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Abstract 

Wind storms result in significant damage and economic loss and are a major recurring 

threat to many countries.  Multiple historic wind storms occurring over more than three 

decades across Europe have been analyzed previously to identify storm tracks, intensities, and 

areas of frequent high wind speeds.  Maximum sustained winds and peak gusts were 

estimated based on an anisotropic (directionally-dependent) kriging interpolation 

methodology.  Results suggest that coastal areas and mountainous areas experience the 

highest wind intensities during wind storms.  These same areas also experience high 

variability over short distances and thus the highest error measurements associated with 

concurrent interpolated surfaces.  For this reason, various covariates were utilized in 

conjunction with the cokriging interpolation technique to improve the interpolated wind 

surfaces for five wind storms that have impacted both the mountainous and topographically-

varied Alps region and the coastal regions of Europe.  The results show that use of cokriging 

improves our ability to interpolate surfaces for wind storms in mountainous and coastal 

regions.  Land cover alone contributed to the highest reduction in station standard error in a 

majority of the models, while aspect and elevation (singularly and collectively) also reduced 

station standard error in most models as compared to the original kriging models.  These 

advancements have the potential to improve damage estimate ratios for regions impacted by 

wind storms and will be used in a subsequent study to identify potential relationships between 

high winds and high damage in Austria.   

Keywords: European wind storms, cokriging, land cover, aspect, elevation 
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1.  Introduction 

1.1  The physical and economic impact of wind storms 
 

Mid-latitude cyclones produce wind storms across much of Europe predominantly 

during the winter months and are responsible for most of the destructive natural hazards in the 

region (Pinto et al. 2010).  Much of the infrastructure-related destruction is attributable to 

extreme wind speeds that often impact multiple countries (Pinto et al. 2010).  Certain climatic 

patterns such as the positive mode of the North Atlantic Oscillation (NAO) provide optimal 

conditions for cyclogenesis (Raible 2007).  These patterns, along with other forcing 

mechanisms and climatic conditions, are in a constant state of flux with changes potentially 

attributable to anthropogenic-induced climate change (Handorf and Dethloff 2009), which has 

led many to suggest that changes in climate are at least partly to blame for recent surges in 

catastrophes (Schiermeier 2006).  For this reason, predictions in loss estimates have been 

calculated under varying future climate scenarios to establish reinsurance rates based on storm 

intensity, or power, values (Leckebusch et al. 2007, Pinto et al. 2010)  Increases in storm and 

concurrent wind intensity could lead to substantial increases in average annual damage across 

much of northwest Europe (Dorland et al. 1999). 

Regardless of climatic changes, the impact from winter storms over the last several 

decades has been widespread across Europe and recent storms do not suggest a decrease in 

their frequency and intensity.  Reports suggest that storms occurring in early 1990 and late 

1999 resulted in large economic and insurance losses (Leckebusch et al. 2007).  In central 

Europe alone, 56 percent of economic and 64 percent of insurance losses caused by natural 

hazards are due to these winter storms (Hofherr and Kunz 2010).  Similar to hurricanes in the 

United States, European wind storms are named, but the names sometimes differ from country 

to country.  Major storms normally follow the same nomenclature.  The Lothar storm 

(December 25-27, 1999) is considered one of the most expensive storms in European history 

for insurance companies (Wernli et al. 2002, Leckebusch et al. 2007).  Lothar was 

considerably stronger than other storms because of: (1) a stronger than normal upper-level jet, 

(2) rapid intensification of the storm resulting in an intensive vortex, and (3) higher than 

normal Atlantic sea surface temperatures (Wernli et al. 2002).  Other similarly dangerous 

storms during this period were Kyrill (January 16-19, 2007) and Jeanette (October 26-28, 

2002) (Heneka and Hofherr 2011).   

Schmith et al. (1998) analyzed the trends in Northeast Atlantic winter storms (1875-

1995) and found a gradual increase in the frequency of storms in the northeasternmost 
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portions of the storm track over the past 2 to 4 decades.  Inter-annual and decadal influences 

were found to be the most dominant features in the temporal trends of these winter storms 

(Schmith et al. 1998).  Leckebusch et al. (2007) used four global climate models to estimate 

storm damage in light of potential anthropogenic climate change (Leckebusch et al. 2007).  

Western Central Europe was found to be at a higher risk if adaptation to anthropogenic 

climate change was not considered.  Donat et al. (2011) also modeled European winter storms 

and found northern portions of Central and Western Europe experienced increased wind 

speeds under future climate simulations.  A decrease in extreme wind speeds was found in 

Southern Europe (Donat et al. 2011).  Continued research on climatic variability and 

European winter storms is important because of the storms’  impact  on  property  losses  in  

Europe,  as  they  affect  large  areas,  and  are  claimed  to  be  “the  most  destructive  natural  hazards  

in  Europe”  (Klawa and Ulbrich 2003).   

1.2 Review of wind storm data and related issues 
 

There are some limitations to using station data to represent a wind field across a 

single storm.  Klawa & Ulbrich (2003) stated that a single station can have its own individual 

climate, inferring the uncertainty that microclimatology may present when examining 

macroclimatological patterns.  They present an economic loss model based on estimates of 

storm damage in Germany caused by high winds and concluded that a good estimate of 

insurance losses based upon peak gust measured at stations can be obtained.  They also 

claimed that the Daria and Capella storms were very destructive for Germany, leading to 25 

percent of all insurance damage claims during the period 1970-1997 (Klawa and Ulbrich 

2003).  Hofherr and Kunz (2010) emphasized the importance of high spatial resolution of 

station data to get an accurate evaluation of wind storm climatology and to find how local 

topographic features influence the wind field.  Additionally, to better study the frequency of 

severe winter storms, longer data records are needed (Hofherr and Kunz 2010).  Spatially, the 

strength of measured wind values is determined by a combination of local topography and 

large-scale atmospheric circulation variables.  Hofherr and Kunz (2010) stated that large scale 

wind influences come from extratropical cyclones (their intensity and frequency), which are 

found to increase northward in Central Europe.  At the local scale, orographic influences, land 

use, friction, and the boundary layer modify these synoptic winds.  Gusts are most dependent 

on the roughness length of the terrain.  Because of these local factors, the wind climatology of 

a station may vary considerably when compared to the synoptic-scale climatology (Hofherr 

and Kunz 2010).  An attempt to calculate return periods of extreme winter storms (1957-
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2002) was made by Della-Marta et al. (2009), and a need for longer station data was stressed.  

Schmith et al. (1998) claimed that testing for long-term trends using wind station data can be 

inaccurate due to changes in station location, observation methods, or instrumentation.  Also, 

small trends that may be visible in records are best found when using long records, which are 

not always available at observation stations (Schmith et al. 1998). 

Even though the use of station data has some limitations, it can be preferable to 

modeled estimates of data or radiosonde-based observations.  Hofherr and Kunz (2010) 

discussed how wind data from stations are most popularly used in studies that evaluate 

hazards – both peak gust and mean wind speed values – due to the high level of accuracy on a 

local scale.  The use of modeled wind data based upon upper-level air pressure is less accurate 

than actual readings from a meteorological station as they are not created using real wind 

data.  Also the length of the record is not as long as station data, preventing any long-term 

studies.  Radiosonde data, while it can be collected multiple times daily, only represent the 

atmosphere at a point.  Station data can provide a better idea of fluctuations of wind at the 

local scale than many other data types and are highly appropriate for this study. 

Estimation of peak gust values is necessary when peak gust data are missing.  It is 

important  to  convert  sustained  wind  speeds  to  a  “probable  maximum  wind  speed”  over  a  

shorter period because buildings and other structures are most affected by wind gusts of 

approximately 3 seconds in duration (Krayer and Marshall 1992).  This is usually done by 

applying  a  “gust  factor”,  which  is “the  ratio  between  the  mean  value  of  maxima  and  the  mean  

value  of  a  given  effect  associated  with  wind  buffeting”  (Solari 1993).  Krayer and Marshall 

(1992) reviewed the Durst (1960) and Cook (1986) methods for calculating the gust factor 

and determined that the Durst method was most accurate in estimating peak gust wind speeds 

from mean wind speeds in tropical storms and hurricanes (Krayer and Marshall 1992).  Solari 

et al. (1993) review various equations that have been used to calculate velocity of peak gusts, 

and found  the various conversion values (V1/V600 to V5/V3600) produced by other studies 

range from 1.07 to 1.68.  These values vary largely based on the length of time used to 

calculate them.  The Durst Curve conversion factor for data used in this study is 1.4299 

(ASCE 7-10 2010). 

1.3   Simulation of wind surfaces through interpolation of station data 
 

There are many ways to simulate and interpolate wind surfaces.  Spatial interpolation 

can produce both global/local and deterministic/stochastic estimates of unknown variables 

across a surface.  These methods vary widely and it is important to understand the variable(s) 
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in question to select the most appropriate interpolation method (Luo et al. 2008).  

Deterministic methods do not use probability, meaning that all observed values are considered 

accurate (Luo et al. 2008).  These methods are very common and include polynomial 

regression (PR), triangular irregular network (TIN), nearest neighbor (NN), splines, and 

inverse distance weighting (IDW).   Stochastic methods, also known as geostatistical 

methods, use a probabilistic approach for data regularization and include artificial neural 

networks (ANNs), simulated annealing (SA), and various forms of kriging such as ordinary, 

universal, cokriging, multi-region, Bayesian, and neural network kriging (Lanza et al. 2001, 

Cellura et al. 2008, Zlatev et al. 2010). 

Within the deterministic family, PR uses a linear regression approach to interpolate 

values between known or observed variables.  PR is well-suited for fairly dense and compact 

areas, but it predicts poorly outside the range of the observed points (Akkala et al. 2010).  The 

TIN approach creates triangles across a surface and the balance of mass between points is 

used to determine the unknown values.  TIN produces a linear and coarse output.  The NN 

approach assigns a value based on the value of the closest data point and is one of the simpler 

interpolation methods, but it is only considered accurate or suitable for a densely sampled 

surface (Akkala et al. 2010).  Splining is a curvature method that still uses the exact observed 

values; however, the influence of the values decreases over distance, thus producing a two-

dimensional curve as opposed to the linear surface produced by many other deterministic 

methods (Wahba 1981).  Splining is considered one of the better deterministic methods of 

interpolation, but the smooth curves ignore trends and can hide uncertainty when data points 

are irregularly spaced (Luo et al. 2008, Akkala et al. 2010).      

Stochastic interpolation methods are often more time-intensive and require a higher 

level of user input.  ANNs can be applied independently of kriging and are used to reduce the 

over/under  estimation  of  values  through  the  use  of  a  pivot  station  that  “learns”  the  common  

correlation between the stations.  This serves to decrease the oversmoothing that other 

interpolators cause by over-estimating low values and under-estimating high values, but 

ANNs can over-learn or under-learn a pattern (Akkala et al. 2010).  For this reason, ANN's 

are best used in areas with high input variability over relatively short distances (Öztopal 

2006).  SA uses a linear regression function similar to the PR deterministic method to produce 

an interpolated surface, but a probability function is also applied to determine the distance 

from a point at which the relationship becomes insignificant (Sterk and Stein 1997).  SA is 

best at capturing local variability, but the method is not well-suited to estimate large surface 

patterns (Sterk and Stein 1997). 
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Kriging interpolation methods are the most common stochastic techniques and they 

use probability and spatial correlation to create a surface that is weighted by observed values 

through a semi-variance function.  Distance and direction are both utilized for the semi-

variance function so it can account for anisotropic spatial patterns and trends in wind behavior 

(Luo et al. 2008).  Since wind speeds often exhibit a direction in which they are increasing or 

decreasing across a surface, kriging methods are preferred over deterministic methods and 

other stochastic methods (Lanza et al. 2001, Luo et al. 2008, Akkala et al. 2010, Zlatev et al. 

2010).  However, microclimatological effects sometimes produce pockets or patches of 

high/low wind speed on a surface that can create confusion during kriging surface 

construction.  The anisotropic function selects the dominant surface trend, but this trend may 

not align with the actual direction of wind speeds relative to a storm track, making it 

necessary to verify that the anisotropic azimuth direction reflects the direction of storm 

movement. During surface construction, kriging creates an unbiased surface where a 

polynomial function has not been forced to fit, thus eliminating edge and circular effects 

common in other interpolation methods (Akkala et al. 2010).    

In a recent study by Luo et al. (2008), various forms of kriging performed better than 

other interpolation methods based on their mean error (ME) and root mean square error 

(RMSE).  ME and RMSE accuracy metrics indicated that kriging produced an unbiased 

surface that was found to be ideal when modeling wind speed because values were not 

manipulated by a polynomial or linear fitting interpolation technique (Luo et al. 2008).  ME 

and RMSE are commonly used evaluation metrics when determining the quality and 

reliability of interpolation techniques because they provide a good means of comparing across 

various time periods and between various methods.  Kriging consistently outperformed 

deterministic methods such as IDW, which not only received poorer ME and RMSE scores, 

but  also  produced  a  surface  with  an  illogical  “bullseye”  effect  centered  on  each  weather  

station (Luo et al. 2008). 

When used for wind speeds, kriging is considered an approximate predictor because of 

the incorporation of a nugget effect – a variation that exists at shorter distances than the 

distance between sample points.  If the nugget size is greater than zero, then there is a nugget 

effect.  The nugget size is used during the kriging process to represent independent error and 

it is the intersection of the data with the y-axis.  For example, the correlation between 

observed wind speed values is plotted on a 1x1 variable diagram as the first step in creating a 

semivariogram model.  The gap between the origin and where the semivariogram begins is 

referred to as the nugget size (Figure 1 represents a hypothetical example).  The plot 
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illustrates the correlation that surrounding values have at varying distances.  Once the 

correlation  diminishes  to  an  insignificant  amount,  then  the  “sill”  is  reached,  indicating  that  the  

values no longer have spatial dependence.  The distance between the nugget size and the sill is 

called the range and all of these values are used concurrently to create the semivariogram for 

kriging.  Range, sill, and nugget size determine at what distance the wind speed levels off or 

changes.  For example, wind speed may decrease rapidly over land when the wind direction is 

from the north, but wind speed may decrease less rapidly over land when the wind direction is 

from the west.  This could be caused by a variety of land surface factors (often topography 

and surface roughness), but anisotropic semivariograms account for wind direction and 

distance by examining the sill in each direction when making probabilistic surface estimates.   

 

 
Figure 1. Nugget size represents where the data and the y-axis intersect.  Range is the distance from an observed 

value at which spatial dependence exists (between the nugget and sill).  The sill is the upper limit where spatial 

dependence ceases to exist, or where influence ends. 

 

Ordinary and universal kriging are the two most common forms of kriging.  Ordinary 

kriging assumes an unknown constant trend and utilizes the points within a specified search 

radius for semivariogram creation, while universal kriging assumes a general linear mean 

value trend across an entire study area (Cressie 1986, Cressie 1990).  Cokriging uses an 

additional variable or variables sampled from the same location (e.g., elevation) to make an 
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assisted estimation (Helterbrand and Cressie 1994).  A spatial correlation is determined 

between the main variable and covariable(s) and the relationship is modeled.  Cokriging is 

ideal for interpolating wind surfaces when stations are well distributed across a proportionate 

surface in a study area (i.e., if 10 percent of a study area is mountainous, then 10 percent of 

the wind stations should be located in the mountainous region) (Luo et al. 2008).  However, 

knowledge-assisted forms of kriging such as cokriging are time-intensive and often require 

land segmentation and in situ verification, making cokriging an illogical choice for large 

datasets where this information is not available.  Bayesian forms of kriging are the most 

computationally intensive with Monte Carlo or Markov chain techniques used to minimize the 

amount that uncertainty impacts model parameters (Lanza et al. 2001).  There is currently no 

precedent for using the Bayesian approach for wind surface interpolation.  ANNs have also 

been coupled with various kriging methods, but similar problems that occur with ANNs used 

outside of the kriging framework also occur when coupled with kriging (Cellura et al. 2008).    

Table 1 provides examples of studies investigating the interpolation of wind speeds and other 

climatic data and highlights the methods that were recommended by each study.  The 

literature does not recommend that deterministic methods be used for wind surface 

interpolation and the overall trend suggests that kriging (in various forms) continues to be a 

very good method for interpolating wind surfaces, but other network- and knowledge-based 

adaptations or improvements to kriging are ongoing.  Many kriging adaptations are very 

promising, but a consensus has yet to be reached on a clear adaptation that will supersede 

current kriging methodologies.  Further, the majority of these advanced studies focused on 

local- to regional-scale wind surfaces within a single country and not large-scale surfaces that 

would include multiple countries.  It is very difficult and time-intensive to apply advanced 

network- and knowledge-assisted kriging adaptations across multiple countries or an entire 

continent without more detailed information about stations, microtopography, local 

environment, and other geographic features.  The widely-varying terrain of Europe presents a 

challenge to these advanced approaches.  As new data become available and as these new 

methods are explored and improved in the coming years, they may prove more useful for 

large-scale analyses and potentially be included in future software packages (e.g., ArcGIS). 

 
 
 
 
 
 
 
 



10 
 

Table 1. Interpolation studies that examined wind variables. 

Source Study 
Area(s) Event Type Methods Examined Methods Recommended 

(Bentamy et al. 
1996) 

Tropical 
Atlantic 
Ocean 

Avg. wind speed 
(multi-year) Kriging Kriging 

(Sterk and Stein 
1997) 

Sahelian 
zone (Niger) 

Wind-blown 
mass transport 
from 4 storms 
(1993) 

Linear Interpolation 
(Simulated Annealing), 
Ordinary Kriging 

Ordinary Kriging was best 
at predicting unsampled 
locations; Simulated 
Annealing was best for 
local variability 

(Phillips et al. 
1997) 

Southeast 
US 

Ozone exposure 
(multi-year; used 
wind direction) 

Inverse Distance 
Weighting, Inverse 
Distance Squared 
Weighting, Ordinary 
Kriging, Cokriging 

Cokriging and Ordinary 
Kriging 

(Venäläinen 
and 
Heikinheimo 
2002) 

Finland 

Daily wind 
speed, 
temperature, 
humidity, 
precipitation, 
radiation 

Kriging Kriging 

(Öztopal 2006) Marmara, 
Turkey 

Daily wind 
speed over time 
(potential wind 
energy) 

Artificial Neural Network Artificial Neural Network 

(Cellura et al. 
2008) Sicily, Italy 

Avg. wind speed 
at 50m for wind 
farm (multi-
year) 

Neural Network, Radial 
Basis Functions, Neural 
Kriging, Ordinary/Univeral 
Kriging, Inverse Distance 
Weighting,  

Coupled Neural 
Network/Kriging 
Interpolators 

(Luo et al. 
2008) 

England, 
Wales 

Avg. wind speed 
(Mar. 27, 2001) 

Trend Surface Analysis, 
Inverse Distance 
Weighting, Local 
Polynomial, Thin Plate 
Spline, Kriging, Cokriging 

Cokriging and Ordinary 
Kriging 

(Zlatev et al. 
2009) 

United 
Kingdom 

Avg. wind 
speed/direction Ordinary Kriging Ordinary Kriging 

(Zlatev et al. 
2010) 

United 
Kingdom 

Avg. wind speed 
(Mar. 27, 2001) 

Ordinary Kriging, 
Universal Kriging, 
Cokriging, Multi-region 
Ordinary Kriging 

Multi-region Ordinary 
Kriging (Knowledge-
assisted) 

(Akkala et al. 
2010) 

None 
(Review 
article) 

Multiple 
meteorological 
events (including 
wind storms) 

Nearest Neighbor, 
Triangular Irregular 
Network, Polynomial 
Regression, Polynomial 
Interpolation, Trend 
Surface Analysis, Inverse 
Distance Weighting, 
Splines, Kriging, Radial 
Basis Functions, Artificial 
Neural Networks 

Knowledge based/assisted 
techniques 

 

1.4 Cokriging 
 
 While ordinary kriging is a common and often-used interpolation method, cokriging is 

less popular because of the added complexity involved in selecting appropriate covariates.  



11 
 

Odeh et al. (1995) utilized various forms of cokriging along with ordinary kriging, universal 

kriging, multi-linear regression, and regression kriging models to predict soil properties based 

on landform attributes.  The study revealed that the cokriging models were superior to 

ordinary kriging models because they accounted for the covariation between the predictor 

variable (soil properties) and specific terrain attributes (slope angle, aspect, plan curvature, 

and profile curvature).  An earlier study examining soil physics concluded that cokriging 

reduced the estimation variance and improved estimates of under-sampled variables by 

accounting for the spatial correlation between available water content, water stored at 1/3 bar, 

and sand content values (Vauclin et al. 1983).  Additionally, remotely sensed data were 

utilized to predict soil organic matter (Wu et al. 2009) and for resolution improvement 

(Atkinson et al. 2008, Pardo-Iguzquiza et al. 2011).  Spatial resolution of remotely sensed 

(satellite) images was improved in one study based on the inter- and intra-correlation between 

images utilizing a moving window approach (Pardo-Iguzquiza et al. 2011) and in a separate 

study based on a point-support network (Atkinson et al. 2008).  Air pollution surfaces have 

also been improved through the cokriging process.  To reconstruct air pollution maps the 

results of a Chemical Transport Model simulation was used as the covariate, while ozone 

concentrations and daily mean particulate matter (>10) concentrations were the predictor 

variables (Singh et al. 2011).  Generalized additive models were used to produce global 

residuals near nitrogen dioxide and nitrogen oxide sampling locations in Southern California 

and the predicted oxide surfaces greatly improved with very high cross-validated R2 values 

(~0.9) (Li et al. 2012). 

 Cokriging has been used to improve temperature and precipitation interpolated surface 

estimates.  Aznar et al. (2012) applied cokriging to produce a time series of monthly mean 

temperatures in Northeastern Canada between 1961-2000.  Temperature recordings from 202 

meteorological stations were utilized as the predictor variable and regional climate model-

derived temperatures were incorporated as a covariate because of their incorporation of local 

variance (Aznar et al. 2012).  This study resulted in accurate and publicly available monthly 

mean temperature grids for the region.  Mahdian et al. (2009) utilized multiple geostatistical 

techniques to estimate monthly and annual temperature and found that cokriging with 

elevation used as a covariate produced a surface with a low mean absolute error compared to 

most of the other models.   

Cokriging has also been proven to be an optimal method for estimating precipitation 

surfaces based on the use of various covariates (Wenxia et al. 2010, Luo et al. 2011, Wang et 

al. 2011).  Topography, or elevation, was especially effective for cokriging models that 
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examined the Taihu Lake Basin in China (Luo et al. 2011) and the Chongqing tobacco 

planting region of China (Wang et al. 2011) in areas where topography varied greatly.  

Improvements compared with other models were negligible in areas of homogenous 

topography.  Wenxia et al. (2010) expanded on the traditional covariate of elevation by also 

including geographic factors (longitude, latitude, terrain, slope, aspect, and shelter degree).  

Collectively, cokriging models utilizing both topographic and geographic variables 

outperformed the IDW method and the cokriging method that incorporated only elevation.   

 On occasion, multiple climatic (average daily maximum temperature, wind direction 

frequencies) and non-climatic (nitrous oxide emissions, distance downwind from nitrous 

oxide emission sources) variables have been used to estimate a surface – ozone exposure in 

the case of Phillips et al. (1997).  The use of wind direction by Phillips et al. (1997) alludes to 

the ability of kriging and cokriging to account for anisotropy within the model.  In addition to 

the inherent ability to account for anisotropy, cokriging of wind speed adds the ability to 

incorporate many of the covariates (e.g., topography, aspect, terrain, slope, etc.) used in 

previous studies.  Luo et al. (2008) examined seven different methods of spatial interpolation 

and concluded that cokriging with elevation as a covariate produced a superior daily mean 

wind speed surface with better accuracy metrics than the other six surfaces (one of which 

included ordinary kriging).  Similarly, Zlatev et al. (2010) also found cokriging to be superior 

to other forms of kriging and spatial interpolation based on lower error measurements when 

estimating daily mean wind speed.  In both studies, error reduction occurred over a rugged 

landscape (United Kingdom) indicating that the use of elevation aided in model improvement.  

A separate study in Poland confirmed the impact of elevation on improving wind surface 

estimates when applied to a topographically diverse landscape (Sliz-Szkliniarz and Vogt 

2011).  Since Poland is a very flat country in most areas, cokriging (with elevation) showed 

little to no improvement over the ordinary kriging approach, which would be expected in a 

topographically homogenous region.  The results of Luo et al. (2008), Zlatev et al. (2010), and 

Sliz-Szkliniarz and Vogt (2011) provide substantial evidence that covariates can help improve 

wind surface estimates in topographically varied regions, while maintaining the previous 

accuracy of ordinary kriging surface estimates in more topographically homogenous regions. 

Additionally, spatial distribution and density are important when modeling and mapping data 

(MacEachren and Davidson 1987) and the flexibility and robustness of cokriging, and 

geostatistical methods in general, account for variance in station distribution and density thus 

indicating that they are well-suited for wind observation data (Sliz-Szkliniarz and Vogt 2011).  
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1.5  Study area and objectives 
 

Accurate and reasonable wind surface estimates that capture regional wind speeds and 

directions can be created for large areas of Europe using an anisotropic semivariogram-

derived kriging methodology (Joyner et al. in review).  Surface wind estimates suggested that 

coastal and mountainous regions often experienced the most extreme wind speeds.  Inland 

Europe, specifically the Black Forest and northern Alps, displayed very high wind speeds 

relative to the surrounding areas – indicative of a complex topography/wind interaction.  

Coastal and mountainous weather stations experienced the most intra-storm wind speed 

variability and also reported some of the highest error measurements – most likely a result of 

landscape heterogeneity and post-model smoothing.  Because of these high error 

measurements, this study will examine multiple covariates through the cokriging technique in 

an effort to create more accurate surface wind interpolations and to improve understanding of 

local wind variability in these environments.  Previous studies that identified cokriging as 

superior for estimating surface winds only utilized elevation as a singular covariate (e.g., Luo 

et al. 2008, Sliz-Szkliniarz and Vogt 2011); this study will also utilize aspect and land cover 

in addition to elevation.  The research questions for this study are as follows: 

 
1) To what extent does cokriging improve interpolated wind surfaces in the coastal 

and mountainous regions of Europe, compared to ordinary kriging methods? 
 

2) Which covariate(s), if any, is(are) most influential in improving wind surface 
interpolations in diverse terrain? 

2.  Data and Methods 

2.1 Wind storm and covariate data and adjustments 
 
 Five wind storms occurring between 1999 and 2008 were selected for this study out of 

the total of 18 that were available for Europe (Table 2).  These storms were selected based on 

a combination of factors including extent and degree of impact and intensity as well as the 

availability of supporting data about each storm.  Each of the five storms impacted both 

coastal and mountainous regions where standard errors were highest, thus increasing the 

potential to show improvement in predicting surface winds in these areas through utilization 

of the cokriging methodology.   
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Table 2. European wind storms and impacted countries. 
Year Date Popular Name Countries 
1999 25-27 December Lothar France, Switzerland, Germany 

2002 26-28 October Jeanette UK, Denmark, Sweden, Germany, Netherlands, France, 
Austria, Poland, Czech Republic, Belgium, Ireland 

2007 16-19 January Kyrill France, Netherlands, Germany, UK, Belgium, Austria, 
Ireland 

2008 24-26 January Paula Poland, Germany, Austria, Denmark, Norway, Sweden 

2008 29 February-2 
March 

Emma Germany, Austria, Czech Republic, Belgium, 
Netherlands, Switzerland, Poland 

 
Wind data for this project were obtained from the World Meteorological Organization 

(WMO) observation stations sourced through a third party provider.  The WMO Standard 

(World Meterological Organization 2008) for measuring sustained wind is an average of 

values obtained for the 10 minutes previous to the observation time.  The WMO Standard for 

measuring peak gust is a continuous average of values over a 3 second period.  Wind 

instruments according to WMO standards are to be located at a height of 10 m in open terrain, 

and wind data are adjusted for local topographic effects through the use of an exposure 

correction factor.  For example, a station located at the top of a hill would have a correction 

factor applied to the data to account for the changes in wind speed caused by the hill.  

According to the WMO chapter of wind standards (World Meterological Organization 2008), 

the wind speed would be more representative of the region rather than the individual hill.    

When a station that records wind speeds is not located at a 10-m height, the station data are to 

be adjusted to a 10-m estimated speed using a logarithmic wind profile.  A preliminary quality 

control analysis of the European wind storm data was conducted by plotting the sustained and 

peak gust values against the mean of each variable.  Outliers were examined to determine 

whether the values were reasonable for the given atmospheric conditions.  Stations that were 

modeled most successfully came proportionately from those with 10-m measurements and 

those at which the 10-m wind was adjusted from measurements at a different height.  Based 

on this analysis, it appears that the model performance is not unduly biased by the vertical 

adjustment of station-based wind values.  

A set of 5 storms was analyzed over the period 1999-2008 for Europe (Table 3).  

These storms occurred mainly during cool-season months (October through March).  The 

MATLAB® statistical computing program was used to extract sustained wind and peak gust 

values from the original data files.  The maximum daily value was extracted at each station 

for sustained wind and peak gust and the station maxima were identified from the daily 

maxima.  A storm summary showing the statistics of data provided for sustained wind (Table 
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4) and peak gusts (Table 5) was produced for each storm.  The sustained wind data were fairly 

consistent between the storms, with only 0.6 percent of the data values missing and an overall 

mean sustained wind value of 14.2 meters per second (m/s).  Peak gust measurements were 

missing for 77.3 percent of the hourly observations and the overall mean peak gust was 25.3 

m/s.  Lothar had the greatest mean sustained wind at 16.4 m/s and Emma had the largest mean 

peak gust at 27.1 m/s.  Paula had the lowest mean sustained wind at 10.9 m/s and also the 

lowest mean peak gust at 21.0 m/s.   

 
Table 3.  Number of stations reporting data. 

Year Storm Sustained Peak Gust 
Sustained 

& Peak Gust Total 
1999 Lothar 321 202 202 322 
2002 Jeanette 1014 406 406 1016 
2007 Kyrill 637 418 418 637 
2008 Paula 662 130 130 663 
2008 Emma 495 216 216 496 

 
Table 4.  Sustained wind storm summary table (m/s). 
Year Storm Mean Median Minimum Maximum Range Percent Missing 
1999 Lothar 16.4 15.9 0.0 40.1 40.1 1.4% 
2002 Jeanette 13.9 13.4 0.0 42.0 42.0 0.5% 
2007 Kyrill 15.8 16.4 1.0 36.8 35.8 0.7% 
2008 Paula 10.9 10.0 0.0 42.0 42.0 0.5% 
2008 Emma 13.9 14.0 0.0 47.0 47.0 0.1% 

 Average 14.2 13.9 0.2 41.6 41.4 0.6% 
 
Table 5.  Peak gust storm summary table (m/s). 
Year Storm Mean Median Minimum Maximum Range Percent Missing 
1999 Lothar 26.1 24.5 9.3 72.0 62.7 80.0% 
2002 Jeanette 26.0 27.0 0.0 52.0 52.0 79.3% 
2007 Kyrill 26.2 27.0 0.0 56.0 56.0 69.3% 
2008 Paula 21.0 21.0 7.7 48.0 40.3 90.6% 
2008 Emma 27.1 26.8 10.3 62.0 51.7 67.1% 

 Average 25.3 25.3 5.5 58.0 52.5 77.3% 
 

2.1.1 Analysis of peak gust and sustained wind speeds 
 

WMO standards for wind measurement use a disjunctly-sampled sustained wind speed 

(sampled 10 minutes prior to each hour) and a continuously-sampled gust wind speed.  

Because of this difference in measurement for the two types of wind speeds, it is possible that 

the WMO station data does not represent the true sustained wind speeds that were 

encountered at each location, especially in the event that the highest wind speeds occurred 

during the first 50 minutes of the hour, illustrated in Figure 2.  As demonstrated by this figure, 
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the average sustained wind speed may be under- or overestimated depending on the 

fluctuations in the wind storm.  For the case of the historic European storms analyzed, it is 

hypothesized that the WMO station data for sustained wind speeds generally underpredict the 

actual wind speed.  Therefore, both observed peak gust and sustained wind speeds were 

evaluated to determine if adjustment of the wind data was necessary.   

 
Figure 2.  Illustration of the concept of disjunct sampling – in this illustration, the 3 hour wind speed is sampled 
(dark short lines) from the contiguous 10-min averages (grey short lines) (Larsen and Mann 2006). 
 

To create an equal basis for the sustained and gust wind speeds, the methodology 

developed by Larsen and Mann (2006) (Equation 1) was used to convert disjunctly-sampled 

sustained wind speeds to continuous sustained wind speeds with Td = 1 hour and an averaging 

time, Ta = 10 minutes.   

 
𝑦 =

𝑈ே ௠  ⁄ ௗ,௦௘௖
௠௔௫

𝑈ே  ௦௘௖
௠௔௫

= 𝑏 − 𝑎(logଵ଴(𝑥))ଶ (Equation 1) 

 
Where x = frequency and 𝑈ே ௠⁄   ௗ,௦௘௖

௠௔௫ =  the average maximum sustained wind speeds 

from a disjunctively–sampled dataset.  The denominator, 𝑈ே  ௦௘௖
௠௔௫ = represents the average wind 

maximum.  The wind maximum is selected from N data.  The coefficients a and b are 

calculated using Equations 2 and 3, respectively (Larsen and Mann 2006). 

 
 

𝑎 = 0.0209 ൬𝑇ௗ −
1
6
൰
଴.ସ଺ଶ଻

 (Equation 2) 

   
 

𝑏 = 1 − 0.0342 ൬𝑇ௗ −
1
6
൰
଴.ହସଷ଺

 (Equation 3) 

 
To estimate a continuously-sampled 10-minute (3600-second) mean wind speed from 

the disjunctly-sampled WMO data, Equation 4 was used. 
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𝑈ଷ଺଴଴௖௢௡௧௜௡௨௢௨௦ =   

𝑈ଷ଺଴଴ௗ௜௦௝௨௡௖௧௠௘௔௦௨௥௘ௗ

𝑈ே ௠  ⁄ ௗ,௦௘௖
௠௔௫

𝑈ே  ௦௘௖
௠௔௫

 
(Equation 4) 

 
Once the equivalent continuously-sampled sustained wind speed was computed, this 

value was used to calculate the actual gust factors for the data set for quality control purposes.  

Implementation of the conversion from a disjunct to continuous sampling basis still revealed 

inconsistencies in the wind data that could not be explained using the gust factor.  A review of 

the Lothar storm data set found that the actual gust factors (U3/U3600) calculated from the 

observed data ranged from 0.89 to 10.17 for the 4258 records (out of 214499 total, 2%) that 

had both gust and sustained wind speed data available, with an average of 1.83 and a standard 

deviation of 0.76.  Based on the multiple studies discussed earlier in the paper, the expected 

value is in the range of 1.4.  This initial quality control evaluation indicated that the sustained 

wind speeds were much lower than expected based on the recorded peak gust wind speeds.  

This necessitated that both the peak gust and sustained wind speed data be used to calculate 

the final wind speeds used in the interpolation.  Therefore, Equations 5 and 6 (or 7) were used 

to calculate the maximum sustained and peak gust wind speeds using the observed station 

data. 

 
 

𝑈ଷ଺଴଴ = max൭𝑈ଷ଺଴଴ௗ௜௦௝௨௡௖௧௠௘௔௦௨௥௘ௗ
, 𝑈ଷ௠௘௔௦௨௥௘ௗ ×

𝑈ଷ଺଴଴

𝑈ଷ

×
𝑈ே ௠  ⁄ ௗ,௦௘௖
௠௔௫

𝑈ே  ௦௘௖
௠௔௫

൱ 
(Equation 5) 

 

If peak gust measurements 
are available,  𝑈ଷ = 𝑈ଷ௠௘௔௦௨௥௘ௗ (Equation 6) 

If peak gust measurements 
are not available, 

𝑈ଷ =
𝑈ଷ଺଴଴ௗ௜௦௝௨௡௖௧௠௘௔௦௨௥௘ௗ

𝑈ே ௠  ⁄ ௗ,௦௘௖
௠௔௫

𝑈ே  ௦௘௖
௠௔௫

×
𝑈ଷ

𝑈ଷ଺଴଴
 

(Equation 7) 

 
Where U3/U3600 is the Durst conversion factor (ASCE 7-10 2010).  Both the sustained 

wind speed and peak gust wind speed were evaluated to ensure that errors in data had minimal 

impact on the final interpolations.  Where the maximum sustained wind speed measured was 

greater than the value calculated using the gust factor and disjunct sample conversion factor, 
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the measured sustained value was used (Equation 5).  For stations that reported peak gust 

data, these data were used directly (Equation 6), otherwise a peak gust wind speed was 

calculated using the gust factor and disjunct sample conversion factor (Equation 7).  Using 

these algorithms, the Lothar dataset was again evaluated as a test case.  The results show that 

the methodology does not significantly overpredict the gust wind speed data (an average 

increase of 2%, standard deviation of 5%).  Further, the methodology accounted for the 

underreporting of sustained wind speeds because of the disjunct sampling period.  The final 

gust factors (U3/U3600) for the calculated dataset were reevaluated and were found to range 

from 1 to 1.4299, with an average of 1.42 and a standard deviation of 0.03 for the 4258 

records.  Although low gust factors (<1.4) were seen for approximately 5% of the data, this 

methodology created a dataset that was more consistent.  These results demonstrate that the 

implemented calculation methodology produces wind speeds that are more consistent with 

standard wind engineering metrics. 

 

2.1.2 Covariate data 
 

Additionally, covariate data from Europe were obtained for the cokriging process.  

Elevation data were collected from Version 4 of the NASA Shuttle Radar Topographic 

Mission (SRTM) 90-m digital elevation dataset through the CGIAR Consortium for Spatial 

Information (CGIAR-CSI).  The land cover covariate was obtained from the European Space 

Agency (ESA) GlobCover Project Version 2 2008 database at a resolution of 300 meters 

(GlobCover 2008).  Collectively, the elevation and land cover datasets were clipped and 

resampled to 300 meters for the study area.  The GlobCover land cover dataset contains 22 

different land cover classification types ranging from various tree types, shrubs, and 

grasslands to bare land, artificial surfaces, and open water.  The covariate of aspect was 

derived from the 300-m resampled elevation dataset utilizing tools available in the Spatial 

Analyst toolbox within ArcMap 10.1. 

2.2 Kriging and cokriging methodologies 
 
 Kriging and cokriging rely on probability and autocorrelation when creating surface 

estimates.  The use of probability means that there is some variation in output values leading 

to an approximate, or stochastic, model.  The reliance on autocorrelation is based on the 

tendency for two variables to be related.  Within the field of geography, Tobler's first law 

states that "everything is related to everything else, but near things are more related than 
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distant things" (Tobler 1970).  Correlation between objects usually decreases over distance 

and this is also true of the correlation between wind speeds at different stations.  

Autocorrelation is a central tenet of geostatistics because observations are not independent of 

each other and geostatistics includes spatial location and distance during model creation.  

Kriging and cokriging both rely on the same process for surface estimation, but cokriging 

incorporates one or more secondary variables to improve predictions in areas where simple 

autocorrelation may be insufficient.  Larger wind speed values may be underestimated in 

mountainous or coastal areas that lack a dense network of wind observation stations.  However, even 

when considering station location limitations, cokriging has been shown to estimate wind surfaces 

more accurately and in greater detail, while reducing prediction errors, compared to ordinary kriging 

(Luo et al. 2008). 

 
While ordinary kriging is described as 

                                                       Z(s) = µ + ε(s)                                                  

where constant mean µ is a deterministic trend that is associated with errors ε at each location s for the 

variable of interest Z(s), ordinary cokriging is described as 

Z1(s) = µ1 + ε1(s) 

Z2(s) = µ2 + ε2(s) 

Zn(s) = µn + εn(s) 

where constants µ1…µn are unknown and associated with multiple errors εn at each location s to 

predict variable of interest Z1(s), while taking information from covariate(s) Zn(s) into consideration.  

In cokriging, different trends are estimated for each variable and autocorrelation occurs within 

each variable, while cross-correlation can also occur between the errors for each variable.  

Measurement locations do not need to be the same when the level of cross-correlation is calculated 

between variables – a major advantage of cokriging.  Cokriging utilizes autocorrelation and cross-

correlation to often make improved predictions, but the addition of one or more secondary variables 

(covariates) requires more estimation of unknown autocorrelation parameters and adds more model 

variability.  However, the cokriging model is based on the kriging model and if no cross-correlation 

exists, the original autocorrelation remains the baseline.  This infers that cokriging models will not 

underperform compared to kriging models, but occasionally the added model variability of cokriging 

can increase standard error on a station-by-station basis.  Within kriging, random errors assume 

second-order stationarity indicating that errors have a mean of zero and error covariance is not 

location-dependent, but instead is distance- and direction-dependent.  In addition to ordinary 

cokriging, other methods of cokriging exist that include universal, simple, indicator, probability, and 

disjunctive.  These methods offer slight changes to the ordinary cokriging methodology such as the 

ability to use multiple data thresholds, prediction thresholds, and variable trends. 
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Although normally distributed data are not required for kriging, normality is necessary 

to obtain quantile and probability maps.  Additionally, kriging is the optimal unbiased 

predictor when compared to only techniques produced from weighted averages regardless of 

data normality, but if the data are normally distributed then kriging is the optimal predictor 

compared to all other unbiased predictors.  The data were examined to determine if a 

transformation or other corrections were necessary to produce normally distributed data and 

to ensure that kriging is the  "best" prediction compared to other unbiased predictors.  Prior to 

modeling each wind storm, multiple methods of exploratory spatial data analysis (ESDA) 

were employed using the Geostatistical Analyst within ArcMap 10.1 to examine the 

univariate distribution (histogram), stationarity and spatial variability (Voronoi map), 

normality (normal QQ plot), global trends (trend analysis), and spatial dependencies 

(semivariogram/covariance cloud) of the wind observation data as well as the autocorrelation 

between covariates and between wind observation data and covariates (general QQ plot and 

crosscovariance cloud).  The levels of skewness and kurtosis revealed by ESDA indicated that 

the wind observation data deviates slightly from a normal distribution.  Observational data 

were subsequently tested for normality using the Shapiro-Wilk test (Sliz-Szkliniarz and Vogt 

2011).  The Shapiro-Wilk test examines the null hypothesis that a dataset is distributed 

normally.  Values below a certain alpha level (e.g., p < 0.05) indicate that the null hypothesis 

of normality should be rejected and values above a certain alpha level indicate the opposite. 

Anisotropic semivariograms were created during the interpolation procedure to account 

for directional dependence of wind speeds at varying distances.  Dominant directional trends 

were automatically detected for each storm and wind type.  This most often resulted in 

directional trends that logically corresponded to storm tracks, but occasionally dominant 

trends were difficult to determine and directionality was adjusted accordingly.  Additionally, a 

variable search radius was determined based on an optimized number of points through cross-

validation using the Geostatistical Analysis tool in ArcGIS Version 9.3 (ESRI 2010).  A 

radius of 15 points was determined to adequately reflect spatial covariance, meaning that 

appropriate range and sill values could be determined by incorporating this number of points 

to estimate local surface trends similar to a moving window. For semivariogram surface 

creation, an eight sector elliptical search type with three neighbors per sector was specified to 

optimize surface variability. 

 The interpolation parameters were selected to obtain the highest accuracy based on the 

station data.  Multiple measures of accuracy including ME, RMSE, and minimum/maximum 

range were used to determine the validity of each kriging-derived surface, but these statistical 
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measures only measure the accuracy as it is related to observed and estimated variability of 

wind speed on the surface.  The standardized RMSE and ME as well as the 

minimum/maximum surface estimates were used to evaluate the interpolated surface and 

compare the accuracy for each storm.  Relatively lower values (close to 0) for ME and values 

closest to 1 for RMSE are preferred.  A wider minimum/maximum range estimate infers more 

variability in wind speeds across the interpolated surface, while a narrower 

minimum/maximum range estimate infers more conformity in wind speeds across the 

interpolated surface.  Negative ME values infer that variability was underestimated, while 

positive ME values infer variability was overestimated.  RMSE values less than 1 infer that 

variability was overestimated, while RMSE values greater than 1 infer that variability was 

underestimated.  The standard error of each station (standard deviation from mean) was also 

used as a major indicator of inter-model comparison.  Standard errors that were > +/-2.0 were 

considered to be abnormally high and a major goal of cokriging was to reduce the number of 

stations that reported a high standard error.  The number of stations with "abnormally high" 

standard error were summated for each model and used as an indicator of model 

improvement.  Additionally, automatic anisotropy was calculated for each storm to compare 

to actual storm direction.  Automatic azimuth directions that were closer to actual storm paths 

were considered optimal.  In addition to measuring the accuracy of the interpolated surfaces 

variability, storm tracks and other reports were used to validate the actual trends, locations, 

and magnitudes of estimated wind speeds. 

3.  Results 

3.1 Cokriging assessment and evaluation 
 
 Maximum sustained and peak gust wind speeds were analyzed for each of the five 

studied wind storms to determine whether pre-processing data transformations were necessary 

and to determine the best combinations of covariates that produce optimal wind surface 

estimates based on multiple criteria.  The Shapiro-Wilk test for normality revealed that the 

null hypothesis of normality for each station could not be rejected since p-values were greater 

than 0.05 for each storm and wind type (Table 6).  Based on the results of the Shapiro-Wilk 

test, no data transformations were necessary for the station observation data.  Additionally, 

regression analysis revealed extremely low R-values (R < 0.1) and no values were significant 

(p > 0.05) between covariates and between wind observation data and covariates indicating 
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that autocorrelation is not a major issue and that transformation of the covariates was 

unnecessary. The ESDA tools within Geostatistical Analyst also revealed trends for each wind 

storm dataset.  These trends were generally consistent with expected directional trends based 

on the track of each wind storm resulting in west-east or northwest-southeast tendencies.   

 
 
 
 

Table 6. Shapiro-Wilk test for normality for each storm and wind type 

Storm Wind Type Shapiro-Wilk (W) p-value Reject H0 
Lothar Max Sustained 0.997 0.79 No 

 
Peak Gust 0.995 0.38 No 

Jeanette Max Sustained 0.997 0.08 No 

 
Peak Gust 0.999 0.89 No 

Kyrill Max Sustained 0.999 0.97 No 

 
Peak Gust 0.998 0.84 No 

Paula Max Sustained 0.998 0.47 No 
  Peak Gust 0.998 0.70 No 
Emma Max Sustained 0.998 0.94 No 

 
Peak Gust 0.996 0.22 No 

 
 Daily weather maps and other climatological information from various reports were 

utilized to assess the track and synoptic conditions and gather a more holistic view for each 

wind storm.  Ordinary cokriging was employed for each storm and wind type and every 

possible covariate combination was simulated.  The maximum amount of combinations 

resulted in eight interpolated surfaces for each wind type and 16 total interpolated surfaces for 

each storm.  These eight interpolated surfaces included 1) ordinary kriging without covariates, 

2) cokriging with elevation, 3) cokriging with aspect, 4) cokriging with land cover, 5) 

cokriging with elevation and aspect, 6) cokriging with elevation and land cover, 7) cokriging 

with aspect and land cover, and 8) cokriging with elevation, aspect, and land cover.  

Corresponding maps were created to represent the maximum sustained and peak gust wind 

speeds across the region for the duration of each storm.  Accuracy metrics were calculated 

through a process of cross validation (n - 1) during model simulation and included the 

RMSPE, ME, RMSE, and stations with errors greater than +/- 2.0 standard deviations.  

Automatic wind direction trends were also recorded.  Additional maps were also created for 

each storm and wind type to identify the locations of stations that received high errors from 

each cokriging model.  The optimal model output(s) was (were) determined for each storm 

and wind type.  



23 
 

3.2  Cokriging models 

3.2.1 Wind storm Lothar 
 

Wind storm Lothar was the first of two major storms to impact northwestern Europe in 

1999.  A subsequent storm, Martin, followed nearly the same path just one day later.  Lothar 

developed from a depression in the North Atlantic Ocean and collided with a cold air mass on 

land, resulting in increased surface turbulence along the frontal boundary and the rapid 

development and geographic expansion of Lothar.  The wind storm moved from west to east 

with major damage occurring in France, Germany, Switzerland, and Austria.  Approximately 

140 deaths and €10 billion (euros) in damage were attributable to Lothar and Martin 

collectively (EQE 2000).  It is difficult to parse which storm caused the most direct damage, 

but Lothar was the stronger of the two.  During Lothar, several wind observation stations 

reported gust wind speeds in excess of 40 m s-1 – comparable to Category 2 hurricane wind 

speeds.  Building roofs, communication networks, and fruit trees were particularly hard-hit by 

high wind speeds, while avalanches, mudslides, and flooding also occurred (EQE 2000).  A 

deadly avalanche in Galtuer, Austria, resulted in nine deaths.   

The results of cokriging models for maximum sustained (Figure 3) and peak gust 

(Figure 4) wind speeds provided additional evidence of the general west-east storm track for 

Lothar.  Wind speeds approaching 40 m s-1 were estimated by multiple peak gust models in 

coastal areas of France and mountainous areas of southeastern Germany approaching the 

Austrian Alps.  Some differences in wind speed estimates were observed between most 

surfaces.  For example, Figures 3a and 3c showed higher maximum sustained wind speed 

estimates in southeastern Germany, while most models estimated a decline in wind speeds 

across northeastern France before a reversion to increased wind speeds near Switzerland and 

southwestern Germany.  Figure 4c showed higher peak gust wind speed estimates in 

southeastern Germany, while Figure 4b showed a very spotty surface with smaller, more 

emphasized areas of high and low wind speeds. 
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Figure 3. Maximum sustained wind surface estimates for wind storm Lothar produced by the following models: 

original kriging (A), cokriging with elevation (B), cokriging with aspect (C), cokriging with land cover 
(D), cokriging with elevation and aspect (E), cokriging with elevation and land cover (F), cokriging with 
aspect and land cover (G), and cokriging with elevation, aspect, and land cover (H). 
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Figure 4. Peak gust wind surface estimates for wind storm Lothar produced by the following models: original 

kriging (A), cokriging with elevation (B), cokriging with aspect (C), cokriging with land cover (D), 
cokriging with elevation and aspect (E), cokriging with elevation and land cover (F), cokriging with 
aspect and land cover (G), and cokriging with elevation, aspect, and land cover (H). 
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To determine the optimal model(s) for each wind speed type for wind storm Lothar, 

multiple accuracy metrics were utilized during model implementation.  The accuracy metrics 

for each model and wind type were aggregated in Table 7.  For the wind storm Lothar 

maximum sustained wind models, the original kriging methodology produced the automated 

anisotropic conditions closest to the actual storm track of ~90°.  The model utilizing the 

covariate aspect produced the RMSE score nearest to one and the lowest RMSPE score, while 

the ME nearest to zero was produced by the model utilizing aspect and land cover. All models 

except two (original kriging and cokriging with aspect) reported the fewest high station SE 

measurements (14) after cross-validation.  For the peak gust wind models, the original kriging 

methodology again produced the automated anisotropic conditions closest to the actual storm 

track of ~90°.  The original kriging model also produced the RMSE score nearest one and tied 

five other models with the fewest stations reporting a SE measurement of greater than +/-2.0.  

The model utilizing elevation as a covariate received the lowest RMSPE score, while the ME 

nearest to zero was produced by the model incorporating land cover.  
 
Table 7. Wind storm Lothar accuracy metrics.  

Storm Method Anisotropy RMSPE ME RMSE 
SE (> +/- 

2.0) 
Lothar Original Kriging 81.4 6.34 -0.010 1.03 18 
Max Cokriging w/elev 70.5 6.35 0.004 0.97 14 
Sustained Cokriging w/asp 45.4 6.32 0.004 1.00 16 

 
Cokriging w/LC 63.5 6.55 0.003 0.95 14 

 
Cokriging w/elev & asp 70.5 6.35 0.004 0.97 14 

 
Cokriging w/elev & LC 70.3 6.35 0.005 0.97 14 

 
Cokriging w/asp & LC 63.8 6.55 0.002 0.95 14 

  
Cokriging w/elev, asp, & 
LC 70.3 6.35 0.005 0.97 14 

Lothar Original Kriging 84.9 10.31 0.002 1.00 16 
Peak Cokriging w/elev 78.4 9.81 -0.030 1.04 20 
Gust Cokriging w/asp 55.2 10.31 0.002 1.02 20 

 
Cokriging w/LC 63.5 10.58 0.001 0.97 16 

 
Cokriging w/elev & asp 70.5 10.29 0.002 0.99 16 

 
Cokriging w/elev & LC 70.3 10.29 0.003 0.99 16 

 
Cokriging w/asp & LC 63.5 10.59 0.002 0.97 16 

  
Cokriging w/elev, asp, & 
LC 70.3 10.29 0.003 0.99 16 

 
 To examine in more detail the locations of stations where high SE measurements 

occurred, maps were produced for each wind type for wind storm Lothar (Figure 5a-b).  Most 

stations that received high SE measurements received such measurements from multiple 

models.  For the maximum sustained wind speed models, high SE measurements were 
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recorded by stations in mountainous regions of Switzerland and southern Germany 

approaching Austria as well as one station in the French Pyrenees.  Some stations on the 

island of Corse also reported high SE measurements.  For the peak gust wind speed models, 

high SE measurements were recorded in near- identical areas in mountainous regions, while 

the Atlantic and Mediterranean coasts of France also contained stations with high SE 

measurements.  Stations coinciding with the optimal models based on SE measurements were 

also highlighted and occurred in matching mountainous and coastal areas.  
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Figure 5. Locality of stations reporting high SE measurements for maximum sustained (A) and peak gust (B) 

winds. 
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3.2.2 Wind storm Jeanette 
 

Wind storm Jeanette impacted much of northern Europe in late October of 2002 as it 

tracked across Ireland, the UK, North Sea, Denmark, and Sweden.  Jeanette developed from a 

low pressure system in the North Atlantic Ocean and had a long, attached frontal boundary 

that reached deep into southern Europe.  Because of the size of the storm and extent of the 

frontal boundary, Jeanette impacted more countries in Europe than most other wind storms 

with high winds distributed over relatively large areas.  The wind storm moved from west to 

east with major damage occurring in Ireland, the UK, France, Belgium, the Netherlands, 

Germany, Denmark, Sweden, Switzerland, Austria, Czech Republic, and Poland.  

Approximately 30 deaths and €1.5 billion (euros) in damage were attributable to Jeanette with 

insured losses topping €1 billion (EQECAT 2002, RMS 2002).  The biggest losses occurred 

in the western and eastern coastal UK, Belgium, the Netherlands, and northern and eastern 

Germany.  During Jeanette, several wind observation stations in France, the Netherlands, 

Germany, and Poland reported gust wind speeds in excess of 40 m s-1 – comparable to 

Category 2 hurricane wind speeds.  Buildings, communication and transport networks, power 

lines and trees were particularly hard-hit by high wind speeds, while flooding was a major 

concern in Scotland and England (EQECAT 2002).   

The results of cokriging models for maximum sustained (Figure 6) and peak gust 

(Figure 7) wind speeds provided additional evidence of the general west-east storm track for 

Jeanette.  Wind speeds approaching 33 m s-1 were estimated by multiple peak gust models in 

coastal areas of the UK, Belgium, and the Netherlands.  High wind speeds persisted across 

much of central Germany, with wind speeds actually increasing in eastern Germany near the 

Czech Republic border (Figure 7c).  Some differences in wind speed estimates were observed 

between most surfaces.  For example, Figures 6c and 6d showed variation in how far inland 

the highest wind speeds occurred in eastern Germany, while most models estimated that 

higher wind speeds were maintained through Germany to the Czech Republic.  Figure 7c 

showed higher peak gust wind speed estimates in eastern Germany, while other peak gust 

models did not identify this area of higher winds. 
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Figure 6. Maximum sustained wind surface estimates for wind storm Jeanette produced by the following 

models: original kriging (A), cokriging with elevation (B), cokriging with aspect (C), cokriging with land 
cover (D), cokriging with elevation and aspect (E), cokriging with elevation and land cover (F), cokriging 
with aspect and land cover (G), and cokriging with elevation, aspect, and land cover (H). 
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Figure 7. Peak gust wind surface estimates for wind storm Jeanette produced by the following models: original 

kriging (A), cokriging with elevation (B), cokriging with aspect (C), cokriging with land cover (D), 
cokriging with elevation and aspect (E), cokriging with elevation and land cover (F), cokriging with 
aspect and land cover (G), and cokriging with elevation, aspect, and land cover (H). 

 
 



32 
 

To determine the optimal model(s) for each wind speed type for wind storm Jeanette, 

multiple accuracy metrics were utilized during model implementation.  The accuracy metrics 

for each model and wind type were aggregated in Table 8.  For the wind storm Jeanette 

maximum sustained wind models, three models (original kriging, cokriging with aspect, and 

cokriging with elevation and aspect) produced the automated anisotropic conditions closest to 

the actual storm track of ~85°.  Three models (cokriging with elevation, cokriging with 

elevation and aspect, cokriging with all three covariates) also produced the lowest RMSPE 

score, while the ME nearest to zero was produced by five of the eight models. The model that 

utilized cokriging with elevation and land cover produced the RMSE score nearest one, while 

the cokriging model incorporating only land cover reported the fewest stations with high SE 

measurements (26) after cross-validation.  For the peak gust wind models, the original kriging 

model and the cokriging model utilizing aspect produced the automated anisotropic conditions 

closest to the actual storm track of ~85°.  Multiple models produced the lowest RMSPE score 

of 7.80, while three models (cokriging with land cover, cokriging with elevation and land 

cover, and cokriging with aspect and land cover) received the ME score nearest zero.  The 

cokriging model that included elevation and the cokriging model that included elevation and 

land cover received the RMSE score nearest one.  The cokriging model that utilized elevation 

and aspect together resulted in the fewest stations (19) reporting a SE measurement of greater 

than +/-2.0.   
Table 8. Wind storm Jeanette accuracy metrics. 

Storm Method Anisotropy RMSPE ME RMSE 
SE (> +/- 

2.0) 
Jeanette Original Kriging 90.0 4.78 0.001 0.87 29 
Max Cokriging w/elev 71.8 4.77 0.001 0.96 37 
Sustained Cokriging w/asp 90.0 4.78 0.008 0.87 29 

 
Cokriging w/LC 64.3 4.84 -0.001 0.89 26 

 
Cokriging w/elev & asp 80.0 4.77 0.001 0.96 37 

 
Cokriging w/elev & LC 69.6 4.78 0.002 0.97 36 

 
Cokriging w/asp & LC 74.5 4.78 0.001 0.94 35 

  
Cokriging w/elev, asp, & 
LC 74.1 4.77 0.011 0.96 37 

Jeanette Original Kriging 90.0 7.80 0.007 0.87 33 
Peak Cokriging w/elev 69.6 7.82 0.002 0.96 38 
Gust Cokriging w/asp 90.0 7.80 0.006 0.86 32 

 
Cokriging w/LC 62.6 7.80 0.001 0.93 38 

 
Cokriging w/elev & asp 76.9 7.83 0.008 0.72 19 

 
Cokriging w/elev & LC 69.6 7.82 0.001 0.96 38 

 
Cokriging w/asp & LC 63.2 7.80 0.001 0.93 38 

  
Cokriging w/elev, asp, & 
LC 78.1 7.84 0.009 0.72 20 
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To examine in more detail the locations of stations where high SE measurements 

occurred, maps were produced for each wind type for wind storm Jeanette (Figure 8a-b).  

Most stations that received high SE measurements received such measurements from multiple 

models.  For the maximum sustained wind speed models, high SE measurements were 

recorded by stations in mountainous regions of Austria and southern Germany as well as the 

northern Czech Republic and Scotland.  Coastal areas of the UK, France, Germany, and 

Poland also reported stations with high SE measurements from multiple stations. For the peak 

gust wind speed models, high SE measurements were recorded in near-identical areas in 

mountainous and coastal regions with the addition of several stations along the coast of the 

Netherlands.  Stations coinciding with the optimal model(s) based on SE measurements were 

also highlighted and continued to exhibit a mountainous and coastal presence.  
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Figure 8. Locality of stations reporting high SE measurements for maximum sustained (A) and peak gust (B) 

winds. 
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3.2.3 Wind storm Kyrill 
 

Wind storm Kyrill impacted large areas of northern Europe in January 2007 as it took a 

track similar to that of wind storm Jeanette across Ireland, the UK, North Sea, Denmark, and 

Germany.  Kyrill developed from a low pressure system near Newfoundland in northeastern 

Canada on 15 January and moved across the North Atlantic Ocean before making its first 

landfall in Ireland on 17 January.  Hurricane-force winds extended very far from the center of 

the storm and widespread major damage occurred as a result of these extensive high winds.  

The wind storm moved from west to east with substantial damage reported in the UK, France, 

Belgium, the Netherlands, Germany, Austria, Czech Republic, and Poland.  Approximately 47 

deaths and €5 billion (euros) in damage were attributable to Kyrill with insured losses nearing 

€3.5 billion (EQECAT 2007, Hewston 2007).  The biggest losses occurred in the southern UK 

and throughout most of Germany.  During Kyrill, isolated wind observation stations in 

Germany, Poland, and the Czech Republic reported gust wind speeds in excess of 50 m s-1 – 

comparable to Category 3 hurricane wind speeds.  Buildings, communication and transport 

networks, power lines, and trees suffered major damage from high wind speeds, while 

flooding was a major concern in Ireland and the Netherlands (EQECAT 2007, Hewston 

2007).  Additionally, high winds over the Alps produced föhn (foehn) winds (high, downslope 

winds that cause rapid adiabatic warming of air) across Austria and Italy resulting in 

avalanche warnings and road tunnel closures. 

The results of cokriging models for maximum sustained (Figure 9) and peak gust 

(Figure 10) wind speeds provided additional evidence of the general west-east storm track for 

Kyrill.  Wind speeds approaching 36 m s-1 were estimated by several peak gust models in 

coastal areas of the UK, the Netherlands, and central/eastern Germany.  High wind speeds 

persisted across much of central Germany, with all models indicating an increase in wind 

speed as the storm tracked eastward towards the Czech Republic.  Some differences in wind 

speed estimates were observed between most surfaces.  For example, Figures 9d and 9g do 

not show wind speeds over 20 m s-1 in eastern Germany, while all other maximum sustained 

and peak gust models estimated that wind speeds increased across central and eastern 

Germany.  Figures 9c and 10a show the highest maximum sustained and peak gust wind 

speed estimates in central and eastern Germany.  
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Figure 9. Maximum sustained wind surface estimates for wind storm Kyrill produced by the following models: 

original kriging (A), cokriging with elevation (B), cokriging with aspect (C), cokriging with land cover 
(D), cokriging with elevation and aspect (E), cokriging with elevation and land cover (F), cokriging with 
aspect and land cover (G), and cokriging with elevation, aspect, and land cover (H). 
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Figure 10. Peak gust wind surface estimates for wind storm Kyrill produced by the following models: original 

kriging (A), cokriging with elevation (B), cokriging with aspect (C), cokriging with land cover (D), 
cokriging with elevation and aspect (E), cokriging with elevation and land cover (F), cokriging with 
aspect and land cover (G), and cokriging with elevation, aspect, and land cover (H). 
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To determine the optimal model(s) for each wind speed type for wind storm Kyrill, 

multiple accuracy metrics were utilized during model implementation.  The accuracy metrics 

for each model and wind type were aggregated in Table 9.  For the wind storm Kyrill 

maximum sustained wind models, the original kriging methodology produced the automated 

anisotropic conditions closest to the actual storm track of ~82°.  The cokriging models 

utilizing elevation, elevation and aspect, elevation and land cover, and all three covariates the 

lowest RMSPE score and the RMSE score nearest to one.  Three cokriging models (aspect, 

elevation and aspect, and all three covariates) produced the ME nearest to zero.  The 

cokriging model utilizing only aspect reported the fewest stations (35) with high SE 

measurements.  For the peak gust wind models, the cokriging model utilizing aspect produced 

the automated anisotropic conditions closest to the actual storm track of ~82°, while the 

cokriging model utilizing aspect and land cover received the ME score nearest to zero.  The 

original kriging model produced the lowest RMSPE score and the fewest stations (37) 

reporting a SE measurement of greater than +/-2.0.  Half of the models received the RMSE 

score nearest to one. 

 
Table 9. Wind storm Kyrill accuracy metrics. 

Storm Method Anisotropy RMSPE ME RMSE 
SE (> +/- 

2.0) 
Kyrill Original Kriging 80.3 4.44 0.016 0.98 39 
Max Cokriging w/elev 68.2 4.39 0.009 0.99 41 
Sustained Cokriging w/asp 72.1 4.40 0.008 0.93 35 

 
Cokriging w/LC 64.0 4.46 0.015 0.97 41 

 
Cokriging w/elev & asp 68.2 4.39 0.009 0.99 41 

 
Cokriging w/elev & LC 68.0 4.39 0.008 0.99 41 

 
Cokriging w/asp & LC 64.2 4.46 0.013 0.97 40 

  
Cokriging w/elev, asp, & 
LC 68.0 4.39 0.008 0.99 41 

Kyrill Original Kriging 64.8 7.16 0.003 0.94 37 
Peak Cokriging w/elev 68.2 7.19 0.005 0.99 43 
Gust Cokriging w/asp 71.6 7.19 0.005 0.96 38 

 
Cokriging w/LC 64.2 7.24 0.001 0.96 40 

 
Cokriging w/elev & asp 68.2 7.19 0.005 0.99 43 

 
Cokriging w/elev & LC 68.2 7.20 0.005 0.99 42 

 
Cokriging w/asp & LC 64.5 7.23 0.000 0.96 40 

  
Cokriging w/elev, asp, & 
LC 68.2 7.19 0.005 0.99 43 

 
To examine in more detail the locations of stations where high SE measurements 

occurred, maps were produced for each wind type for wind storm Kyrill (Figure 11a-b).  Most 

stations that received high SE measurements received such measurements from multiple 
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models.  For the maximum sustained wind speed models, high SE measurements were 

recorded by stations in mountainous regions of Austria and southern Germany as well as 

coastal and interior areas of central and northern Germany.  Coastal areas of the Netherlands, 

and western and northern UK also contained stations with high SE measurements.  

Additionally, mountainous areas of southern France and stations on the French island of 

Corse contained high SE measurements.  For the peak gust wind speed models, high SE 

measurements were recorded in near-identical areas in mountainous and coastal regions with 

an additional station in Ireland reporting high SE measurements.  Stations coinciding with the 

optimal model(s) based on SE measurements were also highlighted and continued to persist in 

mountainous and coastal areas.   
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Figure 11. Locality of stations reporting high SE measurements for maximum sustained (A) and peak gust (B) 

winds. 
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3.2.4 Wind storm Paula 
  

 Wind storm Paula impacted much of northern Europe in January 2008 as it tracked 

across Norway, Sweden, Finland, and Denmark.  Paula developed from a low pressure system 

in the North Atlantic Ocean and had a long, attached frontal boundary that impacted areas of 

Europe as far south as Austria.  High winds were distributed over relatively large areas with 

some of the highest winds occurring in the Alps away from the center of circulation.  The 

wind storm moved from west to east with major damage occurring in Scandinavia, Germany, 

Poland, and Austria.  Only one death was reported, but ~€300 million (euros) in damage were 

attributable to Paula in Austria (Lloyds 2008, VRS 2008).  During Paula, several wind 

observation stations in Norway, Germany, Poland, and Austria reported gust wind speeds in 

excess of 40 m s-1 – comparable to Category 2 hurricane wind speeds.  Building roofs, 

communication and transport networks, power lines and trees were damaged by high wind 

speeds (VRS 2008).   

While Paula impacted a large area, Austria was particularly hard-hit despite higher 

winds not being identified in the country by any models.  The results of cokriging models for 

maximum sustained (Figure 12) and peak gust (Figure 13) wind speeds provided additional 

evidence of the general west-east storm track for Paula.  Wind speeds approaching 36 m s-1 

were estimated by multiple peak gust models in coastal western areas of the Norway.  Peak 

gust wind speeds greater than 20 m s-1 persisted across Denmark, northeastern Germany, and 

some parts of western Poland.  Some differences in wind speed estimates were observed 

between modeled surfaces.  For example, Figures 12a, 12c, 13a, 13b, and 13c showed a 

pocket of higher winds around Copenhagen and another pocket in southwestern Poland, while 

other models estimated a gradual deterioration of wind speeds from west to east.  Localized 

higher winds in Austria may have been smoothed by the global interpolation process, but 

could potentially be identified with regional wind speed models. 
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Figure 12. Maximum sustained wind surface estimates for wind storm Paula produced by the following models: 

original kriging (A), cokriging with elevation (B), cokriging with aspect (C), cokriging with land cover 
(D), cokriging with elevation and aspect (E), cokriging with elevation and land cover (F), cokriging with 
aspect and land cover (G), and cokriging with elevation, aspect, and land cover (H). 
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Figure 13. Peak gust wind surface estimates for wind storm Paula produced by the following models: original 

kriging (A), cokriging with elevation (B), cokriging with aspect (C), cokriging with land cover (D), 
cokriging with elevation and aspect (E), cokriging with elevation and land cover (F), cokriging with 
aspect and land cover (G), and cokriging with elevation, aspect, and land cover (H). 
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To determine the optimal model(s) for each wind speed type for wind storm Paula, 

multiple accuracy metrics were utilized during model implementation.  The accuracy metrics 

for each model and wind type were aggregated in Table 10.  For the wind storm Paula 

maximum sustained wind models, the original kriging methodology produced the automated 

anisotropic conditions closest to the actual storm track of ~100°.  Four models produced the 

lowest RMSPE score of 4.49, while the ME score nearest to zero was produced by the 

original kriging model and the cokriging model utilizing aspect.  The RMSE score nearest to 

one was produced by four cokriging models utilizing various combinations of all three 

covariates. Two models (cokriging with land cover and cokriging with aspect and land cover) 

reported the fewest number of stations (17) with high SE measurements after cross-validation.  

For the peak gust wind models, the original kriging methodology again produced the 

automated anisotropic conditions closest to the actual storm track of ~100°.  Two models 

(cokriging with elevation and cokriging with aspect) produced the RMSE score nearest one 

and two different models (cokriging with land cover and cokriging with aspect and land 

cover) reported the fewest number of stations (18) with high SE measurement of greater than 

+/-2.0.  The model utilizing elevation as a covariate received the lowest RMSPE score, while 

the ME nearest to zero was produced by the original kriging model.  

 
Table 10. Wind storm Paula accuracy metrics.  

Storm Method Anisotropy RMSPE ME RMSE 
SE (> +/- 

2.0) 
Paula Original Kriging 86.3 4.49 0.002 1.06 39 
Max Cokriging w/elev 68.0 4.49 0.012 1.00 33 
Sustained Cokriging w/asp 52.7 4.50 0.002 1.03 33 

 
Cokriging w/LC 64.0 4.58 0.020 0.89 17 

 
Cokriging w/elev & asp 68.0 4.49 0.012 1.00 33 

 
Cokriging w/elev & LC 68.0 4.51 0.014 1.00 33 

 
Cokriging w/asp & LC 64.0 4.58 0.020 0.89 17 

  
Cokriging w/elev, asp, & 
LC 68.0 4.49 0.012 1.00 33 

Paula Original Kriging 86.1 7.09 0.002 1.07 38 
Peak Cokriging w/elev 69.1 7.05 0.012 1.00 40 
Gust Cokriging w/asp 44.8 7.15 0.006 1.00 30 

 
Cokriging w/LC 64.0 7.25 0.019 0.90 18 

 
Cokriging w/elev & asp 68.0 7.08 0.011 1.01 30 

 
Cokriging w/elev & LC 68.0 7.12 0.013 1.02 32 

 
Cokriging w/asp & LC 63.8 7.26 0.019 0.90 18 

  
Cokriging w/elev, asp, & 
LC 68.0 7.12 0.013 1.02 32 
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To examine in more detail the locations of stations where high SE measurements 

occurred, maps were produced for each wind type for wind storm Paula (Figure 14a-b).  Most 

stations that received high SE measurements received such measurements from multiple 

models.  For the maximum sustained wind speed models, high SE measurements were 

recorded by stations in the Alps of Austria, and southern Germany as well as coastal and 

interior stations in the southern half of Norway.  Other stations receiving high SE 

measurements were scattered in coastal Sweden, Germany, and Poland as well as the rugged 

border between Germany and the Czech Republic.  For the peak gust wind speed models, high 

SE measurements were recorded in near-identical areas in mountainous and coastal regions 

with a few exceptions.  Stations coinciding with the optimal model(s) based on SE 

measurements were also highlighted and occurred in concomitant geographical areas. 
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Figure 14. Locality of stations reporting high SE measurements for maximum sustained (A) and peak gust (B) 

winds. 
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3.2.5 Wind storm Emma 
 

 Wind storm Emma moved across northern and central Europe between 29 February 

and 1 March 2008 predominantly impacting the Netherlands, Belgium, Switzerland, 

Germany, Austria, Czech Republic, and Poland.  Emma developed from a low pressure 

system in the North Atlantic Ocean and joined a separate frontal system as it tracked into 

northern Europe making it a very complex storm with disproportionately high sustained wind 

speeds and widely varying wind directions.  The variance in wind directions created 

confusion during modeling when anisotropy was considered.  The wind storm moved from 

west to east across northern Europe with the frontal boundary extending into southern Europe.  

Approximately 15 deaths and €1.3 billion (euros) in insured losses were attributable to Emma 

with almost €1 billion of damage in Germany and ~€200 million of damage in Austria alone 

(Guy Carpenter 2008).  The biggest losses occurred in the Bavaria region of southeastern 

Germany.  During Emma, several wind observation stations in Bavaria and Austria around 

Salzburg and Vienna reported gust wind speeds in excess of 35 m s-1 – comparable to 

Category 1 hurricane wind speeds.  Building roofs, communication and transport networks, 

power lines, automobiles, and trees were particularly hard-hit by high wind speeds, while 

flooding was a major concern in many eastern European countries (Guy Carpenter 2008).   

The results of cokriging models for maximum sustained (Figure 15) and peak gust 

(Figure 16) wind speeds provided additional evidence of the general west-east storm track for 

Emma, while also alluding to the northwest-southeast wind speeds associated with the initial 

frontal system.  Wind speeds approaching 33 m s-1 were estimated by several peak gust 

models in near the Germany-Denmark border, while only one peak gust model (Figure 16e) 

indicated similar wind speeds in the Bavaria region of Germany near Austria as well as small 

areas of the Czech Republic.  The highest sustained and peak gust wind speeds occurred in 

coastal areas of the Netherlands and Germany as well as interior southern areas of Germany, 

with a slight decrease in wind speeds evidenced in the northern plains of Germany.  Some 

differences in wind speed estimates were observed between most surfaces.  For example, 

Figures 15e, 15f, and 15g showed very spotty and localized high wind speeds that appeared to 

be influenced by topography since each of those models used elevation and/or aspect as 

covariates.  The other, more smoothed surfaces may be more indicative of wind storm 

Emma's general wind speeds and patterns based on accuracy analysis – highlighting the 

complexity of surface winds caused by the unique meteorology associated with Emma. 
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Figure 15. Maximum sustained wind surface estimates for wind storm Emma produced by the following 

models: original kriging (A), cokriging with elevation (B), cokriging with aspect (C), cokriging with land 
cover (D), cokriging with elevation and aspect (E), cokriging with elevation and land cover (F), cokriging 
with aspect and land cover (G), and cokriging with elevation, aspect, and land cover (H). 
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Figure 16. Peak gust wind surface estimates for wind storm Emma produced by the following models: original 

kriging (A), cokriging with elevation (B), cokriging with aspect (C), cokriging with land cover (D), 
cokriging with elevation and aspect (E), cokriging with elevation and land cover (F), cokriging with 
aspect and land cover (G), and cokriging with elevation, aspect, and land cover (H). 
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To determine the optimal model(s) for each wind speed type for wind storm Emma, 

multiple accuracy metrics were utilized during model implementation.  The accuracy metrics 

for each model and wind type were aggregated in Table 11.  For the wind storm Emma 

maximum sustained wind models, the cokriging methodology utilizing land cover produced 

the automated anisotropic conditions closest to the actual storm track of ~113°, but automated 

anisotropy differed greatly between models.  The model utilizing the covariate elevation as 

well as the model utilizing all three covariates produced the lowest RMSPE score, while the 

ME nearest to zero and fewest stations with high SE measurements (12) was produced by the 

model utilizing only land cover. The combination of aspect and land cover produced the 

RMSE score nearest to one.  For the peak gust wind models, the model utilizing only land 

cover and the model utilizing both aspect and land cover produced the automated anisotropic 

conditions closest to the actual storm track of ~113°.  Multiple models produced the lowest 

RMSPE score, including the model utilizing only land cover as a covariate.  Two models 

(elevation and land cover, all three covariates) were tied for the fewest stations (16) reporting 

a SE measurement of greater than +/-2.0.  The model utilizing elevation as a covariate 

received the ME nearest to zero, while the RMSE nearest to one was produced by two 

models: the original kriging model and the model incorporating aspect and land cover.  

 
Table 11. Wind storm Emma accuracy metrics. 

Storm Method Anisotropy RMSPE ME RMSE 
SE (> +/- 

2.0) 
Emma Original Kriging 58.4 5.05 0.002 0.96 20 
Max Cokriging w/elev 159.6 5.02 0.001 0.92 16 
Sustained Cokriging w/asp 1.8 5.16 -0.015 0.82 13 

 
Cokriging w/LC 71.0 5.16 0.000 0.81 12 

 
Cokriging w/elev & asp 17.6 10.54 0.130 1.97 91 

 
Cokriging w/elev & LC 0.0 6.11 0.004 0.94 24 

 
Cokriging w/asp & LC 3.9 6.26 0.011 1.02 27 

  
Cokriging w/elev, asp, & 
LC 68.0 5.02 0.005 0.91 16 

Emma Original Kriging 42.7 8.25 0.005 0.96 20 
Peak Cokriging w/elev 159.8 8.21 0.000 0.91 18 
Gust Cokriging w/asp 43.8 8.25 0.006 0.95 20 

 
Cokriging w/LC 154.3 8.21 0.002 0.94 21 

 
Cokriging w/elev & asp 16.5 15.99 0.111 1.81 84 

 
Cokriging w/elev & LC 68.0 8.21 0.003 0.89 16 

 
Cokriging w/asp & LC 154.3 8.21 0.029 0.94 21 

  
Cokriging w/elev, asp, & 
LC 68.0 8.21 0.003 0.89 16 
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To examine in more detail the locations of stations where high SE measurements 

occurred, maps were produced for each wind type for wind storm Emma (Figure 17a-b).  

Most stations that received high SE measurements received such measurements from multiple 

models.  The major exceptions were the models that incorporated elevation and aspect 

collectively as covariates.  These models reported a large number of stations with high SE 

measurements located predominantly in the Alps of Switzerland and Austria.  For the 

maximum sustained wind speed models, most high SE measurements were recorded by 

stations in mountainous regions of Switzerland, Austria, and southern Germany as well as a 

rugged area in central Germany and mountainous border between the Czech Republic and 

Germany.  Stations in coastal areas reported very few high SE measurements with only one 

station on the Baltic Sea coast of Poland reporting multiple high SE measurements.  For the 

peak gust wind speed models, high SE measurements were recorded in near-identical areas in 

mountainous and rugged regions as well as the one coastal station in Poland.  Stations 

coinciding with the optimal model(s) based on SE measurements were also highlighted and, 

while improved compared to other models, continued to indicate a complex and difficult-to-

model environment in mountainous areas. 
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Figure 17. Locality of stations reporting high SE measurements for maximum sustained (A) and peak gust (B) 

winds. 
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4.  Discussion 

4.1 Optimizing surface wind estimates through cokriging 
 
 Seven different cokriging models were produced using singular and assimilated 

combinations of each covariate with varying results of modification compared to the results 

from the original kriging methodology.  The original kriging model was also produced for 

each of the five storms to allow for a side-by-side visual and statistical comparison through 

the use of multiple accuracy metrics.  Overall, 80 different modeled surface estimates were 

created – 16 for each of the five wind storms – and standard error maps were also created for 

each wind type.  The maps showed that most models produced logical surface estimates based 

on the known track, wind speed, and wind direction associated with each storm.  All wind 

storms followed a general west-east track across either central or northern Europe with the 

UK, France, the Netherlands, Belgium, and Germany being impacted the most by high winds 

and infrastructure damage.  The highest winds associated with each storm occurred 

predominantly in coastal and mountainous areas with a common tendency for winds to 

subside slightly as they moved inland, then to increase again when approaching the 

mountainous regions.  Higher levels of uncertainty (or error) were associated with both the 

coastal and mountainous regions.  Wind speeds are difficult to model in coastal regions for 

two reasons: 1) the land-ocean interface creates turbulence and deflection when the surface 

that wind moves across changes (Wieringa 1973, 1986) and 2) wind observation stations 

rarely exist over water, thus providing an abrupt departure in station density (MacEachren and 

Davidson 1987, Wieringa 1997).  Wind speeds are difficult to model in mountainous regions 

for two reasons as well: 1) wind is deflected and funneled in multiple directions by varying 

topography (Wieringa 1973, 1986) and 2) as winds move upslope and downslope, wind speed 

also changes resulting in locally high/low winds (Bowen and Lindley 1977, Hertenstein and 

Kuettner 2005).  These local wind patterns are difficult to estimate using a global model.   

Figures 15e and 15g (wind storm Emma) provide an example of global wind surfaces 

that were too specific in assigning local wind patterns and created a surface where the general 

wind patterns were difficult to visualize.  These same models also produced higher station 

error relative to the original kriging surface.  Because Emma was a complex storm that 

coincided with a separate frontal system moving across Europe, some model uncertainly may 

be expected.  Wind direction was also very difficult to model for Emma because of the 

contrasting atmospheric systems.  Excluding the models from Figures 15e and 15g, the use of 

covariates most often improves upon the original kriging surface by reducing station error.     
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Covariates were not significantly spatially autocorrelated, but wind speed was 

autocorrelated and the use of anisotropy during modeling helped in identifying overall trends 

in wind direction based on high/low wind speeds.  Most modeled surfaces illustrated the 

general west-east or northwest-southeast movement of each wind storm, but the azimuth 

directions identified by the automatic anisotropy process sometimes varied widely. For 

example, azimuth direction varied by as much as ~35° for the models produced for wind 

storm Emma.  The highest disparity was observed between the original kriging surfaces and 

the model that used only aspect as a covariate.  This may indicate that the addition of aspect 

resulted in a more nuanced wind surface that possibly contained multiple wind directions at 

specific locations where one side of a mountain may have deflected the wind in a way that 

was different from the general wind pattern.  Topography can deflect wind and create changes 

in turbulence in the area immediately behind a mountain or mountain range (Bowen and 

Lindley 1977).  

Accuracy metrics were highly varied, indicating that one singular covariate does not 

always improve wind surface estimates for wind storms over large, heterogeneous terrain.  

However, the major index of standard error (SE) reduction showed improvement over the 

original kriging surface in eight out of the ten model sets, with only one set (peak gust models 

for wind storm Kyrill) indicating that original kriging was optimal.  Several peak gust models 

for wind storm Lothar did not reduce the SE, but also did not increase the SE.  The original 

kriging method also reported the lowest SE measurement in the set of peak gust models for 

wind storm Lothar, but five other models reported the identical stations with high SE (16) as 

well.  The SE for wind storm Paula was reduced by more than half (Table 10) and provided an 

example of how a singular covariate (land cover in this case) made a major improvement in 

surface estimates.  Overall, the model output of the optimal version was greatly improved 

compared to the original kriging model similar to previous research (Luo et al. 2008, Akkala 

et al. 2010, Zlatev et al. 2010, Luo et al. 2011).   

 Overall, models utilizing land cover (singularly or in conjunction with elevation and/or 

aspect) tended to produce optimal wind speed surface estimates.  This was not always true.  

The optimal maximum sustained wind speed model for wind storm Kyrill was produced using 

only aspect as a covariate, while the optimal peak gust wind speed model for wind storm 

Jeanette was produced using both elevation and aspect collectively.  Additionally, models 

utilizing land cover were much more computational intensive typically taking several hours 

(and occasionally days with larger areas, i.e., wind storm Jeanette), while models utilizing 

elevation and/or aspect were completed in less than one hour.  This was most likely due to the 
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complex nature of actual land cover on the surface as well as the categorical nature of the 

dataset within the geostatistical modeling environment.  Each step of the process was 

conducted manually resulting in a more complicated and extended modeling process that 

would have been improved through automation.  Regardless of modeling complexity and 

intensiveness, the general improvement shown by models utilizing land cover is promising for 

future modeling efforts and covariate creation. 

4.2 Overall impact of improved wind surface estimates 
 
 Improved wind surface estimates created through cokriging build on previous research 

that only utilized one covariate (elevation) to model wind speeds.  The addition of aspect and 

land cover improved surface estimates and may be used for other wind- or even non wind-

related research.  The use of other covarites within cokriging may help to address other 

problems, ranging from hazards to energy.  Within wind storm research, models and extreme-

event climatologies of wind simulation and hazard/risk assessment that are widely used in the 

insurance/reinsurance industry can be improved through the incorporation of our research 

results.  This study may also help to inform local cost-benefit studies and subsequently save 

lives and resources for local government, private industry, and consumers.  Damage estimates 

may also be refined based on the resulting wind surface estimates, thus improving 

construction standards and adapting insurance needs.  The known impacts of wind storms on 

vegetation (e.g., trees; Kirk and Franklin 1992) and civil infrastructure (Reed 2008) are 

severe, and improved spatial interpolations for wind storm-induced wind speeds will be 

fundamental to evaluating damages as well as potential changes needed for forest 

management and building codes/regulations.  The identification of high wind zones will also 

help to inform local government vulnerability assessments that may be included in future 

hazard mitigation plans.  The results may also improve understanding of common wind storm 

features (e.g., directions, wind movements/patterns, surface interactions, etc.) that have long-

term, but not necessarily immediate, impacts on sectors such as transportation, agriculture, 

and recreation.   

5. Future Research 

Local cokriging surfaces (e.g., country- and state-level) will be the focus of future 

research and these surfaces will be created to examine more specific wind speeds and 

directions that are often smoothed when performing regional cokriging (e.g., all of Europe).  

This smoothing was evident in each of ten model sets because the general wind direction and 
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speed were mapped correctly, but local high wind speeds were more difficult to discern.  

Damage data (e.g., trees, infrastructure) may also be joined and overlaid spatially with the 

optimal local wind surface estimates to establish a damage-wind ratio.  An example of local 

kriging/cokriging and damage overlay are examined in the subsequent section (5.1).  

Proximity analysis and exposure-testing using aspect and slope may further aid in 

understanding high damage locations associated with wind storms.  High wind speeds will 

likely recur in similar areas, thus there is also a need to identify repetitive high wind and high 

damage environments.  Using the ideal cokriging parameters and covariate combinations 

identified for Europe in this study, the transferability of the methods may also be tested for 

various wind storms in the Pacific Northwest region of North America where similar wind 

storms (called winter storms locally) occur.  Successful transferability of cokriging methods 

would imply that the techniques are responsive to areas with differing terrains and land covers 

and that the methods are adaptable.  

A major area of future research involves a complete remaking of the covariate dataset.  

While the cokriging interpolation method improved surface wind estimates, an additional 

procedure could be tested to reduce the inherent concern of autocorrelation between 

covariates.  Just as principal components analysis (PCA) is used to combine strongly 

correlated variables into various components, a data reduction technique may be applied to 

create  a  “ruggedness”  variable.    Issues  of  autocorrelation  could  potentially  be  eliminated  

through the development of one variable that incorporates both elevation and land cover to 

represent terrain ruggedness.  An anisotropic cokriging model will likely improve prediction 

of the contrasting effects on wind speeds caused by rough-to-smooth vs. smooth-to-rough 

terrain transition areas where ruggedness may change abruptly.  The application of only one 

covariate may also help to reduce the error associated with the use of multiple covariates.  

5.1  Wind storm Paula: an in-depth look at damages and winds in Austria 
 

Winds from wind storm Paula were particularly damaging in Austria and warrant a 

closer examination utilizing local and more specific models as well as regional damage 

estimates.  Wind storm-induced tree/infrastructure damage data have been obtained from 

Federal Ministry of Agriculture, Forestry, Environment, & Water Management (FMAFEWM) 

in Austria (http://www.lebensministerium.at/).  These data include maps and imagery showing 

major forest damage in the Austrian states of Carinthia and Styria as well as point and 

polygon shapefiles that contain detailed information about impacted areas in hectares (ha) and 

in forestry management units (fm).  Additional wind speed surfaces were obtained from the 
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Zentralanstalt fur Meteorologie und Geodynamik (ZAMG) 

(http://www.zamg.ac.at/cms/de/aktuell), which utilizes a different spatial weighting method 

for producing wind storm wind surface estimates.   

Local cokriging surfaces (e.g., country- and state-level) were created utilizing land 

cover as a covariate to examine more specific wind speeds and directions that are often 

smoothed when performing regional cokriging (e.g., Figures 12 and 13).  Collectively, the 

damage data and ZAMG wind surfaces were overlaid spatially with the optimal local wind 

surface estimates to determine if damages and high winds occurred in similar areas.  In Figure 

18, the original kriging algorithm was used to produce a local maximum sustained (18A) and 

peak gust (18B) wind surface estimate for Austria, while the cokriging method was utilized to 

produce the same surface estimates (18C and D) for comparison.  All four surface estimates 

identified a large area of high wind in northeastern Austria in an area that is less mountainous 

than central and western Austria.  In three out of the four models, small pockets of high wind 

also occurred along the Kärnten, Salzburg, and Tirol borders as well as the Steiermark and 

Oberösterreich borders.  There were even smaller pockets of high wind scattered throughout 

other parts of the country.  Table 12 shows the accuracy metrics for each map.  The cokriging 

method produced the optimal maximum sustained wind speed model, while the original 

kriging method produced the optimal peak gust wind speed model based on the various 

metrics.  The cokriging model for peak gust wind speed (Figure 18D) also appears highly 

fragmented indicating a poor fit.   
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Figure 18. Original kriging models for maximum sustained (A) and peak gust (B) wind 
speeds and cokriging models for maximum sustained (C) and peak gust (D) wind speeds. 
 

Table 12. Accuracy metrics for local kriging/cokriging models in Austria 

Wind Type Method Anisotropy RMSPE ME RMSE SE (> +/- 
2.0) 

Maximum  Original Kriging 123.2 3.68 -0.02 0.87 3 
Sustained Cokriging w/LC 123.0 3.62 -0.02 0.87 2 
Peak  Original Kriging 122.0 5.92 -0.01 0.88 4 
Gust Cokriging w/LC 178.1 6.00 0.00 0.99 5 

 

 Forestry damage data in Kärnten and Steiermark were overlaid on two separate wind 

speed maps: one produced by ZAMG and one produced by the local kriging peak gust model 

from Figure 18B.  Forestry damage seemed to follow an invisible line from west to east across 

northern Kärnten and then a southwest-northeast line in Steiermark.  Higher wind speeds were 

noticeable in the ZAMG wind surface map for most areas of Steiermark where forestry 

damage occurred, but higher wind speeds from the kriging surface were not omnipresent in all 

areas where forestry damage occurred.  Specifically, the southernmost area of the largest 

block of forestry damage in Steiermark does not align with high wind surface estimates in the 

local kriging surface.  In Kärnten, forestry damage did not always occur in areas of the 

highest wind speed as estimated by either wind estimate surface, but instead may have been 

A B 

C D 
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more dictated by other variables individually.  Since damage estimates were provided at point 

(longitude, latitude) locations for Kärnten, values for elevation, land cover, and aspect were 

extracted for each location and visualized in Figures 20, 21, and 22.  For most damage 

locations, elevation ranged between 750 and 1,750 meters (Figure 20).  Dense needle-leaved 

evergreen land cover dominated areas where forestry damage was high (over 60% of 

damage), indicating that areas with this vegetation type are more susceptible to wind damage 

than other vegetation types (Figure 21).  Wind storm Paula tracked from east to west and most 

wind speed directions indicated a northwest-southeast wind during the most intense segment 

of the storm, but the majority of forestry damage occurred on slopes that were either 

north/northeast-facing or south/southwest-facing (Figure 22).  This may infer that wind speed 

from a slight (45°+) angle could be the most damaging during a wind storm.  Figure 22 also 

clearly illustrates the increase in wind speed upslope AND downslope during a wind storm.  

For this reason, aspect may have added a conflicting element to cokriging models for wind 

storm Paula since winds often change directions, deflect off of mountains, and funnel through 

valleys resulting in less favorable accuracy metrics than the top models (original kriging and 

cokriging with land cover).  Aerial images showing forestry damage inflicted by wind storm 

Paula can be viewed in Figure 23. 
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Figure 19. Wind surface estimates from ZAMG (A) and local kriging (B) overlaid with 
forestry damage locations.   
 

  

 

A 

B 
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Figure 20. Distribution of elevation at each location where forestry damage was reported. 

 

 

 
Figure 21. Distribution of primary land cover types at each location where forestry damage 
was reported. 
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Figure 22. Aspect of topography at each location where forestry damage was reported. 

 

 
Figure 23. Aerial images where forestry damage occurred during wind storm Paula. 

N

NE

E

SE

S

SW

W

NW



63 
 

6. Conclusions 

 Cokriging was utilized to create maximum sustained and peak gust wind speed surface 

estimates for five European wind storms over a 10-year period.  The results confirmed that 

cokriging is superior to kriging for most models and that elevation is a good covariate.  The 

study expanded on the use of covariates by adding aspect and land cover, which also showed 

improvement in most models from previous kriging models.  Maps showing stations with 

high SE were also produced and indicated that some stations were repeatedly found to have 

high SE measurements.  The major findings of this study include: 

1) Aspect and land cover can be effective when used as covariates during the 

cokriging process. 

2) In most model sets, the use of land cover as a covariate produced the best surface 

estimates with the fewest stations receiving high SE measurements. 

3) Stations with high SE measurements continued to occur in coastal and 

mountainous regions, but were reduced by cokriging in most model sets. 

4) General wind speed and wind direction patterns were modeled correctly at a global 

scale, but more localized patterns were not identified. 

5) The use of multiple covariates resulted in variability when identifying the 

dominant azimuth direction of wind associated with each storm.  
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