Christoph Schiitz

Multilevel Business Modeling

From Hetero-Homogeneous Data Warehouses
to Multilevel Business Processes

in collaboration with:

Lois M. L. Delcambre
Michael Schrefl
Bernd Neumayr

Johannes Kepler University
Portland State University






Contents

1 Introduction......... .. ... .. .. 1
2 Integration and Reuse of Heterogeneous Information ...... 3
2.1 Introduction ......... ... ..o 3

2.2 Background........ ... )
2.2.1 Data Warehousing, OLAP, and the CWM ............ 5

2.2.2 Related Work ....... ... ... 7

2.3 Logical Hetero-Homogeneous CWM Modeling .. ............. 8
2.3.1 DImensions . .........uuiuinintnin i 8

2.3.2 Cubes ... 11

2.4 Physical Hetero-Homogeneous CWM Modeling . ............. 13
2.4.1 Dimension Tables ......... ... ... ... 13

2.4.2 Fact Tables........ ... ... 16

2.5 TImplementation ........... ... . . 18

2.6 Summary and Future Work . ......... .. ... .. . Lo 19

3  Multilevel Business Process Modeling ..................... 23
3.1 Motivation . ........o 23

3.2 Approach....... ... 25

3.3 DesignIssues ... 28
3.3.1 Process Interaction and Coordination ................ 28

3.3.2 Flexibility and Change . ........ ... ... .. ... ...... 29

3.3.3 ACtOrs ... 30

3.3.4 Metamodel and Implementation .................. ... 30

3.4 Applications . ... 34
3.4.1 Business Process Management ...................... 34

3.4.2 DBusiness Process Intelligence . ................. ... ... 35

3.5 Summary and Future Work . ........ ... .. ... ... . 36



v

Contents
Multilevel Business Artifacts .............................. 39
4.1 Introduction .......... ... .. .. . 39
4.2 Multilevel Business Artifact................ .. ... .. .. ...... 40
4.3 Multilevel Concretization ........... ... ... .. 43
4.4 Metamodel and UML Semantics.................couoon... 46
4.5 Related Work . ....... . ... .. . 50
4.6 Summary and Future Work . ....... .. ... . o i 50

References . . ... e 51



1

Introduction

Previous research on information systems design has revealed short-comings
of existing modeling techniques with respect to multilevel abstraction hier-
archies [40], in particular with respect to heterogeneities in conceptual data
warehouse models. Consequently, Neumayr et al. [38] have introduced mul-
tilevel objects (m-objects) and multilevel relationships (m-relationships) to
tackle common issues in multilevel conceptual modeling. The application of
m-objects and m-relationships has proven particularly promising in the field
of data warehousing [39, 57, 60, 56]. In this report, we further investigate the
hetero-homogeneous data warehouse modeling approach.

Moreover, we apply the proven concepts of m-objects and m-relationships
to business process modeling. A business process involves tasks on many or-
ganizational levels. Thus, a process model may be viewed on different levels
of abstraction, with varying levels of detail. Current modeling approaches
support modular process models, but lack a compact representation and an
explicit notation for abstraction levels. M-objects and m-relationships, how-
ever, might be extended in order to accommodate for the representation of
business process models at multiple levels of abstraction. This modeling ap-
proach might be implemented in existing business process engines or further
extended to support business process intelligence.

For example, the production process of a manufacturing company has mul-
tiple levels of abstraction. First, on the corporation level, a process model must
account for the decision process of top management. Second, on the depart-
ment level, a process model must account for the operational tasks of middle
management which operates research, marketing, and distribution of the com-
pany. Finally, each individual factory has a manufacturing process. Entities
may associate process models with these abstraction levels, and instantiate a
single level.

The process models at different levels of abstraction are interconnected.
Entities at more abstract levels may define meta processes for entities at more
detailed levels of abstraction. Likewise, each entity defines common process
models for entities at more detailed levels of abstraction. These common pro-
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cess models may be refined through specialization, thereby extending m-object
concretization to business process models.

This report presents the results of a research stay of Christoph Schiitz at
Portland State University from March 1st to August 31st, 2012. Host profes-
sor at Portland State University was Lois M. L. Delcambre of the Computer
Science Department. Supervisor at the home institution, Johannes Kepler Uni-
versity in Linz, is Michael Schrefl of the Department of Business Informatics —
Data & Knowledge Engineering.

In Chapter 2, we investigate the integration of heterogeneous information
in data warehouses using the hetero-homogeneous approach together with a
standardized metamodel. This chapter is a revised version of a paper [58]
that was presented at the Americas Conference on Information Systems in
August 2012.

In Chapter 3, we motivate the need for multilevel business process mod-
eling, sketch the basic approach, identify the major design issues, and give
examples of possible fields of application. This chapter is an extended version
of a dissertation proposal [59] presented at the Workshop for Ph.D. Students
in Information and Knowledge Management in November 2012.

In Chapter 4, we introduce the multilevel business artifact (MBA) as an
extension of the multilevel object (m-object) [39] for data-centric business
process modeling. This chapter is a revised version of a paper [58] presented
at the Workshop on Data- and Artifact-centric Business Process Management
in September 2012.
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Integration and Reuse of Heterogeneous
Information

The corporate data warehouse integrates data from various operational data
stores of a company. These operational data stores may be heterogeneous
with respect to the represented information. The hetero-homogeneous data
warehouse modeling approach overcomes issues associated with the integra-
tion of heterogeneous information from the operational data stores by featur-
ing a generally homogeneous schema which may be interspersed with hetero-
geneities in well-defined portions of the data. In order to leverage the capa-
bilities of existing business intelligence (BI) tools for the analysis of hetero-
homogeneous information, the schema must comply with the metamodel of
the particular BI tool. The Common Warehouse Metamodel (CWM) is a stan-
dard for data warehouse metadata which facilitates the reuse of data across
multiple BI tools. In this chapter, we present guidelines for modeling hetero-
homogeneous data warehouses in the CWM. We demonstrate feasibility with
a proof-of-concept prototype for the model-driven implementation of hetero-
homogeneous data warehouses.

2.1 Introduction

The corporate data warehouse provides decision-makers with the informa-
tion that is required for well-founded decisions, integrating data from various
operational data stores of the different departments and local branches of a
company. These data stores may be heterogeneous with respect to the rep-
resented information. For example, the production department has different
requirements for their data than the accounting department. The data model
of the corporate data warehouse reconciles the diverse data models of the
operational data stores in a company.

In general, the integration of heterogeneous data models either results in
the elimination of all heterogeneities or yields an overly complex integrated
data model which preserves heterogeneities but is unfit for analysis purposes.
Neither solution is particularly appealing. The elimination of heterogeneities
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leads to the loss of valuable information that could otherwise improve decision
quality. Complex data models, on the other hand, preserve heterogeneities
at the expense of clarity. These data models exceed the capabilities of the
analyst who is overburdened with the sheer volume and complexity of the
presented information. Existing modeling solutions do not adequately solve
this integration issue.

The hetero-homogeneous approach as presented by Neumayr et al. [39]
overcomes the limitations of other data warehouse modeling techniques with
respect to the representation of heterogeneities. Hetero-homogeneous data
warehouse models are homogeneous with respect to a globally agreed schema.
This schema may be specialized for portions of the data provided the special-
ization does not violate the global schema. Depending on which portion of the
data is analyzed, the analyst can either rely on the globally agreed, homoge-
neous schema or leverage an increased amount of information that is available
specifically for the analyzed portion. This principle recursively applies to the
portions of the portions of the data. For example, a data warehouse records
monthly revenues of product sales by city. For U.S. sales, a refined schema is
employed, recording revenues by store rather than city and, apart from rev-
enues, recording the sold quantity. Whenever the analysis concerns only U.S.
data, the analyst can rely on an increased amount of information.

In order to leverage the capabilities of existing business intelligence (BI)
tools for the analysis of hetero-homogeneous information, the schema must
comply with the specific metamodel that is employed by the particular BI
tool. The Common Warehouse Metamodel (CWM) is an open industry stan-
dard for representing and managing warehouse metadata which facilitates
the reuse of multidimensional data across multiple BI tools. The CWM as
a standard for representing multidimensional schemas plays a major role in
component reuse, which is a key issue in modern software engineering [11].
Real-world use cases confirm the suitability of the CWM to serve as a foun-
dation for data warehouse metadata standardization [37]. The CWM easily
maps to the proprietary metadata models of software vendors. In addition,
many BI tools natively support the CWM either for exchange (IBM InfoS-
phere Data Architect, SAS Data Integration, CA ERwin Data Modeler) or as
their primary representation model (Pentaho Metadata). Consequently, many
data warehouse modeling approaches base their concepts on the CWM [51]
or rely directly on the CWM for vendor-neutral specifications of multidimen-
sional data models [46].

In this chapter, we present guidelines for modeling hetero-homogeneous
data warehouses in the CWM. We begin with a short introduction about
data warehousing in general and the CWM in particular, followed by a re-
view of the relevant literature. We then illustrate our modeling approach on
a basic example. We demonstrate feasibility of our approach by providing
a proof-of-concept prototype for the model-driven implementation of hetero-
homogeneous data warehouses. This prototype builds on the existing man-
agement system for hetero-homogeneous data warehouses as introduced by
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Schiitz [57], extending this system with functionality for the export of CWM
metadata in order to improve interoperability with other BI tools.

2.2 Background

2.2.1 Data Warehousing, OLAP, and the CWM

Data warehouses organize strategic data for decision support using dedicated
data models. Unlike operational databases, which support day-to-day busi-
ness operations, data warehouses provide decision makers with information at
an adequate level of detail [8, p. 977]. This information is commonly repre-
sented by multidimensional schemas. A multidimensional schema consists of
(hyper-) cubes and dimensions. Dimensions consist of hierarchically ordered
aggregation levels; cubes consist of cells. The cells of a cube represent business
events of interest which are quantified by measures. For example, a cube may
visualize product sales over time in various local markets (Figure 2.1). Each
cell of such a sales cube might store the monthly revenues of a product model
within a city or store.
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Fig. 2.1. A three-dimensional sales cube with heterogeneities in the USA region

Online Analytical Processing (OLAP) refers to the analyses that are per-
formed on the data of a data warehouse. Among the most common OLAP
operations are slice and dice, roll up and drill down. Slice and dice refer to
the selection of cells from a base cube in order to obtain a sub-cube. This sub-
cube may contain only the information that is needed for a particular analysis.
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Roll up and drill down refer to a change in granularity of the viewed data.
Hierarchically organized dimensions allow for the analysis of data at various
levels of granularity. For example, a cube may store the monthly revenues of
products in French and U.S. cities (Figure 2.1). The French area manager may
be interested only in the France portion of the cube, thus performing a dice
operation on the cube to obtain only sales in France. Through summarization
of revenues by year and product category, the analyst may roll up the data to
obtain an aggregated view with a coarser level of granularity. Likewise, along
with the dice operation to obtain a USA sub-cube, an analyst may drill down
for an in-depth analysis to view the revenues by store rather than city.

In real-world applications, not all portions of a cube of data are uniform.
Some portions of a cube may contain more information than others. Such het-
erogeneous cubes present a problem for modelers and analysts alike. Modelers
are torn between a faithful representation of information and the definition of
an understandable schema. Analysts cannot rely on the results of the analy-
sis as availability of the necessary information cannot be guaranteed for any
portion of the cube. For example, the sales cube in Figure 2.1 might contain
additional data for the USA sub-cube. For U.S. sales, revenues are available
per store rather than city. Furthermore, U.S. sales can be aggregated by states,
a political entity that is non-existent in other countries. Apart from revenues,
the USA sub-cube records an additional measure, namely the sold quantity
(QtySold). The sold quantity, however, is recorded by product category, year,
and city. The USA sub-cube is thus multi-granular, containing measures at
multiple levels of granularity. Throughout the remainder of this chapter, we
use the cube in Figure 2.1 as hypothetical example for illustration purposes.
Real-world applications have shown, though, that similar kinds of hetero-
geneities actually occur in reality. Consider, for example, the data model of
the German marketing research institute GfK [4], which features, among oth-
ers, heterogeneous product hierarchies.

The analysis of data requires detailed knowledge about nature and struc-
ture of the analyzed data. Therefore, in order to effectively and efficiently
analyze the data, BI tools require the schema of the analyzed data. This
schema is metadata - data about data. Metadata, much like “ordinary” data,
again follow a specific schema which is referred to as the metamodel.

Many BI tools employ their own proprietary metamodel. The Object Man-
agement Group (OMG), in an effort to harmonize the various proprietary
models for warehouse metadata, promotes the Common Warehouse Meta-
model (CWM) as an open industry standard. The CWM builds on the Uni-
fied Modeling Language (UML) and complies with the Meta Object Facility
(MOF). UML and MOF are widely accepted standards for model-driven soft-
ware development. The Extensible Markup Language (XML) and the XML
Metadata Interchange (XMI) language serve as a universally understood ex-
change format for CWM metadata. A more detailed introduction to the CWM
standard is given by Poole et al. [50].
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2.2.2 Related Work

Conceptual data warehouse models abstract from a concrete implementation
and present a business-oriented view on the data. The Dimensional Fact Model
(DFM) as proposed by Golfarelli et al. [10] is arguably the most popular con-
ceptual modeling approach for data warehouses. The DFM emphasizes on
facts and dimensions. Facts are business events of interest which are quanti-
fied by measures. The dimensions are hierarchically organized. Consequently,
measures may be aggregated along the dimension hierarchies, thereby allow-
ing for the analysis of facts on multiple levels of granularity. Most modeling
approaches rely on similar modeling concepts. Pedersen et al. [47] evaluate sev-
eral data warehouse modeling approaches and identify key requirements for
modern data warehouse modeling. Popular conceptual modeling approaches,
however, fall short of these requirements.

Most notably, the accurate representation of heterogeneous information
presents a tough challenge for modelers. Heterogeneities add considerably to
the complexity of data warehouse models. Furthermore, heterogeneous mod-
els are prone to summarizability issues [35]. Summarizability is an important
property which ensures the correctness of aggregation operations [29]. Mul-
tidimensional normal forms for data warehouse dimensions have been pro-
posed in order to avoid summarizability issues [28, 27]. Similarly, integrity
constraints allow to reason about summarizability within heterogeneous di-
mensions [19, 18]. Apart from dimensions, heterogeneities may also occur in
facts, yielding multi-granular data [20].

More recently, several conceptual data warehouse modeling approaches
based on the UML or the Entity-Relationship (ER) model have been pro-
posed which provide an increased support for complex modeling issues. Abellé
et al. [1] propose yet another multidimensional model (YAM?) based on the
UML for modeling and querying data warehouses. Lujdn-Mora et al. [31] de-
velop a UML profile for conceptual data warehouse modeling. Malinowski
and Zimanyi [32, 33] introduce the MultiDimER model which builds on
the concepts of the ER model. The MultiDimER, model incorporates an in-
heritance mechanism for representing heterogeneous dimensions. Pinet and
Schneider [48] with their UML-based approach follow a similar principle for
allowing heterogeneities in dimensions. Still, the UML/ER-based modeling ap-
proaches do not satisfactorily solve summarizability issues in heterogeneous
dimensions and generally yield overly complex data warehouse models. More-
over, the UML-based approaches commonly focus on heterogeneous dimen-
sions, thereby neglecting heterogeneous, multi-granular facts.

The hetero-homogeneous modeling approach of Neumayr et al. [39] fea-
tures a generally homogeneous data warehouse model which may be in-
terspersed with heterogeneities in well-defined portions of the data. Sub-
dimensions and sub-cubes may introduce additional information with respect
to the entire dimension or cube, respectively, without violating the common
global model. This feature proves advantageous especially when integrating
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data models of different data warehouses [60]. The hetero-homogeneous mod-
eling approach allows for the preservation of heterogeneities during the pro-
cess of model integration while reducing the complexity of heterogeneous data
models.

Their support for model-driven implementation is a major advantage of
UML-based conceptual modeling approaches. Prat et al. [51] provide a full-
fledged data warehouse design method based on UML. This design method
covers the transformation of the conceptual model into a logical model
and a physical implementation. A similar design approach builds on the
UML and the CWM [36, 46]. Kurze and Gluchowski [26] give an overview
of current approaches and hint future research directions for model-driven
data warehouse development. Rather than extending the UML, Neumayr et
al. [39] employ multilevel objects (m-objects) and multilevel relationships (m-
relationships) for modeling hetero-homogeneous data warehouses. M-objects
and m-relationships overcome the strict separation of schema and instance.
This schema/instance duality allows for the introduction of a compact inheri-
tance mechanism for dimension and fact schemas. Schiitz [57] presents a proof-
of-concept prototype implementation for managing hetero-homogeneous data
warehouses in a standard object-relational database. In this prototype imple-
mentation, the relational database automatically derives from the conceptual
model with its m-objects and m-relationships. Despite providing basic export
and analysis functionality, the system lacks a powerful exchange mechanism
which preserves hetero-homogeneous information for other analysis tools.

2.3 Logical Hetero-Homogeneous CWM Modeling

In the CWM, the logical model describes the multidimensional structure of
the data warehouse. The logical model consists of dimensions, hierarchies,
and cubes as well as mappings between individual model elements. The log-
ical model abstracts from a particular implementation, leaving the choice of
the appropriate data structures to the physical model. In this section, we
present guidelines for modeling hetero-homogeneous dimensions and cubes in
the CWM. We base our approach on Neumayr et al. [39] and refer to Poole
et al. [50] as an authoritative guide for the development of CWM applica-
tions. Some details of CWM modeling, for example, certain types of mappings,
which are not specific to hetero-homogeneous data warehouse modeling are
mentioned only briefly or left out due to space considerations.

2.3.1 Dimensions

The dimensions set the context for the analysis. A dimension consists of a
multitude of members which belong to the same real-world concept. These
members are used to denote business events of interest. Attributes further de-
scribe the members of a dimension. In each dimension, a designated attribute
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identifies the members of the dimension. This attribute is referred to as the
key of the dimension. For the key attribute, each member of the dimension
must provide a unique value which no other member of that same dimension
shares. The key attribute may be used to obtain a list of members of the
dimension.

A dimension collects its members into aggregation levels. Some attributes
are relevant for members at specific aggregation levels only. For that reason,
attributes are attached to an aggregation level. Think of an aggregation level
as a class. The class defines a set attributes; the instances assign values to
these attributes. Similarly, the aggregation level defines a set of attributes;
the members of the level assign values to these attributes. The members of a
level, however, are not obliged to provide a value for each and every attribute
that is defined for the level. For example, dimension Location contains data
about geographic entities (Figure 2.2). Geographic entities exist at various
levels of aggregation, namely Country, Region, State, City, and Store. Each
geographic entity has a unique name which is the key of the dimension. For
geographic entities at level City, the dimension contains data about the mayor
and the elevation.

Location:
Dimension 1 1
LocationKey: Name:
UnigueKey Attribute

T T
Country: Region:
Level Level

s H

CountryKey:
UnigueKey

RegionKey:
UnigueKey

StateKey:
UnigueKey

CityKey:
UnigueKey

StoreKey:
UnigueKey

UnigueKey

Name:
Attribute

Name:
Attribute

Name:
Attribute

Name:
Attribute

Attribute Attribute

Elevation:
Attribute

Mayor:
Attribute

Fig. 2.2. Dimension Location with aggregation levels and attributes

The levels of a dimension are arranged in aggregation hierarchies. Within
an aggregation hierarchy, the levels of a dimension are ordered from coarsest to
most specific. The order of the levels determines the roll-up relationships be-
tween the levels. Each member of a level rolls up to a member of the precedent
level. For example, given the primary hierarchy of dimension Location (Fig-
ure 2.3), level All is coarser than level Country and level Country is coarser
than level City.

A dimension may have multiple aggregation hierarchies. Modelers com-
monly make use of this possibility in order to model alternative aggregation
hierarchies for a dimension. For example, every city is located in a country and,
in addition, every city is part of a region. Consequently, dimension Location -
besides its primary hierarchy with levels City, Country, and Top (Figure 2.3)
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Location:
Dimension

LocationHierarchy:
LevelBasedHierarchy

LocationAllHLA:
HierarchyLevelAssociation

Name:
Attribute

LocationCountryHLA:
HierarchyLevelAssociation

Name:
Attribute

Parent:
Attribute

LocationCityHLA:
HierarchyLevelAssociation

Parent:
Attribute

Elevation:
Attribute

Fig. 2.3. Primary hierarchy of dimension Location

- has an alternative aggregation hierarchy with levels City, Region, and Top
which is not shown in the examples.

Each hierarchy is homogeneous with respect to the levels, their relation-
ships, and the attributes. While the dimension is inherently heterogeneous,
defining for each level only optional attributes, the hierarchy imposes at-
tributes and roll-up relationships to its members. That is, each member of
an aggregation hierarchy must provide a value for all attributes associated
with its level and roll up to a member of the precedent level. Note that this
behavior is not standard CWM. Rather, it is an important guideline for hetero-
homogeneous modeling.

The possibility of defining multiple aggregation hierarchies for the same
dimension also allows for the representation of hetero-homogeneous informa-
tion. In case a branch of a dimension introduces heterogeneities to the model,
the branch has its own aggregation hierarchy defined. The branch is homo-
geneous with respect to the information that is contained in its hierarchy; it
may be heterogeneous with respect to other branches, though. For example,
the USA branch of dimension Location has additional aggregation levels. All
U.S. cities roll up to a state, a political entity that does not exist in other
countries. Also, the USA branch provides an additional level of detail under-
neath the City level: Level Store is the most specific aggregation level that
is available for the whole USA branch. Furthermore, for all U.S. cities, data
about the mayor is available in addition to the elevation. The USA branch
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thus introduces heterogeneities. Consequently, the USA branch has its own
aggregation hierarchy defined (Figure 2.4).

Location:
Dimension

USAHierarchy:
LevelBasedHierarchy

USACountryHLA:
HierarchylLevelAssociation
Name:
Attribute

USAStateHLA:
HierarchyLevelAssociation

Name:
Attribute

Parent:
Attribute

USACItyHLA:
HierarchyLevelAssociation

Name:
Attribute

Parent:
Attribute

Elevation:
Attribute

Mayor:
Attribute

USAStoreHLA:
HierarchylL evelAssociation

Name:
Attribute

Parent:
Attribute

Fig. 2.4. Hierarchy of the USA branch of dimension Location

This USA hierarchy concretizes the primary hierarchy of dimension Loca-
tion. It does not contradict the information given in the primary hierarchy.
After all, level City still has attribute Elevation and rolls up to level Coun-
try. The USA hierarchy, however, includes more information which could not
be included in the primary hierarchy without rendering the primary hierar-
chy heterogeneous. The USA hierarchy, nevertheless, is homogeneous even
after the inclusion of this additional information. The information may not
be available for the whole dimension; it is for the entire USA branch, though.

2.3.2 Cubes

A cube is of arbitrary dimensionality and contains an arbitrary number of
measures. Cubes are the most important modeling primitive as they organize
the main data of interest - measures. For example, Figure 2.5 illustrates cube
Sales of dimensions Product, Time, and Location. The cube has measures
Revenue and QtySold.

In hetero-homogeneous CWM modeling, the cube itself does not assert
any level of granularity for any measure nor does it guarantee that a measure
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Sales: SalesKey:

Cube UnigueKey
Product: Time: Location:
Attribute Attribute Attribute

Revenue: QtySold:
Measure Measure

ProductCDA:
CubeDimensionAssociation

Product:
Dimension

TimeCDA: Time:
CubeDimensionAssociation [ | Dimension

LocationCDA: Location:
CubeDimensionAssociation | | Dimension

Fig. 2.5. Cube Sales

is available for all portions of the cube. Rather, a cube defines what is to be
expected at the most from the data of a cube. In order to represent hetero-
homogeneous cubes, the logical model borrows the concept of cube regions
from the deployment model. In hetero-homogeneous modeling, cube regions
represent portions of a cube with a homogeneous schema. Each cube region
is single-granular, homogeneous with respect to the measures, and its schema
applies only to a portion of the cube. Note that this is only a guideline for
hetero-homogeneous modeling and not standard CWM behavior.

In case a sub-cube introduces heterogeneities with respect to the global
schema, the sub-cube has its own cube region de-fined. The same principle as
for hetero-homogeneous dimensions applies. Each cube region is homogeneous
and guarantees certain properties for the data of a sub-cube. The cube region,
however, may be heterogeneous with respect to a global schema in that it
concretizes this schema. The cube region may contain an arbitrary subset of
the cube’s set of measures.

For example, cube Sales has three cube regions (Figure 2.6), each having
a distinct set of measures and a single level of granularity. The primary cube
region ProductTimeLocation defines the homogeneous schema for the entire
cube. This cube region’s level of granularity is {( Model, Month, City ), meaning
that the measures of this cube region are recorded by product model, month,
and city. The USA sub-cube records an additional measure and tracks revenues
by store rather than city. For the USA sub-cube, two separate cube regions
exist. The first cube region, ProductTimeUSAI, contains the measures that
are recorded at the ( Category, Year, City )level of granularity. The other
cube region, ProductTimeUSA2, contains the measures that are recorded at
the ( Model, Month, Store )level of granularity. Notice that the definition
that these cube regions are limited to the USA sub-cube cannot be done in
the logical model but will rather be accomplished in the physical model.
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Fig. 2.6. Regions of cube Sales
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2.4 Physical Hetero-Homogeneous CWM Modeling

The physical model describes the representation of the data in a database. The
physical model consists of tables as well as mappings between these tables
and the logical model. While the logical model serves as a schema for the
formulation of analytical queries, the data for answering these queries come
from the tables that are defined in the physical model. In this section, we
propose a relational implementation for hetero-homogeneous data warehouses
which considers the particularities of the logical model in the CWM. We rely
on a variant of the widely-accepted star schema, consisting of dimension and
fact tables. We further provide guidelines for mapping the logical hetero-
homogeneous model to the physical representation of the data.

2.4.1 Dimension Tables

A dimension stores its data in a single dimension table. Each row of the
dimension table represents a member of the dimension. The columns of the
table represent the attributes of the dimension’s members. Two additional
columns are introduced as auxiliaries for the implementation, namely Level
and ID. These columns have no connection to the logical model and are not
used for query formulation. Column Level holds the aggregation level of the
dimension’s member that is represented by a row of the dimension table.
Column ID serves as a surrogate key. For example, the Location dimension
table has columns All, Country, Region, State, City and Store for the key
attribute of each level. The table further has columns Elevation and Mayor
for the attributes of level City, and the table has columns Level and ID. The
country France would be represented as a row with value ‘Country’ in column
Level, given the fact that France is a country. The value in column ID must be
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an arbitrary yet unique value, possibly provided by a sequence. Furthermore,
the France row would have value ‘Location’ in column All, ‘France’ in Country,
and NULL values in State, City, Elevation, Mayor, and Store. The NULL values
reflect the fact that some attributes are not applicable to all members of a
dimension - the dimension is heterogeneous.

A surrogate key allows for the representation of dimension members at
various aggregation levels within a single table. Without a surrogate key, the
number of columns that identify a row would vary depending on the level of
the represented dimension member. This surrogate key does not necessarily
bear meaningful semantics; values for the surrogate key might well come from
a sequence. Again, the surrogate key is not used for query formulation, but is
only an internal auxiliary for the implementation.

The dimension tables are not normalized. In operational databases, the
normalization of tables ensures non-redundant data sets. Large tables with
many columns are split into smaller, redundancy-free tables in order to pre-
vent the occurrence of up-date and delete anomalies. Anomalies, however, are
not an issue in a data warehouse environment since updates and deletes of
existing rows are rather uncommon. The smaller number of tables in a non-
normalized schema, on the other hand, reduces the number of table joins and
consequently improves query performance. For example, given the Location
dimension table, the French city of Paris would be represented as a row with
value ‘City’ in column Level and again some unique value in column ID. Fur-
thermore, the Paris row would have value ‘Paris’ in column City. The values
in other columns would match the values in the France row. The table there-
fore contains redundancies. Splitting the dimension table into several smaller
tables, for example, a separate table for level Country and level City, would
prevent redundancies. This split, however, would also increase the number of
joins required in analytical queries.

The analyst formulates queries over the logical model. The BI tool an-
swers these queries using the physical model. Thus, the BI tool must be able
to relate the logical model to the physical model. Explicit mappings formal-
ize the relationships between the dimensions in the logical model and the
tables in the physical model. For example, a set of feature maps relates the
attributes of level City of dimension Location to the corresponding columns
of the dimension table (Figure 2.7).

Each hierarchy of a dimension presents a homogeneous view on the di-
mension table. The view of a hierarchy only contains columns for levels and
attributes that are associated with that very same hierarchy. The view also
lacks the Level column and does not have a surrogate key. Rather, the view
of a hierarchy contains only members at a single aggregation level, namely
the most specific level of the hierarchy. Likewise, the homogeneous view of
a hierarchy does not contain any NULL values. The existence of NULL val-
ues would indicate the existence of heterogeneities within the hierarchy. The
existence of heterogeneities in a supposedly homogeneous branch would vi-
olate the hetero-homogeneous approach. The heterogeneities should thus be
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Fig. 2.7. Mapping dimension Location to its dimension table (level City only)

removed from the hierarchy and their introduction be pushed further down
the aggregation hierarchy.

For example, the view for the primary hierarchy of dimension Location in-
cludes only columns All, Country, and City for the levels of the hierarchy. The
view also includes column FElevation for the only attribute that is shared by
all members that are part of this hierarchy’s City level. Notice that including
column Mayor in the view would yield NULL values since information about
a city’s mayor is not available for every city; the view would not be homo-
geneous anymore. Furthermore, the view contains only the City-level rows of
the dimension table. The following query characterizes the homogeneous view
of the primary hierarchy of dimension Location:

01 SELECT 1.Al11l, 1.Country, 1.City, 1l.Elevation
02 FROM  location 1
03 WHERE 1.Level = ’City’;

Similarly, the view of the USA hierarchy of dimension Location includes
columns Country, State, City, and Store for the levels of the hierarchy. Besides
column Flevation, the view also includes Mayor since information about the
mayor is available for every city in the USA. The view contains only the
Store-level rows of the dimension table. The following query characterizes the
homogeneous view of the USA hierarchy of dimension Location:

01 SELECT 1.Country, 1l.State, 1.City, 1l.Elevation,

02 1.Mayor, 1l.Store

03 FROM location 1

04 WHERE 1.Level = ’Store’ AND
05 1.Country = ’USA’;

The aggregation hierarchies map to the homogeneous views instead of the
heterogeneous dimension tables. Two types of mappings are especially note-
worthy. First, a listOfValues mapping allows to retrieving for each attribute
the set of values that are actually assigned by the dimension’s members to the
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respective attribute. For the key attribute of a level, the listOfValues mapping
retrieves the list of dimension members at this level. Second, an immediate Par-
ent mapping defines for each level the column that holds the names of the
parent member of each member of the respective level. Figure 2.8 illustrates
mappings for the USA branch of dimension Location. A set of feature maps
relates the attributes of the City level to the corresponding columns of the
USA view. Notice that the feature maps are part of different classifier maps
which in turn are linked to different structure maps. The feature map that
relates attribute Parent of the hierarchy’s City level to column State of the
USA view is part of the classifier map that is linked to the immediateParent
mapping. The other mappings are listOf Values.

USAHierarchy:
LevelBasedHierarchy 0 | 1 | 2 | 3 |
USACountryHLA: USAStateHLA: USACityHLA: USAStoreHLA:
HierarchyLevelAssociation HierarchyLevelAssociation HierarchyLevelAssociation HierarchyLevelAssociation
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Store:
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Fig. 2.8. Mapping the USA branch of dimension Location to its database view
(level Clity only)

2.4.2 Fact Tables

A cube stores its data in a single fact table. This fact table has a column
for each of the cube’s dimensions and for each of the cube’s measures. The
dimension columns reference the table of the respective dimension. The mea-
sure columns record the values of the measures. Each row of the fact table
represents a business event of interest at some level of granularity. The level
of granularity is determined by the dimension columns. A fact table can be
multi-granular and heterogeneous.

Figure 2.9 illustrates the star schema organization of cube Sales. The Sales
fact table links to the surrogate key columns of the dimension tables of Prod-
uct, Time, and Location. The first row in the Sales fact table records the
revenues of the product model SonyBraviaKIL.46 in Paris in January 2012. It
contains a NULL value in QtySold. The second row records the revenues of
SonyBraviaKL46 in the SeattleStorel in January 2012 and contains a NULL
value in QtySold. Finally, the third row records the sold quantity of products
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in the Television category in the city of Seattle in the year 2012. Thus, the
Sales fact table is heterogeneous and multi-granular.

Product

ID LEVEL ALL CATEGORY MODEL
#01 All Product
#02 Category Product | Televison
< #03 Model Product | Television | SonyBraviakL46
Sales Time
PrRoDUCT }J/LOCATION TIME REVENUE | QTYSoLb ID LEVEL ALL YEAR MONTH
#03 #07 \ #03 ~_125,000 - #01 All Time
#03 #05 \ #03 90,000 \ #02 Year Time 2012
#02 #04 \ #02 - 100 \" #03 Month Time 2012 Jan 2012
Location
D LEVEL ALL COUNTRY STATE ciry ELEVATION [ MAYOR STORE
#01 All Location
#02 Country Location USA
#03 State Location USA Washington
\ #04 City Location USA Washington Seattle 54 McGinn
\ #05 Store Location USA Washington Seattle 54 McGinn | SeattleStorel
\ #06 Country Location France
‘#07 City Location France - Paris 33

Fig. 2.9. A sample star schema: Fact table Sales and its dimension tables Product,
Time, and Location

Each cube region presents a homogeneous, single-granular view on the het-
erogeneous, multi-granular fact table. Columns of the fact table that repre-
sent measures from other cube regions are disregarded. Furthermore, measures
available at more specific granularities are rolled up to the required level of
granularity, assuming that such a roll-up is possible without summarizability
problems, which may not always be the case (see [29]).

For example, the primary cube region of cube Sales contains only measure
Revenue. Measure QtySold, which is available only for U.S. sales, is disre-
garded. The level of granularity is {( Model, Month, City ), meaning that
monthly revenues of product models are recorded by city. Since U.S. sales are
tracked at a finer level of granularity, namely by store rather than city, the
revenues must be aggregated in order for the view to remain single-granular.
The following query characterizes the homogeneous, single-granular view of
the primary cube region of cube Sales:

01 SELECT p-Model AS Product, t.Month AS Time,

02 1.City AS Location, SUM(s.Revenue) AS Revenue
03 FROM Sales s JOIN Product p ON s.Product = p.ID
04 JOIN Time t ON s.Time =t.ID
05 JOIN Location 1 ON s.Location = 1.ID

06 GROUP BY p.Model, t.Month, 1.City;
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Measure QtySold is available only for U.S. sales and is recorded at the
( Category, Year, City )level of granularity. The view for this cube region
selects only the column for measure QtySold, disregarding measure Revenue,
as it is tracked at a different level of granularity. The view further restricts the
number of rows that are considered, selecting only U.S. sales. The following
query characterizes the homogeneous, single-granular view of the USA cube
region at the ( Category, Year, City )granularity level:

01 SELECT p.Category AS Product, t.Year AS Time,

02 1.City AS Location, SUM(s.QtySold) AS QtySold
03 FROM Sales s JOIN Product p ON s.Product = p.ID
04 JOIN Time t ON s.Time = t.ID
05 JOIN Location 1 ON s.Location = 1.ID

06 WHERE 1.Country = ’USA’
07 GROUP BY p.Category, t.Year, 1.City;

Measure Revenue is available at a finer granularity for U.S. sales only.
While this heterogeneity was eliminated in the primary cube region, a separate
view preserves this additional information in the USA cube region:

01 SELECT p.Model AS Product, t.Month AS Time,

02 s.Store AS Location, SUM(s.Revenue) AS Revenue
03 FROM Sales s JOIN Product p ON s.Product = p.ID
04 JOIN Time t ON s.Time = t.ID
05 JOIN Location 1 ON s.Location = 1.ID

06 WHERE 1.Country = ’USA’
07 GROUP BY p.Model, t.Month, 1.Store;

Depending on which part of the cube is required for the analysis, a dif-
ferent view serves as the source for answering the query. The choice of what
view will be used to answer a query depends on the context of the analysis.
With the views being homogeneous, the analyst does not have to worry about
heterogeneities when formulating the query.

The cube regions map to the homogeneous views instead of the hetero-
geneous, multi-granular fact table. Figure 2.10 illustrates mappings from the
USA cube region at granularity level { Category, Year, City )to the corre-
sponding view. The mappings are straight-forward; each attribute or measure
from the cube region maps to a column of the same name.

2.5 Implementation

The presented guidelines for modeling logical and physical hetero-homogeneous
data warehouse models can be automated. Without machine support, the def-
inition of a logical and physical model in the CWM would be a tedious task
for any modeler to complete. Rather, a modeler should rely on the conceptual
modeling approach as presented by Neumayr et al. [39] which offers a more
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Fig. 2.10. Mapping the USA cube region at granularity level ( Category, Year,
City )to its database view

intuitive approach towards hetero-homogeneous data warehouse modeling, us-
ing m-objects and m-relationships for the representation of dimensions and
cubes. From this conceptual model, the CWM logical and physical models can
be derived automatically.

Schiitz [57] presents a first approach towards the automatic derivation of a
logical and physical data model from a conceptual hetero-homogeneous data
warehouse model according to Neumayr et al. [39]. The management system
of Schiitz [57] derives dimension and fact tables from the conceptual model.
Furthermore, the system also holds the conceptual model itself for manage-
ment and analysis purposes in object-relational tables. These tables may be
accessed from the outside in order to gain insights about the conceptual model.
These insights, in turn, may serve as the basis for the derivation of the logical
and physical model in the CWM.

We provide export functionality for the management system of Schiitz [57]
which consists of transformation routines in Java that extract from the
database tables the hetero-homogeneous conceptual model and derive from
this model the CWM logical and physical models . For the representation
of CWM metadata in Java, our export functionality relies on the Pentaho
Metadata libraries. These libraries implement the CWM specification in Java.
Furthermore, the Pentaho Metadata libraries allow for the representation of
CWM metadata using the XMI language. XMI data is well understood by
various BI tools and therefore well-suited for the exchange of models.

2.6 Summary and Future Work

In this chapter, we present an approach for modeling hetero-homogeneous
data warehouses in the CWM. Figure 2.11 summarizes the proposed modeling
approach. The conceptual model abstracts from the actual implementation
and provides a high-level perspective on the modeling domain. M-objects and
m-relationships are well-suited for the conceptual representation of hetero-
homogeneous dimensions and cubes [39]. In order to use this conceptual model
with various BI tools, the conceptual model must be translated into a more
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widely understood standard data model. This standard data model is the
CWM, with the XMI language as its primary representation format.

% Conceptual Model
2,
a
Q Dimensions
=

Logical Model

A

\ Dimensions
s —_ e __
X [ [ [
= Mapping Mapping Mapping
=
© I I I

Dimension Tables — — — —> Homogeneous Views Fact Tables — — — —>  Homogeneous Views
Physical Model

Fig. 2.11. Hetero-homogeneous data warehouse modeling in the CWM in a nutshell

The logical hetero-homogeneous CWM model consists of dimensions and
their hierarchies as well as cubes and their cube regions. Hierarchies provide
homogeneous schemas for particular branches of a heterogeneous dimension.
Likewise, cube regions provide homogeneous schemas for particular portions
of a multi-granular, heterogeneous cube. The physical hetero-homogeneous
CWM model consists of multiple tables. Dimension and fact tables contain
the actual data. The heterogeneous dimension tables in the physical CWM
model map to corresponding dimensions of the logical model. The hierarchies
of these dimensions, in turn, map to homogeneous views on the heterogeneous
dimension tables. Likewise, the cube regions map to homogeneous views on
the heterogeneous fact tables. Notice that the cubes in the logical model do
not map directly to the fact tables. The CWM provides cube regions for
mapping the cubes of the logical model to the tables of the physical model;
cube regions are therefore not truly part of the logical model. In order to
represent hetero-homogeneous cubes, however, cube regions are employed in
the logical model.

Our approach to hetero-homogeneous data warehouse modeling in the
CWM facilitates the integration of heterogeneous data sources and allows for
the reuse of hetero-homogeneous data models in various BI tools. We stress
that our approach to hetero-homogeneous modeling is complementary to the
modeling approach of Neumayr et al. [39] and the corresponding prototype
presented by Schiitz [57]. Rather than providing an alternative modeling ap-
proach and implementation, we extend the existing prototype system with a
powerful export mechanism. Existing infrastructure may thus be reused with-
out losing the benefits of hetero-homogeneous data models. Still, future work
will have to address the following issues:
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Examine the usability of hetero-homogeneous CWM models in various BI
tools.

Define a transformation process compliant with the OMG’s model-driven
architecture from the hetero-homogeneous conceptual model to the logical
and physical CWM models.

Provide a more concise graphical notation for hetero-homogeneous models
in the CWM.






3

Multilevel Business Process Modeling

Conceptual models organize real-world information from a business domain
using a human-readable, yet formal representation language. Besides the static
data model, many modeling approaches also consider the processes working
with these data. In conceptual modeling, abstraction is a common design pat-
tern to more accurately represent a business domain. For static data models,
various modeling approaches have been proposed to represent complex mul-
tilevel abstraction hierarchies. For process models, though, current modeling
approaches do not provide a flexible and powerful formalism for representing
complex multilevel abstraction hierarchies. In this chapter, we motivate the
need for multilevel business process models and their applications. We present
an initial approach towards multilevel business process modeling and sketch
future research in this area which can mature into a dissertation.

3.1 Motivation

Conceptual models organize real-world information from a business domain
using a human-readable, yet formal representation language. Among the
most popular conceptual modeling languages are the entity-relationship (ER)
model [6] for database modeling and the much broader Unified Modeling Lan-
guage (UML) for model-driven software engineering.

Early approaches towards the conceptual modeling of business domains
focused merely on the static structure of data while completely neglecting the
dynamic aspects of the represented information. Besides the data model, the
processes dealing with these data are equally important for running a busi-
ness. Traditional data modeling approaches, however, could not represent the
activities performed on the data. This inability led to the emergence of data-
centric business process modeling approaches, for example, object/behavior
diagrams [24]. Similarly, the UML was extended with state machine and ac-
tivity diagrams. More recently, business artifacts [41, 15] have been success-
fully introduced in both theory and practice. The underlying principle of such
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data-centric approaches to business process modeling remains unchanged: En-
capsulate in a single object both data and process information.

In conceptual modeling, aggregation is a common design pattern to more
accurately represent a business domain. Lower-level, more concrete data ob-
jects are collected into higher-level, more abstract aggregates. These aggre-
gates may have a distinct set of attributes and provide metadata for the lower-
level data objects. For example, an insurance claim has an amount which is
constrained by the coverage indicated in the contract that the claim belongs
to. These aggregates may again be collected into aggregates. For example, an
insurance contract belongs to a particular insurance category.

Generalization is another common principle to more elegantly represent
business domains. The common features of different types of data objects are
encapsulated in a common supertype, the generalization. The subtypes are
specializations of this supertype. For example, claims under a health insurance
contract are filed for a particular medical treatment which is covered by the
contract. This information is not applicable for insurance categories other
than the health insurance category. The amount, however, is a feature of all
claims regardless the category.

Some modeling approaches go beyond ordinary generalization and aggre-
gation relationships to allow for the representation of complex multilevel ab-
straction hierarchies. Among the most popular approaches with support for
multilevel (meta-)modeling are powertypes [45, 12], deep instantiation [2], and
materialization [49, 7]. The instances of a powertype are subtypes of another
object type, thereby providing metamodeling capabilities [45, p.28]. Gonzalez-
Perez and Henderson-Sellers [12] propose a powertype-based approach which
abandons traditional two-level instantiation with class and object, using the
notion of the “clabject” instead. This class/object duality — a term used by
Atkinson and Kiihne [2] — is also an important feature of deep instantiation.
Deep instantiation allows arbitrary-depth instantiation hierarchies where data
objects can instantiate (certain aspects of) other data objects which instan-
tiate other data objects, and so on. Materialization, on the other hand, blurs
the boundaries between the aggregation and instantiation relationships.

The multilevel object (m-object), as originally introduced by Neumayr
et al. [38], is an expressive and flexible approach to modeling multilevel ab-
straction hierarchies [40]. The m-object approach combines elements from
powertypes, deep instantiation, and materialization. An m-object has several
abstraction levels ordered from the most abstract to the most concrete. With
each of these levels, an m-object associates a class. These classes are con-
nected by aggregation relationships, constituting an aggregation hierarchy.
The introduction of the concretization relationship for m-objects allows for
the specialization of entire sub-hierarchies.

In business process modeling, hierarchical modeling commonly refers to
the description of the same process at different levels of granularity in order
to hide unnecessary details from the user. For example, when handling an
insurance claim, the claim is assessed before a verdict is returned. The as-
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sessment phase can also be viewed, if desired, in more detail, revealing that
this phase consists of an investigation and a decision phase. Many languages
allow for the representation of such hierarchical models. UML state machines
support sub-states and sub-machines [43]. More recently, Smirnov et al. [61],
for example, describe a mechanism for describing the same process at dif-
ferent levels of detail. More prominently, the guard-stage-milestone modeling
language introduces such hierarchies for business artifacts [17, 16].

Previous work has identified flexibility [53, 52] and variability [67] as im-
portant issues in business process modeling. For example, when handling a
health insurance claim, a medical examination takes place during the assess-
ment phase, which is not done for insurance categories other than the health
insurances. Case handling [65] provides the actors carrying out the process
tasks with a great deal of flexibility. Due to the need for flexibility in busi-
ness process modeling, rules that govern specialization and change have also
been proposed. Behavior-consistent specialization draws from object-oriented
data modeling principles for defining precise rules for extending business pro-
cesses [55, 3]. Closely related to the matter of flexibility is the demand for
dynamic changes of models during the execution of a process [54, 66].

The representation of complex abstraction hierarchies in business process
modeling might lead to a better alignment of the processes at different hi-
erarchical levels within a company. Existing approaches towards conceptual
business process modeling lack a powerful and flexible construct combining
aggregation and generalization of processes for the representation of com-
plex abstraction hierarchies. M-objects elegantly combine the advantages of
advanced multilevel modeling techniques. M-objects, however, focus on the
static aspects of information while neglecting the dynamic aspects. We pro-
pose the application of multilevel abstraction principles from data modeling
to business process modeling. By extending m-objects with life cycle models,
we intend to create a multilevel business process modeling approach.

The remainder of this chapter is organized as follows. In Section 3.2, we
present the fundamentals of the proposed approach to multilevel business
process modeling. In Section 3.3, we discuss the most important design issues
to be solved in realizing our approach to business process modeling. In Sec-
tion 3.4, we investigate possible applications for multilevel business process
models. We conclude with a summary.

3.2 Approach

We propose the multilevel business artifact (MBA) as an extension of the
m-object for business process modeling. An MBA, as introduced by Schiitz
et al. [58], is an m-object which associates with each level of abstraction
a single life cycle model. Each of these life cycle models defines the legal
execution order of the methods of the class associated with the respective level.
Thus, in the spirit of business artifacts and m-objects, an MBA encapsulates
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Fig. 3.1. An MBA and one of its concretizations for the management of insurance
data

in a single object information about the static and dynamic aspects of multiple
levels of abstraction.

Figure 4.1 shows MBAs Insurance and Health for the management of insur-
ance data. MBA Insurance, for example, has levels range, category, contract,
and claim. Level range is the most abstract, level claim is the most concrete
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level. Each box on the left-hand side represents a class associated with one
of these levels. The compartments contain attribute and method definitions,
respectively. At level range, for example, MBA Insurance defines attribute
description as well as methods setDescription and create.

We use UML state machines for modeling life cycles. A UML state ma-
chine basically consists of states and transitions between these states. With
these transitions, methods are associated. The invocation of a method trig-
gers the corresponding transition, causing a change in the current state of the
object whose method has been invoked. The method may only be invoked if
its object is in the right state. UML state machines are widely-known, are
standardized, allow parallel transition paths and sub-states, and provide ad-
vanced modeling primitives, for example, pre- and post-conditions for further
restricting the triggering of transitions. In principle, though, any other life
cycle modeling approach could be used. In particular, Petri nets [64] are a
suitable alternative to UML state machines due to their simplicity and ex-
pressiveness. Furthermore, the guard-stage-milestone approach might also be
suitable for MBAs.

In Figure 4.1, on the right-hand side, for each level, a state machine dia-
gram represents the life cycle model for the corresponding class. MBA Insur-
ance at level contract, for example, has two states: Negotiating and In Effect.
After creation, MBA Insurance is in the Negotiating state. In this state, only
methods setCoverage and conclude may be invoked. The invocation of method
conclude triggers a change to state In Effect. In this state, only method file-
Claim may be invoked. A pre-condition specifies that method fileClaim may
not be invoked if the value of parameter amount is greater than the value of
the object’s coverage attribute. Pre- and post-conditions are specified using
the Object Constraint Language (OCL).

An important feature of MBAs (and also m-objects) is their class/object
duality. An MBA is an instance of its top-level class and contains only schema
information for the more concrete levels. Likewise, an MBA is in a particular
state of its top-level life cycle model. For example, in Figure 4.1, MBA Insur-
ance is an instance of the class associated with level range, assigning a value
to attribute description and being in the Analyzing state.

Multilevel concretization allows for the specialization of the data and pro-
cess models of entire sub-hierarchies. The concretizing MBA inherits from its
parent MBA every level underneath the parent’s top level. With each of these
levels, the concretizing MBA associates a class which is a specialization of
the class associated with the same level by the parent MBA. For example,
in Figure 4.1, MBA Health is a concretization of Insurance. The attributes
and methods defined by Health are additions to those defined by Insurance.
Besides the data model, the concretizing MBA may also specialize the state
machines inherited from the parent. In Figure 4.1, gray color marks the states
and transitions which MBA Health inherits from Insurance. In addition, at
the contract level, MBA Health has a state Amending, parallel to state In
Effect, and adds a transition to the Negotiating state as well as modifying
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the pre-condition of an inherited transition. At the claim level, MBA Health
refines the Assessing state. We refer to Stumptner and Schrefl for a formal
definition and more detailed presentation of behavior-consistent specialization
in UML [62].

An MBA represents the common schema of an entire hierarchy of data
objects. Using multilevel concretization, an MBA may represent the common
schema of an entire branch of the hierarchy represented by some other MBA.
The concretizing MBA specializes the data and process models defined by the
parent MBA, but only for a particular branch. For this branch, additional
information is available. Depending on which part of the hierarchy is rele-
vant for completing a task, the additional information is either considered or
disregarded.

3.3 Design Issues

Several issues must be solved when designing an approach for multilevel busi-
ness process modeling. First, the processes at multiple levels of abstraction
interact with each other and must be coordinated. Second, processes should be
able to dynamically adapt to different modeling situations, providing flexibil-
ity when needed but allowing modelers to intentionally restrict this flexibility
when unwanted. Third, information about the actors carrying out the tasks
should be incorporated into the model. Fourth, a formalization and implemen-
tation should be provided in order to support modelers with their modeling
tasks.

3.3.1 Process Interaction and Coordination

The different levels of a single MBA do not exist in isolation but are inter-
dependent, interact with each other, and need coordination. For example, in
Figure 4.1, the range level of MBA Insurance determines the creation of ob-
jects at the category level. After the execution of the addCategory method, an
additional category with the given name exists. Furthermore, objects at more
abstract levels define invariants for the lower-level objects, thereby constrain-
ing the values of certain attributes at these levels. For example, in Figure 4.1,
attribute coverage at level contract of MBA Insurance constrains the values
of attribute amount at the claim level. Schiitz et al. [58] propose the use of
pre- and post-conditions in UML state machines to model interaction between
levels as well as their coordination. In this case, in Figure 4.1, the transition
at the Analyzing state of MBA Insurance at the range level associated with
method addCategory would have a post-condition added in order to model in-
teraction between the range and the category levels. Similarly, the transition
at the Assessing state at the claim level associated with method setAmount
would have an additional pre-condition added in order to model coordination
between the contract and the claim levels.
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In process modeling, m-relationships between MBAs would represent
the passing of messages for coordination purposes. The considerations of
Schiitz et al. [58] concerning process interaction and coordination are limited
to levels of the same MBA and MBAs that are in a concretization relationship
with each other. MBAs of different hierarchies that are not in a concretiza-
tion relationship with each other might also be required to interact with each
other. Just as multilevel relationships (m-relationships) [38] have been pro-
posed for linking m-objects of different hierarchies, m-relationships could be
adapted and extended in order to model process interaction. The implications
on behavior-consistent specialization will have to be addressed. Future work
could build on the findings of Yongchareon et al. [68] about specialization of
synchronization dependencies in artifact-centric process models.

3.3.2 Flexibility and Change

Multilevel concretization is not an atemporal operation but is itself a meta-
process. A modeler creating a concretization of some other MBA specializes
the schema of the concretization by adding new attributes and methods as
well as abstraction levels. From a more technical perspective, the concretiza-
tion process is a sequence of invocations of reflective methods on MBAs. These
reflective methods allow changes in the schema during runtime. For example,
an MBA could have a reflective function addAttribute with parameters name,
dataType and level which adds to the MBA a new attribute at the specified
level with a specified name and data type. Similarly, reflective methods for
altering the life cycle models must be provided. This approach towards flexi-
bility is similar to the idea of the two-tier artifact-centric framework proposed
by Liu et al. [30] with process design entities and business entities, but on
multiple levels of abstraction and incorporating behavior-consistent special-
ization.

The concretization mechanism for MBAs provides modelers with flexibil-
ity when capturing the different information needs and tasks of the various
departments and branches within a company. Kiinzle et al. [25], for example,
identify flexibility as one fundamental requirement for business process mod-
eling approaches. In some cases, however, it might be desirable to limit the
freedom of a modeler. For example, legal regulations might impose that a cer-
tain process must not to be altered. Likewise, company policy might require
certain things to remain unchanged. By referencing the reflective methods in
the life cycle models of MBAs, the flexibility of modelers provided by the
standard semantics of multilevel concretization might be restricted. The spe-
cialization of the schema could be restricted to certain phases in the life cycle
of an object For example, states and transitions might only be added to a life
cycle model in a Developing state. Pre- and post-conditions could be used to
restrict the use of reflective functions. For example, the specialization of the
schema could be restricted to specific levels. This approach has been explained
by Schiitz et al. [58] in more detail.
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The addition of new levels during the concretization of MBASs remains an
open question. The m-object approach allows adding new levels in a concretiz-
ing m-object provided that the relative order of the levels remains unchanged.
Previous work [58] on MBAs has not addressed this issue. In a dynamic con-
text, when introducing a new level in a concretizing MBA issues arise when
pre- and post-conditions reference immediate parents of children.

3.3.3 Actors

A business process model identifies tasks on business objects which are car-
ried out by actors. In general, MBAs represent business objects and contain
information about the tasks that use and modify these objects. In order to rep-
resent information about actors in MBA-based business process models, two
approaches seem suitable. First, from a database perspective, actors are also
data objects with a distinct set of attributes. These data objects may be rep-
resented by MBAs and could be linked to other MBAs using an adapted form
of m-relationships. Second, MBAs might be integrated into existing modeling
approaches, thereby replacing or extending the native constructs for repre-
senting business objects.

Even though MBAs, in general, represent business objects, modeling actors
as MBAs is not at all a paradox. Most actors in a business domain, for exam-
ple, employees and, at a more abstract level, departments, have a distinct set
of attributes. Thus, from a database perspective, these actors are data objects
just as any other. Indeed, m-objects have been used to model both objects
and actors, for example, products and the producing companies [38].

MBAs could be extended with activity diagrams in order to represent
actors at multiple levels of abstraction. Each activity diagram would then
correspond to a specific process as seen from the actor’s point of view. These
activity diagrams would reference methods of the processed MBAs used to
complete the tasks.

Using MBAs for modeling actors requires these actors to be of a multilevel
nature, which is, in practice, not always the case. An alternative to model-
ing multilevel actors would be the integration of MBAs in existing modeling
approaches. For example, the business object modeling primitive of the Busi-
ness Process Model and Notation (BPMN) could probably be replaced by
the MBA. Similarly, subject-oriented business process modeling (S-BPM) [9]
could be complemented by MBAs. An advantage of S-BPM is the tool support
for creating models and transforming these models into executable code.

Neither of the proposed approaches has been realized yet. In practice,
though, a combination of both approaches could prove most useful.

3.3.4 Metamodel and Implementation

We propose the use of the O-Telos modeling language and its implementa-
tion, ConceptBase [23], for the specification of the MBA metamodel and the
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implementation of a development tool. O-Telos has a simple and thus very
flexible data model: Everything in O-Telos is an object and objects may be
related with each other. An object may specialize and/or instantiate any ob-
ject, including itself. Constraints and queries are formulated using first-order
logic expressions. The implementation of O-Telos, ConceptBase, has already
been successfully employed for business process models [22].

abstraction

topLevel

in
pareﬂ
I

level

\class Class

lifeCycleModel

StateMachine

Fig. 3.2. The MBA metamodel in O-Telos

Figure 4.4 illustrates the MBA metamodel using a common graphical no-
tation for O-Telos. The boxes represent objects. The arrows between these
boxes represent relationships between objects. An arrow labeled in represents
an instantiation relationship. Note that each relationship is also an object and
may therefore be related to other objects.

Each MBA is an instance of object MBA. When instantiating MBA, each
relationship from MBA to another object is also instantiated. The source ob-
ject of such a relationship must be an instance of MBA; the target object must
be an instance of the object that is targeted by the instantiated relationship.

Each level is an instance of object Level. Levels have an identity inde-
pendent from MBAs. Therefore, different MBAs may reference the same level
objects. MBAs establish the hierarchical order of the levels and associate class
definitions with these levels. Therefore, rather than attaching the parent level
to an instance of Level directly, the parent level is associated with the rela-
tionship between this level and the MBA. Similarly, the class definition for a
level is associated with this relationship.

Each MBA has a single, designated top level. The relationship topLevel
between objects MBA and Level may only be instantiated once per MBA.
Furthermore, relationship topLevel has a relationship with Object. An instance
of a relationship topLevel has a relationship to an instance of Object. Every
class referenced by an MBA is a specialization of Object.
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Fig. 3.3. MBAs Insurance and Health in O-Telos

Figure 3.3 illustrates MBAs Insurance and Health from the previous ex-
amples (Figure 4.1) using the MBA metamodel in O-Telos. The instantiation
relationships with the objects defined in the metamodel are not shown. Ob-
jects Insurance and Health are instances of MBA. Objects Range, Category,
Contract, and Claim are instances of Level. The other objects are instances
of Class and specializations of Object. Arrows with label isA represent spe-
cialization relationships. Notice that the relationship level from the MBA
metamodel (Figure 4.4) is instantiated multiple times.

Due to the class/object duality of MBAs, the association of the top
level with an object is not shown in Figure 3.3. The representation of the
class/object duality of MBAs is a particular challenge and worth a closer look.
In Figure 3.4, object Insurance is an instance of MBA and InsuranceRange.
Object InsuranceRange is the class associated with level Range. Level Range,
in turn, is the top level of InsuranceRange. The object associated with this
top level is the MBA itself. This approach to the class/object duality has one



3.3 Design Issues 33

in objectw ?4_
w Object

level/range—»| Range | | InsuranceRange fisA

lass:

n

Fig. 3.4. MBA Insurance as an instance of its top-level class

(—object %
Object

Insurance topLeveIl

Ievel/range—)' Range|| InsuranceRange |—ISA

class attrlbute/descrlpnon
h
in
in
description |

'Our product range' |
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major advantage: Even without knowledge of the MBA metamodel, a pro-
gram can use an MBA just like any other instance of some class. If other
levels are not important for a particular program, there is no need to rewrite
this program in order to cope with MBAs.

Figure 3.5 presents an alternative representation of the class/object duality
of MBAs. In this case, the top level of an MBA associates a clabject, that is,
an object presenting characteristics of both class and object. This is possible
in O-Telos since an object can be an instance of itself. Thus, an object can
define its own class schema. This approach can be combined with the previous
approach to class/object duality, yielding an object which defines its own class
schema for the top level.

The dynamics of MBAs must also be represented in the O-Telos language.
Figure 3.6 illustrates how state machines are handled. Any life cycle model
is an instance of object StateMachine. For example, in Figure 3.6, object
RangeLifeCycle represents the life cycle model for the range level of MBA
Insurance. An instance of a life cycle model is a life cycle trace. A life cycle
trace references concrete states of objects, not “state classes”, and concrete
transitions, not “transition classes”. For example, in Figure 3.6, the calling
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of method AddCategory_1 with argument ‘Health’ triggers transition Analyz-
ingToAnalyzing_1 from Analyzing_1 to Analyzing_2. Objects Analyzing_1 and
Analyzing_2 are both instances of the Analyzing state. The life cycle trace is
not created by the modeler but is created dynamically by the system, triggered
by method calls. The dynamic generation of a life cycle trace could be done in
ConceptBase using event condition action (ECA) rules. Together with a life
cycle trace, useful information could be stored which could later be analyzed,
for example the start and end time of an object being in a particular state.

3.4 Applications

Multilevel business process models could be employed in operational and
strategic information systems alike. A multilevel business process management
system could improve the alignment of business processes within a company.
Multilevel business process intelligence, on the other hand, could improve the
quality of performance analysis for business processes.

3.4.1 Business Process Management

Frequently, each hierarchical unit within a company has its own business pro-
cess solution. For example, the decision processes of management are com-
pletely separated from the processes of the production or research depart-
ments. The processes at different levels of the hierarchy are not related with
each other although a better alignment of these processes could improve per-
formance. A central repository of MBAs may support modelers in coordinat-
ing the diverse, traditionally isolated solutions within a company. This cen-
tral repository contains a multilevel business process model which provides
an integrated view of the various processes within the company and their
interdependencies.

The central MBA repository should not be limited to a mere documenta-
tion of the existing processes within a company, though. Rather, the repository
could provide an execution environment on its own or complement the existing
solutions. Two alternative approaches are available for the integration of the
central MBA repository with existing software. These alternatives are non-
exclusive and could occur simultaneously. First, the business logic is executed
locally. Prior to the execution, however, the local program sends a request to
the server in order to verify whether the execution is permissible. Second, the
business logic is executed on the server as a stored procedure. In this case, the
locally executed program is concerned only with establishing the connection
to the database server and calling the corresponding stored procedure. Con-
ceptBase, for example, allows the execution of Prolog programs stored on the
database server.
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3.4.2 Business Process Intelligence

Business intelligence (BI) technologies provide the means for analyzing the
performance of a company and thus support business executives in their de-
cisions. Among the most important BI technologies is the data warehouse. A
data warehouse organizes strategic, time-variant, and subject-oriented data
about a company, gathered from the company’s various operational data
sources [21]. A typical example for data stored in a data warehouse are sales
figures and their evolution over time. Various modeling approaches have been
proposed for data warehouses, for example, the dimensional fact model [10].
Such modeling approaches commonly organize data about business events of
interest within an n-dimensional space commonly referred to as (hyper-)cube,
with each dimension of this space being hierarchically organized. Measures
associated with these business events can be aggregated along the dimension
hierarchies. For example, sales figures could be organized in a cube with a
product, time, and location dimension. Each cell of this cube represents the
sale of a product at a particular point in time in a particular location. A typ-
ical measure for sales are revenues. With a location dimension consisting of
levels city and country, revenues could be viewed by city or country alike.

An important issue in data warehouse modeling is the representation
of heterogeneities. For example, sales in the United States could be aggre-
gated on a federal state level, a political entity not present in other coun-
tries. Likewise, due to fiscal reasons, an additional measure could be recorded
for sales in the France only. M-objects have been adapted for representing
such heterogeneities in data warehouse models. Neumayr et al. [39] introduce
hetero-homogeneous dimensions and cubes modeled with m-objects and m-
relationships. Hetero-homogeneous dimensions and cubes feature a globally
homogeneous schema but allow for the introduction of additional aggregation
levels and measures, respectively, in well-defined partitions of the data. Using
m-objects, depending on which partition of the data is analyzed, the analyst
may leverage a different schema with additional information.

With the rise of business process re-engineering and the desire to con-
stantly improve existing processes, performance measurement for business
processes has gained in popularity. Business process intelligence refers to
the application of BI technologies to the analysis of business process perfor-
mance [13]. Numerous approaches to multidimensional modeling have been
developed for the analysis of business processes [34, 5, 63].

The hetero-homogeneous approach to data warehouse modeling could be
adapted for business process analysis. Different processes could be associ-
ated with different measures and aggregated along different aggregation lev-
els. Given the insurance example, the performance of claim handling could
be measured by the time it takes to process a claim. In addition, for claims
under a health insurance contract, the time for the medical examination could
be recorded. The proof-of-concept prototype system for the management of
hetero-homogeneous data warehouses [57] could be extended in order to sup-
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port performance measurement for business processes, leading to the devel-
opment of a hetero-homogeneous process warehouse.

3.5 Summary and Future Work

This chapter is a proposal for a dissertation about multilevel business pro-
cess modeling. While research on data modeling has recognized the need for
powerful abstraction mechanisms with metamodeling capabilities, research on
abstraction hierarchies in data-centric business process models is more or less
limited to hiding details from the user. A flexible approach on multilevel busi-
ness process modeling, however, could lead to a better alignment of processes
at different levels of abstraction. Both operational and analytical applications
could benefit from the explicit consideration of multilevel abstraction hierar-
chies in business process models. A dissertation on multilevel business process
modeling will have to address the following design issues:

Representing interactions of MBAs by adapting m-relationships for MBAs;
Representing flexible process models and dynamic change, especially the
introduction of additional abstraction levels;

e Representing information about the actors who carry out the tasks asso-
ciated with an MBA;

e Providing an implementation of MBAs as a foundation for a multilevel
business process management system and a hetero-homogeneous process
warehouse.
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Multilevel Business Artifacts

The representation of many real-world scenarios in conceptual models benefits
from the use of multilevel abstraction hierarchies. Product models, for exam-
ple, are typically grouped into product categories which, in turn, constitute
the company’s range of products. Multilevel abstraction hierarchies often re-
flect the organizational structure of a company and the different information
needs of the various departments. Current modeling techniques, however, lack
extensive support for the representation of multilevel abstraction hierarchies
in business process models. The explicit consideration of multilevel abstrac-
tion hierarchies in business process models might improve the alignment of
processes across different organizational entities. In this chapter, we intro-
duce the concept of the multilevel business artifact (MBA) for representing
multilevel abstraction hierarchies of both data and process models. An MBA
encapsulates in a single object the data and process models of various levels,
thereby expanding consequently the idea of business artifacts to the realm of
multilevel abstraction hierarchies.

4.1 Introduction

In many modeling situations, data objects are arranged in multilevel abstrac-
tion hierarchies. In such hierarchies, data objects at lower levels of abstraction
are collected into more abstract, higher-level objects. These higher-level ob-
jects provide an alternative view of the represented problem domain, carrying
information that is not present in, yet related to, the lower-level objects. Prod-
uct models, for example, are typically grouped into product categories which,
in turn, constitute the company’s range of products. A product model typi-
cally has a list price. The actual selling price, however, might be influenced
by the tax rate attached to the corresponding product category.

Multilevel abstraction hierarchies can support differing information needs
within a company. Different departments process data objects at different
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levels of abstraction but the processes dealing with these data objects are in-
terdependent. For example, top management decides which product categories
the company should offer whereas the marketing and production departments
are concerned with individual products. The decisions of top management,
although they concern data on a different level of abstraction, affect the mar-
keting and production departments. If top management decides to focus, for
example, luxury goods rather than budget products, marketing may adjust its
pricing strategy for individual products and production may shift priorities
to rigorous quality management rather than low-cost production.

The explicit consideration of multilevel abstraction hierarchies in process
models might improve the alignment of processes across different organiza-
tional entities. Current modeling techniques lack extensive support for the
representation of multilevel abstraction hierarchies in business process mod-
els. Note that the use of multilevel abstraction hierarchies in business process
models as presented in this chapter differs from other approaches with ab-
straction which represent the same process at varying levels of detail.

In this chapter, we introduce the multilevel business artifact (MBA) for
representing multilevel abstraction hierarchies of both data and process mod-
els. We base the MBA approach on multilevel objects (m-objects) which offer a
compact and flexible formalism in conceptual models for the representation of
multilevel abstraction hierarchies with possibly heterogeneous levels [38, 40].
M-objects, however, focus mainly on the static aspects of the conceptual
model, lacking any information about the execution order of methods. An
MBA, on the other hand, encapsulates in a single object the data and process
models of various levels, thereby expanding the idea of a business artifact — a
“chunk of information that can be used to run a business” [41] — to multilevel
abstraction hierarchies.

The remainder of this chapter is organized as follows. In Section 4.2, we
introduce the MBA approach for a compact representation of interdependent
processes at various levels of abstraction. In Section 4.3, we present multilevel
concretization for increased modeling flexibility. In Section 4.4, we formally
define the MBA metamodel and its semantics in terms of UML. In Section 4.5,
we discuss the potential benefits of the MBA approach in relation to existing
work. In Section 4.6, we conclude with a summary and outline future research
on multilevel business process modeling.

4.2 Multilevel Business Artifact

In multilevel abstraction hierarchies, data objects at higher levels of abstrac-
tion are considered aggregates of more concrete, lower-level objects. Neverthe-
less, the data objects at each level have their own distinct features. Consider,
for example, the data model of a fictitious travel agency with a wide range
of guided tours. Within various categories, the company offers several tour
packages. A tour package represents a proposed set of travel activities over
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a number of days. Based on these tour packages, the travel agency organizes
particular trips with a specific start and end date.

Besides their static features, data objects at different levels of abstrac-
tion have interdependent life cycles. For example, a travel company’s range of
guided tours is constantly being reassessed, resulting in the addition of new
tour categories. Likewise, within each tour category, the development of new
packages is regularly initiated. And each tour package undergoes a develop-
ment phase before the launch puts the package on offer. A tour package may
be selected for organizing a trip only when the package is on offer. Note that
attributes of higher-level data objects can constrain the processes at lower
levels of abstraction. For example, a trip’s start and end date are constrained
by the corresponding package’s number of days.

Multilevel objects (m-objects), as introduced by Neumayr et al. [38, 40],
encapsulate in a single object information about an entire abstraction hierar-
chy. An m-object defines a number of abstraction levels and their hierarchi-
cal order as well as a class for each of these levels. The different classes are
associated by aggregation relationships along the abstraction level hierarchy.
M-objects, however, omit the dynamic aspects of the represented information.

A multilevel business artifact (MBA) accounts for the dynamic aspects of
multilevel abstraction hierarchies. Basically, an MBA is an m-object extended
with life cycle models where each abstraction level has a single life cycle model
that defines the legal execution order of the methods of the class.

Figure 4.1 illustrates MBA Tour (and MBA CityTour) for the manage-
ment of tour data. Each box on the left-hand side represents a class. Within
each box, the top compartment contains, in arrow brackets, the name of the
level the class is associated with. MBA Tour defines classes, connected by dot-
ted lines, for levels range, category, package, and trip, where range is the most
abstract and trip is the most concrete level. MBA ClityTour defines classes
for levels category, package, and trip, where range is the most abstract and
trip is the most concrete level. The other compartments contain attribute and
method definitions, respectively.

We use UML state machine diagrams [43] for modeling object life cycles.
A state machine consists of states and transitions between these states. Tran-
sitions are triggered by events. For an MBA, the triggering events are call
events raised by the invocation of a method. Thus, the state machine models
the legal execution order of methods.

In Figure 4.1, for example, the state machine diagram at the package level
of MBA Tour restricts changes in the number of days (nrOfDays) to the
development phase. Consequently, method setNrOfDays may be invoked only
on objects in the Dewveloping state. The invocation of method launch puts
an object in state On Offer. In this state, only method requestTrip may be
invoked. Note that this method cannot be invoked when the object is in the
development phase.

For each transition in a state machine, pre- and post-conditions may be
specified. These pre- and post-conditions relate the life cycle models of dif-
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Fig. 4.1. An MBA and one of its concretizations for the management of tour data

ferent abstraction levels. For example, at the range level, the post-condition
of the recursive transition of the Analyzing state relates levels range and cat-
egory by requiring that, after the execution of method addCategory, the set
of objects instantiating the class associated with level category must contain
an object with the specified name. An attribute name is implicitly defined
for every MBA and is assumed to be unique. Similar conditions relate levels
category and package as well as levels package and trip. After the invocation of
the addPackage method at the category level, a new MBA at the package level
exists. After the invocation of the requestTrip method at the package level, a
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new MBA at the trip level exists. Pre- and post-conditions may also be used
to relate different levels by defining invariants. For example, the number of
days at the package level constrains the selection of the dates at the ¢rip level.

An MBA instantiates the class at the single most abstract level. An MBA
therefore assigns values to attributes associated with the top level and executes
the corresponding life cycle model. MBA Tour in Figure 4.1 instantiates the
class at the range level, assigning a value to attribute description, and sets
the current state in the life cycle to Analyzing. MBA CityTour, on the other
hand, instantiates the class at the category level.

4.3 Multilevel Concretization

An MBA presents characteristics of both class and object. An MBA defines
classes which are arranged in an aggregation hierarchy according to their levels
of abstraction. The instances of these classes are again MBAs. Therefore, an
MBA describes the schema of a (sub-)hierarchy. An MBA, however, is also
part of the abstraction hierarchy. Given this duality of class and object, a
special type of relationship is needed to describe an abstraction hierarchy
with MBAs. This relationship type is multilevel concretization, adapted from
m-objects [38].

Through concretization, MBAs are collected into aggregates. For example,
in Figure 4.1, MBA CityTour is a concretization of MBA Tour. The single
most abstract level of CityTour is category, which is the second level of MBA
Tour. MBA CityTour instantiates the class at its top level, category, and
becomes part of the range of guided tours represented by MBA Tour. MBA
ClityTour is among the instances of the class defined by MBA Tour at the
category level.

The concretizing MBA must instantiate the class associated with the sec-
ond level of its abstraction, the concretized MBA. Consequently, the concretiz-
ing MBA becomes part of the set of all instances of this class, and is thus part
of the aggregate object represented by its abstraction. In this sense, multilevel
concretization presents semantics of both instantiation and aggregation.

Multilevel concretization, however, is not merely a mechanism for instan-
tiation and aggregation. The main purpose of concretization is to support
modeling flexibility through specialization. For each level an MBA shares
with its parent, the concretizing MBA specializes the class that the parent
MBA associates with this level. For example, in Figure 4.1, MBA CityTour
specializes the classes defined by its parent, MBA Tour, by adding attributes
and methods. Note that the inherited features are not shown in this diagram.

Concretization does not restrict specialization to the static aspects of an
MBA. Life cycle models may also be specialized. A concretizing MBA may add
additional transitions and states or refine existing states in an inherited life
cycle model. The semantics of life cycle specialization is based on existing work
which has extensively studied behavior-consistent specialization of life cycle
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models [62, 55]. For example, the state machine diagram at the category level
of MBA CityTour has an additional transition with respect to the inherited
life cycle model. The state machine diagram at the package level, on the other
hand, has an additional state, Revising, parallel to On Offer. At the trip level,
the state machine diagram presents a refined state Requested. Note that gray
color marks inherited states and transitions throughout this chapter.

An MBA describes the common, global schema of a hierarchy which,
through concretization, may be specialized for a particular sub-hierarchy. The
concretizing MBA describes a specialized schema that is valid only for a sub-
hierarchy. For this sub-hierarchy, the specialized schema of the concretizing
MBA becomes the common schema which, again, may be further specialized
by other MBAs through concretization. An employee can select the appro-
priate MBA which best fits the information demands of a particular task,

without the overhead of unnecessary information.
@—create
addCity
launch A setNrOfDays

@—create:
addCity
launch setNrOfDays

PacificCityTour:
«package >

+ nrOfDays = NULL
+ availableCities =

&

PacificCityTour:

«package »

+nrOfDays = 3

+ availableCities =
{'Portland’, ‘Seattle’}

+ removeCity(city)
+ requestTrip(tripld,
startDate, endDate, city)

«trip»

+ tripld

+ startDate
+ endDate
+ city

+ create(tripld,
startDate, endDate, city)
+ confirm()
+ begin()
+ setCity(city)
+ review()
+ edit()

(a) Developing

begin

In Progress

+ removeCity(city)
+ requestTrip(tripld,
startDate, endDate, city)

T, Cit T t
+ setNrOfDays(days) Pl ey + setNrOfDays(days) requestinip removeCity
+ launch() + launch() Q
+ addCity(city) + addCity(city) evwsm

ctrip»

+ tripld

+ startDate
+ endDate
+ city

+ create(tripld,
startDate, endDate, city)
+ confirm()
+ begin()
+ setCity(city)
+ review()
+ edit()
+ checkIn(hotel)
+ checkOut(hotel)

begin

f In Progress \
@ (i Yoheckin>(OnTorr)

checkOut

(b) {On Offer, Revising}

Fig. 4.2. A concretization of MBA ClityTour in different life cycle states

Concretization is not a one-shot activity. Rather, concretization itself is

an incremental process. Consider, for example, MBA PacificCityTour, a con-
cretization of CityTour, in Figure 4.2. Initially, MBA PacificCityTour has
only the inherited class and life cycle models, is in the Developing state, and
has NULL values assigned to the top-level attributes (Figure 4.2a). During
the development phase, values are assigned to attributes nrOfDays and avail-
ableCities and the inherited class and life cycle models are specialized. The
invocation of method launch terminates the Developing phase and puts MBA
PacificCity Tour simultaneously in the states On Offer and Rewvising (Fig-
ure 4.2b). In this state, the attributes at the package level already have values
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CityTour: < category » addPackage
+ cultureAdvisor = ‘Jones’ @-create
+ addPackage(name) setCultureAdvisor

+ setCultureAdvisor(advisor)

[level = <trip »]
addMethod(level, method)
[level = <trip > and state.isSubstateOf( | In Progress | : <trip »)]

addState(level, state)
removeCity
(> Revising )

setNrOfDays

« package >

+ nrOfDays
+ availableCities

+ setNrOfDays(days)
+ launch()

+ addCity(city) @-create ddc_launch ________
+ removeCity(city) addCity ‘ .
+ requestTrip(tripld, [level = < package > or ( requestTrip

startDate, endDate, city) level = < trip > and (

trans.source.isSubstateOf( | In Progress | : < trip ») or
trans.target.isSubstateOf( | In Progress | : <trip »)))]
addTransition(level, trans)

«trip >

+ tripld
+ startDate

+ endDate
+city [ Requested N

+ create(tripld, .—create—w \f_Edlt_]

startDate, endDate, city) (CAdapting }review=>{"Pending };—confirm—=>{_Confirmed }—begin—=>{_In Progress )
+ confirm() T
+ begin() (setcity
+ setCity(city)
+ review()
+ edit()

Fig. 4.3. MBA ClityTour with meta-process model elements (in boldface)

assigned and the class and life cycle models differ from the inherited models.
For the PacificCityTour package, the number of days can now also be altered
after the product launch. At the trip level, the process of what happens after
beginning the trip has been further clarified. Note that inherited pre- and
postconditions have been omitted in Figure 4.2.

Since concretization itself is a process, an MBA may also account for meta-
process activities in order to control local changes made to the imposed busi-
ness process models. Every MBA implicitly has pre-defined reflective methods
which enable changes of class and life cycle models at runtime. By default, the
reflective methods of an MBA can be invoked in any state. In this case, classes
and life cycle models can be extended as long as the semantics of class and
life cycle specialization are obeyed. The explicit mention of reflective meth-
ods in the life cycle model, however, allows the modeler to further restrict
specialization and thus deliberately limit flexibility.

Figure 4.3 shows an alternative version of MBA CityTour with reflective
methods in one of its life cycle models. Inherited pre- and postconditions have
been omitted. According to the life cycle model for the package level, meth-
ods, states, and transitions can be added only in the Developing state. Using
pre-conditions, flexibility can be constrained even further. In this example,
new methods may only be added to the model associated with the trip level.
Likewise, new states may only be added for the trip level and only as sub-
states of In Progress. Transitions may be added for levels package and trip.
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+ abstraction

0.1

+
. D MBA level Level
+ concretization * 1.*

+ currentState : State [1..%]

T
|
| +parent
|

+ instances(level : Level) : MBA [0..*] {parent.MBA =
+ ancestor(level : Level) : MBA [0..1] | m child.MBA}
+/owner [ 1 0.1] +instance  +/owner [ 1 0.1[+instance LevelHierarchy [——

+ levelAssociation

i

+ /lifeCycleDef | 1..* 1| +lifeCycle + /classDef | 1..* 1| + classifer

StateMachine 1 1 Class =
+ context + classDef

Fig. 4.4. The MBA metamodel

For the trip level, transitions may only be added if they come from or lead to
a sub-state of In Progress.

4.4 Metamodel and UML Semantics

The Meta-Object Facility [42] and the Unified Modeling Language (UML) [43]
provide the framework for the formal definition of the MBA approach. The
Object Constraint Language (OCL) [44], in turn, allows for the specification
of additional consistency criteria. Figure 4.4 illustrates the MBA metamodel.
Figures 4.5 and 4.6 describe adapted consistency criteria from m-objects [38]
using OCL constraints.

An MBA references several levels which exist independently from an MBA.
Attached to each link between an MBA and a level is a reference to a parent
level. Note that the same level may have different parent levels, depending
on the MBA. The links between an MBA and its levels together with the
records of the parent levels constitute a level hierarchy. In this hierarchy, a
level cannot be its own ancestor (Constraint 1). Furthermore, an MBA has a
single most abstract level, the top level, which has no parent level within the
MBA (Constraint 2).

An MBA defines classes, one for each associated level. Each link between
an MBA and a level references a class. Each class, in turn, has a UML state
machine as life cycle model. For convenience, an MBA directly references
each class and life cycle model. Therefore, the associations between MBA and
Class as well as between MBA and StateMachine are derived from the level
hierarchy (as indicated by a slash before the role names in Figure 4.4).

The classes associated with the levels of an MBA are instantiated by
MBAs. For this reason, class MBA is a specialization of InstanceSpecifica-
tion from the UML Kernel [43]. From this class, MBA inherits its association
to Classifer, referenced by the role name classifier, which MBA restricts to
Class. This classifier references the class that is associated with the MBA’s
top level (Constraint 3). Similarly, lifeCycle references the top-level life cycle
model. The instances method of an MBA retrieves all instances of a class
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Constraint 1: Acyclic level hierarchy

context LevelHierarchy

def: ancestor : Set(LevelHierarchy) = self->closure(parent)
inv: not self.ancestor->collect(level)->includes(self.level)

Constraint 2: Single top level

context MBA

def: topLevel : Collection(Level) = self.LevelHierarchy
->select( h | h.parent.ocllsUndefined() )->collect(level)

inv: self.topLevel->size() = 1

Constraint 3: Instantiate the top-level class and life cycle model
context MBA
inv: self.classDef->select(c | c.levelAssociation.level
= self.topLevel->any(true))->includes(self.classifier)
inv: self.lifeCycleDef->select(l | |.context.levelAssociation.level
= self.topLevel->any(true))->includes(self.lifeCycle)

Constraint 4: All instances at a given level

context MBA::instances(level : Level) : Set(MBA)
body:
let levelClass : Class = self.classDef
->any(c | c.levelAssociation.level = level) in
levelClass.allinstances()

Constraint 5: Ancestor at a given level

context MBA::ancestor(level : Level) : MBA

body:
let ancestors : Set(MBA) = self->closure(abstraction) in
ancestors->any( o | o.topLevel->any(true) = level )

Constraint 6: Instantiate second level of parent
context MBA
inv: self.abstraction.LevelHierarchy->exists (
h | h.level = self.topLevel->any(true) and
h.parent.level = self.abstraction.topLevel->any(true)

)

or self.abstraction.oclisUndefined()

Fig. 4.5. Consistency criteria for the MBA metamodel (Constraints 1 to 6)

associated with a particular level using the pre-defined alllnstances operation
(Constraint 4). The result of this query includes instances of sub-classes.

The recursive one-to-many association of class MBA represents concretiza-
tion. Besides its immediate parent, an MBA will frequently access ancestors
at more abstract levels. Method ancestor of class MBA retrieves the ancestor
having a particular top level (Constraint 5).

Constraints 6-10 must be satisfied in order for an MBA to be a consis-
tent concretization of its parent. First, the top level of the concretizing MBA
must be a child of the top level of the parent MBA (Constraint 6). Second,
the concretizing MBA contains every level of the parent MBA from the con-
cretizing MBA'’s top level downwards (Constraint 7). Third, the relative order
of the levels is the same in both the concretizing MBA and its parent MBA
(Constraint 8). Fourth, the class and life cycle models defined by the con-
cretizing MBA are specializations of the corresponding models in the parent
MBA (Constraints 9 and 10).

In this chapter, we do not formally define the notions of class and life
cycle specialization. Specialization of classes is extensively described by the
UML standard. The notion of life cycle specialization, on the other hand,
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Constraint 7: Inheritance of levels

context MBA
inv: self.abstraction.LevelHierarchy->select (
h | h.ancestor->exists( p | p.level = self.topLevel->any(true) ) or
h.level = self.topLevel->any(true) )->forAll (
h | self.level->includes(h.level) ) or self.abstraction.oclisUndefined()

Constraint 8: Stability of level order
context MBA
inv: self.level->asSet()->intersection( self.abstraction.level->asSet() )
->forAll( 11, 12 ] (
self.abstraction.LevelHierarchy->exists( h |
h.level = 11 and h.ancestor->exists( i : LevelHierarchy | i.level = 12)
) implies
self.LevelHierarchy->exists(h |
h.level = 11 and h.ancestor->exists( i : LevelHierarchy | i.level = 12)
))and (
self.LevelHierarchy->exists(h |
h.level = 11 and h.ancestor->exists( i : LevelHierarchy | i.level = 12)
) implies
self.abstraction.LevelHierarchy->exists( h |
h.level = 11 and h.ancestor->exists( i : LevelHierarchy | i.level = 12)

) or self.abstraction.oclisUndefined()

Constraint 9: Specialization of class models
context MBA
inv: self.level->asSet()->intersection( self.abstraction.level->asSet() )
->forAll( | | self.classDef->any(c : Class | c.levelAssociation.level = [)
->collect(generalization)->includes(
self.abstraction.classDef->any( c : Class | c.levelAssociation.level = 1)
) ) or self.abstraction.oclisUndefined()

Constraint 10: Specialization of life cycle models

context StateMachine

inv: self.context.generalization->forAll( g : Class |
self.isSpecializationOf(g.StateMachine)

)

Fig. 4.6. Consistency criteria for the MBA metamodel (Constraints 7 to 10)

depends largely on the modeling formalism employed. In general, a special-
ized process model may refine states by adding sub-states; it may also add
parallel paths. We refer to Stumptner and Schrefl [62] for a formal definition
of behavior-consistent specialization in UML state machine diagrams. These
authors [55] also provide a more in-depth analysis of behavior-consistent spe-
cialization of life cycle models, including rules for consistency checking. We
refer to Grossmann et al. [14] for an analysis of the complexity of checking
behavior-consistent specialization.

Finally, Figure 4.7 illustrates the UML semantics of the running example
used throughout this chapter. This UML diagram consists of several aggrega-
tion hierarchies of classes. The topmost class of each hierarchy is a singleton
class with one instance. The other classes are specialized, and thus relate the
different aggregation hierarchies. Together with the instances on the right-
hand side, each of these aggregation hierarchies corresponds to an MBA. Note
that instances are shown with their name followed by their type, separated
by a colon and both underlined.

The leftmost aggregation hierarchy in Figure 4.7 consists of classes Tour-
Range, TourCategory, TourPackage, and TourTrip. Fach of these classes is
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Fig. 4.7. UML class and state machine diagrams for the management of tour data

associated with a life cycle model. This aggregation hierarchy corresponds to
the class and life cycle definitions of MBA Tour.
The aggregation hierarchy in the middle consists of classes CityTourCat-
egory, CityTourPackage, and CityTourTrip. These classes are specializations
of classes TourCategory, TourPackage, and TourTrip, respectively. This ag-
gregation hierarchy corresponds to the class and life cycle definitions of MBA
CityTour, which is a concretization of MBA Tour.
The rightmost aggregation hierarchy consists of classes PacificCityTour-
Package and PacificCityTourTrip. These classes are specializations of classes
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TourPackage and TourTrip, respectively. This aggregation hierarchy corre-
sponds to the class and life cycle definitions of MBA PacificCityTour, which
is a concretization of MBA City Tour.

4.5 Related Work

An early predecessor of current data-centric approaches to business process
modeling are object/behavior diagrams [24]. The principle of describing the
structure and dynamics of data in a single object has been successfully ad-
vanced by the business artifact approach [41]. The MBA approach as pre-
sented in this chapter adopts this idea and expands it to multiple levels of
abstraction. Instead of describing only a single abstraction level, an MBA
combines structure and dynamics of multilevel data in a single object. This
view on business process model abstraction differs from other approaches,
for example by Smirnov et al. [61] or the guard-stage-milestone modeling ap-
proach for business artifacts [16]. These approaches describe the same process
at different levels of detail. The MBA approach, on the other hand, considers
interdependent processes of objects at various levels of abstraction.

In recent years, the interest in flexibility and dynamic change in data-
centric business process models has been increasing. Flexible process models
allow a company to adapt to the changing business environment [53]. In order
to better suit a particular business situation, process models should be allowed
to change [66], especially when dealing with less-structured processes [25].
Similarly, Weidlich et al. [67] stress the importance of managing variants of
process models which exist in a company due to differing requirements across
departments. Furthermore, in order to support flexibility in business process
modeling, process models should be allowed to adapt dynamically during their
execution [54]. The MBA approach offers these kinds of flexibility through
the concretization mechanism. Moreover, through its reflective capabilities,
the MBA approach allows the modeler to explicitly represent and constrain
dynamic change in the model.

4.6 Summary and Future Work

This chapter is a first introduction to multilevel business process modeling. We
introduced the concept of the MBA which, in the spirit of the business artifact
approach, encapsulates in a single object data and life cycle models of an
abstraction hierarchy. Through concretization, these data and life cycle models
can be specialized for particular sub-hierarchies. Future work will address
several issues. First, in order to enable message passing between MBAs that
are not in a concretization relationship, a new relationship type should be
introduced. Second, actors should be incorporated explicitly within the model.
Third, an implementation of the MBA approach should support modelers in
creating a central repository of multilevel business process models.
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