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Abstract

This report summarizes my research visit at Stanford University
in summer 2012. During my stay and in ongoing work, we evaluate
simulated and human navigation on biomedical Wikipedia articles.

While most visits to Wikipedia are results of direct searches, human
users also navigate Wikipedia to explore certain areas of interest or
to look for concepts they cannot recall the name of. By making use
of some sort of background knowledge on their minds, humans are
able to relate articles and guess where hyperlinks may be leading.
We model this behavior with the established decentralized search al-
gorithm, that allows to simulate navigation with different ontologies
as background knowledge.

To compare the simulations to human click data, we conducted a
user study where human navigators were given wayfinding tasks on a
subset of biomedical Wikipedia articles. We show that using ontolo-
gies as background knowledge in navigation simulations exhibits the
same characteristics and performance as navigation by our human
test subjects. We demonstrate our findings based on four biomedi-
cal ontologies and their associated Wikipedia articles.

Keywords: Navigation, Decentralized Search, Ontology Evaluation
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1 Introduction

1.1 General Introduction

In the summer of 2012, I was given the exceptional possibility to work on my
master’s thesis in cooperation with Stanford University in California. The
Stanford Biomedical Informatics Research Center has a well-established
expertise in the field of biomedical ontologies. In the past, this has already
led to several very successful cooperations with the research group of Dr.
Markus Strohmaier at Graz University of Technology. As part of our on-
going efforts to combine the expertises of professor Strohmaier’s group in
Graz in the field of Knowledge Management and Social Computing with
professor Musen’s group, this research visit has proofed very fruitful.

I spent a little over three months at Stanford University, California,
where I was very warmly received by professor Mark Musen and his staff.
This visit would not have been possible without the generous support by
the Austrian Marshall Plan foundation.

The following report aims to summarize the work accomplished in the
three-month research visit.

1.2 Topical Introduction

An ontology is ”an explicit formal conceptualization of some domain of
interest”[6]. Ontologies consist of concepts (such as disesases) and links
between these concepts (such as a classification of the concepts). An ex-
ample for an ontology is the WHO’s International Classification of dis-
eases, which is used by insurance companies and hospitals worldwide to
report morbidity statistics. Other examples of ontologies are thesauruses
or WordNet, a lexical database for the English language. In our work, we
were focused on biomedical ontologies, so as to make the best use of the
expertise of Stanford’s Biomedical Informatics Research Center.

Evaluating ontologies poses a tough problem for the research community.
Common evaluation methods include comparing to an existing gold stan-
dard, thus analyzing quality by hand [6]. Ontology users often have several
ontologies covering the domain of interest at hand. Comparing ontologies
in an automated manner is difficult. Different ontologies (or different ver-
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sions of an ontology) can be useful for different purposes, and structural
properties or lexical comparisons alone might not suffice to inform deci-
sion making. The approach of task-based ontology evaluation has proved
advantageous to judge the fitness of an ontology for a specific application.
In this paper, we present an automated method for evaluating the suit-
ability of ontological structures for the purpose of guiding navigation in an
information network.

In the following, we make use of a subset of biomedical Wikipedia articles
to simulate human navigation. We show that several different biomedical
ontologies can be used as background knowledge to inform navigation sim-
ulations, much as humans use their acquired knowledge for navigation. We
demonstrate that user behavior resembles our simulations and present re-
sults of a simple user study. We suggest that our method can be used
as an automated evaluation method for ontologies using these simulated
navigation scenarios.

To illustrate our work, let us introduce the following example (depicted
Figure 1): Alice has been diagnosed with a specific respiratory disease
by her physician. Back home, she has forgotten the exact name of her
condition. She decides to go and look for it on Wikipedia. Since she does
not know the exact name of her target article, she cannot use the search
function. Alice starts from a hypothetical Wikipedia portal containing links
to a number of common diseases. She first clicks the portal link leading to
the article on Asthma, as this seems to be a good starting point for finding
her respiratory disease. Next, she navigates to Chronic Bronchitis, then to
Pneumonia and finally arrives at Bronchopneumonia, which she recognizes
as the disease the doctor diagnosed her with.

At each step in her navigation, Alice only sees the links pointing away
from the article she currently is at. She is familiar with some of the articles,
and is able to relate them to one another through what we refer to as her
background knowledge. She recognizes some of the hyperlinks and knows
what their target article will likely be about. Since Alice is only making use
of the local article content and its outgoing links at each step, she performs
what is called decentralized search in the literature [11].

In our work, we demonstrate the use of biomedical ontologies as back-
ground knowledge for navigation. We simulate navigation by means of
decentralized search on a set of biomedical Wikipedia articles. We show
that several biomedical ontologies show the same characteristics and per-
formance as actual human test subjects.

Our main contributions are the demonstration of the general suitability of

9



Figure 1: Alice’s Wikipedia Navigation Scenario Looking for a dis-
ease, Alice goes to Wikipedia and starts from a hypothetical por-
tal containing links to a number of common diseases. Alice then
navigates her way through the Wikipedia network. Since she does
not know the exact name of her target, she does not use the search
function. Being familiar with some of the articles, she is able to
relate them to one another through her background knowledge.
Guessing in what area hyperlinks are leading and how likely the
will lead her in the right direction, she is able to find the disease
she is looking for.

external real-world ontologies to inform decentralized search on Wikipedia
and their comparison on the same data set as well as with upper and
lower bounds. Our findings are relevant for researchers interested in new
evaluation methods for ontologies and researchers interested in modeling
network navigation.

The rest of this paper is structured as follows: In section 2 we place our
work in the context of previous research and related work. In Section 3
we discuss materials and methods, and we present our results in Section 4.
We end with a discussion of our results.
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2 Related Work

The research related to this work can be broadly divided into navigation
and ontology evaluation.

2.1 Navigation

Decentralized search, as used in our navigation simulations, was made fa-
mous by Stanley Milgram’s widely discussed small-world experiment [17]
in the 1960s. In the experiment, participants in Boston and Nebraska
received a letter containing information about a target person (a Boston
stock broker). They were then asked to forward the letter to one of their
acquaintances so as to bring the letter closer to the target person. The
forwarding was limited to close friends, i.e., acquaintances with whom par-
ticipants corresponded on a first-name basis. Each participant was further
asked to record information in the letter, such as profession and age.

The results showed a length of four to six hops for successful chains of let-
ters. The letter distribution took a bimodal form, stemming from the two
main ways in which letters reached the target person: Through his work
and through his hometown. By taking only the limited knowledge of each
participants into account, the search effectively constituted a form of de-
centralized search. The result demonstrated the small world phenomenon,
as it seemed possible to connect two arbitrary persons across the United
States through a very small number of hops. It was later argued that this
theory would hold for the whole world in general. In 2011, researchers at
Facebook showed that the social network’s users were a mere four hops
away from each other [4].

Some thirty years later, the theory of small world models was extended by
Watts and Strogatz [18] who showed some of the characteristics of graphs
displaying the small world phenomenon. They also demonstrated the oc-
currence of small world networks in a power grid, a neural network of a
worm and an actor collaboration network.

In 2000, Jon Kleinberg showed that no decentralized algorithm could
exist for the type of small world network proposed by Watts and Strogatz
[11]. However, Kleinberg presented a more generalized version of the model,
for which he proofed that a decentralized algorithm capable of finding short
paths existed.

11



As far as navigation on Wikipedia is concerned, recent research [7] has
shown that when visiting a Wikipedia page, users have a 30 - 40% chance of
following a link on that page. Users are hence more likely to jump to some
other page directly. Jumping to another page is referred to as teleporting,
e.g. by using the search function or typing in another address manually.
In general, users are estimated to follow a hyperlink in about 60 - 70%
of their clicks. The fraction of teleports is hence significantly higher on
Wikipedia than on general web sites. This might be due to the fact that
users visit Wikipedia to satisfy specific information demands rather than
browsing the articles. However, navigating Wikipedia does occur, e.g., in
the examples given in Section 1.

Navigating Wikipedia has been studied in the context of Wikigames.
West et al. [20] used Wikigame data to infer semantic distances between
concepts by studying game click paths. West and Leskovec [19] found
that in Wikigames, players tend to navigate to hubs (articles with a large
number of outlinks) first and subsequently home in on targets node.

Previous research in our own group has focused on simulating decen-
tralized search in navigation networks. In [9], the authors evaluated dif-
ferent folksonomies using decentralized search. In [15], Strohmaier et. al.
compared different folksonomy induction algorithms through decentralized
search.

2.2 Ontology Evaluation

In 2005, Brank et al. [6] surveyed ontology evaluation techniques and
identified four main methods:

1. Comparison to a gold standard by lexical comparison to an ontology
considered a good representation, and measuring deviation from that
ontology.

2. Data-driven evaluation by measuring the fit of an ontology to data,
e.g., a set of documents - e.g., measuring the overlap of key terms in
the ontology and the document set. Other measures for this include
ontology breadth and depth [22], which measure domain coverage.

3. Manual assessment by humans, who analyze the ontology with regard
to requirements and standards. While this is clearly the best evalua-
tion method, it is often not feasible. Particularly for large ontologies
or for evaluation of several revisions of an ontology, it is too time-
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consuming or expensive to concern human experts with evaluation
tasks.

4. Task-based evaluation by measuring the fitness of an ontology for a
given task or application. This establishes the suitability for one spe-
cific task only - but this is often sufficient for real-world applications.

The task of automatically evaluating ontologies is still considered hard
in the research community.

For this paper, we focused on task-based evaluation by using simulated
navigation and compared different ontologies as background knowledge.
Previous research [16] has already analyzed some of the aspects of decen-
tralized search and human search behavior on Wikipedia. In their work,
Trattner et al. showed that background knowledge based on structural
network features performed better than external background knowledge.
In this paper, we again make use of the simulated decentralized search to
study ontological structures. We compare different external ontologies as
background knowledge for decentralized search and analyze their differences
as well as similarities with human navigation behavior.
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3 Materials and Methods

Our data consisted of four biomedical ontologies and corresponding arti-
cles from the English Wikipedia. We simulated decentralized search on
the subset of the Wikipedia link network induced by these articles. The
ontologies served as the background knowledge. To validate our results, we
conducted a user study and compared the results to our simulations.

3.1 Biomedical Ontologies

We used the following four ontologies from the biomedical domain for our
research:

The International Classification of Diseases, tenth revision (ICD-
10) is a classification of diseases, signs and symptoms first published in
1992 and maintained by the World Health Organization (WHO). ICD-10
had its origins in the classification of causes of deaths and is presently used
by over 100 countries to report mortality statistics. It is also widely used
for epidemiology, health management as well as clinical purposes and is
available in 46 languages [1]. The version we used contained 12,417 con-
cepts. ICD-10 consists of 22 top-level nodes termed chapters and assigns a
code (or a range of codes) to every disease in its domain. ICD is currently
being developed in its 11th revision. For this process, the WHO is using
collaborative ontology engineering tools for the first time in the history of
ICD. This process was the subject of another research cooperation with
Stanford University and yielded several publications, to one of which this
author contributed [10].

Medical Subject Headings (MeSH) is a controlled vocabulary the-
saurus for journal articles in the medical domain. MeSH is maintained
by the U.S. National Library of Medicine. The ontology forms a tree-
structure with 16 top-level concepts and contains 26,142 terms (dubbed
descriptors)[2] . Descriptors are graph leaves and attached to one or more
tree nodes (which are not descriptors). As such, the complete ontology
graph we used actually contained 80,689 nodes. MeSH extends beyond
biomedical concepts and comprises terms from other domains such as Ge-
ography, Technology or Publication Characteristics.

Systematized Nomenclature of Medicine–Clinical Terms (SNOMED-
CT) [14] is a clinical healthcare terminology used in electronic health record
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(a) ICD-10 (b) MeSH

(c) SNOMED-CT

Figure 2: Structure of the four top levels of ICD-10, MeSH and
SNOMED-CT. The figure shows the structure for ICD-10 and
MeSH, followed by SNOMED-CT. The root node is displayed in
the middle of each plot. The figures show all ontology concepts
up until a distance of four from the root node (hence the term
”levels”). Color indicates distance, with red being close to the
root and blue being farther away. SNOMED-CT (depth 16) is
clearly broader than MeSH (depth 14), which stems from the fact
that the latter contains roughly four times as many concepts as
the former.
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(a) GO (bio) (b) GO (cel)

(c) GO (mol)

Figure 3: Structure of the four top levels of the GeneOntology.
The figure the structure for the three subontologies making up
the GeneOntology (biological process, cellular component and
molecular function). The root node is displayed in the middle
of each plot. The figures show all ontology concepts up until a
distance of four from the root node (hence the term ”levels”).
Color indicates distance, with red being close to the root and
blue being farther away.
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systems. The revision we used contained 295,482 concepts, which made it
by far the largest ontology in our simulations. SNOMED-CT consists of
19 top-level concepts. In contrast to the other ontologies, SNOMED-CT is
proprietary.

The Gene Ontology (GO) [3] is a controlled vocabulary of terms used
for the annotation of human genes and gene products. It consists of 37,779
concepts divided among three different subontologies, which cover the cel-
lular component, the molecular function and the biological process, re-
spectively. In its filtered form which we used for our study, the three
subontologies take the form of disjoint trees.

Table 1 displays statistics about the data sets used for this paper. Figures
2 and 3 depicts the first five levels of the used ontologies.
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3.2 Wikipedia Articles

We used the December 2011 dump 1 of the English Wikipedia to extract
articles from the biomedical domain corresponding to ontology concepts.
The dump is made available in XML format, which we preprocessed and
filtered for relevant articles. We then mapped the articles to the ontologies
by parsing the articles’ info boxes, i.e. the template structures containing
the information linking to biomedical ontologies.

Figure 4: Example for an infobox template used in disease articles
on Wikipedia. Disease articles commonly make use of an In-
fobox disease template, which offers fields for ontology codes . We
used template fields in the Infoboxes to map Wikipedia articles
to their ontology counterparts.

Disease articles commonly make use of a Template:Infobox disease2,

1http://dumps.wikimedia.org/enwiki/20111201/
2http://en.wikipedia.org/wiki/Template:Infobox_disease
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which offers several options to reference medical ontologies such as ICD-
10 or MeSH (see Figure 4 for an example). We used template fields in
the Infobox disease as well as a in a handful of other infobox templates
to map Wikipedia articles to their ontology counterparts in ICD-10 and
MeSH.

SNOMED-CT is proprietary and not present in Wikipedia info boxes.
As a consequence, we could not directly relate Wikipedia articles to the on-
tology concepts. We therefore used semantic mappings from BioPortal [21]
to map Wikipedia articles to SNOMED-CT. We mapped a total of 1,594
Wikipedia articles from both ICD-10 and MeSH to SNOMED-CT with this
method. We then compared the performance of all three ontologies on this
intersection of data sets.

The Gene Ontology is different in that it is not used for 1:1 mappings
but for annotation of Wikipedia articles. Articles are assigned different
annotations from the controlled vocabulary that constitutes the GeneOn-
tology. E.g., Insulin is annotated with protease binding, hormon activity
and protein binding, stemming from the Molecular function part of the
GeneOntology.

To extract Wikipedia articles based on these templates, we went through
the dumped Wikipedia articles and filtered those containing relevant tem-
plates providing ontology information.

As a result, we related Wikipedia articles to all (up until 50 or more) re-
lated concepts from all three subontologies of the Gene Ontology . We used
the corresponding fields in templates created by the ProteinBoxBot3 to ex-
tract the relevant mappings to the Gene Ontology. The Portal: Gene Wiki

on Wikipedia contains around 10,000 articles on human genes and proteins.
Articles in this domain are usually either created or annotated by the Pro-
teinBoxBot using information from the Gene Ontology and other projects.
As a great number of these articles are very domain-specific and only very
few editors are knowledgeable enough to add to them, there is a large num-
ber of stubs (very short articles) and orphans (articles not linked to by any
other Wikipedia article). This is also reflected in the low number of links
between the articles in this data set, as compared to the other data sets
(see the density information in Table 1).

3http://en.wikipedia.org/wiki/User:ProteinBoxBot
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Figure 5: Example for a GeneOntology infobox template used on
Wikipedia. Articles are annotated with multiple elements taken
from the three subontologies of the Gene Ontology. We used
those annotations to relate Wikipedia articles to GeneOntology
concepts.

3.3 Decentralized Search

In this section, we’ll first go over the general algorithm for decentralized
search, followed by a detailed description of its application to our research.

In general, decentralized search works as follows: A start node of a net-
work (e.g., a person in a social network) is provided with information about
the target node (e.g., another person). The start node’s task is then to for-
ward the search task to one of its adjacent nodes (e.g., friends), so as to
forward it towards the target node as quickly as possible. The ”decentral-
ized” part about it is, that at no point, global knowledge is available. Each
node along the search path simply uses its local neighborhood knowledge

21



to forward the search problem.

A real world example for this type of search could be fixing a bug in a
piece of software: When a user finds a bug, they enter it in the bug fix
system. The developer in charge of the bug fix system then assigns the bug
to the developer they consider most likely to fix the bug. When we assume
that the software development team consists of a large number of people,
the first person might not necessarily be the right one to deal with the
issue. However, this person might guess who could be responsible for the
specific section of the software, and reassign the bug. If we imagine that
this process is repeated several times before the right developer is found,
this is exactly decentralized search as described before.

To simulate Alice’s usage of Wikipedia, we mapped all articles to their
corresponding ontology counterparts. Given these mappings, the simula-
tion could then calculate distance information on the ontology (the back-
ground knowledge). The distance from a start to a target article in the
ontology was taken as the length of the shortest path that connected these
concepts not in the Wikipedia graph but in the ontology. In this manner,
the simulator had the full knowledge about the ontology at its disposal,
just as Alice could access her whole background knowledge in her mind.
The simulator would then use this information to determine the best link
to click, i.e., the link for which the ontology predicted it would lead to the
article closest to the target article. The distance information gained this
way was not necessarily optimal or even correct, but provided a good guess
to guide navigation.

In our simulation, the target article was directly known to the simu-
lation. This was used to model the somewhat familiar article Alice was
trying to reach. Alice did not know the exact name of her target, but she
could roughly place it in a category, to which she then navigated using
her own background knowledge. Our simulations modeled this by calculat-
ing distance directly to the target node on the background knowledge to
determine the best link to click.

To avoid loops, the simulation visited each link in the network only once
(but could visit nodes multiple times). In some cases a node yielded only
links which, according to the ontology distance information, would put the
simulation in a worse state than before, or no (new) links at all (i.e., a dead
end). In these cases the simulation would backtrack to the last visited node,
just as Alice would use her browser’s back button. At any given point, the
simulation could also jump back to the starting portal directly, modeling a
home button.
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Figure 6: List of health conditions from WebMD We used the
list of health conditions from WebMD.com as our hypothetical
Wikipedia starting portal for our disease articles. We manually
mapped these conditions to Wikipedia articles in our data set and
started the simulations from the page containing links to them.
We WebMD to best reflect our search scenario of users looking
for somewhat familiar diseases.

We started the navigation from a hypothetical Wikipedia portal featuring
a selection of suitable articles. For ICD-10, MeSH and SNOMED-CT, we
used the 25 health conditions listed in the navigation bar of WebMD.com

(see Figures 6 and 7). We manually mapped these conditions to Wikipedia
articles from our dataset and used the articles as the outgoing links from
the portal. We chose WebMD to best reflect our search scenario of users
looking for somewhat familiar diseases. For the Gene Ontology, we used
the articles listed in the two top-10 lists (ranked by word count and view
count) shown on the Portal: Gene Wiki 4 (see table 7).

In our simulations we analyzed two different search scenarios, which we
describe in the following two subsections.

4http://en.wikipedia.org/wiki/Portal:Gene_Wiki
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Figure 7: Starting portals used in navigation simulations. For ICD-
10, MeSH and SNOMED-CT we used a portal obtained by map-
ping navigation bar articles from WebMD.com to Wikipedia arti-
cles. For the GeneOntology, we used the longest and most fre-
quently visited Wikipedia articles as listed on the Gene Wiki
Portal http://en.wikipedia.org/wiki/Portal:Gene_Wiki.
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3.3.1 Single-target Search

Our first scenario was analogous to Alice’s example of looking for a dis-
ease. In single-target search, the simulation started at the hypothetical
Wikipedia portal as described and proceeded to a single target article us-
ing decentralized search.

As discussed, single-target search modeled the scenario of having some-
thing on the tip of one’s tongue, and navigating to rediscover it.

3.3.2 Multiple-target Search

For multiple-target search we used the same approach as for single-target
search. The only difference was in the targets, which consisted of target
sets of 2 through 10 articles. The rest of the simulation (starting portal,
decentralized search, background knowledge) was conducted in the same
way as the single-target search.

We used multiple-target search to model a scenario of exploratory search.
In exploratory search, users explore a space of resources rather than trying
to find one specific target. We measured the successfulness of the explo-
ration by the number of found targets.

We used clusters of semantically similar Wikipedia articles as our target
sets. To automatically obtain these clusters, we first extracted textual
features from the articles. The type of features we used were TF-IDF
(Text Frequency - Inverse Document Frequency). To be more specific, this
means that each article is represented as a vector of all the words occurring
in all articles, and a weight for each entry in this vector. The weight is
determined by the occurrence of the specific word in the article and its
occurrence in all other articles. The idea is, that words occurring only in
one article are highly representative for that article, but words that also
occur in every other article are not. After the feature extraction, we then
used k-means clustering to arrange similar articles into clusters. We used
those resulting clusters containing two through fifteen articles as target
clusters in our simulations. Examples for clusters are given in Table 2. We
used the Scikit-learn library [13] for this part of our work.
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Nausea-related Stomach-related Cough-related

Vomiting Linitis plastica Bronchitis
Nausea Stomach cancer Chronic bronchitis
Motion sickness Gastritis Acute bronchitis
Morning sickness Atrophic gastritis Cough
Drooling Ménétrier’s disease Sputum
Hyper. gravidarum Achlorhydria

Gastroparesis
Duodenal cancer
Gastric dumping syn-
drome
Stomach disease

Cancer-related Personality disorders

Stomach cancer Avoidant personality disorder
Breast cancer Borderline personality disorder
Pancreatic cancer Antisocial personality disorder
Prostate cancer Panic attack
Cancer Schizoid personality disorder
Lung cancer Obsessive–compulsive disorder
Leukemia

Table 2: Examples for clusters of Wikipedia articles used in ex-
ploratory search. The table shows three examples of clusters
used in our simulations. We used TF-IDF features and k-means
clustering to automatically group Wikipedia articles into seman-
tically related groups of two through ten articles.
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3.4 User Study

To evaluate our simulations, we carried out a user study on Wikipedia nav-
igation. Eight participants without any particular background in medicine
were asked to navigate Wikipedia, modeling the scenario of navigating
to find diseases. The study used the intersection data set of ICD-10,
SNOMED-CT and MeSH, containing 1,594 Wikipedia articles. As a large
share of these articles turned out to be too specialized for test subjects
not particularly familiar with the medical domain (with article names such
as Halitosis, Aniseikonia or Milroy’s disease), we manually selected 100
generally better known targets (such as Pneumonia, Stomach cancer or
Asthma), out of which we also manually formed 20 clusters of four arti-
cles each. We then set up the subset of Wikipedia articles in our testing
environment and asked subjects to perform navigation tasks. As in our sim-
ulations, backtracking (using the back button in the browser) and jumping
back to the portal by clicking a link were enabled at all times.

Our simulation tasks were analogous to what is commonly called Wiki
Games. Wiki Games, such as http://wikispeedia.net/ or http://

thewikigame.com/ provide the user with a start and a target page. The
aim of these games is to navigate to the target page without using the
search function or domain-external pages, i.e. by only clicking links in the
article body text. Game success and ranking is then established by differ-
ent criteria, e.g. minimum number of clicks or minimal time. Over time,
multiple variants of Wiki Games have been developed, such as Five Clicks
To Jesus 5, which requires the users to navigate to the article on Jesus in
a maximum of five clicks.

Each participant completed a total of 15 games/navigation tasks. As
a starting point, we used the hypothetical WebMD Wikipedia portal also
used by our simulator (see Figure 7). To deal with potential frustration,
participants were given the possibility to abort the current task if they had
not found the target(s) after half of the maximum number of steps (20 for
single targets and 40 for multiple targets).

5http://thewikigame.com/5-clicks-to-jesus
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4 Results

4.1 Evaluation Approaches

We used the following evaluation approaches:

1. Firstly, for the domain-specific evaluation we mapped each ontol-
ogy to the maximum number of articles available. We then evaluated
the performance for each ontology on its domain-specific set of arti-
cles (i.e., each ontology on a different set of articles). This allowed
us to evaluate the fitness of each ontology for its specific domain of
interest.

2. Secondly, we evaluated the cross-domain performance of several
ontologies. For this, we reduced the set of Wikipedia articles to the
intersection, i.e., the set of articles mapping to all examined ontolo-
gies. We could then directly compare the performance of different
ontologies on the same data set. This allowed us to compare ontol-
ogy behavior directly.

3. Thirdly we juxtaposed three ontologies to human behavior by com-
paring to a user study. We picked a set of tasks for navigation tasks
and asked our test subjects to navigate to them. We then ran a sim-
ulation with the same data set and targets and evaluated the results.
This allowed us to compare our simulations to human behavior.

4.2 Evaluation Metrics

Based on [12] and [5] we used stretch and success ratio to evaluate naviga-
tion paths.

We define success ratio s to be the average fraction of target nodes found
and stretch τ to be the average ratio of found path lengths to shortest path
lengths. As in [8] and [16] we evaluate success ratio and stretch broken
down by shortest path length of the underlying node pairs. These metrics
give us a means of analyzing what paths were found by the simulator and
how much longer than the shortest paths they were.

We further extend these metrics with the accumulated success ratio as,
which we define as the average fraction of nodes found until a certain
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number of steps.

For all our evaluations, we assumed a maximum number of 20 clicks for
single targets and 40 clicks for multiple targets.

4.3 Domain-specific Evaluation

For the domain-specific evaluation, we compared ICD-10 to MeSH. We
used two different sets of Wikipedia articles, namely the whole sets of 2,673
articles mapping to ICD-10 and the 2,584 articles mapping to MeSH.

Figure 8 shows the results. All four metrics indicate that ICD-10 per-
formed better for targets closer to the portal, and MeSH better for targets
farther away. The Success Ratio shows that while MeSH found slightly
more paths overall, ICD-10 found more paths with an underlying shortest
path length of two. This is also reflected in the Accumulated Success Ra-
tio. The Stretch shows that the paths found by ICD-10 were, on average,
slightly shorter than the ones found by MeSH.

4.4 Cross-domain Evaluation

For the cross-domain evaluation, we evaluated multiple ontologies on the
same set of Wikipedia articles. Cross-domain evaluation allowed us to
inspect multiple ontologies side by side, facilitating comparison.

The data sets we used for this were (i) the set of the articles mapping
to both ICD-10 and MeSH as well as to SNOMED-CT and (ii) the set of
articles mapping to all three subontologies of the GeneOntology.

For (i) Figure 9 depicts the results. We established upper and lower
bounds by including both a random walk and an optimal solution.We av-
eraged over 1000 random walks for each target node to obtain the lower
bound. The optimal solution was calculated using global knowledge of
the Wikipedia network. For the single-target search, the optimal solution
was obtained by using global knowledge (and hence the globally shortest
paths). For the multiple-target search, a nearest-neighbor approach with
global graph knowledge was used to approximate an optimal solution be-
cause a truly optimal solution would require solving an instance of the
Traveling-Salesman problem, which is computationally expensive. The re-
sults show that the simulations were, for the most parts, well between the
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optimal and the random solution.

The figures show that ICD-10 and MeSH performed better than SNOMED-
CT for the number of paths found for both single-target and multiple-target
search. In contrast to the domain-specific evaluation, ICD-10 performed
better than MeSH for the Success Ratio and the Accumulated Success Ra-
tio (although they were still close to each other). This might be due to
the intersection of articles removing some targets which were harder to
find. In terms of Stretch, ICD-10 found shorter paths than SNOMED-CT,
which in turn fared slightly better than MeSH. This is consistent with the
domain-specific evaluation, where ICD-10 found shorter paths than MeSH.
The stretch for the random walk is in the range of the ontology results
for shortest paths of length four. However, this is due to the random walk
finding only a tiny fraction of the targets for a distance of four, thus biasing
the resulting stretch.

Figure 11 shows the results for (ii). The GeneOntology data set had
noticeably worse results than the other data sets considered in this paper.
With target nodes as far away as eleven hops from the starting portal, the
ontology-informed search was only able to find targets up to a distance
of six hops and no more than 25% of the targets at a distance of two
hops. Overall, the ontologies were only able to find between four and seven
percent of target nodes.

4.5 User Study

For the user study, we compared the performance of human navigators with
the ontologies on the same data set used for the cross-domain evaluation of
ICD-10, MeSH and SNOMED-CT. The targets were 100 manually selected
targets and 20 manually selected clusters. To deal with potential user
frustration when not finding targets, we allowed aborting the search after
half the number of clicks. In our analysis, we assumed aborted tasks to
contain the maximum number of clicks. The limitation of targets also
meant that targets were a maximum distance of three hops away from the
portal. The evaluations do hence not include any data points for longer
shortest paths.

Figure 10 shows that the success ratio for the user study was fairly close
to the simulator performance. The overall success ratio was 92% for the
user study and ranged from 79 - 91% for the ontologies. That is, human test
subjects were able to find slightly more target articles than the simulation
in single-target search. For multiple-target search, the accumulated success
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ratio shows that the user study fell within or just below the range of the
three ontologies. Noticeable is that after 20 steps, the user study did not
find any more targets. This coincides with the point from where on users
where allowed to abort their search task. For the single-target stretch again,
with an overall stretch of 1.74 the user study performed slightly better than
the ontologies, which displayed stretches between 1.78 and 1.84.

In addition, we compared several further aspects of the user study to the
ontologies. Table 3 displays these statistics and compares the user study
to the ontologies as well as the optimal solution and the random walk.

In summary, the results confirm that what has appeared somewhat ap-
parent from the Success Ratios and the Stretch, i.e., that ICD-10 and MeSH
displayed the most similar behavior to the user study.

To compare the values, we calculated cosine similarity. Cosine similarity
works by comparing vectors of values. In our case, we arranged our data
into vectors (e.g., a vector of all targets and a ”1” for ”found” and a ”0”
for ”not found”). Cosine similarity then calculates the angle between two
vectors as

cos(θ) =
A ·B
‖A‖‖B‖

=

N∑
i=0

Ai ×Bi√
N∑
i=0

(Ai)2 ×

√
N∑
i=0

(Bi)2

For vectors with nonnegative elements this always yields a value between
0 and 1 (where one denotes vector equality and 0 orthogonality).

For the found targets, all three ontologies displayed high cosine similarity
values. This is due to the high success ratios for the limited target set used
in our user study which leads to the majority of the vectors containing ones
at the same positions. The random walk (which found only (4%) of the
targets) also sets a high base line of 72%.

The visited Wikipedia pages showed greater differences. Interestingly
enough, the random walk was about as similar or more similar to the user
study as the three ontologies for the single-target search. The optimal
solution was even more similar. This is due to the large number of graph
nodes (around 90%) that are never visited in this study but are still included
in the calculation. Since nodes visited by the optimal solution lie on the
shortest path to the target, the simulation is likely to visit some of these
nodes as well. For the ontologies, MeSH displayed the most similar behavior
to the user study.
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For the first hops (i.e., the first click on a portal link), the clicks were
distributed quite evenly. A random distribution would see each link clicked
3.7% of times. Our results showed distributions ranging from 1 through
17% and were thus fairly evenly distributed, explaining the values of the
cosine similarity being close together. For the first hops, ICD-10 displayed
the most similar values to the user study. Figure 12 shows the first hop
distribution in more detail.

In addition to calculating similarities, we also inspected the average per-
step probability of backtracking or clicking the home button.

Both the simulation and the users had access to a back button (leading to
the previously visited page) and a home button (leading back to the portal)
at all times. The simulations used the home button only immediately
after having found a target in multiple-target search. In all other cases,
the best strategy given by our simulation constraints turned out to be
backtracking or not even visiting the node in the first place. The user
study showed different behavior from the simulator in several aspects: For
single-target search, users backtracked less frequently (9% of clicks were
back button clicks, versus 11-13% for the simulations) but used the home
button in 2% of clicks. For the multiple-target search, users backtracked
more frequently (27% versus 17-18% for the simulator) and used the home
button less frequently (1% versus 2-3%).

In conclusion, backtracking was the most widely applied strategy for
navigating out of dead ends and backtrack from less promising areas of the
network. This was especially true for the user study.
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(a) (b)

(c) (d)

Figure 8: Domain-specific results for ICD-10 and MeSH The figures
show Stretch, Success Ratio and Accumulated Success Ratio for
single-target and multiple-target, respectively. The numbers in
parentheses display the overall values for the success ratio and
stretch, and the area under the curve for the accumulated success
ratio.

34



(a) (b)

(c) (d)

Figure 9: Cross-domain results for ICD-10, MeSH and SNOMED-
CT The figures show Stretch, Success Ratio and Accumulated
Success Ratio for single-target and multiple-target, respectively.
The numbers in parentheses display the overall values for the
success ratio and stretch, and the area under the curve for the
accumulated success ratio. An optimal solution (green) and an
averaged random walk (red) are included for comparison.
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(a) (b)

(c) (d)

Figure 10: Cross-domain results for the User study The figures show
Stretch, Success Ratio and Accumulated Success Ratio for single-
target and multiple-target, respectively. The numbers in paren-
theses display the overall values for the success ratio and stretch,
and the area under the curve for the accumulated success ratio.
An optimal solution (green) and an averaged random walk (red)
are included for comparison.
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(a) (b)

(c) (d)

Figure 11: Cross-domain results for the GeneOntology The figures
show Stretch, Success Ratio and Accumulated Success Ratio for
single-target and multiple-target, respectively. The numbers in
parentheses display the overall values for the success ratio and
stretch, and the area under the curve for the accumulated suc-
cess ratio. An optimal solution (green) and an averaged random
walk (red) are included for comparison.
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(a) (b)

Figure 12: Userstudy first hops The figures show the distribution for the
first clicks on the portal links for every simulation. Although
technically not continuous, the data points are connected by
lines to improve visibility. The data shows that the first clicks
were distributed fairly evenly: No single portal link accounted
for more than 17% of clicks.
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5 Discussion

In comparison, the GeneOntology data set displayed a significantly lower
performance than the other ontologies studied. The Wikipedia articles an-
notated by the GeneOntology were characterized by different properties
than the other data sets: It contained a large number of stubs (very short
articles) and orphans (articles not linked to by any other article). In addi-
tion, the Wikipedia article network was sparser than the other data sets,
i.e., it contained fewer links (the density was 0.0013, compared to 0.0041 -
0.0057 for the other data sets). In contrast, each Wikipedia article refer-
enced a greater number (up to fifty, in comparison to usually one or two
for the other ontologies) of ontology concepts. It was hence significantly
harder to discover a correct link by making an educated guess. This made
navigating the graph more difficult.

In comparison to the ontologies’ performance, participants in the user
study performed better for single-target search and worse for multiple-
target search. This is also influenced by the fact that users aborted 30% of
their multiple-target navigation tasks before having found all of the targets,
while the simulations ran for whole number of possible steps (40). In future
work, it would be interesting to see a more extensive study without the
possibility of aborting searches.

The user study was limited in that it only included ”easy” target nodes,
that were familiar to test subjects without a medical background. Since the
simulation behavior for these targets was very close to the test subjects, we
can hypothesize that behavior for the whole set of targets is likewise similar.
Our evaluation method could hence be a means of replacing navigation
evaluation by domain experts with automated simulation data. Again, for
future work it would be interesting to compare the performances of different
user groups (such as novices and medical doctors) on our data sets.

Another interesting aspect was that backtracking was the prevalent strat-
egy for escaping dead ends and unfamiliar areas. Due to constraints in our
simulation software we expected this to happen for the automatic simula-
tions. In a first pilot study, users had specifically demanded a home button
in order to directly jump back to the portal at all times. Surprisingly, users
in the final study did not make use of this button very often but preferred
to backtrack using the browser’s back button.

39



6 Conclusions

With this setup we have presented an automated, task-based evaluation
method for ontology structure. Our results answer several questions re-
garding decentralized search. First of all, we have found ontologies to be
suitable to serve as background knowledge for decentralized search. With
appropriate ontologies and Wikipedia link networks, the simulations pro-
duced results well above pure random walks and were able to guide naviga-
tion towards the target. Our user study, albeit limited in its extent, shows
that the simulations and human behavior yielded very similar results.

A second, important finding is that our results can be used to model auto-
matic system evaluation. We’ve chosen Wikipedia articles as our data basis,
but our methods could, on principle, be applied to any set of documents.
By using different ontologies as background knowledge for decentralized
search, our method can effectively model navigation by different sets of
users. By creating ontologies with different nuances of information about
the document set, different types of users (such as novices and experts)
could be modeled. This method could help evaluate human-computer in-
teraction for different types of interfaces or linkage structures.
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