
1 
 

Evaluation of Parameter Estimation Methods for 
Crystallization Processes Modeled via 

Population Balance Equations 
 

Author of this report:  
Maximilian Besenhard 

 Graz University of Technology 
Inffeldgasse 13, Graz, Austria 8010 

 

External Supervisor:  
Prof. Rohit Ramachandran  

Rutgers-The State University of New Jersey 
98 Brett Road, Piscataway, NJ-08854 

 

Internal Supervisor:  
Prof. Rohit Ramachandran 

Graz University of Technology 
Inffeldgasse 13, Graz, Austria 8010 

 

 

Acknowledgement: 

First and foremost, I would like to thank the Marshall Plan foundation for giving me the opportunity to 
work in Rutgers-The State University of New Jersey USA.  This exposure has led to a great enrichment in 
my research and I am very grateful for this experience.  I have grown as a person as well as a researcher.  
I really appreciate the funding of Marshall Plan foundation encouraging  between the universal 
collaboration between  these two countries-United States of America and Austria. I would like to 
acknowledge my internal supervisor Prof Johannes Khinast for his permanent guidance and the 
motivation to go abroad. I would like to thank my external supervisor Rohit Ramachandran for all of the 
invaluable assistance and guidance that he provided during my stay at Rutgers.  Furthermore, I would 
like to thank Anwesha Chaudhury for her assistance and support which was way beyond what someone 
could expect from a colleague and friend.  

 



2 
 

Abstract: 

Population balance equations (PBE) coupled with mass and energy balance equations represent the 
common framework for crystallization processes. Often expressions required expressions for crystal 
growth, nucleation, as well as aggregation and breakage rates contain parameters that need to be 
estimated from experimental data. To establish a process model, parameter estimation (PE) is applied to 
determine an optimal set of parameters by minimizing the sum of squared errors between the 
experimental results and the model output. Inappropriate selection of the objective function, the 
optimization routine itself and inaccurate or limited experimental data might severely handicap the 
parameter estimation procedure.  

In this study the sensitivity of parameter estimation concepts is investigated. Therefore the limits of 
multiple optimization algorithms (global and local ones) and the consequence of limited or inaccurate 
experimental data were analyzed in detail. Furthermore the present work discusses how oversimplified 
model assumptions affect the interpretation of experimental results and exposes pitfalls in the 
interpretation of parameter estimation results.  

 

Keywords:  
Parameter estimation, crystallization, population balance equation, objective function, erroneous data, 
inverse problem, simulation 

1. Introduction and Objectives  
Crystallization processes are crucial for the efficient manufacturing of many solid pharmaceutical drug 
products. The objective of this step is the formation of a solid product. Yet, in many cases sequential 
crystallization-dissolution cycles are used as a means of purification. Crystallization has been studied for 
more than hundred years by a broad scientific community. However, the modeling of crystallization 
processes is still somewhat complicated by the fact that the crystal properties, such as size, shape,  
morphology, habit or purity, are typically distributed. Nevertheless, many approaches have been 
reported in the literature [1,2]. Models are frequently used in the design, optimization and scale-up of a 
crystallization process. In addition, the increasing demand for model-based control algorithms requires 
the development of accurate, yet fast models that can predict the impact of system and processing 
conditions on the quality attributes of the crystals, such as the particle size distribution or shape [3]. 
Moreover, with increasing global competition there has been a demand for implementing “optimal” 
process systems engineering approaches to pharmaceutical manufacturing [4]. This also is in line with 
the Quality by Design approach, introduced by the International Conference on Harmonization (ICH) and 
increasingly adopted my national or international agencies such as the FDA or EMA.  

Owing to the discrete nature of crystals, each crystal being unique in some sense, models that can 
account for the distribution of properties are required. The ability of population balance equations 
(PBEs) to capture the discrete and distributed nature of crystals makes their use an appropriate choice 
for prediction, control and optimization purposes. PBEs are hyperbolic partial differential equations 
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describe how the populations of specific properties evolve over time. The generalized PBE for spatially 
homogenous processes as previously proposed by [5] can be written as:   

߲
ݐ߲
,ݔ)݊ (ݐ +

߲
ݔ߲

൬݊(ݔ, (ݐ
ݔ߲
ݐ߲
൰ = ,ݔ)ܤ (ݐ − ,ݔ)ܦ  Equation 1 (ݐ

 
where ݊ denotes the population of particles, e.g. the number frequency of property ݔ, at the time ݔ .ݐ is 
the internal coordinate (typically the size) of interest and its derivative with respect to time defines the 

growth rate ܩ = డ௫
డ௧

. In case of ݔ being the size ܩ is a given function of supersaturation and other 

physicochemical properties. The right side of Eq.1 comprises the source terms (e.g., describing 
aggregation, breakage and nucleation). 

The use of PBEs for the modeling of crystallization processes is well-established in the literature [6-11]. 
Significant work involving 1-D models is due to [6,11-16]. Multi-dimensional PBEs involving the 
implementation of multidimensional equations were reported as well, with respect to different length 
scales [17,18] or volume and surface area as the internal coordinates [19,20]. Various solution 
techniques have been reported including the method of moments [21,22], method of classes [23],  high-
resolution algorithms [17] or Monte Carlo techniques [24]. In the modeling of crystallization processes, 
the PBE is coupled with a mass and energy balance providing information about the level of 
supersaturation and the temperature.  

For the aggregation and breakage terms, typically empirical kernels with multiple tunable parameters 
are used [25,26]. Mechanistic models for defining the kernels are rarely applied. Instead, kernel 
parameters are optimized to a give best fit of experimental data. This highlights the need for developing 
effective parameter estimation (PE) techniques for the accurate representation of crystallization 
processes  via PBEs.  

Several optimization algorithms for the accurate estimation of empirical parameters have been 
proposed in the last years. The implementation of a weighted least-square objective function comprising 
of the estimated and the experimental data was reported in [27-29]. Hu et al. considered a maximum 
likelihood function for the estimation of parameters using the concentration and CSD, and the 
covariance matrix for testing the robustness of their approach [30]. A similar objective function was 
considered by [31] for the parameter estimation procedure in combination with the SQP (sequential 
quadratic programming) algorithm. SQP has also been applied to the parameter estimation of 
crystallization processes by [32]. A projection method and a Bayesian approach were utilized by [33,34] 
for the parameter estimation of a multidimensional PBE model for granulation. Gradient-based methods 
were employed for the fitting of experimental concentration and CSD data using splines by [35]. Optimal 
control problems in crystallization were previously studied by [36,37] using the particle-swarm 
optimization (PSO). PSO algorithms were also used for the control and optimization in various other 
fields (such as fermentation, liquid-liquid extraction, bioinformatics) [38-40]. A comparison of various 
population-based (e.g. Particle Swarm and Generic Algorithms) and trajectory methods (e.g. Simulated 
Annealing, Tabu Search and Iterated Local Search) for the optimization of biomass power plants was 
reported by [41]. Parameter estimation methods by derivate-free and gradient methods within a multi-
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dimensional population balance framework were reported by [42]. The authors also discussed the 
calculation of derivative information and sensitivity analysis to ensure increased accuracy. Dynamic 
optimization algorithms (such as in gPROMS) for the parameter estimation of PBEs for crystallization 
processes have been applied as well [43,44]. 

In this work, we report a detailed study of the estimation of empirical parameters in a PBE models for a 
crystallization process. Other goals are to test the PE procedure for the amount and quality of the 
considered experimental data and investigate the consequence of incorrect modeling assumptions. We 
have used a comparative study with global optimization techniques, including Simulated Annealing 
Algorithm (SAA), Particle Swarm Optimization (PSO) and the parameter estimation algorithm 
implemented in gPROMS to investigate the PE procedure for the determination of the growth- and 
aggregation kinetics.  

2.  Process Model Development and Simulated Experiments 
The concept of this study is to use the inverse problem for the investigation of the PE procedure. Here 
inverse problem denotes the attempt to estimate the parameters in a PBE model, which have been 
defined beforehand, from data obtained by calculations of the same PBE model. To begin with, a 
process model was developed that describes a crystallization process using growth and aggregation 
kinetics that are as generic as possible. Next, simulations were performed using different process 
settings to generate a variety of data points. Finally it was tried to obtain the parameters used in the 
equations of the growth and aggregation rate of the PBE model, based on the results of these simulated 
experiments. 

2.1 Process model 
The process model describes a well mixed, seeded batch cooling crystallization process of a model active 
pharmaceutical ingredient (API) from a model solvent. A schematic draft of this simplified process is 
shown in Figure 1. Initially the seed crystals are suspended in a saturated solution composed of the 
solvent and dissolved API. If the solubility of the API goes with the temperature, the cooling of this slurry 
results in supersaturation, i.e. the solution contains more of the dissolved API than in the saturated 
state. The level of supersaturation is assumed to remain below the meta-stable limit, i.e. the level that 
defines the onset of nucleation, throughout the entire process. Hence only the seeded crystals grow.   

A Nyvlt model (Eq.2) was used to define the solubility of the model API in the model solvent.  

log(ܺ஺௉ூ∗) = ଵܰ + 
ܰଶ
ܶ

+ ଷܰ ∙ log(ܶ) Equation 2 

 
Here ଵܰ = 27.769, ଶܰ = −2500.906 , ଷܰ = −8.323 and the temperature ܶ is given in Kelvin.  ܺ஺௉ூ is 
the mole fraction of the solution defined as the ration of dissolved API molecules (݊஺௉ூ) to those present 
in the entire solution (݊஺௉ூ + ݊ௌ௢௟௩௘௡௧). 

ܺ஺௉ூ = ௡ಲು಺[௠௢௟] 
௡ಲು಺[௠௢௟] ା௡ೄ೚೗ೡ೐೙೟[௠௢௟] 

   Equation 3 
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The used Nyvlt model was presented by Maia et al. [45] to quantify the temperature dependency of 
acetylsalicylic acid in ethanol. All model relevant material constants and process settings used to 
calculate the amount of dissolved and crystalline API are described in  

Table 1. 

The supersaturation ܵ is defined as  

ܵ =
[ܮ/݈݋݉] ܿ
[ܮ/݈݋݉]∗ܿ

 Equation 4 

 
, where ܿ∗ is solubility and ܿ the current concentration of dissolved API. All cooling crystallization 
processes considered in this work start with a saturated solution, i.e.  ܵ = 1. Because of this Eq.  3 
defines the initial concentration of the dissolved API. The conversion from mole fraction ஺ܺ௉ூ to moles 

per liter,ܿ ቂ௠௢௟
௅
ቃ , was conducted by means of Equation 5 to obtain the initial concentration (c୅୔୍ ୧୬୧୲୧ୟ୪). 

c୅୔୍ ୧୬୧୲୧ୟ୪  [mol/L] = ܺ௖௣( ௜ܶ௡௜௧௜௔௟)  ∙ ቆ
߷ௌ௢௟௨௧௜௢௡

ܯ ஺ܹ௉ூ ∙ ( ஺ܺ௉ூ( ௜ܶ௡௜௧௜௔௟)) + ൫1 − ஺ܺ௉ூ( ௜ܶ௡௜௧௜௔௟)൯ ∙ ܯ ௌܹ௢௟௩௘௡௧ )
ቇ

ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
 total amount of moles in one liter saturated solution

 Equation 5 

 
Besides, only experiments with the same amount of API and solvent (see  

Table 1) were considered. Thus the initial seed mass (m୅୔୍_ୡ୮_୧୬୧୲୧ୟ୪), i.e. the initially non dissolved 

amount of API being present in crystalline form can be obtained from the total mass of API (m୅୔୍_୲୭୲) in 
the system (see Equation 6).  

m୅୔୍_ୡ୮_୧୬୧୲୧ୟ୪ [kg] = m୅୔୍_୲୭୲ − c୅୔୍_୧୬୧୲୧ୟ୪ ∙ MW୅୔୍ᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ
୫ఽౌ౅_౏౥ౢ౫౪౟౥౤_౟౤౟౪౟౗ౢ

 
Equation 6 

 

Table 1: Material constants and process settings 

Material constants Value Description 
Molecular weight API ܯ ஺ܹ௉ூ =  Molecular weight of acetylsalicylic acid (Aspirin®) [݈݋݉/݃݇] 180.16
Molecular weight solvent ܯ ௌܹ௢௟௩௘௡௧ =   Molecular weight of ethanol [݈݋݉/݃݇] 46.07

Density crystalline phase ߷௖௣ =  For simplification an equal density for the crystalline [ܮ/݃݇] 1
phase ߷௖௣, the pure solvent ߷ௌ௢௟௩௘௡௧  and the solvent 
containing dissolved species of the API ߷ௌ௢௟௨௧௜௢௡  is 
assumed. Hence the reactors filling level remains 
constant. 

Density pure solvent ߷ௌ௢௟௩௘௡௧ =  [ܮ/݃݇] 1

Density solvent with dissolved species ߷ௌ௢௟௨௧௜௢௡ =  [ܮ/݃݇] 1

Reactor volume ௥ܸ = 10ିଷ [݉ଷ] In the present work we used the same initial mass of 
solvent and the API (solid & dissolved)  for all 
simulated experiments 

Overall mass of solvent in the reactor ݉ௌ௢௟௩௘௡௧_௧௢௧ = 0.5 [݇݃] 
Overall mass of  API in the reactor ݉஺௉ூ_௧௢௧ = 0.5 [݇݃] 
initial mass of the API in crystalline phase ݉஺௉ூ_௖௣_௜௡௜௧௜௔௟   
initial mass of the API in solution ݉஺௉ூ_ௌ௢௟௨௧௜௢௡_௜௡௜௧௜௔௟   
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Crystals were assumed to be cubic. In this work ݊(ܮ,  is defined as the number of (cubic) crystals in the (ݐ
reactor volume  ௥ܸ  (see  

Table 1) with an edge length of ܮ at the time ݐ. For all the simulated experiments an equal CSD of 
seeded crystals was assumed, given by a logarithmic distribution [46] (see Equation 7), 

,ܮ)݊ ݐ = 0) = ܰ ∙
1

L ∙ σ୪୬ ∙ √2 ∙ ߨ
 ∙ exp ቆ−

1
2
∙ ൬

ln (ܮ/ܮହ଴)
σ୪୬

൰
ଶ

ቇ Equation 7 

 
with σ୪୬ = ହ଴ܮ ,0.4 = 100 µ݉ and ܰ  is used to adjust the total amount of particles. The latter can be 
obtained from the following constraint: 

න ,ܮ)݊ ݐ = 0) ∙ ଷܮ ∙
୐ౣ౗౮

଴
߷௖௣ = m୅୔୍_ୡ୮_୧୬୧୲୧ୟ୪ Equation 8 

 
For the present work a size-independent growth rate ܩ was assumed [12,15,47-49]: 

,ܵ)ܩ ܶ) = ݇௚ଵ ∙ expቆ
−݇௚ଶ
ܴ ∙ ܶ

ቇ ∙ (ܵ − 1)௞೒య  Equation 9 

 

with parameters  k୥ଵ = 10 [௠
௦

] ,  k୥ଶ = 10ସ [ ௃
௠௢௟

] ,  k୥ଷ = 1 [−] . Since the growth rate is size 

independent, the PBE can be expressed as:  

߲
ݐ߲
,ܮ)݊ (ݐ + ܩ ∙

߲
ܮ߲

൫݊(ܮ, ൯(ݐ = ,ܮ)ܤ ஻௜௥௧௛(ݐ ,ܮ)ܦ−  ஽௘௔௧௛ Equation 10(ݐ

 
Table 2 compares the growth rate of our model API, determined by Equation 1, to growth rates 
determined for other substances at a level of supersaturation of  ܵ ≈ 1.5.  Why do you use a growth 
rate that is so different from aspirin when just above you are mentioning that you are looking at 
aspirin crystallization.  um die model substance “as generic as possible” zu lassen habe ich eine 
langsamere Wachstumsrate gewählt.  Außerdem ergeben sich so für die parameter ݇௚ “schöne” 

Werte. 

The mass balance equation determining the temporal change in concentration, in ቂ୫୭୪
୐∙ୱ
ቃ using the units 

given in Table 1, G ቂ୫
ୱ
ቃ and L [m], is given by Equation 11. 

߲ ஺ܿ௉ூ

ݐ߲
= −

3 ∙ ߷௖௣
ܯ ஺ܹ௉ூ

∙ ܩ ∙ න (ܮ)݊
ஶ

଴
∙ ଶܮ ∙  Equation 11 ܮ݀

 
The aggregation birth and death terms for binary aggregation are [5]:  
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,ܮ)ܤ (ݐ =  
ଶܮ

2
∙ න

,ߣ௔௚௚൫ߚ ଷܮ√ − ଷయߣ  ൯ ∙ ,ߣ)݊ (ݐ ∙ ݊൫√ܮଷ − ଷయߣ , ൯ݐ

ඥ(ܮଷ − ଷ)ଶయߣ ߣ݀ 
௅

ఒୀ଴
    Equation 12 

 

,ܮ)ܦ (ݐ = ,ܮ)݊  (ݐ ∙ ∫ ,ܮ)௔௚௚ߚ (ߣ ∙ ,ߣ)݊ ௅ߣ݀ (ݐ
ఒୀ଴ . Equation 13 

 
The likelihood for the occurrence of aggregation is determined by the aggregation kernel ߚ௔௚௚ defined 

in Eq. 14. In this work, a growth rate (and therefore supersaturation) dependent kernel was used. This is 
the common approach modeling aggregation during crystallization processes [26,50,51]. The size 
dependence of the used aggregation kernel is similar to the Thomson kernel  [52,53] with the difference 
that ߚ௔௚௚(ܮଵ, ଶܮ = (ଵܮ = 0 in the original kernel from Thomson. 

,ଵܮ)௔௚௚ߚ (ଶܮ = ݇௔ଵ ∙ ௞ೌమܩ ∙ ቌ
൫ܮଵଷ − ଶଷ൯ܮ

ଶ

൫ܮଵଷ + ଶଷ൯ܮ
+ 2 ∙ ൫ܮଵଶ +  ଶଶ൯ቍ Equation 14ܮ

 

The aggregation model parameters were fixed at  ݇௔ଵ = 3 ∙ 10ିଵହ  ቂଵ
௅
ቃ and ݇௔ଶ = 2 [−], which led to a 

decrease in the total number of particles in the range of 10 % for the described experiments (i.e. 
simulations). Despite the multitude of reports on aggregation kernels for PBE describing crystallization 
processes, the number of publications presenting model validation or calibration by means of real 
experimental data is fairly limited. Generally accepted aggregation kernels do not exist. A summary of 
reported crystallization models that take into account aggregation is presented in the Appendix.   

Table 2: Growth rate at a level of supersaturation value of ܁ ≈ ૚. ૞   

Substance Temperature [°۱] Value [ܛ/ܕ] 
model API 
(Eq. 5 & Table 2) 

ܶ = ܩ 40 ≈ 2 × 10ି଻ 

L-Glutamic Acid [54] ܶ = ܩ 70 ≈ 3 × 10ି଼ 
Ibuprofen [47] ܶ = ܩ 25 ≈ 1 × 10ି଻ 
acetylsalicylic acid [15] ܶ = ܩ 40 ≈ 3 × 10ି଺ 

 

2.2 Simulated experiments 
Five different cooling crystallization experiments with different initial concentrations (ܔ܉ܑܜܑܖܑ_۷۾ۯ܋), seed 
mass (ܔ܉ܑܜܑܖܑ_ܘ܋_۷۾ۯܕ) and cooling rates (ܔܗ܋.  are simulated, to generate the data necessary for the (܍ܜ܉ܚ

PE of used model parameters. The process time (࢚࢙࢙ࢋࢉ࢕࢘࢖) was set to end the cooling crystallization 

process at  ૛૞ °࡯. The process settings of all simulated experiments are listed in Table 3. Note that 
࢒ࢇ࢏࢚࢏࢔࢏ࢀ depend only on the initial temperature ܔ܉ܑܜܑܖܑ_ܘ܋_۷۾ۯܕ and ܔ܉ܑܜܑܖܑ_۷۾ۯ܋  since ࢚࢕࢚_࢒࢕࢙࢓  and ࢚࢕࢚_࢒࢕࢙࢓  

are equal for each experiment (see Table 1). The supersaturation profile as well as the final and initial 
CSD of experiment 5 (see Table 3) are shown in Figure 2.  
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The rate-limiting factor in crystal growth (i.e., surface integration or diffusion to the surface), depends 
on the molecule itself, the solubility in the used solvent and the level of supersaturation [50]. The 
growth mechanism and therefore its mathematical representation could switch from surface-
integration-limited to diffusion-limited growth if the super saturation increases. Therefore, experiments 
were designed not to exceed a level of supersaturation of  ࡿ = ૚. ૞, in order to maintain conditions with 
surface integration being the limiting factor.  

Table 3: Process settings of simulated experiments 

Experiment ܔܗ܋ [܏ܓ] ܔ܉ܑܜܑܖܑ_ܖܗܑܜܝܔܗ܁_۷۾ۯܕ [۱°] ܔ܉ܑܜܑܖܑ܂.  [ܛ] ܛܛ܍܋ܗܚܘܜ [ܛ/۹] ܍ܜ܉ܚ
1 45 0.348 0.005 4000 
2 45 0.348 0.025 800 

3 55 0.428 0.025 1200 
4 55 0.428 0.005 6000 

5 50 0.388 0.015 1666 
 

3. Optimization Algorithms 
This section briefly describes the global optimization techniques which have been applied. To begin 
with, boundaries for the parameter space in which these algorithms search for the optimum set of 
parameters are defined. In the case of the growth rate parameters, the boundaries were set to: 

0 < ݇௚ଵ < 500 ቂ௠
௦
ቃ , 0 < ݇௚ଶ < 100000 ቂ ௃

௠௢௟
ቃ  and  0 < ݇௚ଷ < 10 [−] . For the aggregation kernel 

parameters, the parameter space was restricted to 10ିଵ଺ < ݇௔ଵ ቂ
ଵ
௅
ቃ < 10ିଵସ and 1 < ݇௔ଶ[−] < 5.  

 
 

3.1 Decision criterion for growth rate model parameters 
To avoid excessive computational effort, unrealistic growth rate parameters have not been evaluated 
(not accepted in the case of SAA, or not made ݃௕௘௦௧  or  ܾ௕௘௦௧  in the case of PSO). To test if a combination 
of  ݇௚ଵ, ݇௚ଶ, ݇௚ଷ is unrealistic, the growth rate ܩ (Eq. 9) for a level of supersaturation of ܵ = 1.1  and a 

temperature of  ܶ = ܥ° 30  was calculated first and compared to an estimation of the growth 
rate ܩ௘௦௧௜௠௔௧௜௢௡. These numbers values were selected to fairly describe the average process conditions. 
௘௦௧௜௠௔௧௜௢௡ܩ  was roughly estimated from the average crystal size  of the seeds (ܮ௦௘௘ௗതതതതതതത) and of the product 
crystals (ܮ௣௥௢ௗ௨௖௧തതതതതതതതതതത) at the end of the process time (t୮୰୭ୡୣୱୱ). 

௘௦௧௜௠௔௧௜௢௡ܩ  =
௦௘௘ௗതതതതതതതܮ − ௣௥௢ௗ௨௖௧തതതതതതതതതതതܮ

t୮୰୭ୡୣୱୱ
 Equation 15 

 
An estimation of the growth rate from the simulated experiments as described above yields a value 
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of  ܩ௘௦௧௜௠௔௧௜௢௡ ≈ 4 × 10ିସ [ஜ௠
௦

]. Before the model was executed by the global optimization algorithms 

for a newly generated set of parameters (࢔ࢍ࢑), these parameters were tested by Eq. 16.   

൫ܵܩ = 1.1 , ܶ = 30ห࢔ࢍ࢑൯ ∙
1

5000 < < ௘௦௧௜௠௔௧௜௢௡ܩ ൫ܵܩ = 1.1 , ܶ = 30ห࢔ࢍ࢑൯ ∙ 5000 

 
Equation 16 

The model was not executed if this constraint had been violated.  

 

3.2 Objective function 
In case of the stochastic algorithms, i.e. the SAA and PSO, the estimation problem was minimized 
according to the objective function 

Φ(࢞) = ෍෍߱௜௝ ∙ ൫ ෠ܻ௜௝ − ௜ܻ௝൯
ଶ

௕

௝ୀଵ

௔

௜ୀଵ

 Equation 17 

 

where ෠ܻ௜௝ and ௜ܻ௝ are the measurements and model predictions of the ݆ ௧௛  measured variable at the ݅௧௛ 

experiment, ߱௜௝ is a weighting factor, ܾ is the number of measured variables and ܽ is the number of 

experiments. 

Frequently the concentration trajectory, ܿ஺௉ூ(ݐ), is used to determine growth kinetics, since the 
measurements are more easily accessible compared to the CSD and numerous analyzers provide online 
data with no sampling required. Therefore, parameters of the growth function (see Eq. 9) are estimated 

through concentration data in the objective function, i.e.  Y෡୧୨ = c୅୔୍ ୧,୨  [mol/L] . For each simulated 

experiment (see Table 3) 200 concentration values were recorded, hence b = 200.  All recorded data 

points were weighted equally ω୧୨ = ଵ
ୟ∙ୠ

 . 

To estimate the parameters of the aggregation kernel (see Eq. 14) the CSD data were used exclusively 
since the concentration trajectory is comparatively hardly affected by aggregation. The product CSD is 
usually determined most easily. Therefore the normalized product CSD represented by 200 values was 

used for the objective function, i.e.  Y෡ ୧୨ = n൫L୧,୨൯ ቂ%
୮ୟ୰୲୧ୡ୪ୣୱ

୐
ቃ and b = 200. Again, recorded data points 

were weighted equally ω୧୨ = ଵ
ୟ∙ୠ

.  

 

3.3 Simulated Annealing Algorithm (SAA) 
Simulated annealing is an algorithm that originated in material science engineering, originally 
introduced to find the equilibrium configuration of a collection of atoms at a given temperature when a 
liquid freezes and crystallizes during annealing process [55]. Kirkpatrick et al. [56] initially proposed to 
use this theory for application to optimization problems. For the SAA an artificial temperature  ௌܶ஺ and a 
probability distribution ݌ா(࢞| ௌܶ஺) are introduced. The latter is the so called acceptance distribution for 
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the objective function Φ at the configuration ࢞ for a given artificial temperature ௌܶ஺ . According to 
classical SAA  ݌ா(࢞| ௌܶ஺) was defined as: 

|࢞)ா݌  ௌܶ஺) =
1
ܼ
∙ ݁

ି஍(࢞)
 ் ೄಲ  Equation 18 

 
which corresponds to a Boltzmann distribution with a normalization factor ܼ. The purpose of  ݌ா  is to 
assign a higher acceptance probability to states with a smaller objective function value, e.g., states ࢞ 
close to the global minimum. The feasibility that a new state ࢞ can get accepted, even if the objective 
function’s value is higher than at the previous state, makes the SAA a global optimization routine. The 
likelihood for accepting inferior states, i.e., to go uphill and to leave a local minimum is dependent 
on ௌܶ஺. Classical simulated annealing (CSA) involves three steps.  

Generation of states 

The new states ࢞࢔ in the parameter space with the distance ∆࢞ to current one ࢞ࢉ are generated from 
the latter according to a Gaussian distribution.  

(݅)࢞∆)݌ = (݅)ࢉ࢞ − ((݅)࢔࢞ =
1

࣌(݅) ∙ ߨ2√
∙ ݁ି

ଵ
ଶ൬
∆࢞(௜)
࣌(௜) ൰

మ

 Equation 19 

 

Acceptance of states 

The Metropolis probability (see Eq. 20) was chosen to accept or deny the generated new states.  

௔௖௖௘௣௧݌ = ݉݅݊ ቊ1,
|࢔࢞)ா݌  ௌܶ஺)
|ࢉ࢞)ா݌  ௌܶ஺)ቋ Equation 20 

 

Cooling strategy 

In the present work the used cooling scheme is 

 ௌܶ஺ =  ௌܶ஺଴ ∙  ௠ Equation 21ݍ
 
The initial temperature  ௌܶ஺଴ is of major importance. A high  ௌܶ஺଴ would lead to high computational 
effort, since almost every new state can get accepted independent of its objective function value. In the 
case of a too low  ௌܶ஺଴ the walker might be trapped in a local minimum. The tunable parameters 
,݉,ݍ ࢞ ௜, as well as the initial values forߪ  ௜௡௜௧௜௔௟  , used for the calculations are documented in the results 
section. 

If none of the states ࢞௡  are accepted for 200 suggestions, the algorithm is assumed to have reached 
convergence. If the objective function was observed to be lower during the computation at some other 
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point in the parameter space, the latter is updated as the new state. A detailed description of SAA in not 
within the scope of the present work and interested readers might be referred to the literature [56-58]. 

3.4 Particle Swarm Optimization (PSO) Algorithm  
The algorithm was initially proposed by [59], as a methodology for the optimization of nonlinear 
functions. Various modifications have been made to the original algorithm by researchers in order to 
make the method more suitable for their system. Although, population based method like the PSO are 
computationally expensive owing to the multiple function evaluations involved, these function 
evaluations can be later utilized for statistical analysis.  

The method tries to mimic the flocking of birds and is based on the swarming theory. In case of PSO, a 
bird is an element moving in the parameter space where it calculates the corresponding objective 
function. The algorithm is based on the synchrony of the flocking behavior and depends significantly on 
the inter-individual distances between the birds and their neighbors. The “birds” are set to fly in the 
search domain, i.e. the parameter space, according to  

࢜௕௧ାଵ = ݓ ∙ ࢜௕௧ + ܿଵ ∙ ଵ݀݊ܽݎ ∙ ௕௘௦௧࢈) − ࢞௕௧) + ܿଶ ∙ ଶ݀݊ܽݎ ∙ ௕௘௦௧ࢍ) − ࢞௕௧) 
࢞௕௧ାଵ = ࢞௕௧ + ࢜௕௧ାଵ ∙  ݐ∆

Equation 22 

 
Here ܾ  labels a bird, ݐ is the number of iterations, ݒ௕ and ݔ௕ are the velocity and position of the bird 
respectively, ܿଵ and ܿଶ are called the cognitive and social parameters, ݓ is the inertial weight which was 
an inclusion into the algorithm by [60], ݀݊ܽݎଵ and ݀݊ܽݎଶ are random numbers, ࢈௕௘௦௧ is the best known 
position ࢞ having the lowest objective function Φ(࢞) the bird itself and  ࢍ௕௘௦௧  is the best known position 
of the entire particle (bird) swarm.  

Initially ܰ birds are distributed randomly in the parameter space with a random initial velocity using a 
maximum value of a fourth of the parameter spaces elongation per time step (∆ݐ = 1). Birds leaving the 
parametric space were updated according to the “mirror back” concept in which the bird is mapped 
back into the parameter space with a sign inversion of its velocity.  After each iteration, ࢈௕௘௦௧ or ࢍ௕௘௦௧  
were updated. The striking characteristic of this algorithm is its aspect of having the birds spread all over 
in the search domain during the initial iterations and then have the birds more concentrated to the 
regions which seems more promising. This way the algorithm tends to be more convergent towards the 
later iterations. An initial value like in the case of the SAA is not required here.  

3.5 gEST using gPROMS 
The dynamic optimization algorithm implemented in the gPROMS software using SQP is increasingly 
used due to its user-friendly operability. The choice of using a maximum likelihood function or the least 

square objective function is available in this parameter estimation platform. If ෠ܻ௜௝௞  is the measured 

variable and ௜ܻ௝௞  is the predicted variable, the maximum likelihood function can be defined as 

Φ(݇, (ߠ =
ܯ
2
∙ ln(2ߨ) +

1
2
∙ ݉݅݊ ቐ෍෍෍൥ln൫ߪ௜௝௞ଶ ൯ +

൫ ෠ܻ௜௝௞ − ௜ܻ௝௞൯
ଶ

௜௝௞ଶߪ
൩

௖೔,ೕ

௞ୀଵ

௕೔

௝ୀଵ

௔

௜ୀଵ

ቑ Equation 23 
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Where ܯ is the total number of measurements taken during all experiments, ܽ, ܾ௜, ܿ௜,௝ are the number 

of experiments, number of variables in the ݅௧௛  variable and number of measurements in the ݅௧௛ 
experiment of the ݆௧௛  variable respectively. ߪ ௜௝௞  is the variance of the ݇௧௛ measurement of the ݆௧௛  

variable in the ݅ ௧௛ experiment and can be defined by many variance models such as a homoscedastic 
(constant variance) or a heteroscedastic model (variance is a function of the measured and the 
predicted values). In case of the homoscedastic variance model, the maximum likelihood function is 
simplified to a weighted least square form whereas when a purely heteroscedastic model is chosen, the 

maximum likelihood objective function takes a more complicated form with the variance, ߪ, as a 
function of the measured value raised to a parameter ߛ (which lies between 0 and 1). The two 
asymptotic conditions of the parameter, ߛ leads to the constant variance ( ߛ = 0) and the constant 
relative variance ( ߛ = 1) cases.   

In the implementation any of the abovementioned variance models can be chosen and the other 
parameters can also be specified by the user. However, the homoscedastic model with a constant or 
constant variance models was applied in this work. Since our measured/known quantity is generated 
through simulations, the data are devoid of much variance, thus making it affordable to choose a more 
simplistic variance model for accurate estimation.   

 

3.6 Quality criterion for PE results 
A single value ܩ෠௘௥௥௢௥  is introduced to quantify the discrepancy between the original growth rate ܩ௠௢ௗ௘௟  

(see Eq. 9) and the ones calculated from parameters determined by the PE routine G୔୉.  G෡ୣ୰୰୭୰  is 

defined as the integral of the difference between ܩ௠௢ௗ௘௟  and ܩ௉ா  over temperature (ܶ[30°ܥ –  ([ܥ50° 
and supersaturation (S[1.1 –  1.5]) values that are characteristic for the modeled process. Figure 3 

illustrates definition of ܩ෠௘௥௥௢௥  formulated in Eq. 24. 

෠௘௥௥௢௥ܩ = න න ,ܵ)௠௢ௗ௘௟ܩ|  ܶ) − ,ܵ)௉ாܩ ܶ)|
ହ଴ 

ଷ଴ 

ଵ.ହ

ଵ.ଵ
 ∙ [ܥ°]ܶ݀  ∙ ݀ܵ[−] Equation 24 

 

Moreover, we define a similar quality criterion for the estimated aggregation kernel parameters as well. 
This is given by: 

መ௘௥௥௢௥ߚ = න න  ห ݇௔ଵ ௠௢ௗ௘௟ ∙ ,ܵ)௠௢ௗ௘௟ܩ ܶ) ௞ೌమ ೘೚೏೐೗
ହ଴ 

ଷ଴ 

ଵ.ହ

ଵ.ଵ
−  ݇௔ଵ ௉ா ∙ ,ܵ)௠௢ௗ௘௟ܩ ܶ) ௞ೌమ ುಶ|  ∙ [ܥ°]ܶ݀  ∙ ݀ܵ[−] 

Equation 25 
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4. Numerical procedure 
A large number of solution techniques for PBEs have been reported in the literature [17,22,24,61-65]. 
Here the method of classes [9,66] was used. It is still one of the most frequently applied solution 
technique for PBE describing crystallization processes for its ease of coding. Furthermore, growth rates 
and aggregation/breakage kernels do not have to match mathematical restrictions as it is required for 
other solution techniques e.g. for the method of moments.  

A nonlinear grid of 200 classes ranging from ܮ௠௜௡ = 1 µ݉ to ܮ௠௔௫ = 1000 µ݉ was used for the 
discretization procedure. For the first 170 classes a linear grid was chosen, i.e. , ௜ାଶܮ) − (௜ାଵܮ =
௜ାଵܮ) − (௜ܮ , whereas for the last 30 classes the increment was nonlinear (ܮ௜ାଶ − (௜ାଵܮ = 1.1 ∙
௜ାଵܮ) −  ௜).  The cell average algorithm [67-70] was applied to calculate the birth and death terms forܮ
aggregation (Eq. 9, 11, 12).  

All differential equations, i.e. each class of the discretized PBE and the mass balance, were solved by the 
MATLAB ode45 solver (utilizing an explicit Runge-Kutta 4th-order method) or by gPROMS (implicit 
solution).  

The SAA (see Eq. 18-21) and PSO (see Eq. 22) were coded within MATLAB using its inbuilt random 
number generator. MATLAB’s simulated annealing optimization routine (simulannealbnd, Global 
Optimization Toolbox) was compared to the described SAA. PE results were the same. A local 
optimization algorithm was occasionally accompanied with the global optimization algorithms (see 5). In 
that case the Nelder-Mead method of MATLAB’s fminsearch was used.  

If gPROMS was used for the PE its dynamic optimization routine came to be applied. According to the 
manual, the latter is based on an SQP algorithm. 

5. Results & Discussion 
The PE procedure, i.e., minimizing the objective functions Eqs. 17 or 23 using the data of the simulated 
experiments (see Table 3), was investigated for several cases (section 5.1-5.5). The applicability of 
different algorithms, including global and local optimization routines, was tested and compared. In order 
to test the influence of limited experimental data on the PE results, various combinations of the 
simulated experiments (see Table 3) have been considered: experiments 1, 2, 3 and 4; experiments 1 
and 3; and data solely obtained from experiment 5.  

5.1 Determining growth function parameters  
As described in section 3.2, only the concentration profile (Y෡୧୨ = c୅୔୍ ୧,୨  [mol/L]) was used to estimate 

the growth function parameters k୥ଵ, k୥ଶ , k୥ଷ.  

Table 4 lists the applied settings and initial states for the tested global optimization algorithm and the 
gPROMS routine. The results of all investigated PE procedures are presented in Table 5 .  

Table 4: Constants, initial conditions and settings used within the applied optimization algorithms to 
determine growth function parameters. 
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SAA PSO gPROMS (SQP) 
Initial state:  

࢞ ௜௡௜௧௜௔௟ = [ 
݇௚ଵ = 1, 

݇௚ଶ = 5000, 
݇௚ଷ = 2] 

 
Equation 19: 

ଵߪ =  1 
ଶߪ =  1000 
ଷߪ =  0.1 

 
Equation 21: 

 ௌܶ஺଴ = 0.2 
ݍ = 0.95 
݉ = 1 

 
100 new states ࢞௡ have 
been evaluated per 
temperature step. 
 
The calculation was 
stopped after 200 new 
states ࢞௡  were rejected 
consecutively. 

Number of “birds”: 
ܰ = 20 

 
Maximum number of 
iterations if no 
convergence is not 
achieved 

௠௔௫ݐ = 100 
 
 
Equation  

ܿଵ = 0.5 ;  ܿଶ = 0.5 
௠௔௫ݓ = ௠௜௡ݓ ; 1 = 0.1 
 

ݓ = ௠௔௫ݓ − ൬
௠௔௫ݓ ௠௜௡ݓ−

௠௔௫ݐ
൰ ∙  ݐ

 
The calculation was stopped 
before maturity if ࢍ௕௘௦௧  had 
not been updated for 20 
steps  

 

Initial state:  
࢞௜௡௜௧௜௔௟ = [ 
݇௚ଵ = 0.1, 
݇௚ଶ = 0.1, 
݇௚ଷ = 0.1] 

 
Variance mode:  
Const and relative 
variance 
 
Range: 
0.05-0.15 
 
 

 

Table 5: PE results of the growth function parameters using the global optimization algorithms only and 
accompanied with a Nelder-Mead method as well as the output of gPROMS dynamic optimization 
routine (original values: ࢍ࢑૚ = ૚૙ [࢓/࢙],ࢍ࢑૛ = ૚૙૝ [࢒࢕࢓/ࡶ], ૜ࢍ࢑ = ૚ [−]). 

 SAA PSO 

 

 parameters  G෡ error       parameters G෡ୣ୰୰୭୰ 

Experiment 
5 

k୥ଵ =  6.4591  
k୥ଶ =  1.4206 × 10ସ 
k୥ଷ =  1.2491  

 0.4662     
k୥ଵ =  22.9142  
k୥ଶ =  8.8348 × 10ଷ 
k୥ଷ =  3.5987 

0.3779         

Experiment 
1+3 

k୥ଵ = 11.8721  
k୥ଶ =  1.0244 × 10ସ 
k୥ଷ =  1 .0701 

0.0107      
k୥ଵ =  28.9 
k୥ଶ =  1.8383 × 10ସ 
k୥ଷ =  1.0399 

0.4589         

Experiment 
1+2+3+4 

k୥ଵ =  12.0201  
k୥ଶ =  1.0421 × 10ସ 
k୥ଷ =  1.0027 

0.0101      
k୥ଵ =  43.0210 
k୥ଶ =  1.7491 × 10ସ 
k୥ଷ =  2.0177 

0.4737         

 SAA + Nelder-Mead SAA + Nelder-Mead gPROMS (SQP) 
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parameters 
෠௘௥௥௢௥ܩ   
× 10ିସ     

parameters 
෠௘௥௥௢௥ܩ
× 10ିସ         

parameters 
෠௘௥௥௢௥ܩ
× 10ିସ          

Experiment 
5 

݇௚ଵ =  10.0003  
݇௚ଶ =  9.9992 × 10 ଷ 
݇ଷ =  1.0000  

 1.7395 

݇௚ଵ =  10.0002  
݇௚ଶ =  9.9992 × 10 ଷ 
݇௚ଷ =  1.0002 

0.5895 

k୥ଵ =  16.8921 
k୥ଶ =  1.1834 × 10 ଷ 
k୥ଷ =  0.9930 

813.2708  

Experiment 
1+3 

݇௚ଵ = 11.0286  
݇௚ଶ =  1.0244 × 10 ଷ 
݇ଷ =  1.0001  

21.5971 

݇௚ଵ =  10.0030 
݇௚ଶ =  9.9994 × 10 ଷ 
݇ଷ =  1.0001 

 2.5520 

k୥ଵ =  5.4903 
k୥ଶ =  1.0231 × 10 ଷ 
k୥ଷ =  0.6988 

1497.1893  

Experiment 
1+2+3+4 

݇௚ଵ =  10.0001  
݇௚ଶ =  9.9993 × 10 ଷ 
݇௚ଷ =  1.0001 

0.8051 

݇௚ଵ =  10.0030 
݇௚ଶ =  9.9993 × 10 ଷ 
݇௚ଷ =  1.0001 

 2.3538        
k୥ଵ =  9.1317 
k୥ଶ =  1.0422 × 10 ଷ 
k୥ଷ =  0.9466 

900.3417    

  

Initially, the parameters were determined using the SAA and PSO only. The growth function parameters 
obtained by the SAA deviate less from the original parameters. Since the SAA requires an initial value, 
the lower discrepancies can be attributed to a good initial guess. Results obtained by means of the PSO 
show a vast difference for all the considered sets of simulated experiments, although their single error 
values (see Eq. 24) are comparable. This deviation in the results was observed as well for various runs of 
the PSO, which is not shown in here. The number of considered experiments had a significant effect on 
the quality of estimated parameters only in the case of the SAA (without Nelder-Mead).  

Nevertheless, the results show that none of the applied global optimization algorithms was able to find 
the original parameters. For this reason both algorithms were accompanied with a local optimization 
algorithm. Here, the Nelder-Mead method came to be applied, starting with the final output of the 
global optimization algorithms. As a result, the PE obtained the correct growth function parameters for 
all for all the considered sets of simulated experiments. 

The gPROMS optimization routine was able to determine parameter sets with low  

෠௘௥௥௢௥ܩ    values for all the considered sets of experiments.  However, the optimization routine was able to 
almost reproduce the original growth function parameters only by using the experiments 1-4. 

The shape of the objective functions was investigated as well. To do so, the third growth rate parameter 
was fixed to its optimal value k୥ଷ = 1 [−] and the objective function was evaluated within a fraction of 

the investigated parameter space for  k୥ଵand k୥ଶ containing their optimal values. The results are shown 

in Figure 4a and b. Within the investigated fraction of the parameter space, both evaluated objective 
functions exhibit a bowl shaped regime with only one local minimum which is as well the global 

minimum, i.e., the optimum solution since  Φ൫k୥ଵ = 10, k୥ଶ = 10ସ , k୥ଷ = 1൯ ≝ 0 . The objective 

function shows a band of ൫k୥ଵ ,  k୥ଶ൯ combinations differing only slightly from the global minimum. This 

explains the vast difference in the PE results obtained by means of the PSO. Because the PSO is a 
population based optimization algorithm, it can easily converge anywhere in the described band. A 
logarithmic function was fitted through this band for additional studies (see section 5.2).  

Owing to the objective function’s smooth shape (Fig. 4a, b) any local optimization method and especially 
gradient based methods are suitable to find the optimum solution for the considered PE procedure.  
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5.2 Determining growth function parameters for noisy data  
In order to investigate the effect of erroneous data on the PE results, random noise was added to the 
simulated and therefore ideal data according to Equation 26:  

෠ܻ௜௝ ௡௢௜௦௘ = ෠ܻ௜௝ +
෠ܻ௜௝

100
∙ ௜௝݊݀݊ܽݎ ∙ ௡௢௜௦௘ߪ  Equation 26 

 

Here ܻ෠௜௝ are the experimental data points (i.e. the concentration profile) and ݊݀݊ܽݎ௜௝ is a random value 

from a standard normal distribution. ߪ௡௢௜௦௘  defines the intensity of noise added. Figure 5 shows an 
example of the original (smooth) and noisy data.  The same set of random numbers has been used for all 
cases. Hence 200 random numbers were generated once, for the 200 concentration profile values of 
each experiment.  

To identify the extent to which the superimposed error affects the PE results, we evaluated the 

objective function along the band of ൫k୥ଵ,  k୥ଶ൯ combinations yielding values differing only slightly from 

the global minimum (here ߶൫k୥ଵ = 10, k୥ଶ = 10ସ , k୥ଷ = 1൯ > 0 due to the fact that we consider noisy 

data). Figure 6 compares the objective function along this band for various ߪ௡௢௜௦௘  levels.  

The results reveal that the minimum of the objective function is shifted with an increasing level of noise, 
i.e., at higher ߪ௡௢௜௦௘  values. The shift was suppressed by taking into account a larger variety of 
experimental data, i.e., more experiments. This is in agreement with the PE results shown in Table 6.  
Only the global optimization algorithms accompanied with a Nelder-Mead method were evaluated, 
since they obtained the best results in the case of ideal data (see section 5.1). Table 6 demonstrates that 
noisy data significantly reduce the quality of the PE results. High levels of noise make it impossible to 
obtain the original growth function parameters used in the simulations. The incorporation of more 
experiments has been shown to be beneficial for all investigated noise levels. In addition the Nelder-

Mead algorithm was applied alone. The obtained parameters exhibited considerably higher ܩ෠௘௥௥௢௥  
values especially in the case of high noise levels.  

Table 6: PE results of the growth function parameters using the global algorithms accompanied with a 
Nelder-Mead method, for noisy data (original values: k୥ଵ = 10 [m/s], k୥ଶ = 10ସ [J/mol], k୥ଷ = 1 [−]).  

  SAA + Nelder-Mead PSO + Nelder-Mead 
 parameters ܩ෠௘௥௥௢௥         parameters ܩ෠௘௥௥௢௥         

௡௢௜௦௘ߪ  = 3 

Experiment 
5 

݇௚ଵ = 0.2649 
݇௚ଶ =  1.2960 × 103 
݇௚ଷ =  0.8666 

0.0696    
݇௚ଵ =  0.2839  
݇௚ଶ =  1.4541 × 10ଷ 
݇௚ଷ =  0.8741 

0.0679    

Experiment 
1+3 

݇௚ଵ =  2.0893 
݇௚ଶ =  5.9037 × 10ଷ 
݇௚ଷ =  1.0143 

0.0136    
݇௚ଵ =  2.0893 
݇௚ଶ =  5.9037 × 10ଷ 
݇௚ଷ =  1.0143 

0.0136        
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Experiment 
1+2+3+4 

݇௚ଵ =  6.4093 
݇௚ଶ =  8.8653 × 10ଷ 
݇௚ଷ =  0.9960 

0.0041       
݇௚ଵ =  6.4093 
݇௚ଶ =  8.8654 × 10ଷ 
݇௚ଷ =  0.9960 

0.0041 

௡௢௜௦௘ߪ  = 2 

Experiment 
5 

݇௚ଵ = 0.7871 
݇௚ଶ =  3.9038 × 103 
݇௚ଷ =  0.9102 

0.0502 
݇௚ଵ = 0.7871 
݇௚ଶ =  3.9038 × 103 
݇௚ଷ = 0.9102 

0.0502    

Experiment 
1+3 

݇௚ଵ =  3.3688 
݇௚ଶ =  7.1510 × 10ଷ 
݇௚ଷ =  1.0115 

0.0096      
݇௚ଵ =  3.3688 
݇௚ଶ =  7.1510 × 10ଷ 
݇௚ଷ =  1.0115 

0.0096     

Experiment 
1+2+3+4 

݇௚ଵ =  7.3194 
݇௚ଶ =  9.2003 × 10ଷ 
݇௚ଷ =  0.9990 

0.0030       
݇௚ଵ =  7.3194 
݇௚ଶ =  9.2003 × 10ଷ 
݇௚ଷ =  0.9990 

0.0030        

௡௢௜௦௘ߪ  = 1 

Experiment 
5 

݇௚ଵ = 2.6265 
݇௚ଶ =  6.7938 × 103 
݇௚ଷ =  0.9532 

0.0274   
݇௚ଵ = 2.6265 
݇௚ଶ =  6.7938 × 103 
݇௚ଷ =  0.9532 

0.0274    

Experiment 
1+3 

݇௚ଵ =  5.6955 
݇௚ଶ =  8.5242 × 10ଷ 
݇௚ଷ =  1.0068 

0.0051    
݇௚ଵ =  5.6955 
݇௚ଶ =  8.5242 × 10ଷ 
݇௚ଷ =  1.0068 

0.0051       

Experiment 
1+2+3+4 

݇௚ଵ =  8.4804 
݇௚ଶ =  9.5758 × 10ଷ 
݇௚ଷ =  1.0003 

0.0017     
݇௚ଵ =  8.4804 
݇௚ଶ =  9.5758 × 10ଷ 
݇௚ଷ =  1.0003 

0.0017       

 

5.3 Determining aggregation kernel parameters 
To analyze various PE methods for a model considering aggregation, the presented PBE model was 
evaluated for the experiments listed in Table 3, including the aggregation model at this time. Two 
parameters occur in the aggregation kernel (see Eq. 14). As described in section 3.2, only the product 

CSD was used for the objective function ( Y෡ ୧୨ = n൫L୧,୨൯ ቂ%
୮ୟ୰୲୧ୡ୪ୣୱ

୐
ቃ). 

Since the SAA and PSO algorithms in combination with a Nelder-Mead method yielded correct results of 
the growth function parameters, the same algorithms were applied also for the PE of the aggregation 
kernel parameters.  The used settings for PSA were similar to those listed in  

. Only the number of “birds“ was decreased (ܰ = 5) since the parameter space is two dimensional and 
the computational effort is higher if aggregation is included. The SAA was started from an initial 
guess ࢞௖ ௜௡௜௧௜௔௟ = [݇௔ଵ = 5 × 10ିଵ଺, ݇௔ଶ = 4]. New states were generated using standard deviations of 
ଵߪ] =  10ିଵହ, ଶߪ =  0.1] in Eq. 19 and [ ௌܶ஺଴ = 10ି଻, ݍ = 90, ݉ = 1] was used for the cooling scheme 
(Eq. 21). The PE results are shown in  
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. As for the PE of the growth functions parameters using ideal data, both investigated algorithms were 
able to discover the original set of parameters independently how many experiments have been 
considered for the objective function.  

Figure 7 shows the evaluation of the objective function for a fraction of the considered parameter 
space. Again, the objective functions exhibit a smooth bowl shaped regime with only one local minimum 
which is as well the global minimum.  

Table 7: PE results of the aggregation kernel parameters using the global algorithms accompanied with a 

Nelder-Mead method (original values: ݇௔ଵ = 3 ∙ 10ିଵହ  ቂଵ
௅
ቃ ,  ݇௔ଶ = 2 [−]). 

 
SAA + Nelder-Mead PSO + Nelder-Mead 

parameters ߚመ௘௥௥௢௥
× 10−17             

parameters ߚመ௘௥௥௢௥
× 10−17           

Experiment 
5 

݇௔ଵ = 3.0003 × 10ିଵହ 
݇௔ଶ = 2.0000 0.0018 

݇௔ଵ = 3.0003 × 10ିଵହ 
݇௔ଶ = 2.0000 0.0018 

Experiment 
1+3 

݇௔ଵ = 3.0002 × 10ିଵହ 
݇௔ଶ = 1.9999 0.0037 

݇௔ଵ = 3.0003 × 10ିଵହ 
݇௔ଶ = 1.9999 0.0041 

Experiment 
1+2+3+4 

݇௔ଵ = 2.9997 × 10ିଵହ 
݇௔ଶ = 2 0.0012 

݇௔ଵ =  2.9998 × 10ିଵହ 
݇௔ଶ =  2 0.0012 

 

5.4 Determining aggregation kernel parameters for noisy data  
Similar to the growth function parameters, the effect of noisy data on the PE of the aggregation kernel 
parameters was investigated. Again, random noise was added to the experimental data via Eq. 26. The 
PE results for the aggregation kernel parameters determined from noisy data are listed in Table 8.  

As observed in the case of the PE for the growth function parameters, the correct parameters could not 
be determined in the case of highly noisy data. Once more, the incorporation of more experiments has 
been shown to be beneficial for all investigated noise levels. Thus, the number of experiments used was 
shown to be of major importance, especially when dealing with highly noisy data.  

 

Table 8: PE results of the aggregation kernel parameters using the global algorithms together with a 

Nelder-Mead method, for noisy data (original values: ݇௔ଵ = 3 ∙ 10ିଵହ  ቂଵ
௅
ቃ ,  ݇௔ଶ = 2 [−]). 

 SAA + Nelder-Mead PSO + Nelder-Mead 
parameters ߚመ௘௥௥௢௥

× 10 −17       
parameters ߚመ௘௥௥௢௥

× 10 −17       

௡௢௜௦௘ߪ = 3. 
Experiment 
5 

݇௔ଵ = 4.8699 × 10ିଵହ 
݇௔ଶ = 2.1411 1.5654 

݇௔ଵ = 4.8691 × 10ିଵହ 
݇௔ଶ = 2.1411 1.5633 
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Experiment 
1+3 

݇௔ଵ = 2.9785 × 10ିଵହ 
݇௔ଶ = 1.9968 0.0086 

݇௔ଵ = 2.9785 × 10ିଵହ 
݇௔ଶ = 1.9968 0.0086 

Experiment 
1+2+3+4 

݇௔ଵ = 3.0001 × 10ିଵହ 
݇௔ଶ = 1.9995 0.0015 

݇௔ଵ = 3.0001 × 10ିଵହ 
݇௔ଶ = 1.9995 0.0151 

௡௢௜௦௘ߪ = 2 

Experiment 
5 

݇௔ଵ = 3.7803 × 10ିଵହ 
݇௔ଶ = 2.0671 

0.7270 
݇௔ଵ = 3.7803 × 10ିଵହ 
݇௔ଶ = 2.0671 

0.7270 

Experiment 
1+3 

݇௔ଵ = 2.9891 × 10ିଵହ 
݇௔ଶ = 1.9983 

0.0079 
݇௔ଵ = 2.9891 × 10ିଵହ 
݇௔ଶ = 1.9983 

0.0079 

Experiment 
1+2+3+4 

݇௔ଵ = 3.0022 × 10ିଵହ 
݇௔ଶ = 1.9999 

0.0144 
݇௔ଵ = 3.0022 × 10ିଵହ 
݇௔ଶ = 1.9999 

0.0144 

௡௢௜௦௘ߪ = 1 

Experiment 
5 

݇௔ଵ = 3.2238 × 10ିଵହ 
݇௔ଶ = 2.0270 

0.0874 
݇௔ଵ = 3.2240 × 10ିଵହ 
݇௔ଶ = 2.0270 

0.0877 

Experiment 
1+3 

݇௔ଵ = 2.9966 × 10ିଵହ 
݇௔ଶ = 1.9994 

0.0045 
݇௔ଵ = 2.9966 × 10ିଵହ 
݇௔ଶ = 1.9994 

0.0045 

Experiment 
1+2+3+4 

݇௔ଵ = 3.0019 × 10ିଵହ 
݇௔ଶ = 2.0001 

0.0044 
݇௔ଵ = 3.0020 × 10ିଵହ 
݇௔ଶ = 2.0001 

0.0048 

 

 

5.5 Determining growth function parameters in the presence of aggregation 
To investigate how incorrect model assumptions can affect the PE, the growth function parameters 
were estimated from (simulated) data including aggregation whereas aggregation was not considered in 
the model.  

Since the concentration profile data were used for the objective function every effect causing deviations 
of this data will have an impact on the PE results. Aggregation leads to a decrease in surface area (~ܮଶ) 
of the crystalline phase and is therefore affecting the concentration profile (see Eq. 11). Hence, an 
objective function considering only concentration profile data, as shown here for the estimation of the 
growth function parameters can be insufficient. The PE results presented in Table 9 support this 
hypothesis. Moreover, the involvement of data from multiple experiments could not enhance the PE 
results.  

Figure 8 compares the concentration profiles obtained by using the original PBE’s growth rate 
parameters and those obtained from the PE. The discrepancies are minor, even if the parameters (see 
Table 9) itself vary significantly. A clear discrepancy could be observed only in the case of experiment 3 
which exhibits the highest cooling rate and initially dissolved API. 

Based on the presented results, we conclude that the negligence of aggregation in the PE leads to a PBE 
model that overvalues the concentration values at the end of the crystallization process (see e.g. Figure 
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8, Exp. 2&3). Since this overvaluation can be attributed to the reduced surface area in the presence of 
aggregation, the negligence of nucleation and breakage events is expected to exhibit reverse features. 
These conclusions are only valid in the case of an accurate expression of the growth function.    

 

Table 9: PE results of the growth function parameters using the global algorithms accompanied with a 
Nelder-Mead method, neglecting the presence of aggregation (original values:k୥ଵ = 10 [m/s], k୥ଶ =
10ସ [J/mol], k୥ଷ = 1 [−]).   

 SAA + Nelder-Mead PSA + Nelder-Mead 
parameters  ܩ෡           ෠௘௥௥௢௥ܩ parameters       ݎ݋ݎݎ݁

Experiment 
5 

݇௚ଵ = 225.3350 
݇௚ଶ = 1.7919 × 10ସ 
݇௚ଷ =  1.0504 

0.0277 
݇௚ଵ = 225.3350 
݇௚ଶ = 1.7919 × 10ସ 
݇௚ଷ = 1.0504 

0.0277     

Experiment 
1+3 

݇௚ଵ = 42.6436 
݇௚ଶ = 1.4192 × 10ସ 
݇௚ଷ =  0.9399 

0.0444 
݇௚ଵ = 150.0286 
݇௚ଶ = 1.7420 × 10ସ 
݇௚ଷ =  0.9467 

0.0396         

Experiment 
1+2+3+4 

݇௚ଵ = 22.7542 
݇௚ଶ = 1.2517 × 10ସ 
݇௚ଷ =  0.9496 

 0.0428      
݇௚ଵ = 22.7542 
݇௚ଶ = 1.2517 × 10ସ 
݇௚ଷ =  0.9496 

0.0428             

 
 

6. Summary and Conclusion 
Global optimization algorithms (SAA and PSA) have been applied alone and in combination with a local 
optimization routine, i.e. the Nelder-Mead method, to determine parameters in the PBE’s growth rate 
expression, from the concentration profile recorded during various crystallization experiments. The 
global optimization algorithms were shown to be inefficient if applied alone. However, in combination 
with a local optimization algorithm, the original model parameters could be estimated successfully, 
regardless of the number of considered experimental data. It was revealed that several sets of highly 
differing growth rate parameters are able to minimize the objective function reasonably. Since the 
parameters used in the growth function of a PBE for crystallization processes are frequently linked to 
physical constants, e.g. surface integration energy ܧ଴ with ݇௚ଶ (see Eq. 8) [12,15], the determination of 

the latter is hardly possible using a PE procedure as described within this work. In the case of noisy and 
therefore more realistic data, it was illustrated that the number of experiments used in the PE 
procedure is of major importance for the identification of the growth function’s parameters. 
Furthermore, it was shown that the exclusive use of local optimization algorithms is insufficient 
considering noisy experimental data.  
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In addition, PE of the aggregation kernel parameters was performed. The combination of the SAA and 
PSA with a Nelder-Mead method gave good results. Parameters of the aggregation kernel could be 
determined accurately assuming exact data of the CSD. Again, a higher variety of experimental data was 
shown to be beneficial for the PE (only) in the case of erroneous data.  

Beside erroneous data, wrong model assumptions were shown to hinder the PE procedure. As shown in 
the present work, disregarding aggregation in the PBE model, made it impossible to determine the 
growth function parameters used for the inverse problem. Not even an increase in the multitude of 
experimental data was beneficial.  

The present work demonstrates the need of versatile experimental data for an adequate PE procedure, 
especially in the case of inaccurate experimental findings.  

7. Appendix  
Table A1 contains reported aggregation kernels as well as the investigated crystallization systems. It is 
not known if listed aggregation kernels are material specific. From this confrontation it becomes clear 
that, in contrast to the growth model, there is no consistent mathematical formulation for aggregation 
in crystallization processes.  Since the derivation of generic aggregation kernels based on first principles 
is hardly possible at all, even for simple flow patterns, common approaches remain highly 
phenomenological. Therefore it might be stated that aggregation modeling during crystallization 
processes is not fully mature yet.  

 
Table A1: Aggregation models for PBEs in the literature 

literature aggregation kernel parameters system crystal sizes 

Lim et al. 
(2002) 
[71] 

ߚ = ଵߚ ∙ ௦ߩ) ∙ ܯ ∙ ଴.ଷ଺(ߪ ∙ ௜ܮ) +  ௝)ଷܮ

ߪ … relative supersaturation [−]   

…ܯ magma density ൤
kg
kg
൨                  

௦ߩ … solution density ൤
kg
mଷ൨ 

௜ܮ , ௝ܮ  [݉] 
 
ߚ  ቂ ௞௚ೞ೚೗ೡ೐೙೟

௖௥௬௧௔௟௦ ∙ ௠௜௡
ቃ 

ଵߚ  = 0.55                                          

≈ ଶܱܪ /ଶܱܵସܭ 1000 µ݉ 

Zauner and Jones (2000) 
[53] 

ߚ = ଵ(1ߚ + ଶߚ ∙ ߝ√ + ଷߚ ∙ (ߝ  ∙ 
ܵଶ.ଵହ ∙ ௜ܮ) +  ௝)ଷܮ

ߝ … power input per unit vol. ቂ୛
୩୥
ቃ   

ܵ … supersaturation [−] 
௜ܮ , ௝ܮ  [݉]   

ߚ  ቂ ௞௚ೞ೚೗ೡ೐೙೟
௖௥௬௧௔௟௦ ∙ ௦

ቃ 

 
ଵߚ = 5.431 × 10ିଵ଻                                    
ଶߚ  = 2.296                                       
ଷߚ  = −2.429                                        

ଶܥܽܥ ସܱ  
 ݈ܥܽܰ & ଶܱܪ /

≈ 20 µ݉ 

Rohani 
(1993) 
[49] 

ߚ = ଵߚ ∙ ఉమܩ ∙ ఉయܤ  

ܩ … growth rate ቂ
m
s
ቃ 

…ܤ nucleation rate ൤
݊ݎ݋ܾ ݏ݈ܽݐݕݎܿ
݇݃௦௢௟௩௘௡௧ ∙ s

൨ 

௜ܮ , ௝ܮ  [݉]   

ܮܥܭ
݈ܥܽܰ & ଶܱܪ/  

≈ 300 µ݉ 
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ߚ  ቂ ௞௚ೞ೚೗ೡ೐೙೟
௖௥௬௧௔௟௦ ∙ ௦

ቃ 

 
ଵߚ  = 1.613 × 10ିଵ଼                        
ଵߚ  = 0.095   
ଵߚ  = 0.264                       

Ciardha et al. 
(2012) 
[72] 

ߚ = ଵߚ ∙ ఉమܩ ∙ ఉయߝ  

ܩ … growth rate ቂ
m
ݏ
ቃ 

ߝ … nucleation rate ቈ
mଶ

ଷݏ
቉ 

௜ܮ , ௝ܮ  [݉]   

ߚ  ቂ௠ೞ೚೗ೡ೐೙೟
య

௖௥௬௧௔௟௦ ∙ ௦
ቃ 

 
ଵߚ  = 0.27 ± 0.22                        
ଵߚ  = 1.34 ± 0.01   
ଵߚ  = 2.24 ± 0.37                      

ଽܰܪ଼ܥ ଶܱ 
 (݈݋݉ܽݐ݁ܿܽݎܽ݌)
 ସܱܪܥ & ଶܱܪ/

≈ 600 µ݉ 

Quintana-Hernandez et al. 
(2004) 
[73] 

ߙ = ଵߙ ∙ ఈమߪ ∙ ௖ܯ
ఈయ ∙  ఈరܴܣ

ߪ … relative supersaturation [−] 
…ܴܣ agitation rate [rpm]  
௖ܯ … total mass of crystals [g] 

ߙ ቈ
 ݏ݈ܽݐݕݎܿ

ܿ݉ ଷ௦௟௨௥௥௬ ∙ s ∙ ܿ݉
቉ 

 
One set of fittet parameters: 
ଵߙ  = 1; ଶߙ  = 0.07                       
ଷߙ  = ସߙ ;0.09  = 0.001           
             
* the number of crystals born to a 
specific size is not depending on the 
current CSDused PBE: 
 డ
డ௧
,ܮ)݊ (ݐ + డ

డ௅
൫ܩ ∙ ,ܮ)݊ ൯(ݐ = ,ܮ)ܤ (ݐ +

 (ܮ)ߙ 

ଶଶܪଵଶܥ ଵܱଵ  
 (݁ݏ݋ݎܿݑݏ)

 ଶܱܪ/
≈ 150 µ݉ 
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Figure 1: Schematic draft of the modeled well mixed seeded batch cooling crystallization process  
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a b 

Figure 2:  Supersaturation profile during the crystallization (a) ; simulated change in the CSD caused by crystal 
growth only (b)  
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Figure 3: ܩ௠௢ௗ௘௟  and ܩ௉ா over the considered parameter space for the evaluation of ܩ෠௘௥௥௢௥   (PE from 

noisy data, Table 6, SAA+Nelder-Mead Experiment 5, ܩ෠௘௥௥௢௥ = 0.0696 ) 
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                     a 

 
                b 

 
                    c                  d 

Figure 4: Objective function was evaluated over fraction of the investigated parameter space calculated 
from data by experiment 5 only (a) and experiments 1-4 (b). A logarithmic function was fitted through 
the band of ൫k୥ଵ ,  k୥ଶ൯ combinations differing only slightly from the global minimum: k୥ଶ = 2.5432 ∙ e3 ∙
log (k୥ଵ) + 0.0059 ∙ kg1 + 4.1435 ∙ e3. The objective function was evaluated along this band separately in 
the case of experiment 5 only (c) and experiments 1-4 (d). 
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Figure 5: Concentration profile of experiment 5, with the noisy profile generated with ો܍ܛܑܗܖ = ૜. 
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                       a 

 
b 

Figure 6: Objective function along the band of ൫܏ܓ૚ ,  ૛൯ combinations differing only slightly from the܏ܓ 
global minimum in the case experiment 5 (a) and experiments 1-4 (b) for different noise levels. The 
objective function was centered by subtracting its mean value. See the caption of Figure 4 for the 
assigned ܏ܓ૛ and  ܏ܓ૛  values.   
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Figure 7: Objective function evaluated in a fraction of the parameter space considered for PE. (a) 
experiment 5 only (b): experiments 1-4 
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Figure 8: Comparison of concentration profiles of the experiments 1, 2, 3 and 4 (see Table 3). Solid line: 
Process model output using the model parameters; Dashed line: Process model output using the growth 
rate parameters obtained by the PE routines neglecting the presence of aggregation (Experiment 
1+2+3+4,  
Table 9). 
 


