
Spoken Language Processing Group
Columbia University in the City of New York

Signal Processing and Speech Communication
Laboratory

Graz University of Technology

Marshal Plan Scholarship Report

Creating a new Combined
Confidence Measure for

ASR-Errors on the Word-Level

Philipp Salletmayr

Advisor: Univ.-Prof. Dipl.-Ing. Dr.techn. Kubin, Gernot

Advisor: Professor Hirschberg, Julia

Graz, December 10, 2012

LOCALIZED DETECTION OF SPEECH RECOGNITION ERRORS

Svetlana Stoyanchev1, Philipp Salletmayr2, Jingbo Yang1, and Julia Hirschberg1

1Department of Computer Science, Columbia University, USA
2Signal Processing and Speech Communication Laboratory, Graz University of Technology, Austria

sstoyanchev@cs.columbia.edu, phisa@sbox.tugraz.at, jy2477@columbia.edu, julia@cs.columbia.edu

ABSTRACT
We address the problem of localized error detection in Auto-
matic Speech Recognition (ASR) output. Localized error de-
tection seeks to identify which particular words in a user’s ut-
terance have been misrecognized. Identifying misrecognized
words permits one to create targeted clarification strategies
for spoken dialogue systems, allowing the system to ask clar-
ification questions targeting the particular type of misrecog-
nition, in contrast to the “please repeat/rephrase” strate-
gies used in most current dialogue systems. We present re-
sults of machine learning experiments using ASR confidence
scores together with prosodic and syntactic features to pre-
dict whether 1) an utterance contains an error, and 2) whether
a word in a misrecognized utterance is misrecognized. We
show that by adding syntactic features to the ASR features
when predicting misrecognized utterances the F-measure im-
proves by 8% compared to using ASR features alone. By
adding syntactic and prosodic features when predicting mis-
recognized words F-measure improves by 40%.

1. INTRODUCTION

The ability to clarify information is important for success
in both human/human and human/machine communication.
When human speakers believe they have misunderstood their
interlocutors, they ask clarification questions that typically
take advantage of context to formulate their queries.

Examining human clarification strategies, Purver[1] dis-
tinguishes two types of clarification question: reprise and
non-reprise. While reprise clarification questions ask a tar-
geted question about the part of an utterance that was mis-
heard or misunderstood, including portions of the misun-
derstood utterance which are thought to be correctly recog-
nized, non-reprise questions are a generic request for repetion,
which does not contain contextual information from the mis-
understood utterance. The two are illustrated below:

Speaker: Do you have anything other
than these XXX plans?

Non-Reprise: What did you say?/Please repeat.
Reprise: What kind of plans?

About 88% of human clarification questions are reprise ques-

tions, compared to 12% non-reprise.
In human/machine communication, automatic Spoken Di-

alogue Systems (SDS) also employ clarification questions to
recover from ASR errors. However, while humans are able
to target their clarification questions to address the particu-
lar source of their confusion, current SDS typically do not,
adopting simple statements of misunderstanding followed by
requests to repeat or rephrase user input that can be applied
to any type of hypothesized ASR error. Non-reprise clarifica-
tion questions are easy to construct a priori and are well-suited
to simple slot-filling dialogue systems where speakers are re-
quired to specify values for a fixed number of predefined at-
tributes and concepts. However, previous research has found
that system prompts have an important effect on a user’s per-
ception of the system’s behaviour and performance [2, 3]. As
we move towards systems that support mixed or even user
initiative, such as tutoring systems [4] and speech to speech
translation systems [5], SDS which can request more specific
information about hypothesized ASR errors become more
critical to create.

One requirement for producing reprise clarification ques-
tions is the detection of just which part of a user utterance has
been recognized correctly and which part or parts contain an
error. Previous research on error detection in ASR in general
and in SDS applications in particular has focused primarily
on determining how likely an utterance is to have been rec-
ognized correctly or incorrectly using posterior probabilities
from the ASR acoustic and language models. Such informa-
tion may be used to choose another path through the ASR
lattice or to request repetition or rephrasing of the utterance
from the user.

In the work presented here, we seek to identify not only
which utterances have been misrecognized but also which
portions of utterances have been incorrectly transcribed by
the recognizer, in order to use this information to formulate
targeted reprise questions in a Speech-to-Speech (S2S) trans-
lation system. In such systems, two speakers communicate
orally in two different languages through two ASR systems
and two Machine Translation (MT) systems. An S2S system
takes speech input, recognizes it automatically, translates the
recognized input into text in another languages, and produces
synthesized speech output from the translation for the conver-

sational partner. In the S2S application we target, speakers
may converse freely about topics that are not specified in ad-
vance. In the case of a hypothesized ASR error, the clarifica-
tion component of the system seeks to clarify errors with the
speaker before passing a corrected ASR transcription on to
the MT component. In this way, the clarification component
attempts to intercept speech recognition errors early in the di-
alogue to avoid translating poorly recognized utterances.

In this paper we describe a two-stage approach to ASR
error localization by first predicting whether an ASR hypoth-
esis is misrecognized and then identifying which words of
the errorful utterance have been misrecognized. We explore
a combination of ASR posterior probabilities, prosodic, and
syntactic features in a machine learning classification task.
While prosodic information has previously been used to iden-
tify ASR error at the utterance level, its use in localizing word
error has been much less studied and rarely used for tasks
other than simple reduction of ASR error. Our research rep-
resents both new results in detecting local errors and a new
application for this task.

In Section 2 we discuss previous research on error predic-
tion and question generation for dialogue systems. In Sec-
tion 3 we describe the corpus we use in our experiments.
In Section 4, we describe our approach and in Section 5 we
present results. We conclude in Section 6 and outline future
research directions.

2. RELATED WORK

Handling of errors in automatic spoken dialogue systems in-
volves detecting the occurrence of an error and determining
an appropriate dialogue strategy to correct it. To improve er-
ror detection, Bohus and Rudiniki [6] analyse tradeoffs be-
tween misunderstandings and false rejections in a dialogue
system and optimize rejection thresholds using data-driven
methods. Hirschberg et al. [7] find that prosodic features are
very useful in identifying misrecognized utterances. Lopes et
al. [8] analyse different feature sets for improving confidence
score estimation for a user utterance in a dialogue system.
Komatani and Okuno [9] use utterance history to determine
whether a barge-in user utterance has been correctly recog-
nized.

For determining dialogue strategies for error recovery,
Dzikovska et al. [10] describe an approach to dealing with
errors in tutoring dialogue systems. Bohus et al. [11] use su-
pervised learning to determine the optimal error recovery pol-
icy in a dialogue system, such as providing a help message,
repeating a previous prompt, or moving on to the next prompt.

Our work on localized error detection is a step towards
introducing a new policy type in a dialogue system: asking a
targeted clarification question. Our goal is to detect misrec-
ognized words in a user utterance. Ogawa and Nakamura [12]
address a similar question of word-level speech recognition
confidence optimization by joint modeling of error confidence

English: good morning
Arabic: good morning
English: may i speak to the head of the household
Arabic: i’m the owner of the family and i can speak

with you
English: may i speak to you about problems with your

utilities
Arabic: yes i have problems with the utilities
Table 1: Example dialogue from the IraqComm Corpus.

and potential error causes, such as noise, speakers’ gender,
and use of an out-of-vocabulary word. In our work, we model
ASR confidence using a combination of the recognizer’s con-
fidence score, prosodic, and syntactic features.

Our use of prosodic features is motivated by [13, 7, 14].
Shriberg et al. [13] summarize successful use of prosodic fea-
tures for a variety of tasks including disfluency detection,
overlap modeling, and sentence segmentation. Results show
that prosodic information can significantly improve accuracy
on classification and tagging tasks. Hirschberg et al. [7] find
that prosodic features are useful in identifying misrecognized
utterances. Goldwater et al. [14] discover that there are more
recognition errors for words with extreme prosodic values
than words with typical values.

3. DATA

Overall Correct ASR Error in ASR
All Utt 3,729 2,664 (71.4%) 1,065 (28.6%)
All
Words

24,857 22,697 (91.3%) 2,160 (8.7%)

Words in
err Utt

7.48 5.45 (72.8%) 2.03 (27.2%)

Table 2: Data set from IraqComm system.

We perform our experiments on data from SRI’s Iraq-
Comm speech-to-speech translation system [5]. The data was
collected by NIST during seven months of evaluation exer-
cises performed between 2005 and 2008 [15]. The corpus
contains simulated dialogues between English military per-
sonnel and Arabic interviewees. Table 1 shows a sample di-
alogue from the dataset, with correct English translations for
the Arabic utterances.

The corpus includes English and Arabic speech with man-
ual transcriptions. We use the audio and manually annotated
transcripts of English utterances for our experiments. We
ran the SRI DynaSpeak [16] speech recognizer on the En-
glish utterances, generating posterior probabilities and word-
audio alignments using acoustic and language models gener-
ated from the NIST training dataset by SRI. We then removed
utterances in which a user directed a command to the com-

puter, such as Computer, repeat. We also removed instances
where a difference in ASR and transcript are due to anno-
tation, such as contractions we’re and we are and utterances
containing disfluencies.

The resulting corpus contains a total of 3.7K utterances
and 26K words. 28.6% of utterances and 8.7% of words
contain an ASR error. A misrecognized utterance (an utter-
ance with at least one recognition error) contains an average
of 7.48 words in length and includes average 2.03 misrecog-
nized words (Table 2). This corpus is well-suited for the task
of localized error detection, since, in utterances containing an
ASR error, the majority of words are recognized correctly.

4. METHOD

Localized detection of speech recognition errors is achieved
by predicting which words in an ASR hypothesis are mis-
recognized. We evaluate 1-stage and 2-stage approaches to
misrecognized word prediction. In a 1-stage approach, we
predict misrecognition on all words in a test set in a single
stage — i.e., is this word correctly recognized or not? A word
is misrecognized if it represents an insertion or a substitution.
In the first stage of a 2-stage approach, we predict utterance
misrecognition for each utterance in an ASR hypothesis. We
consider an utterance to be misrecognized if the word error
rate (WER) of the utterance is > 0. In the second stage, we
predict whether each word in the ASR hypothesis is misrec-
ognized or not.

To identify misrecognitions at the utterance and the word
level, we use ASR confidence scores, as well as prosodic and
syntactic features, as summarized in Table 3.

Our ASR confidence scores are the posterior probabilities
generated by the DynaSpeak recognizer. For the misrecog-
nized utterance prediction experiments, we look at the aver-
age posterior probabilities of all words in the ASR hypothesis.
For the misrecognized word experiments, we use the posterior
probability of the current (target), previous, and next words in
the ASR hypothesis, and the average of these posterior proba-
bilities. We obtain syntactic features by automatically assign-
ing part-of-speech tags using the Stanford POS tagger [17]
on the ASR hypotheses. For the misrecognized utterance pre-
diction experiment, we use unigram and bi-gram counts of
POS tags. To avoid data sparsity, we only count unigrams
and bigams that appear more than 10 times in the corpus. For
misrecognized word prediction experiments, we use the POS
tag and broad class tag type (content vs. function word) of the
current, previous, and next words. We assign function tags
to prepositions, pronouns, determiners, conjunctions, modals,
and adverbs and content to all of the other words. We extract
prosodic features from the entire utterance for the misrecog-
nized utterance experiments, using word boundary informa-
tion generated by DynaSpeak for the misrecognized word ex-
periment. We report results with J48 decision tree machine
learning classifier boosted with MultiBoostAB method [18]

using the Weka [19] machine learning library. Boosted J48
performed best on our data set compared with other machine
learning algorithms we experimented with, including Support
Vector Machines, Ripper, and regular J48 decision trees.

5. RESULTS

5.1. Comparison of Feature Sets

First, in order to identify the best performing feature set for
each of the classifiers we separately evaluate performance of
1) misrecognized utterance prediction and 2) misrecognized
word prediction. We present results of misrecognized utter-
ance and word prediction experiments on ASR confidence,
prosodic, and syntactic features, compared to the majority
class baseline. We evaluate the effect of combining prosodic
and syntactic features with the ASR confidence features. In
these experiments, we perform 10-fold cross-validation on the
full dataset. Table 4 shows precision, recall, and F-measure1,
for predicting correctly recognized and misrecognized utter-
ances; improvement in F-measure of our classifier over a clas-
sifier using only ASR confidence scores, and overall predic-
tion accuracy. The majority class baseline (always predicting
correct recognition) achieves 71.4% overall accuracy — i.e.,
failing to detect any incorrectly recognized utterances. Us-
ing ASR confidence features alone, we increase overall ac-
curacy to 79.4% with an F-measure for predicting correctly
recognized/misrecognized instances of .86/.60, respectively.
Contrary to our expectation, a combination of ASR confi-
dence and prosodic features (ASR+PROS) does not improve
this performance. However, syntactic features in combina-
tion with ASR confidence (ASR+SYN) is the highest per-
forming predictor across all measures. A classifier trained
with (ASR+SYN) achieves 83.8% accuracy with F-measures
of .93/.68. We observe that across all measures a combina-
tion of syntactic and ASR features achieves the highest per-
formance. In order to create targeted clarifications, we are
particularly interested in increasing the F-measure for detec-
tion of misrecognized utterances. We observe that by adding
syntactic features to ASR features, the F-measure of detecting
misrecognized utterances increases by 13.3%.

Our ultimate goal is to use the output of utterance mis-
recognition prediction as an input to word misrecognition pre-
diction. We run this experiment on a subset of the data with
the words from misrecognized utterances utterances known
from the reference transcription to contain errors. In this
dataset 27.2% of words are misrecognized. We perform a 10-
fold cross-validation experiment on this subset of the data.

Table 5 shows precision, recall, and F-measure for pre-
dicting correctly recognized and misrecognized words in ut-
terances known to be misrecognized, improvement in F-
measure of misrecognized word prediction over a classifier
that uses only ASR features, and overall accuracy of predic-

1F-measure = 2 ∗ recall ∗ precision/(recall + precision)

Feature type Description Utterance-correctness
classification experiment

Word-correctness classifi-
cation experiment

ASR log of posterior probability average over all words in hy-
pothesis

in current word; avg over 3
words; avg of all words

Prosodic F0(MAX/MIN/MEAN/STDEV) for whole utterance for word
features energy(MAX/MIN/MEAN/STDEV) for whole utterance for word
(PROS) proportion of voiced segments in whole utterance in current word

duration of utterance of current word
timestamp of beginning of first
word

used not used

speech rate over all utterance not used
Syntactic POS tags count of unigram/bigram this/previous/next word
features (SYN) word type (content/function) not used this/previous/next word

Table 3: Features used in the experiments

Feature Misrec Utt Correctly Rec. Utt Misrec F Misrec Overall
utt in corpus P R F P R F compared to ASR Accuracy

Maj. Base. 28.6% .71 1 .83 - 0 0 -100% 71.4%
ASR 28.6% .83 .90 .86 .68 .53 .60 0 79.4%
ASR+RROS 28.6% .82 .89 .85 .65 .51 .57 -.05 78.1%
ASR+SYN 28.6% .86 .93 .89 .77 .61 .68 +13.3 83.8%

Table 4: Precision, Recall, F-measure, overall accuracy, and % accuracy improvement over majority baseline for predicting
misrecognition in an utterance. The highest value in each column is highlighted in bold.

tion. The majority class baseline (predict correct recogni-
tion) achieves 72.8% overall accuracy, again failing to de-
tect any of the incorrectly recognized words. Using the
ASR confidence features alone, we achieve an F-measure
for predicting correctly recognized/misrecognized words of
.86/.50 respectively. ASR confidence scores together with
prosodic features (ASR+PROS) improve the F-measure for
predicting misrecognized words to .54. We observe that
prosodic features are very useful in predicting misrecognized
words, raising F-measure by 8%. A combination of all fea-
tures (ASR+PROS+SYN) is the highest performing predic-
tor across all measures except for recall on correctly rec-
ognized words. The performance of a classifier trained on
ASR+PROS+SYN features reaches an F-measure of .90/.70
and overall accuracy of 84.7%. Prosodic and syntactic fea-
tures account for an increase of 40% for predicting misrec-
ognized words compared to the classifier that uses only ASR
features.

These experiments show that the best performing fea-
ture combination for predicting misrecognized utterances is
ASR+SYN and for words ASR+PROS+SYN. In the next set
of experiments we use these feature sets to construct classi-
fiers in 1-stage and 2-stage misrecognition prediction meth-
ods.

5.2. Estimating System Improvement

We evaluate word-correctness prediction on the complete
dataset using 1-stage and 2-stage approaches. We split the

dataset into 80% training and 20% test sets, maintaining a
similar distribution for correct and incorrect utterances of
8.7%/8.5% in each. We train the utterance classifiers using
all utterances in the training set. We train the misrecognized
word classifiers using all words in the training set. We ex-
periment with upsampling instances of misrecognized words
in the training set to 35%2 in order to improve performance
of the classifier. Upsampling of an unbalanced dataset is a
common procedure discussed in [13].

We evaluate each of the methods on the same test set
where 8.5% of words re misrecognized. Misrecognized ut-
terance prediction in the 2-stage method uses a combination
of ASR confidence and syntactic features (ASR+SYN) which
was the highest performing feature combination reported in
Table 4. Table 6 compares the majority baseline, 1-stage ,
and 2-stage method for predicting misrecognized words in
a test set. Line 1 shows the majority baseline prediction
which achieves 91.5% overall accuracy by classifying all in-
stances as ‘correct’. Lines 2 and 3 show results for a 1-stage
method trained on the original and upsampled datasets. We
observe that, although the 1-stage method trained on the orig-
inal dataset achieves higher overall accuracy (94.4%) than the
1-stage method trained on the upsampled dataset (93.7%), the
upsampled training set achieves higher recall and F-measure
(.60/.62) for predicting misrecognized words compared to
original training set methods (.49/.60). Lines 4 and 5 show re-
sults for a 2-stage method trained on original and upsampled

2We derived this value empirically.

Feature Misrec Word Correctly Rec. Word Misrec F Misrec Overall
words in corpus P R F P R F compared to ASR Accuracy

Maj. Base 27.2% .73 1 .84 - 0 0 -100% 72.8%
ASR 27.2% .81 .93 .86 .69 .40 .50 0% 78.7%
ASR+PROS 27.2% .82 .92 .86 .67 .46 .54 8% 79.0%
ASR+PROS+SYN 27.2% .87 .93 .90 .76 .64 .70 40% 84.7%

Table 5: Precision, Recall, F-measure, for predicting correctly recognized/misrecognized words, change in F-measure for
predicting misrecognized words, and overall accuracy. The highest value in each column is highlighted in bold.

Method Misrec. words Misrec. words Word Correctly Rec. Word Misrec. Overall Acc Improve
in train. set in test set P R F P R F accuracy over maj. base.

1 Maj. Base - 8.5% .91 1.0 .95 - 0.0 - 91.5 % -
2 1-stage original 8.7% 8.5% .95 .99 .97 .77 .49 .60 94.4% 3.2%
3 1-stage upsampled 35% 8.5% .96 .97 .97 .64 .60 .62 93.7% 2.4%
4 2-stage original 8.7% 8.5% .95 .99 .97 .85 .43 .57 94.5% 3.3%
5 2-stage upsampled 35% 8.5% .96 .98 .97 .76 .52 .63 94.5% 3.3%

Table 6: Precision, Recall, F-measure, and overall accuracy for correctly recognized/misrecognized words, overall accuracy,
and accuracy improvement compared to the baseline method. The highest values in each column are highlighted in bold.

datasets. Both of the 2-stage methods achieve higher over-
all accuracy (94.5%) compared to the 1-stage methods. The
2-stage method trained on the original dataset achieves the
highest precision for detecting misrecognized words of .85,
while the 2-stage method trained on the upsampled dataset
achieves the highest F-measure of .63.

All of the experimental methods improve overall accuracy
performance by 2.4%-3.3% compared to the majority base-
line. The highest performance improvement is achieved by
the 2-stage predicting methods.

Note that, in comparison, Ogawa and Nakamura [12]
achieved 87%3 accuracy using joint modeling of confidence
and potential error causes on a corpus of Japaneese spoken
words with simulated noise conditions. These results are not
directly comparable to our results as they were achieved on a
different language, different domain, using a different speech
recognizer with a higher word error rate of 30.69%.

6. CONCLUSIONS AND FUTURE WORK

We have presented results of experiments designed to local-
ize ASR errors in spoken dialogue systems in order to con-
struct error-targeted reprise clarification questions automat-
ically. By responding to hypothesized errors more specifi-
cally we should be able to obtain clarifications from users in
a more natural and effective way. We employ ASR confidence
scores, prosodic, and syntactic features in 1-stage and 2-stage
approaches to error localization. In our 1-stage approach we
identify misrecognized words in all utterances while in our
2-stage approach we first identify misrecognized utterances
and then identifying the words within those utterances that

31 - EER reported in Table 5 of [12] for Confidence y0 using all features.

have been misrecognized. On a corpus of English utterances
collected from the SRI IraqComm Transtac speech-to-speech
translation system, we have found that a combination of ASR
confidence scores and syntactic features can detect utterance
recognition errors with an overall accuracy of 94.5% which is
3.3% improvement over a majority class baseline of 91.5%.

Our experimental results show that prosodic and syntac-
tic features improve performance of misrecognized utterance
and word classifiers. A combination of ASR and syntactic
features achieves the highest F-measure on misrecognized ut-
terance prediction with 13.3% improvement over the ASR
features alone. A combination of ASR, prosodic, and syntac-
tic features achieves the highest F-measure on misrecognized
word prediction with 27.1% improvement over the ASR fea-
tures alone.

Comparing the performance of 1-stage and 2-stage word
prediction methods, we observe that each method achieves
highest performance according to a different measure of mis-
recognized word prediction: the 1-stage method trained on
the upsampled set optimizes recall and F-measure, the 2-stage
method trained on the original set optimizes precision, and
the 2-stage method trained on the upsampled set optimizes F-
measure. When misrecognized word prediction is used in a
system, the difference between the classification methods and
training set class distributions may be taken into consideration
based on the system goals.

In future work, we will examine the usefulness of ad-
ditional syntactic, semantic, and prosodic features, such
as higher level prosodic features using Rosenberg’s Au-
ToBI [20]. Finally, we will incorporate our results into our
clarification question generator. We are currently collecting
a corpus of human clarification questions in response to ut-
terances with ASR errors using Amazon Mechanical Turk, to

build our model of error-targeted clarification questions and
evaluate it in our speech-to-speech translation application.

7. ACKNOWLEDGEMENTS

This work was partially funded by DARPA HR0011-12-C-
0016 as a Columbia University subcontract to SRI Interna-
tional.

8. REFERENCES

[1] M. Purver, The Theory and Use of Clarification Re-
quests in Dialogue, Ph.D. thesis, King’s College, Uni-
versity of London, 2004.

[2] J. Lopes, M. Eskenazi, and I. Trancoso, “Towards
choosing better primes for spoken dialog systems,”
in Proceedings of the IEEE Workshop on Automatic
Speech Recognition and Understanding (ASRU), 2011.

[3] S. Stoyanchev and A. Stent, “Lexical and syntactic
priming and their impact in deployed spoken dialog sys-
tems,” in Proceedings of the Meeting of the North Amer-
ican Chapter of the Association for Computational Lin-
guistics (NAACL), 2009.

[4] D. J. Litman and S. Silliman, “Itspoke: an intelligent
tutoring spoken dialogue system,” in Demonstration
Papers at HLT-NAACL 2004, Stroudsburg, PA, USA,
2004, HLT-NAACL–Demonstrations ’04, pp. 5–8, As-
sociation for Computational Linguistics.

[5] M. Akbacak et al., “Recent advances in SRI’s
IraqCommtm Iraqi Arabic-English speech-to-speech
translation system,” in ICASSP, 2009, pp. 4809–4812.

[6] D. Bohus and A. I. Rudnicky, “A principled approach
for rejection threshold optimization in spoken dialog
systems,” in INTERSPEECH, 2005, pp. 2781–2784.

[7] J. Hirschberg, D. J. Litman, and Marc Swerts, “Prosodic
and other cues to speech recognition failures,” Speech
Communication, vol. 43, no. 1-2, pp. 155–175, 2004.

[8] J. Lopes, M. Eskenazi, and I. Trancoso, “Incorporat-
ing asr information in spoken dialog system confidence
score,” in Computational Processing of the Portuguese
Language, Lecture Notes in Computer Science.

[9] Kazunori Komatani and Hiroshi G. Okuno, “Online er-
ror detection of barge-in utterances by using individual
users’ utterance histories in spoken dialogue system,” in
SIGDIAL Conference, 2010, pp. 289–296.

[10] M. Dzikovska et al., “Dealing with interpretation errors
in tutorial dialogue,” in SIGDIAL Conference, 2009, pp.
38–45.

[11] D. Bohus, B. Langner, A. Raux, A. Black, M. Eske-
nazi, and A. Rudnicky, “Online supervised learning of
non-understanding recovery policies,” in Proceedings of
SLT, 2006.

[12] A. Ogawa and A. Nakamura, “Joint estimation of con-
fidence and error causes in speech recognition,” Speech
Communication, vol. 54, no. 9, pp. 1014 – 1028, 2012.

[13] E. Shriberg and A. Stolcke, “Prosody modeling for
automatic speech recognition and understanding,” in
Proceedings of the Workshop on Mathematical Foun-
dations of Natural Language Modeling. 2002, pp. 105–
114, Springer.

[14] S. Goldwater et al., “Which words are hard to recog-
nize? prosodic, lexical, and disfluency factors that in-
crease speech recognition error rates,” Speech Commu-
nication, vol. 52, no. 3, pp. 181–200, 2010.

[15] B. A. Weiss et al., “Performance evaluation of speech
translation systems,” in LREC, 2008.

[16] H. Franco et al., “Dynaspeak: Sri’s scalable speech rec-
ognizer for embedded and mobile systems,” in Proceed-
ings of the second international conference on Human
Language Technology Research, San Francisco, CA,
USA, 2002, HLT ’02, pp. 25–30, Morgan Kaufmann
Publishers Inc.

[17] K. Toutanova et al., “Feature-rich part-of-speech tag-
ging with a cyclic dependency network,” in Proceedings
of the 2003 Conference of the North American Chapter
of the Association for Computational Linguistics on Hu-
man Language Technology - Volume 1, 2003.

[18] G. I. Webb, “Multiboosting: A technique for combin-
ing boosting and wagging,” in MACHINE LEARNING,
2000, pp. 159–196.

[19] I. Witten and F. Eibe, Data Mining: Practical machine
learning tools and techniques, Morgan Kaufmann, San
Francisco, 2nd edition, 2005.

[20] A. Rosenberg, “Autobi - a tool for automatic tobi anno-
tation,” in INTERSPEECH, 2010, pp. 146–149.

Acoustic Model Building and Forced
Alignment for the Let’s Go! Data Set on

Sphinx4

Philipp Salletmayr

November 8, 2012

Abstract

This Seminary Project report is concerned with the preparation of the Let’s Go!
[6] data set as a basis for to researching the impact of prosodic features to ASR
error prediction. This preparation requires the execution of forced alignment on
the available data in order to provide word-level start and and end time makers.
In the course of this report, a brief analysis of the data available is made. After
simple overviews about language and acoustic models are given, a more in-depth
explanation how those models were created is provided.

Contents

1 Introduction & Goals 3

2 Data 5

3 Language Model 9

4 Acoustic Model 12

5 Training and implementation 15

A Appendix 21
A.1 Numericals to Words Conversion 21
A.2 Extraction of Transcriptions . 24
A.3 ASR . 26
A.4 Forced Alignment . 29

1

List of Tables

2.1 Example dialogue from the Let’s Go! Corpus. [2] 6
2.2 Example data entry from the Let’s Go! Corpus. 7

3.1 Transcription Examples for the LM. 10
3.2 Example for an ARPA standard LM 11

4.1 Sample fileids . 12
4.2 Sample transcription . 13
4.3 Sample dictionary . 13
4.4 Sample phones . 13
4.5 Filler dictionary . 14

5.1 Tune parameters for initial line of testing 16
5.2 Standard parameters for Sphinx4 16
5.3 Modified parameters for Sphinx4 17
5.4 Standard frontend of Sphinx . 18
5.5 Modified frontend of Sphinx . 18
5.6 Using the MLLT . 19
5.7 Forced alignment examples. 19

2

Chapter 1

Introduction & Goals

To conduct sophisticated experiments in Automatic Speech Recognition (ASR),
the data to be used has to fulfill certain criteria. The most basic of these is the
availability of transcriptions describing the content of the audiodata as accurately
as possible. One characteristic of these transcription may also be the marking of
start- and end-times of words. As most transcriptions are done manually those
timestamps are rarely part of this process. Even if the marking of timestamps is
part of the transcription process, the accuracy is usually lacking due to rough scal-
ing (seconds vs milli-seconds). Also the extent of the transcribed data is usually
rather small due to dramatically increased costs in both time and money. One
method to automatically derive timestamps is forced alignment. Forced Align-
ment is a process where a predefined text is being fitted onto an audio file such
that each consecutive word is put to the most likely timespan of the audio ac-
cording to ASR. Thus, in addition to the audio and transcriptions, a working ASR
system capable of processing the audio data is needed.

In the context of preparing experiments concerned with word-level feature
extraction, the data chosen to serve as the basis for these experiments was the Let’s
Go! data set. While both audio and transcriptions were available, no word-level
marking of start- and end-times was done during the transcription process. As
these markings were necessary for experiments, the decision was made to obtain
these markers by running forced alignment on the data set using transcriptions.
The ASR system chosen to serve as a basis for the experiments - CMU Sphinx4 -
however does not support either forced alignment or the audio format used for the
recording of audio in the Let’s Go! data set. So in order to conduct experiments,
2 prerequisites had to be achieved and were defines as the goals of this Seminary
Project:

3

1. Train models so that the ASR would be able to process the Let’s Go! dataset

2. Prepare forced alignment using Sphinx4 ASR and compute word-level times-
tamps

4

Chapter 2

Data

The Let’s Go! data set is the result of a project done by the Carnegie Mellon
University (CMU) in Pittsburgh, PA. Its goal was to build a spoken dialog system
which enhances the usability for non-native speakers and the elderly. In order
to gather and evaluate data, the system was set up as a bus information system,
providing users with the ability to inquire about current schedules of the public bus
system in the greater Pittsburgh area. [6] Table 2.1 shows an example of a typical
dialog. The data used in the training and testing of our ASR was collected from
September 2008 to August 2009 containing 257654 utterances corresponding to
roughly 150 hours of speech.

5

SYSTEM: WELCOME TO CMU LETS GO BUS
INFORMATION

SYSTEM: WHAT CAN I DO FORYOU?
User: Id like to go to Squirrel Hill.
SYSTEM: GOING TO SQUIRREL HILL. IS THIS

CORRECT?
User: Yeah.
SYSTEM: WHERE ARE YOU LEAVING FROM?
User: Im leaving from CMU.
SYSTEM: LEAVING CMU. AT WHAT TIME DO

YOU WANT TO LEAVE?
User: Now.
SYSTEM: LET ME LOOK THAT UP FOR YOU.

THE NEXT 61C LEAVES FORBES
AND CRAIG AT []

Table 2.1: Example dialogue from the Let’s Go! Corpus. [2]

The audiofiles were provided as 8kHz raw audio format (RAW) with little en-
dian coding. Transcriptions were provided in a single .csv file. Every transcription
included:

• id: the ids for that particular utterance. It also corresponds to the unique
path to the .raw file. E.g., ./20081001/001/004.raw (the turn 004 of dialog
000 on 2008/10/01)

• label: this is either ”nonunderstandable” (part or all of the utterance is not
understandable), ”understandable correct” (the utterance is understandable
and was correctly recognized by the ASR) or ”understandable incorrect”
(the utterance is understandable and was not correctly recognized by our
ASR)

• asr output : output given by our ASR.

• first confidence : confidence on the first pass, as explained below

• crowd transcript : human transcript of that utterance. explained below.

• second confidence : confidence on the crowd transcript

6

The data set was transcribed through crowdsourcing. The transcription con-
sisted of two passes. The first pass was to try to weed out the real bad recordings,
where part of it was non-understandable. For that first passed, 5 persons were
asked to pick one of the 3 labels. So the first confidence measure is the number
of workers who voted for that label. For example, a first confidence of 0.8 on
a ”nonunderstandable” means that 4 persons out of 5 agreed on this label. At
that point, the goal was to put the ”understandable incorrect” in the second pass
where workers would actually transcribe the utterances. However, since this is the
most expensive step in the process, it was decided to put up only the ”understand-
able incorrect” with a first confidence of 0.8 and higher, so that there wouldn’t be
any ”hard to transcribe” utterances in the second pass. [7]

Every crowd transcript would thus fall in one of these 4 categories :

1. ASR worked well : crowd transcript is the output of ASR, second confidence
is the percent of workers who think the ASR output is good

2. The utterances is all/partly not understandable: crowd transcript is non understandable
and the second confidence is the percent of workers who think the utterance
is not understandable

3. The crowd transcribed the utterance : crowd transcript is what workers
agreed on what the transcript should be. Second confidence is either 0.8
if 4 workers gave that transcript, or 1.0 if all 5 workers gave that transcript.

4. The transcript proposed is not reliable : crowd transcript is going to be the
best guess on how the utterance should be transcribed. The second confidence
is going to be 0.

Table 2.2 shows an example of how an utterance was transcribed and labeled.

id : ./20081001/000/003.raw
label : understandable incorrect
asr output: forbes if than the re going
first confidence : 0.800000
crowd transcript : forbes and bigelow
second confidence : 0.644444444444
Workers involved: 5

Table 2.2: Example data entry from the Let’s Go! Corpus.

7

54% of utterances in the corpus were labeled as ”understandable correct”,
29% as ”understandable incorrect” 29% and 17% as ”nonunderstandable”. In
order to achieve best possible performance, only transcriptions labeled either ”un-
derstandable correct” or ”understandable incorrect” with a ”first confidence” equal
or higher than 0.8 were used for training and testing of the ASR engine. Which
left a total of 212828 utterances. The audio files were also converted to 8kHz
.wav files to simplify processing. For training and testing we split the data up into
smaller junks:

• Data from September through December 2008 was used to train both the
language and acoustic models.

• Data from January 2009 was used for testing purposes.

• Other data was left out of the train/test circle and only used to further eval-
uate performance.

8

Chapter 3

Language Model

A language model (LM) is used to restrict word search. It defines which word
could follow previously recognized words (as the matching is a sequential pro-
cess) and helps to significantly restrict the matching process by stripping words
that are not probable. Search is constrained either absolutely by enumerating some
small subset of possible expansions or probabilistically by computing a likelihood
for each possible successor word. The former usually relies on an associated
grammar which is compiled down into a graph, the latter is trained from a cor-
pus. To reach a good accuracy rate, a language model must be very successful in
search space restriction. This means it should be good at predicting the next word.
A language model usually restricts the vocabulary considered to the words it con-
tains. A language model can also contain smaller chunks like subwords or even
phones. Search space restriction in this case is usually worse and corresponding
recognition accuracies are lower than with a word-based language model though.
Such models are usually called upon for name recognition. [4]

Sphinx4 requires a statistical language model which can be trained using the
CMU-Cambridge Language Modeling Toolkit (CMUCLMT). For training of the
LM, only the transcriptions of the corpus are needed, but have to be prepared to
follow a standard input model defined by the toolkit:

• Utterances may not contain any numericals (e.g. 64). Thus, all numericals
have to be converted into a string. This was done using a python script. A.1

• All words in an utterance have to be capitalized

• Utterances have to be delimited by >s <and >/s <tags. The result should be
the set of sentences that are bounded by the start and end sentence markers:

9

>s <and >/s <. See 3.1 for examples of the transcription

>s <THE SIXTY ONE C >/s <
>s <WHEN IS THE NEXT SIXTY FOUR A FROM SHADYSIDE TO SQUIRREL HILL >/s <
>s <SOUTH EIGHTEENTH STREET >/s <
>s <WHEN IS THE NEXT FIFTY NINE U FROM FIFTH AND ATWOOD >/s <

Table 3.1: Transcription Examples for the LM.

To make sure the used transcriptions are as close to the actual information con-
tained in the audiofiles, we used the ”crowd transcript” provided with the corpus
as well as information in the field ”id” (see 2.2). Both fields were extracted using
Java script (A.2 by copying content of both fields into a double column .csv file.

After these preperations, the pipeline for building the LM were as follows (all
tools mentioned are provided with a download of the CMUCLMT):

1. Generate the vocabulary file containing all the words in the transcription.
This was done using the text2wfreq tool - which creates a list of every word
which occurred in the text, along with its number of occurrences - and the
wfreq2vocab tool which will sort the most frequent 20,000 words alphabet-
ically into a .vocab file.

2. Check the vocabulary file for misspellings like numbers that weren’t con-
verted correctly, general misspellings or unnatural words.These mistakes
then were corrected in the transcription file itself and the vocabulary file
was re-computed.

3. The vocabulary file and the transcriptions are then combined to compute an
id n-gram file containing a numerically sorted list of n-tuples of numbers,
corresponding to the mapping of the word n-grams relative to the vocabu-
lary.

4. The id n-gram is then used to generate a closed vocabulary ARPA format
n-gram weighted statistical language model (see table 3.2) by running the
idngram2lm tool.

5. As a last step we then are left with converting the ARPA format LM to the
CMU binary form (.DMP). This is done by running the sphinx lm convert
tool.

10

Figure 3.1: CMUCLMT Flowchart [1]

1−grams :
−3.7839 board −0.1552
−2.5998 bot tom −0.3207
−3.7839 bunch −0.2174

2−grams :
−0.7782 as t h e −0.2717
−0.4771 a t a l l 0 .0000
−0.7782 a t t h e −0.2915

3−grams :
−2.4450 i n t h e l o w e s t
−0.5211 i n t h e midd le
−2.4450 i n t h e on

Table 3.2: Example for an ARPA standard LM

11

Chapter 4

Acoustic Model

Acoustic modeling of speech refers to the process of establishing statistical repre-
sentations for the feature sequences computed from the speech waveform. While
acoustic models (AM) include segmental models, neural networks, maximum en-
tropy models, etc. Hidden Markov Models (HMM) are the one most common
type of acoustic models. Acoustic modeling also encompasses ”pronunciation
modeling”, which describes how a sequence or multi-sequences of fundamental
speech units (e.g. phones) are used to represent larger speech units such as words
or phrases which are the object of speech recognition. [8]

To build an acoustic model usable by Sphinx4, the Sphinx group has released
a specialized training software - SphinxTrain. SphinxTrain requires a certain set
of files to work. Below listed are the files with their extensions as well as a sample
content [5]:

• *.train.fileids - List of audiofiles for training given as paths relative to the
training folder

./20081001/000/003.raw.wav

./20081001/000/004.raw.wav

Table 4.1: Sample fileids

• *.train.transcription - Transcriptions for training. Each line contains the
content of a single audiofile. Any given line in this file has to contain the
transcription for the audiofile listed on the same line as in the *.fileids file.

12

Like the transcriptionfile used for training of the LM, utterances have to be
delimited by >s <and >/s <tags. In addition, each line has to be followed
by the fileid in parentheses. This ID may not contain the entire path but only
the filename without any extensions.

>s <FIFTY NINE U >/s <(003)
>s <FORBES AND BIGELOW >/s <(004)

Table 4.2: Sample transcription

• *.dic - Phonetic dictionary Contains one word per line and its mapping to a
sequence of phonemes. The same word may be represented multiple times
with different phoneme representation.

ATLANTIC AH T L AE N T IH K
ATLANTIC(2) AH T L AE N IH K
ATTENTION AH T EH N SH AH N)

Table 4.3: Sample dictionary

• *.phone - Phoneset file A list of all the phonemes used in the phonetic dic-
tionary.

D
DH
EH
ER

Table 4.4: Sample phones

• *.filler - List of fillers Non-speech sounds are mapped to corresponding
non-speech or speech-like sound units. For training of this model only a
rudimentary model containing only the start and end silences was used, as
the transcription didn’t contain any more sophisticated noise transcription.

13

>s <SIL
>sil <SIL
>/s <SIL

Table 4.5: Filler dictionary

• *.lm.DMP - Language model The binary language model built earlier.

All of these files are then moved into a project folder along with the files automat-
ically created by SphinxTrain.

14

Chapter 5

Training and implementation

As there aren’t many resources for information on how to configure SphinxTrain
to achieve certain characteristics, the most important and complicated step of
training the AM is to set up the configuration file. SphinxTrain is most com-
monly used to train on 16kHz, microphone recorded data. However, in this case
it had to be set up for 8kHz telephone recorded data. This was done by modifying
3 values in the SphinxTrain configuration file [5]:

F e a t u r e e x t r a c t i o n p a r a m e t e r s
$CFG WAVFILE SRATE = 8 0 0 0 . 0 ;
$CFG NUM FILT = 3 1 ;
$CFG LO FILT = 200 ;
$CFG HI FILT = 3500 ;

Other than this change, for the first iteration we left everything else (e.g.: fi-
nal number of Gaussian densities, number of tied states) unchanged/used recom-
mended setting as per [5]. .

After several errors during training, we found out that training will only be
successful if:

1. The .dic,.filler, .phones, and .transcription file have everything capitalized.

2. There is an empty line at the bottom of each file.

3. There is the same number of lines in the .transcription file as in the .fileids
file

4. There are no duplicate entries in the .phones file.

15

A typical training circle turned out to take around 13 hours. After the first
successful training, the configuration file of the Sphinx ASR system had to be
modified to prepare usage of both the model and 8kHz files. This was done in
accordance to [3].

After the first test run, the ASR failed to perform recognition on files contain-
ing just 1 word (e.g. ”yes” or ”no”) in 95% of those cases and misrecognized
nearly 90% of multiword utterances.

As there are no guidelines in place to find optimal training paramenters, we
proceeded to build multiple AMs using different tuning parameters and test them
on the data from January 1st 2009.

Number of Gaussian Densities Number of Tied-States (Senones)
8 3000
8 2000
16 3000
32 8000

Table 5.1: Tune parameters for initial line of testing

Running tests, the AM featuring 16 Gaussian Densities and 3000 Senones
turned out to improve recognition the most. This improvement however still re-
sulted in far more misrecognitions than would be tolerable for a live system.

To further try and improve performance we turned to the configration of Sphinx4
itself. The first part of the configuration file defines general properties of the
recognition as shown in Table 5.2.

<p r o p e r t y name=” abso lu teBeamWidth ” v a l u e =”500”/>
<p r o p e r t y name=” r e l a t i v e B e a m W i d t h ” v a l u e =”1E−80”/>
<p r o p e r t y name=” absoluteWordBeamWidth ” v a l u e =”20”/>
<p r o p e r t y name=” re la t iveWordBeamWidth ” v a l u e =”1E−60”/>
<p r o p e r t y name=” w o r d I n s e r t i o n P r o b a b i l i t y ” v a l u e =”1E−16”/>
<p r o p e r t y name=” languageWeigh t ” v a l u e =”7.0”/ >
<p r o p e r t y name=” s i l e n c e I n s e r t i o n P r o b a b i l i t y ” v a l u e =”.1”/ >
<p r o p e r t y name=” f r o n t e n d ” v a l u e =” epFron tEnd ”/>
<p r o p e r t y name=” r e c o g n i z e r ” v a l u e =” r e c o g n i z e r ”/>
<p r o p e r t y name=” s h o w C r e a t i o n s ” v a l u e =” f a l s e ”/>

Table 5.2: Standard parameters for Sphinx4

16

As these standard configurations are designed to deal with real-time, clean
microphone recorded speech, we tried to find parameters that would better fit the
kind of audio in our data. Given that the data was collected using natural speech in
natural environments our data was charged with a higher amount of background
noise than these parameters would normally allow for. 4 values specifically turned
out to be helpful in improving performance.

• WordBeamWidth (both absolute and relative) - With increasing value in both
parameters, the ASR will take more words into the active word list for any
given recognition, thus increasing the chance of including the correct word.

• wordInsertionProbability - Word break likelihood. This value sets a proba-
bility of which words are included in the initial hypothesis.

• silenceInsertionProbability - Likelihood of inserting silence. For noisier
data, a smaller value will help avoiding failed recognitions.

After modifying values (see Table 5.3, ASR performance again increased
slightly. However, single word utterances remained an issue as they more often
than not would fail to be recognized at all and longer utterances were in many
cases only partially recognized.

<p r o p e r t y name=” abso lu teBeamWidth ” v a l u e =”500”/>
<p r o p e r t y name=” r e l a t i v e B e a m W i d t h ” v a l u e =”1E−120”/>
<p r o p e r t y name=” absoluteWordBeamWidth ” v a l u e =”200”/>
<p r o p e r t y name=” re la t iveWordBeamWidth ” v a l u e =”1E−100”/>
<p r o p e r t y name=” w o r d I n s e r t i o n P r o b a b i l i t y ” v a l u e =”1E−6”/>
<p r o p e r t y name=” languageWeigh t ” v a l u e =”8.0”/ >
<p r o p e r t y name=” s i l e n c e I n s e r t i o n P r o b a b i l i t y ” v a l u e =”.01”/ >
<p r o p e r t y name=” f r o n t e n d ” v a l u e =” epFron tEnd ”/>
<p r o p e r t y name=” r e c o g n i z e r ” v a l u e =” r e c o g n i z e r ”/>
<p r o p e r t y name=” s h o w C r e a t i o n s ” v a l u e =” f a l s e ”/>

Table 5.3: Modified parameters for Sphinx4

This partial recognition of audio caused us to take a closer look again at the
frontend.

17

<p r o p e r t y l i s t name=” p i p e l i n e ”>
<i tem>a u d i o F i l e D a t a S o u r c e </ i tem>
<i tem>d a t a B l o c k e r </ i tem>
<i tem>s p e e c h C l a s s i f i e r </ i tem>
<i tem>speechMarker </ i tem>
<i tem>n o n S p e e c h D a t a F i l t e r </ i tem>
<i tem>p r e e m p h a s i z e r </ i tem>
<i tem>windower </ i tem>
<i tem> f f t </ i tem>
<i tem>m e l F i l t e r B a n k </ i tem>
<i tem>d c t </ i tem>
<i tem>liveCMN </ i tem>
<i tem>f e a t u r e E x t r a c t i o n </ i tem>
</ p r o p e r t y l i s t >

Table 5.4: Standard frontend of Sphinx

Of special concern here is the second to last item listed. liveCMN, where
CMN stands for c̈epstral mean normalization,̈ indicates that this configuration of
the frontend was designed to deal with realtime audio. However, in our case we
want to process pre-recorded audiofiles. In such case, the batchCMN is the more
desirable item to use. 3 more items related to the processing of live audio had to
be removed in order to get the system running again.

<p r o p e r t y l i s t name=” p i p e l i n e ”>
<i tem>a u d i o F i l e D a t a S o u r c e </ i tem>
<i tem>d a t a B l o c k e r </ i tem>
<i tem>p r e e m p h a s i z e r </ i tem>
<i tem>windower </ i tem>
<i tem> f f t </ i tem>
<i tem>m e l F i l t e r B a n k </ i tem>
<i tem>d c t </ i tem>
<i tem>batchCMN </ i tem>
<i tem>f e a t u r e E x t r a c t i o n </ i tem>

</ p r o p e r t y l i s t >

Table 5.5: Modified frontend of Sphinx

18

With these alterations the ASR no longer failed to recognize longer utterances
and the overall performance increased significantly. After further research regard-
ing performance enhancing configurations when using 8kHz prerecorded audio,
we encountered the usage of Maximum Likelihood Linear Transform (MLLT) ta-
bles. These tables have to be computed during training and are especially helpful
when dealing with changing environments and speakers as is the case with our
data. To use the newly created tables, the following lines have to be added to the
configuration of Sphinx after inserting the item featureTransform into the fron-
tend:

<component name=” f e a t u r e T r a n s f o r m ”
t y p e =” edu . cmu . s p h i n x . f r o n t e n d . f e a t u r e . F e a t u r e T r a n s f o r m ”>
<p r o p e r t y name=” l o a d e r ” v a l u e =” ws jLoader ”/>

</ component>

Table 5.6: Using the MLLT

As a result, the final version of the AM is a 16 Guassian, 3000 Senones 8kHz
model including an MLLT transformation table. Comparing the performances of
both the originally used ASR and the one based on the newly trained AM reveals
a significant boost in accuracy. While the original data contained a total of 73643
utterances with at least one misrecognition, this number was reduced to 50759
utterances using the new AM.

Forced Alignment

Sphinx4 does not come prepared to do forced alignment so implementing this
feature took some re-writing of the ASR configuration. Theses changes can be
seen in A.4.

After running forced alignment, the timestamps for every word were inserted
as shown in table 5.7

20081001/000/013.raw.wav,fifty(0.8;1.35) nine(1.35;1.62) u(1.62;3.07)
20081001/000/014.raw.wav,no(0.47;1.6)
20081001/000/015.raw.wav,yes(0.03;1.41)

Table 5.7: Forced alignment examples.

19

Bibliography

[1] Philip Clarkson. The cmu-cambridge statistical language modeling toolkit
manual. http://www.speech.cs.cmu.edu/SLM/toolkit documentation.html.

[2] CMU. Let’s go!: A spoken dialog system for the general public.
http://www.speech.cs.cmu.edu/letsgo/, 2006.

[3] CMU. How to use models from sphinxtrain in sphinx-4.
http://cmusphinx.sourceforge.net/sphinx4/doc/UsingSphinxTrainModels.html,
2009.

[4] CMU. Building language model. http://cmusphinx.sourceforge.net/wiki/tutoriallm,
2012.

[5] CMU. Training acoustic model for cmusphinx.
http://cmusphinx.sourceforge.net/wiki/tutorialam, 2012.

[6] Antoine Raux et al. Lets go public! taking a spoken dialog system to the real
world. Technical report, Language Technologies Institute, Carnegie Mellon
University, 2005.

[7] Maxine Eskenazi Gabriel Parent. Toward better crowdsourced transcription:
Transcription of a year of the lets go bus information system data. Technical
report, Language Technologies Institute, Carnegie Mellon University, 2011.

[8] Microsoft Research. Acoustic modeling. http://research.microsoft.com/en-
us/projects/acoustic-modeling/.

20

Appendix A

Appendix

A.1 Numericals to Words Conversion

21

busnumberstowords
###############################
#convert bus numbers into words
51[a-z] -> fifty one
###############################

import re

#input is a word, if this word matches a bus format, expand it to words
else return the word
def getbusstr(str):
 matchbus = re.search("([0-9]?)([0-9])([a-zA-Z])", str);
 retstr = "";

 if matchbus:
 ten = matchbus.group(1)
 one = matchbus.group(2)
 letter = matchbus.group(3)

 if(ten=='1'):
 if(one=='0'): retstr += "ten"
 if(one=='1'): retstr += "eleven"
 if(one=='2'): retstr += "twelve"
 if(one=='3'): retstr += "thirteen"
 if(one=='4'): retstr += "fourteen"
 if(one=='5'): retstr += "fifteen"
 if(one=='6'): retstr += "sixteen"
 if(one=='7'): retstr += "seventeen"
 if(one=='8'): retstr += "eighteen"
 if(one=='9'): retstr += "nineteen"
 else:
 if(ten=='2'): retstr += "twenty"
 if(ten=='3'): retstr += "thirty"
 if(ten=='4'): retstr += "fourty"
 if(ten=='5'): retstr += "fifty"
 if(ten=='6'): retstr += "sixty"
 if(ten=='7'): retstr += "seventy"
 if(ten=='8'): retstr += "eighty"
 if(ten=='9'): retstr += "ninety"

 if(one and retstr!=""): retstr += " "

 if(one=='1'): retstr += "one"
 if(one=='2'): retstr += "two"
 if(one=='3'): retstr += "three"
 if(one=='4'): retstr += "four"
 if(one=='5'): retstr += "five"
 if(one=='6'): retstr += "six"
 if(one=='7'): retstr += "seven"
 if(one=='8'): retstr += "eight"
 if(one=='9'): retstr += "nine"

 if(letter):
 if (retstr != ""): retstr += " "
 retstr += letter;
 else:
 retstr = str #if there is no match, return the word

 return retstr

def process(str):
 words = str.split()
 resultstr = ""
 for w in words:
 if (resultstr!=''): resultstr += " "
 resultstr += getbusstr(w)
 return resultstr

Seite 1

busnumberstowords

#print process("tata 11B blabla")
#print process("54C")
#print process("1U")

Seite 2

numberstowords
###############################
#convert numbers into words
51 -> fifty one
###############################

import re

#input is a word, if this word matches a bus format, expand it to words
else return the word
def getbusstr(str):
 matchbus = re.search("(([0-9]?)([0-9]?)([0-9]?)([0-9]))", str);
 retstr = "";

 if matchbus:
 thousand = matchbus.group(1)
 hundred = matchbus.group(2)
 ten = matchbus.group(3)
 one = matchbus.group(4)

 if(thousand=='1'): retstr += "one thousand "
 if(thousand=='2'): retstr += "two thousand "
 if(thousand=='3'): retstr += "three thousand "
 if(thousand=='4'): retstr += "four thousand "
 if(thousand=='5'): retstr += "five thousand "
 if(thousand=='6'): retstr += "six thousand "
 if(thousand=='7'): retstr += "seven thousand "
 if(thousand=='8'): retstr += "eight thousand "
 if(thousand=='9'): retstr += "nine thousand "

 if(hundred=='1'): retstr += "one hundred "
 if(hundred=='2'): retstr += "two hundred "
 if(hundred=='3'): retstr += "three hundred "
 if(hundred=='4'): retstr += "four hundred "
 if(hundred=='5'): retstr += "five hundred "
 if(hundred=='6'): retstr += "six hundred "
 if(hundred=='7'): retstr += "seven hundred "
 if(hundred=='8'): retstr += "eight hundred "
 if(hundred=='9'): retstr += "nine hundred "

 if(ten=='1'):
 if(one=='0'): retstr += "ten "
 if(one=='1'): retstr += "eleven "
 if(one=='2'): retstr += "twelve "
 if(one=='3'): retstr += "thirteen "
 if(one=='4'): retstr += "fourteen "
 if(one=='5'): retstr += "fifteen "
 if(one=='6'): retstr += "sixteen "
 if(one=='7'): retstr += "seventeen "
 if(one=='8'): retstr += "eighteen "
 if(one=='9'): retstr += "nineteen "
 else:
 if(ten=='2'): retstr += "twenty "
 if(ten=='3'): retstr += "thirty "
 if(ten=='4'): retstr += "fourty "
 if(ten=='5'): retstr += "fifty "
 if(ten=='6'): retstr += "sixty "
 if(ten=='7'): retstr += "seventy "
 if(ten=='8'): retstr += "eighty "
 if(ten=='9'): retstr += "ninety "

 if(one=='1'): retstr += "one"
 if(one=='2'): retstr += "two"

Seite 1

numberstowords
 if(one=='3'): retstr += "three"
 if(one=='4'): retstr += "four"
 if(one=='5'): retstr += "five"
 if(one=='6'): retstr += "six"
 if(one=='7'): retstr += "seven"
 if(one=='8'): retstr += "eight"
 if(one=='9'): retstr += "nine"

 else:
 retstr = str #if there is no match, return the word

 return retstr

def process(str):
 words = str.split()
 resultstr = ""
 for w in words:
 if (resultstr!=''): resultstr += " "
 resultstr += getbusstr(w)
 return resultstr

#print process("tata 11B blabla")
#print process("54C")
#print process("1U")

Seite 2

A.2 Extraction of Transcriptions

26

getgoodtranscriptions.java

import java.io.File ;

public class getgoodtranscriptions {

public static void main(String[] args) {
try {

CsvReader transciption = new
CsvReader("D:/TU/Master/Dip/CU/LGT/letsgo_transcript_2008_200 9_v4.csv") ;

CsvWriter output = new CsvWriter(new
FileWriter("D:/TU/Master/Dip/CU/LGT/asrconf.csv" , true), ',') ;

//CsvWriter output2 = new CsvWriter(new
FileWriter("D:/TU/Master/Dip/CU/LGT/correctfiles.tx t", true), ',') ;

CsvWriter output2 = new CsvWriter(new
FileWriter("D:/TU/Master/Dip/CU/LGT/am_transcription_align.txt " , true), ',') ;

CsvWriter output3 = new CsvWriter(new
FileWriter("D:/TU/Master/Dip/CU/LGT/lm_transcription_hicon.txt " , true), ',') ;

CsvWriter output4 = new CsvWriter(new
FileWriter("D:/TU/Master/Dip/CU/LGT/transcription_hicon.txt" , true), ',') ;

output.write("id") ;
output.write("transcription") ;
output.endRecord() ;

output2.write("transcription") ;
output2.endRecord() ;

output3.write("transcription") ;
output3.endRecord() ;

output4.write("transcription") ;
output4.endRecord() ;

transciption.readHeaders() ;

int s = 0 ;

while (transciption.readRecord())
{

String fileID = transciption.get("id") ;
String label = transciption.get("label") ;
String asr = transciption.get("asr_output") ;
String fconf = transciption.get("first_confidence") ;
String ctrans = transciption.get("crowd_transcript") ;
String sconf = transciption.get("second_confidence") ;
String sec = transciption.get("sec") ;
String purpose = transciption.get("purpose") ;

Float ficonf = new Float(fconf) ;

//String fileID = transciption.get("id") ;

//String ctrans = transciption.get("transcription") ;

// perform program logic here
if((label.equals("understandable_correct") ||

label.equals("understandable_incorrect"))){

//System.out.println(fileID + ":" + cTranscript) ;

ctrans = ctrans.replaceAll("%" , " ") ;
s++;
//output.write(fileID) ;

//output.write(label) ;

//output.endRecord() ;

output.write(fileID) ;

output.endRecord() ;

output2.write("<s> " + ctrans.toUpperCase() + " </s> " + "(" +

Page 1

getgoodtranscriptions.java

fileID.substring(15, 18) + ")") ;
output2.endRecord() ;

output3.write("<s> " + ctrans.toUpperCase() + " </s> ") ;
output3.endRecord() ;

output4.write(ctrans.toUpperCase()) ;

output4.endRecord() ;

}

System. out.printf("%d" ,s) ;

transciption.close() ;

output.close() ;

output2.close() ;

output3.close() ;

output4.close() ;

}

} catch (FileNotFoundException e) {
e.printStackTrace() ;

} catch (IOException e) {
e.printStackTrace() ;

}

}

}

Page 2

A.3 ASR

29

simpleasr.java

 * Copyright 1999-2004 Carnegie Mellon University.

import edu.cmu.sphinx.frontend.util.AudioFileDataSource;

/** A simple Lattice demo showing a simple speech application that generates a Lattice
from a recognition result. */
public class simpleasr {

 /** Main method for running the Lattice demo. */
 public static void main(String[] args) throws IOException,
UnsupportedAudioFileException {
 URL audioURL, configURL;
 String outURL;

 if (args.length > 0) {
 audioURL = new File(args[0]).toURI().toURL();
 } else {
 audioURL = new URL("file:///D:/TU/Master/Dip/017.wav");
 //audioURL = LatticeDemo.class.getResource("10001-90210-01803.wav");
 }

 if (args.length > 1) {
 configURL = new File(args[1]).toURI().toURL();
 } else {
 configURL = new
URL("file:///D:/TU/Master/Dip/sphinx4-1.0beta6/Sphinx/src/apps/edu/cmu/sphinx/demo/latt
ice/configlg.xml");
 //url = new URL("file:///D:/TU/Master/Dip/sphinx4-
1.0beta6/Sphinx/sc/apps/edu/cmu/sphinx/demo/lattice/configlg.xml");
 }

 if (args.length > 2) {
 outURL = args[2];
 } else {
 outURL = "D:/asr.txt";
 //url = new URL("file:///D:/TU/Master/Dip/sphinx4-
1.0beta6/Sphinx/sc/apps/edu/cmu/sphinx/demo/lattice/configlg.xml");
 }

 FileWriter fstream = new FileWriter(outURL,true);
 BufferedWriter out = new BufferedWriter(fstream);

 ConfigurationManager cm = new ConfigurationManager(configURL);

 Recognizer recognizer = (Recognizer) cm.lookup("recognizer");
 recognizer.allocate();

 // configure the audio input for the recognizer
 AudioFileDataSource dataSource = (AudioFileDataSource)
cm.lookup("audioFileDataSource");
 dataSource.setAudioFile(audioURL, null);

 boolean done = false;
 while (!done) {
 /* This method will return when the end of speech
 * is reached. Note that the endpointer will determine
 * the end of speech.
 */
 Result result = recognizer.recognize();

 if (result != null) {
 String resultText = result.getBestResultNoFiller();
 out.write(args[0].substring(args[0].length() - 24));

Page 1

simpleasr.java

 out.write(",");
 out.write(resultText.replaceAll(",",";"));
 out.newLine();
 out.close();

 } else {
 done = true;
 }
 }

 }
}

Page 2

Creating a new Combined Confidence Measure for
ASR-Errors on the Word-Level

Philipp Salletmayr

Submitted in partial fulfillment of the

requirements for the degree

of Master of Science

Graz University of Technology & Columbia University in the

City of New York

2012

©2012

Philipp Salletmayr

All Rights Reserved

ABSTRACT

Creating a new Combined Confidence Measure for
ASR-Errors on the Word-Level

Philipp Salletmayr

We address the problem of localized error detection in Automatic Speech Recognition (ASR)

output. Localized error detection seeks to identify which particular words in a user’s ut-

terance have been misrecognized. Identifying misrecognized words permits one to create

targeted clarification strategies for spoken dialogue systems, allowing the system to ask

clarification questions targeting the particular type of misrecognition, in contrast to the

“please repeat/rephrase” strategies used in most current dialogue systems. We present re-

sults of machine learning experiments using ASR confidence scores together with prosodic

and syntactic features to predict whether 1) an utterance contains an error, and 2) whether

a word in a misrecognized utterance is misrecognized. We show that by adding syntactic

features to the ASR features when predicting misrecognized utterances the F-measure im-

proves by 13.3% compared to using ASR features alone. By adding syntactic and prosodic

features when predicting misrecognized words F-measure improves by 40%.

Table of Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Related Work . 2

1.2.1 Reprise vs non-reprise questions . 2

1.2.2 Detection of erroneous utterances . 2

1.3 BOLT . 3

1.4 Goals . 4

2 Materials 5

2.1 Overview . 5

2.2 TRANSTAC . 5

2.3 Dynaspeak . 7

3 Feature Extraction 9

3.1 Overview . 9

3.2 Features . 9

3.3 Recognition Tagging . 12

3.4 Prosodic Features . 13

3.5 Syntactic Tagging . 14

3.6 Feature Exploration . 15

3.6.1 Concept . 15

3.6.2 Results . 16

i

4 Modelling 18

4.1 WEKA Framework . 18

4.1.1 ARFF format . 18

4.2 Algorithms . 18

4.2.1 Decision Trees . 18

4.2.2 Multiboost Decision Trees . 20

4.2.3 Support Vector Machines . 21

4.3 Training and testing . 22

4.4 Results and Discussion . 24

5 Implementation 27

5.1 The system . 27

5.1.1 Goals and limitations of the system 27

5.1.2 Overview . 28

5.2 Google Protocol Buffers . 29

5.3 Code Setup . 30

5.3.1 The Confidence Scorer . 30

5.3.2 Information Structure . 34

5.4 Results . 39

6 Outlook 40

6.1 Future Work . 40

7 Conclusion & Discussion 41

I Appendices 42

A Appendix title 43

A.1 Sample section . 43

A.1.1 Sample subsection . 43

A.1.2 Sample subsubsection . 43

A.2 Sample section . 44

ii

A.2.1 Sample subsection . 44

II Bibliography 45

Bibliography 46

iii

List of Figures

4.1 Example for a simple DT . 19

4.2 Example of a weighted decision committee 21

4.3 Simple linear SVM example . 22

5.1 SRI’s system pipeline . 29

5.2 UML diagram of the confidence scorer module 31

5.3 UML diagram of the common data structure 35

iv

List of Tables

2.1 Example dialogue from the IraqComm Corpus. 6

2.2 Data composition for January release. 6

2.3 Data composition for May release. 7

2.4 Example entry for an utterance in Dynaspeak log file. 8

3.1 Features used in the experiments . 12

3.2 Example for tagging of an utterance. 12

3.3 Example for tagging of an utterance. 13

3.4 Example of input for feature extraction. 13

3.5 Script functionality and description. 14

3.6 Example of output for extract acoustics.pl script. 14

3.7 Example of syntactic tagging. The table shows POS as well CNT tags for

current, previous and next words NULL meaning the information is not avail-

able (e.g. no previous/next word in the utterance). 15

3.8 Features used in the experiments . 16

4.1 Precision, Recall, F-measure, overall accuracy, and % accuracy improvement

over majority baseline for predicting misrecognition in an utterance. The

highest value in each column is highlighted in bold. 23

4.2 Precision, Recall, F-measure, for predicting correctly recognized/misrecog-

nized words, change in F-measure for predicting misrecognized words, and

overall accuracy. The highest value in each column is highlighted in bold. 23

v

4.3 Classifier performance for training and test split. (c) depicts measurements

on the correct class while (ic) depicts measurements on the incorrect class.

MC column presents the Matthews Correlation Coefficient as an auxiliary

measure of performance. 24

4.4 Precision, Recall, F-measure, and overall accuracy for correctly recognized/mis-

recognized words, overall accuracy, and accuracy improvement compared to

the baseline method. The highest values in each column are highlighted in

bold. 25

5.1 Example clarification dialog. 27

vi

CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

1.1 Motivation

The ability to clarify information is important for successful dialogue communication. Hu-

man conversationalists ask clarification questions in every-day communication when they

believe they have misunderstood their interlocutor. Automatic Spoken Dialogue Systems

(SDS) also must use clarification questions to recover from Automatic Speech Recognition

(ASR) errors. However, while humans are able to target their clarification questions to

address the particular source of their confusion, current SDS typically do not, adopting

simple statements indicating their lack of understanding followed by requests to the user

to repeat or rephrase their input. While this behavior is general enough to be applied to

any type of hypothesized ASR error, it fails to provide the user with information about

the source of that error. Such information is useful to humans in formulating responses to

human misunderstandings and should be equally helpful to SDS in resolving recognition

errors.

One critical requirement for producing reprise clarification questions is detection of just

which part of a user utterance has been recognized correctly and which part or parts contain

an error. Previous research on error detection in ASR in general and in SDS applications

in particular has focused on identifying simply how likely an utterance is to have been

recognized correctly or incorrectly using ASR confidence scores, sometimes combined with

acoustic and prosodic information. Such information may be used to choose another path

through the ASR lattice or to request repetition or rephrasing of the utterance from the

user.

CHAPTER 1. INTRODUCTION 2

1.2 Related Work

1.2.1 Reprise vs non-reprise questions

In his study of human clarification strategies, Purver[Purver, 2004] distinguishes two types

of clarification questions: reprise and non-reprise questions. He defines a reprise clarifica-

tion question as one that asks a targeted question about the part of an utterance that was

misheard or misunderstood, including portions of the misunderstood utterance which are

thought to be correctly recognized. A non-reprise question, on the other hand, is a generic

request for repetition, which does not contain contextual information from the misunder-

stood utterance. Both are illustrated in the example below:

Speaker: Do you have anything other

than these XXX plans?

Reprise: What kind of plans?

Non-Reprise: What did you say?/Please repeat.

While the clarification questions used in the informal human conversations Purver stud-

ied contained only about 12% non-reprise clarification questions , most SDS use only non-

reprise clarification strategies, asking users to repeat or rephrase when the system hy-

pothesizes a recognition error: Non-reprise clarification questions are easy to construct

and are well-suited to simple slot-filling dialogue systems where speakers are required to

specify values for a fixed number of predefined attributes and concepts. However, pre-

vious research has found that the naturalness of system prompts have an important ef-

fect on a user’s perception of the system’s behaviour and performance [Lopes et al., 2011;

Stoyanchev and Stent, 2009]. As we move towards systems that support mixed and even-

tually user initiative, such as tutoring systems [Litman and Silliman, 2004] and speech to

speech translation systems [Akbacak and others, 2009], SDS which can request more specific

information about hypothesized ASR errors become more critical to create.

1.2.2 Detection of erroneous utterances

Handling errors in SDS involves first determining that an error has probably occurred and

then choosing an appropriate dialogue strategy to correct it. There has been considerable

work on detecting erroneous utterances in ASR systems and, more specifically, in SDS. Bo-

hus and Rudiniki [Bohus and Rudnicky, 2005] analyse tradeoffs between misunderstandings

and false rejections in a dialogue system. The authors optimize rejection thresholds using

data-driven methods. Lopes et al. [Lopes et al.,] also analyse different feature sets for

improving confidence score estimation in a dialogue system. Komatani and Okuno [Ko-

matani and Okuno, 2010] use a user’s utterance history to determine whether a barge-in

CHAPTER 1. INTRODUCTION 3

user utterance has been correctly recognized. Our use of prosodic features is motivated by

Hirschberg et al. [Hirschberg et al., 2004] who found that prosodic features alone and in

combination with other automatically available features improve significantly over simple

acoustic confidence scores alone in identifying misrecognized utterances. However, these

authors did not address the problem of identifying which word(s) in the utterance were

misrecognized, using prosodic information. Goldwater et al. [Goldwater and others, 2010]

find evidence that some words are harder to recognize than others, due to their prosodic

characteristics, the position they occur in in a turn, their use as discourse markers, their

location preceding disfluencies, or their confusability with words having similar language

model probabilities and similar phonetic make-up. They also found that speaker variability

was a considerable source of recognition error. However, these authors do not address the

question of how the characteristics they find characterizing misrecognized words in their

data might be used to predict which words are misrecognized in practice in an SDS. Our

work addresses this problem: how can we identify misrecognized words accurately in an

SDS using automatically extracted, speaker independent features.

There has also been considerable research on determining dialogue strategies for error

recovery. For example, Dzikovska et al. [Dzikovska and others, 2009] describe an approach

to dealing with errors in tutoring dialogue systems. Bohus et al. [Bohus et al., 2006] use

supervised learning to determine the optimal error recovery policy in a dialogue system,

such as providing a help message, repeating a previous prompt, or moving on to the next

prompt. Our work on localized error detection is a study towards introducing a new policy

type in a dialogue system: asking a targeted clarification questions.

1.3 BOLT

The ’Broad Operational Language Translation’ (BOLT) program is funded by the ’De-

fense Advanced Research Projects Agency’ (DARPA) of the ’United States Department of

Defense’. BOLT’s goals are twofold:

� Translation of informal language genres

� Bilingual, multi-turn conversation (both on text and speech level)

To achieve flexibility in regards to conversational topics, handling dialectal variations

and being able to handle more than single sentences while also guaranteeing reliability in

translation accuracy, the program is organized by:

� Three Technical Areas 1. Algorithmic Development and Integrated Systems 2. Data

Collection 3. Evaluation

CHAPTER 1. INTRODUCTION 4

� Six Activities per Technical Area (Except Data) A. Translation and Information Re-

trieval B. Human-Machine Dialogue Systems C. Human-Human Dialogue Systems D.

Arabic Dialect Translation E. Grounded Language Acquisition F. Basic Technologies

All participating sites will have as a baseline for data to train on both the TRANSTAC

(TRANSlation system for TACtical use) and GALE (Global Autonomous Language Ex-

ploitation) data sets.

1.4 Goals

In the work presented here, we seek to identify not only which utterances have been mis-

recognized but also which portions of utterances have been incorrectly transcribed by the

recognizer, in order to use this information to formulate targeted reprise questions in a

Speech-to-Speech (S2S) translation system. In such systems, two speakers communicate

orally in two different languages through two ASR systems and two Machine Translation

(MT) systems. An S2S system takes speech input, recognizes it automatically, translates

the recognized input into text in another languages, and produces synthesized speech out-

put from the translation for the conversational partner. In the S2S application we target,

speakers may converse freely about topics that are not specified in advance. In the case of

a hypothesized ASR error, the clarification component of the system seeks to clarify errors

with the speaker before passing a corrected ASR transcription on to the MT component. In

this way, the clarification component attempts to intercept speech recognition errors early

in the dialogue to avoid translating poorly recognized utterances.

CHAPTER 2. MATERIALS 5

Chapter 2

Materials

2.1 Overview

Presented in this chapter is an overview of materials used in the thesis with regards to

speech data sets abailable for system development and research experiments as well as the

ASR system used to process the audio data.

2.2 TRANSTAC

The Spoken Language Communication and Translation System for Tactical Use (TRANSTAC)

program was the predecessor to today’s BOLT program. Data collected by the National

Institute of Standards and Technology (NIST) during seven months of evaluation exer-

cises performed between 2005 and 2008 [Weiss and others, 2008] form the basis for the

development done under BOLT. The data stems from SRI’s IraqComm speech-to-speech

translation system [Akbacak and others, 2009]. The corpus contains simulated dialogues

between English military personnel and Arabic interviewees. Thus, the audio is clean of

noise and was recorded using high-performance audio equipment to ensure highest possible

usability for context dependent experiments. When an English speaker speaks, the system’s

ASR component recognizes the utterance, performs machine translation to translate it into

(Iraqi) Arabic, and uses a text-to-speech synthesis (TTS) system to produce the Arabic ver-

sion. When the Arabic speaker replies, the procedure is reversed. Table 2.1 shows a sample

dialogue from the dataset, with correct English translations for the Arabic utterances.

CHAPTER 2. MATERIALS 6

English: good morning

Arabic: good morning

English: may i speak to the head of the household

Arabic: i’m the owner of the family and i can

speak with you

English: may i speak to you about problems with

your utilities

Arabic: yes i have problems with the utilities

Table 2.1: Example dialogue from the IraqComm Corpus.

For experiments and development, two different subsets were provided by NIST. These

subsets will be referred to as a January release and May release.

The January release includes English and Arabic speech with manual transcriptions.

We use only the audio and manually annotated transcript (as the reference) of English

utterances for experiments. We removed utterances in which a user directed a command

to the computer, such as Computer, repeat. We also removed instances where a difference

in ASR and transcript are due to annotation, such as contractions we’re and we are and

utterances containing disfluencies.

The resulting corpus contains a total of 3.7K utterances and 26K words. 28.6% of

utterances and 9.1% of words contain an ASR error (Table 2.2). These numbers are based

on ASR results obtained by running the Dynaspeak ASR system (2.3) release provided with

the January release of TRANSTAC data.

The May release is again divided into two subsets, forming a development set and a test

set. Similarly to the January release, both English and Arabic transcriptions were available,

where only the English ones were used. Due to ongoing development and tuning of the

BOLT System, multiple versions of the Dynaspeak ASR were used. Table 2.3 represents

numbers obtained by running the latest (as of June 2012) available Dynaspeak version. As

the names suggest, the development set was used for training and tuning purposes across

BOLT sites while the test set served as means of obtaining realistic performance numbers.

Overall Correct ASR Error in ASR

All Utt. 3.729 2.664 (71.4%) 1.065 (28.6%)

All Words 26.098 23.720(90.9%) 2.378(9.1%)

Words in err.

Utt.

7.48 5.45 (72.8%) 2.03 (27.2%)

Table 2.2: Data composition for January release.

CHAPTER 2. MATERIALS 7

Total Words Correct Words Err. Words

Dev. Set 41.801 39.033 (93,4 %) 2.768 (6,6%)

Test Set 37.354 34.927(93,5%) 2.427 (6,5%)

Table 2.3: Data composition for May release.

2.3 Dynaspeak

Dynaspeak [Franco and others, 2002] is an ASR engine developed and distributed by SRI

International. It is currently used in industrial, consumer, and military products and sys-

tems. It serves as the ASR component deployed in current field units of the IraqComm

system which forms the conclusion of the TRANSTAC program. Core features are:

� Hidden Markov Model (HMM)-based speech recognizer

� Supports continuous speech

� Dynamic grammar compilation

� Speaker independent

� Speaker adaptation

� Dynamic noise compensation

Dynaspeak was used as an as-is application for this thesis as other than providing input

for new features to the development team at SRI, no possibility of changing the functionality

of components was available. The basic usage of Dynaspeak was in providing an input script

(part of the application) with a list of audio files and corresponding transcriptions. After

the successful recognition process, a log file with following information was available:

� Utterance ID (field SENTENCE)

� File ID (field FILENAME)

� Start and end time of word (field INFO: Alignment)

� Final ASR hypothesis (field HYP)

� Reference text (field REF)

� Prescinded information for mis-recignitions (insertions, deletions, word swaps) (in

both REF and HYP)

� Per-word ASR confidence/posterior (field WORD POSTERIORS)

CHAPTER 2. MATERIALS 8

� Start time for each word (field TIMES)

An example for such a log file can be seen in table 2.4

SENTENCE: 21

FILENAME: /proj/speech/projects/bolt/.../scen01 oovnne 009.wav

INFO: Alignment ’(-pau- 0 1 pr:-448 gp:-280 cf:0)....((us 266

291)..

REF: that TRAFFICKER CREPT INTO THE

city without us knowing

HYP: that ********** TRAFFICKERS CRYP-

TOGRAPHY TO city without us know-

ing

ERROR: 0 ins 1 del 3 sub 9 wds 44.44% err

TOTAL: 29 ins 2 del 38 sub 173 wds 39.88% err

100.00% sent

WORD POSTERIORS: that———0.909795 traffick-

ers———0.186832 cryptography———1

to———1 city———0.856397 with-

out———1 us———1 knowing———1

Table 2.4: Example entry for an utterance in Dynaspeak log file.

CHAPTER 3. FEATURE EXTRACTION 9

Chapter 3

Feature Extraction

3.1 Overview

In the following chapter, all features used throughout experiments will be explained as well

as how these features were extracted from avaiable data (see 2).

3.2 Features

An extensive list of used features:

� HNR; Harmonics-to-Noise Ratio (HNR). Harmonicity is expressed in dB: if 99% of

the energy of the signal is in the periodic part, and 1% is noise, the HNR 20 dB. A

HNR of 0 dB means that there is equal energy in the harmonics and in the noise.

� NHR; Inverse to the HNR.

� autocor; Mean autocorrelation coefficient of the signal.

� shimmerapq11; This is the 11-point Amplitude Perturbation Quotient, the average ab-

solute difference between the amplitude of a period and the average of the amplitudes

of it and its ten closest neighbours, divided by the average amplitude.

� shimmerapq5; This is the five-point Amplitude Perturbation Quotient, the average ab-

solute difference between the amplitude of a period and the average of the amplitudes

of it and its four closest neighbours, divided by the average amplitude.

� shimmerapq3; This is the three-point Amplitude Perturbation Quotient, the average

absolute difference between the amplitude of a period and the average of the ampli-

tudes of its neighbours, divided by the average amplitude.

� shimmerlocDB; This is the average absolute base-10 logarithm of the difference be-

tween the amplitudes of consecutive periods, multiplied by 20.

CHAPTER 3. FEATURE EXTRACTION 10

� shimmerloc; This is the average absolute difference between the amplitudes of consec-

utive periods, divided by the average amplitude.

� jitterppq5; This is the five-point Period Perturbation Quotient, the average absolute

difference between a period and the average of it and its four closest neighbours,

divided by the average period.

� jitterrap; This is the Relative Average Perturbation, the average absolute difference

between a period and the average of it and its two neighbours, divided by the average

period.

� jitterlocabs; This is the average absolute difference between consecutive periods, in

seconds.

� jitterloc; This is the average absolute difference between consecutive periods, divided

by the average period.

� pctVoicebreaks; This is the total duration of the breaks between the voiced parts of

the signal, divided by the total duration of the analysed part of the signal.

� nvoicebreaks; The number of distances between consecutive pulses that are longer

than 1.25 divided by the pitch floor. Thus, if the pitch floor is 75 Hz, all inter-pulse

intervals longer than 16.6667 milliseconds are regarded as voice breaks.

� pctUnvoi; This is the fraction of pitch frames that are analysed as unvoiced in the

analysed audio.

� sdPeriod; Standard deviation of lengths of periods.

� meanPeriod; Mean length of periods.

� nPeriods; Number of different periods in the signal.

� nPulses; Number of pulses in the signal.

� maxF0 NOSMOOTH; Maximum pitch without cutting outliers (highest and lowest

5%).

� minF0 NOSMOOTH; Minimum pitch without cutting outliers (highest and lowest

5%).

� sdF0; Standard Deviation without cutting outliers (highest and lowest 5%).

� meanF0 NOSMOOTH; Mean pitch without cutting outliers (highest and lowest 5%).

� medianF0 NOSMOOTH; Median pitch without cutting outliers (highest and lowest

5%).

CHAPTER 3. FEATURE EXTRACTION 11

� analysed dur; Analysed signal duration in ms.

� total dur; Signal duration in ms. (Redundant)

� VCD2TOT; This is the fraction of pitch frames that are analysed as unvoiced in the

analysed audio. (Redundant)

� ENGSTDEV; Standard deviation of energy in signal.

� ENGMEAN; Mean of energy in signal with cutting outliers (highest and lowest 5%).

� ENGMIN; Minimum of energy in signal with cutting outliers (highest and lowest 5%).

� ENGMAX; Maximum of energy in signal with cutting outliers (highest and lowest

5%).

� F0STDEV; Standard deviation of energy in signal with cutting outliers (highest and

lowest 5%).

� F0MED; Median of energy in signal with cutting outliers (highest and lowest 5%).

� F0MEAN; Mean of energy in signal with cutting outliers (highest and lowest 5%).

� F0MAX; Maximum of energy in signal with cutting outliers (highest and lowest 5%).

� F0MIN; Minimum of energy in signal with cutting outliers (highest and lowest 5%).

� HIGHTAGNEXT; Content tag for the following word.

� POSTAGNEXT; Stanford part of speech tag for the following word.

� HIGHTAGPREV; Content tag for the preceding word.

� POSTAGPREV; Stanford part of speech tag for the preceding word.

� HIGHTAGTHIS; Content tag for the current word.

� POSTAGTHIS; Stanford part of speech tag for the current word.

� ASRconfidenceAvgAll; Word ASR posterior averaged over entire utterance.

� ASRconfidenceAvg3; Word ASR posterior averaged over preceding, current and next

word.

� ASRconfidence; Word ASR posterior for current word.

In our experiments, these features were available for both utterance- and word-level

experiments as summarized in Table 3.1. Also denoted in this table are the feature subset

affiliations for the acronyms ASR, POS and SYN which will be used to refer to these

subsets.

CHAPTER 3. FEATURE EXTRACTION 12

Feature type Description Utterance-correctness

classification experi-

ment

Word-correctness clas-

sification experiment

ASR log of posterior probability average over all words in

hypothesis

in current word; avg over

3 words; avg of all words

Prosodic F0(MAX/MIN/MEAN/STDEV) for whole utterance for word

features RMS(MAX/MIN/MEAN/STDEV) for whole utterance for word

(PROS) proportion of voiced segments in whole utterance in current word

duration of utterance of current word

timestamp of beginning of first word used not used

speech rate over all utterance not used

Syntactic POS tags count of unigram/bigram this/previous/next word

features (SYN) word type (content/function) not used this/previous/next word

Table 3.1: Features used in the experiments

3.3 Recognition Tagging

The basic goal of this thesis is to be able to reliably classify ASR output as either correct

(recognition is equal to what was said) or incorrect (recognition is not equal to what was

said i.e. word substitution). To be able to train and test such classifiers, the available data

has to be pre-tagged as being part of either class to provide a measure as to how well a

classifier actually performs. As mentioned in chapter 2, Dynaspeak output files contained

two lines presenting both final ASR hypothesis as well as actual transcription. Already

encoded in this representation are misfits in the form of capitalized letters as well as ’*’

characters. To take advantage of this information, a script was created (see APPENDIX

XX) to tag a word in the final hypothesis as either correct or incorrect. Tables 3.2 and 3.3

present an example as to how words would be classified based on logfile information. Note

that deletions of words occurring in the transcript is not accounted for as such information

wouldn’t be available to a live-system.

REF: that TRAFFICKER CREPT INTO THE

city without us knowing

HYP: that ********** TRAFFICKERS CRYP-

TOGRAPHY TO city without us know-

ing

Table 3.2: Example for tagging of an utterance.

CHAPTER 3. FEATURE EXTRACTION 13

Word Tag

that correct

TRAFFICKERS incorrect

CRYPTOGRAPHY incorrect

TO incorrect

city correct

without correct

us correct

knowing correct

Table 3.3: Example for tagging of an utterance.

Utterances are tagged as incorrect, if one or more words contained in the utterance are

also tagged as such.

3.4 Prosodic Features

For the January released data, we extracted prosodic features from the audio file of each

utterance using praat scripts. These scripts were based on existing scripts with slight mod-

ifications. Features from both scripts offered redundancy for some features (e.g. duration)

as well as different measurement methods for other features (e.g. smoothed values versus

non-smoothed values). This redundancy was by design as one goal was to test as many

features as possible for their information gain as possible. Functionality of both scripts as

well as an example output for one script are presented in tables 3.5 and 3.6. Both scripts are

called simultaneously and use information regarding start and end time of words extracted

by another script. This script analyzes Dynspeak logfiles and extracts information. One

output of this script are start and end times of words. An example of the output of this

script regarding word alignment - which serves as the input for both prosodic scripts - can

be seen in table 3.4.

evalTranstac-0508-live-004.wav 0.01 0.66 who

evalTranstac-0508-live-004.wav 0.67 1.52 places

evalTranstac-0508-live-004.wav 1.53 1.78 the

evalTranstac-0508-live-004.wav 1.79 2.4 roadside

evalTranstac-0508-live-004.wav 2.41 2.89 bombs

Table 3.4: Example of input for feature extraction.

CHAPTER 3. FEATURE EXTRACTION 14

Script name Function and output format

extract acoustics.pl

-runs a praat script to extract pitch and energy.

-results are saved in 1 FILE PER WORD.

-filenames are composed as ’UtterancefileidWordnumber.txt’

with Wordnumber beginning at ’0’ (thus ’evalTranstac-0603-

online-1401.txt’ is the SECOND word in evalTranstac-0603-

online-140.wav).

voice-report.praat

-runs a praat script to extract pitch, energy, shimmer, jitter.

-results are saved in 1 FILE FOR ALL WORDS.

-filename is ’info-wid.txt’.

-each line in ’info-wid.txt’ contains the same information

as the Praat’s standard voice-report PLUS the word ID for

each file, starting with 0 for the first word in each utterance.

Table 3.5: Script functionality and description.

F0 MIN: 397.045

F0 MAX: 484.536

F0 MEAN: 451.015

F0 STDV: 34.865

ENG MAX: 37.689

ENG MIN: 21.995

ENG MEAN: 31.060

ENG STDV: 4.801

VCD2TOT FRAMES:0.325

WORD:who

Table 3.6: Example of output for extract acoustics.pl script.

3.5 Syntactic Tagging

Syntactic Tagging for both part-of-speech (POS) as well as content-/noncontent-words

(CNT) was done by another project using the Stanford POS Tagger. ([Toutanova et al.,

2003]) On the utterance level, both syntactic features were represented as unigrams (how

often a tag occurs in the utterance) and bigrams (how often a certain pair of tags occurs in

the utterance). Table shows an example of the tagged output for the word-level.

CHAPTER 3. FEATURE EXTRACTION 15

evalTranstac-0508-live-004.wav, 0, who, WP, CNT, NULL, NULL, VBZ, CNT

evalTranstac-0508-live-004.wav, 1, emplaces, VBZ, CNT, WP, CNT, DT, FNC

evalTranstac-0508-live-004.wav, 2, the, DT, FNC, VBZ, CNT, NN, CNT

evalTranstac-0508-live-004.wav, 3, roadside, NN, CNT, DT, FNC, NNS, CNT

evalTranstac-0508-live-004.wav, 4, bombs, NNS, CNT, NN, CNT, NULL, NULL

Table 3.7: Example of syntactic tagging. The table shows POS as well CNT tags for

current, previous and next words NULL meaning the information is not available (e.g. no

previous/next word in the utterance).

3.6 Feature Exploration

3.6.1 Concept

Analyzing the available set of features and choosing the most significant of those was done

using a simple ’Hill-climbing’ algorithm. The idea behind the algorithm was to find signifi-

cant features by eliminating insignificant or even harmful ones. This was done by

� calculating the overall error of the entire dataset and then eliminating one feature at

a time and remeasuring the error.

� starting with 1 feature and step-wise adding other features to the inspected list.

Both approaches were done by both starting the algorithm once from the top of the list of

features as well as once from the bottom. The error then can go in either of 2 directions:

� The error increases/accuracy decreases, implicating that the feature removed was

actually significant towards a better classification. In this case, the feature will be

retained in following iterations.

� The error does not change or decreases. In case the error does not change, the feature

is deemed insignificant and will be excluded for all future runs. If the error decreases,

the feature seems to have hurt the performance of the classificator and will thus be

exluded in all future runs. Also, future performances will be measured against the

decreased error.

The error of the entire dataset and any given subset of features was measured using 3

different scores: F-measure for both ’correct’ and ’incorrect’ labeled words (thus providing

2 scores) and accuracy representing the percentage of correctly classified instances in the

dataset.

CHAPTER 3. FEATURE EXTRACTION 16

3.6.2 Results

Interestingly the final set of relevant features was the same for all 3 evaluated scores. This

final dataset consisted of the features listed in table 3.8.

logconfidence

logconfidenceAvg3

POSTAGTHIS

POSTAGPREV

POSTAGNEXT

F0MIN

F0MAX

F0MEAN

ENGMAX

ENGMIN

ENGMEAN

ENGSTDEV

VCD2TOT

total dur

analysed dur

medianF0 NOSMOOTH

maxF0 NOSMOOTH

nPeriods

meanPeriod

sdPeriod

jitterloc

NHR

Table 3.8: Features used in the experiments

The scores for this dataset are:
Accuracy 0.845

F-measure correct 0.885

F-measure incorrect 0.669
For later experiments, the features

� nPeriods

� meanPeriod

� sdPeriod

� jitterloc

� NHR

CHAPTER 3. FEATURE EXTRACTION 17

where dropped from further evaluation due to minimal improvements (ranging in the

�area), and difficulty of extraction using the built-in mechanisms of Dynaspeak ASR.

CHAPTER 4. MODELLING 18

Chapter 4

Modelling

Disclaimer: All training and testing was exclusively performed on TRANSTAC data. Test-

ing features for the Let’s Go! data set is part of future work on this project.

4.1 WEKA Framework

The Waikato Environment for Knowledge Analysis (WEKA) is a collection of machine

learning algorithms for data mining tasks developed at the Machine Learning Group at the

University of Waikato, New Zealand. The algorithms can either be applied directly to a

dataset or called from your own Java code. Weka contains tools for data pre-processing,

classification, regression, clustering, association rules, and visualization. [Witten and Eibe,

2005]

WEKA was chosen as the framework basis for all experiments as well as the tool with

which the final classifiers were built and also used due to the ease of implementation into

existing software given the Java based base package. Also, for experiment purposes the built-

in GUI provided the possibility of quickly visualizing, evaluating and comparing different

types of classifiers or parameter sets. Also, featured from WEKA version 3.7 on a package

manager was introduced which especially in the experiment stage allowed for fast obtaining

and testing using newly proposed classifiers.

4.1.1 ARFF format

4.2 Algorithms

4.2.1 Decision Trees

Decision Trees form the simplest way of building a classifier. The tree starts from a central

node, the root, which also forms the top layer of the tree. Starting the the root, every

following node underneath it leads to two child nodes. The only exception to this rules are

CHAPTER 4. MODELLING 19

terminating nodes - or leafs-, which represent a final outcome or decision. The connection

from one node to next is made via branches. Branches represent values upon which the

path to the next node is determined. In the application of machine learning, decision trees

are often referred to as classification trees and are built by mapping observations on how

final states where achieved in a given machine learning problem to paths in the tree.

Figure 4.1: Example for a simple DT

Several training algorithms exist as to how such mapping should be done- the simplest

being a straight mapping of observed paths given multiple iterations through a problem.

This however is not feasible as only for the most mundane tasks such an approach will result

in a robust classifier. WEKA offers a set of established algorithms to generate decision trees

(DTs). The most common and well established of those and also the one which will be used

for experiments throughout this thesis is the J48 or C4.5 algorithm. This algorithm is based

on step-wise minimization of entropy or uncertainty in the tree by adding high-information

(low-entropy) attributes of the presented data set as nodes to the tree.

In case of the J48 algorithm, this is done by analysing the set of training data available,

which is represented as classified examples of feature or attribute vectors. At each node of

the tree, J48 chooses one attribute of the data- which most effectively (highest information

gain) splits its training set into subsets of classes - as the node attribute. This is also an

implementation of the divide and conquer principle in machine learning. In addition to this

basic principle, the algorithm has three base cases ([Quinlan, 1993]):

1. All the (remaining) samples belong to the same class. In this case, J48 simply creates

a leaf choosing that class.

2. None of the available/remaining features provide any information gain. In this case,

J48 creates a node higher up the tree using the expected value of the class.

3. The same step is taken in the case of encountering a previously unseen class.

4.2.2 Multiboost Decision Trees

Boosting refers to a technique, which proposes the use of not just a single classifier to solve

a classification problem, but to employ an ensemble or committee of such classifiers, where

CHAPTER 4. MODELLING 20

each classifier is to be consider ”weaker” than an otherwise used single classifier. This is

done by using a base learning algorithm - like J48 - and providing it with a sequence of

training sets that the boosting algorithm synthesizes from the original training set. The

resulting classifiers become members of a decision committee, where in the simplest case

the class with the most votes will be the outcome.

For this thesis, a more sophisticated boosting algorithm was chosen, which was also easily

available in the WEKA framework - the MultiBoostAB ([WEBB, 2000]) method. Multi-

BoostAB is an extension to the highly successful adaptive boosting or AdaBoost ([Freund

and Schapire, 1995]) technique for forming decision committees by combining the AdaBoost

algorithm with wagging ([Bauer and Kohavi, 1999]).

Wagging is a variant of bagging [Breiman, 1996]. Bagging is an ensemble method that

creates individual training sets for its ensemble members by random redistribution of the

training set. Each classifier’s training set is generated by randomly drawing examples of

the original training set. However, many of the original examples may be repeated in the

resulting training set while others may be left out as each set has to contain the same

number of examples as the original. Wagging differs from bagging in that it does not draw

random samples but instead assigns a random weight to each example in the training set.

Hence the original name weighted bagging which got shortened to wagging. Both wagging

and bagging do not use weights for their classification decision, but each classifier has equal

influence on the output.

AdaBoost, similar to wagging, assigns weights to each of the examples contained in an

original training set. However, with AdaBoost the probability of picking each example is

initially set to be 1/N, where N is the total samples available in the training set. These

probabilities are then recalculated after each trained classifier is added to the ensemble

based on the performance of the newly added classifier. AdaBoost combines classifiers

using weighted voting, allowing AdaBoost to discount the predictions of classifiers that are

not very accurate on the overall problem.

MultiBoost’s motivation to combine both methods is based on observations, showing

that wagging is effective in reducing the variance of resulting classifiers while AdaBoost

succeeds in reducing bias of classifications. To benefit from both these important char-

acteristics, finding a way of combining both algorithms seemed desirable. However, while

AdaBoost weights the votes of its committee members, bagging does not, thus making the

votes of members of each committee incompatible. An alternative way was found by bag-

ging a set of sub-committees each formed by application of AdaBoost. Thus, MultiBoosting

can be considered as wagging committees formed by AdaBoost.

Throughout this thesis, when referring to classifiers trained with MultiBoost, J48 deci-

sion trees were used as a base classifier for the MultiBoost algorithm.

CHAPTER 4. MODELLING 21

Figure 4.2: Example of a weighted decision committee

4.2.3 Support Vector Machines

Support Vector Machines (SVM) ([Cortes and Vapnik, 1995]) are a class of binary classifiers

and are also used in regression problems. In its most basic form, an SVM solves a 2-

dimensional problem of linearly separable classes by positioning a linear separator such

that each distance d, measured as the length of a normal drawn from the separator to a

data point i, minimizes the overall distance

D =
∑

di. (4.1)

The resulting separator is called a hyperplane. The overall distance D is called the

margin. Thus, the result of any SVM is the maximum margin hyperplane separating any

two classes in a feature vector with dimensionality higher than one.

Figure 4.3: Simple linear SVM example

To train SVMs, the sequential minimal optimization (SMO) [Platt, 1998] is used in this

thesis. SMO splits the potentially very large optimization problem for finding a suitable

maximum margin into a series of smaller problems. This eliminates the need to solve a

quadratic programming problem and makes the solution analytically computable.

CHAPTER 4. MODELLING 22

4.3 Training and testing

In order to identify the best performing feature set for each of the classifiers we separately

evaluate performance of 1) misrecognized utterance prediction and 2) misrecognized word

prediction. We present results of misrecognized utterance and word prediction experiments

on ASR confidence, prosodic, and syntactic features, compared to the majority class base-

line. We evaluate the effect of combining prosodic and syntactic features with the ASR

confidence features. In these experiments, we perform 10-fold cross-validation on the full

dataset using a J48 classifer. Table 4.1 shows precision, recall, and F-measure (also known

as F1-measure,1 for predicting correctly recognized and misrecognized utterances; improve-

ment in F-measure of our classifier over a classifier using only ASR confidence scores; and

overall prediction accuracy. The majority class baseline (always predicting correct recog-

nition) achieves 71.4% overall accuracy — i.e., failing to detect any incorrectly recognized

utterances. Using ASR confidence features alone, we increase overall accuracy to 79.4%

with an F-measure for predicting correctly recognized/misrecognized instances of .86/.60,

respectively. Contrary to our expectation, a combination of ASR confidence and prosodic

features (ASR+PROS) does not improve this performance. However, syntactic features in

combination with ASR confidence (ASR+SYN) is the highest performing predictor across all

measures. A classifier trained with (ASR+SYN) achieves 83.8% accuracy with F-measures

of .93/.68. In order to create targeted clarifications, we are particularly interested in increas-

ing the F-measure for detection of misrecognized utterances. We observe that by adding

syntactic features to ASR features, the F-measure of detecting misrecognized utterances

increases by 13.3%.

Feature Utt Correctly Rec. Utt Misrec F1 incorrect Overall

P R F P R F compared to ASR Accuracy

Maj. Base. .71 1 .83 - 0 0 -100% 71.4%

ASR .83 .90 .86 .68 .53 .60 0 79.4%

ASR+RROS .82 .89 .85 .65 .51 .57 -.05 78.1%

ASR+SYN .86 .93 .89 .77 .61 .68 +13.3 83.8%

Table 4.1: Precision, Recall, F-measure, overall accuracy, and % accuracy improvement

over majority baseline for predicting misrecognition in an utterance. The highest value in

each column is highlighted in bold.

Our ultimate goal is to use the output of utterance misrecognition prediction as an

input to word misrecognition prediction (2-stage prediction). We run this experiment on a

subset of the data with the words from misrecognized utterances known from the reference

1F-measure = 2 ∗ recall ∗ precision/(recall + precision)

CHAPTER 4. MODELLING 23

transcription to contain errors. In this dataset 27.2% of words are misrecognized. We

perform a 10-fold cross-validation experiment on this subset of the data.

Table 4.2 shows precision, recall, and F-measure for predicting correctly recognized and

misrecognized words in utterances known to be misrecognized, improvement in F-measure

of misrecognized word prediction over a classifier that uses only ASR features, and overall

accuracy of prediction.

Feature correct incorrect F1 incorrect Overall

P R F P R F compared to ASR Accuracy

Maj. Base .73 1 .84 - 0 0 -100% 72.8%

ASR .81 .93 .86 .69 .40 .50 0% 78.7%

ASR+PROS .82 .92 .86 .67 .46 .54 +8% 79.0%

ASR+PROS+SYN .87 .93 .90 .76 .64 .70 +40% 84.7%

Table 4.2: Precision, Recall, F-measure, for predicting correctly recognized/misrecognized

words, change in F-measure for predicting misrecognized words, and overall accuracy. The

highest value in each column is highlighted in bold.

The majority class baseline (predict correct recognition) achieves 72.8% overall accu-

racy, again failing to detect any of the incorrectly recognized words. Using the ASR con-

fidence features alone, we achieve an F-measure for predicting correctly recognized/mis-

recognized words of .86/.50 respectively. ASR confidence scores together with prosodic

features (ASR+PROS) improve the F-measure for predicting misrecognized words to .54.

We observe that prosodic features are very useful in predicting misrecognized words, raising

F-measure by 8%. A combination of all features (ASR+PROS+SYN) is the highest per-

forming predictor across all measures except for recall on correctly recognized words. The

performance of a classifier trained on ASR+PROS+SYN features reaches an F-measure

of .90/.70 and overall accuracy of 84.7%. Prosodic and syntactic features account for an

increase of 40% for predicting misrecognized words compared to the classifier that uses

only ASR features. These experiments show that the best performing feature combination

for predicting misrecognized utterances is ASR+SYN and for words ASR+PROS+SYN. In

the next set of experiments we use these feature sets to construct classifiers in 1-stage and

2-stage misrecognition prediction methods.

With this information, we start to look at the different classifiers and try to evaluate

which one will be of best use to the later system implementation using the full feature

set (ASR+PROS+SYN) for word prediction. To evaluate performance of each classifier,

we use the June release of Transtac data (see section TODO). Thus, a very large set of

samples for both training and testing is available. Table 4.3 presents the results for this

experiment. Looking at this data we find that in addition to being vastly superior with

CHAPTER 4. MODELLING 24

regards to training time (several hours vs. less than an hour), MultiBoosted decision trees

outperform SVM by quite a margin. This may be caused both by the unbalanced nature

of training data (7% of all training samples are of class incorrect) as well as difficulties

in the normalization of the discrete valued syntactic features with the continuous valued

confidence and prosodic measures. According to this result, all further experiments were

performed using MultiBoost J48 decision trees.

Classifier Accuracy Precision(c) Recall(c) Precision(ic) Recall(ic) F1(ic) MC

DT 96.04 % 0.971 0.987 0.76 0.57 0.651 0.6381

SVM 95.41 % 0.957 0.996 0.86 0.35 0.497 0.5316

MultiBoost 94.78 % 0.966 0.977 0.757 0.679 0.716 0.6882

Table 4.3: Classifier performance for training and test split. (c) depicts measurements

on the correct class while (ic) depicts measurements on the incorrect class. MC column

presents the Matthews Correlation Coefficient as an auxiliary measure of performance.

4.4 Results and Discussion

We evaluate 1-stage and 2-stage approaches to misrecognized word prediction. In a 1-stage

approach, we predict misrecognition on all words in a test set in a single stage — i.e., is this

word correctly recognized or not? A word is misrecognized if it represents an insertion or a

substitution. In the first stage of a 2-stage approach, we predict utterance misrecognition

for each utterance in an ASR hypothesis. We consider an utterance to be misrecognized if

the word error rate (WER) of the utterance is > 0. In the second stage, we predict whether

each word in the ASR hypothesis is misrecognized or not.

Method Misrec. words correct incorrect Overall Improvement

in train./test set P R F P R F accuracy over Base.

1 Maj. Base - / 8.5% .91 1.0 .95 - 0.0 - 91.5 % -

2 1-stage original 8.7% / 8.5% .95 .99 .97 .77 .49 .60 94.4% 3.2%

3 1-stage upsampled 35% / 8.5% .96 .97 .97 .64 .60 .62 93.7% 2.4%

4 2-stage original 8.7% / 8.5% .95 .99 .97 .85 .43 .57 94.5% 3.3%

5 2-stage upsampled 35% / 8.5% .96 .98 .97 .76 .52 .63 94.5% 3.3%

Table 4.4: Precision, Recall, F-measure, and overall accuracy for correctly recognized/mis-

recognized words, overall accuracy, and accuracy improvement compared to the baseline

method. The highest values in each column are highlighted in bold.

We evaluate word-correctness prediction on the complete dataset using 1-stage and 2-

CHAPTER 4. MODELLING 25

stage approaches. We split the dataset into 80% training and 20% test sets, maintaining a

similar distribution for correct and incorrect utterances of 8.7%/8.5% in each. We train the

utterance classifiers using all utterances in the training set. We train the misrecognized word

classifiers using all words in the training set. We experiment with upsampling instances

of misrecognized words in the training set to 35%2 in order to improve performance of

the classifier. Upsampling of an unbalanced dataset is a common procedure discussed

in [Shriberg and Stolcke, 2002].

We evaluate each of the methods on the same test set where 8.5% of words are mis-

recognized. Misrecognized utterance prediction in the 2-stage method uses a combination

of ASR confidence and syntactic features (ASR+SYN) which was the highest performing

feature combination reported in Table 4.1. Table 4.4 compares the majority baseline, 1-

stage, and 2-stage methods for predicting misrecognized words in a test set. Line 1 shows

the majority baseline prediction which achieves 91.5% overall accuracy by classifying all

instances as ‘correct’. Lines 2 and 3 show results for a 1-stage method trained on the origi-

nal and upsampled datasets. We observe that, although the 1-stage method trained on the

original dataset achieves higher overall accuracy (94.4%) than the 1-stage method trained

on the upsampled dataset (93.7%), the upsampled training set achieves higher recall and

F-measure (.60/.62) for predicting misrecognized words compared to original training set

methods (.49/.60). Lines 4 and 5 show results for a 2-stage method trained on original and

upsampled datasets. Both of the 2-stage methods achieve higher overall accuracy (94.5%)

compared to the 1-stage methods. The 2-stage method trained on the original dataset

achieves the highest precision for detecting misrecognized words of .85, while the 2-stage

method trained on the upsampled dataset achieves the highest F-measure of .63.

All of the experimental methods improve overall accuracy performance by 2.4%-3.3%

compared to the majority baseline. The highest performance improvement is achieved by

the 2-stage predicting methods. The 2-stage method on the upsampled dataset achieves

52% recall and 76% precision in identifying misrecognized words. An interactive system

with clarification capabilities using the proposed error detection method would attempt

to correct over half of misrecognized words with a clarification subdialogue. A quarter of

clarification attempts in such a system would be made for a word that is actually correct.

Unnecessary clarification may lead to a longer dialogue but would not necessarily deteriorate

the system’s recognition as an answer to a clarification for a correct word is likely to support

the original hypothesis.

2We derived this value empirically.

CHAPTER 5. IMPLEMENTATION 26

Chapter 5

Implementation

5.1 The system

5.1.1 Goals and limitations of the system

As addressed in 1.3, the BOLT system is designed to work as both a Human-Machine

Communication System as well as a Human-Human Dialog System. The subsystem of

which the confidence scoring module is a part of, is dealing with the Human-Machine

communication. The goal of this communication is to make sure, that the human input as

understood by the machine is as close to the actual input as possible. This is implemented by

starting a dialog with the user asking questions with regards to the input as understood by

the machine and confirming wether this was the intended meaning or not. Given the greater

context of an actual human to human dialog taking place, this clarification dialog has to

conform to standards ensuring maximum fluidity of the dialog as perceived by the interacting

humans. These standard is enforced in the system by allowing for only a maximum of three

turns before the input has to be accepted and post-processed. An example for such a

maximum-length dialog can be seen in table 5.1. As of August 2012, the standard was

relaxed to allowing four turns- the initial turn plus three clarification turns.

User (Turn 1) Hi, my name is Captain Pierce.

System Could you please spell <audio-for-Pierce

>?

User (Turn 2) Papa,India, Echo, Romeo, Charlie, Echo.

System You said P. I. E. R. C. E. Is that right?

User (Turn 3) Yes, that is right.

Table 5.1: Example clarification dialog.

CHAPTER 5. IMPLEMENTATION 27

5.1.2 Overview

The proposed system was designed as a pipeline based on a central, multi-layered data

structure (see 5.2). This structure is modified by the different components such that current

data is available in time for any components down the pipeline. A diagram of the most

recent version (as of August 2012) of the pipeline can be seen in 5.1. The pipeline starts with

a new speech input being recognized. During the recognition process the ASR, in addition to

the 1-best transcription of the input, both the final confusion network as well as the lattice

generated are being saved to the data structure. This information is used by the second

component to try a re-scoring of the lattice to be able to find a better 1-best solution

to the input. This step was however skipped in the final version of the system (August

2012) and just the original 1-best was used. The third component then tries to detect

regions in the transcription which in the actual speech-information refer to words which

are not covered by the ASR vocabulary (out of vocabulary-OOV) and marks those areas

accordingly. During these computations the component also creates part-of-speech (POS)

tags and writes the ASR confidence for each word given the information in the lattice to the

data structure. The next step is then to run the ASR in forced-alignment mode, using the

1-best transcription of the audio. This step is also used to compute prosodic information

for each word. The fifth component called is then the word-confidence scorer built in 4,

adding word-level confidences to the stored information. The following component ”Answer

Extraction & Merging” is only called if the ASR input is the answer to a previously issued

reprise question. ”ASR Error Annotation” however is called for every input and denotes

regions in the recognition string that may contain an error. These regions are then used

by the ”Dialog Manager” to determine wether or not (further) clarification questions are

needed before the (combined) result can be handed on to the machine translation (MT).

CHAPTER 5. IMPLEMENTATION 28

Figure 5.1: SRI’s system pipeline

5.2 Google Protocol Buffers

Google Protocol Buffers are a language-neutral, platform-neutral, extensible mechanism

for serializing structured data. Their structure is similar to that of XML based databases,

however more specialized around ease of use in software projects of any size. When choosing

a central, multi-layered data structure serving as the foundation for the pipeline used in the

system, several criteria led to the choice of implementing Google Protocol Buffers:

� use of multiple programming and scripting languages throughout the different sites

involved in the project, it was a primary goal to find a container supported by all

those languages used or would be easy to adapt. Google Protocol Buffers primarily

support C++, Java, and Python but community built support packages for different

languages a readily available.

� compared to something like XML, Google Protocol Buffers are more compact and

CHAPTER 5. IMPLEMENTATION 29

the objects themselves are directly populated as opposed to pulling from the XML

fields to populate an object, saving both CPU time and memory as well as minimizing

sources for errors.

� New fields can be easily introduced from one revision to the next without causing

errors in modules not using those fields. Data is just handed on in that case.

Creating multiple layers in the context of the BOLT system means that we categorize

and save data at the following levels:

� Session level: one session represents one starting utterance plus up to three clarifica-

tion turns. The entire history of these up to four turns is saved.

� Utterance level: represents the information gathered for a single utterance. Lattices,

confusion networks as well as error segments are saved as well as the dialog manager

action.

� Word level: represents data for every word in an utterance. Classification features like

prosodic information is stored together with spelling information in case of an OOV

word etc.

A detailed design of the used buffer structure can be seen in APPENDIX

5.3 Code Setup

5.3.1 The Confidence Scorer

This code structure is built to first translate data retrieved via the internally used infor-

mation structure (see 5.3.2) to a format usable by the classifier built in chapter 4. A UML

diagram showing the major components of this can be seen in figure 5.2.

CHAPTER 5. IMPLEMENTATION 30

Figure 5.2: UML diagram of the confidence scorer module

5.3.1.1 ConfidenceInterface

The class ConfidenceInterface is a singleton responsible for handling all in- and output with

regards to confidence scoring as well as setting up and calling the actual scoring. The only

publicly callable method is process which is calling the methodgetWordConfidenceCorrect,

responsible for calling the actual scoring mechanism.

process process is being called by an external controller (the pipeline controller) and is

responsible for both initializing the ProsodicScorer and the structure responsible for align-

ing incoming data in a way readable by the scorer, the InstanceBuilder. Both components

are initialized according to information saved in a central configuration file (Configura-

tionParameters). Data is transferred to the method as a copy of the content of the Google

Protocol Buffer (protobuffer) SessionData structure.

public SessionData process(ConfigurationParameters conf, SessionData sessiondata)

This data is then converted to the Columbia-internally used information structure (see

5.3.2) and if this conversion was successful the method for processing the data is called. After

CHAPTER 5. IMPLEMENTATION 31

the classification is finished, the data structure is again converted back into protobuffer type

information and saved to the protobuffer structure.

.

.

data.setcfConfidence(Arrays.asList((getWordConfidenceCorrect(data))));

.

.

return wrapper.encode(sessiondata, data);

getWordConfidenceCorrect In this method the data arranged in the Columbia struc-

ture is again converted to a structure readable by the WEKA classifier. After creating an

array of sufficient size to hold confidence scores for every word in the currently processed

utterance, the classifier is then called once for each word, returning confidence values for

any given being correctly classified. The returned information is then the filled out array

of confidence values.

private Double[] getWordConfidenceCorrect(SentenceData input) throws Exception{

//build instance from InputData

Instances data = m_instancebuilder.buildInstance(input);

//Double uttconf = uttclassifier.classify(data)[0];

Double[] wordconf = new Double[input.getWordsCurrentUtt().size()];

//run classifiers and get confidence score for the word being 'correct'

for (int i = 0; i < input.getWordsCurrentUtt().size(); i++) {
wordconf[i] = m_wordclassifier.classify(data,i)[0];

//index '0' refers to the confidence of the word/utterance being 'correct'.

//index '1' would refer to the confidence being incorrect. both scores sum up to 1

}

//return confidences (words only in this case)

return wordconf;

}

5.3.1.2 InstanceBuilder

The InstanceBuilder structure consists of both a central wrapper with which multiple differ-

ent set-ups of data converters can be called. Which one of the converters is called depends

on a central configuration file specifying which version of the classifier has to be called

depending on the feature set available (see 4).

The structure built is an instances file usable by WEKA (see 4.1) using the given set of

features. This is done by first defining the data entries (the header of the instances file) and

then creating one instance per word, filling in values as available to the applicable fields.

CHAPTER 5. IMPLEMENTATION 32

public Instances buildInstance(SentenceData input){
.

.

.

//create all the attributes and add them to the vector

Attribute total_dur = new Attribute (”total dur”); //numeric\n”;

attributes.addElement(total_dur);

Attribute f0mean = new Attribute (”F0MEAN”);// numeric\n”;

attributes.addElement(f0mean);

Attribute f0min = new Attribute (”F0MIN”);//numeric\n”;

attributes.addElement(f0min);

.

m_Data = new Instances(nameOfDataset, attributes, 0);

.

for (int i = 0; i < input.getWordsCurrentUtt().size(); i++) {
Instance inst = new Instance(22);

.

.

inst.setValue(f0mean, input.getF0meanWords().get(i));

inst.setValue(f0min, input.getF0minWords().get(i));

inst.setValue(f0max, input.getF0maxWords().get(i));

.

.

}

return m_Data;

}

5.3.1.3 ProsodicScorer

The ProsodicScorer, upon creation, loads a classifier according to a central configuration file

specifying which features are available for classification. The only method available in this

class is responsible for calling the classifier with the current instances dataset and the id of

which instance has to be classified. After the classification was successful, the confidence

measure of the word being correctly classified by the ASR is returned to the caller.

public double[] classify(Instances data, int instanceid) throws Exception{

data.setClassIndex(data.numAttributes()−1);

//get confidence score

return m_classifier.distributionForInstance(data.instance(instanceid));

}

CHAPTER 5. IMPLEMENTATION 33

5.3.2 Information Structure

Due to the relatively late introduction of Google Protocol Buffers to the project, especially

for early software tests there had to be a manual solution to the data transfer problem.

An attempt to solve this problem was done at Columbia University in the form of a Java

structure responsible for both holding as well as distributing information. A UML diagram

showing the major components of this can be seen in figure 5.3.

Figure 5.3: UML diagram of the common data structure

The two most important methods of MessageWrapper are decode and encode. These

methods are responsible for accurately moving information both from (decode) and also

back to (encode) the protobuffer structure.

5.3.2.1 MessageWrapper

This class was originally responsible for the transfer of data between the two modules

developed at Columbia (the Dialog Manager and the Confidence Scorer) and was later

modified to work as the link between both those modules and the Google Protocol Buffer

structure.

decode The heart of the decoding method is a for-loop iterating through every word

(protoWord) contained in the currently processed utterance (protoUtt) and extracting word

level features saved for these words WordLevelAnnotations). The information is extracted

CHAPTER 5. IMPLEMENTATION 34

by getter-methods automatically created in the protobuffer package for each field held within

it. The extracted values are then assigned to a corresponding List.

protected SentenceData decodeSentenceDataForUtterance(DialogueHistory history, UtteranceData protoUtt)

throws SentenceDataException

{
.

.

List<Double> oovConf = new ArrayList<Double>();

List<Double> asrConf = new ArrayList<Double>();

List<Double> parseConf = new ArrayList<Double>();

List<Double> neConf = new ArrayList<Double>();

.

.

for (WordAnnotation protoWord: protoUtt.getWordLevelAnnotationsList()) {
wordcount = protoWord.getWordIndex();

words.add(wordasr[wordcount]);

starttime = protoWord.getStartOffsetSeconds();

endtime = protoWord.getEndOffsetSeconds();

duration.add((endtime − starttime)+1);

asrConf.add(protoWord.getAsrPosterior().getValue());

parseConf.add(protoWord.getParserConfidence().getValue());

.

.

.

}

encode Inverse to the decode method, here we want to change an entry in the protobuffer.

This is done by first calling the information stored in the structure so there can be data

saved to it. This is called invoking the builder of the structure subject to change. Due to

the layered structure of the protobuffer used, this invoke call has to be done in hierarchical

order down to the applicable layer, which in this case is the WordAnnotation layer. At

this layer we then have to write the computed word confidence to the field reserved for this

information.

public SessionData encode(SessionData sessionData, SentenceData sentData){
SessionData.Builder sessionBuilder = sessionData.toBuilder();

//update the last utterance only

UtteranceData.Builder utteranceBuilder = sessionBuilder.getUtterancesBuilder(

sessionBuilder.getUtterancesCount()−1);

if (sentData.getcfConfidence() != null) {
//set CU confidence values

int wid = 0;

for (WordAnnotation.Builder word: utteranceBuilder.getWordLevelAnnotationsBuilderList()){
word.setCuConfidence(word.getCuConfidence().toBuilder().setValue((sentData.

getcfConfidence().get(wid))));

wid++;

}

CHAPTER 5. IMPLEMENTATION 35

}

//set DM output

DialogueEntry dmEntry = sentData.getDmEntry();

if(dmEntry!=null)

utteranceBuilder = encodeDMentry(utteranceBuilder, dmEntry, sentData.

getM_addressErrorSegmentIndex());

sessionBuilder.setUtterances(sessionBuilder.getUtterancesCount()−1, utteranceBuilder);

return sessionBuilder.build();

}

5.3.2.2 SentenceData

SentenceData is an internally used information structure consisting of Lists holding infor-

mation about words contained in an utterance. Every word is represented by a certain

index which stays the same throughout those List objects. The only information not saved

internally in Lists objects are prosodic information which is held by a child-class called

Prosodics. Also implemented in these structures are the getter and setter methods used to

access the saved data.

public class SentenceData {
.

.

//asr confidence for each word

List<Double> m_asrConfidence;

//parse confidence for each word

List<Double> m_parseConfidence;

.

.

//prosodic features for each words

Prosodics m_prosodicswords = new Prosodics();

.

.

public void setAsrConfidence(List<Double> asrConfidence) throws SentenceDataException {
checkSize(asrConfidence);

this.m_asrConfidence = asrConfidence;

}

public List<Double> getAsrConfidence() {
return m_asrConfidence;

}
.

.

public void setProsodicsForWords(List<Double> f0max, List<Double> f0min, List<Double> f0mean, List<

Double> f0stdev,

List<Double> engmax, List<Double> engmin, List<

Double> engmean, List<Double> engstdev, List<

CHAPTER 5. IMPLEMENTATION 36

Double> vcd2tot)

throws SentenceDataException {

checkSize(f0max);

checkSize(f0min);

checkSize(f0mean);

checkSize(f0stdev);

checkSize(engmax);

checkSize(engmin);

checkSize(engmean);

checkSize(engstdev);

checkSize(vcd2tot);

m_prosodicswords.setProsodicsForWords(f0max, f0min, f0mean, f0stdev, engmax, engmin, engmean,

engstdev, vcd2tot);

}
.

.

public List<Double> getF0maxWords() {
return m_prosodicswords.getF0max();

}

public List<Double> getF0minWords() {
return m_prosodicswords.getF0min();

}
}

public class Prosodics {

//maximum pitch features for each word

List<Double> f0max;

//minimum pitch features for each word

List<Double> f0min;

.

.

public void setProsodicsForWords(List<Double> f0max, List<Double> f0min, List<Double> f0mean, List<

Double> f0stdev, List<Double> engmax, List<Double> engmin, List<Double> engmean, List<Double>

engstdev, List<Double> vcd2tot) {

this.f0max = f0max;

this.f0min = f0min;

this.f0mean = f0mean;

this.f0stdev = f0stdev;

this.engmax = engmax;

this.engmin = engmin;

this.engmean = engmean;

this.engstdev = engstdev;

this.vcd2tot = vcd2tot;

}
.

.

public List<Double> getF0max() {
return f0max;

CHAPTER 5. IMPLEMENTATION 37

}

public List<Double> getF0min() {
return f0min;

}
.

.

}

5.4 Results

TBD (awaiting result analysis by AMU)

43

Part II

Bibliography

BIBLIOGRAPHY 44

Bibliography

[Akbacak and others, 2009] M. Akbacak et al. Recent advances in SRI’s IraqCommtm Iraqi

Arabic-English speech-to-speech translation system. In ICASSP, pages 4809–4812, 2009.

[Bauer and Kohavi, 1999] E. Bauer and R. Kohavi. An empirical comparison of voting

classification algorithms: Bagging, boosting,and variants. Machine Learning, 36:105–

139, 1999.

[Bohus and Rudnicky, 2005] D. Bohus and A. I. Rudnicky. A principled approach for rejec-

tion threshold optimization in spoken dialog systems. In INTERSPEECH, pages 2781–

2784, 2005.

[Bohus et al., 2006] D. Bohus, B. Langner, A. Raux, A. Black, M. Eskenazi, and A. Rud-

nicky. Online supervised learning of non-understanding recovery policies. In Proceedings

of SLT, 2006.

[Breiman, 1996] L. Breiman. Bagging predictors. Machine Learning, 24:123140, 1996.

[Cortes and Vapnik, 1995] C. Cortes and V. Vapnik. Support-vector networks. Machine

Learning, 20(3):273–297, 1995.

[Dzikovska and others, 2009] M. Dzikovska et al. Dealing with interpretation errors in tu-

torial dialogue. In SIGDIAL Conference, pages 38–45, 2009.

[Franco and others, 2002] H. Franco et al. Dynaspeak: Sri’s scalable speech recognizer for

embedded and mobile systems. In Proceedings of the second international conference on

Human Language Technology Research, HLT ’02, pages 25–30, San Francisco, CA, USA,

2002. Morgan Kaufmann Publishers Inc.

[Freund and Schapire, 1995] Y. Freund and R. E. Schapire. A decision-theoretic generaliza-

tion of on-line learning and an application to boosting. Journal of Computer and System

Sciences, 55:119139, 1995.

[Goldwater and others, 2010] S. Goldwater et al. Which words are hard to recognize?

prosodic, lexical, and disfluency factors that increase speech recognition error rates.

Speech Communication, 52(3):181–200, 2010.

BIBLIOGRAPHY 45

[Hirschberg et al., 2004] J. Hirschberg, D. J. Litman, and Marc Swerts. Prosodic and other

cues to speech recognition failures. Speech Communication, 43(1-2):155–175, 2004.

[Komatani and Okuno, 2010] Kazunori Komatani and Hiroshi G. Okuno. Online error de-

tection of barge-in utterances by using individual users’ utterance histories in spoken

dialogue system. In SIGDIAL Conference, pages 289–296, 2010.

[Litman and Silliman, 2004] D. J. Litman and S. Silliman. Itspoke: an intelligent tutoring

spoken dialogue system. In Demonstration Papers at HLT-NAACL 2004, HLT-NAACL–

Demonstrations ’04, pages 5–8, Stroudsburg, PA, USA, 2004. Association for Computa-

tional Linguistics.

[Lopes et al.,] J. Lopes, M. Eskenazi, and I. Trancoso. Incorporating asr information in

spoken dialog system confidence score. In Computational Processing of the Portuguese

Language, Lecture Notes in Computer Science.

[Lopes et al., 2011] J. Lopes, M. Eskenazi, and I. Trancoso. Towards choosing better primes

for spoken dialog systems. In Proceedings of the IEEE Workshop on Automatic Speech

Recognition and Understanding (ASRU), 2011.

[Platt, 1998] John C. Platt. Sequential minimal optimization: A fast algorithm for training

support vector machines. Technical report, ADVANCES IN KERNEL METHODS -

SUPPORT VECTOR LEARNING, 1998.

[Purver, 2004] M. Purver. The Theory and Use of Clarification Requests in Dialogue. PhD

thesis, King’s College, University of London, 2004.

[Quinlan, 1993] Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann

Publishers, 1993.

[Shriberg and Stolcke, 2002] E. Shriberg and A. Stolcke. Prosody modeling for automatic

speech recognition and understanding. In Proceedings of the Workshop on Mathematical

Foundations of Natural Language Modeling, pages 105–114. Springer, 2002.

[Stoyanchev and Stent, 2009] S. Stoyanchev and A. Stent. Lexical and syntactic priming

and their impact in deployed spoken dialog systems. In Proceedings of the Meeting of

the North American Chapter of the Association for Computational Linguistics (NAACL),

2009.

[Toutanova et al., 2003] Kristina Toutanova, Dan Klein, Christopher D. Manning, and

Yoram Singer. Feature-rich part-of-speech tagging with a cyclic dependency network.

In IN PROCEEDINGS OF HLT-NAACL, pages 252–259, 2003.

[WEBB, 2000] G. I. WEBB. Multiboosting: A technique for combining boosting and wag-

ging. Machine Learning, 40:159–196, 2000.

BIBLIOGRAPHY 46

[Weiss and others, 2008] B. A. Weiss et al. Performance evaluation of speech translation

systems. In LREC, 2008.

[Witten and Eibe, 2005] I. Witten and F. Eibe. Data Mining: Practical machine learning

tools and techniques. Morgan Kaufmann, San Francisco, 2nd edition, 2005.

