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Zusammenfassung 
 
Das West-Nil-Virus ist eine Infektionskrankheit, welche ihren Ursprung in den späten 
Dreißigerjahren im West-Nil-Distrikt in Uganda hat. Auf Menschen wird das Virus mittels 
eines Moskitobisses übertragen. Nach einigen verzeichneten Virusausbrüchen in Europe trat 
das Virus erstmals 1999 in den USA zu Tage (CDC, 2011a). In den Folgejahren verbreitete sich 
das Virus über den gesamten nordamerikanischen Kontinent und verursachte in manchen 
Fällen schwere Erkrankungen, wie zum Beispiel eine Entzündung des Gehirns (Enzephalitis), 
oder eine Entzündung der Hirn- und Rückenmarkshäute (Meningitis). Laut des CDC 
verursachte das WNV seit seinem ersten Auftreten im Jahr 1999 in den USA mehr als 1200 
Todesfälle (CDC, 2011a). In den folgenden Jahren verbreitete sich das Virus nicht nur über 
die gesamten Vereinigten Staaten, sondern es erschien auch in Kanada und einigen Staaten 
in Südamerika. Abhängig von einigen Erfolgsfaktoren taucht das Virus in bestimmten 
Regionen auf, verursacht Vogelsterben und einige Krankheitsfälle unter Menschen und 
Pferden, bevor sein Auftreten schwächer wird und es schließlich wieder ganz verschwindet. 
Die Forschung dieser Bachelorarbeit befasst sich im Wesentlichen damit, Verteilungsmuster 
des WNV in den USA zu untersuchen. Dabei wird der Zeitraum vom ersten Auftreten im Jahr 
1999 bis 2011 untersucht. Die Analysen werden mit Daten über Krankheitsfälle, welche vom 
CDC zur Verfügung gestellt werden, durchgeführt. Die Krankheitsfälle werden zu 
Analysezwecken zu den administrativen Einheiten (Staaten) aggregiert. Zusätzlich werden 
auf einer größeren Maßstabsebene Analysen für den Staat Louisiana durchgeführt. Daten 
über WNV-Fälle pro Parish (administrative Einheiten in Louisiana, sind äquivalent zu den 
„Counties“ in anderen Staaten oder den Bezirken in Österreich) werden vom Louisiana 
Department of Health and Hospitals zur Verfügung gestellt. Der Grundnutzen dieser Arbeit 
besteht darin, so genannte „Cluster“, das sind nahe bei einander liegende Gruppierungen 
von Daten, über Zeit und Raum aufzudecken. Dies dient dem Zweck, die Verteilungsmuster 
des WNV besser zu verstehen. Zudem geben Cluster, welche in der Vergangenheit 
aufgetreten sind, Aufschluss über mögliche Verteilungsmuster und Clusterbildungen in der 
Zukunft. Für die Raum-Zeit-Analyse von WNV-Fällen werden unterschiedliche Methoden 
verwendet: der „local indicator for spatial association“ (LISA), retrospektive und prospektive 
Tests, die Kulldorff Scan Statistik und die Visualisierung von multivariaten Raum-Zeit-Muster 
mit Hilfe einer Selbstorganisierenden Karte (SOM). Die statistischen Analysen werden in 
einer geographischen Informationssystem (GIS)-Umgebung durchgeführt. Die Analysen 
werden mit frei erhältlichen statistischen Software-Paketen durchgeführt. Dazu gehören: 
Open GeoDa (Anselin et al., 2004), GeoSurveillance (Rogerson et al., 2009), SaTScan 
(Kulldorff, 2011), und Vis-Stamp (Guo, 2006a). Diese Pakete unterscheiden sich stark in ihren 
Funktionalitäten und ihrer Software-Architektur. Einige von den Programmen wurden noch 
nie im Zusammenhang mit Gesundheitsdaten oder im Speziellen mit Daten über 
Krankheitsfälle verwendet. Deshalb wird im Zuge dieser Bachelorarbeit auch die 
Anwendbarkeit dieser Programme für Gesundheitsdaten überprüft. Die Ergebnisse aus den 
Analysen können durch Evaluierungen und einem Vergleich mit anderen Ergebnissen 
validiert werden. Die meisten Softwarepakete verfügen über keine ausreichenden 
Kartierungs- beziehungsweise Visualisierungsfunktionen. Daher wird für diese Zwecke mit 
der kommerziellen GIS-Software ArcGIS von ESRI (ESRI, 2011) gearbeitet. 
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Abstract 
 
The West Nile Virus (WNV) is an infectious disease which has its origins in the late thirties in 
the West Nile District of Uganda. Humans acquire the virus through a mosquito bite. After 
some reported human outbreaks of the infection in Europe the virus first entered the U.S. in 
1999 (CDC, 2011a). In the following years it spread over the North American continent and in 
some cases it caused severe illness such as inflammation of the brain (encephalitis) or 
inflammation of the spinal cord (meningitis). According to the Centers of Disease Control and 
Prevention (CDC) since its first occurrence in 1999 the virus-borne West Nile Disease caused 
over 1200 deaths in the U.S. alone (CDC, 2011a). In subsequent years the virus has not only 
spread over the U.S. but also entered Canada and several states in South America. 
Depending on different factors, the virus usually emerges in a region causing avian die-offs 
and several disease cases among humans and horses before it ceases again. The research in 
this Bachelor thesis aims to analyze spatio-temporal WNV distribution patterns across the 
U.S. from its beginnings in 1999 until 2011. The analysis is carried out on count data 
provided by the CDC. Data have been subsequently aggregated to administrative units 
(states). In addition, analysis is carried out on a larger scale for the State of Louisiana. Data 
about WNV incidents on a parish level in Louisiana are provided by the Louisiana 
Department of Health and Hospitals. The main purpose of the analyses is to detect clusters 
across space and time. This will help to better understand the distribution patterns of the 
WNV. Furthermore, clusters which have emerged in the past give an idea of possible future 
distribution patterns of WNV incidents. For the spatial and temporal analysis of WNV 
incidents several techniques are implemented, including a local indicator for spatial 
association (LISA), retrospective and prospective tests of clusters and clustering, the 
Kulldorff’s Scan Statistic, and the visualization of multivariate space-time patterns using a 
self-organizing map (SOM). The statistical analyses are conducted in a Geographic 
Information System (GIS) environment. Principal components of this environment are freely 
available statistical software packages, including Open GeoDa (Anselin et al., 2004), 
GeoSurveillance (Rogerson et al., 2009), SaTScan (Kulldorff, 2011), and Vis-Stamp (Guo, 
2006). These packages differ significantly in their functionalities and software architecture. 
Some of them have never before been applied to health data, in general or disease data, in 
particular. Thus, the software packages’ applicability for health data is tested in the course of 
this Bachelor thesis. After evaluating and comparing outputs of the analyses, respective 
results can be validated. Most software packages used in this thesis lack functionalities for 
mapping and visualizing results. This makes the use of a GIS inevitable. For this purpose, the 
commercial ArcGIS software from ESRI (ESRI, 2011) is used. 
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1 Introduction 

Alexander the Great suffered from a 2-weeks febrile illness terminating in flaccid paralysis 
and encephalopathy. The emperor died of the illness in the ancient Mesopotamian city of 
Babylon on June 10, 323 BC. The reason for his sudden passing away remains a controversial 
issue among medical investigators. Recent theories state that Alexander the Great may have 
died of the West Nile Virus (WNV) encephalitis (Marr & Calisher, 2003). A factor, which 
brings scientists to this conclusion, is that simultaneously to his illness, bird observers which 
were common at that time observed an inexplicable sudden avian die-off. Especially, 
endemic ravens were affected by the epizootic (Marr & Calisher, 2003). But only recently, as 
the WNV became a more global issue, it was discovered that there might be a connection 
between the avian die-off and Alexander’s fatal illness. Originally, the WNV was endemic to 
Asia, Africa, Europe as well as Australia (Petersen, 2009). Over the ages it has emerged in 
some areas and disappeared in others. Across time the virus does not only move 
geographically, but it also underlies lots of mutation processes. Due to that fact, the WNV 
might appear in a more aggressive form for avian species in an area, affecting susceptible 
species and causing avian die-offs accompanied by a few human febrile cases. Depending on 
the viremia, WNV might also cause severe human disease cases, including WNV encephalitis 
and WNV meningitis before the virus ceases again. In 1999, it emerged in the Western 
hemisphere for the first time. It then spread rapidly across the entire American continent. In 
2002, the virus triggered the largest arboviral (mosquito-borne) encephalitis epidemic in US 
history (Huhn et al., 2003). This is when the virus reached an unprecedented prevalence 
among human beings. The conditions which led to that peak are broadly unknown. 
 
Since the first emergence of the WNV in the U.S., the Center of Disease Control and 
Prevention has created a national passive surveillance system (ArboNET) to collect both 
human and non-human data about incidences of arboviral infections, such as a WNV 
infection (CDC, 2009a). The objectives of this system are to monitor incidence as well as 
geographic and temporal spread of WNV and other arboviruses. Additionally, the system 
should be a source of information for public health officials. The system is fed by local health 
departments and it is updated on a weekly basis (CDC, 2009a). The Louisiana Health 
Department provides data about WNV activity on a parish-level. They issue annual reports 
about WNV activity in the state. 
 
Geographic information systems provide an adequate environment to visualize disease 
transmission patterns over space. In disease modeling the temporal dimension also plays a 
primary role. However, the integration of a third, the temporal dimension is still a challenge 
for developers in the GIS field. Since space-time analyses have become a more and more 
important issue in many disciplines, such as epidemiology, a few solutions to include the 
temporal component in a GIS have been proposed through the open source and freeware 
community. The latter community is also a striving new trend in modern information 
technology. Freely available software comes along with many possibilities but also with a 
few risks. For free developers there exists neither a requirement list nor any criteria 
catalogue for developing software products. Especially, when it comes to data input and 
output, freeware products provide very different solutions. 
 
Research papers about the analysis of WNV incidences using GIS are available on a wide 
range. But space-time investigations with statistical tools are rare. Wimberly, Lindquist, and 
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Wey have analyzed the equine WNV outbreak in South Dakota in 2002 using the commercial 
ArcGIS by ESRI (ESRI, 2011) and Anselin’s free GeoDa (Anselin et al., 2006) for spatial 
autocorrelation analysis (Wimberley et al., 2011). Other research uses GIS analytical tools to 
integrate risk factors and create a WNV risk map for humans. This was implemented by 
Rochlin et al. in 2011 in the paper “Predictive Mapping of Human Risk for West Nile Virus 
(WNV) based on Environmental and Socioeconomic Factors” (Rochlin et al., 2011). In this 
context an analysis about GIS-supported WNV risk modeling on the Mississippi river has 
been conducted. This study reveals high human risk zones along the Mississippi river (Cooke 
et al., 2006). Another highly interesting research area is the investigation of an association 
between different land cover areas and WNV risk. Ruiz et al. have investigated the 
association of West Nile virus illness and urban landscapes in Chicago and Detroit (Ruiz et al., 
2007). The purpose of that writing is to improve the understanding of human exposure to 
WNV-infected mosquitoes in an urban context (Ruiz et al., 2007). Again, GIS was used to 
integrate various environmental factors. A similar research was conducted by Bowden, 
Magori, and Drake who investigated how human disease and land cover types are associated 
across the U.S. (Bowden et al., 2011). 
 
The main objective of this Bachelor Thesis research is to examine behavior of transmission 
patterns and their circumstances year by year and across the US, based on county-level data. 
In detail, transmission patterns will be investigated for the state of Louisiana. The research 
questions for this Bachelor Thesis are as follows: 
 

 Is it possible to conduct space-time analysis with data collected from the CDC 
Website as well as on from the Website of the Louisiana Health Department with 
freely available software programs? 

 Do the free statistic software packages provide satisfactory tools for exploratory data 
analysis, cluster detection, and visualization of results? 

 Is it possible to visualize multivariate WNV patterns across space and time? 

 How do WNV patterns change over time and vary across space in the U.S and 
Louisiana? 

 How do temporal trends differ in different places compared to places with WNV 
activity? 

 Does the trend observed during the observation period allow a short term prediction 
of future human WNV infections? 

 
The aim of this Bachelor Thesis is to conduct a space-time analysis with disease data and 
freely available software programs. The disease cases are aggregated to administrative units, 
such as states or counties. Important methods that will be introduced in this thesis are 
methods for the analysis of outliers, the global and local Moran’s I spatial autocorrelation, 
retrospective analysis over space and time for historic data, prospective analysis for the 
investigation of future trends and Kulldorff’s scan statistic. The analyses are conducted in 
order to detect space-time clusters and a clustering effect over space and time. The methods 
discussed in this Bachelor Thesis should be of interest to researchers of various fields who 
conduct space-time analysis with areal summarized data, where individual point data are 
expressed either as a count of events or a rate. 
 
This Bachelor Thesis is organized as follows: The first chapter gives a brief introduction into 
the research. The second chapter will give an introduction into the epidemiology and 
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ecology of the WNV. The focus in this chapter will be on geographic distribution patterns and 
how WNV emerged in the United States and eventually in Louisiana. In addition, there will 
be an introduction to the virology of WNV and the effect it has on humans. 
 
The third chapter starts with a description of the data used in this research. Additionally, the 
free software packages used for space-time analysis are introduced. Selected cluster analysis 
techniques, integrated in the software will be explained in the last section of the third 
chapter. 
 
The fourth chapter contains the results of the space-time analysis of WNV in the U.S. and in 
Louisiana. This chapter includes various thematic maps, graphs and charts to visualize 
analysis results. 
 
The last and fifth chapter contains the conclusion about the analysis results as well as 
prospective research fields. 
 

2 Epidemiology 

West Nile Virus (WNV) was first isolated from the blood of a febrile woman in the West Nile 
district of Uganda in 1937 (Petersen, 2009). It is considered to be the earliest arthropod-
borne virus discovered by humans (White & Morse, 2001). Prior to 1996 several epidemics 
had been documented in rural areas. Most infections were asymptomatic and only a few 
cases of severe neurological disease had been reported. WNV remained an occasional cause 
of febrile illness in Africa, the Middle East, parts of Europe and Russia, South Asia and 
Australia. For this reason WNV was not considered to be a significant human pathogen 
(White & Morse, 2001). Between 1996 and 1999, however, the virus unexpectedly triggered 
major epidemic activity in southern Romania, the Volga delta in southern Russia and the 
northeastern United States, involving hundreds of cases of severe neurological disease and 
fatal infections. This was also the first time when WNV-borne epidemics reached urban 
populations (White & Morse, 2001). The severe epidemics in the 1990s had some 
circumstances in common. The common house mosquito Culex pipiens was apparently 
involved as vector in all three cases. As a matter of fact all three urban areas in Romania, 
Russia and the United States had lower than normal rainfall during the summers of 
epidemics. This condition could have been responsible for an increase of potential breeding 
sites for Culex pipiens. All three areas were located adjacent to large rivers, which provide an 
adequate habitat for resident and migratory species of wild birds (White & Morse, 2001). 
Additionally, the epidemic in the northeastern United States was accompanied by epizootic 
in birds, especially corvids in this area (Scheld et al., 2007).The high virulence to American 
crows from the NY99 WNV strain was caused by a single nucleotide change in the viral DNA 
(Petersen, 2009). In Romania 400 neuroinvasive cases of WNV infection have been reported 
in the time range from July 15 until October 12, 1996 (White & Morse, 2001). The peak of 
the epidemic activity was in early September. The epidemic was geographically confined to 
fifteen districts in the Danube plain of southeastern Romania including the urban area of 
Bucharest. There are a few factors which contributed to the epidemic in Romania. One of 
them was the poverty and deteriorated suburban respectively urban infrastructure that 
resulted in abundant Culex pipiens pipiens larval habitat. There was little precipitation in 
spring and summer and it was a very hot summer which promoted the production of Cx. p. 
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pipiens. Furthermore, the human population in the fifteen districts was highly susceptible to 
WNV infection. Prior to the outbreak of the epidemic serum samples were tested for 
antibodies to WNV. The samples from Bucharest were all negative to antibody, making 
people highly vulnerable to a new emerging WNV epidemic. After the incident in Romania 
case studies were conducted. Risk factors for WNV infection were the presence of 
mosquitoes in the home, more mosquito bites per day, flooded basements of apartments, 
and spending a greater amount of time outdoors (White & Morse, 2001). 

2.1 Geographic distribution patterns 

Since its first discovery in 1937 in Uganda, the WNV has spread considerably all over the 
planet. The distribution of the virus depends on climate, appropriate mosquito breeding 
sites, and bird habitats. These influencing factors have resulted in certain distribution 
patterns. The epidemiology follows several patterns (Petersen, 2009). There is widespread 
enzootic transmission throughout tropical Africa, the Caribbean, Central America and 
northern South America without significant human or equine morbidity. In the 
Mediterranean Basin, Russia and South Africa there happen to be periodic human and 
equine outbreaks followed by low-level enzootic activity periods. In India incidents are 
reported sporadically. In Southeast and East Asia there is little WNV enzootic activity and no 
human cases. Australia faces from time to time small outbreaks and sporadically human 
disease cases. In North America repeated annual outbreaks are reported during the summer 
time. 

2.2 West Nile Virus in the United States 

The virus was first detected in North America during a human outbreak of meningitis and 
encephalitis in 1999 where five people in Queens were hospitalized due to severe illness 
(Petersen, 2009). Simultaneously epizootic activity in birds, especially in corvids was 
reported (Scheld et al., 2007). Tests revealed that the viral DNA was 99.8% identical to a 
WNV strain of an Israeli goose (White & Morse, 2001). For this reason the origin of the North 
American outbreak might lie in the Mediterranean basin. Until then it was not known that 
the virus can be fatal for birds. The high virulence to American crows from the NY99 WNV 
strain was caused by a single nucleotide change in the viral DNA (Petersen, 2009). This 
change is likely to be the reason why the virus became lethal to some birds. Prior to the 1999 
outbreak no WNV cases have been recorded in the Western Hemisphere. The origin of the 
outbreak is unknown. Possible origins could be an infected bird (migrated or imported), a 
viremic individual, or an infected mosquito (White & Morse, 2001). An additional favorable 
circumstance for the outbreak was the abnormally hot weather. 
 
In the following years the WNV spread extensively towards the west. In 2002 and 2003 
multistate outbreaks in the Midwestern states resulted in more than 2,800 reported 
neuroinvasive cases each year. From 2004 to 2007 reports revealed a lower number of WNV-
borne neuroinvasive diseases (Petersen, 2009) (see Figure 2.1). Human infection rates are 
increasing in the period between April and October. They reach a peak in August or early 
September. Risk factors for a WNV infection are farming, vegetation abundance in urban 
area and living in an inner suburb (Petersen, 2009). 
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Figure 2.1: Human WNV-infections in the U.S. 1999-2011 

2.3 West Nile Virus in Louisiana 

In 2001 the WNV appeared for the first time in Louisiana in the Parishes Vermillion, 
Jefferson, Plaquemine, Calcasieu, and Iberia. Six birds, one human, and ten horses tested 
positive for the virus (Gruszynski, 2006). In 2002 the virus spread more aggressively. There 
were 329 human cases in 31 parishes. The WNV activity was found nearly in all 64 parishes 
of the state. There have been 17 fatalities among the human cases. More than 80% of those 
cases belonged to the age group over 60 (DHH, 2002). Statistically, Louisiana had the second 
highest incidence of confirmed human WNV cases in the nation in 2002. It ranked first in the 
number of mortalities due to the WNV (Gruszynski, 2006). In 2003 human and equine WNV 
positive cases decreased slightly. According to the Louisiana Health Department there were 
122 human cases in 32 parishes (DHH, 2003). In the following years there were slight 
fluctuations of incident cases among human but the 2002 peak has not been surpassed till 
today (see Figure 2.2). 
 
In Louisiana the main vector of the WNV is Culex quinquefasciatus, the common southern 
house mosquito. A study in St. Tammany in 2002 revealed the potential of several species of 
birds found in Louisiana as amplifying hosts. Major hosts are northern cardinals, house 
sparrows, blue jays and northern mocking birds. Apart from humans and horses as incidental 
hosts also alligators tested positive for WNV in an investigation in 2003 (Gruszynski, 2006). 
 

 
Figure 2.2: Human WNV-infections in the Louisiana 2002-2011 

0

2000

4000

6000

8000

10000

12000
N

u
m

b
er

 o
f 

re
p

o
rt

ed
 c

as
es

Total number of cases

NID

Fever or Assymptomatic

0

50

100

150

200

250

300

350

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

N
u

m
b

er
 o

f 
re

p
o

rt
ed

 c
as

es

Total number of cases

NID

Fever

Asymptomatic



- 16 - 

3 Virology 

Arboviruses or arthropod-borne viruses are defined as viruses that require a hematophagous 
(blood-sucking) arthropod for transmission. These roles are usually played by mosquitoes or 
ticks which are part of a complex transmission cycle. Apart from the arthropod (mosquito) 
the cycle also involves a primary vertebrate reservoir host. Mostly birds or rodents are 
primary hosts. They develop enough viremia in their bodies that mosquitoes feeding on 
them will be infected with the virus. Humans or domestic animals are usually so called 
incidental or dead-end hosts. They do not produce enough viremia to contribute to the 
transmission cycle. 

3.1 Human Arthropod-borne virus infections 

Currently, there are 534 viruses registered. Of these, 134 types have caused illness in human 
(White & Morse, 2001). Three families form the group of the arboviruses: Bunyaviridae, 
Flaviviridae and Togaviridae. Viruses of these families are the most important human 
pathogens as far as public health is concerned. The WNV is a single-stranded RNA virus of 
the family of Flaviviridae, genus Flavivirus.  
 
Arboviruses are distributed all over the world. In the last few centuries a few new types of 
viruses have been discovered. More important is, however, that currently some silently 
behaving already known viruses experience resurgence and extensive geographic spread. 
The reasons for this revival might be societal changes and the modern transportation 
network. The distribution and development of arboviruses, however, depends on a few 
limiting factors or ecologic parameters. These are temperature, precipitation and vegetation 
patterns. These parameters directly influence the success of arthroprods and vertebrate 
hosts. The better the conditions are for those two species, e.g. higher temperatures and 
lower precipitation in summer, the better are the chances for the virus to thrive and move 
on to new areas. Especially in times of climate change as temperature and precipitation 
patterns change the virus emerges in new non-endemic areas. Additional factors that are 
responsible for the resurgence of arboviruses are a global population growth, movement of 
people within and among regions, and changes in agriculture. Also the pathogens itself have 
been changing, so that there is an increased movement of viruses in humans and animals. 
Genetic change will lead to an increased potential of epidemics (White & Morse, 2001). 

3.2 The virus 

Shortly after the original isolation of the WNV in Uganda, researchers found out that the 
WNV was antigenically related to two other arboviruses that were known to cause 
encephalitis, namely the St. Louis encephalitis (SLE) virus and the Japanese encephalitis (JE) 
virus (White & Morse, 2001). That means that the isolates of the viruses as well as their 
stems are serologically widely identical (Wordnik, 2012). Later, further studies expanded the 
relationship of the WN virus with many other flaviviruses like Murray Valey encephalitis, 
Kunjin, Usutu, Kokobera, Stratford, and Alfuy viruses. Thus, the WNV was assigned to the 
Japanese encephalitis virus serocomplex (Petersen & Marfin, 2002), which is a group of 
antigenically closely related, mosquito-borne flaviviruses that are responsible for severe 
encephalitic disease in humans (Lobigs et al., 2009). With new and improved DNA-
sequencing technologies the WN isolates could be divided genetically into two lineages: I 
and II. Major human outbreaks of the WNV have been associated only with lineage I WNVs. 
Lineage II WNVs are maintained in enzootic cycles primarily in Africa and are not associated 
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with human or animal outbreaks (Petersen, 2009). Improved technologies allowed 
researches to determine the relationship of WNV isolates made during the course of the 
three urban epidemics between 1996 and 1999. The testing showed that all three isolates 
belonged to lineage I of the WNV. All of the isolates had a high degree of homology (>99.8%) 
(White & Morse, 2001). 

3.3 Transmission cycles 

The WNV has two distinct transmission cycles (see Figure 3.1). There is a primary enczootic 
or amplification cycle involving one set of vectors and avian hosts and secondary cycles 
involving potentially different arthropods and transmission to other hosts such as humans 
and horses (White & Morse, 2001). In the primary cycle of the WNV, ornithophilic 
mosquitoes, such as genera from the Culex, feed on viremic birds (amplification hosts). They 
become infected and are capable of transmitting the WNV to other amplification hosts. Birds 
are also called reservoir hosts. They develop high enough titers of virus (viremia) to infect 
mosquitoes, if they feed on them. If environmental conditions such as temperature, 
mosquito species, mosquito population density, and a number of susceptible hosts are 
given, an epizootic will occur in the avian population. An epizootic in birds, however, will not 
necessarily result in human or equine disease. Primary vectors feed exclusively on avian 
hosts and especially on those species which develop high-level viremias. Due to this fact they 
are highly efficient amplification vectors but do not pose high risk of transmitting the WNV 
to humans. On the other side mosquitoes that are more general feeders are no efficient 
vectors but they could be a much greater threat to humans and equines. This species are 
known as bridge vectors. They could become infected when feeding on an infected bird and 
then transmit the WNV to a susceptible vertebrate host (White & Morse, 2001). Humans and 
domestic animals are incidental hosts; they do not produce high enough viremia-levels to 
contribute significantly to the transmission cycle. 

 
Figure 3.1: The WNV transmission circle 
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3.4 The vector 

Studies in the early 1950s revealed that several species of mosquitoes can be infected and 
successfully transmit the WNV. However, over the years isolates have primarily been made 
from pools of mosquitoes belonging to the Culex family (White & Morse, 2001). Subgenera 
of the Culex depending on the area were identified to be the most important vector in the 
WNV primary transmission cycle. Several species from the family of the Aedes or 
Ochlerotatus have been implicated as bridge vectors (White & Morse, 2001). The WNV has 
also been isolated occasionally from ticks. Their role is still undefined but they could be 
important for overwintering the WN virus in temperate areas. In 1999 researchers observed 
that infected females of the family of Culex pipiens pipiens were able to overwinter, 
transporting the virus to the next season (White & Morse, 2001). 
 
The Culex mosquito, or the common house mosquito is one of the major types of 
mosquitoes inhabiting the planet (Tiny Mosquito, 2012). It typically obtains its blood meal 
from birds instead of humans. Due to this fact the Culex is not considered to be that harmful 
to humans than other mosquito families like Anopheles and Aenes are. The Culex likes to lay 
her eggs on the surface of standing fresh or stagnant water. It prefers outdoor objects on 
people’s property such as barrels, cans and garden pots to plant, and wildlife surroundings 
(Mosquito-Netting, 2012). The female Culex deposits between 100 and 300 eggs onto the 
water surface. Two days later the larvae will hatch. Once the larvae have hatched they will 
stay seven to fourteen days beneath the water surface. With the help of a siphon the larvae 
can grasp oxygen from the surface. In this time span the larvae goes through four developing 
stages. Thereafter, the mosquito larvae become a pupa. This stage will last one to four days. 
Afterwards, the adult mosquito breaks through the pupa, rests until its body has dried and 
hardened completely and then flies away to find a partner for pairing. Female Culex 
mosquitoes attack vertebrate hosts, preferable birds to blood-feed after dawn (Mosquito-
Netting, 2012). If they feed on a WNV infected bird with high enough virus titers, they also 
become infected and are able to transmit the WNV to other vertebrate animals. Infected 
mosquitoes which were born in late autumn can overwinter and conserve the virus till the 
next season. In southern states of the U.S. mosquitoes are active all year round. 
 
According to Petersen in the United States more than 60 mosquito species have been 
infected with the WNV (Petersen, 2009). The genus of mosquito known as the Culex acts as 
vector in the transmission cycle. Depending on the geographic area a certain subgenus of 
Culex is responsible for the transmission: Cx. pipiens and Cx. restuans in the northern U.S. 
and Canada, Cx. quinquefasciatus in the southern U.S. and Cx. tarsalis in the western U.S 
(Petersen, 2009). 
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Figure 3.2: Primary WNV vectors in North America 

3.5 The host 

Humans were the first known vertebrate hosts of the WNV. This was proven by virus 
isolations from the blood as well as the presence of the WNV neutralizing antibodies in the 
blood (White & Morse, 2001). Once infected, humans as well as domestic animals do not 
develop high enough titers of virus in their blood to efficiently infect other mosquito vectors. 
This is why humans and most of the domestic animals are so called incidental or dead-end 
hosts. They do not play a crucial role in the transmission cycle and are only involved 
accidentally. By contrast, studies show that in the blood of advanced cancer patients, titers 
of the WNV are high enough as to potentially infect mosquitoes on blood-feeding (White & 
Morse, 2001). Unlike incidental hosts, amplifying hosts play an important role in the 
transmission cycle. Amplifying hosts or reservoir hosts develop high titers of the virus and 
are capable of infecting mosquitoes. A study conducted in Egypt in 1952 showed that wild 
birds are important amplifying hosts in the transmission (White & Morse, 2001). The study 
revealed that wild birds develop enough viremia in their blood. Additionally, the birds had 
high rates of antibodies to the WNV in their blood. Another aspect is that high WNV activity 
among humans goes along with high WNV activity in birds. When talking about the epidemic 
in New York in 1999, there was a simultaneous epizootic in birds, which makes the 
transmission cycle complete. In the course of antibody surveys the WNV has been isolated or 
identified serologically in many native and imported vertebrate species in North America. 
These include: bats, wolves, eastern foxes, gray squirrels, chipmunks, sheep, alligators, 
alpacas, black bears, macaques, reindeers, dogs, monkeys and baboons, raccoons, skunks, 
and opossums (Petersen, 2009). Their roles in the transmission of WNV are, however, 
undefined or they fall into the group of incidental hosts. 

3.6 Alternative ways of transmission 

The majority of human WNV infections results from mosquito bites. However, there are 
several alternative routes of how the WNV can be transmitted from human to human. One 
direct way is via blood transfusion. This was proven in the U.S. outbreak in 2002 when 23 
blood recipients became infected after receipt of platelets, red blood cells or fresh frozen 
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plasma from viremic blood donors (Petersen, 2009). Other ways of transmission are organ 
transplantation, transplacental transmission, breast milk transmission, and dialysis-related 
transmission (Scheld et al., 2007). 

3.7 West Nile Virus and humans 

Once infected, typical incubation period ranges from 2 to 14 days. Longer incubation periods 
have been observed among the immune-suppressed (Petersen, 2009). Approximately 20 – 
30% of persons develop illness after infection with lineage I strains (Petersen, 2009). The 
remaining 70 – 80% does not experience any symptoms and stays asymptomatic. Due to this 
fact most human infections are not clinically apparent. Many infections remain undetected, 
since most affected persons do not see a physician. Clinical disease ranges from mild febrile 
illness to severe encephalitis. Based on their clinical presentation, arboviral disease cases are 
often categorized into two primary groups: Neuroinvasive disease and non-neuroinvasive 
disease (CDC, 2011b), which is also known as West Nile fever. Advanced age is by far the 
most significant risk factor for severe neurologic disease. In the 1999 New York epidemic the 
incidence of severe neurologic disease was ten times higher in persons 50 to 59 years of age 
compared to persons younger than 19 (Petersen & Marfin, 2002). A further independent risk 
factor for neuroinvasive disease is diabetis mellitus, which was found out during the 1999 
New York City outbreak (Scheld et al., 2007). 
 
The diagnosis of the WNV in a person rests on a high index of clinical suspicion and on 
results of specific laboratory tests. The WNV as well as other arboviral diseases should be 
seriously considered in elderly adults who experience a sudden onset of unexplained 
encephalitis or meningitis in summer or fall (Petersen & Marfin, 2002). However, in southern 
states of the U.S. transmission can occur year-round. In addition, the local prevalence of the 
WNV enzootic activity should also raise suspicion. The most efficient diagnostic method is 
the detection of Immunoglobulin M (IgM) antibody to WNV in serum or cerebrospinal fluid. 
Since IgM antibody does not cross the blood-brain barrier, IgM antibody in cerebrospinal 
fluid strongly suggests central nervous system infection (Petersen & Marfin, 2002). 

3.7.1 Non-neuroinvasive disease 

The usual clinical presentation is called the West Nile fever, which was coined by Goldblum 
in 1952 (Scheld et al., 2007). The clinical symptoms of the disease are: an acute onset of 
fever, severe frontal headache, malaise, back pain, myalgias, general weakness, drowsiness, 
anorexia and fatigue (CDC, 2011b; Scheld et al., 2007). Eye pain, pharyngitis, nausea, 
vomiting, diarrhea, abdominal pain and rash can also occur (Petersen, 2009). The rash 
associated with the WN fever is characterized by a flat, red area on the skin that is covered 
with small confluent bumps and it predominates over the torso and extremities, sparing 
palms, and soles (Scheld et al., 2007). Clinical diagnosis for a non-neuroinvasive infection 
defined by the Center of Disease Control and prevention (CDC) is fever (>100.3°F or 38°C) 
reported by the patient or a health-care provider, absence of neuroinvasive disease and 
absence of more likely clinical explanation (CDC, 2011b). The acute illness lasts three to six 
days. However, convalescence is slow and can range from one to two weeks, which is 
accompanied by general fatigue (Scheld et al., 2007). 

3.7.2 Neuroinvasive disease 

Neuroinvasive disease occurs approximately in 1 of 140 infected persons. Clinical 
manifestation includes encephalitis, aseptic meningitis, or flaccid paralysis (Petersen, 2009). 
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These illnesses are usually characterized by the acute onset of fever with stiff neck, altered 
mental status, seizures, limb weakness, cerebrospinal fluid (CDF) pleocytosis that is an 
increase of white blood cells in the CDF, or abnormal neuroimaging (CDC, 2011b). 
Additionally, the course of the disease can be accompanied by tremor, myoclonus 
(involuntary twitching of muscels) and Parkinsonian features such as rigidity, postural 
instability, and bradykinesia. The clinical diagnosis for a neuroinvasive infection defined by 
the CDC is fever (>100.3°F or 38°C) reported by the patient or a health-care provider and 
meningitis, encephalitis, acute flaccid paralysis, or other acute signs of central or peripheral 
neurologic dysfunction, as documented by a physician, and the absence of a more likely 
clinical explanation. 
 
The WNV-borne meningitis is clinically similar to any other viral meningitis. Affected persons 
experience the abrupt onset of fever, headache, nuchal rigidity, photophobia, or 
phonophobia. In general, WNV meningitis is associated with a favorable outcome. In the 
2002 U.S. epidemic 2% of all registered WNV meningitis cases were fatal (Scheld et al., 
2007). WNV encephalitis can range from a mild, self-limited confusional state to severe 
encephalopathy, coma, and death. Clinical symptoms are generally associated with 
movement disorders. This is due to a specific neurotropism of WNV for regions of the brain 
involved with control of movement (Scheld et al., 2007). Tropism is generally the ability of a 
virus to infect a certain type of cell or tissue (Modrow et al., 2003). It appears that the WNV 
has a predilection for neurons in the central nervous system (Scheld et al., 2007). Movement 
disorders manifest in coarse tremor, myoclonus and Parkinsonism. Primary tremor and 
Parkinsonism may persist in patients recovering from severe encephalitis. Long-term effects 
of the WNV encephalitis can include persistent neurologic dysfunction and movement 
disorders, brain damage and permanent muscle weakness (Modrow et al., 2003; The New 
York Times, 2010). The WNV can also cause paralysis. This might happen if viremia damages 
the lower motor neurons of the spinal cord, resulting in acute flaccid paralysis (Modrow et 
al., 2003). Fatality rates among patients with severe neuroinvasive disease range from 10 to 
20% (Modrow et al., 2003). 

4 Methodology 

The following section provides information about the data and software used in the analysis. 
Furthermore, important clustering techniques are introduced. 

4.1 Data 

For the analysis it is necessary to have data that include information about time, disease 
incidences, and geographic locations. Both data sets for the U.S. and Louisiana are available 
annually on a sub-division-level. For the U.S. the subdivisions are states and for Louisiana the 
subdivisions are parishes, which are equivalent to counties. This information needs to be 
aggregated based on geographic location. For this purpose, polygon shapefiles from the U.S. 
Census Bureau can be used. The final input data must be compliant with the software 
programs in use. In certain analysis the software GeoDa does not support so-called island 
and doughnut polygons. Island polygons do not have any neighbors whereas doughnut 
polygons are completely surrounded by one or many other polygons. This had to be taken 
into consideration before starting to actually run the software with the input data. 
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Additionally, the data has to be somewhat modified for input into each new software 
package. Details about the data adaption will be given in the analysis section. 

4.1.1 WNV in the United States 

Data about WNV incidents in the U.S. are documented by the CDC. Since the first 
appearance of WNV in the U.S. the CDC has initiated an electronic surveillance program to 
document WNV activity. The program is called ArboNET 
(https://idepi.oph.dhh.la.gov/ArboNet). It is a dynamic system collecting both human and 
non-human data with the purpose to monitor incidence as well as geographic and temporal 
spread of WNV and other arboviruses. It provides information for public health officials, 
government officials, and the public. The content can be divided into two major categories: 
Ecologic data and human data. Ecologic data are for example veterinary cases (horses), dead 
birds, mosquitoes and sentinel like for example chicken. Human cases can be distinguished 
between neuroinvasive cases, non-neuroinvasive cases or presumptive viremic donors 
(PVDs) (CDC, 2009a). PVDs are people with no symptoms when donating blood. However, 
their blood tests positive in preliminary tests, when screening blood for the presence of 
WNV (CDC, 2011a). Blood screening has become more and more important after the 
outbreak in the U.S. in 1999 in order to reduce alternative ways of WNV transmission. Data 
from ArboNET is provided for free on a state-level. 

4.1.2 WNV in Louisiana 

In Louisiana surveillance of arboviral activity is conducted by the center for community and 
preventive health, which is a department of health and hospitals of the state of Louisiana 
(http://new.dhh.louisiana.gov/index.cfm/page/539). The surveillance program for WNV was 
initiated in spring 2000, a year after the first emergence of WNV in the Western hemisphere. 
Currently the program involves testing of dead and live birds, sick horses, mosquito pools, 
and sentinel chicken flocks (DHH, 2012). An annual report about WNV activity was first 
available in 2002. The reports include observed WNV activity on parish-level or divided into 
age groups as far as human cases are concerned. Additionally, the report provides temporal 
and geographical statistics about bird cases, equine cases and mosquito pools infected with 
WNV. The human cases were initially divided into meningo-encephalitis (ME), fever, 
unknown, and fatalities. However, the terminology has changed in 2004. Now, the 
categories are neuroinvasive disease (NID), fever, asymptomatic cases, and fatalities (DHH, 
2012). 

4.1.3 Census Data 

In this project census data on a state level are required in order to create WNV infection 
rates. These rates are visualized in form of choropleth maps. Furthermore, more detailed 
population data about Louisiana is needed to display WNV incidence on a parish level. 
 
Current data about the population of each U.S. state are provided by the census bureau. The 
U.S. census bureau conducts a population census every ten years. The last one took place in 
2010. The data derived from the census are used to determine the number of seats each 
state has in the U.S. House of Representatives. They are also used to distribute funds to local 
communities (U.S. Census, 2010). The time frame regarded in this research ranges from the 
first appearance of WNV in the United States in 1999 to 2011. This period includes two 
population censuses which can directly be used for the calculation of raw rates. In order to 
take annual population changes into account estimated population data have been used. 



- 23 - 

These estimated data are provided in a summarized form by infoplease.com and are 
available for the years 2004, 2006, 2007 and 2008 (Infoplease, 2012). For the remaining 
years, with no timely population estimates available, data from existing estimations were 
used. For example, WNV data for the years 1999-2002 are based on 2000 population census 
data. WNV data for 2003-2005, the 2004 population estimates were used. The WNV data 
analysis from 2009-2011 are based on the 2010 population census data.  
 
Population data on parish level for the state of Louisiana are also provided by the U.S. 
census bureau. Parishes are political subdivisions of Louisiana and analogous to counties in 
other states (Louisiana.gov, 2012a).The 2010 census was compared with data from the 2000 
census. There was a population decrease in 25 of the 64 parishes. In seven parishes there 
was an increase of more than 15% (Louisiana.gov, 2012b). WNV had its first onset in 
Louisiana in 2001. Thus, population data are required for analysis for the period from 2001 
to 2011. Apart from the census data of 2000 and 2011 the U.S. census bureau provides 
annual population estimates for the state of Louisiana. The Census Bureau’s Population 
Estimates Program (PEP) is responsible for population estimates. It utilizes current data on 
births, deaths, and migration to calculate population change since the most recent decennial 
census and produces a time series of estimates of population, demographic components of 
change, and housing units. The estimates are produced on a national, state and county level 
(U.S. Census Bureau, 2012). 
 
Base maps of the U.S. as well as for the state of Louisiana are also available at the U.S. 
Census Bureau. The shapefiles can be downloaded from the TIGER (Topologically integrated 
geographic encoding reference) database. The files provide the digital map base for a GIS or 
mapping software. All legal boundaries and names are as of January 1, 2011 (U.S. Census 
Bureau, 2011a). The download of TIGER files is a two-step process. First, a layer type has to 
be determined. This can be an administrative division like, for example, counties and states 
or a feature type such as roads, water, and railways. Then the search engine will display the 
geographic areas for which the chosen layer type is available. The layers underlie specific 
name conventions. The first part of the name is reserved for tl_2011, which is the 
abbreviation for tiger line and the year it was created. The next letters indicate the 
geographic extent. If the geographic extent is the entire nation, then the abbreviation is 
“us”. If it is state or county-based the unique Federal Information Processing Standard (FIPS) 
code is used. Further parameters are layer type and file extension. The content of the 
attribute table are administrative subdivisions, abbreviation of administrative subdivisions, 
FIPS code, amount of land area, and water area. Each shape file has a .prj-file which contains 
projection information. All Census Bureau generated shapefiles are in Global Coordinate 
System North American Datum of 1983 (GCS NAD83) (U.S. Census Bureau, 2011b). A big 
advantage of TIGER shapefiles is that they have already been generalized by the census 
bureau. This is important for analysis purposes. For example, this is necessary when spatial 
autocorrelation contiguity weights files have to be created. Therefore, the data should not 
include so called “island polygons” which would bias results and result interpretation. Thus, 
the type of analysis proposed in this thesis could neither be conducted for Alaska or Hawaii. 
These two states were thus excluded from the study area. 

4.2 Software 

The software environment of this thesis is freely available and includes powerful tools for 
temporal, spatial, and exploratory data analysis. However, the packages do not provide any 
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or satisfactory visualization tools so that it was necessary to use an external GIS software 
with mapping and visualization options. Therefore, the commercial ArcGIS, Version 10.0 
from ESRI was applied for visualization purposes. 
 
The free software packages have to fulfill several criteria in order to be adequate for the 
analysis conducted within this thesis. The most important criterion is that the software is 
freely available and downloadable from the internet. At the same time, it has to work in a 
Microsoft Windows operating system and it has to be under active development. The 
program should also be alone-standing so that no programming skills are necessary to run it 
(Anselin, 2003a). Eventually, the program should come with a user’s guide and a technical 
documentation. Ideally, there are some tutorials and sample data which are specially edited 
for the program in order to get started with the software environment. 
 
The main purpose of the spatial and temporal analysis is the detection of clusters and 
clustering over space and time. According to Anselin a software environment should include 
several essential requirements to carry out an exploratory analysis of disease clusters 
(Anselin, 2003a). Cluster analysis software should have an efficient interface to a GIS, in the 
sense of providing means to extract the relevant data and to feed back results for map 
display. There must be effective data input, meaning that the program is able to read in x 
and y coordinates of locations for cases. In case of areal aggregated data the software has to 
be capable of processing digital boundaries of polygons containing information about 
events, rates, or risk estimates. Additionally, the statistical software program should be able 
to construct spatial weights either on a distance or contiguity base. It should provide means 
for spatial autocorrelation analysis like the global and local Moran’s I spatial autocorrelation 
(LISA). Furthermore, since distance and quadrat tests are common methods for cluster 
detections the program should provide these tools, too. For visualization purposes and a 
better understanding of the results there should be options to create maps and graphs. 
Eventually, the program should process a flexible program output. Thus, the results can be 
integrated with other software, such as a GIS (Anselin, 2003a). Four programs have been 
chosen for the analysis and evaluation. Among other things, the purpose of this thesis is to 
find out, whether they are suitable for disease data analysis (see Table 4.1). 
 

Name Version 
Date 

(yyyy-mm-dd) 
Author and Institution 

Open GeoDa 1.0.1 2011-10-20 Luc Anselin 
Center for Spatially Integrated Social Science at the 
University of Illinois, Urbana-Champaign 
http://geodacenter.asu.edu/ 

GeoSurveillance 1.1 2007-06-06 Gyoungju Lee, Ikuho Yamada, and Peter A. Rogerson 
NCGIA (National Center for Geographic Information and 
Analysis), Department of Geography, State University of New 
York at Buffalo 
http://www.acsu.buffalo.edu/~rogerson/geosurv.htm 

VIS-Stamp 1.0 2009-06-17 Diansheng Guo 
Department of Geography, University of South Carolina 
http://www.spatialdatamining.org/software/visstamp 

SaTScan 9.1.1 2011-03-09 Martin Kuldorff 
Harvard Medical School, Boston, and Information 
Management Services Inc, Silver Spring, Maryland 
http://www.satscan.org/ 

Table 4.1: Free software packages for spatial and temporal data analysis 
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4.2.1 Open GeoDA 

Open GeoDA is a free software package developed at the University of Illinois and Arizona 
State University. It is a collection of software tools designed to implement techniques for 
exploratory spatial data analysis (ESDA) (Anselin, 2003b). The main purpose of GeoDA was to 
create a software package where several windows with different views of the same data can 
be linked dynamically. When data are highlighted in one of the active views the same 
observations should also be highlighted in all the other views (Eck et al., 2005). An extension 
to linking several views in order to get a dynamic framework is brushing. Thereby a rectangle 
is created with the pointer which can be moved in the graphs. The selected observations 
change depending on where the rectangle is moved and this affects all current windows 
(Anselin, 2003c). The functionalities of GeoDA can be divided into six categories. These are: 
Spatial data manipulation, data transformation with the possibility of creating new variables, 
ESDA, mapping data, spatial autocorrelation, and spatial regression (Anselin et al., 2004). In 
this project GeoDA is used for ESDA, mapping data, and spatial autocorrelation analysis. In 
the category mapping GeoDA provides tools to create choropleth maps, cartograms, and 
map animations. Map animations are short map movies, demonstrating changes in a 
pattern. GeoDa provides several options to display the spatial distribution of rates. Creating 
choropleth maps always goes along with a number of challenges. The underlying risk is the 
inherent variance instability or unequal precision of rates. Therefore, GeoDa contains five 
mapping routines to deal with the visualization of rates in maps. These are: Raw rate, excess 
risk, empirical bayes, spatial rate, and spatial empirical bayes (Anselin, 2003b). 
 
Spatial autocorrelation in GeoDa is defined by means of the Moran’s I spatial autocorrelation 
statistic and the visualization in form of a Moran Scatter Plot, which is a special type of a 
scatter plot (Anselin, 2003b). There are two different types of spatial autocorrelation. The 
first one is global spatial autocorrelation, which implements tests for clustering (Anselin, 
2003c). Therefore a Moran Scatter Plot is created containing the value of the Moran’s I 
which reveals positive, negative, or no spatial autocorrelation among the data. The second 
one is local spatial autocorrelation. The local spatial autocorrelation analysis helps to identify 
clusters in data sets and determines the level of significance of clusters. This statistic is 
essential for creating LISA (Local Moran’s I spatial autocorrelation) maps. The cluster 
detection analysis with spatial autocorrelation in GeoDa is based on a weights file. This file 
can either be a distance weights file where the distances between points, such as X and Y 
coordinates are taken into consideration or a contiguity weights file. The latter contains 
neighbor information of the polygons in the area of investigation. The choice is between 
Rook-based or Queen-based contiguity. Data which were processed with different contiguity 
weights can differ because Rook contiguity uses only common boundaries to define 
neighbors, while Queen Contiguity includes all common points, like boundaries and vertices 
(Anselin, 2003b). This is the reason why spatial weights created with the Queen option 
results in more neighbors than those with the Rook option. 
 
GeoDa can read ESRI Shapefiles and dbf-files as data input. Using the field calculator, new 
fields can be added and values can be calculated. With the option “save table” these fields 
can be saved to the original table but this is not the default. GeoDa offers to export of maps 
to bitmap files (bmp) or to portable network graphics (png). Additionally, created rates for 
choropleth maps can be saved to the attribute table. This makes sense, when working with 
the data in ArcGIS. The results of LISA maps can also be added to the attribute table. For the 



- 26 - 

spatial correlation type an indicator value is stored, which takes on the value of 1 for high-
high, 2 for low-low, 3 for low-high and 4 for high-low (Anselin, 2003b). 

4.2.2 GeoSurveillance 

GeoSurveillance is a small, stand-alone freeware program which combines spatial statistical 
routines with some basic Geographic Information System (GIS) functions (Rogerson et al., 
2007). It was developed by Peter A. Rogerson, Gyoungju Lee, and Ikuho Yamada at the 
University of New York at Buffalo. The GIS functions are limited to map-display related 
operations, such as loading maps, coloring based on legend schemes, zooming in, zooming 
out, and panning (Rogerson et al., 2007). The software can carry out both retrospective and 
prospective tests for the detection and monitoring of spatial clustering. Retrospective tests 
are applied to spatial data collected for a particular point in time. They contain a testing of 
the null hypotheses of no spatial clustering. The null spatial model describes the spatial 
distribution of cases expected in the absence of clustering (Waller & Jacquez, 1995). A small 
p-value, depending on the assumed significance level, would reject the null hypothesis of the 
absence of spatial clustering and assume that the alternative hypothesis is true. The 
alternative hypothesis is defined as “not the null hypothesis”. That means that the 
alternative hypothesis is favored if the data is inconsistent with the null hypothesis (Waller & 
Jacquez, 1995). Still, there is a chance that the wrong hypothesis either the null hypothesis 
or the alternative hypothesis is assumed to be true. A type one error happens if the null 
hypothesis is rejected although it is true. In the course of a type two error the null 
hypothesis is assumed to be true although it is wrong. The significance level α determines 
the chances of the occurrence of a type one, the power of a test, β, the chance of 
committing a type two error. 
 
GeoSurveillance contains a set of integrated statistical tests. For retrospective tests 
GeoSurveillance uses the local score statistic to determine whether incidence is raised 
around a predefined spatial location (Rogerson et al., 2007) as well as the spatial M statistic, 
which examines the maximum local score statistic (Rogerson et al., 2009). Additionally, a 
global score statistic gives a summary of the local statistics. 
 
Prospective tests analyze time-series data to detect emergent clusters as quickly as possible 
and incorporate the dynamic nature of data (Rogerson et al., 2009). For prospective analysis 
GeoSurveillance applies the univariate cumulate sum (cusum) method for a normal variable 
to individual subregions in a study area (Rogerson et al., 2009). The cusum tool assumes 
normality, thus the investigated variable has to be transformed into a normal variate 
beforehand (Rogerson et al., 2009). Its main purpose is to detect deviations in a variable of 
interest, from one mean to the other. Z-scores in various forms are used as input variables in 
the prospective procedure (Rogerson et al., 2007). Additionally, GeoSurveillance presents a 
chart which highlights the highest univariate cusum value among locations. 
 
GeoSurveillance can be divided into three major components: A cluster detection and 
monitoring component, a GIS component, and a support tool component (Rogerson et al., 
2009). The first component can further be divided into a tool for retrospective analysis and 
one for prospective analysis. Before implementing a retrospective analysis it is necessary to 
choose the statistical type, which can be adjusted or unadjusted. For retrospective testing 
the score statistic, adjusted or unadjusted, and the spatial M statistic are available. The local 
M statistic is the spatially weighted z-score in a locality i. GeoSurveillance uses three 
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different ways of transforming the z-value zi into z-values for each sub-region zj, based on 
observed and expected values in the sub-regions j. The formula which describes each 
statistic is depicted in the field “Expression of Variables”. A user has the choice to run the 
analysis using a single bandwidth only or determining a range of bandwidths. The 
significance level α is set to 0.05 which is the default in social sciences. Alternatively, this 
level can be changed to 0.01. GeoSurveillance is designed primarily for data that are 
available for a set of sub-regions. For each subregion, observed and expected numbers of 
cases are assumed to be available (Rogerson et al., 2007). The result of the retrospective 
analysis is displayed in the map window. There is a window for both the local pattern 
summary and the global pattern summary. Additionally, a legend for the map can be 
created. The legend is based on predefined threshold values. For example, when using the 
local score statistic the category endpoints are defined as zero, a third and two thirds of the 
maximum and minimum values. When choosing the spatial M statistic threshold values are 
defined upon the critical value of the spatial M statistic (Rogerson et al., 2007). 
 
Prospective tests in GeoSurveillance require a set of columns (fields) that represent z-scores 
over time, where each column (field) corresponds to the temporal unit for monitoring 
(Rogerson et al., 2007). This can be for example on an annual or monthly level. The 
prospective test is based on the cusum method which incorporates three parameters: t, k, 
and h. T is for time and k and h are threshold values. The value of h is determined in 
conjunction with a desired false alarm rate, which is similar to a type I error rate (i.e., 
significance level) in ordinary retrospective analysis (Rogerson et al., 2009). In addition, a 
bandwidth σ can be specified by the user. If the bandwidth is set to zero, it is assumed, that 
the observed z-values in all regions are independent. The results reveal the maximum cusum 
value for each year. The program also constructs a chart for the maximum cusum. It will also 
summarize the signaled region and cusum value for the last year of observation. The map 
and the corresponding legend have a predefined color scheme. The legend is constructed 
based on the threshold (h-value). The cutoff values are: 25%, 50%, 75% and 100%. If the 
cusum value of a subregion exceeds the h-value itself, the subregion is colored red 
(Rogerson et al., 2007). These regions are listed in the “Signaled region and cusum value for 
the year” table. 
 
The software package is able to process ESRI shapefiles as polygon data and simple text files 
as point data. GeoSurveillance has two restrictions: One is that the file name must not 
exceed nine characters and the data must be stored on a hard drive (Rogerson et al., 2007). 

4.2.3 SaTScan 

SaTScan is a free software to analyze spatial, temporal and space-time data using the spatial, 
temporal or space-time scan statistic. It was developed by Martin Kulldorff at Harvard 
Medical School in Boston, in cooperation with the Information Management Services Inc. 
The software implies a scan statistic which is used to detect and evaluate clusters of cases in 
either a purely temporal, purely spatial, or space-time setting. Therefore, a window 
gradually scans the area of investigation across time and/or space. At each location the 
scanner notes the numbers of observed and expected observations inside the window. If the 
analysis is purely temporal the scanning window is an interval in time, if it is spatial only the 
window assumes the shape of a circle or an ellipse. If the analysis is both spatial and 
temporal the scanning tool is a cylinder with a circular or elliptic base (Kulldorff, 2010). 
According to Kulldorff an important characteristic of the spatial scan test is that it can both 
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detect the location of clusters and do inference (Kulldorff, 1997); thus, locate the geographic 
area of the most likely cluster as well as secondary clusters on a map. 
 
Depending on the data it can be chosen between various probability models. The Bernoulli 
Model includes a boolean case variable, which represents either cases (1) or non-cases (0). It 
is also referred to as cases and controls. As input data the Bernoulli Model requires 
information about the location of cases and controls. Under the discrete Poisson model the 
number of cases in each location is Poisson-distributed (Kulldorff, 2010). The discrete 
Poisson model is especially suitable for event or count data (Kulldorff, 1997). It requires case 
and population counts for a set of data locations such as counties, parishes, census tracts or 
zip code areas. Additionally, it is necessary to provide geographical coordinates for each of 
the locations, e.g. centroids of polygons or county seats. The Space-Time Permutation Model 
requires only case data and the spatial location as well as time for each case. Background 
population or controls are not considered in this model. The model compares the number of 
observed cases in a cluster to what would have been expected if the spatial and temporal 
locations of all cases were independent of each other. Thus, in this model it is referred to a 
cluster when a specific geographical area has a higher proportion of cases in a specific time 
period compared to the remaining geographical areas (Kulldorff, 2010). The software also 
contains an exponential model for survival time data, a normal model for continuous data 
and a model for spatial variation in temporal trends. 
 
The program takes any text files and some table sheets, such as .dbf or .xls, as data input. 
These files can be imported, whereby the input parameters have to be specified. Thus, the 
user has to determine the column which contains the parameter. Input parameters are ID, x 
and y coordinates, time, population, cases, and controls. Then, the program converts the 
given input to a program-specific input. There are case files (*.cas) containing information 
about cases, coordinate files (*.geo) with the geographic locations for the cases, population 
files (*.pop) with the background population in a certain geographic location, and control 
files (*.ctl) containing non-cases. It depends on the respective model which files are 
eventually required as input information. For temporal and space-time analyses the number 
of cases must be stratified by time. Attributes of cases, such as age or gender, may also be 
provided (Kulldorff, 2010). 
 
The results of analysis include a standard text based results file in American Standard Code 
for Information Interchange (ASCII) format. In addition, the program generates, if desired, up 
to five different output files in column format. They can be generated in either ASCII or 
dBase format. The Standard Results File reports a summary of the data and the most likely 
cluster as well as secondary clusters. The optional Cluster Information File (*.col) displays 
each cluster in a separate row. Additional information about the cluster is given in the 
columns. The Location Information File (*.gis) represents the cluster data in a way that is 
easy to incorporate into a GIS. The Risk Estimates for Each Location File (*.rr) gives 
information about the relative risk for each location (Kulldorff, 2010). 
 
The program does not provide any mapping or visualization options. For effective working 
with SaTScan an additional GIS environment is inevitable. However, since SaTScan implies 
Kulldorff’s scan statistic it is an essential component in each cluster detection analysis. 
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4.2.4 VIS-Stamp 

VIS-Stamp (Visualization of Spatial, Temporal, and Multivariate Patterns) allows users to 
discover interesting and unknown complex patterns among a set of multivariate data. 
Additionally, one can investigate results of various perspectives. VIS-Stamp represents the 
results in a way that supports human interpretation, analytical reasoning, and decision 
making (Guo, 2009). The program was developed by Diansheng Guo at the Department of 
Geography at the University of South Carolina in 2009. Version 1.0 was issued in 2009. Since 
then, no new version has been published but the program remains under steady 
development. 
 
The program surface of VIS-Stamp can be divided into five main windows. There is the 
control window (i), where the variables which shall be included in the analysis can be 
specified. The variables are normalized to z-scores. Additionally, a user might give each 
variable a weight which will be multiplied with the z-score. A Self-Organizing-Map (SOM) (ii) 
is responsible for the processing of the data. It derives clusters of spatial objects based on 
their multivariate similarity. Therefore, the SOM uses the Euclidean distance to assess 
multivariate similarity between spatial objects (Guo, 2009). The SOM assigns similar clusters 
with similar colors from a 2D color scheme. This color scheme can be dynamically rotated or 
flipped by a user (Guo, 2009). The clusters can be visualized in maps (iii) or in a re-orderable 
space-time matrix (iv). A parallel coordinate plot (PCP) (v) is used as the legend to show the 
multivariate vector that each color represents. The PCP displays the variables like for 
example disease types on the x-axis. The y-axis represents the numeric values. Each cluster is 
a string in the PCP, with the same color as it has in the SOM. In order to compare 
characteristics of various variables across space and time data should be transformed into a 
percentage value. 
 
The SOM is an artificial neural network. The cells of the network become tuned to various 
input patterns through an unsupervised learning process. The learning process in this 
network is competitive, unsupervised or self-organizing (Kohonen, 1990). The SOM has been 
used for tasks like pattern recognition, robotics, process control and processing of semantic 
information (Kohonen, 1990). 
 
The data used for analysis should be event cases inside a certain geographic boundary 
(polygon). If point patterns are available they can be aggregated to an areal unit. However, 
Guo and Wu  consider this methodology as a limitation of data, since it reduces the data 
resolution by using a predefined set of boundaries. Alternatively, they suggest creating a 
kernel density surface for each variable type as well as for each time period. Each raster pixel 
could then be a spatial unit in the analysis. The authors also state that this approach has its 
own limitations as far as the uncertainty in the interpolated data is concerned . 
 
Each data input consists of three files. First, there is the shapefile containing information 
about the geographic boundaries, e.g. states, counties, or zip-codes. Then there is the 
attribute file in .csv-format, which must have the same name as the shapefile. Finally, the 
spatial, temporal, and multivariate data is provided in a separate .csv-file. This file has 
certain conventions concerning the order of fields (columns). Guo and Wu (2012) explain the 
data aggregation and preprocessing by means of a data cube (see Figure 4.1). The three 
dimensions in the data cube include: The spatial dimension, the temporal dimension like 
years, months or days, and the multivariate dimension (e.g., crime types). Each cell in the 
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data cube is defined with a unique combination of a spatial unit, a certain time period, and a 
variable type (e.g., crime type). The value of a cell is, thus, the total number of, for example, 
crime types in that cell  
 

 
Figure 4.1: The data cube demonstrates a space-time-attribute aggregation of crime data. (A) A sequence of crime types is 
highlighted. (B) A time series is highlighted (taken from Guo & Wu) 

4.3 Spatial clustering 

4.3.1 Data types 

Geocoded data about events occurring at a certain location, such as a crime incident, a 
tornado touchdown point, or a fatal WNV incident are generally referred to as a spatial point 
pattern. Patterns in a point data set can either arise through some form of clustering 
mechanism or through environmental variations, which lead to high concentrations of 
events in certain regions (Diggle, 2003). Point pattern analysis helps to understand the 
processes which led to a certain point pattern. In this analysis, an expected point pattern is 
often compared to an observed one. As expected point patterns, usually, a complete spatial 
random point pattern is used. Complete spatial randomness (CSR) is the null hypothesis in 
spatial point pattern analysis. CSR follows a Poisson distribution with certain criteria (Diggle, 
2003). CSR includes several constraints: First, it implies that the intensity of events does not 
vary over the plane. Second, there are no interactions amongst the events (Diggle, 2003). In 
a random point pattern distribution any point is equally likely to occur at any location and 
the position of any point is not affected by the position of any other point. Apart from 
random distributions there are uniform and clustered distributions. In a uniform distribution 
every point is as far from all of its neighbors as possible. In clustered distributions many 
points are spatially concentrated, while large areas contain little or no points. Event data 
that are summarized and aggregated to a spatial unit such as a county or a zip code are 
called spatial aggregated areal data. Such data are often represented as a rate, with the 
event data being normalized with the population, or the area of the respective unit. Using 
normalization, different units can be compared with each other. In thematic maps, such as 
choropleth maps, only rates can be displayed since the use of total counts would bias 
interpretation. A drawback of areal aggregated data is that a certain degree of information 
gets lost when aggregating event data. For example, areal aggregated data do not provide 
information about the respective exact location of each event. This aspect, however, can 
also have an advantage when dealing with confidential data. Thus, areal aggregated data 
provide a certain protection of revealing too personal data. For this purpose, data about 
health issues, such as disease incidents, are mostly available only in areal aggregated data. 
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4.3.2 Cluster analysis 

Several expressions refer to the method of creating groups of objects: Cluster analysis, 
segmentation analysis, taxonomy analysis, or unsupervised classification. These groups are 
formed in a way that objects in one cluster or group are similar, whereas objects from 
different clusters are distinct (Gan et al., 2007). Everitt (Xu & Wunsch, 2009) defines a cluster 
as follows: “A cluster is a set of entities which are alike and entities from different clusters 
are not alike.” Xu and Wunsch (Xu & Wunsch, 2009) state, that classifying or grouping data 
into a set of categories or clusters plays an important and indispensable role in the history of 
human development. Thus, if there is an unknown object or phenomenon, people try to 
identify descriptive features of this object and compare these features with those of known 
objects or phenomena (Xu & Wunsch, 2009). Based on their similarity or dissimilarity the 
new object or phenomena can be categorized as related or not related. Since data capturing 
methods are improving significantly, more and more data become available. In order to deal 
with an increasing amount of data, clustering as well as classification play an important role 
to explore and summarize that data. 
 
Classifications as well as clustering methods are both components of the data mining 
process. In data mining large amounts of data are explored and analyzed in order to retrieve 
useful information. Classifications belong to the subgroup called direct data mining. Thus, 
data items are assigned to predefined classes. When talking about clustering, the clusters 
are not known a priori. Clustering is indirect data mining, where the goal is to discover some 
relationships among all the variables (Gan et al., 2007). Xu and Wunsch (Gan et al., 2007) 
describe it as a method where it is “not exactly sure what clusters one is looking for”. 
 

 
Figure 4.2: The methods of data mining (taken from Gan et al., 2007) 

Objects in a cluster have to fulfill several criteria. According to Bock (Gan et al., 2007) all 
objects in a cluster have to share the same or closely related properties, show small mutual 
distances or dissimilarities, have contacts or “relations” with at least one other object in the 
group, or be clearly distinguishable from the rest of the objects in the data set. For numerical 
data there are two types of clusters: Compact clusters and chained clusters (Gan et al., 
2007). The compact cluster is a set of data points with high mutual similarity, which can be 
displayed by a representative point or center (see Figure 4.3). In chained clusters, any 
member of a cluster can reach another member by following a certain path (see Figure 4.4). 
Apart from distinguishing clusters on basis of their appearance and structure, another 
method is to distinguish between hard and fuzzy clustering. Hard clustering is the idea that 
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each object in a data set belongs to “one and only one cluster” (Gan et al., 2007). The 
constraints imply that each object either belongs to a cluster or not. Furthermore, each 
object belongs to only one cluster and each cluster contains at least one object, so that no 
empty clusters are allowed (Gan et al., 2007). By contrast, there is the concept of fuzzy 
clustering, which assumes that an object can be member of one or more clusters. Thus, the 
constraints are more relaxed. 
 

 

 

Figure 4.3: Compact clusters (taken from Gan et al., 2007) Figure 4.4: Chained clusters (taken from Gan et al., 2007) 

4.3.3 Clustering Algorithms 

In clustering, distances and similarities play an important role. Distances are used to describe 
the similarity or dissimilarity of two data points or two clusters. In cluster analysis the 
Euclidean distance is created in order to develop an index of similarity (see Figure 4.1). Every 
clustering algorithm is based on the index of similarity or dissimilarity (Gan et al., 2007).  
 

 
Formula 4.1: Calculating the Euclidean distance d between two points in a data set (x and y); (taken from Gan et al., 2007) 

A clustering algorithm usually contains four design phases (see Figure 4.5): Data 
representation, modeling, optimization and validation (Gan et al., 2007). The first phase, 
data representation, gives an idea of which kind of clusters one might expect in a data set. 
Then, the modeling phase defines the notion of clusters and the criteria that separate 
different clusters. This is followed by an optimization of the quality measure. In the 
validation phase clustering results are assessed with validity indices. These measures are 
used to evaluate and assess the results of a clustering algorithm (Gan et al., 2007). 
Conventional clustering algorithms can be divided into two categories: Hierarchical and 
partitional algorithms (Xu & Wunsch, 2009). Hierarchical clustering groups data with a 
sequence of nested partitions, which either form singleton clusters to one large cluster 
including all individuals or the other way round (Xu & Wunsch, 2009). In partitional 
clustering data points are directly divided into some pre-specified number of clusters 
without any hierarchical structure (Xu & Wunsch, 2009). 
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Figure 4.5: Process of data clustering (taken from Gan et al., 2007) 

4.3.3.1 Hierarchical clustering 

Hierarchical clustering techniques can be divided into two kinds of algorithms: There is 
agglomerative hierarchical clustering and divisive hierarchical clustering (see Figure 4.6). 
Agglomerative clustering starts with every single object in a single cluster. Then, it keeps 
merging the closest pairs of clusters, until all objects are forced into the same group 
(cluster). Thus, agglomerative clustering is considered to be bottom-up. There are graph and 
geometric methods in agglomerative clustering. In graph methods such as the single-link 
method, clusters can be represented by a sub-graph or by interconnected points. In 
geometric methods, such as the centroid method, a cluster can be represented by a central 
point. The single-link method employs the nearest neighbor distance to measure the 
dissimilarity between two clusters (Gan et al., 2007). In the first step of the single-link 
method a dissimilarity matrix is created. According to that matrix those clusters with the 
least distance between, are merged. This step is iterated until all data points are merged into 
one single cluster. 
 
Divisive clustering starts with all objects being included in one cluster. At each step the 
number of clusters increases by one, since at each stage of the algorithm one cluster is 
divided into two (Gan et al., 2007). The algorithm keeps splitting large clusters into smaller 
pieces until all clusters are singletons (Xu & Wunsch, 2009). Therefore, the divisive method is 
also referred to as top-down algorithm. Divisive hierarchical clustering methods can be of 
two types: Monoethic and polyethic (Gan et al., 2007). Monoethic methods divide the data 
set into clusters on the basis of a single pre-defined variable, whereas polyethic methods 
divide data based on the values of all variables (Gan et al., 2007). An example for a 
monoethic divisive algorithm is DIANA (DIvisive ANAlysis). This algorithm splits the biggest 
cluster at each step. The definition of the largest cluster can be, for example, on the basis of 
its diameter. The splitting process continues until each object is in a single cluster (Gan et al., 
2007). 
 
Both, agglomerative and divisive techniques have certain drawbacks. First, at an early stage 
incorrect grouped data points cannot be reallocated once the algorithm has continued to a 
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higher stage. Second, different similarity measures between two clusters might lead to 
different results (Gan et al., 2007). There are several methods for the representation of 
hierarchical clustering, which make human interpretation a lot easier. N-tree structures and 
dendograms are among the most common ones. The n-tree structure is a hierarchically 
nested tree diagram (see Figure 4.7). Terminal nodes or leaves are displayed with an open 
circle which represents a single data point. The internal nodes depicted by a filled circle 
represent a group or cluster (Gan et al., 2007). A dendogram is a valued tree (Gan et al., 
2007) (see Figure 4.8). Each internal node is associated with a certain height which is based 
the clustering structure. 
 

 
Figure 4.6: Divisive and agglomerative techniques in hierarchical clustering algorithms (taken from Gan et al., 2007) 

 

 
 

: 

Figure 4.7: The n-tree, a representation in hierarchical 
clustering (taken from Gan et al., 2007) 

Figure 4.8: Dendogram (taken from Gan et al., 2007) 

4.3.3.2 Partitional clustering 

In partitional clustering a set of data points are assigned into k clusters without any 
hierarchical structure (Xu & Wunsch, 2009). The idea of cluster analysis is to summarize a 
partition of data in which data objects in the same clusters are homogenous, and data 
objects in different groups are distinct. This homogeneity and separation are evaluated with 
the criterion function. An example of a criterion function is the sum-of-squared-error 
criterion (Xu & Wunsch, 2009). The partition of data that minimizes the sum-of-squared-
error criterion is optimal and is called the minimum variance partition (Xu & Wunsch, 2009). 
The sum of squares clustering model (SSCM) describes this process. The main objective of 
SSCM is to minimize the total weighted squared difference in cluster group membership. 
Thus, it tries to identify the optimal partition of entities. This concept is realized in the K-
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means algorithm, which is one of the most popular clustering algorithms (Xu & Wunsch, 
2009). The K-means algorithm can be applied to large-scale data sets especially when the 
resulting clusters are likely to be compact and hyperspherical (Xu & Wunsch, 2009). K-means 
assumes that the number of clusters K is already known by the user in advance, which is not 
true in practice. Thus, there are several heuristics, which can identify the value of K in 
advance. 

4.3.4 Spatial and space-time cluster analysis in epidemiology 

Cluster analysis is an important function of the data mining process. It has applications in 
many domains such as epidemiology. In epidemiology the distribution pattern of a disease 
depends on a few factors. These are environmental conditions, the population at risk, and 
the type of disease. Environmental conditions are important in terms of providing a germ an 
appropriate place to flourish. Thus, the success of arthropod-borne diseases such as malaria 
or the WNV depends on the prevalence of vectors and hosts. Thus, this kind of diseases can 
only exist in regions, providing space and habitats for arthropods and the hosts. In addition, 
it is necessary to know the situation of the population in an area where a disease is likely to 
emerge. Are there large settlements, such as towns, villages, or are there only a few 
scattered houses across a large area? The last factor, the type of disease, is important in 
terms of contagiousness and virulence. The distribution pattern of an influenza disease will 
differ significantly from the distribution pattern of a non-contagious encephalitis or of 
various cancer types. 
 
The detection of clusters in a data environment deals with revealing those regions were 
some quantity is significantly higher than expected (Neill et al., 2005). The primary objective 
of spatial cluster analysis is to pinpoint the location, shape, and the size of a cluster (Neill et 
al., 2005). Additionally, it is necessary to determine whether a potential cluster is likely to be 
a true cluster. Hypothesis testing is applied in order to make sure that a potential cluster is 
not only a probable cluster, but a true cluster. Most cluster analyses are of purely spatial 
nature. However, in epidemiology the temporal dimension plays a crucial role in the 
detection of both retrospective and prospective clusters. Prospective clusters are clusters 
that have emerged at present and are still active, while retrospective methods include 
clusters which emerged and have ceased to exist in the past (Neill et al., 2005). According to 
Neill et al. (Neill et al., 2005) there are two methods of how a temporal component can be 
integrated into cluster analyses. The first approach is to carry out a purely spatial cluster 
analysis at each time step. This method, however, fails to detect more slowly emerging 
clusters. The second approach is to treat time as another dimension in the analysis. The 
drawback in this method is that it is likely to detect less relevant clusters. For this purpose, 
Neill at al. (2005) investigate the difference between the temporal and the spatial 
dimension. They reveal that unlike space, time has a point of reference, namely the present. 
But, temporal information lacks the so-called baseline denominator data, which might be 
the population are employed people. Instead, in temporal analysis there are expected values 
which can be derived from time series of past counts. Finally, time has an explicit direction, 
“proceeding from the past, through the present, to the future” (Neill et al., 2005). The 
general motivation of cluster analysis in epidemiology is to detect clusters which emerge 
over time. 
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4.3.5 Identification of spatial and space-time clusters in areal aggregated data 

According to Anselin, a crucial aspect of pattern recognition, such as hot spot analysis is the 
determination of patterns on the map which reflect true clusters or outliers (Anselin et al., 
2000). The counterparts of true clusters are “spurious” clusters, which are interpreted 
visually as clusters but in reality, they are no clusters. This is because the human mind always 
tries to identify patterns in clusters, even if the data is distributed perfectly randomly 
(Anselin et al., 2000). For this purpose, cartographic principles have been introduced, in 
order to ensure a proper interpretation. 
 
Since hot spots share the features of both a geographic boundary and events within that 
boundary, Anselin states that the easiest way to identify hot spots is to partition an area into 
a fixed set of boundaries like for example zip-codes, and to develop a set of rules (Anselin et 
al., 2000). The “rule base” includes time intervals, threshold crime counts, and changes in 
crime counts. An example for a rule could be: If the crime counts in one zip-code exceed a 
certain threshold value, then it might be considered to be a hot spot. The boundaries can be 
chosen fixed or ad hoc. The disadvantage with fixed boundaries is that they are not very 
dynamical, but hot spots are. They may cross the fixed boundaries or vary in size (Anselin et 
al., 2000). An example for ad hoc clustering in point data is the nearest neighbor clustering in 
CrimeStat (Levine, 2004). The program provides two ways of visualizing the clusters. One 
way is to let the program draw ellipses around the cluster. The alternative is to let the 
program draw convex hulls by connecting all edge points of a cluster. 
 
Hot spots are, by definition, small in area (Anselin et al., 2000). Thus, for analysis purposes 
large scales are used. However, when areal aggregated data are used their might be 
variations in the estimated effects of models arising from differences in the areal units 
(Anselin et al., 2000). This is known as the modifiable areal unit problem (MAUP). Thus, 
widely varying parameter estimates result from re-aggregating data by areal units of 
different sizes (Anselin et al., 2000).  
 
Anselin (Anselin et al., 2000) defines exploratory spatial data analysis (ESDA) as a collection 
of techniques to describe and visualize spatial distributions. ESDA is about identifying spatial 
outliers, discovering patterns, clusters, or hot spots. Spatial autocorrelation is one principle 
of ESDA. It can be applied to both point data and areal data. In this thesis spatial 
autocorrelation is used to identify clusters in areal aggregated WNV data. The implemented 
methods (Moran Scatter Plot, LISA) determine the degree of deviation from spatial 
randomness in a study area. 

4.3.6 Hot Spot (Cluster) Analysis Types 

Hot spots or hot spot areas are concentrations of incidents within a limited geographical 
area that appear over time (Levine, 2005). In crime analysis the concept of hot spots is very 
useful, since police officers can focus their attention on particular environments where crime 
incidents peak. Levine (Levine, 2005) defines the concept of hot spots perceptual and not 
existing in reality. Nevertheless, there could be areas where there is sufficient concentration 
of certain activities which are labeled as areas of high concentration. Hot spot analysis is 
statistically known as cluster analysis. Several techniques have been developed on how to 
detect and analyze hot spots (Levine, 2005). The most intuitive type of cluster is, when only 
the location of incidents is considered. Thus, the location with the highest number of 
incidents is considered to be a hot spot. Hierarchical techniques were already pointed out in 
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chapter 4.3.3.1. They act like an inverted tree diagram and summarize features on the basis 
of a specific criterion, such as nearest neighborhood. Thus, the technique creates groupings 
or clusters of first order, second order, and so on. Partitioning techniques group incidents in 
a pre-specified number of groupings (Levine, 2005). The most popular partitioning technique 
is the K-means technique. Another routine to identify hot spots is the density technique. This 
technique searches for dense concentrations of incidents. The risk-based technique 
identifies clusters in relation to an underlying base at risk, such as population, or 
employment (Levine, 2005). Apart from all these techniques are clumping and miscellaneous 
techniques. Most of the hot spot techniques require event or incident data as input 
information. Unlike the Nearest Neighbor Hierarchical Clustering or the K-means algorithm, 
the Local Moran’s I technique, developed by Anselin, however, requires data aggregated by 
zones (Levine, 2005). Apart from hot spots (a neighborhood with high intensity values), the 
Local Moran’s I also provides information about cold spots (a neighborhood with low 
intensity values). 

4.3.7 The self organizing map (SOM) 

A self organizing map is an architecture or algorithm for an artificial neural network 
(Kohonen, 1990). According to Kohonen it is capable of creating spatially organized “internal 
representations” of various features. The SOM is particularly successful in pattern 
recognition tasks. Thus, it has found its application in various fields, such as robotics, process 
control, telecommunications, and speech recognition. Apart from feedforward and feedback 
networks, the self organizing map belongs to the third category in the field of network 
architectures for modeling nervous systems (Kohonen, 1990). In this category learning is 
called competitive, unsupervised, or self organizing. The principle goal of the SOM is to 
transform an incoming signal pattern into a one or two dimensional discrete map (Guo et al., 
2006). The self-organization is created by neighboring cells, which compete in their activities. 
Subsequently, they develop adaptively into specific detectors of different signal patterns. 
The cells become tuned to various input signal patterns. Following those signal patterns, the 
locations of the cells become ordered. Thus, the spatial location of a cell in a network, then, 
corresponds to a particular domain of input signal patterns (Kohonen, 1990). Eventually, a 
coordinate system for the input features is created. The SOM forms the required 
topographic map of the input patterns (Guo et al., 2006).  
 
Guo et al. (Guo et al., 2005) adapt the SOM for multivariate analysis and geo-visualization. A 
challenge in those fields is the high-dimensionality of data. The SOM is capable of projecting 
high-dimensional data to a low-dimensional space while still preserving nonlinear 
relationships. Thus, SOMs are a method of abstraction or summarization because of their 
ability to compress information. For this purpose, SOMs conduct a many-to-one projection, 
so that more than one data item in the input data can be projected to the same node if they 
are similar (Guo et al., 2005). In geographic analysis SOMs have a wide range of application. 
Guo et al. (2005) mention a few. Those include: visualization of patterns in census data, 
spatialization of non-spatial information, and exploration of health survey data.  
 
Kohonen (Kohonen, 1990) suggests that so-called brain maps have a lot in common with 
SOMs. Thus, he concludes that the internal representation of information in the brain is 
organized spatially. Modern imaging techniques which use radioactive tracers have revealed 
a fairly detailed organizational view of the brain. In higher animals, “various cortices in the 
cell mass contain many kinds of map” (Kohonen, 1990). So, for example, in the visual areas 
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there are line orientation and color maps. In the auditory cortex there are “tonotopic maps”. 
There are even parts of the brain which visualize a representation of the face and the body 
in form of a map (Kohonen, 1990). 

4.4 Selected techniques for cluster analysis 

Clusters and a clustering effect in the study areas both in the U.S. and in the state of 
Louisiana can be detected with the above listed software packages. The packages are quite 
different as far as their structure and functionalities are concerned. However, each software 
package offers some specific algorithms in order to identify clusters in a data set. Some 
essential techniques which are part of the software packages used for analysis in this thesis 
are global and local spatial autocorrelation, retrospective and prospective tests, and the scan 
statistic. 

4.4.1 Spatial autocorrelation 

Tobler’s first law of geography says that: “Everything is related to everything, but near things 
are more related than distant things” (Tobler, 1970). This effect is called positive spatial 
autocorrelation. Waller and Jacquez talk about spatial autocorrelation when near rates tend 
to be similar (Waller & Jacquez, 1995). In their description of disease models they refer to 
either spatial autocorrelation or spatial heterogeneity, when mean regional rates vary from 
place to place (Waller & Jacquez, 1995). This effect is also referred to as negative spatial 
autocorrelation. Waller and Jacquez (1995), furthermore, explain spatial heterogeneity in 
epidemiology as contrasting independent disease cases arise from a noninfectious disease. 
In addition, the disease rate varies across the study area. Under this point of view, spatial 
autocorrelation would occur among infectious disease cases, where the rate is constant 
across the study area (Waller & Jacquez, 1995). Apart from positive and spatial 
autocorrelation there is complete spatial randomness (CSR) or no spatial autocorrelation. 
Diggle’s hypothesis of CSR is that there are no interactions or relations amongst the events 
and the intensity of events does not vary over the study area (Diggle, 2003). Griffith (Griffith, 
2009) gives a number of real-world examples for spatial autocorrelation. For example, 
minerals cluster at certain locations in the Earth’s surface and are not ubiquitous. When 
talking about the real estate market house value assessments are established on the basis of 
similar nearby houses. In epidemiology, a disease like the WNV creeps across an area 
through arthropod-borne contagion. Griffith describes the diffusion of the WNV over the 
U.S. as a “spatial process mechanism”. Like a weather front, it emerged in Long Island in 
1999 and quickly diffused westward throughout the remainder of the country. A weather 
front can result in highly spatially auto-correlated local weather conditions (Griffith, 2009). 
This was similar to the spread of the WNV across the U.S. Spatial autocorrelation cases can 
be divided into different relationship tendencies between adjacent values on a map. 
Exceptionally, remotely sensed images almost always display a very strong positive spatial 
autocorrelation (Griffith, 2009). Moderate positive spatial autocorrelation can be discovered 
in population maps. This effect is caused by humans’ tendency to form groups to live in and 
establish settlements with a central administration unit. Thus, most socioeconomic or 
demographic data display a moderate positive relationship (Griffith, 2009). When it comes to 
negative spatial autocorrelation, Griffith talks about a “geographic competition” among 
values in the study area. He creates an index of local competition of European Union 
members in terms of land sizes. For this purpose, he creates a ratio of each country’s actual 
size and the corresponding Thiessen polygon. The ratio reveals a negative spatial 
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autocorrelation. Countries like Luxembourg, Slovenia and the Czech Republic of very low 
ratio values are surrounded by countries with very high ratio values (Griffith, 2009). 
 
The concept of spatial autocorrelation has been incorporated into two commonly used 
models: The Moran Coefficient (Moran’s I) and the Geary Ratio (Geary’s C). In the analyses 
conducted in this thesis only the Moran Coefficient (MC) will be used and explained in detail. 
 

4.4.1.1 Global spatial autocorrelation 

The Moran Scatterplot displays the global relation trend in a study area. It can be divided 
into four quadrants. The values in the study area are assigned to one of the four quadrants 
depending on their rate and the rates of adjacent objects (polygons) (see Table 4.3). Each 
quadrant corresponds to a specific type of autocorrelation. In the course of the calculation 
of a Moran Scatterplot a z-transformation is conducted in order to make values comparable 
to other values. 
 

Quadrant Number Abbreviation Explanation 

I H-H 
Investigated polygon has a high rate as well as its neighboring 
polygons. The occurrence of Hot Spots is likely. 

II H-L 
Investigated polygon has a high rate but the neighboring 
polygons have low values. The occurrence of spatial outliers 
is likely. 

III L-L 
Investigated polygon has a low rate as well as its neighboring 
polygons. The occurrence of Cold Spots is likely. 

IV L-H 
Investigated polygon has a low rate but the neighboring 
polygons have high values. The occurrence of spatial outliers 
is likely. 

H-H…High-High, H-L…High-Low, L-L…Low-Low, L-H…Low-High 

Table 4.2 Quadrants of the Moran Scatterplot 

 

Figure 4.9: Moran Scatter plot for WNV incidences in Louisiana in 2002 
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Figure 4.9 displays a Moran Scatter plot to observe spatial autocorrelation among WNV 
incidences in Louisiana in 2002. The corresponding characteristics of each quadrant are 
listed in Table 4.3. Most of the values appear in quadrant I or III. Thus, there might be hot 
and cold spots, which indicate that values with similar rates are close to the central polygon. 
This characterizes of positive spatial autocorrelation. Moran’s I is 0.2581, resulting in a 
slightly positive spatial autocorrelation. 
 
 
 
 

Figure 4.10: Interpretation of Moran’s I 

The Moran’s I statistic can be a number between -1 and +1 displayed in Figure 4.10. The 
value +1 is for maximum positive spatial autocorrelation and the value -1 stands for 
maximum negative spatial autocorrelation. There is no spatial autocorrelation if Moran’s I is 
a slightly negative value very close to zero. 

4.4.1.2 Local Moran’s I spatial autocorrelation (LISA) 

The basic concept of Anselin’s Local Moran’s I is that of a local indicator of spatial association 
(LISA) (Levine, 2005). The LISA is able to indicate for each observation the extent to which 
there is significant spatial clustering of similar values around that observation (Levine, 2005). 
LISA is a value, which determines the similarity between one observation and its neighbors. 
In order to detect hot spots LISA tests whether an observation in a neighborhood with high 
intensity values is similar (high) or distinctly different (low).  
 
The Moran scatter plot can be visualized with a LISA map containing neighborhood 
information. Local spatial autocorrelation yields a measure of spatial autocorrelation for 
each individual location (Anselin, 2003b). In a thematic map the regions with a significant 
Local Moran’s I statistic are highlighted. Depending on the statistic each significant region is 
assigned to a category, deriving from the Moran scatter plot (see Table 4.3). The remaining 
regions belong to the category “not significant”. The essential step for the creation of LISA 
maps is a weights file on the basis of either contiguity or distance (Anselin, 2003b). Distance 
weights files require exact coordinates of each item in a data set. This can be either x and y 
coordinates when working with a point pattern or centroids for polygon data. The number of 
neighbors of each polygon depends on the determined threshold distance. Each data item 
should at least have one neighbor, thus, the threshold distance should be set corresponding 
to that criterion. 
 
As far as contiguity weights are concerned, the specification of neighbor relationships can 
influence drastically the outcome of statistical analyses (BioMedware, 2012a). There are two 
possibilities to determine the neighborhood of polygons: rook and queen (see Figure 4.11). 
These two options are named after movements on a chessboard (BioMedware, 2012a). 
Queen contiguity results in significantly more neighbors, since a possible candidate is 
considered as neighbor when only sharing one vertex. In contrast, when choosing rook 
contiguity the polygons have to share an edge to be considered as neighbors. 
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Rook Contiguity Queen Contiguity 

Figure 4.11: Two different options of contiguity (taken from BioMedware, 2012) 

A common way to represent neighbor relationships is the spatial weights matrix 
(BioMedware, 2012b). It is an nxn matrix, where n is the number of data items in the study 
area. Open GeoDa generates the matrix in form of a weights file, listing up the central 
polygon’s ID, the number of neighbors, and the ID’s appertaining of those neighbors (see 
Figure 4.12). 
 

 
Figure 4.12: Excerpt of the weights file created by Open GeoDa 

4.4.2 The Global and the Local score statistic 

Global statistics are conducted in order to get a summary of the entire study region. General 
tests are carried out with global statistics. The result is a single summary statistic, which 
characterizes any deviation from the null hypothesis of a random pattern (Rogerson, 2005). 
By contrast, local statistics are carried out for subsets of the study area. Thus, many local 
tests can run simultaneously in order to detect clustering when there is no idea of the 
location of possible clusters in advance. In common, these tests are referred to as tests for 
the detection of clustering (Rogerson, 2005). A second possibility is to carry out a local 
statistic to find out whether clustering occurs around particular foci. These are called 
focused tests (Rogerson, 2005). Anselin argues that local statistics have the property to sum 
up the respective global statistic (Rogerson, 2005). Considering that, if a general test does 
not find a significant deviation from spatial randomness it is still useful to carry out local 
statistics. The local statistics may still reveal isolated hotspots of increased incidence, which 
are, however, insufficient to lead to a global signal (Rogerson, 2005). When the global 
statistic reveals significance in clustering, local statistics can provide additional information. 
Thus, local statistics help to decide whether the study area is homogeneous in terms of a 
similarity of local statistics throughout the area or whether there are a few very strong local 
outliers (Rogerson, 2005). If local statistics are similar across the study area they contribute 
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approximately equally to the significance of the global signal, whereas in the second case a 
few primary outliers lead to the significant global statistic. Local statistics, therefore, have 
the power to reveal details of the data distribution on a more detailed level. Fuchs and 
Kenett (Fuchs & Kenett, 1980) derived a test based on the largest outlier in a distribution, 
the M test. The M test has the power to determine those data items which are responsible 
for the rejection of the null hypothesis of spatial randomness. The M test is especially useful 
in situations when there are a small number of outlying items in a data set (Rogerson, 2005). 
 

Local Score Statistic Ui (focused) Global Score Statistic U² 

  

Table 4.3: Formulas for the local and the global score statistic (taken from Rogerson Rogerson, 2005) 

The focused local score statistic (U) depicted on the left in Table 4.4 tests for raised 
incidence around a region i. The U statistic has the power to reject false null hypotheses. 
Under the null hypothesis this statistic has an asymptotic normal distribution with mean zero 
(Rogerson, 2005). The weights wij are chosen as a function of the distance between the 
regions i and j. The variable m stands for a set of regions. Oj are the observed cases in a 
region and Ej are the expected cases in that region. In the right hand side of the table the 
global statistic described by Rogerson (Rogerson, 2005) is highlighted. It is based on the local 
score statistic. Again, m stands for a set of regions. 
 
If the expected and observed cases for each sub region are available they can be 
transformed into a standard normal variable via a variety of transformation techniques. 
Three transformations are adopted in GeoSurveillance (see chapter 4.2.2) for retrospective 
testing: Poisson-based, Freeman-Tukey and Rossi transformation. The Poisson based 
transformation is equal to the local score statistic in Table 4.4. 

4.4.3 Cumulated Sum (Cusum) Control Charts Methods 

Originally developed for quality control of industrial processes, in GeoSurveillance the 
method was adapted for prospective tests of spatial cluster detection. The cusum methods 
repeatedly update associated test statistics as new data becomes available (Rogerson et al., 
2009). This is useful in order to record deviations of the mean of a variable of interest. When 
talking about deviations, these can be both decreases as well as increases in a variable value. 
In epidemiology, the focus is set on value increases. Also the cusum method realized in 
GeoSurveillance is specifically sensitive to variable increases. The cusum method is applied 
to individual sub regions simultaneously to detect any increase in regional observations as 
quickly as possible. 
 
The cumulated sum is the sum of the differences between the values and the mean (Taylor 
Enterprises, 2012). When the values are above average during a certain period of time, the 
amounts added to the cusum will be positive and the sum increases (Taylor Enterprises, 
2012). On the other hand, values below the mean will decrease the sum. Rogerson, Yamada 
and Lee define the cusum method in GeoSurveillance as follows: 
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Formula 4.2: Cusum formula (taken from Rogerson et al., 2009) 

Since the mean is subtracted from each value, the cusum also ends at zero (Si, 0 = 0). Oi,t are 
the approximately normally distributed values in a region i at a certain time period t. These 
are standardized to zi,t using the mean equal to the expected number of cases Ei,t and a 
known variance. The parameter k is usually set to 0.5 in order to minimize the time to detect 
an increase of 2 k standard deviation in the mean of zi,t. When the cusum exceeds the given 
threshold parameter h a significant increase in the subregion i is signaled (Rogerson et al., 
2009). 
 

4.4.4 Kulldorff’s Scan Statistic 

A scan statistic is used to detect clusters in a point process (Kulldorff, 1997). If only areal 
aggregated data are available, the coordinates of centroids or important locations in the 
respective unit, like for example county seats, can be used for calculation. While most 
statistical methods for cluster analysis of a spatial point process can either detect the 
location of clusters or do inference about it, the scan statistic can do both. Thus, the scan 
statistic answers the question whether there are clusters in a data set or not and it also 
reveals the geographic location of the cluster. At this point it detects both clusters with 
exceptional high values as well as clusters with conspicuous low values. The scan statistic, 
however is not capable of answering the question whether there is a clustering effect over 
the study region as a whole, like for example what might be the case with a spreading 
infectious disease (Kulldorff, 1997). 
 
The underlying technique of the scan statistic is a predefined measure, which can be either a 
circular or an elliptic window that keeps scanning the entire study area in the search for 
clusters. If one aims to also integrate a temporal component into the cluster detection, then 
the measure has to be extended in a third temporal dimension. What has to be taken in 
consideration when integrating time are changes which might happen across time, like for 
example changes in the population. When looking for space-time clusters instead of the 
circular window a cylinder is used to incorporate the third, the temporal dimension, as well. 
The maximum number of points in the window is recorded and compared to its distribution 
under the null hypothesis of a purely random Poisson process (Kulldorff, 1997).The Poisson 
process is used in order to predict the degree of spread around a known average. The Scan 
Statistic implies two models: Bernoulli and Poisson. It depends on the input data which 
model would be most appropriate for cluster detection. The Bernoulli model is designated 
for binary counts. An example for the application of the Bernoulli model is the investigation 
of the Sudden Infant Death Syndrome. There is the birth rate per state and the disease rate, 
which form both a binary count. The Poisson model, by contrast, finds its application with 
counts relating to some continuous factor (Kulldorff, 1997). Both models determine an 
exactly zone Z which is a subset of the entire study area G. Each individual has a probability p 
of being a point in the zone Z or has the probability q of being located outside the zone Z. 
Considering, that, the null hypothesis H0 and the alternative hypothesis HA can be stated as 
follows (Kulldorff, 1997): 

H0: p = q 
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HA : p > q 
The null hypothesis of no spatial clustering is rejected, when the scanning window identifies 
a cluster. Apart from the most likely cluster the scan statistic is also able to reveal secondary 
clusters with high likelihood values. In this context, most secondary clusters will be 
overlapping with the most likely cluster. More interesting are secondary clusters which 
emerge in a different region of the study area. 

4.4.5 Visualization of multivariate clusters over space and time 

The visualization of multiple perspective data requires methods that can simultaneously 
visualize spatial, temporal and multivariate patterns. In crime analysis, for example, it is 
important to include attributive data like socioeconomic factors or crime types apart from 
the space-time components. Guo et al. (Guo et al., 2005) describe several challenges when it 
comes to multivariate spatial data analysis. One of them is that the high dimensionality of 
geographic data sets can cause serious problems for analysis methods. A dataset with high 
dimensionality is a data set with a large number of variables, whereas a data set with a large 
number of cases it is referred to as a large dataset (Guo et al., 2005). Also, large and high-
dimensional data sets demand that analysis methods are computationally efficient. Another 
aspect is that it is unlikely for all attributes to interrelate meaningfully. Additionally, to 
interpret the meaning of patterns expert knowledge is required. In other words, both 
visualization as well as computational methods, individually used, are insufficient in terms of 
analysis of high-dimensional data. 
 
Furthermore, Guo et al. (Guo et al., 2005) describe three major factors why the detection of 
patterns in data can be hard to discover. The first difficulty arises due to high dimensionality 
in the data. One premise for analysis is that all variables in the input data are meaningful and 
relevant to each other. A data set might also include several different patterns, created by a 
subset of variables respectively. Thus, it is important to initially know the items of the subset 
in order to make sure that they are meaningful to each other. The second aspect which has 
to be taken in consideration in analyses is that potential patterns may take various forms. 
The third factor is rather a challenge than a factor. It is about the visualization of multivariate 
geographic patterns. Maps are an essential component in the visualization for geographic 
patterns. What makes pattern detection more sophisticated is to combine the detection of 
geographic patterns with multivariate pattern detection. 
 
Guo et al. (Guo et al., 2005) propose an integrated geographic knowledge discovery 
environment. This system is able to visualize patterns in both the geographic space and the 
attributive space. In addition, it supports human interaction and interpretation, facilitating 
the examination and explanation of patterns. The environment consists of several major 
components including data processing, unsupervised feature selection, multivariate analysis 
with the SOM, multidimensional visualization and multivariate geographic visualization in 
form of a map (Guo et al., 2005). In Guo’s approach he uses dimension reduction methods in 
order to map and visualize patterns across multiple variables and dimensions. For this 
purpose, Guo developed a multivariate mapping approach, called SOMVIS. This approach 
includes a SOM, which itself is a dimension reduction and clustering method. Guo et al. 
(2006) extended the SOMVIS to accommodate a temporal dimension. The resulting software 
environment VIS-Stamp is able to perform multivariate space time pattern analysis. 
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5 Results 

This section is divided into the results for the U.S and the results for Louisiana. First, the 
results for the U.S. software per software are introduced, then the results for Louisiana are 
displayed. 

5.1 Spatial and Temporal analysis of the WNV in the United States 

In this section the results of the analysis in the U.S. are displayed. First, the results of GeoDa 
are presented, then the results of SaTScan and Vis-Stamp. 

5.1.1 Exploratory spatial data analysis (ESDA) in Open GeoDa 

First, the spatial distribution of WNV incidents in the U.S. is investigated. Open GeoDa 
provides functionalities to determine the degree of spatial autocorrelation in the data. 
However, it lacks the functionality of integrating the temporal component as an additional 
dimension. Thus, the analyses are conducted for each year, starting with the first emergence 
of the WNV in New York in 1999. The last period of investigation is the year 2011. The 
connectivity chart reveals the neighborhood relations in the study area, including all U.S. 
states without Hawaii and Alaska plus the District of Columbia (see Figure 5.1). The chart 
categorizes U.S. states on the basis of their respective number of neighbors. The chart 
depicts that the majority of states have between four and six neighbors. The contiguity 
weights file was created with the Rook Contiguity option, thus, only those adjacent states 
which share at least an edge are considered to be neighbors. The LISA maps are created 
using Empirical Bayes (EB) Rates. This means that the input variable (total number of WNV 
cases) is normalized by the state population. 

 

Rook Neighbors 

(Frequency of U.S. States) 

 

Figure 5.1: Connectivity chart of U.S. states 

In order to detect statistical outliers in the study area outlier maps are created. Outlier maps 
highlight data values, which significantly deviate from the mean. Open GeoDa offers two 
kinds of outlier maps, namely the box plot map and the percentile map. The box plot map is 
the spatial equivalent of a box plot. Percentile maps are based on a simple data ranking and 
highlight extreme values which are located at the bottom and at the top of a data 
distribution. These techniques are implemented in order to get a better understanding of 
the data distributions. For the analysis, a hinge of 1.5 is used. The hinge criterion determines 
how extreme observations need to be that they are classified as outliers. Therefore, Open 
GeoDa provides two options: a hinge of 1.5 or a stricter hinge of 3. Open GeoDa provides 
five methods to produce choropleth maps for variables that are expressed as rates. In this 
analysis the total numbers of WNV cases are smoothed with the method of raw rates. 
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Box Plot Maps 
Smoothed with raw rates 

Hinge: 1.5 

Percentile Maps 
Smoothed with raw rates 
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Table 5.1: Outlier maps of WNV disease cases in the U.S. in the study period from 1999 - 2011 

The outlier, i.e., box plot and percentile maps reveal a similar pattern to the LISA maps. In 
the first two years of examination, Open GeoDa, incorrectly classifies the states with zero 
cases into the second highest categories. The 1999 and 2000 maps should thus be 
interpreted with caution. In the first three years (1999-2001), upper outliers are located on 
the north-eastern part of the U.S. Apart from 2002 upper outliers can be found in the central 
U.S. In 2003, 2006, 2007, and 2010 there are especially many upper outliers in the central 
and southern U.S. This gives an idea of how much the number of WNV cases actually differs 
from the mean. Though, this kind of visualization gives no information about the intensity 
(i.e. absolute numbers of disease cases) of the virus. In other words, in 2006 upper outliers 
are states with more than 500 cases, while in 2010 already states with more than one 
hundred cases are considered to be outliers. After the year 2001 there are no lower outliers 
any longer, but only states falling into the second lowest, i.e. <25% category. A cluster of 
such low numbers of WNV cases can be detected in 2002 on the west coast, when the virus 
has not yet reached the western part of the U.S. One interesting aspect is, that while the 
number of WNV cases becomes lower in most of the eastern states, two states in the south 
east are still having very high numbers of WNV cases, including Mississippi and Louisiana. 
The latter state is classified as upper outlier twice at the beginning of the study period. 
Mississippi is occasionally an upper outlier throughout the entire study period. The “success” 
of the virus in those two southern states might be a result of the hot, humid climate in the 
summer and the aspect that swamps act as an ideal breading habitat for both mosquitoes 
and avian species. 
 
In 1999 the virus first entered the U.S., causing 62 disease cases, among those were 7 fatal 
cases in the state of New York (see Figure 5.2). In the LISA map the states Vermont, 
Massachusetts, and Connecticut are categorized as low-high spatial outliers due to the high 
number of cases in the “outbreak” state of New York and the low number of cases in the 
three neighboring states. The Moran Scatter plot in Figure 5.2 depicts a very slight negative 
spatial autocorrelation (Moran’s I = -0.0324). This value, however, is so close to zero, that it 
might be interpreted as no autocorrelation (i.e., spatial random distribution). 
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1999 

 

 

Figure 5.2: LISA map created with EB rates for WNV incidents in the U.S. in 1999 

 

 
 
In the following year, in the state of New York there were significantly fewer reported 
disease cases than in the season before. However, the virus also entered the adjacent states 
New Jersey and Connecticut, leading to very few disease cases in those two states. Since 
there were no cases reported in the rest of the nation, the few disease cases in the 
northeastern part of the U.S. led to a high-high cluster. The Moran Scatter plot reveals a 
slight positive autocorrelation. Most of the states lie in the first and third quadrant. In this 
kind of distribution it is likely to have cold and hot spots. This is the case in the LISA map. 
There is a hot spot around New York State and a large cold spot to the west of that hot spot. 
 

2000 

 

 

Figure 5.3: LISA map created with EB rates for WNV incidents in the U.S. in 2000 

 

 
 
In 2001 the hot spot around New York State becomes larger, including now two additional 
states, namely, Massachusetts and Pennsylvania. New WNV cases emerge in Maryland. 
Apart from now the virus will spread continuously westward. 
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Figure 5.4: LISA map created with EB rates for WNV incidents in the U.S. in 2001 

 

 

 

In 2002 the WNV has “conquered” large parts of the continental U.S. It was the most 
“successful” year for the virus since its emergence in 1999. Especially, neuroinvasive and 
non-neuroinvasive disease cases among humans exploded. In the state of Illinois more than 
800 disease cases were reported to the CDC (CDC, 2011a), among those more than 500 
neuroinvasive cases. Meanwhile, on the north-east coast things the number of disease cases 
was comparatively low, leading to a low-low cluster around the state of Connecticut. Still, 
the virus has not yet impacted the west coast, where a low-low cluster has evolved. 
 

2002 

 

 

 

Figure 5.5: LISA map created with EB rates for WNV incidents in the U.S. in 2002 

 

 

 
 
Regarding the Moran Scatter plot, the positive spatial autocorrelation has become more 
positive since 1999. That means that it is more likely to find clusters, either cold spots or hot 
spots in the LISA maps. In 2003 WNV incidents concentrate in the central and the northern 
U.S. There is a large hot spot, including the states of Montana, Wyoming, Colorado, 
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Nebraska, South Dakota, and North Dakota. In those states, as well as in a few surrounding 
states the virus reaches an unprecedented intensity in terms of contagiousness and 
aggressiveness. 
 

2003 

 

 

 

Figure 5.6: LISA map created with EB rates for WNV incidents in the U.S. in 2003 

 

 

 

In 2004, the WNV has spread all across the U.S. However, the overall situation has become 
less severe. Thus, there are several hot spots, but they do not reach a high intensity as far as 
reported cases are concerned. California is an exception. More than 700 cases were 
reported throughout the state in 2004. 
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Figure 5.7: LISA map created with EB rates for WNV incidents in the U.S. in 2004 
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In 2005 the distribution is similar to the year 2003. There is a hot spot in the central and 
northern U.S. In the north-eastern U.S. there is a huge low-low cluster, indicating that WNV 
cases have been scarce in and around the dark blue shaded states. 
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Figure 5.8: LISA map created with EB rates for WNV incidents in the U.S. in 2005 

 

 

 

The WNV has become endemic to the U.S. by 2006. There is a high-high cluster in the west-
central U.S., while in the north-eastern part hardly any cases occur; thus, the cold spot from 
the previous year persists. The Moran Scatter plot shows that the spatial autocorrelation 
approximates spatial randomness. One reason for this result is that by 2006 the WNV is 
present all across the U.S. and the reported cases are almost evenly distributed among on all 
states. Thus, not a lot of disease cases are concentrated in a particular region, rathermost 
cases are scattered randomly across the whole study area. 
 

2006 

 

 

Figure 5.9: LISA map created with EB rates for WNV incidents in the U.S. in 2006 
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In 2007, the data distribution becomes more clustered again. There is one major hot spot in 
the central and northern U.S. Additionally, the cold spot on the east coast persists. The 
global spatial autocorrelation is positive (Moran’s I = 0.4370). 
 

2007 

 

 

Figure 5.10: LISA map created with EB rates for WNV incidents in the U.S. in 2007 

 

 

 
There are some minor differences in the year 2008 compared to the previous year. 
According to the global Moran’s I there is only slight positive spatial correlation in the data, 
thus, the clustering effect is low. There continues to be still a hot spot in the central U.S. 
surrounded by states with low disease cases (light blue shaded polygons) and the 
omnipresent cold spot in the eastern U.S. 
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Figure 5.11: LISA map created with EB rates for WNV incidents in the U.S. in 2008 
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In 2009 the high-high cluster in the central U.S. has grown. There are two major clusters, 
including the cold spot in the east and the hot spot in the center of the contiguous U.S. 
 

2009 

 

 

 

Figure 5.12: LISA map created with EB rates for WNV incidents in the U.S. in 2009 

 

 

 

In 2010 the low-low cluster at the east coast has eventually disappeared. Instead, a cold spot 
has emerged in the south-east. One major high-high cluster is still present in the central U.S. 
In general, WNV incidents in the states have decreased steadily. 
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Figure 5.13: LISA map created with EB rates for WNV incidents in the U.S. in 2010 
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In 2011, most of the states are no longer significant as far as a clustering effect is concerned. 
The Moran’s I is close to zero, which means that there is no spatial autocorrelation among 
the WNV cases across the states. This can be interpreted as a spatial random distribution. 
 

2011 

 

 

 

Figure 5.14: LISA map created with EB rates for WNV incidents in the U.S. in 2011 

 

 

 

5.1.2 Retrospective and prospective test clustering in WNV disease data 

The analysis for the U.S. in GeoSurveillance did not bring any results. This might be due to 
the input data, although several alternative U.S. shapefiles (e.g. census data, ArcMap data) 
have been tested. Thus, this section of the results stays empty. 

5.1.3 Analysis of space-time clusters of WNV disease data using Kulldorff’s Scan 

Statistic 

The Scan Statistic can be applied to do retrospective and prospective analysis. Kulldorff 
(Kulldorff, 1997) defines retrospective analysis as a method to detect both “alive” clusters as 
well as “historic” clusters. The latter are clusters that ceased to exist before the end of the 
study period. For the retrospective analysis two different probability models, which comply 
best with the data selected for this study, have been chosen. The discrete Poisson 
probability model can be used if there are case data together with a background population 
at risk. The case data are included as part of the population count (Kulldorff, 1997). The 
second model is the Space-Time permutation model which is appropriate for use when case 
data are available. Both models are implemented for space-time analysis. SaTScan also 
provides options for purely spatial or purely temporal analyses. Prospective clustering 
methods are used for early detection of a disease outbreak. The analyses are conducted at 
continuous intervals, such as weekly, monthly, or yearly. For prospective clustering, the 
discrete Poisson probability model is applied, as well. 
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Using different probability models, retrospective analyses show slightly different results. The 
discrete Poisson model reveals two major spatio-temporal clusters which evolved 
throughout the investigation period, from 1999 to 2011 (see Figure 5.15). The most likely 
cluster is the red cluster labeled as “Cluster1”. It is the cluster that is least likely to be due to 
chance (Kulldorff, 2010). The cluster initially appeared in 2003 and ceased to exist in 2007. 
Altogether, there were 12,313 cases compared to 538 expected cases. This corresponds to a 
ratio of 23:1. The p-value is smaller than 0.001, thus the cluster is highly significant. The 
relative risk for the population inside the cluster compared to the population outside of the 
cluster is 36.98. This number is the estimated risk within the cluster divided by the estimated 
risk outside the cluster (Kulldorff, 2010). The summary of the analysis is provided in Figure 
5.16. The analysis also reveals a secondary cluster (green shaded polygons). This cluster, 
however, only persisted over one period in 2002. The number of observed cases was 2534 
compared to the expected cases of 471. This corresponds to a ratio of approximately 6:1. 
According to these calculations the relative risk inside the cluster is 5.76. The p-value, again, 
is smaller than 0.001. 

 
Figure 5.15: Retrospective test (discrete Poisson) for clustering in SaTScan 

 

 

 

Figure 5.16: Summary of space-time analysis (discrete Poisson model) including results for the most likely and secondary 
clusters 
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Applying the space-time permutation model, one most likely spatio-temporal cluster (cluster 
1) together with two secondary spatio-temporal clusters (cluster 2 & 3) is detected (see 
Figure 5.17). The most likely cluster is located in the eastern and central U.S., where the 
discrete Poisson model detected a secondary cluster. The time frame of the cluster, again, 
only extends over one year (2002). There are 2,586 observed cases compared to 627 
expected cases. Thus, the ratio between observed and expected cases is 4.12. The p-value is 
smaller than 0.001, which indicates a high significance. Cluster 2 is a secondary spatio-
temporal cluster where the observed/expected ratio is 1.92 with a p-value smaller than 
0.001. This is a historic cluster only persisting in 2003. Cluster number 3 is also a historic 
cluster, which emerges and ceases in 2006. The observed/expected ration is 5.27. Since the 
p-value is smaller than 0.001, the cluster is highly significant (see Figure 5.18). 

 
Figure 5.17: Retrospective test for clustering (space-time permutation) in SaTScan 

 
 

Figure 5.18: Summary of space-time analysis (Space-time permutation model) including results for the most likely and 
secondary clusters 

Interestingly, none of the retrospective models reveals any “alive” clusters. This might be a 
hint that the prevalence of WNV is ceasing. Thus, infections emerge more scattered across 
the 48 contiguous states, including D.C., to several illnesses before disappearing again. The 
information about distribution patterns of the WNV, clearly corresponds to the typical 
nature of the virus. First, it makes a big appearance in a particular region and subsequently 
spreads quickly to new areas. Depending on the aggressiveness of the viremia the virus 
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causes avian die-offs and several severe human disease cases. Then, it reaches a peak in 
terms of prevalence before ceasing again. However, the cessation of the virus can also be a 
result of awareness among people, precautionary measures, and comprehensive 
surveillance systems. For the latter, prospective cluster testing plays a big role in order to 
predict locations which are most prone in the future. In this analysis a prospective space-
time discrete Poisson model has been applied to detect possible sites for clustering in the 
future. The most likely place, where the WNV could be a major issue in the future is Idaho. 
The cluster emerged in 2006 and continues to exist till the end of the study period in 2011. 
There have been 1,208 observed cases compared to 75 expected cases. This is a ratio of 
16:1. The relative risk inside the cluster compared to locations outside the cluster is 16.68. A 
small p-value (p<0.001) confirms the high significance of the cluster. There are thirteen 
possibilities for secondary clusters. Most of them are located in the central or western U.S., 
in addition to the two southern states, Louisiana and Mississippi. Both states are potential 
WNV hot spots. Both have emerged in 2006 and are still “alive” at the end of the study 
period. In Louisiana the relative risk is 1.48, while in Mississippi the risk is 3.44. The map (see 
Figure 5.19) displays the most likely cluster (Idaho) as well as the thirteen secondary clusters. 
These are categorized on the basis of their relative risk ratio. The darker the shading, the 
higher is the relative risk. Among those states with a high risk ratio are Louisiana, Arizona, 
and Colorado. 

 
Figure 5.19: Prospective space-time clustering in SaTScan 

5.1.4 Visualization of univariate space-time patterns (Vis-Stamp) 

The next step in this analysis is to reveal the types of clusters that exist in the data. For this 
purpose, a SOM is applied in order to process the data and to derive clusters of spatial 
objects. The size for the SOM is chosen as 7x7, which is the default size in Vis-Stamp. That 
means that the SOM will be composed of 49 nodes which represent different types of 
clusters. Nodes can be left empty, thus no spatial object of the data is assigned to that kind 
of cluster. The SOM uses the Euclidean distance to assess similarity between spatial objects 
(Guo, 2009). When training the SOM, the program constructs a U-matrix with hexagons, 
representing the various cluster types (see Figure 5.20). The node hexagons contain circles, 
which are scaled on the basis of the number of data items belonging to the cluster. For 
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example, the large dark blue circle in the upper right corner of Figure 5.20 is a cluster type 
that contains a high number of states. In this specific case, the dark blue circle corresponds 
to states with less than one WNV incident among 10,000 people annually. This was the rate, 
which was used for the calculations. In the very opposite corner there is a dark red circle, 
representing a cluster type with approximately 1000 WNV cases per 10,000 inhabitants. The 
shading of the hexagons gives some indication about the dissimilarity between the clusters. 
This example, however, is more useful if the analysis is of multivariate nature. In this analysis 
dissimilarity is defined in terms of time and WNV intensiveness. Similar clusters are assigned 
similar colors from a 2D diverging color scheme (Guo, 2009). 
 

 
Figure 5.20: 7x7 SOM coloring clusters of spatial objects; 

In the space-time matrix two dimensions are included, namely space and time. Thus, the 
analysis focuses on the space-time evolvement of the virus. The columns represent time 
(years) and the rows are the 49 contiguous U.S. states. While the temporal component 
follows a chronological order, the order of the spatial dimension seems to be random. That 
is not the case, because Vis-Stamp reveals similar clusters among the data and groups them. 
As it is depicted in Figure 5.21, in 2003 South Dakota, Nebraska, Nevada, Wyoming, and 
Colorado had significantly higher WNV incidents than the surrounding states. These five 
states are then considered to be a hot spot. The space-time matrix displays patterns among 
space-time data. In this analysis blue and green shaded objects correspond to a low WNV 
rate, whereas purple and red shaded objects are representative for a high WNV rate in a 
state. In the first year of the study period all states are shaded in blue because of the 
absence of the WNV in the U.S. New York State, however, is shaded in a lighter blue due to 
the initial WNV outbreak in the summer of 1999. Till 2001 there is no significant outbreak, 
but the virus spreads continually to adjacent states. Apart from 2002 the virus emerges in a 
high number of states and causes high infection rates. Thus, the hue of the matrix’s cells 
goes from green to white and eventually reaches a luscious red. Earlier than ten years before 
its original appearance in the U.S. the WNV begins to cease gradually. There are hardly any 
high affected risk states any more. In 2011, most of the cells are already shaded in a blue 
hue again. According to the space-time matrix the most affected states in terms of intensity 
and longevity of the WNV have been South Dakota, Nebraska, and Nevada. 
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Figure 5.21: Space-Time Matrix 

While the space-time matrix depicts each element, the map matrix highlights the entire 
study area year by year. Thus, changes in trends and patterns are easier recognizable. The 
legend for both the space-time matrix as well as the map matrix is a parallel coordinate plot 
(PCP) (see Figure 5.22). In this analysis the PCP only contains one variable. This is the rate of 
WNV disease cases per 10,000 people. A thick line corresponds to a high number of 
members in that cluster. A thin line corresponds to a low number of members. Similar 
clusters have similar colors. Blue hues are representative for a low number of cases, whereas 
red hues stand for a high number of cases in a state. 
 

 
Figure 5.22: PCP – Parallel coordinate plot 
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Figure 5.23: Map Matrix 

In the map matrix (see Figure 5.23) the colors in the space-time matrix are projected onto 
the study area. In 1999 only the state of New York has a light blue hue. Until 2002, similar to 
the space-time matrix, there are only about three small distinct clusters in the study area. 
Each of those clusters holds few or no WNV cases. In 2002, the situation changes since the 
WNV spreads to the center of the U.S. The disease cases in several states rise significantly in 
comparison to the previous year. In 2003, a hot spot has evolved in the central U.S. In the 
states which belong to that cluster, the WNV disease rate is between 6 and 14 cases per 
10,000 inhabitants. This is the highest rate occurring in the study period. In the following 
years, the virus continues its spread across the entire contiguous U.S., hitting California more 
severely in 2005. While several similar hot spots evolve in the central and western U.S., the 
north-eastern part of the U.S. goes back into a state with a low number of WNV incidents. 
Thus, there are hardly any WNV incidents in 2004 till the end of the study period in the 
north-east. The WNV has been most “successful” in terms of spread over the country in the 
years 2002 till 2007. This is when the virus “conquered” large areas and led to high disease 
rates in several states. In 2011, the last year of the study period only the states of Nebraska, 
Arizona and California reveal slightly higher WNV disease cases than the rest of the 
contiguous states of the U.S. 

5.2 Spatial and Temporal analysis of the WNV in Louisiana 

After the analysis of WNV distribution patterns in the U.S., the focus is now on the 
emergence and evolvement of the WNV in the state of Louisiana. The WNV initially emerged 
in Louisiana in 2001 with one registered human case (CDC, 2011a), and spreading continually 
across the entire state in the following years. In general, the transmission period is from 
June to November (CDC, 2011a). During this period most WNV disease cases are diagnosed 
and registered. 
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5.2.1 Exploratory spatial data analysis (ESDA) in Open GeoDa 

Similar to the contiguous U.S., the first step in the analysis is to find out if there is spatial 
autocorrelation among the WNV cases and if what type of spatial autocorrelation exists, if 
any. For this purpose LISA maps are created in Open GeoDa. These maps highlight local 
spatial autocorrelation. For a global overview the univariate Moran’s I is calculated. To 
measure spatial autocorrelation a weights file has to be created first. All spatial 
autocorrelation calculations are based on the Rook contiguity. The connectivity chart gives 
information about the neighborhood situation among Louisiana Parishes (see Figure 5.23). 
Thus, in the state of Louisiana most parishes have between four and six neighbors. For the 
creation of LISA maps Empirical Bayes rates are used. The total number of WNV incidents in 
a parish is normalized by the resident population estimate of the year 2002. The population 
estimate for Louisiana is provided by the U.S. census bureau. 
 

 

Rook Neighbors 

(Frequency of U.S. States) 

 

Figure 5.24: Connectivity chart for Louisiana parishes 

First, lower and upper outliers are determined in order to get a better understanding of the 
WNV rates. The “raw rate” is a simple ratio of the event count to the base population at risk, 
while the Empirical Bayes procedure particularly affects the value for locations with small 
populations at risk (Anselin, 2003b). It will also typically remove the problem associated with 
many ties (especially zero values) (Anselin, 2003b). For this purpose, both Box Plot Maps as 
well as Percentile Maps are created with raw rates. The total number of disease incidents is 
normalized with the population estimates for the year 2002, provided by the U.S. census 
bureau. 
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Box Plot Map 
Smoothed with raw rates 

Hinge = 1.5 

Percentile Map 
Smoothed with raw rates 
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Table 5.2: Outlier maps of WNV disease cases in Louisiana in the study period from 2002 - 2011 

The outlier analysis provides information about the location of lower and upper outliers in 
the WNV data. In 2002, there was a sudden WNV outbreak. Most of the upper outliers are 
located in the eastern part of the state, close to Jefferson Parish where the WNV was initially 
isolated in 2001. In the following year (2003), a change occurred. Several upper outliers 
appear in the very northern parishes of the state. The parishes in the east are still 
categorized in the upper quartile or in the upper 50% respectively. In 2004 the WNV spread 
across the entire state, leading to many similar count cases in the parishes. Apart from 2005, 
the upper outliers switch between the eastern part and the northern part of Louisiana. In 
2008, most of the upper outliers are concentrated around the Baton Rouge metropolitan 
area. These outliers persist till the end of the study period in 2011, confirming the theory 
that the WNV is an urban disease. This means that the WNV finds perfect conditions to 
flourish in an urban environment. In 2009, for the first time some lower outliers appear. The 
lower outliers are scattered all over Louisiana. In 2011, again, most of the upper outliers are 
located in east Louisiana. 
 
In Louisiana the WNV was initially only found in Jefferson Parish in August 2001 (see Figure 
5.25). The first indication of the WNV presence was found in a crow. A little later, the first 
human infection was detected in a homeless man. In 2002, there was a large WNV outbreak, 
leading to 204 neuroinvasive disease cases (DHH, 2002). In addition, 104 cases with WNV 
fever have been reported. The outbreak started in mid-June, reaching a peak in July and 
August before the virus started to cease again in mid-August. 
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Figure 5.25: Introduction of the WNV in Jefferson Parish in 2001 

The global Moran’s I reveals a slight positive spatial autocorrelation, which is an indicator for 
clustering. Indeed, there is a hot spot north of Jefferson Parish. Two low-low clusters are 
located at the coast of Louisiana (see Figure 5.25). 
 

2002 

 

Figure 5.26: LISA map created with EB rates for WNV incidents in Louisiana in 2002 

 

 

In 2003, the hot spot in the southeastern part of Louisiana was dissolved. Curiously, there 
are two high-high clusters in the very northern part of the state. In central Louisiana a cold 
spot has evolved including the parishes Acadia, Lafayette, Pointe Coupee and St. Landry. In 
2003, the number of human disease cases increased sharply but at the same time the 
duration of the arboviral season lengthened (DHH, 2003). 
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2003 

 

Figure 5.27: LISA map created with EB rates for WNV incidents in Louisiana in 2003 

v 

 

 
In 2004, a large low-low cluster has emerged in southern Louisiana, nearly covering the 
entire coastline of the state. The number of cases in the state still remains low. The center of 
most human activity in terms of virulence is the Baton Rouge metropolitan area extending 
over East Baton Rouge Parish and Livingston Parish (DHH, 2004). In addition there is a hot 
spot in the north, which has already emerged during the previous year. The high-low cluster 
in Rapides Parish, in central Louisiana, suggests that its WNV disease rate is higher than the 
rates in the adjacent parishes. 
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Figure 5.28: LISA map created with EB rates for WNV incidents in Louisiana in 2004 
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The Moran Scatter plot reveals that the Moran’s I approaches spatial randomness. Still, 
many parishes are located in the third quadrant (lower-left quadrant) of the scatter plot, 
indicating the occurrence of low-low clusters. There is still one cold spot at the Gulf Coast. In 
the north of that cold spot is a high-high cluster, including East Baton Rouge Parish. The 
number of total cases (183) is higher than in the last two arboviral seasons, but still lower 
than during the outbreak in 2002. 
 

2005 

 

Figure 5.29: LISA map created with EB rates for WNV incidents in Louisiana in 2005 

 

 

In 2006, the spatial distribution does no longer suggest any spatial autocorrelation (but this 
is not true, since the Moran’s I is 0.2472). Thus, there is no dependency between the WNV 
rates of neighboring parishes (again, this is not really true). In addition, the parishes seem to 
be uniformly arranged around the origin in the Moran Scatter plot. However, the first 
quadrant is an exception, because the data are more scattered in that quadrant. There is a 
hot spot extending eastward from East Baton Rouge Parish to St. Tammany and Washington 
Parish. Within this hot spot disease rates are significantly higher than in the rest of the state. 
This is the reason for the data scattering in the first quadrant, where several parishes lie far 
away from the origin. In 2006 the number of disease cases is a little higher than in the 
previous years. 
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2006 

 

Figure 5.30: LISA map created with EB rates for WNV incidents in Louisiana in 2006 

 

 

In 2007, the WNV infection rate has rapidly decreased. The global Moran’s I still suggests a 
close to random distribution with a very weak hint of negative spatial autocorrelation. There 
are no more hot spots but there is one large cold spot at the Gulf Coast. 
 

2007 

 

Figure 5.31: LISA map created with EB rates for WNV incidents in Louisiana in 2007 

 

 

In 2008 WNV-related disease cases are already rare. Most of the incidents concentrate in 
central Louisiana, which are responsible for the creation of two hot spots in West Feliciana 
Parish and Avoyelles Parish. Along the Gulf Coast there are hardly any reported cases, 
resulting in a large cold spot. 
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2008 

 

Figure 5.32: LISA map created with EB rates for WNV incidents in Louisiana in 2008 

 

 

The spatial distribution of WNV rates from 2009 is slightly different compared to the 
previous years. Most parishes are concentrated in both the second (upper -left) as well as 
the third (lower-left) quadrant. While the second quadrant is an indicator for the occurrence 
of spatial outliers, the third quadrant stands for the existence of cold spots. Indeed, there 
are several low-low clusters in the southern part of Louisiana. In addition there are two hot 
spots in eastern Louisiana. The total number of disease cases, however, keeps getting lower. 
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Figure 5.33: LISA map created with EB rates for WNV incidents in Louisiana in 2009 

 

 

In 2010, there is a hot spot including East Baton Rouge Parish and Livingston Parish. Thus, 
most WNV activity in the arboviral season in 2010 is recorded in the Baton Rouge 
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metropolitan area. Several cold spots are scattered around the hot spot. No clusters or 
spatial outliers are found in the northern Louisiana region. 
 

2010 

 

Figure 5.34: LISA map created with EB rates for WNV incidents in Louisiana in 2010 

 

 

In 2011 WNV surveillance has faced an unprecedented low disease rate since its onset ten 
years earlier. During the whole season there have only been 12 reported human disease 
cases. Most of the cases are reported from eastern and southern Louisiana. 
 

2011 

 

Figure 5.35: LISA map created with EB rates for WNV incidents in Louisiana in 2011 
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5.2.2 Retrospective and prospective tests for clustering in WNV disease data 

Unlike Open GeoDa, GeoSurveillance has the power to integrate a temporal dimension into 
analysis. Thus, one single test is conducted in order to detect clusters which have emerged in 
Louisiana and are still persistent at the end of the study period. This methodology is called 
prospective testing and is implemented when there is a need to discover emerging or 
prospective clusters. Retrospective tests are conducted for every single observation year 
from 2002 till 2011. 

5.2.2.1 Retrospective tests 

Retrospective tests are calculated with the adjusted Poisson model, considering a fixed 
bandwidth and a significance level α = 0.05. In the legend (see Figure 5.36) the local score 
statistic U is compared to predefined critical threshold values. In the case of the score 
statistic, category endpoints are defined as zero, one-third and two-thirds of the maximum 
and minimum values (Rogerson et al., 2007). 
 

 
Figure 5.36: Definition of category cutoffs for the legend of the score statistic (taken from Rogerson et al., 2007) 

 
2002 

 

 

2003 

Local score statistic U

   -4,20 -    -2,93

   -2,92 -    -2,08

   -2,07 -     0,00

    0,01 -     2,86

    2,87 -     5,63

    5,64 -     9,30

Dark Red Red Light Red Light Blue Blue Dark Blue 

0 (1/3) max 
 

(2/3) max 
 

(-1/3) min (-2/3) min 
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2004 

 

 

2005 

 

 

2006 

   -4,11 -    -2,45

   -2,44 -    -1,34

   -1,33 -     0,00

    0,01 -     0,91

    0,92 -     2,28

    2,29 -    11,73

Local score statistic U

   -5,08 -    -2,67

   -2,66 -    -0,85

   -0,84 -     0,00

    0,01 -     0,72

    0,73 -     2,21

    2,22 -     5,20

Local score statistic U

   -3,63 -    -2,29

   -2,28 -    -1,11

   -1,10 -     0,00

    0,01 -     0,75

    0,76 -     1,43

    1,44 -     3,93

Local score statistic U
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2007 

 

 

2008 

 

 

2009 

   -4,89 -    -2,02

   -2,01 -    -1,53

   -1,52 -     0,00

    0,01 -     1,72

    1,73 -     3,07

    3,08 -     7,83

Local score statistic U

   -2,42 -    -1,95

   -1,94 -    -1,25

   -1,24 -     0,00

    0,01 -     1,09

    1,10 -     1,66

    1,67 -     5,07

Local score statistic U

   -2,19 -    -1,40

   -1,39 -    -0,99

   -0,98 -     0,00

    0,01 -     1,15

    1,16 -     2,87

    2,88 -     5,86

Local score statistic U
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2010 

 

 

2011 

   -1,76 -    -0,93

   -0,92 -    -0,54

   -0,53 -     0,00

    0,01 -     0,23

    0,24 -     1,04

    1,05 -     3,82

Local score statistic U

   -2,23 -    -1,43

   -1,42 -    -0,96

   -0,95 -     0,00

    0,01 -     1,55

    1,56 -     3,62

    3,63 -     5,38

Local score statistic U
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Table 5.3: Retrospective tests of WNV disease data from 2002 till 2011 

According to the retrospective analysis in GeoSurveillance, in the year of the WNV outbreak 
(2002) the parishes with the highest incident rates are located in eastern Louisiana, including 
the metropolitan area of Baton Rouge. Several parishes form a significant hot spot. The 
adjacent states are still categorized among the first or even second third of the maximum 
values. In the northwest there is a large cold spot with values categorized among the 
minimum second third. In the following arboviral season (2003) patterns shifted. There is still 
a high incident rate in the eastern part of the state, but the most significant hot spot has 
evolved in the north-west. Interestingly, one year ago a cold spot has been at the exact same 
location where the hot spot is now located. In the following years several hot spots emerge 
and disappear in the north, respectively in the eastern part of Louisiana, suggesting that 
breeding habitats for both mosquitoes and birds are appropriate enough to maintain the 
viremia. During those years, cold spots shift between central and south Louisiana. In 2007 
WNV incident rates are among the maximum three thirds in the entire northern and central 
part of Louisiana. After 2007, WNV incidents cease and there are no more hot spots in the 
northern part of the Gulf state. In contrast, the WNV concentrates in the area, where it 
initially broke out in 2002, including the eastern parishes and the Baton Rouge metropolitan 
area. The hot spot distribution pattern between northern and eastern Louisiana faces a 
severe interruption in the last study year, when unexpectedly a large hot spot emerges in 
south-western Louisiana. The results of the retrospective test correspond closely with the 
analysis implemented with Open GeoDa. Especially the hot spots in the eastern and 
northern part of the state are detected in both analyses. A major difference, however, is 
noticed in the results for the year 2007. While GeoSurveillance detects a large hot spot that 
extends across the northern part of Louisiana, Open GeoDa does not find any high-high 
clusters in that area. Another difference can be seen when comparing both results for the 
year 2011. While GeoSurveillance classifies the western parishes among the maximum two 
thirds of the WNV rates, GeoDa suggests that values are low in those parishes but high in 
their neighbors. These discrepancies might be due to different underlying models, the two 
software packages are built upon. After all, Open GeoDa is a tool for the detection of spatial 
autocorrelation in the data, while retrospective testing in GeoSurveillance aims to reject or 
confirm the null-hypothesis of no spatial clustering. 

   -1,18 -    -0,93

   -0,92 -    -0,75

   -0,74 -     0,00

    0,01 -     0,43

    0,44 -     1,64

    1,65 -     5,66

Local score statistic U
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5.2.2.2 Prospective test 

The prospective testing for clusters and clustering is based on the cumulated sum method. 
The statistic consists of a z-score at a time t and a parameter k. The parameter k is a 
threshold value, which can be defined in the user interface before calculating the analysis. 
For the analysis, each total count of a parish in a certain year is converted into a z-value. This 
is necessary in order to conduct a prospective test. In addition, z-scores have to be ordered 
in a temporal sequence, thus, each column corresponds to one year. The signal detection for 
a region is based on both the threshold values k and h. If the value of a z-score exceeds the 
value of the k-parameter the difference between them is added to the cumulative sum. This 
step is repeated for each year between 2002 and 2011 and for each parish. If, at the end, the 
cumulative sum of a parish exceeds the threshold value h the parish is categorized as 
“Signal”. In this analysis the value of the parameters is defined as: k = 1, h = 10. For k, the 
default value has been adopted. For h, several values have been tested and the chosen value 
had to be appropriate for the analysis and the used data.  
 

Year Cusum Region of maximum 
cusum value 

Chart for maximum cusum 
x = year, y = cusum value 

2002 4.99 Washington 

 

2003 10.90 Caddo 

2004 15.18 Caddo 

2005 17.73 Caddo 

2006 15.42 Caddo 

2007 17.57 Caddo 

2008 17.09 Caddo 

2009 15.91 Caddo 

2010 13.65 Caddo 

2011 16.83 Washington 

Table 5.4:  Maximum cusum value for each year 

In Table 5.4 the maximum cusum values for each year are given. In addition, the table 
depicts the respective parishes where the maximum cusum values have been calculated. 
Only two parishes are recorded, namely Washington and Caddo. After year 10 (2011), the 
cusums of five parishes have exceeded the critical threshold value h and are, thus, signal or 
risk states for prospective WNV outbreaks (see Figure 5.37). 
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Figure 5.37: Prospective test 

The legend for the cusum is constructed based on the threshold (h-value). 25%, 50%, 75% 
and 100% of the h-value are the class cutoff values used for coloring the map (Rogerson et 
al., 2007). If the cusum value of a parish exceeds the h-value, it is categorized as “signal”. 
Apart from Caddo and Washington further signal parishes are Livingston, St. Helena and 
Tangipahoa. All these regions are located either in the eastern or northern part of the state. 
This is where hot spots have emerged throughout the last ten years over and over again. 
East Baton Rouge, East Feliciana and St. Tammany are categorized within 100 % of the h-
value. Ascension, Bossier, West Baton Rouge and West Feliciana Parishes are within 50 % of 
the h-value. Each prospective WNV outbreak location lies either in the east or in the north of 
the state. Considering these analysis results, precautionary measures and surveillance 
methods can be implemented in those locations. Prospective tests reveal important 
information for future predictions in terms of WNV disease distribution patterns. 
 
In addition, GeoSurveillance delivers valuable statistics of the cusum. Thus, the trend of the 
cusum can be visualized in form of a chart. In table 5.5 the cusum of the five signal states in 
year 10 (2011) is depicted. The x-axis represents the time from the WNV onset in 2002 till 
the end of the study period in 2011. The green line is the cusum whereas the red line 
represents the h-value. The five charts reveal several discrepancies in the evolvement of the 
WNV. In Caddo Parish there has been a steep increase in disease cases in the first years. The 
peak is in 2005. Apart from 2008 the cusum starts to gradually decrease. In Livingston Parish, 
the onset of WNV was not that strong in the first two years. Starting from 2004 the cusum 
steadily increases, except in 2007, until it reaches an unprecedented peak in 2011. The trend 
of the line is clearly moving upwards. In St. Helena and Tangipahoa Parishes the trends of 
the lines are similar to Livingston Parish. Both lines are tending upwards. Washington Parish 
is the only parish of those five where there was a strong increase in 2002. Afterwards the 
trend goes downwards till 2005. Apart from that year WNV incidents rise strongly and the 
trend goes steadily upward till the end of the study period. 
  

Signal

017... Caddo

063... Livingston

091... St. Helena

105... Tangipahoa

117... Washington

100 %

033... East Baton Rouge

037... East Feliciana

103... St. Tammany

50 %

015... Bossier

125... West Feliciana

121... West Baton Rouge

005... Ascension
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Caddo Livingston 

  
St. Helena Tangipahoa 

  
Washington 

 

Table 5.5: Cusum for individual regions for the year 10 (2011) 

5.2.3 Analysis of space-time clusters of WNV disease data using Kulldorff’s Scan 

Statistic 

For the analysis in Louisiana two different probability models have been implemented. Due 
to their distinct structure the results of the analyses vary significantly. The first probability 
model is the discrete Poisson model, which is applied to a space-time analysis. It reveals one 
most likely cluster (cluster 1) in the eastern part of Louisiana, including the Baton Rouge 
metropolitan area (see Figure 5.38). The lifespan of the cluster starts in 2002 and ends in 
2006. In addition, a secondary cluster (cluster 2) is detected in the north-western part of the 
state, including the Parishes Caddo and Bossier. The secondary cluster has a slightly shorter 
lifetime (2003 – 2005). In the most likely cluster there are 432 observed cases compared to 
144 expected cases. Thus, the ratio between observed and expected is 3 to 1. In the 
secondary cluster there are 111 observed cases and 26 expected cases. The ratio between 
observed and expected is 4 to 1.  
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Figure 5.38: Retrospective test (discrete Poisson) for clustering in SaTScan 

 

 

Figure 5.39: Summary of space-time analysis (discrete Poisson model) including results for the most likely and secondary 
clusters 

A second retrospective space-time analysis was carried out in SaTScan using the space-time 
permutation model. This method detects three clusters which have evolved throughout the 
study period (see Figure 5.40). The most likely cluster (cluster 1) is located in northern 
Louisiana and extends across several parishes. This is a first major difference to the results of 
the discrete Poisson model, where the most likely cluster is located in the east. The cluster 
arises in 2003 and exists till 2005. There are a total of 168 observed cases in that area 
compared to approximately 92 expected cases, which leads to a ratio 2 to 1. There are two 
secondary clusters (clusters 2 & 3). Cluster 2 extends from central to southern Louisiana. The 
cluster includes the Baton Rouge metropolitan area, which is, considering previous analysis 
results, likely to be a WNV hot spot. However, what makes that secondary cluster dubious is 
the fact that it includes southern Louisiana parishes, where the WNV has not really been 
widespread throughout the study period. The result reveals that this cluster has only existed 
for one arboviral season, which was during the outbreak year in 2002. In that period a total 
of 30 cases were observed compared to only 8 expected ones (ratio 3.5 to 1). This cluster 
might have been categorized as significant due to the high observed/expected ratio. Cluster 
3 is another secondary cluster, confined to the year 2002. It is located in southeastern 
Louisiana, including Jefferson Parish, the area where the WNV was initially isolated in 2001. 
The ratio between observed and expected is only 1.45 (133 versus 92) (see Figure 5.41). 
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Figure 5.40: Retrospective test for clustering (space-time permutation) in SaTScan 

 

 
 

Figure 5.41: Summary of space-time analysis (Space-time permutation model) including results for the most likely and 
secondary clusters 

Similar to the results of retrospective tests for the contiguous U.S.A. the tests for Louisiana 
do not reveal any “alive” clusters, but only historic clusters. Thus, the prevalence of the WNV 
is ceasing in this Gulf state. This might be due to increased awareness and precautionary 
measures or due to a natural reduction of the WNV in that area. For future predictions a 
prospective analysis was carried out using the prospective space-time discrete Poisson 
model (see Figure 5.42). The prospective test reveals only one most likely cluster, namely 
Point Coupee Parish. Interestingly Point Coupee Parish does not lie in any of the considered 
“hot spot locations” which have been detected in previous analyses. The cluster has 
emerged in 2008 and persists till the end of the study period. Six cases have been observed, 
while only 2.3 cases have been expected in that area. That leads to a ratio of 2.3 to 1. The 
relative risk of being infected with the WNV is 2.6 times higher in the cluster than outside of 
the cluster. However, the p-value of the cluster is 1.0. Thus, when comparing the p-value to 
the significance value α = 0.05, the p-value is higher than α. Hence, the cluster is not 
significant (see Figure 5.43). 
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Figure 5.42: Prospective space-time clustering in SaTScan 

 

Figure 5.43: Summary of the most likely (but not 
significant) prospective cluster in Louisiana 

5.2.4 Visualization of univariate and multivariate space-time patterns in Vis-

Stamp 

The Louisiana Department of Health and Hospitals provides data about human WNV disease 
cases, both fever and neuroinvasive diseases. In addition, their annual reports include 
information about dead avian species, sentinel chicken, equine disease cases and infected 
mosquito pools. This data, however, is not completely available for the entire study period. 
As far as sentinel chicken is concerned, its collection and testing methods have been 
declared inefficient by the department (DHH, 2012). Thus, DHH stopped testing chicken for 
WNV infections. Mosquito pools are not tested on a regular basis. The testing intervals also 
vary from parish to parish, depending on financial resources (DHH, 2012). Thus, “infected 
mosquito pools” would bias analysis results. There is no way to normalize it, thus, was 
excluded from this analysis. The remaining variables (dead avian species, sentinel chicken 
and equine disease cases) are completely available from 2002 till 2005. For this period, a 
multivariate analysis can be carried out. 
 
First, univariate space-time patterns are identified. This analysis is based on the total cases 
of WNV incidents in a parish compared to its population. For this purpose a SOM with the 
dimensions 7x7 is created. The SOM assigns similar clusters similar colors (see Figure 5.44). 
The SOM depicts a large blue circle in the upper right corner. This is the largest cluster in 
terms of number of parishes. This circle represents clusters with little WNV activity. In the 
opposite corner, the significantly smaller red circle represents clusters with the highest 
number of WNV incidents in the study area and study period. The fact that the blue circle 
appears in a white hexagon while the red circle is located within a dark shaded hexagon is an 
indicator for large dissimilarities between two clusters. 
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Figure 5.44: 7x7 SOM, coloring clusters of spatial objects 

In the space-time matrix patterns over space and time are depicted (see Figure 5.45). The 
matrix is built with the years of the study period (columns) and the parishes (rows). Vis-
Stamp orders the parishes in a way, that similar patterns lie close to each other. This allows 
quick cluster detection. For example, parishes with a high onset of WNV cases in the 
outbreak year and with continually high WNV rates in the following years are listed in the 
upper part of the matrix. Thus, a cluster has evolved in the period from 2002 till 2006 in the 
parishes Point Coupee, Tangipahoa, St. Tammany, Washington, Ascension, Livingston and St. 
Helena. A second large cluster which evolved in 2004 and persisted until 2005 can be seen in 
the lower part of the matrix. This cluster involves the parishes Franklin, Caldwell, 
Natchitoches, Ouachita, West Baton Rouge, East Baton Rouge, Rapides and Iberville. Until 
2008 several smaller clusters appear which exist only for one period. There is a cluster in 
2002 involving ten parishes. Weaker clusters with low WNV incidents and including just a 
few parishes emerge in 2003, 2006, and in 2008 (Point Coupee, Tangipahoa, St. Tammany). 
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Figure 5.45: Space-time matrix 

The PCP highlights the clusters and assigns them values (see Figure 5.46). This analysis is 
univariate. The variable investigated is the rate of WNV cases per 10,000 population. The 
cluster with no cases is represented as a thick blue line, which indicating a high number of 
members in that cluster. There is a cluster with 1.5 cases per 10,000 population, colored in 
bright red. Also this cluster has a high number of parishes. 
 

 
Figure 5.46: PCP 

The map matrix displays spatial patterns year by year. This makes interpretation easier. In 
2002 there is a large hot spot in eastern Louisiana. Several clusters with slightly elevated 
WNV incident rates are scattered all over the state, excluding the very northern and western 
parishes. In the following years clusters with less significantly and significantly elevated cases 
are scattered from eastern to northern Louisiana. Especially the eastern Parishes St. 
Tammany, Washington, Tangipahoa, East and West Baton Rouge are affected significantly in 
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the years 2005 and 2006. After 2008 there is a strong reduction in WNV incidents. 
Thereafter, the WNV keeps ceasing in the state. 
 

 
Figure 5.47: Map Matrix 

Since the WNV is generally associated with avian die-offs and disease cases in domestic 
animals, the following multivariate analysis is carried out in order to detect possible 
connections between human and animal cases. Apart from human WNV disease rates per 
10,000 population, the variables “bird”, “sentinel chicken” and “horse” are included in the 
analysis. Incidents among these species have been collected and reported by the Louisiana 
Department of Health and Hospitals (DHH, 2012). 
 
The higher number of variables makes the PCP look slightly different (see Figure 5.48). The x-
axis of the plot depicts the variables while the y-axis is divided into cluster category cutoff 
values. Each cluster is represented by a colored line, which has certain attributes. For 
example, if a parish is colored in bright red it has at least ten sentinel chicken occurences, 29 
dead birds, the WNV has been diagnosed in more than five horses and there have been at 
least three human WNV disease cases among 10,000 people. This cluster suggests that there 
is a high connection between those four variables. The white cluster represents a high 
number of cases among birds and several human cases. The pink and purple cluster stand for 
a low human incident rate but high rates among the other species, while the green clusters 
represent the opposite (high human incident rate and low rates among chicken, birds and 
horses). Blue clusters, in general, represent low rates across all variables. 
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Figure 5.48: Multivariate PCP 

The space-time matrix reveals a large green cluster in the outbreak year (see Figure 5.49). 
The parishes belonging to that cluster have a high human WNV disease incident rate. 
However, animal cases are scarce. A second cluster emerges in that same year (2002). It is a 
purple cluster, representing very high sentinel chicken cases, several bird cases, and little 
human and equine cases. This cluster persists till the next arboviral season. In 2003, a white, 
green, and orange pattern emerges. These clusters have one thing in common, namely very 
high human disease rates. The most affected locations are Bossier, Caddo, West Carroll and 
St. Helena. The cluster type changes in the following year as human cases decrease. In 2005, 
there is another green-red-orange pattern, including Iberville, Ouachita, Livingston, and St. 
Helena. 
 
If there is a connection between animal and human incident cases, clusters would either be 
red or orange representing high cases in every variable or they would be blue which means 
low cases across all parameters. However, this is not the case, because there are plenty of 
white, purple and green clusters. One reason for this is that the WNV does not spread 
uniformly because it depends on vectors and hosts. Another issue that has to be put into 
consideration is that the location where a mosquito contracts the WNV to a bird and the 
location where the bird dies due to WNV might be completely different since many avian 
species migrate. Also, there might be a large time span between these two events, consisting 
of the incubation period and the development of high enough viremia which is eventually 
lethal for the bird. A pattern which suggests a connection between human and animal cases 
would be, first a purple or pink cluster (high cases among chicken and birds) directly 
followed by a green, orange red or white cluster (high human cases). 
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Figure 5.49: Space-time matrix 

The space-time patterns are visualized in the form of maps in the map matrix (see Figure 
5.50). Interestingly, in the outbreak year in 2002 a large green cluster with high human 
disease rates but low animal incident cases evolved. 
 

 
Figure 5.50: Map matrix 
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6 Conclusion 

The WNV has been a severe danger for both humans and animals over more than two 
decades. Since its initial introduction into the U.S. in New York City in 1999 it has spread 
across the entire contiguous U.S. Cases have also been reported in Canada apart from 2002 
(PHAC, 2011) and in the Caribbean apart from 2007 (Barrera et al., 2008). The successful 
spread of the WNV depends on several circumstances. First, areas with optimal breeding 
sites for birds and mosquitoes provide a decent environment for the WNV to evolve. A 
second circumstance is the prevalence of a sentinel population at risk. Humans and 
mammals are so-called incidental hosts in the natural transmission cycle of the virus. If there 
is an outbreak of the WNV in an unpopulated area the virus does not form any harm to 
humans and domestic animals unless it moves on to more populated areas. However, the 
virus is considered an urban pathogen (Ruiz et al., 2007), endangering avian species and 
susceptible to human risk groups like elderly people. The introduction of the WNV into the 
U.S. is still a controversial issue. Most theories state that the ease of intercontinental travel 
methods is primarily responsible for the spread of the WNV to the western hemisphere 
(Sfakianos, 2005). While the spread of the WNV inside the U.S. succeeded in a slow way from 
1999-2001, the spread of the WNV suddenly exploded starting in 2002. In that year same, 
both the number of affected regions as well as the number of affected people diagnosed 
with the WNV disease rose to an unprecedented level. In the following season (2003) 
incident cases even doubled. The reason for this sudden outbreak might be associated with 
the climate. In general, climate is the third circumstance for the evolvement and success of a 
virus. The winter season of 2001 and 2002 was quite warm. Precipitation in the form of snow 
levels was below the average. This led to water shortages in the western U.S. due to a lack of 
spring melt water (Weather explained, 2012). The 2002 summer season was also one of the 
warmest on record. The year 2002 has been considered to be the second warmest year since 
1881 (the beginning of the records). This might be due to a strengthening El Niño episode, in 
late boreal summer continuing into early winter (Weather explained, 2012). The mild winter 
and the high temperatures as well as water shortages in spring might have had a positive 
effect on mosquito reproductions. Thus, many WNV infected species could have been able 
to overwinter, carrying the virus into a new season under better circumstances. In addition, 
there could have been an increase of breeding sites for mosquitoes due to the high 
temperatures and scattered drought episodes. For instance, the culex mosquito prefers to 
breed in small bodies of water (Weather explained, 2012). The analyses in this thesis show 
that the WNV spreads from the U.S. east to the U.S. north coast within a matter of three 
years, hitting California severely in 2004. During the course of this rapid spread, several hot 
spots of WNV human disease cases evolved. In the near future, prospective clusters might 
emerge in southern states like Louisiana, Mississippi, Arizona, and New Mexico. However, 
also the state of Idaho is considered to be part of a most likely cluster for a WNV disease 
outbreak in the near future. The analyses of human WNV cases also reveal that in the recent 
five years the prevalence and the severity of the virus has ceased steadily. This observed 
trend corresponds to the nature of the virus which usually has a strong initial emergence 
before slowly ceasing again. The cease can also be due to better precautionary measures, 
improved surveillance systems, and increased public awareness. In Louisiana, like in many 
other states, the WNV broke out in 2002. The first case was found in a homeless man in 2001 
in Jefferson Parish. Since then, the WNV spread across the entire state forming hot spots in 
northern and south-eastern Louisiana. In Louisiana, the Department of Health and Hospitals 
is responsible for the surveillance of the WNV. They have issued annual reports about WNV 
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activity in the state. Apart from human disease cases also bird deaths, WNV-infected 
chicken, and horses are recorded. There is no significant correlation between human cases 
and WNV sentinel chicken cases, or bird deaths, respectively. This might be due to the fact 
that many avian species migrate. Studying the routes of avian species is a future project 
outlined by the CDC (Rappole et al., 2000). Thus, scientists can investigate transmission 
routes created by avian species, which are most likely responsible for transmitting the WNV 
to the Caribbean and even to parts of Latin America. 
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