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Abstract

The complexity of multirobot systems increases exponentially with every
additional robot. While single robot path planning problems are effectively
solved using the A* algorithm [I1], multirobot planners usually are either
complete and optimal but computationally infeasible (coupled algorithms),
or require less computation time but are not guaranteed to find a solution
(decoupled algorithms).

In this thesis, a new multirobot path planning algorithm called OD-M*
is proposed. It combines the strengths of two existing planners: Subdimen-
sional Expansion [29] and Operator Decomposition [27]. The new algorithm
OD-M* constructs a search space of variable dimensionality, tailored to the
given problem. When planning the paths within the low-dimensional space,
promising low-cost nodes are favored. Additionally, the new optimal al-
gorithm is embedded into a path planning framework called Independence
Detection [27], a high-level planner to couple robots in collision, resulting in
the ID with OD-M* algorithm.



Preface

Looking back at the past year makes me aware of having experienced some-
thing extraordinary and of great value: Dr. Merz, professor of mechatronics
at the University of Applied Sciences in Salzburg (FHS) within the com-
puter science department, and Mr. Enner, a formal Marshall Plan scholar
of the FHS currently affiliated with the Carnegie Mellon University (CMU),
initiated my stay at the CMU. After gathering information about my host
university, I soon realized the great opportunity that the Marshall Plan
Foundation (MPF) offers: I would be able to conduct research at one of the
most renowned universities in the world, probably THE university when it
comes to robotics. The financial support would guarantee a continuous stay
of 5 months, enabling me to write my master thesis abroad.

Working with Howie Choset, one of the leading researchers in the field of
mobile robotics, at his Biorobotics Lab within Carnegie Mellon’s School of
Computer Science gave me enriching insight into the current state-of-the-art
research not only in mobile robotics, but also in medical robotics and - on
the theoretical side - in path planning for complex robot systems. I took
responsibility in two projects and specialized on path planning in multirobot
systems - the subject of my master thesis. We developed an algorithm that
solves path planning problems for complex systems of up to 40 robots in
feasible runtime while producing cost-optimal paths.

Based on the work conducted for my thesis, we were also able to write
and submit a conference paper for ICRA 2013 (International Conference on
Robotics and Automation) that pursues and extends the ideas presented in
my master thesis. After acceptance of the paper, we will have the oppor-
tunity to present our findings at the conference held in Karlsruhe in May
2013.

Currently, I am working at the University of Applied Sciences Salzburg
within the mechatronics department where I have the chance to deepen my
knowledge in the field of robotics. My research is now focused on human-
machine interactions where we try to define new ways of “communicating”
with robots.

Finally, I want to express my gratitude again to the responsible persons
of all of the three institutions (FHS, CMU and MPS) who enabled my stay
at CMU. The following report gives insight in my research at the Biorobotics
Lab and is contains extracts of my thesis.
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1 Introduction

Robots are often used to carry out tasks humans do not want to or cannot
do. Examples include dangerous tasks such as mining or search and rescue,
high-precision tasks or tasks in inaccessible environments. Although a single
robot can successfully execute the jobs mentioned above, even more benefits
can be achieved in multirobot systems.

Imagine a human chain fighting a fire: While a single person carrying
buckets of water would have no chance in controlling the fire, many people
passing on the buckets are much more effective and will eventually stand a
chance.

Similarly, multiple robots have advantages over a single robot: In multi-
robot systems, multiple tasks can be accomplished simultaneously. Multiple
robots increase the fault tolerance and robustness of a system. Moreover,
sensor coverage can be guaranteed. Typical fields of application for multiple
robots are industrial assembly, search and rescue, surveillance or military
tasks such as bomb demining. To be more specific, tasks for multirobot sys-
tems may include the assembly of supporting structures in collapsed build-
ings, the removal of contaminants or the search for disaster victims.

1.1 Motivation

In systems including more than one robot, it is necessary to coordinate the
individual robots such that they reach their goal positions without running
into collisions with obstacles or other robots. The single robot path planning
problem is usually solved using the search algorithm A* [I1]. Planning for
multiple robots becomes more complex, leading to an exponential growth in
the size of the configuration space with every additional robot. Multirobot
path planning algorithms thus are not guaranteed to find a solution in feasi-
ble computation time. The challenge lies in computing a solution within an
adequate runtime on common computers where all found paths have lowest
costs possible.

A multirobot path planning algorithm has to ensure low runtime to pre-
vent downtime of the system. Moreover, the algorithm should be executable
on a common computer without special requirements. Additionally, the low-
cost solution should prevent long detours and decrease the execution time.
Algorithms for multirobot path planning usually either guarantee to find an
optimal path (coupled algorithms) which is only applicable for systems with
a small number of robots, or reduce the complexity of the problem (decou-
pled algorithms) where the algorithms are not guaranteed to find a solution.



Thus, the goal is to provide an optimal multirobot path planning algorithm
with feasible computational runtime.

Recently, Wagner presented M* [29], a powerful algorithm that over-
comes the disadvantages of both coupled and decoupled algorithms. How-
ever, the intention is to further increase the performance of M* regarding
both the success rate and the runtime.

1.2 Contribution

Combining M* with Operator Decomposition (OD) [27], a variant of A*
for multirobot path planning, results in the algorithm OD-M* OD-M*
is additionally coupled with the Independence Detection (ID) framework
[27], a high-level multirobot planning approach that groups colliding robots
which results in the new algorithm ID with OD-M*. 1D with OD-M* is an
approach that guarantees to provide optimal solutions in feasible runtime
and outperforms existing multirobot planning algorithms such as basic OD.

For the simulations presented in the thesis, a variant of M*, namely
recursive M* (rM*), which offers a different way of handling robots in colli-
sion, is used. This results in the algorithms OD-rM* and ID with OD-rM*,
respectively.

1.3 Outline

In the following chapters, at first single robot path planning will be discussed
in more detail: The concept of a configuration space is explained and basic
graph search techniques are outlined. A detailed description of A* follows.
Next, the curse of dimensionality - a phenomenon in high-dimensional spaces
- will be discussed to understand the problem of planning in multirobot
systems.

The subsequent chapter focuses on existing multirobot path planning
algorithms and their characteristics and differences. Based on these ap-
proaches, the new algorithm OD-M* is explained and simulation results are
provided. In the conclusion, also future developments and the next reasearch
steps are outlined.

Parts of this thesis, especially the chapters concerning multirobot path
planning algorithms, are based on [10] but with additional information about
the single robot path planning problem and a detailed discussion of the
algorithm ID with OD-M*.



2 Path Planning for a Single Robot

Path planning is the task to find a path from a robot’s start position to
its goal. Multirobot path planning is a generalization of single robot path
planning, as multiple robots can be treated as one composite robot. Thus,
any general algorithm for solving the single robot path planning problem
can be applied to the multirobot problem, but would eventually lead to
computational infeasibility. However, most multirobot planning techniques
depend to some extent on single robot path planning algorithms.

As the path planning problem becomes more complex the more robots
are involved, this chapter aims to introduce the fundamental concepts of
path planning in single robot systems. A* is one of the most important
algorithms for solving the single robot planning problem on a graph. Other
algorithms ultimately rely on A*. Besides A*, there are many other planners
that use a graph as underlying technique.

2.1 Graph Search

For computing collision-free paths for a robot in its environment, the con-
figuration space can be represented as a graph. A graph G is a collection
of nodes N and edges F; G = {N,E}. Nodes (or vertices) correspond to
locations that the robots can visit, whereas an edge (or an arc) represents
a connection between two nodes. If a robot can traverse from node Nj to
node Ny and vice versa, we call the graph undirected graph. A node N» is a
neighbor of Ni if the nodes are connected by an edge: {N1, No} € E. If the
robot can travel from node N7 to node No but not in the opposite direction,
the resulting collection is called directed graph where nodes can be in- and
outneighbors. See Figure [I] for the distinction of directed and undirected
graphs [5].

A path in G is a sequence of nodes { N1, Na, ..., Ny}, s.t. {N;—1,N;} € E.
A graph is connected if there exists a path connecting nodes N; and N; for
all nodes INV; and IV; in the graph. The solution to the path planning problem
is the path connecting the start node with the goal node [5].

A special type of graph is a tree. It has a special node called root, the only
node without an incoming edge (no parent node). Nodes without further
child nodes are called leaves.

There are three basic methods to search a graph - be it a tree, a grid
or any other graph structure - for a desired node, typically the goal node:
Depth-first search, breadth-first search and best-first search which will be
discussed in the following section [5].
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Figure 1: An example for a directed graph (left) and an undirected graph (right).

2.2 Uninformed and Informed Search

Uninformed search algorithms rely solely on the structure of the underlying
graph and the neighboring information to retrieve a path; no additional
knowledge is incorporated. Examples for uninformed algorithms include the
depth-first search and breadth-first search.

In contrast, informed search algorithms exploit heuristic information
such as the remaining distance to the goal to be more efficient. The best-first
search is an example for informed algorithms [7].

Depth-first search

The depth-first search starts at the initial node N;,;; and explores the first
branch until the goal node or the end of the branch is reached. If the
algorithm reaches the end of a branch, it backs up and explores the next
branch and so forth until reaching the goal node Ngyy. The algorithm
stores all nodes to explore in a last-in first-out list (stack); a new node
is immediately explored before trying already stored nodes. Figure [2| (left)
shows the order in which nodes are expanded using the depth-first algorithm

[5].

Breadth-first search

The breadth-first search starts at the initial node N;,;; and explores all
children of that node first. If the goal node Ny, was not yet found, it
explores all children of the first child node and so on until Ny, is found.



Depth-First Search Breadth-First Search

1 1

Figure 2: The search tree on the left hand illustrates the order in which the nodes are
expanded in a depth-first search, the tree on the right hand side shows the order of a
breadth-first search.

The search tree is explored layer by layer. The nodes are stored in a first-in
first-out list (queue); a new option is added at the end of the list and all
already stored nodes are explored first. Figure [2| (right) reflects the method
of the breadth-first algorithm [5].

Note that the depth-first algorithm favors nodes closer to the goal node
whereas breadth-first search favors those close to the initial node.

Best-first search

Instead of a simple stack or queue, the best-first search makes use of a sorted
list which requires heuristic information about the nodes. Incorporating
additional knowledge to a search algorithm increases its performance, as
more promising nodes are chosen first. To estimate the “promise” of a node,
an evaluation function f(n) is applied to every node. The function can
depend on characteristics of the node itself, information about the path
found so far, information about the distance to the goal and any other prior
knowledge relating to the problem. A best-first search algorithm generates
a path by always choosing the node with the lowest value for f(n) as next

step [22]. The most prominent example for a best-first search algorithm is
A%

2.3 A* - The Standard Admissible Algorithm

The A* algorithm was introduced by Hart, Nilsson and Raphael in 1968 [11]
as a combination of two then common path finding approaches: the formal
and the heuristic approach. While formal algorithms usually guarantee to



find a shortest path, heuristic algorithms are said to be greedy; they “guide”
themselves toward the goal. The applied heuristic function estimates the
remaining distance to the goal and is used as weighting function [11].

2.3.1 Characteristics of A*

A* operates on a directed graph with costs assigned to each edge. Based on
these costs, A* assigns an evaluation function f(n) to every node n. f(n) is
the lower bound on the costs for the optimal path through n.

f(n) = g(n)+ h(n) (1)

g(n) represents the cost for moving from the start node s to the current node
n by summing up the cost of each traversed edge. h(n) is the estimated cost
for moving from n to the goal node g. This cost is calculated based on
a distance function that relates to the current problem. A basic distance
function is the Euclidean distance (Equation which calculates the straight-
line distance between two points A and B [6].

dist(A, B) = \/(As — Bo)? + (A, — B,)? 2)

When planning on 4-connected grids where robots are constrained to only
move horizontally and vertically, the Manhattan distance can be calculated
instead (Equation [3). The Manhattan distance is the sum of the absolute
differences between the x— and y— coordinates of two points A and B [0].

dist(A, B) == |Ay — By| + |Ay — By (3)

Both distance functions are calculated regardless of any obstacles and need
to be weighted with the step cost that is assigned to the corresponding edges.

The choice of the heuristic function impacts the efficiency of the A*
search. A “bad” heuristic will take more time than possibly needed to com-
pute a solution and not find an optimal path. Provided an admissible and
locally consistent heuristic, A* is optimal. An optimal search algorithm is
guaranteed to find a path with lowest cost possible.

A heuristic function h(n) is admissible (optimistic) if and only if:

VN € G: 0 < h(N) <h'(N) (4)
h(N) is the heuristic estimation of the cost to the goal, while h/(N) is the

actual cost [I7]. This means that if the heuristic for the current node to

10



the goal node never overestimates the actual cost, the search algorithm is
admissible.

Another way to characterize a heuristic function is monotony. A heuristic
is monotone or locally consistent if for every pair of adjacent nodes N and
N’ the following equation is satisfied:

YN,N' € G: 0<h(N) < h(N') + k(N,N') (5)

k(N,N') is the cost of getting from node N to node N’. The Manhattan
distance and the Euclidean distance both are examples for admissible and
locally consistent heuristics.

Besides optimality, completeness is another important characteristic for
a path planning algorithm. An algorithm is complete if in finite time it
either finds a path or correctly determines that no solution exists. For a
detailed proof of A*’s optimality and completeness, see [11].

2.3.2 A Short Example of A*

The following example of the A* algorithm is inspired by [2I]. For an illus-
tration of the complete series of planning steps, see Appendix ?7.

Problem Statement

Figure 3: Grid representation of a world with a start position A, a goal position B and
an obstacle (highlighted in yellow).

Figure [3| represents the problem statement: The intention is to move
along the shortest path from the start point A to the goal point B by avoiding
the obstacles (highlighted in yellow) which could be simply thought of as
walls. The search area is simplified to a grid thus reducing it to a two-
dimensional array. The status of every cell is set to either be free or occupied,

11



Step O: Initializing

pop
from

(1.2 ] ]00]01)

(1.2) (21) (1,0) ©.1)

l
— | P | =
1

Grid Tree List

Figure 4: Grid representing the initial state (left), tree representing the parent-child anal-
ogy (center), open list representation (right).

where occupied refers to containing an obstacle. As a further simplification,
it is assumed that the robot is constrained to move vertically or horizontally;
diagonal moves are illegal. Such a graph is called 4-connected grid, as every
node has four neighbors.

Starting the Search

As mentioned above, the A* algorithm is initialized by adding the start
node A to the open list. To start the search, A is taken from the open list,
added to the closed list and expanded. This adds the four neighboring nodes
(1,2), (2,1), (1,0) and (0, 1) to the open list. For each neighboring node, A
is stored as parent node. To finally retrace the path, A* spans a search tree
consisting of all explored nodes representing their parent-child relationship.

Figure 4] shows the grid (left) after this first expansion: The nodes cur-
rently in the open list are highlighted and an arrow points to the parent
node. The tree representation in the middle shows the parent-child analogy
between the nodes and on the right hand side, the open list and the nodes
it currently contains are illustrated.

Evaluating the Costs

Next, the costs for each node need to be assessed. In this example, a cost
of 1 is assigned to every edge. As A* is operated on a 4-connected grid, the
Manhattan distance is used to calculate the heuristic function h(n) for every
node. This means to determine the total number of horizontal and vertical
moves necessary to get from the current node to the goal node, regardless

12



Step 1: Expanding Node A

1 A B e 2n]2]1,0]01n

(1.2) 2,1) (1,0) ©.1)

N

Grid Tree List

Figure 5: In the grid (left), for each cell the values of f(n) (top), g(n) (bottom left) and
h(n) (bottom right) have been added. The open list (right) is displayed in sorted order.

whether a node is free or occupied and weighting it with the edge cost. g(n)
is calculated by summing up the number of steps needed to reach the current
node from the start node and weighting the sum with the edge cost.

Having assigned the f(n)-values to every node, A* continues by chosing
the most promising node of the open list as next step. In Figure|5| the value
of the cost function has been added to each node in the grid (top value in
every cell). Additionally, the values for g(n) and h(n) were also inserted
(values at the bottom left and right in each cell, respectively). The open list
is sorted according to increasing f(n)-values.

The most promising node at this point is node (2,1) with an f(n)-value
of 4. Tt is deleted from the open list and added to the closed list. All adjacent
nodes to (2,1) not being obstacles are added to the open list. Thus, node
(3,1) is ignored, but nodes (2,2) and (2,0) are added to the open list and
their parent nodes are set. The start node A is already in the closed list
and a path via (2,1) to A would result in higher costs such that A remains
in the closed list. Nodes already in the open list are evaluated whether the
new path has lower cost. If this is the case, their values for g(n) and their
backpointers would need to be updated. The nodes in the open list do not
need to be updated in this example.

Breaking Ties

Every node in the open list has the same value for f(n) now. In this case,
A* can be implemented to either chose an arbitrary node or to incorporate
a rule for breaking ties. One possibility for tie breaking is to favor nodes
that are closer to the goal node, assuming that a path via this node would

13



Step 2: Expanding Node (2,1)

3
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15 13
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° 15
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Grid Tree List

Figure 6: The expansion of node (2,1) is shown in the grid (left). The new child nodes
are added (center) and the open list is updated accordingly (right).

be shorter than others. Thus, all nodes in the open list with the same f(n)-
value are further sorted by h(n)-values. The sorting order in the open list
(right) in Figure [6] already reflects this tie breaking rule.

Figure [7]illustrates the expansion of the next node: The most promising
node (2,2) is removed from the open list and added to the closed list. Two
new adjacent nodes are added to the open list and the tree representation is
updated. The neighboring node (1,2) does not need to be updated, as the
path via node (2,2) would increase the cost.

Step 3: Expanding Node (2,2)

3 A
6 | 6 12 2,1 1.0 0,1
2 . (1.2) 1) (1.0) ©.1) ':’Eﬁ'
6 4 -
1], B B 2.2) (2,0) [62]0](1.2]1.0]0.1]23)]
6 | 6
0
15|12 4 23) (3.2)
o 1 2 3 4 5 8
Grid Tree List

Figure 7: Illustration of the expansion of node (2,2).
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Step 6: Expanding Node (5,2)
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Grid Tree List

Figure 8: When expanding node (5, 2), the goal node is added to the open list.

Completing the Path

To compute the complete path, the process explained above needs to be
repeated until the goal node is added to the closed list. Figure [8 shows the
grid (left) one step earlier, when node B is the next node in the open list.
After popping the goal node from the open list and adding it to the closed
list, A* follows the backpointers to the parent nodes which eventually leads
back to node A. The complete path from the goal node to the start node can
be determined, as illustrated in Figure [0} This path represents the lowest
cost-path to get from A to B.

Step 7: Tracking the Path

(,2) (1,0) ©,1)

8 ] 6 | 8 | 8

3 3 5|4 4|5 3|6 2

6 | 6 | 6 | 6 | 6 | 8
2 1 5 RN RN BERRIN 6 2

B 4 6 (2.3)

i 15 A 13 5 1 B

6 | 6
0 152 4

(5,3) (6,2)
Grid Tree

Figure 9: Tracking the path from the goal node to the start node by visiting each node’s
parent.
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3 From Single- to Multirobot Systems

The single robot path planning problem is usually effectively solved run-
ning A* on a graph. However, when solving the multirobot path planning
problem for a composite robot in a composite configuration space with A*,
limits are soon reached: The computational complexity increases with every
additional robot. This allows for a variety of multi-robot path planners to
be researched and implemented.

The benefits of multirobot systems are obvious: Multiple robots can
carry out multiple tasks, which is essential in industrial assembly or search
and rescue. Additionally, multiple robots can guarantee sensor coverage for
tasks such as exploration or surveillance. Moreover, having more than one
robot in use increases the robustness and the fault tolerance of the system.
Even if a sensor fails or one robot is out of communication range, redundancy
assures that the system still functions [20].

3.1 Curse of Dimensionality

Despite the obvious advantages of multirobot systems, a major drawback
arises: The size of the joint configuration space increases exponentially with
every additional robot, thus eventually leading to computational infeasibil-
ity. This phenomenon is generally referred to as curse of dimensionality,
a term coined by Richard Bellman in 1957 [I]. Bellman pointed out that
computational tasks carried out in higher dimensions are much harder to
solve than in lower dimensions.

For a better understanding, the problem can be illustrated as follows:
Within a d-dimensional “cube” ¢; with edges of length {1 = 1, a smaller cube
co with an edge length of I5 = % is placed. The edges of the smaller cube
are positioned along the edges of the bigger one. With d = 1, the "cube”
is just a line segment, thus the volume of co is half of the volume of ¢;. If
d = 2, the cubes are squares and their volumes’ ratio is i. In d = 3, cube ¢
fills a volume of % of ¢; and so on and so forth. For a dimension of d = 10,
the smaller cube - still with half the edge length of the bigger one - only fills
about a thousandth of the total volume. Thus, as the space occupied by ¢y
within ¢; decreases continuously, it gets harder to spot that cube within c;.
Figure [10] illustrates this notion [12].

Analogously, it becomes more difficult to “find” or compute a path from
a start to a goal location within a given configuration space that grows
exponentially with every additional robot.

Assuming two dimensional robots that store each of their coordinates

16



Curse of Dimensionality

d=1 d=2 d=3

volume = 1/2 volume = 1/4 volume = 1/8

Figure 10: The problem of the “Curse of Dimensionality” illustrated for a one-, two- and
three-dimensional “cube”.

in a single byte, 2n bytes are needed to represent a single configuration
of n robots. At each step, A* expands 5" — 1 neighbors of a given node
which requires 2n(5"™ — 1) bytes of memory. Every expansion for a single
robot system thus requires 8 bytes, whereas a system with 12 robots requires
approximately 6GB of memory size for a single expansion.
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4 Path Planning for Multiple Robots

There is much extant research in developing algorithms to solve the multi-
robot path planning problem. However, the approaches to handle the curse
of dimensionality differ: While some algorithms search the joint configura-
tion space! of all robots and thus guarantee optimality and completeness,
others sacrifice optimality for computational feasibility by searching lower
dimensional sub-spaces. To reflect these contrasting concepts, multirobot
path planning algorithms can be further divided into two main categories:
coupled and decoupled algorithms [19].

4.1 Decoupled Planning Algorithms

Decoupled algorithms solve the multirobot path planning problem by plan-
ning a path for each individual robot separately; possible conflicts are re-
solved afterwards. As a result, the complexity of the system is reduced
by searching lower dimensional subspaces. Therefore, decoupled algorithms
typically produce results more quickly but optimality or even the existence
of a solution can not be assured [17].

Examples for decoupled algorithms include a velocity planner proposed
by Kant and Zucker [13]. The velocity planner starts by planning a path
for each robot individually and resolves possible conflicts by adapting the
velocity of the robots involved. A variant of the velocity planner called Incre-
mental Coordination was developed by Saha and Isto [23]. Their algorithm
combines the two steps by adapting the velocity of the current robot to be
planned a path to all other robots that have already been assigned a path.

4.1.1 Priority Planning

Another example for a decoupled multirobot planning approach is the pri-
ority planner as first described by Erdmann and Lozano-Perez [§]. Instead
of planning paths for all robots in a high dimensional search space, paths
are planned one robot at a time in descending order of priority. There are
several methods to assign priorities to robots, i.e. based on the individual
path length [2] or on favoring straight-line motions [4]. Robots can also be
considered in a random but fixed order.

The main characteristic of a priority planning algorithm is that a path
for one robot not only needs to avoid static obstacles but also paths of robots

LThe joint configuration space is the Cartesian product of the robots’ individual con-
figuration spaces.
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with higher priorities. Those robots are considered dynamic obstacles and
have already been assigned a path. Paths of higher priority robots will not
be changed again. To compute a path that does not conflict with dynamic
obstacles, the planner needs to have a notion of time. Thus, in addition
to the coordinates of each node in a path, the corresponding timestep is
captured.

Unfortunately, a vanilla priority planner may cause deadlocks and not
succeed in computing a solution, even if one exists. It is neither complete
nor optimal.

4.2 Coupled Planning Algorithms

Coupled algorithms aim at finding solutions for all robots in their joint
configuration space, thus guaranteeing that an optimal path will be found
if one exists. However, these algorithms are only applicable for a small
number of robots as their computational complexity increases exponentially
with every additional robot [17].

Combining multiple robots to one complex robot allows the path plan-
ning problem to be solved using a single robot algorithm like A*. Variants
of A* such as Iterative-deepening A* (IDA*) [I5] or Hierarchical Coopera-
tive A* (HCA*) [26] are designed for solving the multirobot path planning
problem. In this thesis, the focus lies on a technique called Operator De-
composition propsed by Standley [27] as it is part of the new algorithm
OD-M*.

4.2.1 Operator Decomposition

Operator Decomposition (OD) [27] is a variant of A* and offers an improve-
ment to the exhaustive node expansion of A*. OD constructs neighbors of
a single node incrementally. Doing so delays the instantiation of nodes that
are not optimal according to path cost.

Standley’s idea is to operate the algorithm in a decomposed time space.
To approach one timestep, each robot is considered one after the other,
assigning moves to every robot sequentially. As long as not all of the robots
have been assigned a move, nodes are thought of as intermediate nodes.
Standard nodes are nodes with a move assignment for all robots for the
current timestep.

Expanding the standard start node for the first robot r! results in a first
set of intermediate nodes; one for every possible move for r'. The resulting
intermediate nodes are put on the open list, sorted by increasing cost. The
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algorithm continues with robot 72 based on the lowest cost node where robot
r! has already been assigned a move. Collisions with the new position of
robot 7! have to be avoided, while other robots that have not yet been
assigned a move are ignored. The next series of intermediate nodes consists
of one node for every possible move for 2.

Figure [11]illustrates the expansion of the intermediate nodes for a prob-
lem including two robots in detail. Robot r! is supposed to move from
position A1l to position B1 and robot 72 from C1 to C0. The standard start
node is {A1,C1} and unit cost is assigned to each edge. Thus, the optimal
path cost is f = 2, as each robot requires one step to reach its goal position.

First, intermediate nodes are generated based on the possible moves for
r!. Including a wait option, this results in four intermediate nodes, with
node {A2,C1} having minimum cost. The optimal node is taken from the
open list to proceed with the expansion for robot 2. To avoid collision with
r!, the node {B1, B1} is not expanded. The most promising node in the
open list is now {B1,C0}, the goal node.

Operator Decomposition has generated seven nodes in this example.
Solving this problem with A* would require the expansion of 15 nodes
(4 x 4 —1). OD scales better with more complex problems and reduces
computational costs compared to A*. Recently, Standley proposed variants
of Operator Decomposition, including an any-time algorithm [28].

4.3 Dynamically Coupled Algorithms

Recently, a new category of algorithms has emerged that overcomes the
disadvantages of both the coupled and decoupled approaches by dynamically
coupling robots that are in collision. Examples include a velocity planner
from Krishna et al. [16]. To avoid collisions, robots try to independently
adapt their velocity. If this attempt fails, colliding robots start to cooperate
to find safe velocity profiles. If this still does not succeed, the cooperation
is extended to uninvolved robots to find velocity profiles that guarantee a
solution.

The planning time algorithm from Van den Berg et. al. [3] seeks to
minimize the size of the largest coupled group of robots necessary to ensure
that a solution is found. Robots are forced to move sequentially - before or
after each other. If these move constraints cause cycles, it is an indication
to treat the involved set of robots as coupled group.
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Robot 2

Figure 11: A simple path planning problem including two robots. Nodes Al and
C1 represent the start nodes, Bl and CO the goal nodes. [(b)] {A1,C1} is the root
node of the path planning problem. Intermediate nodes are symbolized by dashed circles,
standard nodes by solid circles. With unit costs assigned to each edge, the cost for the
optimal solution is f = 2. After expanding the nodes for the first robot, OD continues by
expanding successor nodes for the intermediate node with optimal cost - {42, C1}. When
expanding nodes for the second robot, collisions with the new position of the first robot
have to be avoided. Eventually, node {B1,C0} has lowest cost. As it is the goal node,
the planning problem is solved. |25, adapted]

4.3.1 Subdimensional Expansion

Subdimensional Expansion was proposed by Wagner in his previous work
[29] as an algorithm that dynamically constructs a search space: Initially,
an individually optimal path is planned in each robot’s individual configu-
ration space. The individually optimal paths form a one-dimensional search
space embedded in the joint configuration space of all robots. A planning al-
gorithm explores this search space to detect robot-robot collisions. If robot-
robot collisions are detected, the dimensionality of the search space is locally
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Figure 12: @ A conceptual visualization of a search space of variable dimensionality for
five robots. Initially, each robot is restricted to follow its individual policy, as represented
by a single line. @ When robots 1 and 2 are found to collide, the dimensionality of the
search space must be locally increased, which is represented by a square. When three
robots collide while being constrained to their individual policy, the local dimensionality
of the search space must be further increased, to include all local paths of the three robots.
This is represented by the cube. Robot 3 does not need to be coupled with robots 4 and 5
any longer, once it clears their way, even though robots 4 and 5 continue to interact. [29]

augmented (Figure . Thus, the dimensionality of the search space is al-
ways kept as low as possible.

The two fundamental concepts of Subdimensional Expansion are the
individual policy and the collision set. The individual optimal policy of the
i-th robot r* maps the position of % in its configuration space to its optimal
action at that position in the absence of other robots. Obeying its individual
policy at any position produces an individually optimal path for that robot.

If following the indiviual policies leads to a robot-robot collision at a
specific position, those robots are stored in the corresponding collision set.
The collision set Cj, for a given position ¢ in the joint configuration space
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is the set of robots ¢ for which the planner has found a path through g
to a collision between r’ and another robot. When the planning algorithm
extends a path from ¢, every robot not in Cj obeys its individual policy,
while all possible actions must be considered for robots in Cj. Thus, the
search space of variable dimensionality is implicitly defined.

A backpropagation set, consisting of all neighbors of node n; through
which the path planning algorithm has found a path to ng, is used to keep
the collision sets updated. When a robot-robot collision is found, back-
propagation means that for each neighboring node n; the collision set CY
is added to C;. Next, C; is added to the collision set of each node in the
backpropagation set of n; and so forth.

M?* - Subdimensional Expansion with A*

The M* algorithm is an implementation of Subdimensional Expansion for
graph search [29]. The configuration space of robot 7! is represented as
directed graph and A* is used as the underlying path planning algorithm.

To restric A* to the low dimensional search space generated by Subdi-
mensional Expansion, M* only expands the limited neighbors of a node ny.
The limited neighbors of n; are the subset of neighbors of n; which can be
reached if every robot r ¢ Cj, obeys its individual policy at node ny.

Recursive M* (rM*) is a variant of M* which improves the way physically
separated sets of colliding robots are handled. While basic M* couples the
planning for all such sets, tM* can plan for each disjoint subset separately.
The computational cost is then exponential in the size of the largest set of
colliding robots rather than the total number of colliding robots.

Wagner has shown that Subdimensional Expansion can also be coupled
with probabilistic planners such as rapidly-exploring random trees (RRT's)
[18] and probabilistic roadmaps (PRMs) [I4] resulting in the algorithms
sRRT and sPRM, respectively [30].

23



5 OD-M* and Independence Detection: A New
Optimal Algorithm for Multirobot Path Plan-
ning

As contribution to the multirobot path planning problem, OD-M*, a new op-
timal multirobot path planning algorithm, is presented. OD-M* combines
Subdimensional Expansion (M*), that dynamically constructs the search
space, with the coupled planning algorithm Operator Decomposition. More-
over, a variant of OD-M* is proposed, where OD-M* is embedded into the
planning framework Independence Detection (ID) [27]. ID minimizes the
necessary coupling of robots. This variant is called ID with OD-M?*.

In short, ID with OD-M* works as follows: Initially, an individually
optimal path is planned for every robot. If robots are found to be in colli-
sion when following their initial optimal paths, the Independence Detection
framework groups those robots. Subdimensional Expansion then generates
search spaces of minimal dimensionality for every group of robots that needs
to be assigned new paths. Finally, Operator Decomposition computes opti-
mal paths for each group within the search space generated by Subdimen-
sional Expansion.

5.1 ID with OD-M* in Detail

The highest level of planning of the new algorithm ID with OD-M* is the
Independence Detection framework which decomposes the coupled planning
problem into a set of independent subproblems as follows:

Initially, every robot r* is assigned to an individual group g; and optimal
paths are planned for each group separately, ignoring the existance of other
robots. The execution of the paths is then simulated for all singleton groups.
When collisions between two groups are detected, an attempt is made to find
new optimal collision free paths for the first group. The replanning is based
on the concept of a priority planner: The robots in the other group are
treated as dynamic obstacles that need to be avoided. If the attempt to find
alternate optimal paths for the first group fails, the paths for the robots in
the second group are replanned, with robots in the first group treated as
dynamic obstacles.

For the replanning of singleton groups, a vanilla priority planner is called.
The coupled planner OD-M* is called whenever replanning for a group of
more than one robot is necessary. To guarantee optimality, only nodes that
have equal cost as the initial path are allowed to be put onto the open list. If
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both replanning attempts fail, the two groups are merged and new optimal
paths are found using OD-M* for the combined group.

In order to minimize future replans, the new paths should result in as few
conflicts with robots not in the merged group as possible. Thus, Indepen-
dence Detection would require the number of collisions with “out-of-group”
robots to be used for tie breaking. The current implementation of ID with
OD-M* does not include this tie breaking rule and computes paths for the
merged group regardless of other robots. This behaviour is being imple-
mented and adds additional value to the algorithm (For more details see the
Future Work section, Chapter .

Groups are also merged if they are found to be in collision for the second
time. This behaviour is needed to avoid infinite loops where replanning ¢;
to avoid go results in a conflict with g3 and replanning ¢g; to avoid g3 would
result in a conflict with go again. Each group is required to keep track of
other groups with which it has been in collision to prevent that oscillation.

The computational complexity of ID is exponential in the size of the
largest group rather than the overall number of colliding robots. See Al-
gorithm [1| for a complete pseudo-code example of the algorithm ID with
OD-M*.

For the simulations in this thesis, Independence Detection with OD-rM*
was used instead of ID with OD-M*. This algorithm differs mostly in how
paths are replanned for coupled groups: When multiple sets of robots are
in collision within one group, rM* can calculate paths for these subsets
separately and thus further reduces the complexity of the path planning
problem.
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Algorithm 1 Pseudocode for ID with OD-M* for n robots:
i - robot indices; i € I = {1,...,n}

r? - robots

based on [27]

1: paths < ()
2: groups « ()
3: for all ¢
4:  groups(i) <1
groups(i).collisions « ()
paths(i) « find_optimal path(r?)
. # Iterate over all groups; suppose collision between groups g, and gy s
detected
while collision
# (1) Groups g, and gy have been in collision before
10:  if gy € gq.collisions

N T

© ®

11: new_group < merge(ga, gp)

12: update groups

13: new_paths «+— OD-M*(new_group)
14: if —failure

15: paths.update(new_paths)

16: break

17: # (2) Replan paths for group g,

18:  # Paths of group gp are passed as constraint
19:  new_paths « priority_replanning(g,)

20:  if —failure

21: paths.update(new_paths)
22: update groups.collisions
23: break

24:  # (8) Replan paths for group g

25.  # Paths of group g, are passed as constraint
26:  new_paths <« priority_replanning(g)

27 if —failure

28: paths.update(new_paths)
29: update groups.collisions
30: break

31:  # (4) No solution found thus far; join groups
32:  new_group < merge(ga, gp)

33:  update groups

34:  new_paths < OD-M*(new_group)

35:  if —failure

36: paths.update(new_paths)

37 break 26

38: return paths




6 Simulation Results

Figure 13: A typical 8-connected grid world with 32x32 cells for a test run including 40
robots. Colored cirles represent initial positions of the robots, colored stars their goal
positions. Gray circles represent the obstacles. For each number of robots, 100 randomly
generated worlds were tested.

To test the performance of OD-rM*, simulations were run on a Core i5-
2500 computer at 3.30 GHz (Turbo mode disabled) with 8 GB of RAM. All
simulations were implemented in unoptimized python. As environment, a
fixed-size, 8-connected grid of 32x32 cells and a probability of 20% for each
cell being an obstacle was used as proposed by Standley [27]. Initial and
goal positions were chosen randomly, but it was assured that there existed
a path from a robot’s initial to its goal position (Figure .

At most 5 minutes were allowed for each trial to find a solution. For each
number of robots, 100 random environments were tested. The percentage
of trials that were successful within 5 minutes as well as the time required
to find solutions by the 10’th, the 50’th and the 90’th percentile of trials
was recorded. The run times are plotted on an exponential scale such that
exponential growth would appear as a straight line.
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Figure 14: Results for basic rtM* and OD-rM*. The plots on top illustrate the percentage
of trials in which a solution was found within 5 minutes. The bottom graphs show the
10’th (red solid line), 50’th (blue dashed line) and 90’th (green dotted line) percentile
of times required to compute the solution. Both algorithms were simulated for 5 to 40
robots, increasing the robot number by 5 for every new set of 100 trials.

6.1 rM* vs. OD-rM*

The first set of trials compares the performance of basic rM* to that of
OD-rM*. As rM* uses A* as underlying path planning algorithm, OD-rM*
typically expands less nodes than rM*. Thus, OD-rM* was expected to solve
more instances within the given time limit. As shown in Figure [I4] basic
rM* solves about 10% less trials than OD-rM* for problems including up
to 20 or more than 35 robots. For problems involving 25 robots, OD-rM*
outperforms rM* by about 20% and even by 30% for 30-robot-problems.

As OD-rM* generates less nodes than rM*, also the runtime of the al-
gorithm is improved as depicted in the time plots in Figure While even
the 10’th percentile reaches the time limit for rM*, 10% of the trials with
40 robots are solved in under 25 seconds with OD-rM*.
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Figure 15: Results for ID with OD and ID with OD-rM*. The plots on top illustrate the
percentage of trials in which a solution was found within 5 minutes. The bottom graphs
show the 10’th (red solid line), 50’th (blue dashed line) and 90’th (green dotted line)
percentile of times required to compute the solution. Both algorithms were simulated for
5 to 40 robots, increasing the robot number by 5 for every new set of 100 trials.

Reaching the time limit of 5 minutes results in the plateauing obvious in
the time plots. Note the missing values for the 10’th and 50’th percentile in
the graphs for instances of 5 robots for both algorithms. The reason is the
accuracy of the timing function of one millisecond. Instances solved in less
than one millisecond are automatically set to zero which cannot be displayed
in the exponential scale.

6.2 ID with OD vs. ID with OD-rM*

The next set of trials was ment to oppose the performance of Independence
Detection with basic OD to that of ID with OD-rM*. While both algorithms
solve about the same number of instances for problems involving up to 15
robots, ID with OD-rM* outperforms ID with OD by approximately 10% for
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problems including 25 or 30 robots. Additionally, ID with OD-rM* solves
25% more of the problems that include 35 or 40 robots than ID with OD.
At 40 robots, ID with OD-rM* has twice the success rate of ID with OD.

The reason for the good performance of OD-rM* is that rM* restricts
all robots not in collision to their individual optimal policy when replanning
groups. A replan based on OD is only necessary for robots in collision. The
dimensionality of the search space and thus the complexity of the replanning
problem is much lower than with basic OD. The Operator Decomposition
algorithm needs to expand nodes for every robot in the group in the joint
configuration space leading to a higher runtime and a lower success rate.
The results for ID with OD and ID with OD-rM*, respectively, are shown
in Figure [T5]

ID with OD-rM* shows a performance increase of about 30% for prob-
lems including 40 robots, compared to basic OD-rM* (Figure [14). While
OD-rM* solves about 20% of trials, ID with OD-rM* solves 50% of these
instances. The 90’th percentile reaches the time limit already for problems
involving 20 robots with OD-rM*, whereas ID with OD-rM* solves these
problems within 10 seconds for the 90’th percentile. The additional level
of coupling that comes with Independence Detection allows the OD-rM*
algorithm to solve smaller subproblems compared to basic OD-rM*. The
subproblems thus have a lower dimensionality and require less computation
time.
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7 Conclusion

OD-M* and ID with OD-M*, respectively, are new optimal planning al-
gorithms to solve the multirobot path planning problem. The algorithms
address the exponential growth in both the size of the configuration space
and the number of nodes generated by the basic A* algorithm.

If Independence Detection is applied as framework for the OD-M* algo-
rithm, robots found to be in collision when following their optimal paths are
combined into one group. The search algorithm is then applied on smaller
subsets of robots rather than the total system; the size of the largest group
determines the complexity of the problem.

M* (or rM*) constructs low-dimensional search spaces instead of explor-
ing the joint configuration space of the multirobot system. Whenever robots
are in collision, the dimensionality of the search space is locally increased.

Operator Decomposition significantly reduces the number of nodes A*
would generate at every step by assigning moves to every robot sequentially
within each timestep and by favoring low-cost nodes.

As a result, ID with OD-rM* outperforms the optimal coupled algo-
rithm OD as well as M*. ID with OD-rM* overcomes the disadvantages of
most coupled and decoupled algorithms: It is a multirobot path planning
approach that is both optimal - it produces paths of lowest costs possible
- and computationally feasible. Results have shown that ID with OD-rM*
is approximately two times faster than ID with OD for problems including
25 robots and solves about 12 times more instances at 40 robots than basic
rM*. Thus, the new planning algorithm is suitable for various multirobot
applications such as warehousing, manufacturing, surveillance or complex
video games.

7.1 Future Work

However, research on improving M* continues. The first improvement will
be to fully implement the Independence Detection framework as described by
Standley. This means to implement a tie breaking rule whenever replanning
a merged group. Paths that result in fewer collisions with “out-of-group”
robots should be prefered to others. This leads to fewer future collisions
and thus avoids unnecessary replanning or merging of groups. Early results
have shown that this behavior enhances the performance of ID with OD-rM*
even more.

The focus of future research lies on combining OD-rM* with another
path planning algorithm called Meta-Agent Conflict-based Search (MA-
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CBS) [24]. MA-CBS was introduced by Sharon et al. and works by comput-
ing individual paths for every robot, avoiding constraints applicable for that
robot. If two paths are found to collide, new constraints are added and the
paths are updated accordingly. If robots are found to collide more frequently,
they are merged into a group and treated as a single meta-agent. The num-
ber of conflicts that have to occur until robots are merged is bounded by B, a
predefined parameter. Independence Detection is a special case of MA-CBS
with B = 0: Robots are coupled as soon as a collision is detected.

Additionally, future developments will include Enhanced Partial-Expansion
A* (EPEA*) [9] as alternative for Operator Decomposition. EPEA* incor-
porates a priori knowledge of the problem domain (i.e. the relative direction
of the goal location to the robot’s current position). When expanding a
node, only child nodes with optimal cost are put onto the open list. The
parent node is again added to the open list, but the cost is revised to reflect
the cost of the next best child.

The performance of OD-rM* will be compared to M* using EPEA* in-
stead of OD. Moreover, both variants will be combined with MA-CBS to
analyze the performance differences concerning runtime and the number of
instances solved.

At the University of Applied Sciences in Salzburg, real-world tests will be
conducted to assess the simulation results. It is planned to use 5 to 10 mobile
R-one robots developed by James McLurkin at Rice University, Houston,
TX2. The robots will move in an artificial grid environment including obsta-
cles similar to the test instances described in the results section and will be
assigned random start and goal positions. Another goal is to automatically
determine start and goal positions by using a camera on the ceiling to read
in the corresponding positions.

*For more details see http://engineering.rice.edu/NewsContent .aspx?id=3491
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