
Marshall Plan Scholarship

Final Report

Exponential integrators for
Vlasov-type equations

Lukas Einkemmer

1



2

Introduction

The following presentation is divided into three chapters.

In the �rst chapter an exposition of the research that has been con-

ducted while at the University of California is given. It is the intention

to submit this as a paper to an applied mathematics journal (such as

Computer Physics Communication, for example).

The second chapter outlines possibilities of further research that are

well suited to be conducted in the framework of the collaboration with

M. Tokman and others from the University of California. Furthermore,

a review of literature that is relevant for that endeavor is provided.

In the third chapter (the appendix) we summarize and explain in more

detail some plasma physics concepts that are necessary to understand

this report. It is our hope that this makes the work presented here

more easily accessible and reasonably self-contained.

The references are collected at the end of each chapter.
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Abstract

In this paper we consider the application of exponential integrators to three

di�erent problems of plasma physics. These simulation are carried out using

the resistive magnetohydrodynamics (MHD) equations. Compared to the

previous examples that have been investigated in the literature, the resistive

MHD equation are formulated as partial di�erential equations in 8 variables

that include a physically important, but relatively weak, di�usion.

The performance of the �fth-order EpiRK method developed in Tokman 2010

is compared to that of the CVODE library. It is found that the exponential

integrator provides equal or superior performance in most circumstances.

Furthermore, we study the dependence of the performance characteristics as

a function of the the resistivity (the inverse of the Lundquist number).
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1. Introduction

The method of choice for the time integration of sti� ordinary di�erential

equations and the spatial semi-discretization of partial di�erential equations

are implicit methods, such as the Backward di�erence formula (BDF). This is

due to the fact that for such problems explicit integrators are usually forced

to take excessively small time steps.

However, in recent years exponential integrators have emerged as a promis-

ing alternative for the time integration of partial di�erential equations. A

signi�cant body of research has been accumulated in which these methods

are investigated both from a theoretical (see e.g. [7] for a review article)

as well as from a numerical point of view (see e.g. [18] and [9]). This re-

search includes the construction of exponential integrators that have been

tailored to a given di�erential equation (see e.g. [5]) as well as such integra-

tors that can be applied to a class of problems (see e.g. [6]). For example,

in [9] the Exponential Integrator Collection (EPIC), a framework written in

C++, is used to demonstrate that in many test problems superior or equal

performance can be achieved by a class of exponential integrators that are

called EpiRK methods, as compared to the BDF implementation found in

the CVODE library [1].

It is generally believed that in real world applications, except in the case

where hand tailored integrators can be constructed for a given problem, ex-

ponential integrators are most promising, as a viable candidate to outperform

explicit methods, if no good preconditioners are available.

However, most numerical work conducted in the literature do consider test

problems of small to medium complexity (see, for example, [9], [8], or [2])

where in many instances e�cient preconditioners can be constructed. It is

therefore the goal of this paper to apply the exponential integrators found in

the EPIC library to the problem of solving the resistive magnetohydrodynam-

ics (MHD) equations. Preconditioners for such systems have, for example,

been investigated in [13] and . It is found that the performance gain from
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preconditioning in the two and a half-dimensional examples considered there

is rather modest under most circumstances.

Our goal in this paper is to compare the performance of the exponential inte-

grators in the EPIC library to that of the BDF scheme that is implemented

in the CVODE library. Due to the discussion above we will perform this

comparison using the CVODE library but without any preconditioner.

In section 2 we provide an introduction to exponential integrators in general

as well as to the speci�c EpiRK method that is implemented in EPIC. In

section 3 we describe the MHD equations which are solved numerically in

section 4 for a reconnection problem, in section 5 for the Kelvin-Helmholtz

instability, and for an arcade model in the section (6). Implementation details

are discussed in section 7. Finally, we conclude in section 8.

2. Exponential integrators

Let us consider the following initial value problem

y′(t) = F (y(t)) (1)

y(0) = y0

which is assumed to be large and sti�. Before preceding to state the class

of numerical methods we are interested in, let us extract the the Jacobian

J(y(t)) = DyF (y(t)) from the right hand side of (1); this gives

y′(t+ h) = F (y(h)) + J(y(t)) [y(t+ h)− y(t)] +R(y(t+ h)),

where the remainder is given by

R(y(t+ h)) = F (y(t+ h))− F (y(t))− J(y(t)) [y(t+ h)− y(t)] .
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Now using the Gröbner-Alekseev formula, we obtain

y(t+ h) = y(t) +
(
ehJ − I

)
(hJ)−1hF (y(t)) +

ˆ 1

0

ehJ(1−s)R(y(t+ sh)) dθ.

This representation is still exact. However, to obtain a practical numerical

method the integral has to be approximated in a suitable manner. This is

the essential idea of exponential integrators. By using a polynomial approx-

imation we obtain a linear combination of entire functions de�ned by

ϕ0(hJ) = ehJ

ϕk(hJ) =

ˆ 1

0

e(1−θ)hJ
θk−1

(k − 1)!
dθ for k ≥ 1.

Thus, to implement exponential integrators e�ciently we have to compute

the application of the ϕk(hJ) functions to a (large) vector. In order to

accomplish this goal, a number of algorithms have been proposed in the

literature (see e.g. [7]).

The most common approach is to approximate the application of the ϕk

functions to a vector b by a projection on a Krylov subspace. Thus, let us

de�ne the Krylov subspace of dimension m by

Km(hJ, b) = span
{
b, (hJ)b, . . . , (hJ)m−1b

}
.

As a next step we have to compute an orthonormal basis of Km(hJ, b). This

can be done, for example, by using the Arnoldi iteration algorithm. The

result of that algorithm is a matrix Vm that consists of columns which form

a basis of Km(hJ, b). The product of a matrix function applied to a vector,

i.e. ϕk(hJ)b, can then be approximated as follows

f(hJ)b ≈ Vm
(
V T
mϕk(hJ)Vm

)
V T
m b.
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Furthermore, we approximate the term in parenthesis by f(Hm), whereHm =

hV T
mJVm. This yields the �nal approximation

f(hJ)b ≈ Vmϕk(Hm)V T
m b.

Note that Hm is a matrix of dimension m×m and therefore the application

of ϕk(Hm) to a vector can be easily computed by using any of the stan-

dard methods (such as Pade approximation or methods based on polynomial

interpolation). For a more detailed discussion see [7], for example.

An alternative to that procedure is to employ a polynomial approximation of

ϕk. To that end we have to chose m interpolation nodes on some compact set

K ⊂ C. Chebyshev nodes are an obvious choice, however, they su�er from

the disadvantage that to compute the interpolation for m+ 1 points we have

to reevaluate all the matrix-vector products already computed. To remedy

this, Leja points have been proposed which share many of the favorable

properties of the Chebyshev nodes but can be generated in sequence.

The advantage of interpolation at Leja points is that less memory is used

as the matrix Vm has to be stored in memory. This makes it an attractive

alternative for computer systems where memory is limited (such as graphic

processing units, see [2]). The main disadvantage of the method, however, is

that (at least) some approximation of the spectrum of J has to be available.

In this paper we will exclusively use the Krylov based approach. However,

for more detailed information on the usage of polynomial interpolation for

the computation of matrix functions in the context of high performance com-

puting see [10], for example.

Similar to explicit Runge-Kutta methods, a general EpiRK method can be
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written down as

Yi = yn + ai1ψi1(gi1hJn)hFn +
i−1∑

j=2

aijψij(gIjhJn)h∆(j−1)R(yn),

yn+1 = yn + b1ψs1(gs1hJn)hFn +
s∑

j=2

bjψsj(gijhJn)h∆(j−1)R(yn)

where the stage index i ranges from 1 to s − 1 and the ψij(z) functions are

linear combinations of the ϕk functions given in the following form

ψij(z) =
s∑

k=1

pijkϕk(z).

The number of stages is given by s and the divided di�erences ∆(h−1)R(yn)

can be computed by using the nodes yn, Y1, . . . , Ys−1.

As in the Runge-Kutta case, to construct an e�cient integrator the coe�-

cients aij, gij, bj and pijk have to be chosen subject to the appropriate order

conditions. In this paper, we use the EpiRK5P1 method that has been de-

rived in [18] (which is employed in the performance comparison given in

[9]) and uses the Adaptive Krylov algorithm from [12] and a variable time

stepping approach. The corresponding coe�cients are listed in Table 7 [9].

3. The resistive magnetohydrodynamics equations

The most fundamental theoretical description of a classical plasma comes

from the kinetic equation. This so called Vlasov equation (the collisionless

case) or Boltzmann equation (when collisions are of physical signi�cance)

describes the time evolution of a particle-density in the 3 + 3 dimensional

phase space (the �rst three dimensions correspond to the space dependence

while the remaining do correspond to the velocity dependence of the particle-

density). While a number of simulations of di�erent plasma phenomena have
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been conducted within this approach, due to the high dimensional phase

space a lower-dimensional approximation is usually used to render such sim-

ulations feasible. A similar discussion holds true for the gyrokinetic approx-

imation that can be employed in plasmas where a strong external magnetic

�eld along a given axis is present (in this case the phase space of the Vlasov

equation is reduced to 3 + 2 dimensions by averaging over the gyro motion;

this procedure yields a good approximation under the assumption of low

frequency as compared to the cyclotron frequency).

However, in many applications (such as magnetic con�ned fusion, spheromak

experiments, and astrophysical plasmas) the timescales of interest are su�-

ciently long and/or the full three dimensional model is necessary to model

physical phenomena. In that case the kinetic approach is usually not feasible

(even on modern day supercomputers) and thus further simpli�cations have

to be introduced. For the magnetohydrodynamics (MHD) equations, which

we will describe in the remainder of this section, the assumption is made

that, to a good approximation, the distribution in the velocity direction is

Maxwellian; that is, that each su�ciently small volume in the plasma is in

thermodynamic equilibrium.

For a more detailed discussion of gyrokinetic models, see e.g. [4] or [3].

For a general overview of kinetic and MHD models (including a derivation

of the MHD equations from the Vlasov equation) see e.g. [11]. Numerical

computations in the context of the MHD model discussed in this paper are

performed, for example, in [14], [15], and [13].

If the assumption is made that the plasma considered is in thermodynamic

equilibrium, the equations of motion in a three dimensional phase space (a

so called �uid model) can be derived. These are given by (in dimensionless
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units)

∂ρ

∂t
+∇ · (ρv) = 0 (2)

ρ
∂v

∂t
+ ρv · ∇v = J ×B −∇p (3)

which we refer to as the continuity and momentum equation respectively.

They are described in terms of the density ρ, the �uid velocity v, the mag-

netic �eld B, the electric current density J , and the pressure p. The dy-

namics is determined by the Lorentz force (the J×B term) and the pressure

gradient force (the ∇p term). These �uid equations have to be coupled to

an appropriate model of the electric �eld. Note, however, that if the (ideal)

Ohm's law is assumed to hold, i.e.

E + v ×B = 0,

then the electric �eld E can be eliminated from Maxwell's equation. This

leaves us with the following three equations

∂B

∂t
= −∇× (v ×B) (4)

J = ∇×B
∇ ·B = 0.

The �rst equation yields the time evolution of B, the second can be used

to eliminate J from equation (3), and the third is the familiar selenoidal

constraint imposed on the magnetic �eld.

A commonly employed approach to close these equations (see e.g. [15]) is to

supplement them with the following equation of state

e =
p

γ − 1
+
ρ

2
v2 +B2,
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where the time evolution of the energy density e is given by

∂e

∂t
= ∇ ·

(
(e+ p+ 1

2
B2)v −B(B · v)

)
. (5)

Collectively, the equations (2)-(5) in the variables (ρ,v,B, e) yield a �rst-

order system of 8 di�erential equations in 8 variables and are called the ideal

magnetohydrodynamics equations (or the ideal MHD equations).

For the purpose of performing the spatial discretization, these equations are

often cast into the so-called divergence form. Then, the equations of motion

read as (see e.g. [15])

∂U

∂t
+∇ · F (U) = 0

with state vector

U =




ρ

v

B

e




and

F (U) =




ρv

ρv ⊗ v + (p+ 1
2
B2)I −B ⊗B

v ⊗B −B ⊗ v
(e+ p+ 1

2
B2)v −B(B · v)



, (6)

where we have denoted the tensor product by using the ⊗ symbol.

In this paper, as in [14] and [15], we will consider a slightly more general

class of equations which, in addition to the dynamics discussed so far, include

dissipative e�ects (due to particle collisions in the plasma). To that end the

hyperbolic �ux vector F (U) is extended in [14] by a di�usive part given by

(where we have assumed a spatially homogeneous viscosity µ, resistivity η,
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and thermal conductivity κ)

Fd(U) =




0

Re−1τ

S−1
(
η∇B − η(∇B)T

)

Re−1τ · v + γ
γ−1Re

−1Pr−1∇T + S−1
(
1
2
∇(B ·B)−B(∇B)T

)




(7)

with

τ = ∇v + (∇v)T − 2
3
∇ · τ I,

where the Reynolds number is given by Re = ρ0vAl0/µ, the Lundquist num-

ber by S = µ0vAl0/η and the Prandtl number by Pr = cpµ/κ, for a charac-

teristic density ρ0, a characteristic length scale l0, and the Alfven velocity vA

(as usual the permeability of free space is denoted by µ0, κ = 5/3, and cp is

the speci�c heat of the �uid).

Note that in all the simulation conducted dimensionless units are used. Thus,

we can rewrite (7) more conveniently in terms of the (dimensionless) viscosity

µ = Re−1, the (dimensionless) resistivity η = S−1, and the (dimensionless)

thermal conductivity κ = Pr−1. Then, the form of the resistive MHD equa-

tions used for the spatial discretization is

∂U

∂t
+∇ · F (U) = ∇ · Fd(U)

with F (U) given by equation (6) and where Fd(U) is given by

Fd(U) =




0

µτ

η
(
∇B − (∇B)T

)

µτ · v + γµκ
γ−1∇T + η

(
1
2
∇(B ·B)−B(∇B)T

)



.

For the comparison that is conducted here, we employ the MHD code devel-

oped in [14]. This code has been used to conduct plasma physics simulations
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(see e.g. [14], [15], and [13]) as well as to construct more e�cient precon-

ditioners in the context of implicit time integrators (see [15]). The code

employs a �nite di�erence approximation of order two and is constructed in

such a way that if the selenoidal property, i.e. ∇ ·B = 0, is satis�ed for the

initial value, then this is true for all later times. In [15] this is shown to be

true for an implict method with a matrix-free inexact Newton�Krylov algo-

rithm. However, the simulation conducted here do suggest that this behavior

is also true if an exponential integrator is used for the time integration.

4. The reconnection problem

The examples in this and the next section are drawn from [14] and [15],

respectively. We start with a reconnection problem for which the initial

value of the magnetic �eld is given by

B0(x, y, z) =




tanh(2y)− ψ0ky cos(kxx) sin(kyy)

ψ0kx sin(kxx) cos(kyy)

0


 ,

where as in [14] we have chosen kx = π/xr, ky = π/(2yr), ψ0 = 0.1, and the

computational domain is given by [−xr, xr]× [−yr, yr] for xr = 12.8 and yr =

6.3. Essentially this implies that the magnetic �eld reverses direction from

pointing along ex to pointing along −ex abruptly at y = 0. Furthermore, we

impose a density that is given by

ρ = 1.2− tanh2(2y)

and a pressure that is proportional to the density; to be more precise p = 0.5ρ

(from which the energy is determined that is employed as an independent

variable in the computation). A vanishing velocity in both space directions

is prescribed.
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Reconnection, 256x128, T=100
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Figure 1: The error in the density as well as the energy (compared to a reference solution
that is computed using CVODE with an absolute tolerance of 10−14) is shown as a function
of the run time. The simulation is conducted up to a �nal time of T = 100. We have used
256 grid points in the x-direction and 128 grid points in the y-direction (this corresponds
to the con�guration investigated in [14]). The viscosity is given by µ = 5 · 10−2, the
resistivity by η = 5 · 10−3, and the thermal conductivity by κ = 4 · 10−2.

First, we consider the con�guration that is investigated in [14]; that is, we em-

ploy 256 grid points in the x-direction and 128 grid points in the y-direction.

From the numerical simulations conducted, we draw the conclusion that for

the problem under consideration the error in the energy (or equivalently the

error in the pressure) dominates the error present in the remaining variables.

Furthermore, we note that the performance of the exponential integrator is

superior to the BDF method employed in the CVODE library if the desired

accuracy is larger than 10−8 with respect to the energy or larger than 10−10

with respect to the density (see 1).

Next, let us conduct a simulation with 256 grid points in both the x- as well

as the y-direction. In that case, as can be seen from Figure 2, the perfor-

mance of the exponential integrator is comparable to that of the CVODE
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Reconnection, 256,256, T=100
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Figure 2: The error in the density as well as the energy (compared to a reference solution
that is computed using CVODE with an absolute tolerance of 10−14) is shown as a function
of the run time. The simulation is conducted up to a �nal time of T = 100. We have
used 256 grid points in both spatial directions. The viscosity is given by µ = 5 · 10−2, the
resistivity by η = 5 · 10−3, and the thermal conductivity by κ = 4 · 10−2.

implementation. Note, that in the exponential integrator case the run time

and precision does actually increase if the prescribed tolerance is increased

whereas almost the exact opposite can be observed for the CVODE imple-

mentation. This is, most likely, a consequence of the adaptive time stepping

algorithm used.

Now, let us increase the sti�ness of the problem by choosing a space dis-

cretization with 512 grid points in the x-direction. In that case we have to

employ a relatively small tolerance in order to obtain a method that is nu-

merically stable. However, if this stability is achieved the computed solution

is correct within an error of 10−6 for the energy and 10−8 for the density (see

Figure 3).
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Reconnection, 512,128, T=3
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Figure 3: The error in the density as well as the energy (compared to a reference solution
that is computed using CVODE with an absolute tolerance of 10−14) is shown as a function
of the run time. The simulation is conducted up to a �nal time T = 3. We have used
512 grid points in the x-direction and 128 grid points in the y-direction. The viscosity is
given by µ = 5 · 10−2, the resistivity by η = 5 · 10−3, and the thermal conductivity by
κ = 4 · 10−2.

From Figure 1 and 2 we can deduce that the exponential integrator shows

superior performance as compared to the CVODE implementation, if the

states of relatively low accuracy are accessible. Since this is not the case in the

simulation under consideration (where 512 grid points have been used in the

x-direction), we might expect that there is no region where the exponential

integrators yields superior performance. This is con�rmed by the results

displayed in Figure 3. However, let us note that for the accuracy requirement

of most practical simulation the performance of both integrators is almost

identical.

To conclude this section let us investigate the dependence of the (relative)

performance of the exponential integrator under consideration on the
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Reconnection, 256x128, T=30, eta=5e-2
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Figure 4: The error in the density as well as the energy (compared to a reference solution
that is computed using CVODE with an absolute tolerance of 10−14) is shown as a function
of the run time. The simulation is conducted up to a �nal time T = 30. We have used
256 grid points in the x-direction and 128 grid points in the y-direction. The viscosity is
given by µ = 5 · 10−1, the resisitivity by η = 5 · 10−2, and the thermal conductivity by
κ = 4 · 10−2.

resistivity η. In all the simulations conducted, we have chosen a viscosity

that is an order of magnitude smaller than the resistivity (i.e. µ = 10−1η).

Furthermore, we have chosen to keep the thermal conductivity �xed.

From the results displayed in Figure 4 (using a resistivity η = 5 · 10−2 and a

viscosity µ = 5 · 10−1) we see that for small Reynolds and Lundquist

numbers the CVODE implementation does retain a signi�cant advantage in

run time as compared to the EpiRK method.

As the Reynolds and Lundquist numbers are increased, the relative perfor-

mance of the exponential integrator does increase signi�cantly and a perfor-
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Reconnection, 256x128, T=30, eta=5e-3
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Figure 5: The error in the density as well as the energy (compared to a reference solution
that is computed using CVODE with an absolute tolerance of 10−14) is shown as a function
of the run time. The simulation is conducted up to a �nal time T = 30. We have used
256 grid points in the x-direction and 128 grid points in the y-direction. The viscosity is
given by µ = 5 · 10−2, the resisitivity by η = 5 · 10−3, and the thermal conductivity by
κ = 4 · 10−2.

mance that exceeds or matches that of the BDF implementation found in

the CVODE library is observed (see Figures 5 and 6).

5. The Kelvin-Helmholtz instability

As a second example we consider the Kelvin-Helmholtz instability. The KH

instability considered here is triggered by superimposing the following per-

turbation

εx cos
(
2πωx

L
x
)

+ εy sin

(
2πωy
L

x

)
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Reconnection, 256x128, T=30, eta=5e-5
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Figure 6: The error in the density as well as the energy (compared to a reference solution
that is computed using CVODE with an absolute tolerance of 10−14) is shown as a function
of the run time. The simulation is conducted up to a �nal time T = 30. We have used 256
grid points in the x-direction and 128 grid points in the y-direction. The (dimensionless)
viscosity is given by µ = 5 · 10−2, the resisitivity by η = 5 · 10−5, and the thermal
conductivity by κ = 4 · 10−2.
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parameter value
εx, εy 0.1
v0 0.5

ωx, ωy 2
pressure p 0.25

Bz 10
Bx 0.1

Table 1: Parameters for the initial value of the Kelvin-Helmholtz instability.

in the x-direction on the velocity �eld

v =



v0 tanh( y

λ
)

0

0


 .

The density is initialized to unity and a uniform pressure is chosen. The

magnetic �eld is initialized to be uniform in both the x- and z-direction with

strength Bx and Bz, respectively, and is assumed to vanish in the y-direction.

All the parameters used to determine the numerical value of the initial value

are listed in Table 1.

The result of the numerical simulation for 256 grid points is shown in Figure

7. We observe that the run time of the the CVODE implementation is about

25% faster as compared to the exponential integrator. In addition, we note

that this di�erence in performance is consistent no matter what accuracy is

desired.

If the number of grid points is increased, a similar picture is obtained (see

Figure 8 for the case with 512 grid points).

A further investigation, however, reveals that in the case of the Kelvin-

Helmholtz instability turning o� the adaptive algorithm described in [12]
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KH, 256x256, T=0.5
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Figure 7: The error in the density as well as the energy (compared to a reference solution
that is computed using CVODE with an absolute tolerance of 10−14) is shown as a function
of the run time. The simulation is conducted up to a �nal time T = 0.5 and 256 grid
points are used in both the x- and y-direction. The (dimensionless) viscosity is given by
µ = 5 · 10−2, the resistivity by η = 5 · 10−3, and the thermal conductivity by κ = 4 · 10−2.
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KH, 512x512, T=0.5
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Figure 8: The error in the density as well as the energy (compared to a reference solution
that is computed using CVODE with an absolute tolerance of 10−14) is shown as a function
of the run time. The simulation is conducted up to a �nal time T = 0.5 and 256 grid
points are used in both the x- and y-direction. The (dimensionless) viscosity is given by
µ = 5 · 10−2, the resistivity by η = 5 · 10−3, and the thermal conductivity by κ = 4 · 10−2.
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does result in signi�cantly improved performance for tolerances of up to

10−6 (both in density as well as in energy). The increase in run time for

higher accuracy is, as is to be expected, signi�cantly steeper and thus the

non-adaptive version is obviously ill suited for higher precision requirements.

However, this clearly indicates that the degraded performance of the adap-

tive EpiRK method, as compared to the reconnection problem described in

the previous section, is due to an an insu�ciency in the adaptive algorithm

as opposed to a de�ciency of the exponential integrator under consideration.

To conclude this section, let us duly note that this is in contrast to the

numerical simulations conducted for the reconnection problem (as stated

in the previous section). In case of the reconnection problem we observe

that the adaptive algorithm does in fact result in a signi�cant speedup that

enables the EpiRK method to achieve superior performance as compared to

the CVODE implementation.

6. A model involving time dependent boundary conditions

The third example is a two-dimensional model of a solar arcade (see [16] and

[17] for the extension to a three dimensional model). The initial magnetic

�eld is given by

B0(x, y) =




B0e
−k1y cos(k1x)

−B0e
−k1y sin(k1x)

Bz


 ,

where B0 = 1, Bz = 0.1, and k1 = 2π/Ly. Furthermore, we assume a

unit density and a vanishing velocity �eld. The computational domain is

[−Lx, Lx]× [−Ly, Ly] for Lx = 1 and Ly = 6.

Note that compared to [16], the model we solve here is more involved in that

it takes into account the pressure as well as di�usive e�ects. For the initial

value we chose p = 1 which corresponds to a signi�cantly higher beta than is

usual in astrophysical plasmas. This is necessary, as due to the structure of

21



the initial value, which does not take pressure e�ects into account, a realistic

value value for astrophysical plasmas (i.e. β ≈ 10−2) would result in a pres-

sure that is too small to be handled correctly by our code. The con�guration

presented here, nevertheless, is an interesting and su�ciently complex test

case for the time integrators considered in this paper.

However, what most distinguishes this model from the previous two we have

so far considered is that we impose a time dependent boundary condition on

the lower boundary. More speci�cally, we assume that

v1 = −V0f(t) sin(k1x),

where V0 = 0.01, f(t) = t/tR for t < tr, and f(t) = 1 otherwise. In addition,

we have set tr = 200.

Snapshots of the time evolution of the magnetic �eld in this con�guration are

presented in Figure 9. We see that the arcade structure present in the initial

con�guration does undergo a relatively slow evolution until approximately

t = 12, where the formed magnetic island (the structure where the magnetic

�eld lines do form a loop) does detach from the bottom boundary and travels

upwards.

Note that due to the higher plasma beta, a signi�cant faster time evolution

than reported in [16] is observed. Nevertheless, both con�gurations exhibit

similar dynamics in that at some point in time the arcade does detach from

the bottom boundary.

Even though the magnetic �eld does represent the physically interesting

quantity in this observation, we remark that the error made in the mag-

netic �eld is always lower than both the error of the density and the energy.

Therefore, we once again use the density and the energy as our variables to

investigate the performance of the CVODE algorithm as compared to our

exponential integrator.

The result of the simulation for 128 grid points in both the x- and the y-
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Figure 9: The �eld lines of the magnetic �eld in the x − y plane are shown for di�erent
times of the simulation.
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Arcade, 128x128, T=25
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Figure 10: The error in the density as well as the energy (compared to a reference solution
that is computed using CVODE with an absolute tolerance of 10−12) is shown as a function
of the run time. The simulation is conducted up to a �nal time of T = 25 and 128 grid
points are used in both the x- and y-direction. The viscosity is given by µ = 5 · 10−2, the
resistivity by η = 5 · 10−3, and the thermal conductivity by κ = 4 · 10−2.

direction is shown in Figure 10. In this instance, the run time of the CVODE

implementation does not change signi�cantly with a lowering of the achieved

tolerance as long as at least an accuracy of 10−5 is required. This is in

contrast to the EpiRK implementation where the run time increases, if in-

creased accuracy is required. Note that as in the previous two examples we

can observe that the exponential integrator does prove advantageous for low

precision requirements.

Now, let us consider the same problem with 256 grid points in both the x-

and the y-direction. In that case similar results are obtained (see Figure 11)

where as before exponential integrators are superior in terms of run time

consideration if an accuracy of 10−5 or less is required. If that is not the

case, we observe that the curve of the CVODE implementation is almost

vertical and thus a signi�cant run time advantage results as compared to the
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Arcade, 256x256, T=25
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Figure 11: The error in the density as well as the energy (compared to a reference solution
that is computed using CVODE with an absolute tolerance of 10−12) is shown as a function
of the run time. The simulation is conducted up to a �nal time of T = 25 and 256 grid
points are used in both the x- and y-direction. The viscosity is given by µ = 5 · 10−2, the
resistivity by η = 5 · 10−3, and the thermal conductivity by κ = 4 · 10−2.

CVODE implementation.

7. Implementation

We have chosen to base our implementation on the 2.5 dimensional1 MHD

code developed by Daniel R. Reynolds et al.. A large number of numerical

simulations have been conducted (see e.g. [14] and [15]) and the performance

of preconditioners for Newton-Krylov based implicit methods has been in-

vestigated (see e.g. [15]). Furthermore, the extension of the code to three

dimensional problems as well as to non-square geometries (such as a Tokamak

geometry) have been investigated in [13].

1All quantities depend on only two spatial variables; however, the direction of the
velocity as well as the magnetic �elds are three dimensional vectors.
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The code is implemented in the Fortran programming language and can be

build using both the gfortran2 as well as the Intel Fortran compiler. It em-

ploys the FCVODE module that provides a Fortran binding to the CVODE

library.

The second component of our implementation is the EPIC library (see [9])

which implements a �fth-order EpiRK method using automatic step size

control and an adaptive algorithm to evaluate the ϕk functions as described

in [12]. This library is written in the C++ programming language and does

use the Intel Math Kernel Library (Intel MKL).

We have chosen to make small modi�cations to the Fortran program to expose

a clean C interface that computes the right hand side of the MHD equations

under consideration. Then a C/C++ program was written that acts as a

driver and controls the execution of the program employing either the EpiRK

method or the CVODE library using the standard C interface.

One detail warrants further discussion: In the original Fortran program the

CVODE interface is used to approximate the Jacobian by a simple forward

di�erence stencil. In our implementation, however, we provide a custom

function to compute an approximation to the Jacobian. This is necessary for

the EPIC library, which has only been used in the context of problems where

an exact Jacobian is available (as in [9]).

However, to compute an exact Jacobian for the signi�cantly more complex

MHD problem considered in this paper is infeasible. Therefore, we have to

approximate J(a)v, i.e. the application of the Jacobian J at position a to a

vector v, where both a and v do depend on the speci�c numerical algorithm

as well as the initial values under consideration. We note here, that there

is a qualitative di�erence in the norm of the vector v that depends on the

numerical time integration scheme used. In the EpiRK the norm of v is close

to unity whereas in the BDF method the value is often signi�cantly below

2The Fortran compiler gfortran is part of the GNU Compiler Collection.
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√
ε (where we use ε ≈ 10−16 to denote machine precision). Therefore, care

is taken to scale vectors to the norm
√
ε only if the initial norm is above

√
ε

in magnitude. Then the same implementation can be used for both methods

and a di�erence in performance due to an internally optimized function to

compute the Jacobian (as is provided by the CVODE library) is precluded.

In all the computations conducted in this paper, we have used the in�nity

norm to scale v to its appropriate size. In general, we have found that the

performance and accuracy of the computation is not signi�cantly altered if

the scaling is performed to some value that is reasonably close to
√
ε.

8. Conclusion

We have shown that for the magnetohydrodynamics (MHD) problems con-

sidered in this paper, exponential integrators do constitute a viable alterna-

tive to the more commonly employed BDF method (as implemented in the

CVODE library). In almost all instances equal or superior performance has

been observed for the adaptive and variable time stepping �fth order EpiRK

method for low to medium accuracy requirements, despite the fact that the

EPIC package is a relatively straight forward implementation and therefore,

does not include excessive computer science optimizations. This is in con-

trast to the CVODE library which has been in active development for an

extended period of time.

However, the results presented here, especially in the context of the Kelvin-

Helmholtz instability, do suggest that an improvement in the adaptive algo-

rithm could further increase the performance of the EpiRK method investi-

gated in this paper.

Furthermore, we note that the results presented here is somewhat di�erent

from the simpler models considered in [9]. In that case order of magnitude

speedups are observed for the EpiRK method as compared to the CVODE

implementation. Whether it is generally true that the relative performance of
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exponential integrators degrades if more complex problems are investigated

or if that is a due to the speci�c system of partial di�erential equations

considered here, does require numerical simulation of a su�ciently complex

problem that is drawn from a di�erent domain. Also it is not clear if the

approximate computation of the Jacobian does contribute to the observed

di�erences (in all the problems investigated in [9] an analytical form of the

Jacobian has been used).
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1. Scaling of the EPIC library

Even though the results published in [8] do suggest that the EPIC library

does scale at least as well as the CVODE framework for a range of test

problems would suggest that similar results can be obtained for the MHD

equations.

However, this is not the case as can be seen from Figure 1 and 2, however,

we observe that the weak scaling behavior deviates quite signi�cantly from

that of CVODE.
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Figure 1: The weak scaling of the reconnection problem for 128 grid points in both the x-
and y- directions for up to 16 cores is shown.

Furthermore, for the Kelvin-Helmholtz instability this issues signi�cantly

worsens (see Figure 3).
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Figure 2: The weak scaling of the reconnection problem for 128 grid points in both the x-
and y- directions for up to 32 cores is shown.
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Figure 3: The strong scaling of the Kelvin-Helmholtz problem for 256 grid points in both

the x- and y- directions for up to 16 cores is shown.
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In this case the time steps signi�cantly decrease as a function of the number

of cores which results in a scheme that is not competitive. Note, however,

that this is not purely a problem within the automatic step size control, i.e.

the step is actually necessary to ensure numerical stability.

Since parallelization is of vital importance if more realistic plasma physics

problems are to be tackled, the exact cause of this phenomenon is currently

under investigation.

2. A literature overview of the physics of coronal mass ejections

Numerical simulations conducted in the literature (in the context of coronal

mass ejections) can be divided into two di�erent categories:

• to construct a three dimensional representation of the dependent vari-

ables (density, velocity �eld, magnetic �eld, and pressure) from mea-

surement data. Such data are usually available in the form of line-

of-sight magnetograms that give the magnetic �eld at the surface of

the sun (there physical e�ects such as the Zeeman splitting of iron in

combination with the resulting electromagnetic emissions can be used

to determine the �eld strength).

• to investigate possible plasma con�gurations that exhibits both the rel-

atively long stability of solar arcades, while still providing a mechanism

that can result in fast eruptions.

The �rst problem is intimately connected with the question of what (quasi-

)equilibrium states are accessible to a plasma. In the seminal paper of Taylor

[10], the class of linear force free state has been identi�ed as the result of

relaxation under constraints. Taylor was able to explain the reversed �eld

topology that appears naturally in some toroidal plasmas.
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The idea has been extended to a number of long lived plasma states. How-

ever, the validity of this approach has been called into questions. First, on

the ground that the application of low plasma beta, while usually valid in the

corona, might not be applicable above 1.2 solar radii (see [4]). In a number

of papers the approach was therefore extended to either nonlinear force free

states or states that are more general than linear force free states (such as

linear combination of these). See, for example, [9],[2], [5], [12], and [3]. It

has been found that for model problems the magnetic �elds could be deter-

mined accurately even if only the lower boundary condition was speci�ed.

It is, however, unclear if these model, which usually include a number of

parameters that are �tted in order to obtain the correct data on the domain

boundary, provide any explanatory power from a physical point or view.

On the other hand a number of MHD simulations and theoretical investi-

gations have been conducted to model a number of arcade type structures

in the context of solar plasmas. In [11] a time dependent MHD simulation

gives similar results as compared to astronomical observations (assuming an

initial �ux tube that leads to a kink instability).

In [13] the free energy in bipolar and quadruple magnetic �elds is investi-

gated. It is found that states with energy twice as high as for open �eld lines

(which have previously considered to be the upper limit for certain classes of

�elds). In [2] the possibility that arcade type magnetic �elds are in fact MDR

(minimum dissipation rate) states (in a two �uid model) is investigated. The

paper demonstrates the plausibility using an order of magnitude estimation

but does not provide any numerical simulation and no follow up papers are

found in the literature.

It is generally believed that reconnection does play a major role in the dy-

namics even at low plasma beta. However, there is a signi�cant discrepancy

in the speed of the dynamics that is observed in astronomical observations

and the one obtained from numerical simulations (see, for example, [14] for

a review article). In that context the reconnection of di�erent kinds of �ux

4



tubes have been investigated (see [7] and [6]).

Even though in recent years more advanced MHD simulations have been

attempted (see e.g. [1]) a thorough understanding of solar arcades has proved

elusive.
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1. Tensor manipulation

First, let us note that (where εijk is the Levi-Civita symbol and we employ

the Einstein summation convention for repeated indices)

∇× (v ×B) = ∇× (ε·jkvjBk)i

= εimnεnjk∂mvjBk

= εimnεnjkvj∂mBk + εimnεnjkBk∂mvj

now separating the two cases we get

εimnεnjkvj∂mBk = εimnεjknvj∂mBk = vi∂jBj − vj∂jBi

and

−εimnεkjnBk∂mvj = −Bi∂jvj +Bj∂jvi

Since

∇ · (v⊗B−B⊗ v)i = ∂j(viBj −Bivj) = vi∂jBj +Bj∂jvi−Bi∂jvj − vj∂jBi

we follow that

∇ · (v ⊗B −B ⊗ v) = ∇× (v ×B).

Similar derivations can be conducted for the other equations of motion.

2. Parameters in a coronal plasma

From measurement data it is determined that the solar corona has a tem-

perature of approximately 107 Kelvin and a density of 109 electrons/cm3

1



(see, for example, [2]). Assuming that the plasma consists mainly of hy-

drogen atoms and using the quasi-neutrality assumption gives a density of

1.6 · 10−20kg/cm3.

To cast this quantities in the dimensionless units used in the actual simulation

we have to determine a characteristic length and time scale. From [gary2009]

we can use l0 = 109 cm as the characteristic length scale (which is between

the size of the entire domain of size 1010 cm and the resolution of a single

pixel which is on the order of 108 cm). For the characteristic magnetic �eld

strength B0 = 0.01 T (also taken from [3]) we get the Alfven speed (see e.g.

[4])

vA =
B0√
µ0ρ0

= 7 · 107m/s = 0.2c,

which we take as the characteristic speed. Then it is easy to determine the

characteristic time to be (sometimes called the Alfven time)

tA =
l0
vA

= 0.15s.

On the other hand the characteristic pressure has the same units ( kg
ms2

or
kg
m3

m2

s2
) as does B2

0/(2µ0). This gives a characteristic pressure

p0 = 39.8 Pa.

The pressure can be determined from the ideal gas law which yields (for the

data used here)

p = 0.1 Pa.

Note that since in the dimensionless units used in the simulations B2
0 and

p0 have the same units as they represent the magnetic and kinetic pressure,

respectively. As a consistency check we can thus compute the plasma beta

2



(the fraction of pressure to magnetic pressure) which is given by

β =
p

B2
0

= 0.0025

which is on the order of 10−3 and thus consistent with the data reported for

coronal plasmas (see e.g. [2]).

3. Stability of force free plasmas

If the pressure force is negligible (i.e. the plasma beta is much smaller than

unity) then the only driving force in the MHD model is the Lorentz force.

It is then argued in the physical literature (see e.g. [1], [5], and [6]) that the

plasma will tend to an equilibrium state, i.e. a state where the Lorenz force

vanishes. Such a state is called a force-free state and is characterized by

j ×B = 0. (1)

Now, for the ideal MHD equations Ohm's law implies that

j = ∇×B

and thus we can rewrite equation (1) as

(∇×B)×B = 0

which implies that there exists an α such that

∇×B = αB

(∇α) ·B = 0.

If the parameter α is homogeneous in space then we will it a linear force free

state otherwise it is refereed to as a non-linear force free state.

3



In many instances we are further interested in determining if a force-free

state B = B0+B1 is stable if a perturbation B1 is applied. To that end we

investigate the change in energy a perturbation causes, i.e. if

W =

ˆ

B2 −B2
0 dV (2)

is positive then the perturbation is stable. For the present discussion, we

only consider linear stability. Linearizing Faraday's law of induction gives

∂B1

∂t
= −∇× (v1 ×B0). (3)

Since B0 is constant (in time) integrating equation (3) in time shows that

the perturbation is of the form

B1 = −∇× (ξ ×B0),

for ξ appropriately de�ned. Substituting the formula for B1 into the change

in energy (given by equation (2)) yields

W =

ˆ

(∇× (ξ ×B0))
2 − 2(∇× (ξ ×B0)) ·B0 dV.

Now let us assume that B0 is a force free state; then after some algebraic

manipulation (see e.g. [6]) we get

W = (∇× (ξ ×B0))
2 − (∇× (ξ ×B0)) · (ξ × (∇×B0)) dV

and for A1 = ξ ×B0 we have

W =

ˆ

(∇×A1)
2 − αA1 · (∇×A1) dV.

From this expression a number of interesting consequences are immediate.
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First, a state with α , which corresponds to a potential �eld, is stable. No such

conclusion can be drawn in general for di�erent force-free states. However,

if we analyze the orders of magnitude we �nd that the �rst term scales as

A2
1/l

2, where l is a characteristic length scale, and the second term scales as

αA2
1/l. Therefore, if

α <
1

l

then the corresponding force free state is stable. This observation is called

Shafranov's limit.

4. The dependence of the dynamics on the initial pressure

In the paper we have presented numerical results for the arcade type initial

that were computed using an initial pressure equal to unity. In fact, we would

expect that if we decrease the initial pressure than the speed of the dynamics

would decrease as well. To verify this we have chosen p = 0.25. The results

are shown in Figure 1.

Furthermore, in Figure 2 we show a side by side comparison, up to the

�nal time t = 0, for p = 0.25 and p = 0.0625. We can clearly see that the

magnetic island detaches from the bottom at an earlier time in the latter case;

thus con�rming our previous observation that the speed of the dynamics is

increased.
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