
From Measurement to Symbolic Expression:
GeoGebra as an Aid to Scientific Observations

Kai Chung Tam

December 15, 2012

Acknowledgments

The research study in Linz was a memorable experience in my life. It is a

rewarding to work with experts and enthusiasts in the fields of mathematics,

computer science, and mathematics education, which have long been my

endeavors.

I would like to give special thanks to Professor Markus Hohenwarter, who

have made this project possible and gave me a lot of advices within or be-

yond the work. For more than 10 years, GeoGebra has been helping the

teachers and students communities. I so much appreciate your contribution

by having this software initiated at first, and subsequently gather developers

and interested people from all over the world.

I would like to thank the Austrian Marshall Plan Foundation for your en-

abling this honorable opportunity to further my small ideas and initial projects.

2

I would like to thank Mr. y Mahringer for all of your instructions and sug-

gestions from the very beginning.

I would like to thank Zolt‘’an Kov‘’acs for your guidance from math and

programming to life and spiritual thoughts.

I would also like to thank Michael, Philip, Simon, Alexander, and all col-

leagues. It was nice to meeting you all and working together as a team.

I would like to thank Martina and your family. You are very nice hosts and

I have learned a lot about the country.

I would like to thank Dr Bruce Vogeli, Dr Henry Pollak of my home institu-

tion, Teachers College, Columbia Unviersity. My interests on mathematics

education have been furthering in these years. Your expertise and experi-

ences have had a large impact on my development of ideas on education.

I would like to also thank Dr Nii Nartey, who introduces GeoGebra along

with other mathematics software in my first year in TC.

Last but not the least, I would like to thank my family and Haoqi, who have

been supporting me wholeheartedly.

Abstract

This document is a report on my work at the Johannes Kepler Universität

in Linz from May 26th, 2012 to August 25th, 2012, sponsored by Marshall

Plan Scholarship. All of my work is related to the development of GeoGebra

software, which is led by Professor Markus Hohenwarter at JKU.

This document demonstrates how the ‘SurdText’ command was developed.

This command is able to convert a decimal to a radical expression, using the

PSLQ method originated from computational mathematics. The motivation

of its development, and the implication on teaching and learning will also be

discussed.

Contents

1 SurdText Command 6

1.1 Motivation . 6

1.2 What SurdText does . 9

1.3 PSLQ Algorithm, and mPSLQ 10

1.4 Implementation . 17

1.4.1 Types of expressions to be fit 17

1.4.2 Bounds of Parameters 22

1.4.3 Accuracy and Precision 23

1.4.4 More than one integer relations 28

1.4.5 Summary: objects related to SurdText command . . . 38

1.4.6 Problems and Limitations 46

1.5 Applications and Implications 49

4

CONTENTS 5

1.5.1 Exploring special values on the arc. 49

1.5.2 A better calculator. 51

1.5.3 Teaching and learning 51

1.6 Possible Extensions . 54

2 How PSLQ works: Intuitive observations 55

2.1 A lucky case solved in one-step. 58

2.2 Initial Step. 60

2.3 Reduction . 62

2.4 Exchange . 63

2.5 Corner . 65

2.6 Termination, and beyond . 68

List of Figures 72

List of Tables 73

Chapter 1

SurdText Command

1.1 Motivation

In school mathematics, converting fraction to a decimal or doing its inverse

is a standard topic. It is totally natural to ask for a way to convert a radical

to a decimal or doing its inverse. For example, student might calculate the

value of sine fifteen degrees using a scientific calculator and get:

0.2588190451

CHAPTER 1. SURDTEXT COMMAND 7

as a ten-digit approximation of the value; however, it is also worth knowing

that:

sin(15◦) =
√

6−
√

2
4 ,

which is hardly implemented in any calculators. We may think of two pos-

sible ways to achieve this functionality. First, if we could have a specific

collection of functions (such as trigonometric functions) and special argu-

ments that we would like to obtain radical expressions as values instead of

decimal expressions, we could try to get the answer in radical expression,

symbolically. This will give us an exact result, but it does not work if we

only are given the decimal value, not knowing from what function it is calcu-

lated. The second way is to “convert a decimal to a radical”, or to be more

precise, given a decimal expression x, and a tolerance of error ε > 0, number

of terms n, decide if there exists r0, r1, r2, · · · rn ∈ Q and k1, k2, · · · kn such

that |x0 − x| < ε, where

x0 = r0 + r1

√
k1 + r2

√
k2 + · · ·+ rn

√
kn.

CHAPTER 1. SURDTEXT COMMAND 8

Also, if it exists, find a minimal solution (in a certain sense). It turns out

that this problem can be fitted into a more general problem, the problem

of detecting integer relations. A vector (x1, x2, · · · , xn) possesses an integer

relation if and only if there exists n integers a1, a2, · · · an, not all being zero,

such that

a1x1 + a2x2 + · · · anxn = 0.

In principle, if this problem is solved, then one can detect whether x is an

algebraic number of degree no larger than k by letting n = k + 1 and that

xj = xj from j = 0, 1, · · · k. However, since there is no radical formula for

any polynomial of degree higher than 4, other remedial operations should be

adopted in order to get a satisfiable expression.

There are famous algorithms to solve the problem of detecting integer rela-

tions, such as the LLL algoritm and the PSLQ algorithm. In the following

sections, I will introduce the functionality of SurdText Command, the PSLQ

algorithm, the GeoGebra implementation, and some applications and educa-

tional implications of the SurdText command.

CHAPTER 1. SURDTEXT COMMAND 9

1.2 What SurdText does

In GeoGebra, the SurdText command accepts three types of argument(s)1:

• SurdText[<Number x>]

• SurdText[<Number x>,<List L>]

• SurdText[<Point P>]

The first one searches for integers a, b, c, d ∈ [−100, 100] such that x = a+b
√
c

d
.

For example, SurdText[1.618033988749895] returns a textbox which dis-

plays 1+
√

5
2 as its content. If such integers are not found, x will be re-

turned unchanged. The second one also reads a list of given numbers L =

(L1, L2, · · · , Lk), and searches for integers a1, a2, · · · , ak such that x =

∑
1≤j≤k ajLj. However, when L is an empty list, it is defined by default a list

of common constants, i.e.
√

2,
√

3,
√

5,
√

6, π. The last one applies SurdText

command to each coordinate of P .

Note that there is a fixed precision requirement for the input. For example,

SurdText[1.61803398874] gives 1+
√

5
2 but SurdText[1.6180339887] will

1Documentation on the GeoGebra wiki site: http://wiki.geogebra.org/en/
SurdText_Command

CHAPTER 1. SURDTEXT COMMAND 10

leave the expression unchanged. One should also note that the SurdText

command without a list is faster, not only because the former has only 1

square root expression, but also because the latter requires an exact method

of computation, which will be discussed in Section 1.4.

The most important part in the implementation of SurdText command is

the PSLQ algorithm, which finds an integer relationship of n real numbers.

1.3 PSLQ Algorithm, and mPSLQ

The heart of converting a raw decimal to any kind of symbolic, exact expres-

sion of numbers is to find an integer relation. For example, to prove that y

is an algebraic number of degree k, it is to find a polynomial p(t) of integer

coefficient such that p(y) = 0. A prototype of integer relation algorithm is

the Euclidean algorithm, since for any two real numbers x, y, the Euclidean

algorithm being applied to them terminates in a finite number of steps if and

only if x/y is rational. LLL algorithm (1986) is a classical algorithm of find-

ing integer relations and also solves problems in a general lattice. For integer

relations, however, a significantly faster and numerically stabler algorithm is

CHAPTER 1. SURDTEXT COMMAND 11

the PSLQ, developed by the mathematician-sculptor Helaman Ferguson.

PSLQ stands for a “Polynomial-time algorithm, involving the Sum-of-square

and LQ decomposition schemes”. This was devised by mathematician-sculptor

H. Ferguson (1991), and subsequently a modified version was developed

(1999).

In the implementation of SurdText command, the key algorithm is PSLQ

and multiple PSLQ, which will be explained as follows.

Given a real parameter τ such that 1 < τ < 2, PSLQ (of parameter τ) takes

the following input:

- n, an integer ≥ 2;

- n real numbers: x1, x2, · · · , xn ∈ R;

- M > 0, a positive real number which indicates the desired upper bound

of the norm of an integer relation;

- A binary function ζ : R→ {0, 1} that checks whether a number is zero.

And it provides the following output:

CHAPTER 1. SURDTEXT COMMAND 12

- First case: an n×n integer matrix B such that there exists j, 1 ≤ j ≤ n

such that ζ((xB)j) = 0.

- Second case: an integer relation with norm no larger than M does not

exist.

It is proven that if there exists an integer relation of norm less than M , then

the algorithm finds an integer relation (whose norm is not necessarily less

thanM) in less than k(n, τ,M) =
(
n
2

)
logτ (γn−1M) iterations, where γ is the

positive real number such that 1/τ =
√

1/4 + 1/γ2. Moreover, each iteration

contains O(n) exact arithmetic operations.

Notice that when PSLQ terminates, there might still be other integer re-

lations exist that have norm less than M . A correct interpretation is the

following: if no relation is found in k(n, τ,M) iterations, it is certain that

there is no integer relation of x with norm less than M . If a relation m is

found, it is not guaranteed that its norm is less than M2. If we are dedi-

cated to find a relation with norm less than M , we may have to apply PSLQ

multiple times. Also, for the purpose of implementation, we might not be

satisfied to find just one integer relation, for we might need to choose the
2Nonetheless, it is guaranteed that |m| ≤ γn−2Mx, where Mx is the smallest possible

norm for an integer relation of x.

CHAPTER 1. SURDTEXT COMMAND 13

best relation in some sense (cf. Subsection 1.4.4). A note in section 6 of [4]

briefly described how one can find all possible relations by applying PSLQ

algorithm multiple times, but it was not detailed enough and also with some

minor flaws 3. In order to apply PSLQ multiple times and to get different

integer relations each time, some careful adjustments to PSLQ are necessary.

Also, in our implementation, the choice of τ was not very important so we

may just take τ = 1.5 in our convenience. In this case, γ = 2.2678 and

k(n,M) := k(n, 1.5,M) ≈ n(n− 1)((1.0097)(n− 1) + ln(M)(1.2332)).

The adjusted PSLQ takes τ = 1.5 and provides the following output:

- An integer matrix B.

- An n dimensional, binary vector u ∈ {0, 1}n, called the indicator vector,

such that the j-th column of B is an integer relation with norm no larger

than M if and only if uj = 1, otherwise uj = 0.

The multiple-PSLQ algorithm takes the same input as PSLQ, and provides

as many integer relations as possible. First, apply PSLQ once and we get an

n×n integer matrix B, and the indicator vector u. Suppose there are q ones
3For example, it mentioned that PSLQ would find one relation each time but actually

there might be q ≥ 1 relations found at one application of PSLQ, so one would need to
take the n− q instead of n− 1 non-zero coordinates in order to applied PSLQ once more.

CHAPTER 1. SURDTEXT COMMAND 14

and n − q zeros in u. If q = n, then there are no desired integer relation; if

q < n, let Bn be the n×q submatrix of B so that it contains all the q columns

in B which correspond to 1 in u, and let Br be the n × (n − q) submatrix

of B that consists of the other columns. The subscripts n and r stand for

normal and the rest, respectively. Then xBn = 01×q. Let y = xBr, and we

apply PSLQ for y (which is q dimensional). If we can find an integer relation

m ∈ Zq for y, then we have 0 = ym = xBrm, thus Brm is an integer relation

for x. We will store all the column vectors to a list L, which is initially empty.

Iteratively, suppose we have applied PSLQ for a p dimensional vector y and

we get the p × p matrix B and the p dimensional vector Ind, we let q ←

the number of ones in u, and arrange B to the two new matrices B̃n (p × q

dimensional), B̃r (p× (p− q) dimensional) in the same way described above.

Add to L all the column vectors of BrB̃n, which is a product of a n×p matrix

and a p × q matrix. Then let Br ← B̃r, p ← q. The algorithm terminates

when there is no new integer relation found. The following pseudo code

summarizes mPSLQ:

CHAPTER 1. SURDTEXT COMMAND 15

Algorithm 1 mPSLQ
Require: a positive integer n, an n dimensional real vector x; a positive
number M ; a binary-valued function ζ
T ← ∅, y ← x, Br ← In
p← n
if p > 0 then

B̃r ← Ip, B̃n ← Ip
Apply PSLQ(1.5) to the p dimensional vector y, and the bound M ,
and function ζ of checking zero, getting a p × p matrix B and a p
dimensional vector u.
if u = 0p then

return T
end if
q ← 0, q′ ← 0 i← 0
for i = 1..p do

if uj = 1 then
q ← q + 1
replace the q-th column of B̃n with the i-th column of B

else
q′ ← q′ + 1
replace the q′-th column of B̃r with the i-th column of B

end if
end for
B̃n ← the first q columns of B̃n
Add all the columns of BrB̃n to T
B̃r ← the first q′ columns of B̃r
Br ← BrB̃r

else
return T

end if

CHAPTER 1. SURDTEXT COMMAND 16

Figure 1.1: Helaman Ferguson at the Clay Mathematics Institute opening
ceremony on May 10, 1999

CHAPTER 1. SURDTEXT COMMAND 17

1.4 Implementation

1.4.1 Types of expressions to be fit

It will be impractical to consider all possible algebraic expressions of real

numbers. Even restricted in standard mathematics curricula, irrational ex-

pressions such as radical expressions, exponential and logarithmic expressions

(in base 10, 2, or e), and trigonometric functions (with a heavy usage of the

constant π) are common objects to be explored. Although there is no general

method to handle all of these expressions, there are some special identities

between these expressions that are commonly seen:

• c =
√
a2 + b2 in the Pythagorean Theorem;

• The quadratic formula, −b±
√
b2 − 4ac

2a ;

• Rationalization, 1√
2 +
√

3
=
√

3−
√

2;

• sin(60◦) = cos(30◦) =
√

3
2 ;

• arcsin(0.5) = π

6 ;

• log10 5 + log10 2 = 1.

CHAPTER 1. SURDTEXT COMMAND 18

Note that logarithm is less “geometric”, so it is less used in GeoGebra. Unless

we are going to handle a product of powers (cf. Section 1.6), we will not

consider logarithm in the implementation. Nonetheless, quadratic roots and

constant π are very geometric concepts and therefore we shall bring them

into the implementation of SurdText command.

By an inspection of the listing above, we are going to consider the following

types of expressions: (1) Quadratic, i.e. x = (a + b
√
c)/d with c, d that are

not large in magnitude; (2) A linear combination of square roots of integers;

(3) a+ bπ; (4) Linear combination of a given list of constants.

Quadratics.

Suppose t ∈ R and that we look for parameters a, b, c, d ∈ Z such that

t = (a+ b
√
c)/d. Then we have

(dt− a)2 = b2c

d2t2 − 2adt+ a2 − b2c = 0

CHAPTER 1. SURDTEXT COMMAND 19

Therefore (t2, t, 1) has an integer relation (d2,−2ad, a2 − b2c). Conversely, if

(A,B,C) is an integer relation of (t2, t, 1), then t = (−B±
√
B2 − 4AC)/(2A),

so a,b,c,d can be found. We may also reduce the radical according to simpli-

fication rules. In GeoGebra, the CAS (computer algebra system) is able to

simplify radical expressions, therefore it is used in the implementation.

Linear Combination of surds.

Combination of square roots is tricky. Suppose t =
√
A +

√
B, and we

look for the parameters A, B. It is possible to treat t as algebraic number

which is a root of minimal polynomial p(y) has a factor (y − t) and thus

a factor (y − t̄), where t̄ is any of t’s conjugates. One can deduce that

p(y) = (y2−A−B)2− 4AB = y4− 2(A+B)y2 + (A−B)2, which is quartic

but not a general one, since there are no odd powers of y. Therefore one

may first find a relation (m1,m2,m3) for x = (t4,−2t2, 1). If m3 is a perfect

square, then we have revealed that

t =
√
m1 +√m3

2 +
√
m1 −

√
m3

2 .

CHAPTER 1. SURDTEXT COMMAND 20

In general, if t is a combination of k (irreducible) radicals, the polynomial p(y)

will be a 2k-degree polynomial without odd terms, or n = 2k−1 +1 coefficients

to be determined. Recall that the PSLQ algorithm requires nd digits in

solving integer relations of n dimension and size of d digits. If we set the

bound asM = 100 (so d ≤ 2), we need 2n digits in the input. Since GeoGebra

inputs have around 12 to 15 digits, only n ≤ 6 or 7 would be practical.

Therefore if t is a combination of k ≥ 4 square roots than this method will

not work. Moreover, when k = 3, even if one has found p(y) of degree 8, it

is quite hard4 to find a general way to reveal the expression of a root t. For

example, if t =
√

2 +
√

3 +
√

5 then p(y) = y8 − 40y6 + 352y4 − 960y2 + 576.

There could be some number-theoretic method in solving it5, but it is beyond

of scope for the project.

At this stage, linear combination of surds is not implemented. Nonetheless,

it is partially fulfilled by the next type of expression: linear combination of

given constants.
4Actually p(y) is a quartic of y2, but a quartic formula does not solve the problem at

once because it will be another time-consuming task to simplify!
5e.g. noticing that if A = 2, B = 3, and C = 5, then (A2+B2+C2−2AB−2BC−2CA)2

must be equal to the constant term, which is 576 = 242

CHAPTER 1. SURDTEXT COMMAND 21

Linear Combination of Given Constants.

Suppose that t is a linear combination of a given set of constants {C1 =

1, C2, · · · , Ck}, and the coefficients are rational. Then a0t + a1C1 + a2C2 +

· · ·+ akCk = 0, where a0, a1, · · · , ak are some integer parameters. Therefore,

if we can find a relation for (t, C1, C2, · · · , Ck), then we have revealed that

t = −a1

a0
C1 − · · · −

ak
a0
Ck.

In this report, only the first and the third type are considered. As there

could be many other types of expressions to be fitted, I would let each case

above an instance of (parametric) algebraic fitting.

Definition. Given a computable function F which is defined on (part of)

Zk and takes value in R. The problem of parametric algebraic fitting is to

construct an algorithm such that, for any given input ε > 0, m > 0, and

t ∈ R, it returns as many k-tuples α = (a1, a2, · · · , ak) as possible such that

|aj| ≤ m, and that |t− F (α)| < ε.

CHAPTER 1. SURDTEXT COMMAND 22

Under this definition, the first and the third cases are named and specified

by a certain function as follows.

Quadratic fitting:

F1(a, b, c, d) = a+ b
√
c

d
;

Constants fitting:

F3(a0, a1, · · · , ak) = a1C1 + · · · akCk
a0

.

1.4.2 Bounds of Parameters

Recall that when the PSLQ algorithm terminates in k(n,M) steps, it means

that any relation with norm less than M is found. However, the bound M is

quite different from the bound L for the parameters. For quadratic fitting,

suppose that we have found a relation for (1, t, t2) with norm less than M .

Then we have

d2 ≤M, |2ad| ≤M, |a2 − b2c| ≤M.

CHAPTER 1. SURDTEXT COMMAND 23

In order that all possible fittings within the bound L of parameters can

be found, one needs to guarantee that the largest possible of d2, |2ad|, and

|a2−b2c| are not greater thanM . It can be the case that a = 0 and b = c = L,

so L3 ≤M . To guarantee that all quadratic fittings within the bound L = 10

are found, one should set M = 1000. In this case k(n,M) = k(3, 1000) =

63.23. Even if we want L = 100 and need M = 106, the number of steps will

only be k(3, 106) = 114.2.

For constants fitting, M is just the largest possible aj. Therefore if we want

L = 100 than we may just take M = 100.

1.4.3 Accuracy and Precision

There are three (types of) questions about accuracy: Precision of the input,

accuracy of the integer relations, and working precision.

Precision of input, or ε.

First, what ε should we choose for the problem? In other words, what is the

acceptable “error” of F (α)? Since the amount of error is not customized,

CHAPTER 1. SURDTEXT COMMAND 24

it is determined by the input. If the input has d digits after the decimal

point, the answer F (α) should have the same value if rounded to d digits,

therefore |F (α)−d| ≤ 0.5×10−d. However, one should notice that GeoGebra

does not keep track of the number of digits actually typed in by the user.

The internal precision is about 16 digits, so, for example, when a user typed

SurdText[1.4142135624], the number 1.4142135624 will be equivalent to

1.4142135624000000, which is obviously not equal to the rounded value of
√

2.

Practically, we accept the accuracy of the display of a scientific calculator,

which has at least 10 digits, thus we choose ε = 0.5×10−10 in our implemen-

tation, and SurdText[1.4142135624] returns
√

2.

Working precision.

As mentioned in Ferguson (1999), the properties of PSLQ hold was proven

in the assumption that all the arithmetic operations in the iterative steps are

exact, including addition, subtraction, multiplication, integer part, and com-

parison of real numbers. Therefore, the implementation also ideally does the

exact arithmetic in the iterative steps. Division and square root operations

CHAPTER 1. SURDTEXT COMMAND 25

are involved in the initialization steps, but since they are to be done before

any iterative steps, they are only done once and so therefore will not affect

the performance significantly.

For our purpose, exact arithmetic was not used, and there are two different

implementations: one for quadratic fitting and another for constants fitting.

Double-precision (64-bit) floating point was used for both initialization and

iterations. This implementation is fast, and quite sufficient for revealing

quadratic expressions of small parameters (less than 20) because there are

only n = 4 dimensions. For constants fitting, we use double-precision for

initialization and multi-precision or iterative steps (i.e. more than nd digits,

where n is the dimension of the input x, and d is the precision of the input).

Accuracy of the integer relations, related to ε.

Last but not the least, each time when an integer relation m is found for x,

we may check if xmT is small enough, namely |xmT | < δ for a given δ > 0.

In any algebraic fitting problem, this value δ should be chosen so that we will

not miss any F (α) which satisfies |F (α) − t| < ε. Of course it is inevitable

to include some false relations m, in the sense that |xmT | < δ holds but

CHAPTER 1. SURDTEXT COMMAND 26

|F (α)− t| ≥ ε. The best choice here is the minimal δ such that |F (α)− t| < ε

implies |xmT | < δ. We have the following results:

Lemma.

1. For quadratic fitting, 2L5/2 + L2ε and 3Mε are upper bounds for δ.

2. For constants fitting, Lε is an upper bound for δ.

Proof. For quadratic fitting, suppose that 0 < ε < 1, and that t0 = (a0 +

b0
√
c0)/d0 is the true expression, where a0, b0, c0, d0 are integers, and c, d > 0.

Suppose also that t0 = (a+b
√
c)/d satisfies |t−t0| < ε, where −L ≤ a, b ≤ L,

0 ≤ c, d ≤ L, L ≥ 1. Then,

∣∣∣∣∣a+ b
√
c

d
− t

∣∣∣∣∣ < ε ⇒ − dε < a+ b
√
c− dt < dε

⇒ − b
√
c− dε < a− dt < −b

√
c+ dε

⇒ b
√
c− dε < dt− a < b

√
c+ dε

Therefore, no matter a > dt or a < dt, we have |a − dt| ≤ |b|
√
c + dε, or

CHAPTER 1. SURDTEXT COMMAND 27

squaring it to get (a− dt)2 ≤ b2c+ |2bd
√
c|ε+ d2ε2. So,

|xmT | =

∣∣∣∣∣∣
(
t2 t 1

)(
d2 −2ad a2 − b2c

)T ∣∣∣∣∣∣
= |d2t2 − 2adt+ a2 − b2c| = |(dt− a)2 − b2c|

≤ |2bd
√
c|ε+ |d2ε2|

≤ (2L5/2 + L2)ε ≤ 3L3ε ≤ 3Mε.

We used L3 ≤ M as indicated in Subsection 1.4.2. For constants fitting,

suppose that t = ∑
ajCj/a0, t′ = (∑ a′jCj)/a′0, and that |t− t′| < ε. Then

|xmT | =

∣∣∣∣∣∣
(
t′ C1 · · · Ck

)(
a′0 −a′1 · · · −a′k

)T ∣∣∣∣∣∣
=
∣∣∣a′0t−∑ a′jCj

∣∣∣ = |a′0t− a′0t′| = |a′0||t− t′| < Lε �

Again, one should take these results in Subsection 1.4.2 and this subsection

with care that, when we choose the specified bound L and accuracy δ, all

solutions F (α) = t′ satisfying |αj| ≤ L and |t − t′| < ε will be found, but

there could also be other undesired relations. In the following subsection,

we discuss the possible cases when there are more than one integer relations,

and explain by examples constructed during the project.

CHAPTER 1. SURDTEXT COMMAND 28

1.4.4 More than one integer relations

For a list of real numbers x ∈ Rn, it is possible that there exist more than

one integer relations m ∈ Zn that satisfy the norm condition (mmT ≤ M)

and the accuracy condition (|xmT | ≤ δ). There may be two main reasons

for this to happen. First, it may be symbolically true that x⊥ contains

more than one independent vectors in integers, e.g. x = (
√

2, 2
√

2,−
√

2) has

independent integer relations (0, 1, 2) and (1, 0, 1). Another possibility is that

a relation (usually of a large norm) is not symbolically correct but satisfies the

accuracy condition. For example, x = (1, π3, π/500) “almost” has an integer

relation (−31, 1,−1), for −31 +π3−π/500 = −6.5× 10−6. Another example

generated from convergents of
√

2 is x = (1970/1393,
√

2), which “almost”

has the relation (1,−1), since |1970/1393 −
√

2| < 10−6. Although these

seems quite rare in practice, it may be more often for a larger n. Suppose

n = 6 and x = (1,
√

2,
√

3,
√

5,
√

6, π). One may check the following:

α = 29
√

2− 7
√

3 + 14
√

6− π = 60.039101401 . . .

β = −5 + 8
√

2− 2
√

3 + 10
√

5 + 45
√

6− 24π = 60.039101397 . . .

CHAPTER 1. SURDTEXT COMMAND 29

Thereforem = (5, 21,−5,−10,−31, 23) is an integer vector such that |xmT | =

|α− β| = 4× 10−9.

Given ε > 0, if we would like to find a symbolic expression t′ = F (α) that

represents t ∈ R, and that |t′ − t| < ε, we should specify the norm of any

integer relation to be found and the precision requirement during the com-

putation. The norm condition is important because it is always possible to

find convergents (pk/qk)k≤1 of a real number α such that pk/qk → α.

Efficiency issues in avoiding undesired integer relations.

As mentioned before, when PSLQ terminates, the resulting matrix might not

contain any desirable integer relation. Recall that ε is the precision of the

input t, L is the bound of parameters (t and L are the direct requirements in

the problem of SurdText), M depending on L is the bound of coefficients for

mPSLQ, δ depending on ε and L is the accuracy requirement for mPSLQ.

In a more rigorous treatment, one should use large enough M and δ to

get a collection of relations which contains all desirable ones, then use the

direct requirements ε and L to rule out all the undesired integer relations.

This will be slow in general. Although theoretically there will be no more

CHAPTER 1. SURDTEXT COMMAND 30

than n − 1 integer relations for an n dimensional vector x, it is different in

the implementation because we allow certain error, as shown in the examples

above. There can be a lot more than n−1 tentative solutions to the problem,

and that is why it may be slow if mPSLQ is dedicated to find all those

solutions.

A balance between correctness and efficiency can be obtained by setting a

smaller M and/or δ in the mPSLQ. Also, if one needs even faster imple-

mentation, we can use PSLQ only once, hoping that what it finds is the

desired one. For example, although we proved previously that we should

choose M = 1000 and δ = 3Mε in quadratic fitting that requires m = 10,

one should realize that δ = 3× 10−7 when ε = 10−10, and a one-time PSLQ

would probably not provide the most desired integer relation. We may then

choose δ = 10ε = 10−9 to get a better chance of getting the desired relation,

at the cost of the higher possibility that no desired relation is found even if

there is one.

This more efficient but less correct implementation is used in quadratic fitting

only. For constants fitting, since there are even more possible relations to be

found, a one-time PSLQ will not work. Instead, the mPSLQ is applied to

CHAPTER 1. SURDTEXT COMMAND 31

get a collection of relations, and then we apply certain rules to choose the

best solution. This will be explained in the next section.

Choosing the “best” out of the “nice” solutions.

We have explained in the mPSLQ algorithm how to apply PSLQ multiple

times to get as many integer relations as possible, and those relations are

stored in a list T . It is also easy to rule out all relations m not satisfying

mmT ≤M and |xmT | ≤ δ. There can still be many solutions6.

Although there is a concept called significance, introduced in Ferguson (1999),

to describe the “fitness” of a relation m, it is not suitable for our purpose. In

particular, the significance is defined by “the ratio between the multipreci-

sion epsilon and the largest entry of the updated x vector when a relation is

recovered”. This can be used as a rule to avoid unacceptable relations, but

when two relations are significant, we can not judge that one is better than

the other.

Similarly, we cannot use the error |t′− t| as a measure of the goodness of fit.

After all, when the input is t = 1.4142135624, any answer that has value in
6As observed, there can be hundreds of “tentative solutions” for n just equal to six.

CHAPTER 1. SURDTEXT COMMAND 32

the interval [t−0.5×10−10, t+0.5×10−10] = [1.41421356235, 1.41421356245]

is equally probable. Indeed, we need measures that depend on the several

features of the relation, for example, the number of non-zero terms. I use

the penalty approach to rank the solutions.

For constants fitting, we define seven characteristics and the corresponding

penalty score of a relation m. Each penalty score is a function pj, taking a

relation m as input and an integer as output. We compare the scores using

a dictionary order, namely, a relation m1 is ranked better than m2 if and

only if there exists j0, such that pj(m1) = pj(m2) for all j < j0, and that

pj0(m1) < pj0(m2). Here are the definitions of pj in constants fitting:

1. Zero-denominator: Is a0 equal to zero? If so, set p1(m) = 1; otherwise

p1(m) = 0.

2. Out-of-bound: If there is a j such that |aj| > L, then p2(m) = 1,

otherwise p2(m) = 0.

3. Number of irrational constants used: p3(m) is equal to the number of

j’s such that 1 ≤ j < k, aj 6= 0.

4. Sum of coefficients: p4(m) = max{ ∑ |aj|, L+ 1 }.

CHAPTER 1. SURDTEXT COMMAND 33

5. Non-algebraic: If there is a j such that aj 6= 0 and that Cj is not alge-

braic (this is indicated manually), then p5(m) = 1, otherwise p5(m) =

0.

6. Non-homogeneity: If ak 6= 0 then p6(m) = 1, otherwise p6(m) = 0.

7. Index: p7(m) is equal to the opposite of the position of m in T .

p1 and p2 are merely the basic requirements of the parameters. Theoretically

they should all be 0 but they are defined for the purpose of testing.

Now, suppose that k = 6 and (C1, · · · , C6) = (π,
√

6,
√

5,
√

3,
√

2, 1). p3

essentially looks at the number of irrational terms, so a1π is better than

a4
√

3 + a5
√

2, (a6 + a2
√

6)/a0.

If two relations have the same number of irrational terms, p4 looks at the

absolute sum of the two relations. It is quite rare to have two relations that

have equal absolute sum. If it happens, then p5, p6 looks at the use of π and

1, respectively. Lastly, if p1 up to p6 can not distinguish two relations (this

is possible theoretically, but really rare), then we take the one which comes

earlier in the list T .

CHAPTER 1. SURDTEXT COMMAND 34

We may take the examples mentioned earlier in this subsection to see how

they are ranked:

(
√

2, 2
√

2,−
√

2) has relation m1 = (0, 1, 2) and m2 = (1, 0, 1). One can see

that p1 up to p3 are the same, but p4(m1) = 3 > 2 = p4(m2), so m2 is ranked

as the “better” relation here.

Let t = 0.6003910140. We know that

α

100 = 29
√

2− 7
√

3 + 14
√

6− π
100 ≈ t,

and that

β

100 = −5 + 8
√

2− 2
√

3 + 10
√

5 + 45
√

6− 24π
100 ≈ t.

Furthermore, | α100 − t|, | β100 − t| are both less than ε = 10−10, so both

are acceptable expressions of t. In terms of integer relations, let m1 =

(100, 1,−14, 0, 7,−29, 0) and m2 = (100, 24,−45,−10, 2,−8, 5). The penalty

p3 distinguishes them because m1 uses only three irrational numbers but m2

uses all five. Therefore m1 is better.

CHAPTER 1. SURDTEXT COMMAND 35

Good side of type I error.

Although there might be different possible way to fit a number t, we have

already chosen the “best” one according to the penalty rules. Also, if a

relation is not found, then the original number will be returned (in decimal

form). As a simplistic example, assume that ε = 10−5. What is the “correct”

return value of SurdText[0.32222]? Both 29
90 and 17−4

√
13

8 have the same

value when truncated to five decimal places, do don’t be over-surprised that

SurdText[(17-4sqrt(13))/8] returns 29
90 , according to the penalty rules.

In a specific problem of algebraic fitting (specified by F (α) where α is the

parameter), we have got a function σF from finite decimals to the set of all

possible α’s union the set of all possible decimals. Note that this is not yet

a function defined on all real numbers, although it may be very promising

that this function can be extended to a function from R to R.

For any integer d, We may also have the truncation function τd defined on

the set of real numbers, such that τd(t) is equal to the largest number that

is a multiple of 10−d and not greater than t. For example, τ0(t) is just the

integer part of t. Of course the values of τd are in the set of all decimals.

CHAPTER 1. SURDTEXT COMMAND 36

It is true that τd(σF (t)) = τd(t) for all decimal numbers t because |σF (t)−t| <

0.5× 10−d. In particular, if t is a decimal number of no more than d digits,

then τd(σF (t)) = t. So, in some sense, τd is an inverse of σF , and it might

also be desirable that σF (τd(t)) = t. Indeed, when the algebraic fitting failed

to find the parameters, since in this case it returns the same number as

the input: σF (τd(t)) = τd(t), which is equal to t only when it has less than d

decimal digits. When it is not equal to t, we say that a type II error (i.e. false

negative) occurs, because it is failed to find a relation when there is one. On

the other hand, when some parameters are found, it may be a “correct” result

(e.g. SurdText[sqrt(2)] returns
√

2), or it can be a type one error (i.e.

false positive). A “false positive” is not bad, since we are really looking for

such positives (e.g. SurdText[1.6180339887] returns 1+
√

5
2). Even if we get

something different from the input, the returned result is quite educational.

For example, SurdText[1/(sqrt(2)-1)] returns 1 +
√

2, which is a well-

known result of rationalization. Another example is

SurdText[(-5+8sqrt(2)-2sqrt(3)+10sqrt(5)+45sqrt(6)-24pi)/10,{}],

which returns

CHAPTER 1. SURDTEXT COMMAND 37

20
√

5− 57
√

6− 12
√

2 + 92π + 63
40 .

They are both equal to 6.0039101398 when truncated at d = 10 digits, but

the latter one contains only five terms instead of six.

CHAPTER 1. SURDTEXT COMMAND 38

1.4.5 Summary: objects related to SurdText command

The issues discussed above are all considered in the actual program written

in Java. The program mostly in the file AlgoSurdText.java. For more

information about how to add a command in GeoGebra, one may visit the

development website of GeoGeobra, http://dev.geogebra.org.

The file describes the AlgoSurdText class, some methods of it, and some

subclasses. The major properties and methods of AlgoSurdText class are

listed below:

• Properties: GeoNumeric num, GeoList list, GeoText text

• Constructor methods

• A compute() method

• int[] PSLQ(double[], double, int) method

• int[] PSLQ(int, double[], double, int, int[][], double[], int[])

method

• int[][] mPSLQ(int, double[], double, int) method

CHAPTER 1. SURDTEXT COMMAND 39

• void PSLQappendQuadratic(StringBuilder, double, StringTemplate)

method

• void PSLQappendGeneral(StringBuilder, double, StringTemplate)

method

And the following are two subclasses of AlgoSurdText:

• IntRelationFinder subclass

– Constructor methods

– IntRelation subclass

– void initialize_full() method

– void hermiteReduction() method

• AlgebraicFit subclass

– Constructor methods

– void computeConstant(double) method

– void computeRational(double) method

CHAPTER 1. SURDTEXT COMMAND 40

– void computeQuadratic(double) method

These methods and subclasses supports algebraic fitting in two different fash-

ion, which will be described below.

A quick implementation.

This is applied to SurdText[number]. When there is an input t (e.g. t =

11.61803398874989), the kernel of GeoGebra initializes the AlgoSurdText

object, with num assigned as t in double-precision. Then the compute()

method is invoked. First, it is checked if it is equal to zero according to the

system’s precisin (10E-12). If it is, then the number t will be returned as an

output text. If not, then PSLQappendQuadratic method is called.

The PSLQappendQuadratic method computes x = (t2, t, 1) using double-

precision and send x to the PSLQ method, using the following call:

PSLQ(x, 1E-10 * 30, 1000),

where 1000 is the bound M , and 1E-10 *30 is the δ which we only take 30ε

instead of 3Mε. The PSLQ method is implemented again in double-precision,

CHAPTER 1. SURDTEXT COMMAND 41

and it returns a list of coefficients (coeff[0], coeff[1], coeff[2]) that is a

possible integer relation, or returns null if no relation is found. In the latter

case, the original number t will be returned; in the former case, we check if:

• All coefficients are zero. In this case it is not considered as a legitimate

relation, so t is returned.

• Some coefficients are greater than 100. We also return t.

• coeff[0] == 0. In this case t is equal to the fraction − coeff[2]
coeff[1] .

• None of the above happens, so coeff[0] != 0, and t can be expressed

by the quadratic formula.

In the last case, PSLQappendQuadratic method also reduces the radicals by

trying to divide squares from coeff[1]*coeff[1] - 4*coeff[0]*coeff[2],

and to reduce the fractions using euclidean algorithm. Finally, it returns the

latex from of the result. In our example, the result will be

\frac{21+\sqrt{5}}{2},

which will be displayed as a text label in the Graphics view of GeoGebra.

Note that one may also type the command in the CAS view and receive the

output from the CAS.

CHAPTER 1. SURDTEXT COMMAND 42

SurdText with a List.

This is applied to SurdText[number, list]. Again, the kernel of GeoGe-

bra initializes the AlgoSurdText object, with num assigned as t in double-

precision, and the compute() method is invoked, which checks zero first. If

t is not zero, the PSLQappendGeneral method is called, which is much more

complicated than PSLQappendQuadratic.

First, it will test if it is a fraction with numerator and denominator less

than 1000. For this purpose, an AlgebraicFitter object is initialized with

the type AlgebraicFittingType.RATIONAL_NUMBER and the bound set to

be 1000. Then call the compute(t) for this object. It will send t to

AlgebraicFittingType.computeRationalNumber(t). Then mPSLQ is called

to work on x = (t, 1) with bound 1000 and precision 10−12 (the internal pre-

cision of GeoGebra). If the rational number fitting succeed, it will just return

the fraction. Otherwise, it considers the constants fitting.

For example, suppose user inputs SurdText[3.1415926535898,{}], so t =

3.1415926535898. Then mPSLQ in this step returns null, since it cannot

find integers a, b ∈ [−1000, 1000] such that |at + b| < δ. So the rational

CHAPTER 1. SURDTEXT COMMAND 43

number fitting was failed, and it sends the number t, a list of number values

testValues, and the “names” of those values testNames, to the method

AlgebraicFittingType.fitLinearComb. If a list was not provided, then a

default list will be generated:

testValues = new double[] {Math.sqrt(2.0), Math.sqrt(3.0), Math.sqrt(5.0), Math.sqrt(6.0), Math.PI};

testNames = new String[] {"sqrt(2)", "sqrt(3)","sqrt(5)", "sqrt(6)", "pi"};

If the list is provided, then it checks if they are within the following:

If not, then they are omitted. (Thank Michael Borcherds for implementing

this part.)

An AlgebraicFit object is initialized, with this value set and name set, and

bound L = 100. Note that the type of fitting is LINEAR_COMBINATION. After

that AlgebraicFit.compute() is called, and the number t is sent to

AlgebraicFit.computeConstant(t). This time, mPSLQ method is called.

Since we need to store the integer relations and compare them,

IntRelationFinder and IntRelation are the objects that deal with these

issues. To deal with higher precision or even exact arithmetic, we adapted the

java.math.BigDecimal package and extended it to two classes MyDecimal

CHAPTER 1. SURDTEXT COMMAND 44

and MyDecimalMatrix to deal with decimal number type with arbitrarily

defined precision, and matrices that are defined and calculated with entries

of MyDecimal type. The steps mentioned in the PSLQ algorithm are done

by higher precision arithmetic provided by these two classes. The basic

difference between the fast PSLQ and the more accurate version here is not

just the precision, but also the fact that the PSLQ algorithm in this case do

NOT terminate even if a relation is found, since the found relation can be

false and thus has a large norm. It terminates after k(n,M, τ) steps.

After mPSLQ is done, a two dimensional array will be returned; each column

is a possible relation for x. The computeConstant(t) method continue to

rank the solutions and finds the best one, if there are solutions. A formal

solution will be generated, which is in the format that is acceptable by CAS.

We borrow the evaluateGeoGebraCAS method from the GeoGebraCAS to

simplify the result, then use GeoText.setLaTeX method to convert it into

LATEX format.

CHAPTER 1. SURDTEXT COMMAND 45

Table 1.1: Examples of SurdText command

SurdText[number] result SurdText[number, list] result
Surdtext[10.2]

51
5 Surdtext[10.1]

101
10

Surdtext[30.1] 30.1 SurdText[30.0000001,{}]
60
√

5 +
30
√

3+
√

2−
25π − 79

Surdtext[sqrt(2)]
√

2 Surdtext[sqrt(2),{}]
√

2

Surdtext[(1+2sqrt(3))
/(2-sqrt(3))]

8 + 5
√

3
Surdtext[

1/(sqrt(3)+sqrt(7)),
{sqrt(3),sqrt(7)}]

√
7−
√

3
4

Surdtext[6.283185307] 6.28319 Surdtext[
6.283185307,{}]

6.28319

Surdtext[
6.2831853072, {}]

2π

Surdtext[2^(1/3)] 1.25992 Surdtext[2^(1/3),{}] 1.25992
Surdtext[

sqrt(3+sqrt(8))]
1 +
√

2 surdText[
sqrt(5+2sqrt(6)),{}]

√
3 +
√

2

Surdtext[
1/(sqrt(2)+sqrt(3)-1)

,{}]

√
6 +
√

2− 2
4

Surdtext[sqrt(1682)] 41.401219 Surdtext[sqrt(1682),{}] 29
√

2
surdtext[

sqrt(2)+sqrt(3)]
3.14626 surdtext[

(sqrt(2)+sqrt(3))^3,{}]
9
√

3 + 11
√

2

CHAPTER 1. SURDTEXT COMMAND 46

A list of Examples.

1.4.6 Problems and Limitations

Return Type.

In our implementation, the return type is GeoText, which is a text box

floating on the graphic view, and we cannot do any further manipulation.

We can also use the SurdText command in the CAS view, but still cannot do

anything further from the returned expression. This is the part that should

be easily fixed and should be very useful. For example, one may want to

multiply the expression (
√

2 + 1) to itself to see that it is still in the form of

a+ b
√

2, and see how a and b change.

Problems with constants fitting.

In the constants fitting, we wish to recover any possible relation, namely, we

should find one if there exists one. However, this is sometimes not true (false

negative), especially for larger coefficients. The problem lies in the theoretic

CHAPTER 1. SURDTEXT COMMAND 47

property that we can exhaust the exact relations, i.e. δ = 0. There are at

most n − 1 of them. What is practically implemented here is not for exact

relations but approximate relations. There are a lot more of them (but not

infinite, since we always restrict the coefficients to be integer between −M

and M .)

We already use a remedy to decrease the frequency of false negative, i.e.

even we have got a relation by PSLQ, we still let the iteration continue. In

this way we can collect much more relations. However, their might still be

overlooked ones, because we can only choose one matrix B to proceed to

another PSLQ.

Customizable Precision

As mentioned, we can only handle a fixed precision ε. In practice, we may

need a customizable precision. For example, mathematics teacher might use

1.4142 as a satisfiable approximation of
√

2, and 3.1416 for π, and so forth.

Four digits are usually enough in most usage in high school. After all, one

will be confident to say that, if an answer is evaluated as 6.2832, it is over

CHAPTER 1. SURDTEXT COMMAND 48

95 percent sure that it is actually the truncated 2π. This is just a scenario

that a precision ε = 0.5× 10−4 may be enough, and so are other choices of ε.

However, this will generate other problems because a larger ε implies a larger

δ, and as mentioned before, there will be a lot more tentative relations to

be chosen. Therefore it might not be the wisest solution to dig into PSLQ

for a relatively large ε. It is possible to do some “pre-screening” such as

what we have done in the implementation (i.e. test if it is a fraction of small

denominator). So, we might restrict our search to a+ b
√
c for small a, b, and

very commonly used c’s such as c = 2, 3, 5, 6.

Correctness Proofs.

Since the proofs in the classical paper are for δ = 0 cases, we need to have

proofs for the approximations (δ > 0) if we are to prove that the algorithm

is correct (or not). It seems from the experiments that it is not completely

sure that PSLQ can find all the solutions, but a probabilistic statement may

also be useful. What is the probability that all solutions are found, if there

is one? (This is one minus the conditional probability of false negative given

there is an integer relation.)

CHAPTER 1. SURDTEXT COMMAND 49

1.5 Applications and Implications

1.5.1 Exploring special values on the arc.

Let O be a circle described by x2 + y2 = 4, and C is a point on its circum-

ference, and one may move this point along the arc. In the input bar, type

the command SurdText[C] to get possible radical expression of point C.

We are going to explore when both coordinates of C are radical expressions.

(See the figures on the next page.)

In GeoGebra, when the user drags a point, the mouse location can be “snapped”

to the lattice points (i.e. points with integer coordinates). Students may find

that when this happens, both coordinates of the point becomes radical ex-

pressions.

Is it plausible to conjecture that this condition is necessary and sufficient, or

you might have found some counter-examples?

CHAPTER 1. SURDTEXT COMMAND 50

First found point

Another finding

Figure 1.2: Exploring the “radical points” on the arc.

CHAPTER 1. SURDTEXT COMMAND 51

1.5.2 A better calculator.

Student might try to calculate special values of trigonometric functions and

wrap it up with SurdText command, with or without an empty list.

Now we may solve the problem stated in the beginning: Find sin(15◦) by

typing SurdText[15*2pi/360,{}] in the CAS view. Students may use the

CAS view to explore more possibilities. Isn’t it a better calculator?

Figure 1.3: Find the value of sine 15 degrees in GeoGebra CAS

1.5.3 Teaching and learning

Suppose we have this problem of analytic geometry in high school: Given

an ellipse c whose foci are A = (−4, 0), B = (4, 0) and passes through

C = (−6, 0), and a circle d such that BC is its diameter. Find all the

intersections of c and d.

CHAPTER 1. SURDTEXT COMMAND 52

With GeoGebra and SurdText command serving as a “powerful calculator”,

it is done in an instinct as the picture has shown below:

Figure 1.4: Find the intersection of c and d

We we just read the coordinate of E and F, i.e. (1.5, 4.33013) and (1.5,−4.33013),

it is not very interesting, except we know that x(E) = x(F) and y(E) =

−y(F). However, we can apply the SurdText command to these two points

and see that E = (3/2, 5
√

3/2) and F = (3/2, 5
√

3/2). These nice numbers

suggest more properties from the figure. For example, it can be easily shown

by these coordinates that 4BED, 4BDF and 4CEF are equilateral, be-

CHAPTER 1. SURDTEXT COMMAND 53

cause x(E) = x(F) are just the average of x(B) and x(D), and y(F) is just

|BD| times
√

3/2. The radicals tell a lot more than the decimals!

In the past, when calculators are not very popular, mathematics teachers

would have instructed their students that one should not rely on calculators

because they are not readily available. During the past 10 or 20 years, usual

calculators and scientific calculators were wide-spread, but teachers would

still insist that this may not be helpful, for at times one may encounter

irrationals which are not represented exactly or nicely on calculators. But

what they are nicely represented?

We should admit that calculators cannot replace the hand calculation process

because human brain needs that kind of training to learn about the concepts,

but with more powerful computation tools at hand, they can only boost the

conceptualization and ease the burdens of calculation, and provide another

type of intuition.

CHAPTER 1. SURDTEXT COMMAND 54

1.6 Possible Extension

Integer relation is defined in terms of linear combinations, and therefore deals

with a sum. We may extend the functionality to identifying a product, since

log(ab) = log(a) + log(b). If we have a “table of logarithm” of common

constants such as small integers, π, e, and so on, then we may apply the

integer relation algorithms to recognize numbers in the form of

x = Cr1
1 C

r2
2 · · ·C

rk
k ,

where Cj are those constants, and rk are positive rational numbers.

Therefore we may extend the AlgebraicFit object by adding some more

new types of fitting.

Chapter 2

How PSLQ works: Intuitive

observations

Although only the results of PSLQ is important in the SurdText command,

it is worth understanding how PSLQ itself works, as it was selected the “Top

Ten Algorithm of the Century” in 2000 1, and has many nice applications

[1].

Given (x1, x2, · · · , xn) ∈ Rn where |x|2 = x2
1 + · · · x2

n = 1. Let x⊥ = {w ∈

Rn | wTx = w1x1 + · · ·wnxn = 0} be the set of orthogonal vectors of x.
1cf. Wikipedia, “Integer Relation Algorithm” at http://en.wikipedia.org/wiki/

Integer_relation_algorithm

55

CHAPTER 2. HOW PSLQ WORKS: INTUITIVE OBSERVATIONS 56

Figure 2.1: Formula found by the usage of PSLQ (Bailey, Borwein, & Plouffe,
1997)[2]

The PSLQ algorithm was introduced and described in detail in two classical

papers [3] [4]. It returns a vector m ∈ Zn ∩ x⊥, if exists, such that its norm√
m2

1 + · · ·m2
n is the smallest. In that case, denote Mx as this norm.

Let us further assume that all xj are not equal to zero (if some xj = 0, there

is an obvious integer relation, namely mj = 1 and m′j = 0 for all j′ 6= j).

Intuitively, recall the problem of orthogonalization (a systematic way to look

for orthogonal vectors): Given the standard orthonormal basis (ej)1≤j≤n of

Rn, find another orthogonal basis (vj)1≤j≤n such that v1 = x = x1e1 + · · ·+

xnen. To proceed, let ṽ2 = e1 − (e1 · v1)v1 = e1 − x1v1, which is just the

vector obtained by subtracting from x the projection of itself to e1, and it

must be a non-zero vector that is perpendicular to v1. Indeed, ṽ2 · v1 =

e1 · v1−x1v1 · v1 = x1−x1 = 0, and |ṽ2|2 = 1 +x2
1− 2x1(e1 · v1) = 1−x2

1 > 0.

Now let v2 = ṽ2/|ṽ2|. We have got a unit vector v2 that is orthogonal to v1.

CHAPTER 2. HOW PSLQ WORKS: INTUITIVE OBSERVATIONS 57

Figure 2.2: David H. Bailey, co-discoverer of the Bailey-Borwein-Plouffe for-
mula of π.

This process can be carried out iteratively, i.e. for any k < n, after we get

v2, · · · , vk such that {v1, · · · vk} is a set of orthonormal vectors, define

ṽk+1 = ek − (ek · v1)v1 − (ek · v2)v2 − · · · − (ek · vk)vk

and vk+1 = ṽk+1/|ṽk+1|. Then vk+1 is orthogonal to v1, · · · , vk. Thus a set

CHAPTER 2. HOW PSLQ WORKS: INTUITIVE OBSERVATIONS 58

of orthogonal basis {v1 = x, v2, · · · , vn} is inductively constructed, and x⊥ is

equal to the subspace spanned by v2, · · · , vn. It is evident that if x has some

integer relation m ∈ x⊥ ∩ Zn, m must be a linear combination of v2, · · · , vn.

Putting everything in terms of matrices, we write x as a 1 × n row vector,

and Hx = [v2 · · · vn] as a n× (n− 1) matrix. We have xHx = 01×(n−1).

2.1 A lucky case solved in one-step.

Although a natural way to pose the problem is to search for real numbers

y2, · · · yn such that y2v2 + · · · ynvn becomes an integer vector (and thus an

integer relation of x), another perspective, which turns out to be more suit-

able for computation, is to “reduce” the matrix Hx to one that has a column

that contains a single non-zero element. To illustrate this, suppose that

x = (1,
√

3, 1/
√

3) and imagine (ideally) that we have got orthogonal basis

of x⊥ as follows:

CHAPTER 2. HOW PSLQ WORKS: INTUITIVE OBSERVATIONS 59

H =



0.5 0

∗ 0.3

∗ 0.9



Notice that if we add (−3) times the second row to the third row, we will get(
∗ 0

)
in the third row, and

(
0 0.3 0

)T
in the second column. Equiva-

lently, what we did was to multiply some elementary transformation matrix

D to the left of H:

H̃ = DH =



1 0 0

∗ 1 0

∗ −3 1





0.5 0

∗ 0.3

∗ 0.9


=



0.5 0

∗ 0.3

∗ 0



Since we also have (xD−1)(DH) = xH = 01×(n−1), we know that e2 is an

integer relation for xD−1, so we have found an integer relation for x, which

is e2D, the second column of D. Indeed,
(

1
√

3 1/
√

3
)(

0 1 −3
)T

=
√

3− 3/
√

3 = 0.

In this illustration, it is just a coincidence that 0.9 is three times 0.3 so

we can get the integer relation in just one step. This is not the case in

CHAPTER 2. HOW PSLQ WORKS: INTUITIVE OBSERVATIONS 60

general, but we may perform the elementary row-transformation in a way

similar to Euclidean algorithm. Given two real numbers a and b that has

integer relation, we may perform the Euclidean algorithm on a and b, and

the algorithm must get to a halt in a finite number of steps. In the following,

we illustrate a non-trivial example for n = 3: Find integer relations for

(2, 2−
√

2, 2 +
√

2).

Of course, this input is somewhat misleading, since we actually DON’T know

the radical form of these numbers, but only decimal form. During the calcu-

lation, the input would be given as something like (2, 0.5858, 3.4142), where

precision is important. However, for the purpose of illustration, we only keep

4 decimal places here.

2.2 Initial Step.

Initially, let x be the normalized vector for this input, namely:

x← 1
|x|

x = 1
4 x =

(
0.5000 0.1464 0.8536

)

CHAPTER 2. HOW PSLQ WORKS: INTUITIVE OBSERVATIONS 61

Then we are to find n−1 column vectors that combine the lower trapezoidal

Hx, which is the result of orthogonalization. Instead of performing the or-

thogonalization in n−1 steps, it turns out that there is a closed form for Hx,

according to a formula in [3] [4]: hjj = sj+1/sj and hij = −xixj/(sjsj+1) for

all i > j, where s2
j are the sum of squares:

s2
j = x2

j + x2
j+1 + · · ·+ x2

n,

which is what “S” stands for in PSLQ. (“P” stands for polynomial-time,

and “LQ” stands for LgQ-decomposition, which we will see later in this

illustration.)

In our example, s1 = 1, s2 =
√

((2−
√

2)2 + (2 +
√

2)2)/16 =
√

3/2 = 0.866,

and s3 = x3 = 0.8536, and we get H from the above formula:

H =



0.8660 0

−0.0846 0.9856

−0.4928 −0.1691



CHAPTER 2. HOW PSLQ WORKS: INTUITIVE OBSERVATIONS 62

As mentioned before, we want some row transformation matrix D such that

DH has some column that contains a single non-zero element. However, to

get an integer relation, we also want to ensure thatD contains integer entries.

This adds a restriction that we can only multiply an integer to a row and add

it to another. In general, it is not possible to perform such transformation

to get a column that contains a single non-zero element. The most we can

do is to make it as close to this as possible: to find an integer matrix D such

that every column of DH has a single element that “dominates” the other,

i.e. is at least two times in magnitude than all the other elements.

2.3 Reduction

In our example, the second column of H is already dominated (0.9856 >

2 × 0.1691), but the first is not. So, we add one times the first row to the

third:

CHAPTER 2. HOW PSLQ WORKS: INTUITIVE OBSERVATIONS 63

H̃ = D1H =



1 0 0

0 1 0

1 0 1





0.8660 0

−0.0846 0.9856

−0.4928 −0.1691


=



0.8660 0

−0.0846 0.9856

0.3732 −0.1691



Let H ← H̃, and let A ← D1, B ← D−1
1 in order to keep track of the

transformations, and let x[1]← xB = xD−1
1 :

A =



1 0 0

0 1 0

1 0 1


, B =



1 0 0

0 1 0

−1 0 1


, x[1] =

(
−0.3536 0.1464 0.8536

)
.

This is the first iteration.

2.4 Exchange

After the reduction, we found that H̃ has no column that has a single dom-

inating entry. By the inspiration of Euclidean algorithm, we may swap the

CHAPTER 2. HOW PSLQ WORKS: INTUITIVE OBSERVATIONS 64

row that contains the “largest” element (in some sense) with some other row.

In our case, the second row contains 0.9856, which is the largest element, so

we swap the second row with the third row:

H̃ ← R2H̃ =



1 0 0

0 0 1

0 1 0





0.8660 0

−0.0846 0.9856

0.3732 −0.1691


=



0.8660 0

0.3732 −0.1691

−0.0846 0.9856



where R2 = (e1, e3, e2) is the row transformation matrix that in effect swaps

the second and the third row. Now H̃ is still lower-trapezoidal, a reduction

is possible: add 6 times of the second row to the third row, reducing H32 =

0.9856; but at the same time H31 will become 2.1546, so we also add (−2)

times of the first row to the third row, getting H31 = 0.4226. Therefore,

H̃ ← D2H̃ =



1 0 0

0 1 0

−2 6 1





0.8660 0

0.3732 −0.1691

−0.0846 0.9856


=



0.8660 0

0.3732 −0.1691

0.4228 −0.0290



CHAPTER 2. HOW PSLQ WORKS: INTUITIVE OBSERVATIONS 65

Now, reassign H ← H̃, and let A← (D2R2)A, B ← B(D2R2)−1 = BR2D
−1
2 ,

x[2]← x[1]B. We have now:

A =



1 0 0

1 0 0

4 1 6


, B =



0 1 0

−6 2 1

−1 1 0


, x[2] =

(
−1.7322 1.6464 0.1464

)
.

This is the second iteration in PSLQ, which contains a reduction operation

(called Hermite Reduction in [4]), and a swap operation (called Exchange).

In any step k where the swapping is not needed, we just let Rk = In be the

n× n identity matrix. In our example, let R1 = In.

2.5 Corner

This time the first row contains the largest element, so we consider swap-

ping the first and the second rows. However, after that, H will become

a matrix that is not lower-trapezoidal. Therefore we need to perform one

more operation, which is explained as follows. In general terms, if hjj is

CHAPTER 2. HOW PSLQ WORKS: INTUITIVE OBSERVATIONS 66

the largest element where j < n − 1, then we focus on the 2 × 2 matrix

hjj, hj,j+1(= 0), hj+1,j, hj+1,j+1(6= 0), which was denoted in [4] as


α 0

β λ

 .

We also suppose that all elements have absolute value less than 1, and that

α is large enough so that |α| > 2|β| and that |α| ≤ γ|λ| for some constant

γ > 1. Also, let δ =
√
β2 + λ2. After swapping, the non-zero number λ

goes to the upper-right corner. We will “rotate” this matrix so that the

upper-right corner becomes 0, while ensuring that the left-upper corner is

large enough. This is done by multiplying the following unitary matrix to

the right:

Q̃ =


β/δ −λ/δ

λ/δ β/δ

 .

Indeed, 
β λ

α 0

 ·

β/δ −λ/δ

λ/δ β/δ

 =


δ 0

αβ/δ −αλ/δ

 .

CHAPTER 2. HOW PSLQ WORKS: INTUITIVE OBSERVATIONS 67

To ensure that |δ| < 1, a sufficient condition is that β2 + λ2 ≤ α2/4 +

α2/γ2 < α2 < 1, therefore we may choose γ so that 1/4 + 1/γ2 < 1, or

γ > 2/
√

3. The lower-right element still have absolute value less than 1, for

|αλ/δ| = |α||λ/
√
β2 + λ2| ≤ |α| < 1. Let Q3 be a unitary n−1×n−1 matrix

such that, when it is multiplied to the right of H, it keeps track of the above

operation. This is called the Corner operation in [4]. In any step k when the

Corner operation is not needed, just let Qk = In−1 be the (n− 1)× (n− 1)

identity matrix. In our example, let Q1, Q2 = In−1.

In our example, the corner in question is:


α = 0.8660 0

β = 0.3732 λ = −0.1691

 ,

and δ = 0.4097, β/δ = 0.9109, λ/δ = −0.4126. So,

H̃ ← R3H̃Q3 =



0 1 0

1 0 0

0 0 1


·H ·


0.9109 0.4126

−0.4126 0.9109

 =



0.4097 0

0.7888 0.3574

0.3970 0.1480



CHAPTER 2. HOW PSLQ WORKS: INTUITIVE OBSERVATIONS 68

We may now reduce this by using the following matrix D3:

H̃ ← D3H̃ =



1 0 0

−2 1 0

−1 0 1





0.4097 0

0.7888 0.3574

0.3970 0.1480


=


0.4097 0

−0.0127 0.1480− 0.0305 0.3574



Let H ← H̃, A ← D3R3A, B ← BR3D
−1
3 , x[3] ← x[2]B, and this is the

third iteration. We have now

A =



1 0 1

3 1 5

−1 0 −2


, B =



2 0 1

−1 1 2

−1 0 −1


, x[3] =

(
0.0000 0.1464 −0.0607

)
.

2.6 Termination, and beyond

We see that in each iteration of PSLQ, we do necessary exchanging and

cornering, and then reduce. As we can see, the first coordinate of x[3] is zero

CHAPTER 2. HOW PSLQ WORKS: INTUITIVE OBSERVATIONS 69

(under our precision requirement), therefore the first column of B must be

an integer relation. Indeed,

2 · 2 + (−1) · (2−
√

2) + (−1) · (2 +
√

2) = 0

.

This is one of the two halt conditions of PSLQ, where one of the coordinates

of x[k] is zero at step k. Another condition is when hii = 0 for some 1 ≤

i ≤ n − 1. Alyson Reeves proved that this condition also guarantees an

integer relation as some column of B ([4], Lemma 5). Moreover, if an integer

relation exists for x with norm Mx, the PSLQ algorithm can find it within

2(n3 + n2 logMx) steps (Corollary 2). This is the exact meaning of how the

algorithm works in polynomial time.

The essentials of PSLQ algorithm was shown above: First. normalize x and

get a real n × (n − 1) column-orthonormal, lower-trapezoidal matrix Hx by

orthogonalization. Perform so-called Hermite reduction to get an integer

matrix D, such that the entries in the diagonal of DH is greater than all

other entries by a factor of at least 2, in magnitude. If there is a column j in

CHAPTER 2. HOW PSLQ WORKS: INTUITIVE OBSERVATIONS 70

which a single element is non-negative then we are done: multiplying all the

D−1’s we have obtained, then we will see the integer relation at the column

j of it. Otherwise, swap a pair of rows and “rotate” the corner according to

some rule so that the Hermite reduction could be done again.

Bibliography

[1] D. H. Bailey and J. M. Borwein. PSLQ: an algorithm to discover integer

relations. LBNL Paper LBNL-2144E, 2009.

[2] D. H. Bailey, Borwein P., and S. Plouffe. On the rapid computation of

various polylogarithmic constants. Mathematics of Computation, 66:903–

913, 1997.

[3] H. R. P. Ferguson and D. H. Bailey. A polynomial time, numerically

stable integer relation algorithm. NASA Technical Report RNR-91-032,

1991.

[4] H. R. P. Ferguson, D. H. Bailey, and S. Arno. Analysis of PSLQ,

an integer relation finding algorithm. Mathematics of Computation,

68(225):351–370, 1999.

71

List of Figures

1.1 Helaman Ferguson at the Clay Mathematics Institute opening

ceremony on May 10, 1999 . 16

1.2 Exploring the “radical points” on the arc. 50

1.3 Find the value of sine 15 degrees in GeoGebra CAS 51

1.4 Find the intersection of c and d 52

2.1 Formula found by the usage of PSLQ (Bailey, Borwein, &

Plouffe, 1997)[2] . 56

2.2 David H. Bailey, co-discoverer of the Bailey-Borwein-Plouffe

formula of π. 57

72

List of Tables

1.1 Examples of SurdText command 45

73

