.
Patient cases out of Dvalidate are used to assess the prediction accuracy of the previously
generated model. The splitting step as well as model training and prediction tasks are
repeated for each cross-validation cycle. A total of 10 iterations were performed for every
experiment and error metrics were then averaged to obtain the final scores.
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Figure 4.1: Out-of-bag feature importance vs. feature number in a random forest. The hor-
izontal axis represents the specific features, in this case 46 pixel characteristics.
The height of the bars indicates the importance of the feature for the decision
process. This experiment was performed using 25 cases of the 3 tesla training
set. The third feature is the magnetic field strength, which is not important at all
because only the 3 T set was used.
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The repeated random sub-sampling process is preferred over k-fold cross-validation
to make the fraction for the training/validation split independent of the number
of cycles. However, it is important to note that when applying this method, some
patient cases may never be selected for validation purposes (i.e. may never be
contained in Dvalidate). At the same time, other cases may be selected more than
once. This characteristic may lead to result variations when the cross-validation
step is repeated with di�erent random subsets. However, due to the relatively
small amount of training cases (max. 100 patient cases) and the high amount of iter-
ations, the influence of these variations on the final result are not considered to be critical.

It is important to note that the calculation of the Hausdor� distance was performed in
the down-sampled version of the images; thus, results need to be multiplied by factor 2.
The resulting score then reflects the distance in pixels of the worst outlier.

Despite the possibility of a specific feature selection enabled by the framework (see
class properties in Table 3.1), all experiments incorporated the same features (with the
exception of the experiment in Section 4.2.3). Throughout various test runs it was found
that all features are of similar importance (see Figure 4.1). Future tests may focus on an
enhanced feature selection process, which was out of the scope of this work.

All calculations were performed on a datacenter computer that runs Windows Server
2008 R2 Enterprise (64-bit) as an operating system. In terms of computational hardware,
it featured four quad-core AMD Opteron™ processors (model 8356), each clocked at a
frequency of 2.31 GHz. Moreover, it was equipped with 128 GB of physical Random
Access Memory (RAM). This computer setup profits especially from parallel operations;
hence, highly demanding computation tasks were run in parallel whenever possible.
This performance aspect primarily concerns classifier training. As this machine was
dedicated exclusively to this project, all experiments were conducted in a way to utilize
the maximum amount of resources available and therefore reduce algorithm training
times to a minimum.

Figure 4.2: Properties of the box plot that is used for result visualization.2
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To visualize the result in terms of error metrics, a box plot shown in Figure 4.2 is used.
Blue boxes indicate error measures for central gland tissue, whereas red boxes denote
scores for the peripheral zone of the prostate. On each box, the central line marks the
median value (averaged over every validation case throughout 10 cross-validation cycles).
The upper and lower edges of the box are specified by the 25th and 75th percentiles.
While outliers are plotted individually, two vertical lines that extend from the central
box (denoted as whiskers) indicate remaining data points that are extreme values but
not considered outliers. Outliers are defined as values that are more than 1.5 times the
distance between top and bottom of the box away from the top or bottom of the box,
respectively.

4.2 Random forest evaluation
The results presented in this section were achieved using a random forest clas-

sifier. The classifier object was created following the description in Section 3.3.3.
Classifier training was performed on a parallel MATLAB cluster utilizing the
maximum amount of workers possible. The maximum amount of workers on the
datacenter computer that was used is given with a value of 12, whereby this number
is additionally limited by memory requirements for the generation of the specific
decision tree ensemble. The memory requirements mainly increased with the amount
of trees and size of the input data. Figure 4.3 shows an example of the resource utilization.

Figure 4.3: Illustration of random forest computing resource requirements during training. A
forest with 100 trees was grown using 50 patient cases and 12 parallel workers
in algorithm I mode. 12 of the total of 16 CPU cores were equally worked to
capacity, which directly corresponds to the amount of workers used. This resulted
in an overall CPU usage of 75%. In the plot showing the physical memory usage
history it can be seen that the memory requirements increased step-by-step as
workers joined the computational ensemble and capped at 91 GB.

For the majority of experiments, the random forest was comprised of an ensemble of
100 decision trees. Growing more than 100 trees resulted in a strong increase in memory
requirements, while it did not significantly decrease the overall mean squared error. This
correlation is visualized in Figure 4.4.

2MATLAB Release 2013a Documentation, The MathWorks, Inc., Natick, Massachusetts, United
States., http://www.mathworks.com/help/symbolic/mupad_ref/plot-boxplot.html, date accessed:
August 2013.

http://www.mathworks.com/help/symbolic/mupad_ref/plot-boxplot.html
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Figure 4.4: Out-of-bag mean squared error vs. number of grown trees in a random forest. This
experiment was performed using 25 cases of the 3 T training set. Working with a
larger training set might increase the need for additional decision trees.

Unless otherwise noted, the number of random variables NVarToSample for each
decision split was set to the square root of the amount of features that were used.
This amount was found favorable for the purpose of this application, determined by
the experiment described in Section 4.2.1. The I mode is compliant with its design
the most accurate algorithm mode, which is proven through a trial covered in Section 4.2.2.
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Figure 4.5: This figure illustrates the influence to the Dice coe�cient by the amount of training
data. A test run with 10 cross-validation iterations at a time was performed on
a varying amount of training cases. The number of cases for a certain test run is
plotted on the horizontal axis. For each case, the corresponding score of the DSC
was calculated. This experiment was conducted using the algorithm I mode and
100 patient cases provided by the MD Anderson Cancer Center. There are hardly
any fluctuations if the algorithm training is completed with more than 25 cases,
as the accuracy of the label predictions converges to a limit.

It is assumed that if the algorithm learns from a higher number of training cases, the
output results will improve. This presumption is true up to a certain limitation. A trial
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was conducted, where the Dice coe�cient was calculated for a varying amount of training
cases. The result is illustrated in Figure 4.5.

This experiment shows that it is su�cient to train the learning algorithm on an amount
of 25 to 30 patient cases. Incorporating more cases generally leads to a similar out-
come. A training set of 25 cases seems small; however, it is not insignificant considering
that the classifier makes raw pixel predictions. The final segmentation result is obtained
through simple morphological operations on raw pixel classifications. Therefore, the cur-
rent amount of input values can be estimated by taking the dimensions of the input image
stack times the number of cases. After image cropping within the preprocessing step, the
resulting stack has average dimensions of 80 px ◊ 70 px ◊ 14 slices. Taking 25 of these
training cases, this results in a total of almost 2,000,000 input variables, which is as-
sumed to be adequate for this application. Thus, following this knowledge the majority of
evaluation test runs were performed based on 25 training cases to increase the e�ciency.

4.2.1 Number of random variables to sample at each decision
split in a tree

By means of this experiment, the optimal setting for the NVarToSample parameter of
the random forest was found. Only 25 cases out of the 3 T training set were used to
speed up the computations by reducing resource requirements. The result is illustrated
in Figure 4.6.
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Figure 4.6: Evaluation of amount of random variables for the random forest classifier. The
segmentation algorithm was run in I mode with a varying amount of random
variables for each decision split at the generated trees. Figure (a) shows scores
for the Dice coe�cient and Figure (b) illustrates scores for the Hausdor� distance,
respectively. Blue = CG, red = PZ.

The resulting scores for Dice coe�cient and Hausdor� distance show that the best ac-
curacy is achieved using either all feature variables or the square root of the number of
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features (in this case 7 variables). However, the average training time using all feature vari-
ables equalled 57 minutes while the usage of 7 random features only took approximately
11 minutes. While the training time is of minor importance for practical applications,
it is important when multiple experiments are conducted that involve a training step.
When 10 cross-validation cycles are performed, the di�erence in terms of calculation time
amounts to approximately 460 minutes. Hence, considering the minor deterioration in
performance, all following random forest experiments were performed with the reduced
amount of variables for e�ciency purposes.

4.2.2 Comparison of algorithm modes

This experiment compares the segmentation outcome given di�erent algorithm modes.
Results are shown in Figure 4.7. The 3 T training set was used for this test run. Both, Dice
coe�cient as well as Hausdor� distance scores improve throughout the various modes. As
desired, the I mode is the most accurate one amongst the three options, where especially
the scores for the peripheral zone advance.
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Figure 4.7: Evaluation of algorithm modes using the random forest classifier. The segmenta-
tion algorithm was run in either A1, A2 or I mode. Figure (a) shows scores for
the Dice coe�cient and Figure (b) illustrates scores for the Hausdor� distance,
respectively. Blue = CG, red = PZ.

4.2.3 Assessment of the influence of the neighborhood size for
regional features

The goal of this experiment is to compare the prediction outcome of the segmentation
algorithm based on the neighborhood size for features that describe regional properties.
Section 3.3.2 describes the process of extracting features to achieve a better representation
of the original input. In addition, the most important features that are being used for a
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representation are introduced. Amongst others, they also include characteristics that pro-
vide information about a certain pixel neighborhood as well as raw intensity values of the
respective neighbors. For each classification layer, the size of the neighborhood that is con-
sidered for these computations can be specified in the FEATURE_SELECTION_LOCALIZATION
and FEATURE_SELECTION_LABELING properties of the MedObjSegmentation class.

The default value is N = 3. Changing this size a�ects the neighborhood in all three
dimensions; thus, a size of N = 5 would result in a window of 5◊5◊5. In comparison to a
3◊3◊3 window, the amount of pixels involved in the computations then increases from 27
to 125. Thereby, this small change drastically influences the computational e�ort. At the
same time, the integration of raw intensity values of the respective neighborhood pixels
into the feature vector also strongly a�ect its dimensions. The size of the feature vector in
turn is responsible for the duration of classifier training times. These consequences need
to be considered when changes are made to the size of the neighborhood.
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Figure 4.8: Evaluation of optimal neighborhood size for regional features. 25 patient cases of
the 3 T training set were used for this experiment and the segmentation algorithm
was run in I mode, incorporating a random forest with 100 trees. The horizontal
axis denotes the size N of the neighborhood. A neighborhood size of 0 thereby
indicates that no regional features were used at all. Figure (a) shows scores for
the Dice coe�cient and Figure (b) illustrates scores for the Hausdor� distance,
respectively. Blue = CG, red = PZ.

Within the experiment that was performed, N was set to either 0, 3, 5 or 7. The results
are illustrated in Figure 4.8. An inspection of Dice coe�cient and Hausdor� distance
scores suggests that the optimal neighborhood size is 5. However, due to similar results
where the inaccuracies were not in relation with the increased computational e�ort, the
default value of N = 3 was retained for further experiments. Nevertheless, in the case of
a practical application a value of N = 5 should be preferred.
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4.3 Neural network evaluation
Results in this section were computed utilizing neural networks. The classifier objects

were created following the description in Section 3.3.3. The MATLAB Neural Network
Toolbox™ supports parallel computing; thus, network training was performed in parallel
to enhance e�ciency. Again, the amount of workers involved were limited by resource
requirements. However, they were defined in order to reach the maximum performance
possible given this specific computing hardware. This setup enables a comparison with
other classifiers in terms of training time intervals.

Figure 4.9: Illustration of neural network computing resource requirements during training. A
network with 100 hidden neurons in one hidden layer was trained on 25 patient
cases using the trainscp train function and 12 parallel workers. The CPU usage
amounted to 83% while physical memory usage was low with around 25 GB.

Figure 4.9 illustrates resource requirements for neural network training. It can be seen
that in comparison to random forest training (cf. Fig. 4.3) a similarly high CPU workload
was recorded, while the memory usage was kept low. If the network is set up using the
DeepLearnToolbox, only serial training is possible.
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Figure 4.10: Neural network validation performance vs. mean squared error. The validation
performance reached a minimum at epoch 2802. The training then continued
for 6 more iterations before it stopped. No major problems within the training
were indicated, as the validation and test curves were very similar. This plot
corresponds to the result presented in Figure 4.13.
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Network training was performed over a number of epochs and the validation error was
recorded and used as a stopping criterion. Figure 4.10 shows the progression of the mean
squared error in relation to the amount of training epochs.

4.3.1 Evaluation of hidden layer topology
The goal of this experiment is to find the optimal hidden layer topology for the neural

network. The amount of neurons in the input layer (cf. x0 to xD in Fig. 2.6) is determined
by the amount of input feature variables. Similar, the number of output neurons are
defined with the target classes. The quantity of neurons in the hidden layer(s) as well as
the hidden layer count can be specified by the user. However, assorted topologies lead
to di�erent output results. There is no obvious right or wrong topology. The best setup
generally depends on the specific application, and thus, has to be assessed by experiments.
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Figure 4.11: Evaluation of hidden layer topology using a neural network. These results were
computed using 25 patient cases of the 3 T training set. The algorithm was
set to I mode. Figure (a) shows scores for the Dice coe�cient and Figure (b)
illustrates scores for the Hausdor� distance, respectively. Blue = CG, red = PZ.
The horizontal axis denotes the network topology, whereas the digit indicates
the amount of neurons in each layer. For example, [50 50] describes a network
with two hidden layers, both comprised of 50 neurons. The maximum amount of
training epochs was set to 1000.

Figure 4.11 shows an excerpt of these experiments. Generally speaking, a higher amount
of network layers does not implicitly lead to a better prediction accuracy. Quite the
opposite is true. The best results for this application were achieved using only one hidden
layer. Scores remained stable, despite variations in the number of neurons.

The respective training times for di�erent amounts of neurons are outlined in Table
4.1. Using 100 instead of 50 neurons almost doubled the time span required for network
training. This e�ect was increased to a factor of 9, if 400 neurons were used. As the final
result variations were small, a topology of one single hidden layer comprised of either 50
or 100 neurons is suggested for further experiments.
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# hidden neurons training time

50 15 min
100 27 min
400 134 min

Table 4.1: Neural network training time vs. number of hidden neurons. The training time is
averaged over 10 cross-validation iterations.

4.3.2 Evaluation of neural network train function variation

Within this experiment the e�ects of choosing a di�erent trainFcn setting for the neural
network are evaluated. The respective results for Dice coe�cient and Hausdor� distance
are plotted in Figure 4.12.

The default train function for other experiments incorporating the neural network
patternnet was trainscg, which updates weight and bias values according to the scaled
conjugate gradient method. For comparison purposes, the classifier output using the
trainrp function was tested using 10 cross-validation cycles. In case of trainrp train-
ing, updates are performed following the resilient backpropagation algorithm (RPROP).
However, it can be seen that the scores show no significant deviation, indicating that a
change of the network training method has no e�ect on the classification outcome.
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Figure 4.12: Evaluation of neural network train function variation. The results were obtained
using the 3 T training set with the segmentation algorithm in I mode. 100
hidden neurons in a single layer were utilized with the maximum amount of
epochs set to 2000. Figure (a) shows scores for the Dice coe�cient and Figure
(b) illustrates scores for the Hausdor� distance, respectively. Blue = CG, red =
PZ. The horizontal axis denotes the respective training function.
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4.3.3 Results with final neural network setting

Due to findings of the conducted experiments, which are described in previous sections,
a robust setting for the neural network classifier was found. It is considered that a
network topology with one single hidden layer incorporating 100 neurons is suitable for
this application, discussed in Section 4.3.1. In addition, the comparison in Section 4.3.2
shows that the network can be trained using trainscg as a proper train function. All
experiments were conducted utilizing 25 patient cases of the 3 T training set due to
performance benefits of a smaller training set.

With a robust parameter set for both the MATLAB Neural Network Toolbox™ and
the DeepLearnToolbox, a final test run was performed on 100 patient cases provided by
the MD Anderson Cancer Center. The results are presented in Figure 4.13. Both of
the neural network toolboxes showed similar results with a median peripheral zone DSC
of 0.70. The score for the central gland DSC indicates only little variance and a median
value of 0.84 or 0.83, respectively. These outcomes are very satisfying, considering the high
variability of prostate structures throughout 100 patient recordings. These results after
10 cross-validation cycles prove the overall robustness of the segmentation framework.

dice coefficient sensitivity specificity prevalence error rate
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

sc
or

e

error metrics

0.84

0.70

0.86

0.61

0.98 0.99

0.87

0.81

0.04 0.04

(a)
dice coefficient sensitivity specificity prevalence error rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

sc
or

e

error metrics

0.83

0.70

0.87

0.71

0.98 0.98

0.82

0.73

0.04 0.04

(b)

Figure 4.13: Final neural network result for 100 MD Anderson Cancer Center cases. The
segmentation algorithm was set to I mode and 100 hidden neurons in a single
layer were utilized. Figure (a) shows scores obtained with the Neural Network
Toolbox™ and Figure (b) illustrates scores for the DeepLearnToolbox. Blue =
CG, red = PZ.

An evaluation of the validation performance using the Neural Network Toolbox™ is il-
lustrated in Figure 4.10. The plot was recorded during the final neural network evaluation
and compares the mean squared error to the amount of training epochs. It can be seen
that a small amount of iterations already su�ciently reduces the overall error. Training
was stopped after 6 succeeding and successful validations with consistent mean squared
error.
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4.4 K-means evaluation
This section summarizes the findings using k-means classification for prostate zonal

segmentation. The classifier objects were generated as shown in Listing 3.6. Experiments
were conducted with varying BreakTies and NumNeighbors properties. The BreakTies
parameter specifies the method that is used to break ties in case multiple classes have
the same smallest cost.3 In this test run this argument was set to either ’nearest’, i.e.
multiple classes have the same number of nearest points among the K nearest neighbors,
or ’smallest’. If ’smallest’ is specified, the smallest index amongst tied groups is
used.

The NumNeighbors parameter specifies the amount of nearest neighbors to find within
the input data for the classification of each pixel during the prediction step. An experiment
was made comparing values of 10 and 100 for this property. The results of the k-means
evaluation are illustrated in Figure 4.14.
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Figure 4.14: K-means result evaluation obtained using the 3 T training set with the segmen-
tation algorithm in I mode. Figures (a) and (b) show DSC and Hausdor� scores
for varying BreakTies parameters. Figure (c) illustrates a Dice coe�cient com-
parison for a di�erent setting of the number of neighbors, whereas in this case
the smallest index is used to break ties. Blue = CG, red = PZ.

It can be seen that despite various changes in the values of the classifier properties,
the result scores remained stable. Error scores are satisfying with Dice coe�cients of
0.86 and 0.88 for the central gland and 0.70 for the peripheral zone. However, there are
two main disadvantages of utilizing this classification method. The first one is that the
ClassificationKNN object can get very large in terms of data size. All the data required
for the training step are stored in the object, which makes it an unfavorable choice in

3MATLAB Release 2013b Documentation, The MathWorks, Inc., Natick, Massachusetts,
United States., http://www.mathworks.com/help/stats/classificationknnclass.html, date ac-
cessed: September 2013.

http://www.mathworks.com/help/stats/classificationknnclass.html
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terms of storing the trained classifier on a hard drive. Secondly, prediction times are very
long as the developed segmentation routine uses a high-dimensional feature vector (cf.
Section 3.3.2). Throughout all experiments and therefore regardless of the configuration,
the prediction time amounted to approximately 16 hours (averaged over 5 test runs,
each with 10 cross-validation cycles). These two characteristics are the reason why the k-
means classifier is found to be unsuitable for practical applications involving the approach
presented in this work.

4.5 Naive Bayes evaluation
Lastly, the usage of the Naive Bayes classifier for prostate segmentation purposes is

discussed and evaluated. A Naive Bayes classifier object was created following the im-
plementation in Listing 3.7. The most important property of the NaiveBayes object is
’Distribution’. It describes which distribution is used to model the input data.4 The
results of employing a Gaussian distribution and a multivariate multinomial distribution
are compared and illustrated in Figure 4.15. In case of the multivariate multinomial distri-
bution it is assumed that each feature follows a multinomial model within a class. For this
experiment, the Prior property was set to ’empirical’; hence, prior class probabilities
were estimated from the relative class frequencies in the training data.
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Figure 4.15: Naive Bayes result evaluation. Figures (a) and (b) show DSC and Hausdor�
scores for varying distributions settings, obtained using the 3 T training set and
the algorithm in I mode. Figure (c) illustrates a Dice coe�cient comparison
for di�erent algorithm modes. The respective scores were computed utilizing
100 MD Anderson patient cases and the multivariate multinomial distribution
presumption. Blue = CG, red = PZ.

It is important to note that this classifier type requires a variance greater than
4MATLAB Release 2013b Documentation, The MathWorks, Inc., Natick, Massachusetts, United

States., http://www.mathworks.com/help/stats/naivebayes.fit.html, date accessed: September
2013.

http://www.mathworks.com/help/stats/naivebayes.fit.html


CHAPTER 4. RESULTS 62

0 within the feature matrix. Suppose all patient cases for an experiment are taken
from the 3 T training set. In this example, the magnetic field strength feature
cannot be incorporated in the feature matrix as every sample would have the same
value, i.e., the variance for this specific feature would be 0. Obviously, in this case
this circumstance does not a�ect the classification outcome as the magnetic field
strength would not contribute to the decision-making capability anyway. However,
it has to be kept in mind to switch o� this feature in case the Naive Bayes classifier is used.

The error measurements plotted in Figure 4.15 indicate that the result outcomes using a
Naive Bayes classifier are not comparable to other classification methods discussed in this
chapter. This classification method might not be suitable for this application, because it
strongly relies on the validity of the distribution assumption. However, not much e�ort
was expended on a proper configuration. The integration of this classifier type was mainly
motivated based on the intention to construct a complete framework, rather than the focus
on this specific type of application.

4.6 Volumetric measurements and comparison to
other techniques

This section addresses the overall segmentation outcome in terms of prostate volume.
To enable a volumetric calculation, surface points of the predicted label stack are
firstly transformed to a three-dimensional grid. It is important to note that this
transformation takes x, y and z spacing (pixel/mm) of the MR recording into account.
The resulting 3D point cloud is then triangulated utilizing a Delaunay triangulation.
The final volume is defined by the sum of all tetrahedrons, which are obtained through
the connection of surface triangles with a point inside of the object (e.g. mass point of
the structure). This approach also o�ers a volume estimation for the peripheral zone of
the prostate, as it provides a robust solution for concave objects. This volume calcu-
lation method is described in [53] and its accuracy has been validated on artificial objects.

The volume that was computed using the process described above is an estimate based
on the prediction of the segmentation algorithm and is denoted as V̂ . To determine an
accurate measurement of this predicted volume, the same calculation method was applied
to the ground truth label stack to obtain Vgt. This ground truth volume is considered to
be the most accurate measurement, because it is determined using expert contours of the
prostate zones on each magnetic resonance image slice.

However, in clinical practice the commonly preferred technique for PV measurement
is prolate ellipse volume calculation [54], [55]. This method involves only three mea-
surements of the largest diameters in three planes, making it universally available, fast
and still precise enough for routine clinical applications. The prolate ellipse volume is
calculated as follows:

Ṽ = d1 ◊ d2 ◊ d3 ◊ fi

6 (4.1)

The values for d1, d2 and d3 thereby correspond to height, length and width
measurements of the prostate gland. Width is defined as the maximal transverse
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diameter at mid-gland level and length is the distance measurement from the proximal
external sphincter to the urinary bladder. The height of the prostate gland is given by
the anteroposterior diameter, which can be measured either in axial or sagittal plane.
All three measurements d1, d2 and d3 are obtained through expert markups.

#case d1 d2 d3 ˜V Vgt ˆV Vgt/ ˜V ˆV /Vgt
[cm] [cm] [cm] [cm

3
] [cm

3
] [cm

3
]

21 5.9 4.5 3.1 43.1 32.5 31.3 0.75 0.96

22 5.0 4.7 3.5 43.1 30.8 30.9 0.71 1.00

23 2.7 4.5 4.3 27.4 21.7 19.9 0.79 0.91

26 5.3 3.1 4.8 41.3 28.4 25.6 0.69 0.90

29 5.0 1.9 3.8 18.9 14.8 10.0 0.78 0.68

31 5.9 4.4 3.1 42.2 32.0 26.0 0.76 0.81

33 4.7 5.0 3.3 40.6 30.9 26.5 0.76 0.86

310 2.0 3.3 2.8 9.7 7.1 9.2 0.74 1.30

311 5.0 4.0 2.6 27.2 21.8 23.4 0.80 1.07

313 4.1 5.2 2.8 31.3 21.0 25.9 0.67 1.23

314 5.6 5.5 3.1 50.0 35.1 38.4 0.70 1.10

315 5.0 2.8 4.1 30.1 21.2 18.8 0.70 0.89

317 4.4 3.6 2.4 19.9 13.5 13.3 0.68 0.98

319 5.1 4.2 3.4 38.2 25.6 27.3 0.67 1.07

321 5.0 4.3 3.0 33.8 21.4 18.2 0.63 0.85

324 2.7 5.1 4.4 31.7 26.1 27.7 0.82 1.06

103 4.5 2.5 4.2 24.8 15.0 13.8 0.61 0.92

291 4.6 2.5 4.2 25.3 21.3 18.1 0.84 0.85

293 4.4 5.0 3.1 35.7 31.2 26.8 0.87 0.86

297 4.5 3.0 4.7 33.2 20.0 20.9 0.60 1.05

Table 4.2: Volumetric measurement data for 20 test cases. The case number is listed for
identification purposes. The values d1, d2 and d3 represent the prostate diameter
measurements of height, length and width. Ṽ was calculated following the formula
for the prolate ellipse volume, specified in Equation 4.1. Vgt denotes the ground
truth volume obtained by manual segmentation and V̂ indicates the volume based
on the prediction result of the automated segmentation algorithm. The proportion
of Vgt/Ṽ is listed for comparison purposes and shows that the prolate ellipse volume
calculation overestimates the prostate volume. V̂ /Vgt indicates the ratio of ground
truth volume and prediction estimate.

The resulting data for this experiment were obtained using the MD Anderson Cancer
Center training set comprised of 100 patient cases. The value for the FRACTION_TRAINING
property was set to 0.9; thus, 90 cases were used for algorithm training and 10 for
algorithm testing. Training and prediction steps were repeated twice, each time
utilizing di�erent test data. The resulting 20 anonymized testing cases were provided
together with expert dimension measurements for the prostate gland’s diameters. These
measurements are available for all MD Anderson Cancer Center patient cases as it is a
standard procedure for radiologists at this institution to mark the extent of the prostate
on the respective image planes.

In terms of classifiers, the DeepLearnToolbox was used to implement a neural network
incorporating one hidden layer with 50 neurons. The segmentation framework was
configured to work with the I mode. Volume calculations were performed on the basis of
ground truth markups as well as on the predicted label stack. An exemplary prediction
result of case 21 is illustrated in Figure 4.16. All respective result values from the volume
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calculation as well as diameter measurements performed on the test set are listed in
Table 4.2.

Figure 4.16: Exemplary three-dimensional segmentation output with volumetric measure-
ments for the prediction result (left) and ground truth markups (right). In this
case, Region1 represents the peripheral zone and Region2 indicates the central
gland of the prostate.

The results in Table 4.2 show that in comparison to the ground truth volume Vgt, the vol-
ume Ṽ , which was obtained through the three diameter measurements, overestimated the
actual PV. This characteristic is also indicated by the ratio Vgt/Ṽ . On average, the ground
truth amounted 72.9 ± 7.6% of the volume computed with the formula given in Equation
4.1. Despite the overestimation, a computation of Pearson’s correlation coe�cient fl in-
dicates a strong linear relationship between the two modes of volume determination. For
the volumes Ṽ and Vgt listed in Table 4.2, the correlation coe�cient that measures the
strength of the relation between two series of measurements equals flṼ ,V

gt

= 0.947.
However, the interesting aspect for the purpose of this experiment is the accuracy of

the prediction result V̂ in comparison to the ground truth volume Vgt. On average,
the ratio V̂ /Vgt was 96.7 ± 14.7%. Thus, the respective results are considered similar
with an average fluctuation range of around ±15%. Again, a correlation coe�cient of
flV

gt

,V̂ = 0.92 suggests a strong linear relation.

These results prove that the automated segmentation approach introduced in this work
provides accurate results for volumetric evaluations. Median DSCs of 0.84 (CG) and 0.70
(PZ) with the final neural network setting tested on the MD Anderson Cancer Center
patient cases (cf. Figure 4.13) were su�cient to achieve more precise values for the
prostate volume compared to calculations involving three diameter measurements.



Chapter 5

Discussion and conclusion

This paper presents an approach for completely automated zonal segmentation of prostate
structures in magnetic resonance images of the human body. Segmentation of a region of
interest in medical image recordings enables an intensified study of anatomical structures
and assistance in treatment planning. Information on the shape and location of the
prostate gland is essential for surgical planning for prostatectomy or minimally invasive
therapies and for dose calculations in radiation therapy.

In addition, automated segmentation from MR images has the potential to deliver
precise estimates of volume change [15]. The determination of prostate volume in con-
junction with other parameters facilitates an assessment of prostate cancer. It can help
to estimate the pathological stage of disease as well as to predict treatment response.
As an additional information to prostate-specific antigen (PSA) levels, the PSA density
can be derived by incorporating PV calculations to support clinical decisions. However,
currently used techniques for prostate volume measurements show high variability and
generally lack accuracy. This poses a limitation to the usefulness of the prostate-specific
antigen density in clinical practice because its value is directly influenced by the PV value.

In terms of clinical relevance, automated segmentation of the prostate could also be
used to provide more standardized and objective radiology reports with unified PV
calculations. Manual markups are rather subjective to the respective radiologist ([20]),
which is also shown in [56] where a certain variance is recorded between contours marked
by three experts.

The method proposed in this research uses a low-level feature representation of image
pixels as input for a feedforward backpropagation neural network. This approach
shows promising results with average Dice similarity coe�cients (DSCs) of 0.84 and
0.70 (illustrated in Figure 4.13) for the central gland and peripheral zone, respectively.
Similar result accuracy is achieved with a random forest implementation where DSC
scores equal 0.87 and 0.64 for the respective prostate zones (shown in Figure 4.7). A
representation of results in terms of error metrics is important for the overall validity
and comparability to other segmentation techniques. A representative visualization of
the resulting segmentation boundaries plotted on MR image slices is illustrated in Figure
5.1 and Figure 5.2.

65
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(a) (b) (c) (d)

Figure 5.1: Successive MR image slices of the midsection level of the prostate with represen-
tative segmentation boundaries. Orange = CG ground truth, red = PZ ground
truth, green = CG prediction, yellow = PZ prediction.

Due to the high variability of prostate tissue within di�erent patient cases, the
generalization introduced in the classification step implicitly leads to errors a�ecting the
overall segmentation result when calculating mean values. However, results for specificity
and Hausdor� distance of boundary surfaces representing worst-case scenarios, prove the
overall robustness of this method. Experiments in Section 4.2.2 and Section 4.3.3 show
that specificity values of 0.98 are reached and Hausdor� distances equal 10 px and 27
px for the CG and PZ. Most other papers report the 95th percentile of the Hausdor�
distance, but in this paper the distance of the one worst pixel prediction is stated. The
qualification and accuracy of prostate volume measurements utilizing the framework
proposed in this paper are demonstrated in Section 4.6. Overall, the discrepancies
between manual and automatic segmentation seem to have minor impact on the prostate
volume calculation. On average, the predicted volume matches the ground truth by 97%
with a fluctuation range of less than ±15%.

Still, box plot result visualisations indicate that the variance throughout label
predictions of di�erent patient cases is not negligibly. While median scores representing
average prediction accuracy are satisfying, some outliers might still be present.
Consider, for example, the DSC scores for a neural network implementation utilizing
the DeepLearnToolbox illustrated in Figure 4.13. A median result of 0.70 for the
peripheral zone is considered accurate as this zone is subject to strong shape variabilities.
Nevertheless, within 10 cross-validation cycles, this value drops below 0.30 for a certain
test set, which is marked as an outlier in Figure 4.13. A volume prediction based on this
segmentation outcome will most likely significantly di�er from the ground truth. Hence,
it is important to note that individual predictions might be unreliable, despite the e�ort
spent on improving the overall reliability of the segmentation routine.

At the same time, the calculated error metrics may provide a wrong impression of
the prediction outcomes. Considering prostate anatomy, the gland consists of the apex,
midsection, and base (illustrated in Figure 2.1). The midsection thereby encompasses
almost 90 percent of the prostate and shows su�cient edge and texture information. This
characteristic enables good segmentation results. An exemplary prediction is illustrated
in Figure 5.1.

However, the remaining portion of apex and base practically have no features or
gradients to be seen in MRI [26]. Indeed, much of the discrepancy between manual
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and automatic segmentation arises in those areas, where the structure boundaries are
unclear, and thus, the absolute nature of the ground truth is questionable [15]. Three
representative image slices from the region of the base of the prostate with comparatively
good label prediction are shown in Figure 5.2.

During various test runs it has been found that the DSC at midsection level almost
always exceeds 0.90. On the other hand, scores for regions at the base or apex mostly
amount only 0.40. The reason for this poor segmentation is that boundaries in these
regions need to be estimated by experts as well as by the learning algorithm, because
image features are insignificant. If the learning algorithm is able to produce these kinds
of estimates, the training was successful.

Suppose the prediction accuracy of 11 slices is measured with a DSC of 0.95. However,
3 image slices that cap the gland from the bottom and top poorly visualize the prostate
tissue, resulting in scores of 0.40. The error calculation that is being performed does not
implement any weighting and therefore does not consider the amount of prostate pixels on
a specific image slice. Error metrics are computed individually for every image slice and
are then averaged over the amount of slices. For the respective values in this example,
this means that the final DSC score would be calculated as 11◊0.95+3◊0.40

14 ¥ 0.83. Despite
the fact that the large majority of prostate regions are detected with almost maximum
accuracy possible, the final score of 0.83 does not seem to reflect the quality of this result.

Vincent et al. also experienced the lack of accuracy at the top and bottom of the
prostate and described the problem in [18]. They created a map of mean distance error
projected onto a three-dimensional model of the prostate gland. Results of Vincent et
al. are comparable to the research findings in this work, and thus, their error map is
illustrated in Figure 5.3.

(a) (b) (c)

Figure 5.2: Successive MR image slices of the top of the prostate with representative seg-
mentation boundaries. Orange color marks the ground truth reference and green
boundaries indicate the prediction result. The prostate lacks boundary and tex-
ture information in this region, while surrounding tissues have stronger but variable
edges.

Much research has been conducted in the field of prostate segmentation, for example
presented in [31] and [34]. Recently, studies have been published that focus on individual
zonal segmentation of the prostate gland. Litjens et al. in [56] present a pattern recogni-
tion approach and reach mean DSCs of 0.89 and 0.75 for the central gland and peripheral
zone, respectively. Similar DSC scores of 0.87 (CG) and 0.76 (PZ) are achieved by Makni
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et al., who demonstrate an atlas-based method in [57]. However, both approaches incor-
porate essential shape information and even manual segmentations of the whole prostate.
As a result, the segmentation problem is reduced to a decision between either one of the
respective anatomical zones. Thus, the nontrivial problem of localizing the prostate gland
within an MRI volume is eliminated.

In 2012 the PROMISE121 challenge was hosted with the goal of comparing interactive
and (semi)-automatic segmentation algorithms for MRI of the prostate. The automatic
whole-prostate segmentation approach of Vincent et al. ranked first and is described in
[18]. By utilizing active appearance models the team reached a median DSC of 0.89 for
the whole prostate. No zonal di�erentiation was performed.

A study in [56] involving three observers showed that mean DSCs of 0.96 ± 0.06 for the
CG and 0.86±0.13 for the PZ were obtained through manual segmentations. An automatic
approach should ideally be as accurate as a manual segmentation by an expert; hence,
these scores are considered as ultimate objective in terms of DSC values.

In summary, it can be said that the results presented in Chapter 4 are satisfying and
comparable to other approaches. In fact, especially the volume calculation demonstrates
the overall accuracy of this automated segmentation technique. Even in cases with strong
discrepancies between automatic and manual segmentation, the results are comparable
with the variation in volume estimates using the prolate ellipsoid formula (see Table 4.2).
The proposed technique uses no expert-based knowledge or shape information about the
prostate in addition to ground truth training labels (with the exception of orthogonal
measurements in I mode), and thus, this method is generalizable to other structures in
the human body as well.

Figure 5.3: Map of projected mean distance error in prostate volume calculations. From left
to right: anterior, posterior, base, apex. Blue and green indicate relatively small
distance error, whereas yellow and red represent large error. [18]

To increase the robustness of the segmentation method for practical applicability in
the future, additional features and shape knowledge need to be implemented. Structured
texture detectors might help to improve the accuracy in regions lacking edge information.
Moreover, including more structures such as the bladder and rectum in the model would
help to significantly improve the segmentation results. In terms of the prostate gland,
the main focus should be on improving features for the peripheral zone detection, as the
central gland is estimated satisfactorily using the existing representation.

Improvements can also be achieved through an extension of the postprocessing routine.
Currently, solely morphological operations are performed on raw pixel predictions. In the

1MICCAI Grand Challenge: Prostate MR Image Segmentation 2012, http://promise12.
grand-challenge.org, date accessed: September 2013.

http://promise12.grand-challenge.org
http://promise12.grand-challenge.org
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future, shape restrictions or methods based on level-sets might help to better model the
prostate shape.

The goal for the development of this segmentation framework was to provide an
automatic solution. However, for a practical application it might be acceptable to allow
a certain level of user interaction (e.g. an initial localization) to improve algorithm
speed and accuracy. It might also be beneficial to o�er a possibility for minor boundary
corrections, after the automatic segmentation routine has been executed. The ultimate
goal of future work should be to maximize the robustness of this method. Once a reliable
segmentation result is obtained, additional functionalities like a detection of tissue
abnormalities can be implemented.

Up to this point, the purpose of the existing framework is to accelerate future research
processes. Assorted tasks such as viewing and handling DICOM images and corresponding
NRRD files have already been implemented. Moreover, a feature representation has been
generated whereby various related properties can be specified by the user and supplemen-
tary characteristics can be added with minimal e�ort. Five classifiers are integrated, each
one o�ering multiple configuration possibilities. In addition, evaluations of the current
setup are straight-forward as five error metrics can be computed from the segmentation
result for unbiased performance comparisons. In addition to feedback in terms of error
scores, results can be visualized utilizing various plots. Another feature of the framework
is the integrated volume calculation, supporting concave structures. Utilizing the existing
image-processing chain allows future researchers to have their main focus on algorithm
enhancements without having to worry about essential but not performance-enhancing
processes.



List of Acronyms and Abbreviations

CG central gland
CT computed tomography
DBN Deep Belief Network
DICOM Digital Imaging and Communications in Medicine
DRE digital rectal examination
DSC Dice similarity coe�cient
GUI graphical user interface
ML machine learning
MRI magnetic resonance imaging
NRRD Nearly Raw Raster Data
PSA prostate-specific antigen
PV prostate volume
PZ peripheral zone
RAM Random Access Memory
SVM support vector machine
T tesla
TRUS transrectal ultrasound

i



List of Figures

2.1 Schematic illustration of prostate zonal anatomy . . . . . . . . . . . . . . . 7
2.2 MR prostate imaging example . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Illustration of input to feature space mapping . . . . . . . . . . . . . . . . 11
2.4 Example of class-conditional densities together with corresponding poste-

rior probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Functional structure of a general statistical pattern classifier . . . . . . . . 14
2.6 Network diagram for a two-layer neural network . . . . . . . . . . . . . . . 16
2.7 Binary decision tree example . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.8 Partitioning of two-dimensional input space using a binary decision tree . . 19

3.1 3 T MR image slice with ground truth labels . . . . . . . . . . . . . . . . . 22
3.2 Visualization of prostate tissue bounding box . . . . . . . . . . . . . . . . 23
3.3 GUI of image viewer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4 Preprocessing pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5 Feature extraction pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.6 Probability map for prostate structures . . . . . . . . . . . . . . . . . . . . 30
3.7 Distance and position feature distributions . . . . . . . . . . . . . . . . . . 31
3.8 Illustration of spherical coordinate feature distributions . . . . . . . . . . . 32
3.9 Distribution of radial distance feature . . . . . . . . . . . . . . . . . . . . . 34
3.10 Algorithm pipeline - two layer topology . . . . . . . . . . . . . . . . . . . . 40

4.1 Out-of-bag feature importance vs. feature number in a random forest . . . 49
4.2 Box plot properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3 Random forest computing resource requirements . . . . . . . . . . . . . . . 51
4.4 Out-of-bag mean squared error vs. number of grown trees in a random forest 52
4.5 Dice coe�cient vs. amount of training data . . . . . . . . . . . . . . . . . 52
4.6 Evaluation of amount of random variables for random forest classifier . . . 53
4.7 Evaluation of algorithm modes using random forest classifier . . . . . . . . 54
4.8 Evaluation of optimal neighborhood size for regional features . . . . . . . . 55
4.9 Neural network computing resource requirements . . . . . . . . . . . . . . 56
4.10 Neural network validation performance . . . . . . . . . . . . . . . . . . . . 56
4.11 Evaluation of hidden layer topology using a neural network . . . . . . . . . 57
4.12 Evaluation of neural network train function variation . . . . . . . . . . . . 58

ii



4.13 Final neural network result for 100 MD Anderson Cancer Center cases . . 59
4.14 K-means result evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.15 Naive Bayes result evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.16 Exemplary three-dimensional segmentation output with volumetric mea-

surements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.1 Successive MR image slices of the midsection level of the prostate with
representative segmentation boundaries . . . . . . . . . . . . . . . . . . . . 66

5.2 Successive MR image slices of the top of the prostate with representative
segmentation boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3 Map of projected mean distance error in prostate volume calculations . . . 68



List of Tables

3.1 Properties of the MedObjSegmentation class . . . . . . . . . . . . . . . . . 43
3.2 Methods of the MedObjSegmentation class . . . . . . . . . . . . . . . . . . 43

4.1 Neural network training time vs. number of hidden neurons . . . . . . . . 58
4.2 Volumetric measurement data for 20 test cases . . . . . . . . . . . . . . . . 63

iv



Bibliography

[1] American Cancer Society, “Cancer Facts & Figures 2013,” American Cancer Society,
Atlanta, GA 30303, Tech. Rep., 2013.

[2] S. Verma and A. Rajesh, “A clinically relevant approach to imaging prostate cancer:
Review,” American Journal of Roentgenology, vol. 196, pp. 1–10, March 2011.

[3] F. G. Claus, H. Hricak, and R. R. Hattery, “Pretreatment evaluation of prostate
cancer: Role of MR imaging and H MR spectroscopy,” RadioGraphics, vol. 24, pp.
167–180, October 2004.

[4] American Cancer Society, “Prostate cancer,” online, Atlanta, GA 30303, September
2012.

[5] H. Hricak, “MR imaging and MR spectroscopic imaging in the pre-treatment eval-
uation of prostate cancer,” The British Journal of Radiology, vol. 78, pp. 103–111,
2005.

[6] C. Tempany and F. Franco, “Prostate MRI update and current roles,” Applied Ra-
diology, vol. 41, no. 3, pp. 17–22, March 2012.

[7] J. O. Barentsz, J. Richenberg, R. Clements, P. Choyke, S. Verma, G. Villeirs,
O. Rouviere, V. Logager, and J. J. Fuetterer, “ESUR prostate MR guidelines
2012,” European Radiology, vol. 22, pp. 746–757, 2012. [Online]. Available:
http://link.springer.com/article/10.1007/s00330-011-2377-y

[8] D. G. Engehausen, K. Engelhard, S. A. Schwab, M. Uder, S. Wach, B. Wullich, and
F. S. Krause, “Magnetic resonance image-guided biopsies with a high detection rate
of prostate cancer,” Scientific World Journal, vol. 2012, p. 975971, March 2012.

[9] W. J. Ellis and M. K. Brawer, “Repeat prostate needle biopsy: who needs it?”
Journal of Urology, vol. 153, no. 5, pp. 1496–1498, May 1995.

[10] C. G. Roehrborn, G. J. Pickens, and J. S. Sanders, “Diagnostic yield of repeated
transrectal ultrasound-guided biopsies stratified by specific histopathologic diagnoses
and prostate specific antigen levels,” Urology, vol. 47, no. 3, pp. 347–352, March 1996.

[11] I. M. Thompson, D. P. Ankerst, C. Chi, M. S. Lucia, P. J. Goodman, J. J. Crowley,
H. L. Parnes, and C. A. Coltman, “Operating characteristics of prostate-specific
antigen in men with an initial PSA level of 3.0 ng/ml or lower,” Journal of the
American Medical Association, vol. 294, no. 1, pp. 66–70, July 2005.

v

http://link.springer.com/article/10.1007/s00330-011-2377-y


[12] I. M. Thompson, D. K. Pauler, P. J. Goodman, C. M. Tangen, M. S. Lucia, H. L.
Parnes, L. M. Minasian, L. G. Ford, S. M. Lippman, E. D. Crawford, J. J. Crowley,
and C. A. Coltman, “Prevalence of prostate cancer among men with a prostate-
specific antigen level < or =4.0 ng per milliliter,” New England Journal of Medicine,
vol. 350, no. 22, pp. 2239–2246, May 2004.

[13] Y. Gao, R. Sandhu, G. Fichtinger, and A. R. Tannenbaum, “A coupled global regis-
tration and segmentation framework with application to magnetic resonance prostate
imagery,” IEEE Transactions on Medical Imaging, vol. 29, no. 10, pp. 1781–1794,
2010.

[14] M. Roethke, A. G. Anastasiadis, M. Lichy, M. Werner, P. Wagner, S. Kruck, C. D.
Claussen, A. Stenzl, H. P. Schlemmer, and D. Schilling, “MRI-guided prostate biopsy
detects clinically significant cancer: analysis of a cohort of 100 patients after previous
negative TRUS biopsy,” World Journal of Urology, vol. 30, no. 2, pp. 213–218, April
2012.

[15] P. D. Allen, J. Graham, D. Williamson, and C. Hutchinson, Eds., Segmentation
of Prostate MRI Volumes Using 3D Shape Model Constrained Tissue Classifica-
tion, vol. 14, Imaging Science and Biomedical Engineering, University of Manch-
ester. Manchester, United Kingdom: International Society for Magnetic Resonance
in Medicine, 2006.

[16] S. Martin, V. Daanen, and J. Troccaz, “Atlas-based prostate segmentation using
an hybrid registration,” International Journal of Computer Assisted Radiology and
Surgery, vol. 3, pp. 485–492, June 2008.

[17] C. Reynier, J. Troccaz, P. Fourneret, A. Dusserre, C. Gay-Jeune, J.-L. Descotes,
M. Bolla, and J.-Y. Giraud, “MRI/TRUS data fusion for prostate brachytherapy.
preliminary results,” Medical Physics, vol. 31, no. 6, pp. 1568–1575, 2004. [Online].
Available: http://link.aip.org/link/?MPH/31/1568/1

[18] G. Vincent, G. Guillard, and M. Bowes, “Fully automatic segmentation of the
prostate using active appearance models,” in Medical Image Computing and
Computer-Assisted Intervention (MICCAI 2012). Kilburn House, Manchester Sci-
ence Park, Manchester, M15 6SE, UK: Imorphics Ltd., 2012.

[19] M. J. Moghaddam and H. Soltanian-Zadeh, Artificial Neural Networks - Method-
ological Advances and Biomedical Applications. InTech, April 2011, ch. Medical
Image Segmentation Using Artificial Neural Networks, pp. 121–138.

[20] S. Ghose, J. Mitra, A. Oliver, R. Marti, X. Llado, J. Freixenet, J. C. Vilanova,
D. Sidibe, and F. Meriaudeau, “A random forest based classification approach to
prostate segmentation in MRI,” in Medical Image Computing and Computer-Assisted
Intervention (MICCAI 2012). UMR CNRS 6306, Universite de Bourgogne, 12 Rue
de la Fonderie, 71200 Le Creusot, France: Laboratoire Le2I, 2012.

[21] M. B. Mengel, W. L. Holleman, and S. A. Fields, Fundamentals of Clinical Practice,
2nd ed. Springer US, 2002.

http://link.aip.org/link/?MPH/31/1568/1


[22] E. R. Davies, Computer and Machine Vision: Theory, Algorithms, Practicalities,
4th ed. Elsevier, March 2012.

[23] I. N. Bankman, Handbook of Medical Image Processing and Analysis, 2nd ed. El-
sevier, December 2008.

[24] N. Sharma and L. M. Aggarwal, “Automated medical image segmentation tech-
niques,” Journal of Medical Physics, vol. 35, no. 1, pp. 3–14, 2010.

[25] R. Zwiggelaar, Y. Zhu, and S. Williams, “Semi-automatic segmentation of
the prostate,” in Pattern Recognition and Image Analysis, ser. Lecture Notes
in Computer Science, F. J. Perales et al., Ed. Springer Berlin Heidelberg,
2003, vol. 2652, pp. 1108–1116. [Online]. Available: http://dx.doi.org/10.1007/
978-3-540-44871-6_128

[26] S. Vikal, S. Haker, and G. Fichtinger, “Prostate contouring in MRI guided
biopsy,” in Medical Imaging 2009: Image Processing, J.P.W. Pluim and B.M.
Dawant, Ed., vol. 7259, 72594A. SPIE, March 2009. [Online]. Available:
+http://dx.doi.org/10.1117/12.812433

[27] Y. Zhu, S. Williams, and R. Zwiggelaar, “A hybrid ASM approach for
sparse volumetric data segmentation,” Pattern Recognition and Image Analysis,
vol. 17, no. 2, pp. 252–258, 2007. [Online]. Available: http://dx.doi.org/10.1134/
S1054661807020125

[28] Y. Zhu, S. Williams and R. Zwiggelaar, “Segmentations of volumetric prostate MRI
data using hybrid 2D + 3D shape modelling,” in Proceedings of Medical Image
Understanding and Analysis, 2004, pp. 61–64.

[29] P. D. Allen, J. Graham, D. C. Williamson, and C. E. Hutchinson, “Di�erential
segmentation of the prostate in MR images using combined 3D shape modelling
and voxel classification,” in Biomedical Imaging: Nano to Macro, 2006. 3rd IEEE
International Symposium on, 2006, pp. 410–413.

[30] N. Makni, P. Puech, R. Lopes, R. Viard, O. Colot, and N. Betrouni, “Automatic 3D
segmentation of prostate in MRI combining a priori knowledge, markov fields and
bayesian framework,” in Engineering in Medicine and Biology Society, 2008. EMBS
2008. 30th Annual International Conference of the IEEE, 2008, pp. 2992–2995.

[31] R. Toth, P. Tiwari, M. Rosen, G. Reed, J. Kurhanewicz, A. Kalyanpur,
S. Pungavkar, and A. Madabhushi, “A magnetic resonance spectroscopy driven
initialization scheme for active shape model based prostate segmentation,”
Medical Image Analysis, vol. 15, no. 2, pp. 214–225, 2011. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S136184151000112X

[32] S. Martin, J. Troccaz, and V. Daanen, “Automated segmentation of the prostate
in 3D MR images using a probabilistic atlas and a spatially constrained deformable
model,” Medical Physics, vol. 37, no. 4, pp. 1579–1590, 2010. [Online]. Available:
http://link.aip.org/link/?MPH/37/1579/1

http://dx.doi.org/10.1007/978-3-540-44871-6_128
http://dx.doi.org/10.1007/978-3-540-44871-6_128
http://dx.doi.org/10.1134/S1054661807020125
http://dx.doi.org/10.1134/S1054661807020125
http://www.sciencedirect.com/science/article/pii/S136184151000112X
http://link.aip.org/link/?MPH/37/1579/1


[33] J. A. Dowling, J. Fripp, S. Chandra, J. P. W. Pluim, J. Lambert, J. Parker,
J. Denham, P. B. Greer, and O. Salvado, “Fast automatic multi-atlas segmentation
of the prostate from 3D MR images,” in Prostate Cancer Imaging. Image Analysis
and Image-Guided Interventions, ser. Lecture Notes in Computer Science, A.
Madabhushi et al., Ed. Springer Berlin Heidelberg, 2011, vol. 6963, pp. 10–21.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-23944-1_2

[34] S. Klein, U. A. van der Heide, I. M. Lips, M. van Vulpen, M. Staring, and
J. P. Pluim, “Automatic segmentation of the prostate in 3D MR images by atlas
matching using localized mutual information,” Medical Physics, vol. 35, no. 4, pp.
1407–1417, 2008. [Online]. Available: http://link.aip.org/link/?MPH/35/1407/1

[35] E. G. Amaro, M. A. Nuno-Maganda, and M. Morales-Sandoval, “Evaluation of ma-
chine learning techniques for face detection and recognition,” in Electrical Communi-
cations and Computers (CONIELECOMP), 2012 22nd International Conference on,
2012, pp. 213–218.

[36] L. Deng and X. Li, “Machine learning paradigms for speech recognition: An
overview,” Audio, Speech, and Language Processing, IEEE Transactions on, vol. 21,
no. 5, pp. 1060–1089, 2013.

[37] M. Gao, J. Huang, X. Huang, S. Zhang, and D. N. Metaxas, “Simplified labeling
process for medical image segmentation,” in Medical Image Computing and
Computer-Assisted Intervention (MICCAI 2012), ser. Lecture Notes in Computer
Science, N. Ayache at al., Ed. Springer Berlin Heidelberg, 2012, vol. 7511, pp.
387–394. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-33418-4_48

[38] E. Geremia, O. Clatz, B. H. Menze, E. Konukoglu, A. Criminisi, and N. Ayache,
“Spatial decision forests for MS lesion segmentation in multi-channel magnetic
resonance images,” NeuroImage, vol. 57, no. 2, pp. 378–390, 2011. [Online].
Available: http://www.sciencedirect.com/science/article/pii/S1053811911003740

[39] S. Wang, W. Zhu, and Z.-P. Liang, “Shape deformation: SVM regression and applica-
tion to medical image segmentation,” in IEEE International Conference on Computer
Vision, 2001, pp. 209–216.

[40] L. C. Carbo, M. A. Haider, and I. S. Yetik, “Supervised prostate cancer segmentation
with multispectral MRI incorporating location information,” in Biomedical Imaging:
From Nano to Macro, 2011 IEEE International Symposium on, 2011, pp. 1496–1499.

[41] J. Jiang, P. Trundle, and J. Ren, “Medical image analysis with artificial neural
networks,” Computerized Medical Imaging and Graphics, vol. 34, no. 8, pp.
617–631, 2010. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0895611110000741

[42] A. V. D’Amico, H. Chang, E. Holupka, A. Renshaw, A. Desjarden, M. Chen, K. R.
Loughlin, and J. P. Richie, “Calculated prostate cancer volume: The optimal pre-
dictor of actual cancer volume and pathologic stage,” Urology, vol. 49, no. 3, pp.
385–391, May 1997.

http://dx.doi.org/10.1007/978-3-642-23944-1_2
http://link.aip.org/link/?MPH/35/1407/1
http://dx.doi.org/10.1007/978-3-642-33418-4_48
http://www.sciencedirect.com/science/article/pii/S1053811911003740
http://www.sciencedirect.com/science/article/pii/S0895611110000741
http://www.sciencedirect.com/science/article/pii/S0895611110000741


[43] A. Heidenreich, P. J. Bastian, J. Bellmunt, M. Bolla, S. Joniau, M. D. Mason,
V. Matveev, N. Mottet, T. H. van der Kwast, T. Wiegel, and F. Zattoni,
“{EAU} guidelines on prostate cancer,” European Urology, vol. 53, no. 1, pp. 68
– 80, 2008. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0302283807011451

[44] H. Hricak, G. C. Dooms, J. E. McNeal, A. S. Mark, M. Marotti, A. Avallone,
M. Pelzer, E. C. Proctor, and E. A. Tanagho, “MR imaging of the prostate gland:
normal anatomy,” American Journal of Roentgenology, vol. 148, no. 1, pp. 51–58,
January 1987.

[45] C. M. Bishop, Pattern Recognition and Machine Learning (Information Science and
Statistics). Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2006.

[46] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification (2nd Edition).
Wiley-Interscience, 2000.

[47] A. Karargyris and N. Bourbakis, “Detection of small bowel polyps and ulcers in
wireless capsule endoscopy videos,” Biomedical Engineering, IEEE Transactions on,
vol. 58, no. 10, pp. 2777–2786, 2011.

[48] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5–32, October
2001. [Online]. Available: http://dx.doi.org/10.1023/A:1010933404324

[49] National Electrical Manufacturers Association, “The DICOM standard,” online,
1300 N. 17th Street, Rosslyn, Virginia 22209, USA, 2011. [Online]. Available:
http://medical.nema.org/standard.html

[50] C. Farabet, C. Couprie, L. Najman, and Y. LeCun, “Learning hierarchical features
for scene labeling,” Pattern Analysis and Machine Intelligence, IEEE Transactions
on, vol. PP, no. 99, pp. 1–1, 2012.

[51] R. B. Palm, “Prediction as a candidate for learning deep hierarchical models of
data,” Master’s thesis, Technical University of Denmark, DTU Informatics, E-mail:
reception@imm.dtu.dk, Asmussens Alle, Building 305, DK-2800 Kgs. Lyngby,
Denmark, 2012, supervised by Associate Professor Ole Winther, owi@imm.dtu.dk,
DTU Informatics, and Morten Mørup, mm@imm.dtu.dk, DTU Informatics. [Online].
Available: http://www.imm.dtu.dk/English.aspx

[52] M. Beauchemin, K. P. B. Thomson, and G. Edwards, “On the hausdor� distance
used for the evaluation of segmentation results,” Canadian Journal of Remote
Sensing, vol. 24, no. 1, pp. 3–8, January 1998. [Online]. Available: http://geogratis.
gc.ca/api/en/nrcan-rncan/ess-sst/e30cbdcf-b9b7-512b-a799-fcd3c0c163b2.html

[53] H.-P. Wieser, “Robust volume calculation of closed surface models,” July 2011, bach-
elor’s Thesis.

[54] L. M. Eri, H. Thomassen, B. Brennhovd, and L. L. Haheim, “Accuracy and repeata-
bility of prostate volume measurements by transrectal ultrasound,” Prostate Cancer
and Prostatic Diseases, vol. 5, no. 4, pp. 273–278, December 2002.

http://www.sciencedirect.com/science/article/pii/S0302283807011451
http://www.sciencedirect.com/science/article/pii/S0302283807011451
http://dx.doi.org/10.1023/A:1010933404324
http://medical.nema.org/standard.html
http://www.imm.dtu.dk/English.aspx
http://geogratis.gc.ca/api/en/nrcan-rncan/ess-sst/e30cbdcf-b9b7-512b-a799-fcd3c0c163b2.html
http://geogratis.gc.ca/api/en/nrcan-rncan/ess-sst/e30cbdcf-b9b7-512b-a799-fcd3c0c163b2.html


[55] S. B. Park, J. K. Kim, H. N. Noh, E. K. Ji, and K. S. Cho, “Prostate volume mea-
surement by TRUS using heights obtained by transaxial and midsagittal scanning:
Comparison with specimen volume following radical prostatectomy,” Korean Journal
of Radiology, vol. 1, no. 2, pp. 110–113, June 2000.

[56] G. Litjens, O. Debats, W. Ven, N. Karssemeijer, and H. Huisman, “A pattern
recognition approach to zonal segmentation of the prostate on MRI,” in Medical
Image Computing and Computer-Assisted Intervention âÄ“ MICCAI 2012, ser.
Lecture Notes in Computer Science, N. Ayache, H. Delingette, P. Golland, and
K. Mori, Eds. Springer Berlin Heidelberg, 2012, vol. 7511, pp. 413–420. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-33418-4_51

[57] N. Makni, A. Iancu, O. Colot, P. Puech, S. Mordon, and N. Betrouni,
“Zonal segmentation of prostate using multispectral magnetic resonance images,”
Medical Physics, vol. 38, no. 11, pp. 6093–6105, 2011. [Online]. Available:
http://link.aip.org/link/?MPH/38/6093/1

http://dx.doi.org/10.1007/978-3-642-33418-4_51
http://link.aip.org/link/?MPH/38/6093/1


 
 
 
 
 
 
EIDESSTATTLICHE ERKLÄRUNG 
 

Ich erkläre hiermit: 

− dass ich die vorliegende  Diplom/Masterarbeit selbstständig und ohne 

fremde Hilfe verfasst und noch nicht anderweitig zu Prüfungszwecken 

vorgelegt habe. 

− dass ich keine anderen als die angegebenen Hilfsmittel benutzt, die den 

verwendeten Quellen wörtlich oder inhaltlich entnommenen Stellen als 

solche kenntlich gemacht und mich auch sonst keiner unerlaubten Hilfe 

bedient habe. 

− dass die elektronisch abgegebene Arbeit mit der eingereichten Hardcopy 

übereinstimmt. 

− dass ich einwillige, dass ein Belegexemplar der von mir erstellten 

Diplom/Masterarbeit in den Bestand der Fachhochschulbibliothek 

aufgenommen und benutzbar gemacht wird (= Veröffentlichung gem.  

§ 8 UrhG). 

 

 

 

 

 
(Ort, Datum)    (Unterschrift Studierende/r) 

 
 
 
 


	Introduction
	Medical background of the prostate gland
	Technical background and related work

	Theoretical imaging and image processing framework
	Prostate gland anatomy and MR imaging appearance
	Segmentation, classification and supervised learning 
	Supervised learning
	Feature extraction
	Inference and decision-making
	Linear basis function model
	Generalized linear model
	Linear discriminant function
	The perceptron
	Neural networks
	Decision trees and random forest


	Materials and methods
	Characteristics of the MR image database
	Remarks on variations between 1.5 T and 3 T image sets

	Development of an image viewer for visualization of image and label data
	Development of the segmentation algorithm
	Preprocessing of input data
	Feature extraction and input transformation
	Classification in the feature space
	Motivation for a two layer topology
	Postprocessing of the prediction result

	Framework development
	Description of error metrics
	Dice coefficient
	Hausdorff distance
	Sensitivity
	Specificity


	Results
	Evaluation setup and characteristics of result visualization
	Random forest evaluation
	Number of random variables to sample at each decision split in a tree
	Comparison of algorithm modes
	Assessment of the influence of the neighborhood size for regional features

	Neural network evaluation
	Evaluation of hidden layer topology
	Evaluation of neural network train function variation
	Results with final neural network setting

	K-means evaluation
	Naive Bayes evaluation
	Volumetric measurements and comparison to other techniques

	Discussion and conclusion

