Sampling-based Motion Planning in
Theory and Practice

Wolfgang A. Pointner!

June 4, 2013

W. Pointner is with Department of Telecooperation, Johannes Kepler Uni-
versity, 4020 Linz, Austria, and Department of Aeronautics and Astronautics,
Stanford University, Stanford, CA 94305, USA. {wolfgang.pointner@jku.at,
pointner@stanford.edu}

Contents

[Abstractl

[Kurzfassung)

[Acknowledgements|

(1 Introduction|

2 Motion Planning]

[2.1 Sampling-based Motion Planningl

2.1.1 Motion Planning Algorithms|.

[2.2 Open Motion Planning Library (OMPL)|

[3 Robotic Arm Project|
[3.2 System Design|[.
[3.3 Planning Strategy|{.
[3.4 Control Logic/
[3.5 Sensor System|.

4.1 The RRT™* Algorithm| . . .
[4.1.1 Implementation| . . .

(Bibliography|

iv

vi

18
19
20
20
22
24
25
28

29
29
30
31
33
39

40

41

List of Figures

2.1 PRM Roadmap Development| 6
2.2 PRM* Roadmap Development| 7
2.3 RRT Tree Growthl.o 8
2.4 RRT-Connect Tree Growthl. 10
2.5 RRT* Tree Growth| 12
2.6 OMPL APILoverviewl 15
3.1 SACL Robotic Arml. 18
3.2 RRT*-Connect] 21
[3.3 Closed-loop Control of the Robotic Arm| 23
[3.4 Temperature Obstacle Representation 24
3.5 Robotic Arm Motion without Obstacles|. 25
[3.6 Motion Planning with Obstacles|. 26
[3.7 Motion Paths in Configuration Space| 27
4.1 _RRT™ Trees without Obstacles|. 32
4.2 RRT™ Trees with Obstaclesl 32
4.3 2D without Obstacles. 33
44 4D without Obstacles|. 34
4.5 6D without Obstacles| 34
4.6 8D without Obstacles| 35
4.7 2D without Obstacles (10° nodes)| 36
4.8 3D without Obstacles (10° nodes)| 37
4.9 4D without Obstacles (10° nodes)| 37
410 2D with Obstacleso 00000 38

i

List of Algorithms

2.1 PRM Learning Phase|
2.2 PRM* Algorithm)|
2.3 RRT Algorithm|
2.4 RRT-Connectl

N
oY)

il

Abstract

Motion planning is one of the main topics when it comes to the development
of mobile systems like e.g. robots or autonomous vehicles. The ability to
perform fast and efficient planning is essential for the practicality of a system.
It directly influences characteristics like performance and efficiency as well
as usability and safety. Content of this work are the authors experiences and
conclusions in the field of motion planning with special focus on Sampling-
Based Motion Planning. Thereby, both theoretical and practical findings are
going to be presented.

The practical experience in the mentioned field could be gained within a
research project based on a mechanical arm. This robot had to perform a
series of maneuvers under the influence of randomly placed thermal hazards.
Main focus was the development of an efficient and robust planning algorithm
that generated paths in order to avoid these obstacles.

The theoretical aspect in the field of motion planning algorithms was cov-
ered by implementation and numerical analysis of a modified algorithm. To
be more precise this was the enhancement of the relatively popular RRT*
algorithm which is based on Rapidly-Exploring Random Trees and uses a
single-level rewiring strategy to achieve asymptotic optimality. The men-
tioned enhancement was the introduction of a multi-level rewiring strategy
and this algorithm is further referred to as RRTV*.

All results presented in this work were achieved during the authors five
months stay as a Visiting Student Researcher at the Department of Aero-
nautics & Astronautics at Stanford University.

v

Kurzfassung

Pfad- und Bewegungsplanung gehoren zu den wichtigsten Themen bei der
Entwicklung von beweglichen Systemen wie beispielsweise Roboter oder au-
tonomen Fahrzeugen. Die Moglichkeit effiziente und schnelle Planung ist
essenziell fiir den praktischen Einsatz eines Systems und wirkt sich direkt
auf Charakteristika wie Leistungsfahigkeit und Effizienz aber auch Sicher-
heit und Benutzbarkeit aus. Inhalt dieser Arbeit sind die Erfahrungen und
Erkenntnisse des Autors im Zusammenhang mit Pfad- und Bewegungspla-
nung speziell auf dem Gebiet des sogenannten Sampling-Based Motion Plan-
ning.

Praktische Erfahrungen mit dieser Thematik konnten im Rahmen eines
Projekts auf Basis eines mechanischen Arms gesammelt werden. Aufgabe
dieses Roboters war die Durchfiihrung mehrere bestimmter unter der Ein-
wirkung von detektierbaren Hitzequelle. Hauptaugenmerkt lag dabei auf der
Entwicklung eines effizienten und robusten Planungsalgorithmus zur Gener-
ierung von Pfaden welche willkiirlich platzierten Hindernissen umgehen kon-
nen.

Der theoretische Aspekt im Zusammenhang mit Pfadplanungsalgorith-
men wurde Anhand der Implementierung und numerischen Analyse eines
neuartigen Algorithmmus behandelt. Es handelt sich dabei um eine Weit-
erentwicklung des relative populdren RRT* Algorithmus der auf sogenan-
nten Rapidly-Exploring Random Trees, also Baumstrukturen die zufillig
platzierte Punkte in ihre Struktur integrieren, basiert. RRT* verwendet ein
einschichtiges Optimierungsverfahren zur Gewéhrleistung das der Algorith-
mus asymtotisch optimal ist. Bei der erwédhnten Weiterentwicklung handelt
es sich um ein mehrstufiges Verfahren zur Optimierung der Verbindungen
innerhalb des resultierenden Baumes das in weiterer Folge als RRTY* beze-
ichnet wird.

Alle in dieser Arbeit prasentierten Ergebnisse entstanden im Rahmen
eines mehrmonatigen Forschungsaufenthalts am Institut fiir Luft- und Raum-
fahrt der Stanford Universitét.

Acknowledgements

I gratefully acknowledge the support and generosity of the Austrian Marshall
Plan Foundation as well as the Federal State Government of Upper Austria,
without which the presented results achieved during my five months stay
at Stanford University could not have been achieved. I also want to thank
the Department of Aeronautics & Astronautics for the support during my
time as a Visiting Student Researcher. Special thanks go to, Prof. Marco
Pavone and his team of graduate students for their support and hospitality
and Dr. Michael Naderhirn for his networking efforts. Furthermore, I want to
acknowledge the support of the Stanford Structures and Composites Labora-
tory (SACL) under the lead of Prof. Fu-Kuo Chang. The presented material
related to the robotic arm project is based upon work supported by the Air
Force Office of Scientific Research (AFOSR) through the Multidisciplinary
University Research Initiative (MURI) under Award No. FA9550-09-1-0677.
The program monitor is Dr. Les Lee (AFOSR). Any opinions, findings, and
conclusions or recommendations expressed in this publication are those of
the author and do not necessarily reflect the views of AFOSR.

vi

1. Introduction

This report covers the authors research at the Department of Aeronautics &
Astronautics at Stanford University as a Visiting Student Researcher. The
main focus of this program was the analysis and development of algorithms
in the field of sampling-based motion planning in order to extend the authors
expertise in the field of software systems design based on hybrid systems and
formal methods.

Basically the program was dominated by two projects in the field of mo-
tion planning and control which covered both practical and theoretical as-
pects of planning in high-dimensional configuration spaces. The first one was
a project that covered the implementation and demonstration of a control
strategy for a robotic arm. This arm is equipped with skin-like sensor net-
work that is capable of detecting thermal hazards that have to be avoided by
the arm while it’s performing a fairly simple pick-and-place task. The second
project was the implementation and evaluation of a sampling-based motion
planning algorithm that produces rapidly-exploring random trees. The main
improvement of this algorithm is the application of a multi-level rewiring
strategy that shall allow the algorithm to approach the optimum solution for
given planning problem faster than the original algorithm.

This report is basically split into three parts: At first the fundamentals
of motion planning and especially sampling-based motion planning are intro-
duced in Chapter [2l This chapter also introduces some of the most popular
algorithms in this field as well as the Open Motion Planning Library (OMPL)
which was used to implement most of the introduced work. The second part
introduces the mentioned project with the robotic arm in Chapter [3] It illus-
trates the algorithm and the control strategy and also introduces the sensor
system. Finally, in Chapter (4] the mentioned improvement of the RRT* al-
gorithm, called RRT™*, is being discussed. The algorithm itself and also the
results of various tests and simulations are presented in this chapter.

2. Motion Planning

Motion planning is a field of computer science that covers a variety of con-
cepts and techniques. The basic idea of motion planning is the transformation
of a certain task that shall be performed by a mobile system into a sequence
of discrete motions. Such a task could e.g. the motion of a vehicle from
a certain position to another one or a pick-and-place task that has to be
performed by a robot.

Motion planing has a very wide field of applications which covers not only
the already mentioned robotics, and navigational planning, but also control
theory, artificial intelligence, computer graphics, and drug design. Although,
all these fields might seem more or less related to each other they share some
common characteristics:

Configuration space The configuration space C' covers the set of config-
urations that shall be considered for motion planning. Typically the
dimensions of this space are the degrees of freedom of the affected sys-
tem. While e.g. navigational planning for a driving vehicle might be
performed in a two-dimensional configuration space the control of a
quadrotor helicopter might require the investigation of a much higher
dimensionality.

Free space The free space Cfree = C'\Copst is the subset of the configuration
space that is not occupied by obstacles. Typically motion planning is
performed in C,e., hence, it is often not trivial to determine whether
a state within the configuration space collides with an obstacle or not.

Problem definition The problem that has to be solved by a motion plan-
ning algorithm is typically to reach a certain goal within the configura-
tion space. This goal can either be a single state or a region which rep-
resents a configuration of the system that satisfies certain constraints.

Solution The solution of motion planning problem is often a sequence of
concrete operations or control inputs that brings the system towards
the planning goal.

The motion planning task has to overcome a fair amount of difficulties
that arise from the specific planning problem. As already mentioned the
determination of collisions with obstacles is a non-trivial task. Furthermore
the complexity of the configuration space as well as it’s limitations due to
constraints can make it hard to find a feasible solution for a certain problem.
Furthermore many problems in motion planning include the involvement of
dynamics which makes them even more difficult.

Motion planning covers a variety of sectors that use different techniques
or handle different problems. As described in [I] there are a couple of main
categories:

e Discrete Planning
e Combinatorial Motion Planning
e Sampling-Based Motion Planning

e Feedback Motion Planning

The main focus of this work lies in the field of sampling-based motion
planning since the results presented in Chapter [3|utilizes this kind of planning
algorithms to control the motion of a robotic arm. Furthermore the numerical
analysis in Chapter [4] are also based on this type of motion planning strategy.

2.1 Sampling-based Motion Planning

Sampling-based motion planning has become one of the most popular strate-
gies to solve various planning tasks in recent years. It utilizes randomly
picked samples within the configuration space and tries to use them to find
a solution for a certain planning problem. This methodology has some main
advantages over other motion planning techniques:

e The sampling strategy distinguishes between valid and invalid states
the moment they are generated and therefore the construction of the
configuration space that is obstructed by obstacles Cg,; doesn’t have
to be performed explicitly. This would especially be challenging in
configuration spaces with a very high number of obstacles.

e Depending on the sampling strategy it’s likely that the quality of a
solution found by a sampling-based motion planner improves while the
number of samples grows. This makes this type of algorithm particu-
larly scalable for various planning problems.

e Single components of the motion planning strategy can be encapsulated
and algorithms can be developed independent of particular underlying
models or specific configuration spaces. Typically these encapsulated
parts cover the tasks of state sampling and validation, collision check-
ing, and distance measurement.

The following section introduces some of the most popular sampling-
based motion planning algorithms. As mentioned in [I] they basically can
be separated into two groups:

Roadmap methods for multiple queries Roadmaps represent a graph
that covers the configuration space. This approach is typically used
to perform multiple queries within the configuration space without the
need to reconstruct the graph structure each time. In the following
section PRM and PRM* are introduced but there are also algorithms
that produce so-called Visibility Roadmaps that will not be covered in
this work.

Rapidly exploring dense trees for single-query applications RDTs are
a family of algorithms that cover the configuration space by a tree struc-
ture that roots at the single-query initial state of the motion planning
problem. Algorithms of this category that will be presented in the
following section are RRT, RRT-Connect, and RRT™*.

2.1.1 Motion Planning Algorithms

The family of sampling-based motion planning algorithms covers both single-
query as well as multiple-query applications. In this work the main focus
set on rapidly exploring dense trees but also probabilistic roadmaps will be
presented in detail.

PRM

As mentioned before one form of sampling-based motion planning algorithms
are Probabilistic Roadmaps (PRM). As introduced in [2] the PRM algorithm
uses a strategy based on two phases:

Learning phase In this preprocessing phase a so called roadmap is built
by iteratively adding random samples within the obstacle free configu-
ration space. These newly added vertices are connected to the growing
graph based on a fast local planner. In order to restrict the number
of connections within the roadmap new connections within the same

4

connected component of the graph are avoided. The learning phase of
the PRM algorithm is illustrated in Algorithm [2.1]

Query phase In the query phase of PRM a path between an initial con-
figuration x;,;; and the goal configuration x4, is determined. This is
achieved by connecting both of them to the roadmap and searching for
the shortest path through it that links them.

Algorithm 2.1: PRM Learning Phase

Result: Roadmap of vertices.

V< 0,E+ 0

for : <+ 0 ton do
Trand <—SampleFree;;
U <Near(G=(V,E),z,4na.1);
V=UU {Irand};
Usrderea = SortByDistance(U, % anq);
foreach u € U, 40rcq dO

if NotConnected (z,qnq,u) then
if CollisionFree (Z,q4uq4,u) then
‘ E +— EU{(Trana, n), (U Trana) };

return G=(V.E);

The learning phase and the query phase of PRM do not necessarily have
to be executed subsequently. Alternation between those two phases can e.g.
be enforced if the query phase is not particularly successful and a higher
density of the roadmap would be required.

Figure|2.1|shows the typical development of a roadmap that is constructed
by PRM within a two dimensional configuration space. The two sequences
were constructed in an obstacle free space and a configuration space partially
occupied by obstacles, respectively.

Related algorithms based on PRM are e.g. PRM* which will be discussed
in detail later and Lazy PRM (see [3]). The Lazy PRM algorithm avoids the
learning phase described for PRM and assumes that all vertices and edges
within the roadmap are collision free. During the query phase the shortest
path search investigates the graph and either finds a feasible already existing
solution or updates the roadmap by adding new edges or removing invalidated
vertices and edges.

0 . . L o .
0 01 02 03 04 05 06 07 08 09 1

(c)

07
06
05

0
0 01 02 03 04 05 06 07 08 08 1

Figure 2.1: The sequence of plots shows the development of a roadmap with
50, 100, and 150 vertices, constructed by PRM in a space without (a)-(c)
and with obstacles (d)-(f), respectively.

0 01 02 03 04 05 06 07 08 08 1

(d)

PRM*

As already mentioned the PRM* algorithm introduced in [4] is a modification
of the PRM algorithm. Similar to a simplified version of PRM (sPRM) dis-
cussed in [5], it initializes the set of n vertices in the initialization and allows
connections within already connected components. In contrast to sPRM,
PRM* choses the connection radius r as a function of n. According to [4]
this leads to an average number of connections attempted for a single vertex
in the roadmap that is proportional to log(n). Similar to PRM this algo-
rithm is probabilistically complete. However, in contrast to PRM, PRM* is
also asymptotically optimal since the probability not to find the optimal so-
lution between two vertices within the roadmap converges to zero while n ap-
proaches infinity. Algorithm illustrates the structure of PRM* including
the identification of near nodes based on the radius 7 = ypga(log(n)/n)*/<,
where ypry = 2(14+1/d)Y(11(X free)/Ca) /%, d is the dimension of the config-
uration space X, ji(Xfree) is the Lebesgue measure of the obstacle-free space,
and (y; is the volume of the d-dimensional unit ball.

Similar to the previous section Figure [2.2] illustrates typical roadmap
development of the PRM* algorithm in a two dimensional configuration space
with and without obstacles.

Algorithm 2.2: PRM* Algorithm
Result: Roadmap of vertices.
V < {Zinit} U {SampleFree; };—1 n;
E +0;
foreach v € V do
U «Near(G—=(V,E),v,vprar(log(n) /)4 \ {v};
foreach v € U do
if CollisionFree(v,u) then
| E <+ EU{(v,u), (u,v)};
return G=(V,E);

1

o T T L f 0
01 02 03 04 05 06 07 08 09 1 01 02 03 04 05 06 07 08 09 1 01 02 03 04 05 06 07 08 09 1

(d) (e) (f)

Figure 2.2: The development of a PRM* roadmap with 50, 100, and 150
vertices, in a space without (a)-(c) and with obstacles (d)-(f), respectively.

RRT

Rapidly-exploring random trees (RRT) are a popular method to perform
sampling-based motion planning for single-query applications. They were
first described in [6] and are further discussed in [7]. In contrast to the
previously presented algorithms the result of RRT is a graph in form of a tree
structure the stems from the initial state z;,;; and does not contain circuits.
A randoml sample x,4,q is chosen in X and the nearest vertex Z,cqrest il
the tree is steered towards it by adding a new vertex x,., if the connection

between T,eqrest ald Tne does not cause a collision with an obstacle. While
Algorithm illustrates this behavior, the growth of the tree produced by
RRT is illustrated in Figure [2.3]

Algorithm 2.3: RRT Algorithm
Result: Tree that stems from ;.
Vo {Zimir};

E +0;
for i < 1 ton do

Trand <—SampleFree;;

Tnearest <Nearest(G=(V,E),z,qna);

Tnew %Steer(l’nea'r‘est,xrand);

if ObstacleFree (T carest; Tnew) then

V — VU{Znew};
E — E U {(xnearesty xnew)};
return G=(V,E);

— - <
o A A A KL ﬁ . =
08 S | P 08 - ‘ e = 08 .
07 X 07 o > \ & 07
AN, T ESESYSVR O
X N 06 N 06
05 05 X ’ 05
W 2 W TR P y
03 | < 03 &l 03
d o\ 3
02 02 MR 02
01 ~ " 04 Nt ? 1 01 —
Pl A \ = A =

5 =
o .
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

(c)

08 }/r‘;

05
z N %
04

01 4

0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

Figure 2.3: The growth of the tree produced by RRT shown for 100, 200,
and 300 vertices, in a space without (a)-(c) and with obstacles (d)-(f), re-
spectively.

RRT-Connect

An algorithm that is based on RRT is RRT-Connect which was first intro-
duced in [§]. Tt basically improves the concept of rapidly-exploring random
trees by implementing two additional concepts:

e [t uses a heuristic that tries to establish connections over longer dis-
tances than the regular steering of RRT would do that.

e The algorithm grows two tree structures that stem from the initial
state z;n; and the goal configuration x40, respectively. These trees a
intended to be connected so that a feasible path from the initial state
to the goal can be established.

Algorithm illustrates the general structure of RRT-Connect including
the initialization of two trees T, and T}. In contrast to RRT the RRT-Connect
algorithm also uses the function Connect to perform the extension function
Extend multiple times for a certain tree. While one tree is extended in the
regular way know from RRT, by steering x,.,, towards the randomly chosen
sample, the other tree tries to connect to the newly added vertex by using
Connect. This greedy behavior stops when either the x,., is reached or the
algorithm is trapped when no valid new configuration x,,,, within the second
tree can be found. As long as the status of the algorithm is either Trapped
or Advanced it proceeds by swapping the trees and repeating the previously
described behavior until the two trees could be connected, hence, a feasible
path between ;,;; and 4, has been found.

Algorithm 2.4: RRT-Connect
Input: Initial state z;,;; and goal state goq.
Output: Path from x;,;; to T4 or Failure.
T, < InitTree(Tinit);
Ty < InitTree(Tgou);
for i + 1 to n do
Trand <SampleFree;;
if Extend(1,, % qna) /= Trapped then
if Connect (T}, 2pew) = Reached then
| return Path(7,.,T});
Swap(T,,T});
return Failure;

Function: Extend(T=(V,E),x)
Input: Tree T" and sample z.
Output: Status of tree extension (Reached, Advanced or Trapped).
Tnearest <Nearest(T=(V,E),z);
Tnew Steer(Tpearest,T);
if ObstacleFree (T carest, Tnew) then
V — VU{Znew};
E — E U {(xnearesta xnew)};
if © = 2,0, then return Reached;
else return Advanced,
return Trapped;

Function: Connect(T=(V,E), x)

Input: Tree T and sample z.
Output: Status of tree connection.
repeat

S <Extend(T, x);
until S /= Advanced;
return S;

0 01 02 03 04 05 06 07 08 08 1

(c)

0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

Figure 2.4: The growth of the tree produced by RRT-Connect shown for 100,
200, and 300 vertices, in a space without (a)-(c) and with obstacles (d)-(f),
respectively.

10

RRT*

The RRT* algorithm is also based on RRT and was first introduced in [4].
The basic idea of this algorithm is the extension of RRT by adding a rewiring
strategy to it. The basic RRT algorithm adds nodes to the rapidly-exploring
random tree without checking whether the newly added vertex would be
beneficial to already existing paths within the tree. RRT* overcomes this
drawback by applying a rewiring step within the local neighborhood of a
newly added sample. This strategy ensures that vertices within the tree are
reached trough a minimum-cost path. Algorithm illustrates this strategy
including the rewiring of nodes that are within a certain connection radius
r, where r depends on the current number of vertices within the tree n.

Algorithm 2.5: RRT*
Input: Initial node z;,;, number of samples n.
Output: Tree that stems from x;,;;.
V< {zini}; E < 0;
for i + 1 to n do
Trand $—SampleFree;
Tnearest <Nearest(G=(V,E),z,qna);
Tnew FSteer<:Ijnearest7xrand);
if ObstacleFree(Tpearest;Trand) then
Xnear <Near(G=(V,E),z e,
min{ - (log(card(V)) fcard(V))V4, }):
V< VU{Zpew};
Tmin € Tnearest;
Cmin <_COSt<xnearest)+C(Line (xnearestu znew))?
foreach z,,., € X, .. do
if CollisionFree (T ear;Tnew)N
Cost (Tnear) +C(Line(Tnear, Tnew))< Cmin then
Tmin Lnear;
Cmin <Cost (xnear>+c(Line<mneara xnew));
E+ EU {(-Tmma xnew)};
foreach z,,., € X, cqr do
if CollisionFree (T ew,Tnear)\
Cost(Tpew) +c(Line (Tpew, Tnear))< COSt(Tpeqr) then
Tparent —Parent(Tpeqr);
E <+ (E\{(xparenta xnear)}) U {(xnewy xnear)};
return G=(V,E);

11

Basically the rewiring is performed in two phases:

e At first, all selected neighbors in X,,.,, are investigated whether the
cumulated costs to reach x,., through them might be a minimum. In
that case x,., is connected to that vertex rather than x,.4ress Which
would be the nearest node.

e In the second phase all nodes in X,,.,, are investigated if a obstacle free
path through x,., might lower their costs-to-come. If that’s the case
Tnew Decomes the new parent of the affected vertices and their costs as
well as the costs of their children get updated recursively.

In that way RRT* guarantees that vertices within the tree are reached
via minimum-costs paths. Furthermore this rewiring strategy makes RRT*
asymptotically optimal since the probability that the optimal solution path
to any point within the configuration space C'is found goes to 1 while the
number of samples n approaches infinity.

A modified version of RRT* which is also presented in [4] is called k-
nearest RRT*. In this version the rewiring strategy is performed for the £
nearest nodes in the neighborhood of ..

2= o~ ¢ &
06 A

osy P

04l x N 4/ 7
0 O

o NAA

0 01 02 03 04 05 06 07 08 09 1

(a)
s 4 ﬁ.- ‘
" \| g

N Z]
03 s
. 4"
01 L=
AE—— ’r SN

(d) (e) (f)

Figure 2.5: The growth of the tree produced by RRT* shown for 100, 200,
and 300 vertices, in a space without (a)-(c) and with obstacles (d)-(f), re-
spectively.

0

12

Further Algorithms

Additionally to the previously described algorithm there are various others
in the field of sampling-based motion planning. A few of them will be briefly
described as follows.

KPIECE Kinodynamic Planning by Interior-Exterior Cell Exploration is
a kinodynamic motion planner, specifically designed for systems with
complex dynamics, which was first introduced in [9]. It uses a grid-
based discretization strategy on multiple levels that helps it to deter-
mine the coverage of the configuration space and focus exploration on
less covered areas.

EST Expansive Space Trees were introduced in [10]. Similar to RRT-Connect
this algorithm uses a strategy where two trees are constructed rooted
at the initial configuration and the goal configuration, respectively. In
EST random samples are connected to the the trees based on their vis-
ibility regions. A valid connection thus a feasible path is found when
the visibility regions of the two trees intersect. A modified version of
ESTs are guided EST which were introduced in [I1]. They try to find a
relatively straight path through the tree in order to minimize the costs.

SBL Single-Query Bi-Directional Probabilistic Roadmap Planner with Lazy
Collision Checking (see [12]) is another motion planning algorithm
that grows two trees rooted at the initial state and the goal state,
respectively. While the expansion strategy is the same as for EST the
validity of a found solution path is not checked until a connection is
established. In case the result includes invalid parts these are removed
from the trees and the exploration of the state space continues until a
new solution is found. In order to guide the exploration an additional
grid structure is maintained that keeps track of the states that have
been part of a possible solution in previous attempts.

The currently still evolving progress in the field of sampling-based mo-
tion planning continuously produces new algorithms that are more or less
related or based on those previously presented. They are based on random
or quasi-random selection of samples within the configuration space which
are somehow connected to one or multiple existing graphs. Since the basic
methods are pretty similar for all of them new developments often distinguish
themselves by combination of various components or modification of certain
concepts. One of this improvements based on RRT* is RRT"* which is going
to be presented in Chapter [l

13

2.2 Open Motion Planning Library (OMPL)

The Open Motion Planning Library (OMPL)E] is an open source library that
can be used to solve a variety of motion planning problems. It provides
various sampling-based motion planning algorithms and furthermore it’s ar-
chitecture and components allow the implementation and integration of self-
developed algorithms. It was developed by robotics company Willow Garagd?|
in cooperation with the Kavraki Lab of the Department of Computer Science
at Rice Universityf}

A brief introduction on the installation and integration of OMPL is given
in [I3]. The API is implemented in C+-+ and provides Python bindings and
there are also packages available that allow the integration into the Robot
Operating System (ROS)

The general architecture of the OMPL and it’s main components are
briefly described in [14]. As mentioned before sampling-based motion plan-
ning algorithms commonly depend on a couple of basic components which
are all covered by OMPL:

State space The description of the systems state covers all configurations
that have to be considered during motion planning. As mentioned
earlier it’s also referred to as configuration space.

Control space For systems that incorporate dynamics the set of parameters
that are considered for planning are covered by the control space.

Problem definition The definition of the planning problem is basically the
goal that should be reached by the planning algorithm. Such a goal
can be a single state or multiple states as well as a goal region within
the state space.

Sampler The sampler generates states within the state space that shall be
investigated during planning. In case of a planning environment that
includes controls there is also a control sampler required.

State validity checker The validation of the sampled states distinguishes
states that shall be considered for planning from those that might be
invalidated by violating some constraints. These constraints might be

!The Open Motion Planning Library. ompl.kavrakilab.org

2Willow Garage, Menlo Park, CA 9402, USA. www.willowgarage.com
3Kavraki Lab, Rice University, Houston, TX 77005, USA. www.kavrakilab.org
4ROS (Robot Operating System). www.ros.org

14

ompl.kavrakilab.org
www.willowgarage.com
www.kavrakilab.org
www.ros.org

due to inherent characteristics of the system that is being planned for
or external factors like e.g. obstacles.

Local planner For systems with controls the local planing component de-
scribes it’s propagation within the configuration space due to the con-
trol input.

Motion validation The validation of motions between different states within
the state space is a component is a variation of local planning for geo-
metric motion planning system.

In addition to these basic components the OMPL API provides a variety
of components and classes that allow the implementation of more or less
sophisticated motion planning systems. Figure [2.6] shows an overview of the
OMPL API that contains the mentioned components as well as some classes
like e.g. SimpleSetup, Planner, and SpaceInformation which support the
setup of a motion planning algorithm.

ControlSpace StateSpace StateSampler
Represents the control Represents the state space in Implements uniform and 1
- space the planner uses to which planning is performed; © Gaussian sampling of states
: irer.tedControISampler' represent inputs to the |rnplgments}upo\ogy—speclflc {‘ for a specific StateSpace
! Sample controls that take the system being planned for. functions: distance, interpola- T
: 1 tion, state (dejallocation. AN
ProjectionEvaluator
StatePropagator Computes projections from
Returns the state obtained states of a specific State-

by applying a control to
some arbitrary initial state.

Space to a low-dimensional
Euclidean space.

e . L .,

[MotionValidator Spacelnformation

. Provides the ability to check | | Provides routines typically used

. the validity of path segments g—)—l by motion planners; combines
using the interpolation 1

. provided by the StateSpace.

StateValidityChecker
Decides whether a given state
from a specific StateSpace

] the functionality of classes it 5 ilha)
N depends on. 4 : R .
Path

‘ ValidStateSampler Representation of a path;
i Provides the ability to sample | used to represent a solution |
valid states. 1 H to a planning problem.]
SimpleSetup [P o -
e Provides a simple way ProblemDefinition] P -
{ . of setting up all needed Specifies the instance of the {)
| Planner_ I 9 -tﬁ t limiti planning problem; requires | | Goal |
i Solves a motion classes without limiting definition of start andia Representation
H < i states |
{ Planning problem. functionality. goal.] (ofiagoal)
TEEENIIINIIIERERRRRE . TR RS N e oo o= -

User code

@ User must instantiate this class.

' User must instantiate this class unless SimpleSetup is used.

-

: User can instantiate this class, but defaults are provided.

A—>»B Ais owned by B.

Figure 2.6: Overview of the OMPL API.

Figure courtesy of Kavraki Lab, http://ompl.kavrakilab.org/api_overview.html

15

http://ompl.kavrakilab.org/api_overview.html

The planners provided by OMPL mainly cover geometric planning but
there a also some available that support control planning for systems with
kinematics.

These are the planners available for planning under geometric constraints:

e Kinematic Planning by Interior-Exterior Cell Exploration (KPIECE) [9]
e Bi-directional KPIECE (BKPIECE) [9, 3])
e Lazy Bi-directional KPIECE (LBKPIECE) [9] 3]

e Single-query Bi-directional Probabilistic Roadmap with Lazy collision
checking planner (SBL) [12]

e Parallel Single-query Bi-directional Lazy collision checking planner (pSBL) [12]
e Expansive Space Trees (EST) [10]

e Rapidly-exploring Random Trees (RRT) [6, [7]
e RRT Connect (RRTConnect) [§]

e Parallel RRT (pRRT) [§]

e Lazy RRT (LazyRRT) [§]

e Probabilistic RoadMaps (PRM) [2]

o PRM* [4]

e RRT* [4]

e Ball Tree RRT* [4]

e Transition-based RRT (T-RRT) [15]

For planning under differential constraints the following set of planners
is provided by OMPL:

e Kinodynamic Planning by Interior-Exterior Cell Exploration (KPIECE) [9]

Rapidly-exploring Random Trees (RRT) [16]

Expansive Space Trees (EST) [10]

Syclop using either RRT or EST as the low-level planner [17]

16

The variety of available planning algorithms as well as the possibility
to implement and integrate further algorithms were the main factors why
OMPL was chosen to implement the algorithms and simulations described
in Chapter [

17

3. Robotic Arm Project

The purpose of this project was the development and demonstration of an
immobile robotic arm that is capable of performing basic pickup and deliv-
ery tasks while detecting and avoiding thermal obstacles. The robot which is
shown in Figure[3.I|was developed by the Structures and Composites Labora-
tory (SACL) of the Department of Aeronautics and Astronautics at Stanford
Universit

Figure 3.1: The robotic arm developed by the SACL that was used for de-
velopment and demonstration of motion planning with thermal hazards.

Image courtesy of Joseph A. Starek, Department of Aeronautics and Astronautics, Stanford University.

This project was intended to present a showcase for combined sensing and
planning strategies under thermal hazards. Potential fields of application for

IStructures and Composites Laboratory, Department of Aeronautics and Astronautics,
Stanford University, CA 94305, USA. |structure.stanford.edu

18

structure.stanford.edu

such a technology could be found in fields like e.g. bomb defusal, search-and-
rescue operations or robotic assembly.

3.1 Problem Formulation

The task that was created in order to demonstrate the capabilities of the
robotic arm was the pickup of a certain payload at a know position on the
base plane of the construction as well as its delivery to a know goal location.
In this scenario the payload is a simple 9V battery and the goal location is
8-ounce plastic cup. Thermal obstacles were introduced by a heat gun at
random times during the scenario. Based on this configuration there were
several tasks that have to be performed:

e Development of a motion plan from each of the predefined locations / con-
figurations to the next one. These locations are the initial configuration
of the robot, the pickup location of the payload, and the delivery po-
sition. This basically results in three independent motion plans that
have to be determined by the planning algorithm. Since the last mo-
tion plan returns the robot to its initial configuration the scenario can
be performed repetitively.

e During the execution of these motion plans the sensor network has to
identify possible thermal obstacles and estimate their position within
the configuration space. In this work it was assumed that the position
of thermal obstacles is fixed.

e In case of a violation of a motion plan by a detected thermal obstacle
the planning algorithm has to identify a feasible plan that avoids a
collision. A fast re-routing is aspired in order to minimize the delay
of the task and to avoid potentially damaging thermal obstacles early
enough.

e In order to simulate a natural behavior during the pickup and delivery
scenario additional temperature and pressure sensors at the end-effector
are used to determine the presence of a payload as well as its temper-
ature. This shall prevent the robot from performing a task without a
payload or grabbing a payload that might be hot.

19

3.2 System Design

The robotic arm is fixed on a rotating base and combines three joints between
the arms elements as well as an end-effector. The joint angles as well as
the slewing range of the rotating based are limited due to constructional
constrains mainly caused by the wiring of the actuators and the sensors.
The introduction of thermal obstacles is sensed by a skin-like sensor network
applied on the forearm of the robot (see . In order to be able to detect
the presence as well as the temperature of the payload there are additional
combined pressure and temperature sensors applied in the inside of the end-
effectors gripper.

3.3 Planning Strategy

As planning strategy for the robotic arm a sampling-based motion planning
algorithm was chosen. The configuration space C' is therefore reduced to the
manipulator joint angle space of Q C R* representing the 4 degrees of freedom
of the manipulators that move the arm. This includes the assumption that
the gripper separation as well as the dynamics of the robot can be neglected
for the planning task.

In order to prevent the arm from taking configurations that would lead
to a collision of its parts with each other, the environment, or obstacles it
is represented as a set of oriented bounding boxes (OBB). The corners of
these boxes as well as randomly sampled points on their surface are taken
into account when collision are checked during the motion planning. This
representation is also chosen for obstacles as well as the payload which are
either represented as cylinders, truncated frustums, or cuboids. Further col-
lision checks are performed between the robots parts and planes that can be
used to represent the environment.

In this setup the configuration space C' is different from the world space
W C R3 that represents the positions of the robot, the goals of the different
motion plans, and the obstacles. This requires the introduction of a practi-
cal transformation method that allows to transfer positions into joint angle
configurations. Since the robot can be seen as a kinematically—constrained
chain of rigid bodies such a system can represented as a set of homogeneous
transformation matrices. In this work the Devanit-Hartenberg (DH) param-
eters [I8] are used to define these matrices that represent the transformation
from one link to a connected one. This allows transformation from one coor-
dinate system into the other one and therefore provides us with the ability
to check if a certain joint angle configuration in C' would lead to a collision

20

in W. The introduction of obstacles into C' allows to specify the regions
that are covered by obstacles C,s C C as well as the obstacle free space

Cfree =C \ C'obs-

The actual planning task within the configuration space C' was performed
by a sampling based motion planning algorithm. This algorithm is based on
the RRT-Connect algorithm which was introduced in Section [2.1.1] The
modified version called RRT*-Connect uses bi-directional planning which
produces two trees T, and Tj in Cy,.. growing from the initial state ¢; and
the goal state qg, respectively. As shown in Figure [3.2] these trees a built-
up by expansion of one of them towards a randomly sampled node ¢,.. The
node ¢neqr that is nearest to g, is selected and by steering it towards ¢,
a new node ¢,q, is introduced and connected to the tree. Thereupon the
other tree is investigated and its node that is closest t0 @yeq, is incrementally
steered towards it until either a connection can be established or a obstacle
is reached. In the next iteration the behavior of the two trees is swapped
and the next sample node is picked. This sampling within the configuration
space is performed by application of the Halton sequence [19]. This produces
a deterministic, quasi-random sequence of samples for each dimension of C'
which covers a broad range of sampling regions while ensuring minimum-
possible dispersion.

Goal
Cub.c

Potential

connection

to .7,

ql’!i‘i“’.ﬂ

Connected

Ynew leaf nodes

Connections
made to .7,

Figure 3.2: Illustration of the RRT*-Connect algorithm. The two trees T,
and T3 try to connect within the obstacle free space Cyee.

Image courtesy of Joseph A. Starek, Department of Aeronautics and Astronautics, Stanford University.

21

As soon as a connection between the two trees has been established the
RRT*-Connect algorithm has found a valid transition path from the initial
to the goal state. Such a path contains motions that are represented by the
nodes along it. Since RRT*-Connect also performs a rewiring mechanism
similar RRT* (see [2.1.1)) such a solution can be improved by constantly in-
troducing new samples which might produce paths from ¢; to g4 that are
even less cost intensive.

Due to the introduction of new obstacles it is likely possible that a cur-
rently established path form the initial state to the goal state is being invali-
dated. In that case the RRT*-Connect algorithm is either able to determine
an alternative path by investigating previous solutions or the algorithm has
to try to reconnect its two trees as described earlier. This forces the algorithm
to explore new regions of C',.. until a new feasible path is found.

3.4 Control Logic

The motion of the robotic arm follows a closed-loop strategy the mainly con-
sists of the following three maneuvers: pick up the payload, deliver payload
to goal, return arm to initial state. This sequence can be repeated as of-
ten as desired although the resulting motion may be determined by multiple
external influences. As mentioned earlier the trajectory of the robotic arm
can be re-routed due to thermal hazards. This can happen during any of
the three mentioned maneuvers and requires the system to identify a feasible
trajectory that avoids the collision with an introduced thermal obstacle. In
case the algorithm is not able to identify such a path the arm performs a pre-
defined emergency maneuver that returns it to the initial position in a way
that is assumed to have a very low risk of collision with a thermal obstacle.

In order to generate a behavior that might seem more natural to a human
observer the robotic arm was equipped with additional sensors on the end-
effector. These are able to detect whether the closed end-effector has actually
grabbed a payload as well as determining its temperature. The resulting
logic has the effect that the robotic arm performs the main operational loop
of delivering a payload to the goal only if has actually been picked up and
does not exceed a specific temperature threshold.

The combination of the main operational logic and the introduced checks,
re-routing operations, and emergency maneuvers leads to a close-loop deci-
sion logic for the robotic arm that is illustrated in Figure [3.3, The main
path includes the three mentioned maneuvers as well as the operations to
grab and release the payload. The identification of an alternative route that

22

avoids thermal obstacles can be initiated during all these phases. In case this
re-routing does not identify a feasible path within a certain time the emer-
gency maneuver is performed, returning the arm to the initial configuration.

o/ Initial \W

"\ configuration /™

Perform
pick-up maneuver

Obstacle
introduced

Grab payload

Payload
detected

Yes

Payload ,hot”

No
v

Perform delivery

maneuver No

Perform return

Release payload
maneuver

Figure 3.3: The closed-loop control of the robotic arm deals with introduced
obstacles and tries to imitate a natural behavior when picking up the payload.

23

3.5 Sensor System

The previously mentioned a skin-like sensor network is applied on the robotic
arm in order to be able to detect thermal hazards and estimate their posi-
tion and orientation within the world space W. The thermal obstacles that
might be identified by this sensors could e.g. be blowtorches, vents, or low-
temperature open flames, such as lit matches or candles. The sensor network
used for the presented robot was developed by Stanfords SACL and is intro-
duced in |20] and [21]. It is based on a expandable sensor grid that is capable
of estimating the position as well as the intensity of a thermal source. By
using a k-means clustering algorithm the hottest region of the sensor network
is determined. Afterwards a heuristic mapping technique is use to estimate
the position and orientation of the thermal hazard based on the temperature
distribution. This shall emulate the behavior of a human in reaction to a
given temperature distribution across the surface of his or her own skin and
is referred to as "best-cone" search in [22]. Based on this estimation the tem-
perature obstacle and represented as a truncated frustum that has a certain
distance and orientation in relation to the irregular surface (see Figure .

ha

\\

Figure 3.4: Representation of a temperature obstacle in relation to the sensor
network on the arm.

Image courtesy of Joseph A. Starek, Department of Aeronautics and Astronautics, Stanford University.

24

3.6 Tests

The demonstration of the robotic arm was performed by executing the sce-
nario described earlier, where a 9V battery had to be put into a cup while
randomly placed thermal obstacles had to be avoided. The results of the
motion planning algorithm where therefore plotted in the three-dimensional
world space and the robot was represented as a set of oriented bounding
boxes. Figure 3.5 shows a sequence of motion plans that have been identified
to be feasible paths for the robotic arm to perform the motions from the
initial state to the position of the payload, from there to the goal position,
and finally back to the initial configuration.

(a) Undisturbed motion towards
the goal position above the cup.

z
v o N A S

(b) Motion plan towards the initial
configuration.

Figure 3.5: The RRT*-Connect algorithm has identified feasible paths for
both the motion plan towards the delivery location (a) and the initial con-
figuration (b).

The introduction of an obstacle during the execution of the second motion
plan forces the planning algorithm to rewire the trees and identify a new
feasible path. Figure|3.6|shows this behavior and the resulting motion plans.

25

(c) Avoiding path below obstacle. (d) Intended motion towards the
initial configuration.

z
N O A S b

(e) Re-routed path towards the (f) Total motion path avoiding
initial configuration. the obstacle.

Figure 3.6: The intended motion (a) is invalidated by an obstacle (b). The
rewiring process of the RRT*-Connect algorithm identifies a new valid path
to the goal (c). After performing the same for the last motion path (d)
and (e) the total motion plan avoiding the obstacle is shown in (f).

26

The Figures[3.5 and [3.6) nicely illustrate the difference between the motion
paths that are generated depending on whether there is an obstacle that has
to be avoided or not. These paths are shown in the world frame W the
different motion plans in the configuration space C' can be seen in Figure|3.7]
It shows the sequence of motion commands for the four different actuators
of the robotic arm.

A

9
—q,

4 b

© \Waypoints

80+

Joint Angle (deg)

80

40+

201

12 3 45 6 7 8 910111213 14 15 16
Command

(a) Sequence of motion commands without an obstacle.

Joint Angle (deg)

1l o
© Waypoints

T T S S TR T S R A S C (R
12 3 4 5 6 7 8 9 10 11 12 13 14
Command

(a) Sequence of motion commands with an obstacle.

Figure 3.7: The sequence of motions that is planned by the RRT*-Connect
algorithm within C' is different without (a) and with (b) the introduction of
an obstacle.

Image courtesy of Joseph A. Starek, Department of Aeronautics and Astronautics, Stanford Uni-
versity.

In order to test the capabilities of the RRT*-Connect algorithm and the
sensor network as well as their robustness, plenty of test runs have been
performed with the robotic arm. The scenarios included the introduction of

27

thermal obstacles in form of a heat gun during randomly chosen phases of
the motion plan. In order to avoid invalidation of goal points these positions
were mainly chosen in an area similar to the one illustrated in Figure [3.6| as
well as an area above the position of the payload, that would prevent the
arm from picking it up. Furthermore the control logic was tested by placing
heated payloads of similar size as a 9V battery. Given a certain delay and
threshold the temperature sensors applied on the inside of the gripper were
able to detect whether a payload was too hot for transportation or not.

3.7 Conclusion and Future Work

The development process of the introduced system as well as the simulations
and test runs performed on the robotic arm test environment have given
multiple findings:

e The concept of the RRT*-Connect algorithm is basically capable of
finding feasible paths within the obstacle free configuration space C'¢ce.
The simulations have shown that a number of a few thousand nodes
was sufficient to do so. The continuous incrementation of nodes leads
to even more smooth motion plans after multiple runs.

e The re-routing process due to the invalidation of a motion path by
a thermal obstacle typically is able to find feasible new paths within
an appropriate time of a few seconds. Problematic configurations like
the invalidation of a goal node might cause the system to perform the
emergency scenario.

e The skin-like sensor network has proven itself to be capable of iden-
tifying thermal hazards in form of a heat gun with a high reliability.
The intense performance of subsequent test runs has shown that the
material the sensor network was put on tends to heat up. This in-
creased the probability of false positive detected temperature obstacle
and often corrupted the estimation of their position and orientation in
relation to the robotic arm.

Future versions of the developed system might incorporate the previously
introduced Open Motion Planning Library (OMPL) (see Section [2.2)). This
would allow a more modular approach based on already existing components
and reduce the implementation effort.

28

4. Enhancement of RRT™

As described in Section the RRT* algorithm which is based on rapidly
exploring random trees was developed by Karaman and Frazolli (see [4]). It
uses the concept of the RRT algorithm to connect randomly sampled nodes
to a growing tree and additionally performs a rewiring process to create paths
that are less cost-intensive. This rewiring process is performed every time a
newly added node would provide one of its neighbors with a lower costs-to-
come. Due to the concept of RRT* this rewiring is limited to the first-order
neighborhood of a node.

In [] it is claimed that RRT* is both probabilistically complete and
asymptotically optimal. Probabilistic completeness is provided by the fact
that the probability that RRT* is not able to return a solution, if one exists,
approaches zero as the number of nodes approaches infinity. Asymptotic
optimality is claimed based on the theorem that a single rewiring level is suf-
ficient to let the currently best solution converge towards the global optimal
solution as the number of nodes approaches infinity.

4.1 The RRTY* Algorithm

Recent investigations by the Autonomous Systems Laboratory (ASL) at
Stanfords Department for Aeronautics & Astronautics have raised specu-
lations that the claim of asymptotic optimality of RRT* might not hold and
that there might be modifications of the algorithm that either guarantee
asymptotic optimality or at least achieve a higher convergence rate than the
original implementation. The concept that was investigated in this chap-
ter uses recursive rewiring and is subsequently referred to as RRTY*. This
means that nodes found within the local neighborhood of a newly added sam-
ple that were successfully rewired are the new origin of a secondary rewiring
step. This procedure is repeated until a certain maximum rewiring level is
reached or no more nodes could be rewired in order to decrease their costs.

29

4.1.1 Implementation

As mentioned the RRTV* is basically implemented like RRT* with the addi-
tion of recursive rewiring strategy. Algorithm illustrates the structure of
the modified RRT* as well as the recursively called procedure RewireNodes.

Algorithm 4.1: RRTV*

Input: Initial node z;,;;, number of samples n.
Output: Tree that stems from x;,;;.
V {xznzt}a E <+ 0; Xrewire < 07
for i < 1 ton do
Trand $—SampleFree;;
Tnearest <_NeareSt(G:<v>E>axrand);
Tnew <_Steer<mnearest7l'rand);
if ObstacleFree (T carest;Trand) then
Xnear <Near(G=(V,E),zcw,
min{yrer.(log(card(V))/card(V))"/*, n});
V — V U {xnew}; Lmin — Lnearests
Cmin <_COSt(:L'nearest)JV»C(]‘-'j-]-'le (Inearesta xnew));
foreach z,,., € X, .. do
if CollisionFree (T ear;Tnew)\
Cost (xnear)+c(yine (Tnears Tnew))< Cmin then

man near

Crmin —CoSt(Zpeqr)+c(Line(Tnear, Tnew));
E + EU{(Tmin, Tnew) };
foreach z,.4 € X,cqr do
if CollisionFree (Tpew,Tnear)\
Cost (Tpew) +c(Line (Tpew, Tnear))<COSt (Tpear) then
E + (E\ {(Parent(Zpear), Tnear)) U {(Znews Tnear) }
Xrewire — Xrewire U Tnears
if max RewiringLevel > 1 then
‘ RewireNodes(X, cuire, 2, V, F);
return G=(V.E);

In contrast to the original RRT* algorithm, RRTY* keeps track of the
nodes that have been rewired during the regular first-order rewiring process
by adding them to the set X,ewire. If the defined maximum rewiring level
lvl > 2 the procedure RewireNodes is called given X, ... as input parameter.
This procedure basically repeats the search for near nodes as well as the
rewiring step for all nodes in X, and again keeps track of those who have
successfully been rewired. If the maximum rewiring level is still greater than

30

Procedure: RewireNodes(X, cwire, V1, V, E)

Input: Set of nodes X, cuire that shall be rewired on level [vl as well
as vertices V and edges E.
Kewire < 07
foreach Trewire € Xrewire do
Xnear FNear(G:(vaE)yxrewirea
min{yrgr.(log(card(V))/card(V))"/*,n});
foreach z,.q € X, eqr dO
if CollisionFree (T cwire,Tnear)/\
Cost (Trewire) +¢(Line (Trewires Tnear)) <COSt (Tpear) then
E «+ (E \ {(Parent<xnear)7 l‘near)}) U {(xrewirea znear)};
Y;"ewire — Y;ewire U Tnear;

if maxRewiringLevel > lvl then
‘ RewireNodes(Y,cwire, (VI + 1, V| E);

the current level RewireNodes is called recursively with (vl incremented by 1.
This procedure ends as soon as the maximum rewire level is reached or there
were no more nodes found that could be rewired successfully on a certain
level.

4.1.2 Simulations

A variety of test scenarios has been performed in order to investigate the
assumption that RRT™* might deliver a better performance than the original
RRT* algorithm. Similar to [4] the test scenarios mainly included simulations
within a configuration space X C R? where dimension d € N and 2 < d < 8.
The configuration space was further restricted by the unit square so that
X = (0,1)% The initial state z;,; = (0.5)% is placed in the center of X.

Figure and Figure show rapidly-exploring random trees in X C
R? without obstacles and with 25% obstacle coverage, respectively. The
results (a)—(d) show the trees generated by RRT* and the multi-level rewiring
derivatives for i = 2..4, respectively.

31

1 1 : ;
08 08l &<,
- e
06!+ 06 J g !
e)
45 45+ 5 I\
N
y SN

02 02k A <

0 0 . ‘

0 02 04 06 08 1 0 02 04 06 08
(a) (b)

1 ; : 1 "

08 <, 08
e %
06!+ J g 3 06
. oo~® &
”b . A\:\‘ N \

04l = | " - 04l
02 ; ‘ SN 02

o ‘ o ‘ ‘

0 02 04 06 08 1 0 02 04 06 08

Figure 4.1: Resulting trees for a 2D configuration space without obstacles

for RRT* (a), RRT?* (b), RRT?* (c), and RRT** (d), respectively.

(d)

1 > 1
08 08
06 06k
04 04l
02 02 [
0 f o ‘
) 02 04 06 08 1) 02 04 06 08
(a) (b)
1 . > 1
08 \—4
06k
04f
02
o ‘
) 02 04 06 08

(d)

Figure 4.2: Resulting trees for a 2D configuration space cover 25% by obsta-
cles for RRT* (a), RRT?** (b), RRT?* (c), and RRT* (d), respectively.

32

4.1.3 Evaluation

The following plots show the performance of the RRT* algorithm in compari-
son with its multi-rewiring derivatives for an obstacle-free configuration space
in multiple dimensions. The results are represented as relative costs over it-
erations and runtime, respectively. Furthermore the absolute cost difference
as well as the performance measured in iterations per second are compared.
Since different levels of rewiring were investigated the term RRT®™ indicates
the application of an i-level rewiring algorithm. RRT™* represents a version
of the RRT* algorithm where recursive rewiring is not limited by a specific
level. This basically represents an infinite rewiring strategy which terminates
when no more neighbors are found that can successfully be rewired.

The results presented in this section were achieved by performing sampling-
based motion planning up to a limit of 100.000 iterations. Every version of the
algorithm was performed 50 times and the results were averaged. The optimal
costs were defined as the direct distance from x;,;; = (0.5)% to zu = (1)%.
The calculations presented here show the results for 2, 4, 6 and 8 dimen-
sions (see Figures and the sequence of sampled nodes was generated
in a deterministic way in order to guarantee the same configuration for all
algorithms.

1.01 1.01
optimum
——RRT*
RRT?*
—RRT™
RRT**
—RRT™

S 1, k 1.004 \
=N
1,002} \K 1.002 T - N

1.008 1.008

1.006

relative costs
o o
S <3
b 3

relative costs

——e—®
1 1
1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6
iterations x10* runtime [seconds]
(a) (b)
x10° x10°
0
4t ———RRT*
0.2} ™ A 35 -W\q RRT;"
i 2 L —RRT*
® W 5 af A)
3 I T o RRT*
§ -0.4 ‘\ 25 i U‘J"Lt’L RRTS*
£ Y AW
5 RRT* o v L
g 06 2 5 gT S g
8 RRT2* £15 A
— RRT™ B R S S et
0.8 RRT* o5
—RRT™ ’
4 P LA 0 P
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
iterations x10* iterations x10°

(c) ()

Figure 4.3: 2D: Costs (a), runtime (b), cost difference (c) and performance (d).

33

115 1.15

***** optimum — RRT*
——RRT* ~RRT*
— RRT? ——RRT™
11 ——RRT** 11 4
i RRT, 4 RRT**
8 RRT** S — RRTY
° 5 ®
2 RRT®* H .
g 5 T
T
2105 2105 0800
12 3 4 5 6 7 8 9 10 0 5 10 15 20 25 30
iterations x 10" runtime [seconds]
(a) (b)
ok 10°
- it
TR L, 12000 RRT*
4 }J\y ‘ - 1 RRT2*
P L RS o 2 10000 ,—\\ ——— RRT3*
2 . g I, 8 44
S 2 v T & 8000 (RS RRT
B N B
kS o
5 ——RRT* © 6000
=3 S
8 ~ RRT* =
° 3 £ 4000
RRT® 2
-4 *
RRT* 2000
—RRT*
5 I —— 0 S S S
12 3 4 5 6 7 8 9 10 1.2 3 4 5 6 7 8 9 10
iterations x 10" iterations x10*

(c) (d)

Figure 4.4: 4D: Costs (a), runtime (b), cost difference (c) and performance (d).

15 15
fffff optimum — RRT*
——RRT* 2
14) 14 RRT™
—— RRT?* — RRTH
P — RRT* 2 4y
213 4e 213 RRT
8 RRT’ S — RRTS*
2 —— RRT®* 2
S 1.2 512 —
] ° —e—e®
11 11
1 2 3 4 5 6 7 8 9 10 0 50 100 150
iterations %10 runtime [seconds]
(a) (b)
x10°
J 7000
0 - LL‘ ———RRT*
i ‘LJ“E'* L U_FHE 6000 RRT?*
1] 4 ° — RRT3*
4 § 5000
- 3
5 5 4000 RRTS*
£ * 8
2 RRT £ 3000
4 RRT2* =
© s
-10 RRT3* T 2000
RRT# 1000 —
— RRT> —
15 T T) o
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5
iterations 10" iterations

(c) ()

Figure 4.5: 6D: Costs (a), runtime (b), cost difference (c) and performance (d).

34

L
MH ~——

optimum

relative costs

relative costs

——RRT* ——RRT*
1.2 -
RRT2* 12 RRT2*
—RRT™ — RRTH
11 RRT4* 11 RRT#*
——RRT™ —RRT™
P I —— 1 , . , . . . :
12 3 4 5 6 7 & 9 10 0 50 100 150 200 250 300 350
iterations x 10" runtime [seconds]
(a) (b)
0
| 5000 ———RRT*
-0.005 Wu’i S o RRTZ*
i T 4000 »‘ —— RRT®*
o
g -001f e g e RRT4*
g & 3000 — RRTS*
£ 0015 g |
S ——RRT* o 4
g 002 RRT2* % 2000 LIHI
——RRT* 2 B
-0.025 RRT#* 1000
—RRTS* ——
0.03 S —— b 0 T
1 2 3 4 5 6 7 8 9 10 12 3 4 5 6 7 8 9 10
iterations x 10" iterations x10*

() (d)

Figure 4.6: 8D: Costs (a), runtime (b), cost difference (c) and performance (d).

The results for the various dimensions basically show similar characteris-
tics in terms of relative costs as well as performance and runtime over costs.
While the modified RRTY* derivatives are able to achieve a higher conver-
gence rate towards the optimal costs based on the number of iterations, this
advantage basically becomes imperceptible when relative costs are compared
to actual runtime. Since the regular RRT* limits the rewiring component
to the first level this results in a significantly higher performance in terms
of iterations per second. Nonetheless the multi-level rewiring concept shows
some improvement in terms of relative costs especially when the number of
dimensions gets higher. This might indicate that the original RRT"* algo-
rithm is not asymptotically optimal or that at least the results produced
by the versions with multiple rewiring steps converge to the optimal result
faster. Unfortunately the current results are not significant enough to allow
confirmation whether this assumptions hold or not.

35

High number of samples

The application of the multi-level rewiring strategy for the RRT* algorithm
has also been investigated on a number of 1.000.000 sampled nodes. Due
to the exhaustive computation this was limited to 2, 3, and 4 dimensions,
in each case with 20 independent runs. Figures [1.7] and show the
evaluation results for these simulations with very high number of samples.

1.0025 1.0025
q optimum —— RRT*
2%
1.002 RRT® 1.002 RRT
k RRT2" RRT™
|
2 ——RRT* 2 \ 4
3 1.0015 . % 1.0015 1) RRT™
8 RRT#* 8 I\ RRTS*
® ° N
2 — RRT™ 2 WL
& 1.001 K]
] °

1,001} ,

. .
1.0005 1.0005
e_ L 4
1 2 3 4 5 6 7 8 9 10 0 20 40 60 80 100
iterations x10° runtime [seconds]
(a) (b)
x 10 x10
0
. ———RRT*
RRT?*
o S 3
RRT3*
o S 3k .
° 2 RRT#*
o1 % RRT®*
QL o
5 Ll RRT* 2 of A
2 RRT2 S %
o © %
25 RRT™ g S
=1 R
3 RRT*
—RRT™
35 : ; . 0
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
iterations x10° iterations x10°

(c) ()

Figure 4.7: 1.000.000 nodes in 2D: Costs (a), runtime (b), cost difference (c)
and performance (d).

The results for test runs with up to 1.000.000 iterations seem to confirm
the trends that were identified in the previous section. While the conver-
gence rate in terms of node time seems to be higher for multi-level rewiring
approaches, the performance in terms of runtime can only be considered to be
significantly better for the two-dimensional case where RRT™ seems to con-
verge significantly slower than its derivatives which are able to achieve better
result even faster. For the three-dimensional case this advantage seems to
become smaller and for four dimensions the runtime performance can basi-
cally be considered to be equal. The cost difference shows decreasing and
increasing trends for 2D and 3D, respectively, while the 4D case does not
allow making assumptions.

36

1.04 1‘04‘
***** optimum | — RRT*
1.035 RRT* 1.035 RRT2
— 2
1.03 RRTs* 1.03 — RRT
% 1.025 \\ RRTA* % 1.025 RRT#*
3 RRT#* 8 — RRTS*
2 1.02 \¥ RRTS 2 1.02
$ 1015 3 10150 = -
- — —e¢ @
1.01 1.01
1.005 1.005
T R S S N 1
1 2 3 4 5 6 7 8 9 10 0 50 100 150 200 250 300
iterations x10° runtime [seconds]
(a) (b)
x10° x10°
0
2 ——RRT*
[24
. N S 3 s
o = - I
= ot — 515
g L MW L R 8 RRT#
3
o g — RRT%|
£ ———RRT* o 1t
- B
7 RRT2* s N\
8 J
- ——RRT 205 Mo,
RRT** s
~— RRT™
2 - : , o
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
iterations x10° iterations x10°

(c) (d)

Figure 4.8: 1.000.000 nodes in 3D: Costs (a), runtime (b), cost difference (c)
and performance (d).

1.15 145
optimum — RRT*
—— RRT* RRT?*
~—— RRT?* ——RRT*
2 11 —RRT™ g 11r RRT*"
g RRT#* S ——RRT™
Z — RRT™ 2
s K
2 105- 2 q05p" - e
———— o & e®
S S S R 1 . ‘ ‘ . ‘ . ‘
12 3 4 5 6 7 8 9 10 0 100 200 300 400 500 600 700
iterations x10° runtime [seconds]
(a) (b)
x10°
0 |
RRT*
. 12000 RRT2*
Y JHLW u L % 10000 ——RRT¥|
52 ‘ 3 RRT#
5 - © 8000 5
£ g RRT'
5 . 26000}
‘J g N
2 4000
-4 - \\:\
2000 |- IR — o
5 e - 0 P \
1 2 3 4 5 6 7 8 9 10 12 3 4 5 6 7 8 9 10
iterations x10° iterations x10°

(c) ()

Figure 4.9: 1.000.000 nodes in 4D: Costs (a), runtime (b), cost difference (c)
and performance (d).

37

Simulations with Obstacles

Since sampling-based motion planning algorithms are primarily used in con-
figuration spaces that contain obstacles this section investigates how the
multi-rewiring approach influences the performance in such an environment.
The following results were investigated for a two-dimensional configuration
space that was partially occupied by obstacles similar to the examples shown

in Figure [4.2]

1.015

1.01

relative costs

1.005

optimum
——RRT*

RRT2*
——RRT%*

RRT#*
—RRT®™

iterations

(a)

-0.2

04

w.nf#“lwf\w;:;"w i

St

-0.6

—RRT*

cost difference

MV%WLW\ Pt
"

RRT2*
——RRT*

RRT**

1.015

relative costs

1.005

iterations per second

1.01+

——RRT*
RRT2*
——RRT>*
RRT#*
—RRT™

o—@

1 2 3 4 5
runtime [seconds]

(b)

———RRT*
RRT2*

——RRT*
RRT#*

ri
mwvwﬁﬂ)
P P,

RRT®*

ol
”w‘!“w ¥ L T,
M L T
N Whernn A o
R e
P AR e

“l

RRTS*

10
iterations x10* iterations i

() (d)

Figure 4.10: 2D with obstacles: Costs (a), runtime (b), cost difference (c)
and performance (d).

The results presented in Figure [£.10] basically show the same character-
istics as those presented for configuration spaces without obstacles. While
the multi-level rewiring approaches tend to need less iterations to achieve
better results this advantage cannot be repeated in terms of actual runtime.
Future test will have to show whether a higher density of obstacles and con-
figurations spaces that are designed in a more challenging way allow more
significant conclusions. Furthermore such configuration spaces containing
various constellations of obstacles have to be tested in higher dimensional
spaces.

38

4.2 Conclusion and Future Work

As already mentioned in Section the numerical analysis of RRT* and
especially its multi-rewiring derivatives show some common characteristics
throughout all evaluated configuration spaces. On the one hand RRTV* is
able to converge towards the optimal solution faster than the original im-
plementation of RRT*. On the other hand the higher computational costs
due to the multiple rewiring steps decrease the performance of RRTV*. Al-
though some evaluation results, like e.g. those presented in Figure for a
two-dimensional obstacle free configuration space, show evidence that RRTV*
has advantages in terms of relative costs over runtime this assumption can-
not really be confirmed by all performed analyses. Some of the evaluation
data even confirms the speculation that a higher number of rewiring steps
might even lead to worse results due to "unfortunate" constellation of sam-
ples where a rewiring on level ¢ might lead to a better global solution than
on level 7 + 1. Nonetheless, basically all analyses showed that in average
the quality of results produced by RRTV* in terms of relative costs over
iterations/samples surpasses RRT*.

Although RRTY* tends to converge towards the optimal costs faster than
RRT* the presented results were not able to distinguish whether or not the
claimed asymptotic optimality for both RRT* or RRTV* holds or not. Even
the simulations with up to 10° samples show some progress in terms of costs
for both variations and premature convergence could not be experienced and
therefore it seems likely that they are both asymptotically optimal.

Future investigations will have to show if a higher density of obstacles
within the configuration space C' might have more significant effects on the
discrepancy between the investigated algorithms. Furthermore a compari-
son between RRTY* and another RRT*-based algorithm called RRT# (RRT
sharp) might be of interest. This algorithm introduced in [23] and [24] is also
alleged to be asymptotically optimal and furthermore claims to produce a
consistent tree after each iteration. According to [23] in this context a consis-
tent tree is given if all nodes that have the potential to be part of the resulting
solution path already have minimum cost-to-come values. The potential of
a node is determined by a heuristic value that takes into account the costs-
to-come value as well as the estimated costs to reach the goal. Although
the approach of RRT# is not directly comparable to the strategy used by
RRTY* it also uses some kind of rewiring strategy that is intended to reduce
inconsistencies regarding which nodes have the potential to be included in
the solution path.

39

5. Conclusion

The results and experiences achieved during the described research stay at
Stanford University have given some valuable insights in the field of motion
planning. Especially the mix of practical and theoretical aspects has provided
the author with a substantiated understandings of a variety of concepts and
algorithms.

The participation in the robotic arm project has shown that the con-
cepts of sampling-based motion planning algorithms can easily be adopted
to practical problems. However, the course of the project has shown that the
incorporation of hardware components gives rise to a variety of difficulties
that are mainly related to the correlation between the physical system and
its virtual representation. Furthermore, the intensive software development
phase has shown, that a library like OMPL, which was not available at the
time the system was implemented first, would have been particularly helpful
to implement standard components of the motion planning architecture.

As mentioned before the results achieve by evaluation of the RRTV* were
not able to validate whether or not this algorithm significantly improves
it’s original implementation of RRT*. The extensive simulations show that
the convergence rate might be slightly better in basically every tested envi-
ronment but this advantage becomes irrelevant when the relative costs over
runtime are investigated.

In general the experiences in the field of sampling-based motion plan-
ning represents a valuable extension to reachability analysis which was the
main focus of the authors work in the field of hybrid systems. The ca-
pabilities of sampling-based motion planning in high-dimensional configu-
ration spaces could be especially beneficial. Until now the authors research
(see [25] and [26]) mainly focused on the performance of numerical techniques
like level set methods on a multi-dimensional grid in order to determine the
space that can be reached from a certain configuration within a certain time.
Sampling-based motion planning might help to overcome the problem of the
computationally very intensive reachability analysis.

40

Bibliography

1]

2l

3]

19]

[10]

S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge
University Press, 2006, available at http://planning.cs.uiuc.edu/.

L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” Robotics and Automation, IEEE Transactions on, vol. 12, no. 4,
pp- 566-580, 1996.

R. Bohlin and L. E. Kavraki, “Path planning using lazy PRM,” in
Robotics and Automation, 2000. Proceedings. ICRA 00. IEEE Inter-
national Conference on, vol. 1, 2000, pp. 521-528 vol.1.

S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” I. J. Robotic Res., vol. 30, no. 7, pp. 846-894, 2011.

L. E. Kavraki, M. N. Kolountzakis, and J.-C. Latombe, “Analysis
of probabilistic roadmaps for path planning,” [EEE Transactions on
Robotics and Automation, vol. 14, no. 1, pp. 166-171, 1998.

S. M. Lavalle, “Rapidly-exploring random trees: A new tool for path
planning,” Tech. Rep., 1998.

S. M. Lavalle and J. J. Kuffner, “Rapidly-exploring random trees:
Progress and prospects,” in Algorithmic and Computational Robotics:
New Directions, 2000, pp. 293-308.

J. J. Kuffner and S. M. LaValle, “RRT-Connect: An efficient approach
to single-query path planning,” in ICRA, 2000, pp. 995-1001.

I. A. Sucan and L. E. Kavraki, “Kinodynamic motion planning by
interior-exterior cell exploration,” in WAFR, 2008, pp. 449-464.

D. Hsu, J.-C. Latombe, and R. Motwani, “Path planning in expansive
configuration spaces,” 1997.

41

[11]

[12]

[13]

[14]

[15]

[16]

17]

18]

[19]

[20]

21]

22]

J. Phillips, N. Bedrossian, and E. Kavraki, “Guided expansive spaces
trees: a search strategy for motion- and cost-constrained state spaces,”
in Robotics and Automation, 200/. Proceedings. ICRA ’04. 2004 IEEFE
International Conference on, vol. 4, 2004, pp. 3968-3973 Vol.4.

G. Sanchez and J.-C. Latombe, “A single-query bi-directional probabilis-
tic roadmap planner with lazy collision checking,” 2001.

Kavraki Lab, “Open motion planning library: A primer,” http://ompl.
kavrakilab.org/OMPL Primer.pdf, 2013, [Online; accessed 18-May-
2013].

I. A. Sucan, M. Moll, and L. E. Kavraki, “The open motion planning
library,” IEEE Robot. Automat. Mag., vol. 19, no. 4, pp. 72-82, 2012.

L. Jaillet, J. Cortés, and T. Siméon, “Sampling-based path planning on
configuration-space costmaps,” Robotics, IEEE Transactions on, vol. 26,
no. 4, pp. 635-646, 2010.

S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,”
1999.

E. Plaku, L. Kavraki, and M. Vardi, “Motion planning with dynam-
ics by a synergistic combination of layers of planning,” Robotics, IEEE
Transactions on, vol. 26, no. 3, pp. 469-482, 2010.

J. Denavit and R. S. Hartenberg, “A kinematic notation for lower-pair
mechanisms based on matrices.” Trans. of the ASME. Journal of Applied
Mechanics, vol. 22, pp. 215-221, 1955.

J. H. Halton, “Algorithm 247: Radical-inverse quasi-random point se-
quence,” Commun. ACM, vol. 7, no. 12, pp. 701-702, Dec. 1964.

N. Salowitz, Z. Guo, Y.-H. Li, K. Kim, G. Lanzara, and F.-K. Chang,
“Bio-inspired stretchable network-based intelligent composites,” vol. 47,
no. 1, pp. 97-105, 2013.

Z. Guo, K. Kim, G. Lanzara, N. Salowitz, P. Peumans, and F.-K. Chang,
“Micro-fabricated, expandable temperature sensor network for macro-

scale deployment in composite structures,” in Aerospace Conference,
2011 IEEFE, 2011, pp. 1-6.

F. Mazzini et al., “Tactile mapping of harsh, constrained environments,
with an application to oil wells,” Ph.D. dissertation, Massachusetts In-
stitute of Technology, 2011.

42

http://ompl.kavrakilab.org/OMPL_Primer.pdf
http://ompl.kavrakilab.org/OMPL_Primer.pdf

23]

[24]

[25]

[26]

O. Arslan and P. Tsiotras, “The role of vertex consistency in
sampling-based algorithms for optimal motion planning,” CoRR, vol.
abs/1204.6453, 2012.

——, “Use of relaxation methods in sampling-based algorithms for op-
timal motion planning,” in 2013 IEEE International Conference on
Robotics and Automation (ICRA), 2013.

W. Pointner, G. Kotsis, P. Langthaler, and M. Naderhirn, “Using formal
methods to verify safe deep stall landing of a mav,” in Digital Avionics
Systems Conference (DASC), 2011 IEEE/AIAA 30th, 2011, pp. 5D1-
1-5D1-10.

W. Pointner, G. Kotsis, and M. Naderhirn, “General aviation landing as-
sistance using formal methods-based system design,” in Digital Avionics
Systems Conference (DASC), 2012 IEEE/AIAA 31st, 2012, pp. 2C4—1—
2C4-9.

43

	Abstract
	Kurzfassung
	Acknowledgements
	Introduction
	Motion Planning
	Sampling-based Motion Planning
	Motion Planning Algorithms

	Open Motion Planning Library (OMPL)

	Robotic Arm Project
	Problem Formulation
	System Design
	Planning Strategy
	Control Logic
	Sensor System
	Tests
	Conclusion and Future Work

	Enhancement of RRT*
	The RRTN* Algorithm
	Implementation
	Simulations
	Evaluation

	Conclusion and Future Work

	Conclusion
	Bibliography

