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Abstract

Autonomous navigation for large Unmanned Aerial Vehicles (UAVs) is fairly
straight-forward, as expensive sensors and monitoring devices can be employed.
In contrast, obstacle avoidance remains a challenging task for Micro Aerial Ve-
hicles (MAVs) which operate at low altitude in cluttered environments. Unlike
large vehicles, MAVs can only carry very light sensors, such as cameras, mak-
ing autonomous navigation through obstacles much more challenging. In this
paper, we describe a system that navigates a small quadrotor helicopter au-
tonomously at low altitude through natural forest environments. Using only a
single cheap camera to perceive the environment, we are able to maintain a
constant velocity of up to 1.5m/s. Given a small set of human pilot demon-
strations, we use recent state-of-the-art imitation learning techniques to train a
controller that can avoid trees by adapting the MAVs heading. We demonstrate
the performance of our system in a more controlled environment indoors, and
in real natural forest environments outdoors.
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1 Introduction

In the past decade Unmanned Aerial Vehicles (UAVs) have enjoyed consid-
erable success in many applications such as search and rescue, monitoring,
research, exploration, or mapping. While there has been significant active
research in making the operation of UAVs increasingly autonomous, obstacle
avoidance is still a crucial hurdle towards this task. For MAVs with very
limited payloads it is infeasible to carry state-of-the-art radars [1]. Many
impressive advances have recently been made using laser range finders (li-
dar) [2–4] or Microsoft Kinect cameras (RGB-D sensors) [5]. Both sensors
are heavy and active, which leads to increased power consumption and de-
creased flight time. In contrast, passive vision is promising for producing a
feasible solution for autonomous MAV navigation [6–8].

Figure 1: We present a novel method for high-speed, autonomous MAV flight
through dense forest areas. The system is based on purely visual input and
imitates human reactive control.

Our work is primarily concerned with navigating MAVs that have very
low payload capabilities, and operate close to the ground where they can-
not avoid dense obstacle fields. We present a system that allows the MAV
to autonomously fly at high speeds of up to 1.5 m/s through a cluttered
forest environment (Figure 1), using passive monocular vision as its only
exteroceptive sensor. We adapt a novel imitation learning technique [9] to
train reactive heading policies based on the knowledge of a human pilot.
Visual features extracted from the corresponding image are mapped to the
control input provided by the expert. In contrast to straightforward super-
vised learning [10], our policies are iteratively learned and exploit corrective
input at later iterations to boost the overall performance of the predictor,
especially in situations which would not be encountered by a human pilot.
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This is an important feature, as the purpose of any reactive controller is to
provide a reliable, low-level layer for autonomous control, which works on
minimal visual input and can handle situations where 3D mapping [8,11] or
high-level trajectory planning [12] fails. Our novel method is evaluated in a
constrained indoor setting using motion capture, as well as in several forest
environments. In total, we successfully avoided more than 680 trees during
flights over a distance of more than 3 km.

2 Related Work

An impressive body of research on control and navigation of MAVs has been
published within the last few years. Several state-of-the-art approaches for
MAV control would be ideal to fly through a forest, as they feature impres-
sive aggressive maneuvers [13] or can even be used for formation flight with
large swarms of MAVs [14]. However, these methods still require the real-
time, accurate state feedback delivered by a motion-capture system and are
therefore unsuitable for our purpose.

The most popular sensors to carry on-board MAVs are laser range find-
ers and RGB-D sensors, as both deliver quite accurate depth estimates at a
high framerate. Bachrach et al. [2] demonstrated using scanning lidars for
Simultaneous Localization and Mapping (SLAM) in unknown indoor envi-
ronments, and Bry et al. [3] showed how to use the same sensor for fast flight
in indoor environments. The trend in indoor active sensing goes towards
RGB-D sensors [5] that allow more detailed and faster scans. However, in
outdoor environments, RGB-D sensors are often not applicable or suffer from
very limited range. Therefore, Vandapel et al. [15] proposed outdoor plan-
ning approaches in three dimensions for UAV navigation using lidar data,
and Scherer et al. [4] achieved fast obstacle avoidance using a Yamaha RMax
helicopter and a 2-axis scanning lidar. For carrying outdoor lidar systems
and the corresponding power supplies, larger and more expensive MAVs than
what we aim for are required.

Accurate depth estimation and localization is also possible with visual
sensors using stereo cameras [16] or in a moving monocular setup [17]. A
single, cheap camera is enough to create sparse [11] or even dense maps [8] of
the environment. While such structure-from-motion techniques are already
reasonably fast, they are still too computationally expensive for high-speed
flight in a forest. Additionally, pure forward motion leads to an ill-posed
problem when triangulating 3D points, because the triangulation angle is
very small and thus the position uncertainty is huge.

Relatively simple yet efficient algorithms can be derived when imitating
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animals and insects, who use optical flow for navigation [18]. Beyeler et al.
[19] as well as Conroy et al. [20] implemented systems which exploit this fact
and lead to good obstacle avoidance results. Later, Lee et al. [21] proposed to
use a probabilistic method of computing optical flow for more robust distance
calculation to obstacles for MAV navigation. Optical flow based controllers
navigate by balancing flow on either side. However flow captures richer scene
information than these controllers are able to use. We embed flow in a data-
driven framework to automatically derive a controller which exploits this
information.

Most closely related to our approach are approaches which learn motion
policies and depth from input data. Michels et al. [22] demonstrated driving a
remote-controlled toy car outdoors using monocular vision and reinforcement
learning. Hadsell et al. [23] showed in the LAGR project how to recognize and
avoid obstacles within complex outdoor environments using vision and deep
hierarchical networks. Bill et al. [24] used the often orthogonal structure of
indoor scenes to estimate vanishing points and navigate a MAV in corridors
by going towards the dominant vanishing point. We extend those approaches
and employ a novel imitation learning technique that allows us to find a
collision-free path through a forest despite the diverse appearance of visual
input.

3 Learning to Imitate Human Control

Visual features extracted from camera input provide a rich set of informa-
tion that we can use to control the MAV and avoid obstacles. However,
programming a controller by hand using all this information would be a very
time consuming and daunting task. Therefore, we leverage state-of-the-art
imitation learning techniques [9, 10, 25–27] to learn such a controller. These
data-driven approaches allow us to directly learn a control strategy that mim-
ics an expert pilot’s choice of actions based on demonstrations of the desired
behavior, i.e., sample flight trajectories through cluttered environments.

3.1 Background

The traditional imitation learning approach is formulated as a standard su-
pervised learning problem similar to, e.g., spam filtering, in which a corpus of
training examples is provided. Each example consists of an environment (an
image acquired by the MAV) and the action taken by an expert in that same
environment. The learning algorithm returns the policy that best mimics
the expert’s actions on these examples. The classic successful demonstration
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of this approach in robotics is that of ALVINN (Autonomous Land Vehicle
in a Neural Network) [10] which demonstrated the ability to learn highway
driving strategies by mapping camera images to steering angles.

While various learning techniques have been applied to imitation learn-
ing [25–27], these applications all violate the main assumption made by sta-
tistical learning approaches that the learner’s predictions (actions) do not
affect the distribution of inputs/states. As shown in previous work [28] and
confirmed in the MAV setting here, ignoring the effects of the learner on
the underlying state distribution leads to serious practical difficulties and
poor performance. For example, during typical pilot demonstrations of the
task, trees are avoided fairly early and most training examples consist of
straight trajectories with trees on the side. However, since the learned con-
troller does not behave perfectly, the MAV encounters situations where it is
directly heading for a tree and is closer than the human ever was. As the
hard turns it needs to perform in these cases are nonexistent in the training
data, it simply cannot learn the proper recovery behavior.

Theoretically, [28] showed that even if a good policy that mimics the
expert’s actions well on the training examples is learned, when controlling
the drone, its divergence from the correct controls could be much larger (by
as much as a factor T , when executing for T timesteps) due to the change in
environments encountered under its own controls.

Fortunately, Ross et al. [9] proposed a simple iterative training procedure
called DAgger, for Dataset Aggregation, that address this issue and provides
improved performance guarantees. Due to its simplicity, practicality and
improved guarantees, we use this approach to learn the controller for our
drone. While [9] demonstrated successful application of this technique in
simulated environments (video game applications), our experiments show
that this technique can also be succesfully applied on real robotic platforms.
We briefly review the DAgger algorithm below.

3.2 The DAgger Algorithm

DAgger trains a policy that mimics the expert’s behavior through multiple
iterations of training. Initially, the expert demonstrates the task and a first
policy π1 is learned on this data (by solving a classification or regression
problem). Then, at iteration n, the learner’s current policy πn−1 is executed
to collect more data about the expert’s behavior. That is, in our particular
scenario, the drone executes its own controls based on πn−1, and as the drone
is flying, the pilot provides the correct actions to perform in the environments
the drone visits, via a joystick. This allows the learner to collect data in new
situations which the current policy might visit, but which were not previously
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Initialize D ← ∅, π1 to query the expert and execute the expert’s action.
for n = 1 to N do

Sample new trajectories by executing πn.
Get dataset Dn of the visited information states associated with the
corresponding expert’s actions.
Aggregate dataset: D = D ∪Dn.
Train πn+1 to minimize loss on Dn

end for
Return best πn at mimicking expert under its induced trajectories.

Algorithm 1: DAgger for imitation learning [9].

observed under the expert demonstrations, and learn the proper recovery
behavior when these are encountered. The next policy πn is obtained by
training a policy on all the training data collected over all iterations (from
iteration 1 to n). This is iterated for some number of iterations N and the
best policy found at mimicing the expert under its induced distribution of
environments is returned. This algorithm is summarized in Algorithm 1.
See [9] for details.

The intuition is that, over the iterations, we collect a set of inputs the
learner is likely to observe during its execution based on previous experience
(training iterations), and obtain the proper behavior from the pilot in these
situations. [9] showed theoretically that after a sufficient number of iterations,
DAgger is guaranteed to find a policy that when executed at test time, mimics
the expert at least as well as how it could do on the aggregate dataset of
all training examples. Hence the divergence in controls is not increased by a
factor T as in the traditional supervised learning approach when the learned
policy controls the MAV.

For our application, we aim to learn a linear controller of the drone’s
left-right velocity that mimics the pilot’s behavior to avoid trees as the drone
moves forward at fixed velocity and altitude. That is, given a vector of visual
features x from the current image, we compute a left-right velocity ŷ = w>x
that is sent to the drone, where w are the parameters of the linear controller
that we learn from the training examples. To optimize w, we solve a ridge
regression problem at each iteration of DAgger. Given the matrix of observed
visual features X (each row is an observed feature vector), and the vector y
of associated left-right velocity commands by the pilot, over all iterations of
training, we solve w = (X>X + R)−1X>y, where R is a diagonal matrix of
per-feature regularization terms. We choose to have individual regularization
for different types of features, which might represent different fractions of the
feature vector X, so that every type contributes equally to the controls. In
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Figure 2: One frame from MAV camera stream. The white line indicates the
current yaw commanded by the current DAgger policy πn−1 while the red
line indicates the expert commanded yaw. In this frame DAgger is wrongly
heading for the tree in the middle while the expert is providing the correct
yaw command to go to the right instead. These expert controls are recorded
for training later iterations but not executed in the current run.

other words, we regularize each feature of a certain type proportionally to
the number of features of that type. Features are also normalized to have
mean zero and variance 1, based on all the observed data, before computing
w, and w is applied to normalized features when controlling the drone.

3.3 Using DAgger in Practice

Figure 2 shows the DAgger control interface used to provide correct actions
to the drone. Note that, at iteration n, the learner’s current policy πn−1
is in control of the MAV and the expert just provides the correct controls
for the scenes that the MAV visits. The expert controls are recorded but
not executed on the MAV. This results in some human-computer-interaction
challenges:

1) After the first iteration, the pilot must be able to provide the correct
actions without feedback of how the drone would react to the current com-
mand. While deciding whether the drone should go left or right is easy, it can
be hard to input the correct magnitude of the turn the drone should perform
without feedback. In particular, we observed that this often makes the pilot
turn excessively when providing the training examples after the first itera-
tion. Performance can degrade quickly if the learner starts to mimic these
imperfect actions. To address this issue, we provided partial feedback to the
pilot by showing a vertical line in the camera image seen by the pilot that
would slide left or right based on the current joystick command performed.
As this line indicated roughly where the drone would move under the current
command, this led to improved actions provided by the pilot (Figure 2).
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2) In addition to the lack of feedback, providing the correct actions in
real-time after the first iteration when the drone is in control can be hard
for the pilot as he must react to what the drone is doing and not what he
expects to happen: e.g., if the drone suddenly starts turning towards a tree
nearby, the pilot must quickly start turning the other way to indicate the
proper behavior. The pilot’s reaction time to the drone’s behavior can lead
to extra delay in the correct actions specified by the pilot. By trying to
react quickly, he may provide imperfect actions as well. This becomes more
and more of an issue the faster the drone is flying. To address this issue,
we allowed the pilot to indicate the correct actions offline while the camera
stream from the drone is replayed at slower speed (3 times slower than real-
time), using the interface seen in Figure 2. By replaying the stream slower,
the pilot can provide more accurate commands and react more quickly to the
drone’s behavior. The faster we’re flying, the slower the trajectory could be
replayed to provide good commands in time.

3) The third challenge is that DAgger requires to collect data for all
situations encountered by the current policy in later iterations. This would
include situations where the drone crashes into obstacles if the current policy
is not good enough. For safety reasons, we allow the pilot to take over or force
an emergency landing to avoid crashes as much as possible. This implies that
the training data used is not exactly what DAgger would require, but instead
a subset of training examples encountered by the current policy when it is
within a “safe” region. Despite this modification, the guarantees of DAgger
still hold as long as a policy that can stay within this “safe” region can be
learned.

3.4 Features

Our approach learns a controller that maps RGB images from the on-board
camera to control commands. This requires mapping camera images to a
set of features which can be used by DAgger. These visual features need
to provide indirect information about the three-dimensional structure of the
environment. Accordingly, we focused on features which have been shown
to correlate well with depth cues such as those in [22], specifically Radon
transform statistics, structure tensor statistics, Laws’ masks and optical flow.

We compute features over square windows in the image, with a 50%
overlap between neighboring windows. The feature vectors of all windows
are then concatenated into a single feature vector. The choice of the number
of windows is driven primarily by computational constraints. Using a 15× 7
discretization (in x and y respectively) performs well and can be computed
in real-time.
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Radon features (30 dim.) The Radon transform [29] of an image is
computed by summing up the pixel values along a discretized set of lines in
the image, resulting in a 2D matrix where the axes are the two parameters of
a line in 2D, θ and s. We discretize this matrix in 15× 15 bins, and for each
angle θ the two highest values are recorded. This encodes the orientations of
strong edges in the image.

Structure tensor statistics (15 dim.) At every point in a window the
structure tensor [30] is computed and the angle between the two eigenvectors
is used to index a 15-bin histogram for the entire window. The corresponding
eigenvalues are accumulated in the bins. In contrast to the Radon trans-
form, the structure tensor is a more local descriptor of texture. Together
with Radon features the texture gradients are captured, which are strong
monocular depth cues [31].

Laws’ masks (8 dim.) Laws’ masks [32] encode texture intensities. We
use six masks obtained by pairwise combinations of one dimensional masks:
(L)evel, (E)dge and (S)pot. The image is converted to the YCrCb colorspace
and the LL mask is applied to all three channels. The remaining five masks
are applied to the Y channel only. The results are computed for each window
and the mean absolute value of each mask response is recorded.

Optical flow (5 dim.) Finally, we compute dense optical flow [33] and
extract the minimum and maximum of the flow magnitude, mean flow and
standard deviation in x and y. Since optical flow computations can be erro-
neous, we record the entropy of the flow as a quality measure. Optical flow is
also an important cue for depth estimation as closer objects result in higher
flow magnitude.

Useful features must have two key properties. First, they need to be
computed fast enough. Our set of features can be computed at 15 Hz us-
ing the graphics processing unit (GPU) for dense optical flow computation.
Although optical flow is helpful, we show in our experiments that removing
this feature on platforms without a GPU does not harm the approach sig-
nificantly. Secondly, the features need to be sufficently invariant to changes
between training and testing conditions so that the system does not overfit
to training conditions. We therefore refrained from adding color features, as
considerable variations under different illumination conditions and confusions
between trees and ground, as well as between leaves and grass, might occur.
An experimental evaluation of the importance of every feature is given in the
next section, along with a detailed evaluation.
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In addition to visual features, we append 9 additional features: low pass
filtered history of previous commands (with 7 different exponentially decay-
ing time periods), the sideways drift measured by the onboard IMU, and
the deviation in yaw from the initial direction. Previous commands encode
past motion which helps to smooth the controller. The drift feature provides
context to the pilot’s commands and accounts for motion caused by inertia.
The difference in yaw is meant to reduce drift from the initial orientation.

4 Experiments

We use a cheap, commercially available quad-rotor helicopter, namely the
Parrot ARDrone, as our airborne platform. The ARDrone weights only 420g
and has a size of 0.3 × 0.3m. It features a front-facing camera of 320 ×
240 pixels and a 93 deg field of view (FOV), an ultrasound altimeter, a low
resolution down-facing camera and an onboard IMU. The drone’s onboard
controller stabilizes the drone and allows control of the UAV through high-
level desired velocity commands (forward-backward, left-right and up-down
velocities, as well as yaw rotation) and can reach a maximum velocity of
about 5m/s. Communication is based on WiFi, with camera images streamed
at about 10 − 15Hz. This allows us to control the drone on a separate
computer that receives and processes the images from the drone, and then
sends corresponding commands to the drone at around 10Hz.

4.1 Indoor Experiments

We first tested our approach indoors in a motion capture arena. We use
fake indoor trees as obstacles and camouflage to hide background clutter
(Figure 3). While this is a very controlled environment that lacks many
of the complexities of real outdoor scenes, this allows us to obtain better
quantitive results to determine the effectiveness of our approach.

The motion capture system is only used to track the drone and adjust its
heading so that it is always heading straight towards a given goal location.
The drone moves at a fixed altitude and forward velocity of 0.35m/s and we
learn a controller that controls the left-right velocity using DAgger over 3
training iterations. At each iteration, we used 11 fixed scenarios to collect
training data, including 1 scenario with no obstacles, 3 with one obstacle and
7 with two obstacles (Figure 3).

Figure 4 qualitatively compares the trajectories taken by the MAV in
the mocap arena after each iteration of training on one of the particular
scenario. In the first iteration, the green trajectory to the farthest right is
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Figure 3: Left: Indoor setup in motion capture arena with fake plastic trees
and camouflage in background. Right: The 11 obstacle arrangements used
to train Dagger for every iteration in the motion capture arena. The star
indicates the goal location.

Figure 4: Left: Improvement of trajectory by DAgger over the iterations. The
rightmost green trajectory is the pilot demonstration. The short trajectories
in red & orange show the controller learnt in the 1st and 2nd iterations which
fail. The 3rd iteration controller succesfully avoids both obstacles and is
similar to the demonstrated trajectory. Right: Percentage of scenarios the
pilot had to intervene and the imitation loss (average squared error in controls
of controller to human expert on hold-out data) after each iteration of Dagger.
After 3 iterations, there was no need for the pilot to intervene and the UAV
could successfully avoid all obstacles
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Figure 5: Breakdown of the contribution of the different features for different
control prediction strengths, averaged over 9389 datapoints. Laws and Radon
are more significant in cases when small controls are performed (e.g. empty
scenes), whereas the structure tensor and optical flow are responsible for
strong controls (e.g. in cases where the scene contains an imminent obstacle).
A slight bias to the left can be seen, which is consistent to observations in
the field. Best viewed in color.

the demonstrated trajectory by the human expert pilot. The short red and
orange trajectories are the trajectories taken by the MAV after the 1st and 2nd

iterations were completed. Note that both fail to avoid the obstacle. After
the 3rd iteration, however, the controller learned a trajectory which avoids
both obstacles. The percentage of scenarios where the pilot had to intervene
for the learned controller after each iteration can be found in Figure 4. The
number of required interventions decreases between iterations and after 3
iterations, there was no need to intervene as the MAV successfully avoided
all obstacles in all scenarios.

4.2 Feature Evaluation

After verifying the general functionality of our approach, we evaluate the
benefit of all four feature types. An ablative analysis on the data shows
that the structure tensor features are most important, followed by Laws
features. Figure 5 shows how the contribution of different features varies
for different control signal strengths. Optical flow, for example, carries little
information in scenes where small commands are predicted. This is intuitive
since in these cases there are typically no close obstacles and subsequently no
significant variation in optical flow. In fact, removing the optical flow feature
on platforms without sufficient computational capabilities only results in a
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(a) Radon (b) Structure Tensor (c) Laws

(d) Flow (e) Combined Features

Figure 6: Visualization of the contribution of the different features to the
predicted control. The overall control was a hard left command. The arrows
show the contribution of a given feature at every window. Structure tensor
features have the largest contribution in this example, while Radon has the
least.

6.5% increase in imitation loss.
Anecdotally, Figure 6 shows the contribution of each of the features at

different window centers in the image. While structure tensor features mainly
fire due to texture in the background (indicating free space), strong optical
flow vectors correspond to very close objects. In this example the predictor
commands a hard left turn (numerical value: 0.47L on a scale of [0,1]), and
all visual features contribute to this. Consistent with the above analysis, the
contribution of the structure tensor was greatest (0.38L), Laws masks and
optical flow contribute the same (0.05L) while Radon features provide the
least contribution (0.01L). In this particular example, the non-visual features
actually predict a small right command (0.02R).

4.3 Outdoor Experiments

After validating our approach indoors in the motion capture arena, we con-
ducted experiments outdoors to test in real-world scenarios. As we could
not use the motion capture system outdoors to make the drone head towards
a specific goal location, we made the drone move forward at a fixed speed
and aimed for learning a controller that would swerve left or right to avoid
any trees on the way, while maintaining the initial heading. Training and
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Figure 7: Common failures over iterations. While the controller has problems
with tree trunks during the 1st iteration (left), this improves considerably
towards the 3rd iteration, where mainly foliage causes problems (middle).
Over all iterations, the most common failures are due to the narrow FOV of
the camera where some trees barely appear to one side of the camera or are
just hidden outside the view (right). When the UAV turns to avoid a visible
tree in a bit farther away it collides with the tree to the side.

testing were conducted in forest areas while restraining the aircraft using a
light-weight tether.

We performed two experiments with DAgger to evaluate its performance
in different regions, one in a park with relatively low tree density, and another
in a dense forest.

4.3.1 Low-density test region

The first area is a park area with a low tree density of approximately 1 tree
per 12× 12m, consisting mostly of large trees and a few thiner trees. In this
area we flew at a fixed velocity of around 1m/s, and learned a heading (left-
right) controller for avoiding trees using DAgger over 3 training iterations.
This represented a total of 1km of flight training data. Then, we exhaustively
tested the final controller over an additional 800m of flight in the training
area and a seperate test area.

Qualitatively, we observed that the behavior of the drone improved over
iterations. After the first iteration of training, the drone sometimes failed to
avoid large trees even when they were in the middle of the image in plain view
(Figure 7, left). At later iterations however, this rarely occured. On the other
hand, we observed that the MAV had more difficulty detecting branches or
bushes. The fact that fewer of such obstacles were seen in the training data,
coupled with the inability of the human pilot to distinguish them from the
background, contributed to the difficulty of dealing with these obstacles. We
expect that better visual features or improved camera resolution might help,
as small branches often cannot be seen in 320× 240 pixel images.
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Figure 8: Percentage of failures of each type for DAgger over the iterations of
training in the high-density region. Blue: Large Trees, Orange: Thin Trees,
Yellow: Leaves and Branches, Green: Other obstacles (poles, signs, etc.),
Red: Too Narrow FOV. Clearly, a majority of the crashes happen due to a
too narrow FOV and obstacles which are hard to perceive, such as branches
and leaves.
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Figure 9: Average distance flown autonomously by the drone before a failure.
Left: Low-Density Region, Right: High-Density Region.

As expected, we found that the narrow field-of-view was the largest con-
tributor to failures of the reactive approach (Figure 7, right). The typical
issue occurs when the learned controller avoids a tree, and as it turns a new
tree comes into view. This may cause the controller to turn in a way such
that it collides sideways into the tree it just avoided. This problem inevitably
afflicts purely reactive controllers and could be solved by adding a higher level
of reasoning [12], or memory of recent visual features.

The type of failures are broken down by the type of obstacle the drone
failed to avoid, or whether the obstacle was not in the FOV. Overall, 29.3%
of the failures were due to a too narrow FOV and 31.7% on hard to perceive
obstacles like branches and leaves.

Quantitatively, we compare the evolution of the average distance flown
autonomously by the drone before a failure occured over the iterations of
training. We compare these results when accounting for different types of
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failures in Figure 9 (left). When accounting for all failure types, the average
distance flown per failure after all iterations of training was around 50m.
On the other hand, when only accounting for failures that are not due to
the narrow FOV, or branches/leaves, the average distance flown increases to
around 120m. For comparison, the pilot succesfully flown over 220m during
the initial demonstrations, avoiding all trees in this sparse area.

To achieve these results the drone has to avoid a significant number of
trees. Over all the data, we counted the number of times the MAV avoided
a tree1, and observed that it passed 1 tree every 7.5m on average. We also
checked whether the drone was actively avoiding trees by performing sig-
nificant commands2. 41% of the trees were passed actively by our drone,
compared to 54% for the human pilot.

Finally, we tested whether the learned controller generalizes to new re-
gions by testing it in a seperate test area. The test area was slightly denser,
around 1 tree per 10×10m. The controller performed very well and was suc-
cessfully able to avoid trees and perform at a similar level than in the training
area. In particular, the drone was able to fly autonomously without crashing
in any trees over a 100m distance, reaching the limit of our communication
range for the tests.

4.3.2 High-density test region

The second set of experiments was conducted in a thickly wooded region in
a local forest. The tree density was significantly higher, around 1 tree per
3 × 3m, and the area included a much more diverse range of trees, ranging
from very small and thin to full-grown trees. In this area we flew at a faster
fixed velocity of around 1.5m/s, and again learned the heading (left-right)
controller to avoid trees using DAgger over 3 iterations of training. This
represented a total of 1.2km of flight training data. The final controller was
also tested over additional 400m of flight in this area. For this experiment
however, we used the new ARDrone 2.0 quad-rotor helicopter, which has an
improved HD camera that can stream 640× 360 pixel images at 30Hz. The
increased resolution likely helped to detect the thinner trees.

Qualitatively, in this experiment we observed that the performance of the
learned behavior slightly decreased in the second iteration, but then improved
significantly after the third iteration. For example, we observed more failures
to avoid both thin and large trees in the second iteration compared to the

1A tree is avoided when the drone can see the tree pass from within its FOV to the
edge of the image.

2A tree is actively avoided when the controller issues a command larger than 25% of
the full range, passively in all other cases.
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other iterations. This is shown in Figure 8, which compares the percentage of
the different failures for the human pilot and after each iteration of DAgger
in this area. We can also observe that the percentage of failures attributed to
large or thin trees is smallest after the third iteration, and that again a large
fraction of the failures occur when obstacles are not visible in the FOV of
the MAV. Additionally, we can observe that the percentages of failures due
to branches or leaves diminishes slightly over the iterations, which could be
attributed to the better camera that can better perceive these obstacles. A
visualization of a typical sequence is given in Figure 10. Further qualitative
results can be found in the supplementary material.

Quantitatively, we compare the evolution of the average distance flown
autonomously by the MAV before a failure occured over the iterations of
training. Again, we compare these results when accounting for different
types of failures in Figure 9 (right). When accounting for all failure types,
the average distance flown per failure after all iterations of training was
around 40m. Surprisingly, despite the large increase in tree density and
faster forward velocity, this is only slightly worse than our previous results
in the sparse region. Furthermore, when only accounting for failures that
are not due to the narrow FOV or branches and leaves, the average distance
flown increases to 120m per failure, which is on par with our results in the
sparser area. For comparison, when only accounting for failures due to tree
trunks, the pilot flew around 500m during the initial demonstrations and
only failed to avoid one thin tree. However, the pilot also failed to avoid thin
branches and foliage more often (Figure 8). When accounting for all types
of obstacles, the pilots average distance until failure was around 80m.

The increase in tree density required our MAV to avoid a significant larger
number of trees to achieve these results. Over all the data, we observed that
it was avoiding on average 1 tree every 5m. In this dense region, both the
pilot and the drone had to use larger controls to avoid all the trees, leading
to an increase in the proportions of trees that were passed actively. 62% of
the trees we passed actively by the drone, compared to a similar ratio of 66%
for the pilot.

The major issue of the too narrow FOV presented in this section may be
addressed by two approaches in the future. First, imitation learning methods
that integrate a small amount of memory may allow to overcome the simplest
failure cases without resorting to a complete and expensive mapping of the
environment. Second, the biologically-inspired solution is to simply ensure
a wider FOV for the camera system. For example, pigeons rely mostly on
monocular vision and have a FOV more than 3 times larger, while owls have
binocular vision with around 1.5 times the FOV of our drone.
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MAV’s on-board view Observer’s view

Figure 10: Example flight in a dense forest area, part 1. The image sequence
is chronologically ordered from top (t = 0s) to bottom (t = 2.9s) and split
into the MAV’s on-board view on the left and an observer’s view to the right.
Note the direction label of the MAV in the first frame, and the color-coded
commands issued by DAgger. It can be observed that after avoiding tree A
in frame 3 the vehicle still rolls strongly to the left in frame 4. This is due
to the small but ubiquitous latency and should be addressed in future work
to fly the MAV in even denser areas.
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MAV’s on-board view Observer’s view

Figure 11: Example flight in a dense forest area, continued. The image
sequence is chronologically ordered from top (t = 3.8s) to bottom (t = 6.6s)
and split into the MAV’s on-board view on the left and an observer’s view
to the right. In frames 1-3, tree B is avoided on the left, rather than on the
more intuitive right. DAgger prefers this decision based on the drift feature,
which indicates that the vehicle still moves left and thus a swerve to the right
would be more difficult.
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5 Conclusion

We have presented a novel approach for high-speed, autonomous MAV flight
through dense forest environments. Our system learns to predict how a
human expert would control the aircraft in a similar situation, and thus suc-
cessfully avoids collisions with trees and foliage using passive, low-cost and
low-weight visual sensors only. We have applied a novel imitation learning
strategy which takes into account that the MAV is likely to end up in situa-
tions where the human pilot does not, and thus needs to learn how to react in
such cases. During a significant amount of outdoor experiments with flights
over a distance of 3.4km, our approach has avoided more than 680 trees in
environments of varying density.

Our work provides an important low-level layer for autonomous control
of MAVs, which works on minimal visual input and can handle situations
where 3D mapping or high-level trajectory planning fails. In future work, we
want to focus on adding such higher-order layers, including receding horizon
planning and semantic knowledge transfer, as well as implementing the means
to handle latency and small field of view effects. This will allow us to perform
even longer flights, in even denser forests and other cluttered environments.
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