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Kurzfassung

Lebende Zellen sind komplexe Systeme die stark von einem funktionierendem Signaliibertragungs-
apparat abhiingig sind. Alle Signaltransduktionsereignisse basieren auf der Interaktion von Proteinen
mit anderen Proteinen oder anderen Molekiilen. Eine der wichtigsten Arten von Interaktionen in
diesem Kontext ist Phosphorylierung, ein zellulirer Prozess der von Proteinkinasen katalysiert wird.
Viele Datenbanken von experimentell verifizierten Phosphorylierungs-Interaktionen sind online
verfiigbar, jedoch sind diese bei weitem noch nicht vollstdndig. Computerprogramme werden des-
wegen zum Schlielen dieser Liicken benotigt. In dieser Arbeit wird eine neue Version eines in silico
Kinasen-Substrat Interaktionsvorhersageprogrammes, das auf kurzen linearen Sequenzmotifen
basiert, vorgestellt: Scansite 3 (http://scansite3.mit.edu/) hat eine neue Benutzeroberfliche, eine
Menge neuer Funktionen, und beinhaltet ein Webservice welches programmatischen Zugriff erlaubt.
Hier wird beschrieben wie Scansite funktioniert und wie es unterstiitzend eingesetzt werden kann
um verschiedene wissenschaftlich relevante Fragen zu beantworten. Zusétzlich wird eine Methode
vorgestellt die es erlaubt eine Menge von Genen mit einem fiir eine gewisse Fragestellung relevan-
tem Interaktionsnetzwerk zu assoziieren und die wichtigsten Interaktionen aus diesem Netzwerk zu
extrahieren. Um moglicherweise noch unbekannte, aber relevante, Signalwege identifizieren zu
konnen werden Phosphorylierungsvorhersagen von Scansite herangezogen. Diese Methode wird
hier dazu eingesetzt um eine algorithmische Pipeline vorzubereiten, die RNAi-Screen Ergebnisse
mit dem Interaktionsnetzwerk der molekularen Antwort auf Schiden der DNS (,,DNA damage
response‘’) verbindet. Da bislang noch kein Interaktionsnetzwerk dieser Art publiziert worden ist,
wurde ein Netzwerk dieser Art hdandisch aus einer Vielzahl von Publikationen extrahiert. Dieses
Netzwerk wird hier ebenso vorgestellt, da es als relevant und hilfreich fiir Wissenschaftler, die sich
mit der DNA damage response auseinandersetzen, erachtet wird.

Schliisselworter: Scansite, Kinasen, Phosphorylierung, DNA damage response, Protein-Protein
Interaktionen, Price Collecting Steiner Tree
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Abstract

Living cells are complex systems that are highly dependent on a properly functioning cell signalling
apparatus. All signalling events are based on the interaction of proteins with one another or with
other molecules. One of the most important types of interactions is phosphorylation, a process
that is catalysed by protein kinases. Many databases of experimentally verified kinase-substrate
interactions are available online, but these by far do not cover all phosphorylation events that happen
in living cells. Therefore, computational tools are needed to fill these gaps. Here, a new version
of an in silico kinase-substrate interaction prediction tool that is based on short-linear sequence
motifs is presented: Scansite 3 (http://scansite3.mit.edu/) has a new user interface, a number of
new features, and includes a web service that allows computational access. This work describes
how Scansite works and how it can be used to assist in answering different scientifically relevant
questions. In addition, a method is presented that allows the association of a set of genes with
an interaction network of interest which also reduces this network to only the most important
interactions. In order to be able to identify novel signalling pathways, it includes predictions of
Scansite 3 to include new interactions. Here, this strategy is applied to prepare an algorithmic
pipeline that links RNAi-screen results with the DNA damage response interaction network. Since
no interaction network like this has been published so far, a manually curated DNA damage response
interaction network is presented here too. This network may be a useful resource for scientists that
do work related to the molecular response to DNA damage.

Keywords: Scansite, kinases, phosphorylation, DNA damage response, protein-protein interaction,
Price Collecting Steiner Tree
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Chapter 1. Introduction

Chapter 1

Introduction

One of the most feared diseases of this age is cancer. It originates from cells that behave in an
abnormal way and many times can be traced back to mutated genes that give rise to non-functional
or misbehaving proteins which influence the regulation of many cell signalling pathways in a bad
way. All signalling events in biological systems depend on the interaction of molecules with one
another. Signalling in cells can be viewed on different levels: The most basic level is the level of
single interactions of proteins with other proteins or molecules. For example, many transcription
factors are activated by phosphorylation. Phosphorylation is one of the most important protein-
protein interaction types known as it is involved in almost all cellular signal transduction events.
Single interactions are important cellular events, but analysing only them does not give a lot of
information about why (i. e. in what biological context) they happen. This question can be answered
by analysing cascades of multiple interactions like this. A one-after-another cascade of interactions
is referred to as a signalling pathway. Pathways are generally used to explain how signalling
events are controlled in a simplified way. However, a more accurate view is that of a signalling
network (Figure 1.1). Signalling in biological networks is a complex interaction of many parties,
many of which collaborate in order to achieve a result, others have opposing interests (e. g. kinases
and phosphatases targeting the same protein) in which case those with the higher binding affinity
or the higher concentration wins. Thus, Levy et al. (2010) refer to this interaction network as a
“democratic” network, comparing it to “a table around which decision-makers debate a question
and respond collectively to information put to them”. However, although the network-view is more
accurate it comes at the cost of being very complex, which makes it incredibly hard to analyse.
Years of experimental efforts gave rise to enormous databases of experimentally verified biological
information, including protein-protein interaction information. Nonetheless, even these huge
datasets give just a glimpse into what is happening in a cell interaction-wise. Hence, computational
tools are needed that assist in determining which interactions are the most relevant to certain events
in a cell. Given that the interaction data we have is most probably not complete, computational
interaction prediction tools can be used to extend this dataset with further interactions that may be
of potential significance.

Computational tools have been successful in many parts of research in molecular biology, be it
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Figure 1.1: Two different views of signalling in biological systems: On the left, the traditional
pathway-view that is initiated by a trigger event on one side and leads to some molecular response
on the other end. The more accurate view of signalling interactions is presented on the right-hand
side in a network-view of the system. The entities in the network are closely interconnected and
influence each other in different ways. Traditional pathways may be embedded in this network, but
are influenced by a wide variety of other interactors too. Changes to the network may be induced
on different levels and yield different results. Although the directionality of the interactions in the
network are not shown in the figure, feedback loops and other combinations of directed interactions
add a new layer of complexity to signalling networks and make analyses a hard task. Hence, the
simplified pathway-view is more widely used.

storing and managing data, or assisting in analysing datasets (visualisation of data, calculating
statistics, etc.). The availability of vast amounts of data combined with the use of computational
tools offers an easy way to create new hypotheses following the low-hanging fruit strategy: Obvious
hypotheses (either available in the datasets, or promising results generated by computational tools
which only need to be verified or refuted) can be seen as low-hanging fruits that are ready to be
picked and examined. But applying this strategy is not always as straight-forward as it seems,
especially when it comes to putting an experiment’s results in context with the huge datasets that
are already available and trying to identify what pieces of information are important for the question
at hand.

Here, a method is described that assists in doing exactly that in the context of network biology.
Given a set of genes that an experiment determined to be important, this method places them in the
context of a known protein-protein interaction network. In order to omit the complex view of such a
network, the network is then reduced to only the most important interactions, giving a pathway-like
view of the examined genes in the context of the research (i. e. the interaction-network of interest).
In order to not restrict this method to what is already known alone, predicted interactions can
be included, therefore allowing to find new pathways that cannot be found by just considering
experimental interaction-datasets. This method is demonstrated by associating genes identified
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by an RNAi-screen with the DNA damage response protein-protein interaction network. The
putative interactions that are included come from a new version of Scansite, a phosphorylation
and binding-motif prediction tool that is also presented here. Scansite 3 is now available online at
http://scansite3.mit.edu/ .

In the following chapters all biological concepts that are relevant for understanding how Scansite 3
and the gene-network-association method work are described in detail. This includes the biology of
protein-protein interactions in general (focusing on phosphorylation) and the biological and clinical
relevance of the DNA damage response. The description of Scansite 3 focuses on the new features
that were introduced and how it is used both interactively online and computationally.

12
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2.1 Protein-Protein Interactions

Chapter 2

Background

Many decades of research in molecular biology resulted in the availability of vast amounts of data,
including not only genomic sequences, but also protein sequences, structural data, and protein
meta-data as, for example, functional domain information and interaction data. Unfortunately, the
sole availability of data like these does not mean that we have an understanding of what all the data
means in a broader context. Originally, only single entities of data (e. g. single molecules) have
been detected and analysed. With the advent of new experimental techniques it was possible to
enrich these pieces of data with additional information. One of the most important breakthroughs
in this context was the rise of experimental techniques that allow the detection of interactions
of molecules. The molecular apparatus of a cell is mainly controlled by interacting proteins and
manipulation of one another. Detecting and understanding direct interactions is a first step to a
broader view of biological systems. Putting multiple interactions in context and viewing them as a
network of interacting entities brings us yet a little closer to a full understanding of the system.

This chapter introduces both these two ways of viewing biological systems exemplified by topics
fundamental for the understanding of later parts of this work. First of all protein-protein interactions
in general are described, followed by an overview of one specific type of interaction that is of
special relevance in cell signalling: Phosphorylation. Then, the DNA damage response is described
as a relevant example of a complex network of interacting proteins. At the end of this introduction
a number of computational phosphorylation prediction methods will be described and compared.
All these parts serve as a basis for later chapters. Specifically, for Chapter 3 on page 30 where
Scansite 3, a motif-based phosphorylation-prediction tool, is described, and for Chapter 4 on page 56
which illustrates a method that is applied to the enrich the DNA damage response protein-protein
interaction network with novel and potentially relevant interactors.

2.1 Protein-Protein Interactions

The control of cellular mechanisms is highly dependent on the interaction of molecules within
the cell. These include DNA-RNA interactions, interactions of proteins with DNA and RNA,
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2.1 Protein-Protein Interactions

interactions with metabolites, and, of course, protein-protein interactions. For this work, the
interactions of interest are in this latter category. De las Rivas and Fontanillo (2010) define protein-
protein interactions as “specific physical contacts between protein pairs that occur by selective
molecular docking in a particular biological context”. This definition includes three very important
statements. Starting from the end of the definition they are:

* Biological context: Protein-protein interactions are highly dependent on their molecular
surroundings (e. g. cell type, co-factors, binding partners, etc.), protein modifications, and
a cell’s cell cycle phase. This also means that the sole interaction-wise compatibility of
proteins and proof of an interaction in vitro is not sufficient to show that they in fact do
interact in vivo. Both interaction partners have to be at the same location at the same time
(colocalisation), they have to be ready for an interaction (activated, in a complex, etc.), and
they must be biochemically compatible.

* Selective molecular docking / Specific physical contact: With biochemical compatibility
comes the option of selective molecular docking. Molecular docking describes the direct
physical contact of molecules of the interacting parties. Physical contact includes binding of
the proteins and post-translational modifications. Proteins bind each other in order to form
functional units. These can be divided into stable / permanent complexes which are bound to
each other until the protein is degraded and transient complexes that only stay together for as
long as their functional influence is needed.

Protein modifications occur if one protein manipulates the molecular structure of another
protein, most often in the form of proteolytic cleavage (manipulation of peptide bonds) or
covalent modifications (e. g. binding of small molecules to a protein). The former events
are mostly irreversible, whereas the latter ones often are reversible (Blom et al., 2004). For
example, if a phosphate group is covalently bound to a protein, this group can be removed
again by another protein. This kind of modification is called phosphorylation and will be
described in more detail in Section 2.1.3. Other examples for covalent modifications are
ubiquitination (the covalent binding of ubiquitin, a small regulatory protein), glycosylation
(the attachment of a carbohydrate), and sumoylation (attachment of a small ubiquitin-like
moditying (SUMO) protein). Modifications, especially reversible ones, can be viewed as
molecular switches that play a central role in cellular signalling pathways.

It is very important that protein modifications do not occur randomly whenever proteins that
are enabled to modify others meet. For this reason the definition includes the specificity
of protein-protein interactions. This means that the interaction specific sites on the protein
should be non-generic, meaning that they serve a specific purpose and thus only recognise
specific interaction partners (De las Rivas and Fontanillo, 2010).

* Between proteins pairs: Obviously, the definition of protein-protein interactions only
includes the interactions of proteins with one another, excluding interactions with other
molecule-types like DNA, RNA, metabolites, cofactors, or ligands. Nevertheless, these kinds
of interactions are also very important when studying biological systems as they provide the
molecular surroundings that are crucial for many PPIs (see above). This definition also does
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not fail to mention that protein interactions can always be viewed as binary interactions. Even
though interactions are often described as complex A interacts with protein X this does not
mean that every protein involved in complex A interacts with the protein X: Every interaction
can be broken down into a set of pairs of interacting proteins. This definition also excludes
interactions of a single protein with itself (e. g. forming of disulphide bridges between two
cysteine residues or autophosphorylation).

2.1.1 Experimental Identification of Protein-Protein Interactions

There are many different experimental methods to determine and verify protein-protein interactions.
They can be divided into two groups dependent on their throughput. Low-throughput methods are
the most accurate and reliable ones; high-throughput methods have the advantage of being fast,
inexpensive, and scalable.

The most widely used high-throughput method for detecting protein-protein interactions are Yeast-
2-Hybrid (Y2H; originally described in Fields and Song (1989)) and Tandem Affinity Purification
Mass Spectrometry (TAP-MS; see Rigaut et al. (1999)). Y2H is based on the idea of separating a
transcription factor’s DNA-binding and activation domain across the two molecules of interest so
that only their interaction activates the expression of a reporter gene: The DNA-binding domain of
the transcription factor is bound to one of the potentially interacting molecules (the so-called bait)
and the activation domain is bound to the other one (the prey). An interaction of the molecules
activates the transcription factor and a reporter gene is expressed. As this method is applied in yeast
in vivo, false positives can occur: It is possible that the binding between the two proteins of interest
does not happen directly but via an intermediate yeast protein. Another caveat of this method is
that although it has the potential of proving real in vivo interactions, the interactions that are proven
may never happen naturally in a living system as the two molecules may never meet (Koh et al.,
2011). The bait and prey naming convention can also be applied to TAP-MS. Bait molecules are
captured in a matrix that a mixture of prey molecules is passed through. Only those molecules with
high affinity to bait molecules (i. e. interactors) will stay in the matrix. This step is called (tandem)
affinity purification. The actual identification of interactions is done by mass spectrometry. But
there are also drawbacks to this method: Most importantly, this method reports primarily stable
and high-affinity binding interactions since weak bindings and transient interactions are probably
lost in the matrix-washing process (Pflieger et al., 2010). In addition, TAP-MS may also report
interactions that are not relevant in the context of a living system.

An experimental method that is accepted as quasi-gold standard for reporting protein-protein
interactions is X-ray crystallography. This method is extremely low-throughput and requires a lot
of expertise to be carried out. It is limited to water-soluble proteins and requires a large quantity of
extremely pure samples. However, it has the potential of giving very detailed information (atomic
level) about the site of interaction and type of bonds (Koh et al., 2011).

Although all commonly used protein-protein interaction detection methods have caveats that have
to be considered one can argue that the confidence of a reported interaction is higher if different

15



2.1 Protein-Protein Interactions

experiments have reported this interaction to be real. A problem with this rule of thumb is however
that negative results are rarely reported in the literature and thus non-verified interactions due
to failed verification experiments are not available in public repositories. This also means that
experiments showing opposing results about previously verified interactions are usually not made
public. In contrast, many public databases exist that collect experimentally verified protein-protein
interactions.

2.1.2 Protein-Protein Interaction Databases

The emergence of high-throughput techniques for identifying protein-protein interactions naturally
meant a rise in the number of experimentally verified and published interactions. With this came
the need for publicly accessible collections of reported interactions. In the past ten to fifteen years
a number of protein-protein interaction databases have become available. Based on their content,
they can generally be divided into two categories: Those that only contain experimentally validated
interactions (in vivo or in vitro) and those that include computationally predicted interactions (in
silico). In this section the focus lies on the former category. A selection of major data-repositories
is shown in Table 2.1. With the exception of the STRING database all of the databases listed
here are curated databases, i.e. the interactions stored there were manually extracted from the
literature by a team of biologists or submitted by the publishing group. The curation process is very
slow and inefficient; however, it is the least error-prone attempt of tackling the problem of filling
such data repositories. Only controlled submission-strategies can guarantee that only valid data is
stored. Literature-mining algorithms (e. g. the Rule-based Llterature Mining System for protein
Phosphorylation (RLIMS-P) introduced in Hu et al. (2005)) are very efficient but are, generally
speaking, error prone and include many false positives and miss true positives. In addition to data
from curated databases (including the ones listed in the table), the STRING database also includes
data found by literature mining algorithms.

Table 2.1: This table shows an overview of the major protein-protein interaction currently available.
Numbers as of April 19th 2012. Dashes (-) denote that the databases do not offer a number in
this category. Please note that the STRING database is not a primary protein-protein interaction
database itself, but stores the interactions from a collection of different PPI databases: Among
others, STRING includes all the PPI-databases listed here.

Protein Protein Interaction Databases

Name (Reference), Link Proteins Interactions Publications
BioGRID (Stark et al., 2011), thebiogrid.org 42,195 334,644 30,884
DIP (Salwinski et al., 2004), dip.doe-mbi.ucla.edu 24,430 73,268 -
HPRD (Prasad et al., 2009), hprd.org 30,047 39,194 453,521
IntAct (Kerrien et al., 2012), www.ebi.ac.uk/intact 61,542 292,919 5,366
MINT (Licata et al., 2012), mint.bio.uniroma2.it 35,048 240,760 130,744

STRING (Szklarczyk et al., 2011), string-db.org - - -

A very important feature of all databases of this type is a link to the publications (i. e. references) and
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2.1 Protein-Protein Interactions

experiments where the interaction information was published. The Biological General Repository
for Interaction Datasets (BioGRID), the Database of Interacting Proteins (DIP), the Human Protein
Reference Database (HPRD), the InterAction database (IntAct), and the Molecular INTeraction
database (MINT) all contain this information. STRING (Search Tool for the Retrieval of Interacting
Genes) saves both the initial origin of the interaction information and the database. All of these
resources also include some useful tools for analysing, viewing and downloading interaction data.

Given the fairly high numbers in Table 2.1 for the numbers of proteins and interactions covered
by the curated publications it is a surprising fact that there is not a large inter-database overlap
in the reported interactions. Turinsky et al. (2010) reported that from about 15,500 publications
that are shared across nine major public protein-protein interaction databases only 42% of the
interactions and 62% of the proteins curated from the same publication fully agree on average across
two databases. The authors conclude that this is mainly due to divergent curation policies across
databases, but that protein-identifier mapping (e. g. mapping of isoforms, mapping from protein
IDs to gene symbols) and ambiguous phrasing in scientific texts also play a role. A similar result
was shown in De las Rivas and Fontanillo (2010) where the authors report that in their comparison
of six major protein-protein interaction databases only three interactions were shared across all of
these databases. These studies suggest that a combination of databases is the best choice when
the best possible set of interactions is needed. This is where the main advantages of the STRING
databases come into play: (1) It combines the information from many interaction databases and (2)
it provides a score for each interaction based on the number and quality of the reported interactions
between the two potentially interacting partners.

Several strategies for solving the issue of divergent methods of manual curation have been suggested.
The most promising of which is the idea of coupling the interaction-saving process to the process
of paper submittal. If all scientific journals require PPIs to be reported in a standardised way
for publishing, ambiguities and other related problems could easily be avoided. This process is
already implemented for publishing nucleotide sequences (Mathivanan et al., 2006). Other ideas
to unify and standardise protein-protein interaction information have been published and are used
(Hermjakob, 2006) but have not changed much in the current body of databases.

2.1.3 Protein Phosphorylation

One of the most abundantly happening covalently modifying protein-protein interactions is protein
phosphorylation. This term describes the biochemical activity of transferring a phosphate group
(POy4) from an adenosine triphosphate (ATP) to a hydroxyl group (OH) at an acceptor residue turning
the ATP into ADP (adenosine diphosphate). Acceptor residues are all amino acids that contain
OH-groups, i. e. serines (S, Ser), threonines (T, Thr), and tyrosines (Y, Tyr) at the phosphorylated
protein, the substrate. The process of phosphorylation is catalysed by enzymes called protein
kinases and usually occurs in the nucleus or the cytosol of a cell. The reverse operation (removing
a phosphate group from an S, T, or Y residue) is carried out by phosphatases and referred to as
dephosphorylation.

17
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Researchers started paying attention to the role of phosphate metabolism when they noticed the
huge turnover of phosphate in a wide variety of living cells in different kinds of tissue. The presence
of phosphoserines and phosphothreonines (i.e. phosphorylated serine and threonine residues,
respectively) suggested that there was some enzymatic mechanism that is responsible for the use
of phosphorus in the sense of phosphorylation and dephosphorylation. However, almost nothing
was known about the proteins that carried out these modifications. Based on these basic ideas and
assumptions, Burnett and Kennedy (1954) carried out experiments that reported the “finding of an
enzyme that was capable of [...] catalyzing the phosphorylation of a protein substrate by ATP”.
Simply put, they marked ATP radioactively with P> and found the radioactive phosphorus isotopes
again at phosphoserines of the substrate. This finding showed the first evidence of a protein kinase
and started a large number of studies on phosphorylation.

In the meanwhile, more than 500 human kinases are known and many of them have been studied
extensively, whereas the function of others is still to be determined (Hutti et al., 2004). They are
involved in all kinds of cellular processes, including the regulation of binding affinities, the alteration
of gene expression by transcription control, manipulation of protein activities in signal transduction
pathways, and cell cycle regulation. Many kinases have been originally found in one context, but
further in-depth studies showed that they seem to be primarily involved in other important regulatory
functions. A good example for a kinase like this is the ATM kinase. It was originally found in
context of ataxia-telangiectasia (A-T) patients. Researchers found that A-T patients had a mutation
of a gene in common that encodes a kinase, hence naming it ataxia-telangiectasia mutated or ATM
kinase (Lee and Paull, 2007). It was not until later that researchers discovered one of the main roles
of ATM, which is the regulation of the DNA damage response after double-strand breaks. This
particular example will be discussed in more detail in Section 2.2.

The definition of protein-protein interactions described in one of the preceding sections stated that
the specificity of the interacting partners plays a central role. Of course, this also applies to kinases.
It seems obvious that different kinases prefer to phosphorylate different substrates. But how do
they distinguish between different substrates? Clearly, the kinase-substrate interaction focuses on
the acceptor residue in the substrate sequence. Crystallisation studies showed that the amino acid
sequence around the potentially phosphorylated site plays an important role for the specificity of
kinases in vivo. It was shown that around nine to twelve residues on the substrate are likely to
physically contact the kinase’s active site (Songyang et al., 1994) suggesting that approximately
this part of the substrate’s primary structure determines whether an acceptor residue is likely to be
phosphorylated by a given kinase or not. The sequence that is crucial for the biochemical decision
of the kinase to do so (or not) is thus dependent on a kinase-specific consensus motif / consensus
sequence. This term describes the amino-acid preferences of kinases around an acceptor residue
and includes the kinase’s preference for one or more acceptor residues. For example, kinases that
prefer serines and threonines as acceptor residues are called serine-/threonine-kinases (e. g. ATM
kinase); kinases that only phosphorylate tyrosine residues are referred to as tyrosine-kinases (e. g.
the epidermal growth factor receptor (EGFR) kinase).

The amino acid specific preferences of kinases around the acceptor residue can be described by a
position specific scoring matrix (PSSM). A PSSM like this contains a probability value for each
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amino acid at each position around the acceptor residue, dependent on the kinase’s preferences. If,
for example, a kinase only phosphorylates tyrosines that are followed by a proline residue (YP),
the PSSM will contain a value of 1 for tyrosine and proline at positions 0 and +1, respectively
(assuming that the tyrosine is at position O in the matrix). If there are no preferences at all for the
rest of the positions around the acceptor tyrosine all other position’s values in this hypothetical
matrix would be preferred equiprobable and thus contain a value of 2—10 (considering a number of
20 amino acids in this matrix). Table 2.2 shows an example for a PSSM like this that additionally
prefers a negative residue in position —3 relative to the acceptor site.

Table 2.2: An example for a position specific scoring matrix that describes a kinase’s consensus
motif three residues around (4-/—) the substrate’s acceptor residue. The vertical axis describes
the positions around the acceptor site, the horizontal one the amino acids (leaving out H, I, K,
and L). The motif described here shows a requirement of tyrosine as an acceptor, a requirement
of proline at 41, and a preference for a negative residue at position —3, favouring aspartic acid
(0.6) over glutamic acid (0.4). There are no preferences for other positions (all 20 amino acids are
equiprobable, hence values of %). The motif shown in this matrix can be written in a simplified
form as [DE]-X-X-Y-P-X-X , with X being any residue.

A Sample PSSM
A C D E F G M N P Q R S T V W Y
3 0 0 06 04 0 O o 0 0 O O O o o 0 O
i, J U U U U . B o L e e e .
20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
g L 1 i 111 l +r 1+ 1+ 1 1 1 1 1 1
20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
0 0 0 O 0 0 O o 0 0 O o o0 o0 o0 o0 1
+1 0 0 0 0 0 O o o 1t o0 o O 0O o0 0 O
+2 L1 L 1 1 1 1 4l +r 1+ i 1 1 1 1 1 1
20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
+3 L 1 1111 i<z ot 1t 1 1 1 1 1 1 1
20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

A recent publication that presented the consensus motifs of five major mitotic kinases (CDK1 /
cyclin B, Aurora A and B, Nek?2, and PLK1) showed that kinases not only have motifs that they
prefer, but that they also have anti-motifs that they disfavour (Alexander et al., 2011). The authors
show that the kinases they studied exist in “two functionally orthogonal spaces”: The localisation
space and the motif space. The former refers to cellular compartments a kinase can be found in, the
latter to the consensus motif a kinase favours. In the context of this study, each major mitotic kinase
overlaps with every other kinase in at most one of these two spaces. Alexander et al. reason that this
is because of the unusual kinase localisations during mitosis. In contrast to other cellular process
where the subcellular localisation of proteins is more or less constant, the localisation of proteins
during mitosis gets completely mixed up, when the genomic content of the nucleus is partitioned
into two daughter cells. The existence of anti-motifs shown in this study suggests not only another
layer of kinase specificity but also a cellular security system that makes sure that kinases do not get
in each other’s way.

One of the most commonly used experimental techniques for determining a kinase’s consensus
sequence is OPLS: In Oriented Peptide Library Screens the kinase of interest is mixed with
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about 2.5 billion distinct peptides. All these peptides are fifteen residues long and contain a single
phosphorylatable residue at their centre position. These peptides are then sequenced and the
preference values for each amino acid at each position relative to the phosphorylated acceptor
site can be calculated (Songyang et al., 1994). A related method, which was developed about ten
years later, improved the efficiency of this approach. It uses a set of 198 distinct peptide mixtures
with each mixture having one of the twenty naturally occurring amino acids fixed at each of nine
positions surrounding an also fixed central acceptor residue and with the remaining positions being
degenerate. Radioactively labelled ATP is then added to the mixtures with the kinase of interest.
After this step the mixture is washed to remove the non-phosphorylated peptides and the extent of
phosphorylation at each of the positions is determined by measuring the content of radiolabeled
phosphate. This method is referred to as Positional Scanning Oriented Peptide Libary Screen or
PS-OPLS (Hutti et al., 2004).

The abundance of experimentally verified phosphorylation sites and the importance of phospho-
rylation as a cellular process lead to the emergence of public data repositories dedicated to phos-
phorylation sites alone. An incomplete list of databases in this category is shown in Table 2.3.
Phospho.ELM contains exclusively phosphorylation sites from scientific publications and phospho-
proteomic analyses. Both, PhosphoSitePlus (PSP) and PHOsphorylation Slte DAtabase (PHOSIDA)
started originally as databases for phosphorylation sites only (hence the names), but also store
other post-translational modifications in the meanwhile, including glycosylated, acetylated and
differently modified residues. All modifications in PHOSIDA come from high resolution mass
spectrometry experiments carried out by the group that hosts the database. The most comprehensive
of these resources, PhosphoSitePlus, contains in vivo sites that were manually curated from the
literature, but also in vitro sites. All of these databases cover more than one organism.

Table 2.3: This table shows an overview of the major phosphorylation-site databases currently avail-
able. Numbers as of April 19th 2012. There is no number of publications available for PHOSIDA as
this resource exclusively stores post-translational modifications reported by mass spectrometry ex-
periments carried out by the group hosting the database. The databases PHOSIDA, Phospho.ELM,
and PSP are available online at phosida.com, phospho.elm.eu.org, and www.phosphosite.org,
respectively.

Phosphorylation Site Databases

Name (Reference) Proteins Phosph. Sites Publications
PHOSIDA (Gnad et al., 2007) 23,769 70,095 -
Phospho.ELM (Dinkel et al., 2011) 8,698 42,914 3,657
PhosphoSitePlus (Hornbeck et al., 2012) 18,887 170,213 13,820

The availability of resources like these allows researchers all over the world to access this informa-
tion and incorporate them in their studies. Although the importance of phosphorylation in cellular
functions has been emphasised many times so far, no relevant examples have been described in
more detail. This will change in the next section where the DNA damage response is described.

20


http://phosida.com/
http://phospho.elm.eu.org/
http://www.phosphosite.org/

2.2 The DNA Damage Response

2.2 The DNA Damage Response

So far, only binary protein-protein interactions have been discussed. By zooming out a bit from
this very detailed view of cellular signalling and taking a look at a series of PPIs one after another
it is possible to assign a meaning to interactions in a broader context. Such a series of protein-
protein interactions can be viewed as a signalling cascade (or signalling pathway). Starting with
the assumption that cellular signalling cascades are strictly linear, a trigger event at one side of a
cascade leads to some outcome at the other end. Given the number of intermediate steps between
the initial trigger of the pathway and the result one might ask why cells use a complicated way like
this for controlling basic functions. One of the main reasons for this is that signalling cascades allow
a very fine-grained regulation of processes. In contrast to direct on/off-switch-like relationships, a
cascade of events allows much more points to control the ultimate outcome. This view of biological
systems is very helpful for us to get a better understanding of what is going on, since it reduces the
system’s complexity. However, in reality pathways very rarely are linear one-after-another cascades.
Usually, a more appropriate view is that of a network of interactions. In this context, signalling
pathways can be considered as specialised parts of an interaction network, and the network consists
of several pathways that interact or overlap with one another. In this section the DNA damage
response network will exemplify many of the ideas and concepts that have been introduced so far.

DNA (deoxyribonucleic acid) is probably the most important molecule in living organisms as it
stores the organism’s genetic blueprint. In order to be able to maintain the stability of its genome,
it is crucial for a cell that its copy of the DNA molecule stays as constant as possible over the
course of many cell cycle iterations. Damages to this complicated macromolecule can have severe
consequences (as, for example, different forms of cancer) and, unlike other molecules in the cell,
damaged DNA cannot be simply replaced by a new instance. Hence, it is critical for the organism
to survive that damages to the DNA are repaired or that cells with damaged DNA are eliminated.
This is achieved by a large number of proteins that are able to sense damage (sensors), mediate
signals (mediators), and repair damage (effectors). Each of these groups of proteins contains a
number of members. Which ones are activated and which ones they activate in further consequence
is highly dependent on the type of DNA damage and how this damage was induced. For example,
one of the most dangerous types of DNA damage is when both strands of the DNA break. This
type of damage is called double strand break and, dependent on what caused this kind of damage
(e. g. ultraviolet vs. ionising radiation), a different repair pathway (including different proteins) is
pursued.

2.2.1 Types of DNA Damage and Repair Strategies

Threats to the integrity of DNA can be divided into three groups. First of all, environmental (or
exogenous) chemical or physical agents pose a threat, including exposure to ionising radiation (IR)
and ultraviolet light (UV) on the physical side and cisplatin, mitomycin C (MMC) and other agents
on the chemical side (Ciccia and Elledge, 2010). Secondly, products of normal or dysregulated
cellular metabolism may interact with DNA and change it biochemically. This includes mainly
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highly reactive oxygen and nitrogen metabolites, but also alkylating agents and other metabolites.
Third, damage may happen any time due to replication errors or spontaneous reactions, especially
hydrolysis (Hoeijmakers, 2009).

All these threats can lead to different types of DNA damage and initiate a number of different
repair pathways. All of these pathways are part of the DNA damage response network, i.e. the
network of interacting proteins involved in the DNA damage response. Damage to the DNA can be
split into three groups: DNA strand breaks, nucleotide-related damages (mostly base adducts), and
interstrand crosslinks.

DNA strand breaks are either double strand breaks (DSB) or single strand breaks (SSB). Single
strand breaks are breaks in just one of the two strands of a DNA helix. They are repaired by a
pathway referred to as single strand break repair (SSBR). Since only one of the two strands is
damaged, SSBR is carried by nucleases which use the intact strand as a template. Since this option
is not available for DSBs, the repair of double strand breaks is more complicated. At the moment of
writing this, two different DSB repair pathways are known: homologous recombination (HR) and
non-homologous end joining (NHEJ) (Weterings and Chen, 2008). HR is a very accurate process.
It uses a homologous sequence as a template for repairing the break. In contrast, NHEJ ligates
the ends of the broken DNA molecule together without using a template. This often results in
insertions, deletions or base pair substitutions (Ward and Chen, 2004). Figure 2.1 illustrates the
mechanisms of homologous recombination and non-homologous end joining.

(A) Non-Homologous End Joining (B) Homol ogous Recombination

Figure 2.1: Simplified overview of non-homologous end joining (NHEJ) and homologous recombi-
nation (HR). The broken DNA is coloured black, newly synthesised strands are coloured red. (A)
NHE] ligates the two loose pairs of strands together. If the gap in one sequence is longer than in
the other, the longer sequence is used as a template to complete the other strand. This might result
in errors, as it is not guaranteed that the DNA sequence was not altered. There may be nucleotides
missing, wrong, or added in the repaired version. (B) HR is much safer and more accurate. It uses
a sequence from a homologous sister chromatid as a template (illustrated in blue). This way, there
is a template for both strands available and it is possible to correct for deletions, additions or other
mutations. In this example, NHEJ is missing a part in the top strand that HR is able to fix.

Damages related to single or multiple nucleotides in the DNA and their repair pathways can also be
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divided into different groups: Mispaired DNA bases, helix-distorting damages (e. g. pyrimidine
dimers), and damages to single bases (e. g. chemical alterations). Simple damages, like mispaired
DNA bases or chemical damages to single bases are repaired by mismatch repair or base excision
repair which replace the incorrect or damaged base, respectively. Helix-distorting damages are
more complicated lesions that include covalent bindings which obstruct the DNA’s helix structure.
Damages in this category are repaired by nucleotide excision repair which removes approximately
thirty base pairs at the damaged sites and replaces them with new ones (Ciccia and Elledge, 2010).

Interstrand crosslinks are repaired by a pathway called interstrand crosslink repair (ICL-R). In this
pathway, the crosslinked DNA strands are first separated and then ligated in the correct way. This
process involves a combination of several of the pathways described above (Hoeijmakers, 2009).
Figure 2.2 shows a schematic overview of the concepts described so far.

Physical
Chemical UVand IR Intrinsic
Endogenous ¢ Spontaneous modifications
and and

Exogenous T «— Replication errors

TTTTITITTTTITIIL 497 [T T

Double / single strand breaks
f_ Base modifications w
Interstrand crosslinks
Repair and Survival Apoptosis
(HR, NHEJ, MMR, BER, NER, ICL-R) (or malignant transformation)

Figure 2.2: A schematic overview of DNA damage agents (top), and a cell’s response to them.

2.2.2 The DNA Damage Response in the Cell Cycle

DNA damage is a very common event in the normal lifecycle of a cell. It was estimated that per
day and per cell up to 10° DNA lesions happen spontaneously (Lindahl, 1993). For this reason it is
very important for cells to check the integrity of their DNA on a regular basis. Similar to computers
that check the status of their hardware each time they are powered on with the so-called power
on self-test, cells also have fixed points in time when they perform their DNA integrity checks.
These time-points have been found to be three checkpoints during the cell cycle: One at the G1/S
transition (G1/S checkpoint), one during the S-phase (intra-S-checkpoint), and another one at the
G2/M transition (G2/M checkpoint). The cells fate is decided at these DNA damage checkpoints.
This decision process can have three different outcomes: (1) The DNA is found to be in a proper
state which allows the cell to continue the cell cycle and the cell goes into senescence. (2) Damages
were found and they can be repaired which results in a temporary cell cycle arrest and the activation
of the appropriate repair pathway. Or (3) damage was detected, but it is either irreparable or the
repair failed. This results in the activation of the controlled cell death pathway (apoptosis). If, for
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any reason, this interaction networks fails, mutations and chromosomal aberrations may arise which
can cause severe clinical phenotypes.

As for many other signal transduction pathways, the proteins involved in the DNA damage response
pathways can be divided into groups dependent on their role: sensors, mediators (or signal trans-
ducers), and effectors (Harper and Elledge, 2007). A sensor’s job is the recognition of damage and
signalling the presence of damage to mediators. These mediators then transmit this information
to effector proteins, which then decide the cell’s fate (senescence, repair, or death). To give a
coarse-grained overview of how a response like this looks like and what genes are involved, the
response to DNA double and single strand breaks is outlined in the following.

Sensors. Only minutes after the induction of DNA double strand breaks the damage is sensed
by the MRN (MREI1-RAD50-NBSI) complex (Reinhardt and Yaffe, 2009). The binding
of this complex to the site of damage initiates a cascade of other events. To start with,
ATM is recruited to the site of damage. This protein is a kinase that plays a central role
in the DNA damage response pathway. Mutations in ATM (ataxia telangiectasia mutated)
cause ataxia-telangiectasia (A-T), a rare but severe neurodegenerative disease, which can
be traced back to the deficiency of the cell to react to damages to the DNA. The ATM
kinase phosphorylates many proteins, including the MRN complex, the histone H2AFX,
the checkpoint kinase CHEK?2, the tumour protein 53 (7P53), the breast cancer type 1
susceptibility protein (BRCAI), and itself (Shiloh, 2003). Another well-studied DNA damage
response pathway is centred on the ATR (A-T and Rad3 related) kinase and the checkpoint
kinase CHEK. This pathway is initiated by the 911 (Rad9-RadI-Husl) complex after DNA
single strand breaks (Cimprich and Cortez, 2008). After recruitment to the site of damage,
TopBP1 binds to the 911 complex. TopBP1 contains a domain that can bind ATRIP and
stimulate ATR activity. ATR binds to ATRIP (ATR interacting protein).

Mediators. Proteins that are direct substrates (i. e. phosphorylation targets) or temporary binding
partners of ATM and ATR are referred to as mediators in the DNA damage response (Harper
and Elledge, 2007). The most important proteins in this category are the checkpoint kinases
CHEKI and CHEK?2, BRCAI, H2AFX, and MDC1 (mediator of DNA damage checkpoint
protein 1). Phosphorylation of the histone H2ZAFX by ATM and ATR promotes the loosening
of the chromatin in that region. ATM and ATR activate the effector kinases CHEK?2 and
CHEK]1 by phosphorylating them, respectively.

Effectors. Downstream of mediators, effectors act on proteins directly involved in cell cycle tran-
sitions and repair strategies. These components are what give the checkpoints their unique
identities (Sancar et al., 2004). Proteins in this group include the three phosphotyrosine phos-
phatases CDC25A, CDC25B, and CDC25C that dephosphorylate cyclin-dependent kinases
like, for example, CDK2 as well as TP53. These phosphatases are inactivated by phosphory-
lation which promotes the continuation of the cell cycle. In the G1/S checkpoint cell cycle
arrest can be initiated by the phosphorylation of TP53 by ATM or ATR. Phosphorylation of
TP53 then activates the transcription of P2/ (or CDKNIA), a CDK inhibitor. This, in further
consequence, blocks the transcription of genes required for the initiation of the S-phase.
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It is important to mention that assigning proteins into these categories does not mean that they act
only at this stage in the cell cycle and in this function in the DNA damage response. Different cell
cycle checkpoints favour different groups of proteins. They differ most in which effectors they use,
but some sensors and mediators also play more important roles in some checkpoints than in others.
However, many key players are active during the whole response process. ATM, for example, is
only one of many kinases that phosphorylates proteins in the early and later response to double
strand breaks, independent of which cell cycle checkpoint is currently happening (Sancar et al.,
2004). In a similar manner, groups of proteins are often interchangeable, meaning that one group of
proteins serves as a backup for another group. Double strand breaks, for example, can either be
repaired by a pathway initiated by BRCA, or by PARP proteins (Hoeijmakers, 2009). The presence
of backup repair-pathways plays an important role in some therapeutic strategies as the following
section will show.

2.2.3 Relevance of the DNA Damage Response in Diseases

The cellular signalling network outlined in the previous section shows only a strongly simplified
and thus incomplete picture of the DNA damage response. It is known that this particular network
alone incorporates hundreds of other proteins and molecules. However, many diseases are known
that originate from the misregulation or dysfunction of a single entity. For example, A-T is a genetic
disorder in humans that occurs if the ATM gene is either lost or inactivated. It belongs to a group
of diseases referred to as genetic instability syndromes which have in common that they result
from a defective DNA lesion response mechanism. Other well-studied diseases in this category are
(amongst others) Xeroderma pigmentosum (XP), the Nijmegen breakage syndrome (NBS), and
Fanconi’s anemia (FA). All of these diseases can cause different types of cancer as a broken damage
check and response apparatus can cause uncontrolled cell proliferation and / or avoid apoptosis.
Familial breast cancer also results from mutated DDR genes. Table 2.4 sums up the main facts
about these diseases noting the mutated genes, what part of the DNA damage response is defect,
and what cancer(s) the mutations are known to cause.

Based on the protein interactions described in the previous section it is quite comprehensible that
mutations in key players like ATM and NBS! (part of the MRN-complex) disrupt cells’ damage
response pathways and thus make them misbehave. In contrast to familial breast cancer however,
the primary phenotype of the other diseases mentioned before is not cancer, but neurological (e. g.
microcephaly, retardation, ataxia), immunodeficiency-related, some kind of dysmorphism, and /
or tissue defects. Xeroderma pigmentosum patients, for example, are extremely sensitive to the
UV-light component of sunlight. They show accelerated signs of ageing of their skin and are highly
susceptible to skin cancers (Shiloh, 2003). As mentioned before, UV-radiation causes different
types of DNA damage. In XP some of the genes that are needed for fixing this kind of damage are
mutated (inactivated or lost), which explains the abnormal behaviour of those cells that are exposed
to sunlight: the skin cells. One of the main characteristics of FA is bone marrow depletion, which
causes insufficient formation of all blood cell types. Cells of Fanconi’s anemia patients are sensitive
to DNA interstrand crosslinking and breaking agents. It is assumed that all FANC-genes play a role
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Table 2.4: Overview of a small number of genetic diseases that were associated with DNA damage
response genes and are known to be able to cause cancer. A more complete list can be found in
Ciccia and Elledge (2010). The diseases listed here are Ataxia telangiectasia (A-T), Fanconi’s
anemia (FA), Nijmegen breakage syndrome (NBS), Xeroderma pigmentosum (XP), and familial
breast cancer (FBC). The abbreviations used for DDR defects HR, DSB, ICL, and NER stand for
homologous recombination, double strand break, interstrand crosslink, and nucleotide excision
repair, respectively.

Genetic Diseases Associated with DNA Damage Response Defects

Disease Mutated Main DDR Defects Possible Cancers
Genes
A-T ATM damage signalling, DSB re- lymphomas, leukaemia, breast
pair cancer
FA FANC-genes ICL-repair, HR AML, myelodysplasia, carci-
noma
NBS NBS1 damage signalling, DSB re- B cell lymphoma
pair, replication fork repair
XP XPA-G, POLH NER carcinomas, melanoma
FBC BRCAI, HR, damage signalling breast cancer, ovarian cancer
BRCAZ2,
CHEK?2,
NBSI, ATM,
and others

in the so-called FA-pathway which includes parts of the HR- and ICL-repair pathways (D’ Andrea,
2010).

Increasing knowledge about the protein-protein interactions involved in the DNA damage response
network and the extraction of functional modules allows us to target diseases directly at their
source. Given that we know what mutations a disease is caused by — and we do know that for
many diseases — it is possible to force cells to use alternatives to the malfunctioning gene. One
approach that exemplifies this idea quite well is the use of a pathway inhibitor for targeted cancer
treatments. In an illustrative scenario where cancerous cells are proliferating in an uncontrolled
manner, a specific pathway that enables a cell to repair double strand break damage may be inhibited
due to missing or blocked genes that are needed for this pathway’s (de-)activation. In healthy
cells in the same organism, however, all pathways work fine. Knowing that the cell knows an
alternative pathway that serves the same purpose as the one that is damaged in the cancerous cells
(i.e. repairing DSB damage) allows clinicians to turn off the alternative pathway by using some
specific pathway inhibitor. Consequently, both repair strategies are turned off in the cancerous cells,
but one pathway is still working in the healthy cells. Thus, the misbehaving cells are killed, and the
healthy ones stay alive. Figure 2.3 illustrates this approach.
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Figure 2.3: Illustration of the basic idea of pathway inhibitor based therapies. Here, healthy cells
have two DNA damage response pathways: A and B. If one pathway is lost for some reason (in this
case B), cells may become malignant cancer cells (top right). These cells can be forced to apoptosis
by inhibiting their backup repair pathway (A). This will kill cancerous cells (bottom right), but
healthy cells will stay alive (bottom left).

2.3 Computational Methods for Predicting Kinase-Substrate Inter-
actions

The biological importance of protein phosphorylation was emphasised many times so far and
techniques that allow researchers to experimentally verify protein-protein interactions were outlined.
But even high-throughput techniques lack the ability to answer some scientific questions in a
resource- and time-efficient manner. For example, given a species’ entire proteome, what are a
kinase’s potential targets? Or, which kinases are likely to phosphorylate a set of given proteins?
Although it is indeed possible to answer these questions experimentally, a more resource-responsible
way is to use computational tools that use experimental data to predict kinase-substrate interactions.
Almost 40 different phosphorylation prediction tools (counting only phosphorylation-specific tools,
excluding more general PTM-predictors) have been published since 1999 (Trost and Kusalik,
2011). This section introduces some representative tools that are available online focusing on
their prediction method. It is obvious that all of these methods are based on prior biological
knowledge and experimental data. The nature of the underlying data varies, though. Some methods
focus on a specific biological feature (e. g. a kinase’s consensus motif); others incorporate a wider
variety of features (e. g. different kinds of sequence properties, protein meta-data and chemical
properties), again others utilise phosphorylation-relevant environmental data (e. g. known protein-
protein interactions), and some methods combine all these kinds of information.
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Scansite! (Yaffe et al., 2001) is one of the oldest and most widely used kinase-substrate prediction
tools. It uses position specific scoring matrices (PSSMs) that describe different kinases’ recognition
motifs to identify potential phosphorylation sites in proteins. In addition, users are presented with
some supporting information about the queried proteins which assists them in their decision process
of whether to trust a prediction. This method will be described in detail in Chapter 3 on page 30.
PSSMs are used by most of the phosphorylation site prediction methods in some way. The DISorder-
enhanced PHOSphorylation predictor DisPhos® (Iakoucheva et al., 2004) is based on the fact that
many important regulatory proteins contain intrinsically disordered regions and phosphorylation
sites in proteins of this category are more likely to occur within intrinsically disordered regions.
Intrinsically disordered proteins are proteins that contain intrinsically disordered regions and thus
do not have a rigid 3D structure. Hence, proteins like this undergo conformational changes over
time. It is estimated that up to 30% of all eukaryotic proteins are mostly intrinsically disordered
and that around 70% have long disordered regions (Uversky and Dunker, 2010). In addition to five
predictors of disorder DisPhos takes into account sequence information (e. g. secondary structure,
surface accessibility, charge, flexibility). This information is collected for a set of training data,
followed by a feature extraction step that identifies the most important features. These are then
used to train a predictor that is used to predict phosphorylation sites (Iakoucheva et al., 2004).
Another tool, ConDens? (Lai et al., 2012), focuses on evolutionary conservation and does not
depend on training data. This tool is based on the idea that a kinase’s recognition motif is not
specific to a single species but is evolutionary conserved. Consequently, important phosphorylation
sites are evolutionary conserved too. But this idea is not as straight-forward as it seems. It is
not enough to check if the potentially phosphorylated site is evolutionary conserved. The whole
recognition motif has to be conserved. Several other issues have to be considered too: Is a site
conserved because it is important, or because the stretch of the amino acid sequence where the site
resides is conserved? Where is the site in another organism after deletions and insertions? How
can functionally conserved regions be identified? How to deal with point mutations of Serines,
Threonines or Tyrosines to other amino acids? ConDens deals with these evolution-related issues
by using an evolutionary model to account for local sequence divergence in the multiple sequence
alignment of candidate sequences (Lai et al., 2012). Sites that match a given recognition motif and
are evolutionary conserved are more likely to be real than others that are not conserved. However,
ConDens uses regular-expressions instead of PSSMs to represent motifs, which causes the method
to only find very strict patterns and does not allow it to incorporate a kinase’s amino acid preferences
for specific positions. NetPhosK* (Blom et al., 2004) is a tool that uses a pure machine learning
approach. It uses artificial neural networks to train a kinase-specific predictor based on known (i. e.
experimentally verified) phosphorylation sites. NetworKIN® (Linding et al., 2007), the last method
that will be mentioned here, utilises data from protein-protein interaction databases (primarily
STRING) as well as predictions from other prediction tools, specifically Scansite 2 and NetPhosK.
This tool tries to incorporate contextual information in the prediction process. Here, the term

Ynttp:// scansite3.mit.edu/

2 http://www.dabi.temple.edu/disphos/

3 http://www.moseslab.csb.utoronto.ca/andyl/
*hitp://www.cbs.dtu.dk/ services/NetPhosK/

S http://networkin.info/
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contextual information describes the biochemical surroundings of kinase-substrate pairs as, for
instance, subcellular compartmentalisation, colocalisation via anchoring or scaffolding proteins,
and the activity of regulatory subunits. In contrast to the tools described so far, this tool cannot be
used to predict novel phosphorylation sites, but rather is designed to assign kinases to substrates
with experimentally verified phosphorylation sites. This is done by first running the predictor tools
Scansite 2 and NetPhosK on a given protein to assign a kinase family to a site and then using
contextual information from other databases to determine which kinase is the most likely to be
responsible for a site of interest.

When using prediction tools like these it is very important to keep their methods’ caveats in mind.
To start with, predictions are just predictions and do not guarantee that they are right. This is
especially important if tools are used to design and plan experiments. Another caveat cannot
directly be blamed on the method that is used, but on the data that the method is using. The data, be
it experimentally verified sites or position specific scoring matrices from OPLSs (or other data),
originates from experiments and these experiments may be error-prone. This applies especially
to methods that use some kind of machine learning approach to train a predictor as they highly
dependent on the quality of the underlying training dataset. Obviously, a big set of training data
is necessary to create a good predictor and, indeed, a large number of experimentally verified
phosphorylation sites is available in public databases. However, training a predictor also requires a
negative dataset that gives information of what sites are known to never be phosphorylated. Data
like these are usually not published as it is not easy to say if a phosphorylation site was not verifiable
due to a failed experiment or because it is just not a phosphorylated site. In any case, negative results
are very rarely published in the scientific literature, hence causing a lack of reliable training data for
that purpose. The quality and nature of the training data should also be one important thought in
the user’s mind when deciding whether to trust a predictor that was trained on these data. Amongst
others this includes the species of the proteins in the training dataset, the type of experiment that
was used to verify the sites, and of course the number of sites and proteins included. Thus, it is
very important for prediction tools to (1) give information about how the method works, (2) give a
measure that allows users to compare results and distinguish between good and not-as-good results
and (3) give additional information that helps the user decide whether to trust the predictions (this
information could be incorporated in the prediction method itself, but is also very helpful if it is
just presented for the user to examine). Scansite 3, a new version of the previously mentioned
Scansite 2° does exactly that.

Shttp:// scansite.mit.edu/
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Chapter 3

Scansite 3: A Motif-Based
Phosphorylation Prediction Tool

The location of the interface between kinase and substrate is the centre of attention in kinase-
substrate prediction tools since they define where phosphorylation sites can be expected. This
interface is, however, not solely defined by the amino acid that is going to be phosphorylated, but
also by a number of amino acids surrounding this position in the protein sequence. This interface
or recognition motif is not only the direct physical interface in kinase-substrate interactions but
also unique to each kinase and thus the most decisive feature in phosphorylation prediction tools.
This is the reason why almost all of the tools described in the previous section take advantage of
this feature in some way. One of the most widely used and highly cited kinase-substrate prediction
tools, Scansite (Yaffe et al., 2001), focuses on this basic idea and allows users to easily determine if
a phosphorylation site can be expected based on a match in the kinase’s and substrate’s interface,
and if so, how likely it is. Scansite was originally developed in 2001 and was one of the first tools in
the category of protein-protein interaction predictors. Motif-based tools pre-Scansite searched for
plain amino acid patterns in protein sequences: This method, implemented in PROSITE (Bairoch,
1992), was a first step towards matching an amino acid’s recognition motif, but was not able to
consider different preferences for different amino acids at distinct positions in the pattern, as it
was essentially a regular expression search in protein sequences (i. e. a Boolean matching model).
Scansite introduced a dynamic matching model that allowed to define a kinase’s preferences for the
positions in a pattern. In 2003 Scansite was re-engineered (Obenauer et al., 2003). This update
introduced some new features, including the option of using user-defined motifs, and allowing users
to submit more targeted searches. Scansite 2 also came with an improved user-interface and higher
performance. This tool has been used heavily since its introduction: Since usage-recording with
Google Analytics' was started in 2011, a median of 116 hits a day (on weekdays) was reported.
However, the increasing number of kinase motifs that have been experimentally determined over
the course of time and the constantly growing protein databases slowly brought Scansite 2 to its
limits. These, along with the fact that introducing new features was not easily possible, were the

Lnttp:1/www.google.com/analytics/
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3.1 Motif-Based Scoring Algorithm

main reasons why it was decided to give Scansite a new face with the implementation of Scansite 3.
All the features that Scansite 2 offered are still available in the new version.

The most important features in Scansite are Protein Scan and Database Search: Protein Scan
searches are scanning a given protein (by sequence or identifier) for sites using either all or some of
Scansite’s motifs. Database Searches answers the reverse question: Given one (or more) motifs
and a protein database, what proteins are likely to be phosphorylated at which location in their
sequence? For all of these searches, user-defined motifs can be used. The Database Search
feature also offers an option to search for a so-called Quick Motif, which allows users to create
a simple motif that consists of primary and secondary amino acid preferences at each position
on-the-fly. Combined Database Searches with multiple motifs allow different kinds of restrictions,
including space restrictions between sites of the different motifs. Other features of Scansite include
simple pattern-matching searches in protein databases (Sequence Match), a tool for calculating a
protein sequence’s isoelectric point and molecular weight for different numbers of hypothetical
phosphorylation sites (Calc. MolWeight and pl), and a tool that calculates and visualises amino
acid compositions around different residues (Calc. Amino Acid Composition).

This chapter first explains the scoring algorithm used in Scansite, followed by an introduction of
the new features introduced in the new version. Later, a number of usage examples explain the
features that are available. The chapter closes with a couple of technical details about Scansite 3.

3.1 Motif-Based Scoring Algorithm

Scansite is based on position specific scoring matrices (PSSMs) derived from oriented peptide
library screen experiments that represent different kinases’ recognition motifs. These scoring
matrices define a fifteen amino acid long sequence around the acceptor sites (i. e. seven residues
up- and downstream) and define a confidence value for each amino acid at each position. In order
to identify potential sites in a given protein Scansite first scans the protein sequence for relevant
acceptor residues, i. e. S- and T-sites for serine-/threonine kinases and Y-sites for tyrosine-kinases.
A kinase’s PSSM is then used to calculate a score for each of these putative sites. First, each
position i in this scoring-window w is assigned a position-specific score

In(aa;)
In(2)

w; = = 11’12 (aai)

with aa; representing the PSSM’s value that defines the amino acid aa in the window at position i.
Given the use of base-two logarithms at that point and the additions in the next step, PSSM-values
between zero and one penalise amino-acid occurrences at a given position, values of one show
indifference, and values greater than one define favouring affinities. In the next step, these position
specific values are summed up into a raw site score s,,,, omitting the fixed centre (position 8).
Also, this raw score is normalised by the number of scored positions #.preq (0 < Bgepreq < 15). This
normalisation is necessary to account for side-effects at acceptor sites that are close to a protein’s
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N- or C-terminus. The raw score

1 15

Sraw = Wi
Ngcored ;—
i£8

is then normalised by a PSSM’s optimal score s,,,;. The optimal score is calculated by summing up
the position-wise maxima in a PSSM. In other words, an optimal sequence for a PSSM is the one
that, at each position i in the scoring window w, contains the amino acid with the maximum value
in the PSSM at this position.

15
Sopt = Zmax(wi)

=1

i28
This results in the final score s ;,4 that is then displayed to the user. The more similar the sequence
window that is currently scored is to the optimal motif described by the PSSM, the closer the final
score is to zero (numerator). The normalisation by the optimal PSSM-score (denominator) is just a
simple method that helps bringing different motifs’ scores to a similar range.
Sopt — Sraw

S final =
Sopt

Since every PSSM is different and the scores are highly dependent on the amino acid composition
of the scored proteins, Scansite helps users to make sense of the final score by comparing it to
precalculated all-proteome scores. More specifically, this means that scores are precalculated
and stored for all proteins in a whole proteome and the final site-scores are then compared to the
distribution of the proteome-wide scores. The sites that are displayed to the user are filtered by the
percentile of best sites in the proteome: The settings high, medium and low stringency are available,
which show sites in the proteome’s top 0.2%, 1%, or 5%, respectively. In addition, a robust Z-score
estimate that is directly calculated from the reference-proteome’s distribution is calculated. This

value is calculated as )
__ Sfinal — medlanreferencerteome

MAD:;, ferenceProteome * C

with MAD . ferenceProteome b€ing the median absolute deviation of the reference proteome and ¢
a scaling constant of value 1.4826 which allows to make this measure consistent with Gaussian
distributions (Rousseeuw and Croux, 1993) and gives information about how many adapted MADs
the site-score is from the reference-proteome’s median. In Scansite z is usually < 0 since those
sites the top-scoring sites are in the top < 5% percentile. Due to the normalisation of the scores
using a motif’s optimal score, Scansite’s scores start at 0. Consequently this minimum score means
that an optimal motif match was found. The higher the score, the more divergence from the optimal
motif is found.

It is obvious that this algorithm cannot only be applied to PSSMs that represent kinase-substrate
recognition motifs, but also to PSSMs that represent other affinities, e. g. binding specificities.
In general, Scansite’s motifs focus on S-/T- or Y-residues, but this is only because Scansite was
originally designed to predict kinase-substrate interactions. However, Scansite also contains motifs
that do not represent a kinase. For example, the Scansite motif Intersection SH3A allows to find
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potential interaction partners and sites of the SH3 domain protein intersectin 1 (ITSN1).

3.2 Improvements in Version 3 of Scansite

Scansite 3 comes with a number of new features and has improved both in terms of usability
and maintainability. The centrepiece of Scansite is and always has been the kinase motifs it uses
to calculate scores for potential phosphorylation sites. In Scansite 2 a number of 62 motifs are
available (Obenauer et al., 2003). Version 3 extends this arsenal with 54 yeast-specific PSSMs and
8 new mammalian motifs. The yeast motifs — as published and described in Mok et al. (2010) —
have been provided by the Turk-Lab from Yale University”. Since many kinases have been shown
to recognise very similar sequences, the 54 PSSMs represent the recognition affinities of more than
60 kinases in yeast (Saccharomyces Cerevisiae), i.e. some motifs represent more than just one
kinase. For example, Mckl (meiotic and centromere regulatory kinase 1), Mrkl (Mdslp related
kinase 1), and Rim11 (regulator of IME2 1) most likely phosphorylate a serine or threonine residue
that is followed by another serine or threonine residue that is located 4 residues downstream in the
substrate’s sequence ([ST]XXX[ST], with X representing no preference and the bold [ST] being
the acceptor residue). Scansite 3 includes all the kinases’ names in composite-motifs like these:
This particular motif is named Mckl and Mrkl and RimlI 1. So far, only mammalian motifs have
been available in Scansite. Gene information about the kinases that are represented by these motifs
was made available through hyperlinks to the corresponding GeneCard-pages® (Stelzer et al., 2011).
For yeast motifs in Scansite 3 links to the Saccharomyces Genome Database* (SGD) are provided
(Cherry et al., 2011). This allows users to quickly get more information about Scansite’s motifs.

However, both GeneCard and SGD do not provide any information about how certain motifs look
like (other than what acceptor residue some kinases’ favour, and even this information is not present
for all kinases). In Scansite 3, a new feature allows the visualisation of kinases’ recognition motifs
in so-called motif logos. Figure 3.1a shows the motif logo of the previously mentioned DNA
damage kinase ATM. Since the logos are derived from Scansite’s PSSMs, all motif logos are
divided into 15 columns, each of which shows the affinities for those amino acids that the kinase
favours in each position. The centre position (pos. 0) represents the acceptor residue. The sizes
of the letters do not directly correspond to the values in the PSSSM, but are calculated from these
numbers to show the information content that is available all the positions. These numbers are
calculated according to the sequence logo method published in Schneider and Stephens (1990). In
a position that exclusively contains low affinity values, less information content is available than in
a position with high(er) affinity values. This directly corresponds to the height of the total of amino
acids displayed in one position. Centre positions usually have the highest information content
and are, thus the biggest letters. The constantly growing public protein databases also introduced
some rarely occurring amino acids that Scansite’s motifs needed to deal with: Selenocysteine
(U) and Pyrrolysine (O). By default, Scansite 3 treats these amino acids as Cysteine and Lysine,

2 http://www.yale.edu/ turklab/
3 http://www.genecards.org/
*hitp://www.yeastgenome.org/
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respectively, but motifs are enabled to provide special values for these amino acids. Another caveat
when defining recognition affinities is the C- or N-terminus preference that some proteins have,
i. e. they only recognise residues at one of the target sequences’ ends. This applies, for example, to
proteins of the PDZ domain 1 containing group (PDZK1). For special motifs like this, Scansite 3
displays an exclamation mark (!) for a C-terminus preference and a dollar-sign ($) for an N-terminus
preference. PDZK I-proteins have been reported to have a preference for a sequence’s C-terminus
(see Figure 3.1b). The colours that are used for printing different amino acids are chosen to display
some of the amino acid’s physicochemical properties: Negatively charged amino acids (D and E)
are grey, positively charged ones (H, K, O, and R) in shades of red; aliphatic residues (I, L, and V)
are displayed in blue-tones, aromatic (F, Y, and W) in green; small amino acids are shown in orange
(P and N), purple (C, U and T) and brownish colours (S, A, and G), and the rest either blue-green
(M, hydrophobic), or yellow (Q, charged).

In Scansite 2, the quality of predictions is determined by the comparison of site-scores to all scores
calculated using a given motif on all putative sites in all vertebrate proteins available in SwissProt>.
This makes sense for mammalian motifs, but when non-vertebrate motifs are used, it is important
to use a different reference-proteome. Hence, alternate reference proteomes are introduced in
Scansite 3: Searches for sites with yeast motifs use the yeast-proteome’s score distribution (all
proteins in the SGD) to calculate a percentile by default, searches with mammalian motifs use the
traditional vertebrate-reference. Alternatively, users can decide which reference-proteome to use.

In addition to scores and percentiles for predicted sites, Scansite always presented the user with
some additional information about the substrate, including a surface accessibility plot which shows
the biochemical accessibility in the folded protein and locations of functional domains as predicted
by PFAM® (Punta et al., 2012). However, computational access to PFAM often posed a problem
in terms of accessibility. This is why it was decided to replace PFAM’s predictions with those
from InterProScan’s PFAM-engine in Scansite 3 (Hunter et al., 2009). This application can be
installed locally which circumvents access and latency problems. Although domain starting- and
end-positions sometimes differ by a few positions, InterProScan’s domain predicitions generally
match PFAM’s predictions very closely. Positional disagreements may cause confusion, but are
not a problem since all numbers come from prediction engines and there is no way to tell which
positions are more correct anyway.

One of the most important novelties in Scansite 3 is the introduction of previously mapped sites to
support predicted sites. Previously mapped sites are phosphorylation sites from public phosphory-
lation site databases. At the moment of writing this, the phosphoproteomes of PhosphoSitePlus,
Phosida, and PhosphoELM are included (see Table 2.3 and Section 2.1.3 for more information
about these databases). If a site predicted by Scansite 3 is found in one or more of these databases,
a link to these databases is provided. If the databases support direct links to sites the links take the
user directly to the protein- (PhosphoELM) or site-specific (PhosphoSitePlus) content. Otherwise
the link refers to the database’s basic homepage (Phosida). All previously mapped sites in Scansite 3
are, however, not associated with the kinases that are responsible for those phosphorylation, but

5 http://www.uniprot.org/
Ohttp://pfam.sanger.ac.uk/
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ATM Kinase

(a) The recognition motif of ATM. A strong preference for a [ST]Q[ED]-like
motif can easily be seen. Please note that the residues D and E in position +2

have similar colours, in this case denoting a preference for negatively charged
amino acids in this position.

i

o
fitimg

I

L

PDZ class 1
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(b) The recognition motif of PDZKI. The exclamation mark at +3 denotes a
strong affinity towards a sequence’s end.

Figure 3.1: Two examples for motif logos. The larger an amino acid’s one-letter-code is printed the
higher the preference for this particular amino acid in this position. In many positions the letters
are too small to be recognised (especially in ATM’s motif logo). Although minor residue-specific
preferences like these can usually be ignored as there is no notable information content available
from the PSSMs, Scansite’s colour codes can help to identify physicochemical preferences.
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only serve as supporting information about the reported presence of a phosphorylation of these
sites. This means, that this information is not intended to support the kinase-site association, but
the confidence of whether a site in general is a phosphorylation site. Nevertheless, it is important to
note that a site that is not supported by a previously mapped site can still be a site, and that a site
that is supported by data from phosphorylation site databases does not guarantee to be true either
(but, obviously, increases the likelihood that it is). There are two main reasons for the missing link
between previously mapped sites and Scansite’s motifs: As with much other biological information,
identifiers are often ambiguous, and automated mapping between different types of identifiers is
often very complicated and sometimes not possible at all. Secondly, some phosphorylation site
databases store data from experiments that report the presence of phosphorylation sites, but do not
report the reasons for this phosphorylation. Thus, the kinase(s) responsible for many phosphorylated
residues remain to be discovered.

Another important addition in version 3 is the option to access the most important features of
Scansite 3 computationally. Scansite 2 was never designed to be accessed computationally since
there was no demand for an option like this at the time of publishing it. In the past ten years the use
of computational prediction and analysis tools has become a crucial part of every biologists work.
Computational access to computational tools allows users to save time by automating parts of their
data analysis process. In Scansite 2, computational access was done by submitting HTML-forms
and parsing the HTML-response for the relevant information. This technique generally works, but
can break programs easily when, for example, the layout (and, thus the HTML-page) of result-
displaying pages is changed. In order to make computational usage of Scansite easier, Scansite 3
offers a RESTful (REpresentational State Transfer) web service. This makes accessing Scansite
computationally much more programmer-friendly: All parameters that are relevant for a search are
defined and submitted in a single URI; the results are returned in XML-format.

Since the public protein databases that Scansite uses as primary data sources have grown remarkably
in the past years, some performance enhancement on the server-side was needed to deal with these
amounts of data. Most of all, this applies to database searches as their time-wise performance highly
depends on the number of proteins returned by the search. Scoring single sites in a protein is an easy
task and not at all computationally expensive, but the scoring of thousands of proteins and hundred
thousands of sites can take a lot of time and computational power. This is why actions like these
were parallelised in an easy manner: For database searches and for creating reference histograms
(when a whole proteome is scored), the proteins that are going to be scored are distributed to a
number of threads and scored in parallel. The results are then collected again by the initial thread.

In addition to these changes in the web application, a number of tools have been implemented that
make maintenance of Scansite 3 much easier. To start with, applications have been created that
allow easy population and updating of the data-backend. At the moment of writing this, support
for automatic download, parsing and storing of data from SwissProt, TTEMBL’ (Translation of
EMBL nucleotide database), SGD, NCBI Protein® (GenPept), and Ensembl’? (Human and Mouse)

7 http://www.uniprot.org/
8 http://www.nebi.nlm.nih.gov/ protein/
O http://www.ensembl.org/
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is implemented. By using the Java Reflection API it is easily possible to add support for other
databases or user-defined protein datasets. Reflection also makes it possible to use alternative
domain prediction engines: At the moment, InterProScan can be accessed in two different ways,
either on the same computer the web-server is running on, or on a remote computer. In the latter
option, a SSH connection is used to run InterProScan on a remote system.

3.3 Features and Use Cases

There are several ways Scansite can be used to predict kinase-substrate interactions. This section
will introduce some use cases that exemplify the usage of the web application and the web service,
describing not only the user interface interactions that are required to perform searches, but also
explaining the results that Scansite 3 returns. In addition, at some points a short overview of what
happens on the server-side when submitting a search will be given.

3.3.1 Using the Web Application

The Scansite 3 web application was designed to be as intuitively useable as possible, while at the
same time staying close to the general design and feature-naming convention that was used in
Scansite 2. When accessing the Scansite 3 homepage'® a welcome-page will be displayed that
offers links to the main search features. Alternatively, these features can be accessed using the
buttons in the navigation section on the left-hand side of the page (see Figure 3.2). The link at the
top of the navigation section should encourage users to give feedback about their experiences with
Scansite 3. This includes bugs they discovered, ideas about how to improve this page, and things
they like or dislike about the site. The news section will keep users up-to-date about new features,
new motifs, and other changes in Scansite 3. A very important new feature is the section labelled
Databases and Motifs: Here, users can view motif logos (as described in Section 3.2), motif-group
assignments and get an overview of the protein databases available, including their version (or date
of last update) and each database’s size (i. e. the number of proteins stored). The bottom part of
the navigation section allows administrators and collaborators to login. Collaborators have the
privilege of using non-public motifs, i. e. motifs that are not accessible to everyone (because, for
example, they are based on unpublished data). Administrators have the additional options to add,
update, and delete motifs, motif-groups, and news-entries. Another group of administrators, the
so-called super-administrators, have the additional privilege of editing user-information (create,
update, and delete Scansite-users).

Other links in the navigation section refer to a list of frequently asked questions (FAQs, such as
“How to cite?” or “How to create a motif?”), a tutorial (Tutorial), and a short overview of what
Scansite is and who was involved in creating it (About). The Scansite Features-links provide access
to all of Scansite’s features which will be described in detail in the following sections.

Ohttp://scansite3.mit.edu/
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Scansite =

Give Feedback!
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Scansite Features
; _ Scansite searches for motifs within proteins that are likely to be phosphorylated by specific protein kinases or bind to domains such as SH2 domains, 14-3-3 domains or PDZ domains.
‘Scan Protein for Motifs
Soarch a Sequence Please note that Scansite 2 is also stil available. If you prefer to use this version, you can stll access it at hitpJ/scansite. mitedu.
Dt ool Note: Scansite 3 works best with standards-compliant browsers, such as Firefox, Opera, Safari, and Ghrome. Intemet Explorer users may experience some layout/display-related problems and are
Find Sequence Match encouraged to use an altemative.
Calc. MolWWeight and pl
Cale. Amino Acid What would you like to do?
Composition ) i
1 want to scan a protein for a motif...
Databases and Motifs
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Figure 3.2: The home-section of Scansite 3 allows users to directly go to the search they want to
run. The page is divided into three parts: The header with the Scansite-logo, the navigation section
on the left-hand side, and the central content space. Some logos under the navigation bar refer to
institutions that people involved in the development of Scansite (since its very beginning) were
affiliated with. From here on, screenshots of Scansite 3 will focus on the content-area of the page,
excluding the static header- and navigation area.

Scanning a Protein for Motifs

The key feature of Scansite is the prediction of motif-relevant sites in a given protein. This feature
is referred to as Protein Scan or Scan Proteins for Motifs and allows a range of different inputs
(Figure 3.3). The user has three major choices and a few minor options:

The protein to scan: Users can either choose a protein database and enter a valid identifier, or
enter a protein sequence and name. Scansite 3 assists the user when entering a protein
identifier by searching the selected database for identifiers that start with the letters the
user entered so far (after the user entered three or more letters). This is done automatically
and upon request when the Check!/-button is clicked. If a list of protein identifiers was
found, it is displayed below the textbox and if only one identifier was found, the textbox is
coloured green (Figure 3.3a). The textbox turns red if no matches were found in the selected
database (Fig. 3.3b). Hyperlinks to the relevant databases allow the user to quickly search for
identifiers. Alternatively, users can directly paste a protein sequence (Fig. 3.3c).

The motifs to consider: It is possible to search for all motifs (Fig. 3.3a) of a motif class (mam-
malian or yeast motifs), for a subset of these (Fig. 3.3b), or for a user-defined motif (Fig. 3.3c).
In order to use a user-defined motif, a file representing the motif’s PSSM has to be prepared
and uploaded. After a file of the right format was uploaded, the user is presented with an ed-
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itable table that allows reviewing the motif and making some last changes before submitting.
Section 3.3.1 on page 49 describes how a motif file for Scansite is created.

The stringency level: This measure defines how high sites have to score in order to be displayed
as results. High stringency only displays the top 0.2% of sites (sites that have a score less or
equal to the top 0.2% of scores in the reference proteome), medium stringency displays the
top 1%, and low stringency the top 5%. Scansite 3 introduces an additional setting: Minimum
displays the top 15%. These settings apply for motifs from the Scansite database. Since no
precompiled reference-proteome analysis is available for user-defined motifs, these always
display all sites with a score < 5.

Additional options: The two additional options that users are given are to decide whether to show
(predicted) domains in the result as supporting information, and whether to use an alternative
reference proteome. If users choose to scan a protein for yeast motifs the SGD-reference
proteome is selected by default (Fig. 3.3a). Domains can also be requested later on from the
result-page.

. . Scan Protein for Motifs . -
Scan Protein for Motifs Scan Protein for Motifs
Choose Protein by:  Protein Accession 5
Choose Protein by: | Protein Accession E| E Choose Protein by: | Input Sequence E
Search SwissProt / Trembl
Search SwissProt / Trembl Database: SwissProt [] searchncal Protein name: | test

Database: SwissProt [*] searcnncal Protein _ cneckt Protein/GenPept Protein sequence:

Protein R - Protein/GenPept Accession- Search Ensembl MELWRQCTHWLIQC! T LRDGVLLCQL NLREV
Aoeession ! Search Ensembl Search Yeast/ SGD NLRPQMSQFLCLKNIRTFLST FEAFDLEDVQDFGRVIYTLSALSWTPT
LT 5 Look for: | Selected Motifs and Groups [~ | & LQRFLKPQDIETIFINT
Look for: | All Moiis—— 2 DL - DR
= 5| Please salect the motifs and groups that you want to search for. e PoRALYQUETR By
s h T QL RLAL
Vot Class: © wammatian (70 @ veast 54 Mot Class: @ ammalian (70 O Yeast (34 DavRDL RDNETERQTHEQL S TENL DQSLAYGRPK DGE LKTTSVERRSRN
Motifs: 3
Stringency: High  [~] 1433 Mode 1

Al Kinase
ADI SH2
ADI SHZ

TKYFGTARARYDF( LKEGDITKI
YSEYC

[7 show Predicted Domains

—

Use Non-Standard Saccharomyces cerevisiae (Bakers yeast) [ 7] Akt Kinase Look for: | User Motif =l
Reference Proteome.
Groups: Please choose the motiffile you prepared from your filesystem and enter a name for
Submit ‘Acidophilic serinefthreonine kinase group ‘your matif. The file should be plain text containing tab-delimited columns. See the
Basophilic serineftreonine kinase tutorial in our FAQ for more detals about how to prepare your own moif-file.
DNA damags kinase group Mot fle: Keine ausgewstit
Hydrophobic-directed serine/threonine kinase
Kinase binding site group
< Motif name: | USER_MOTIF
Show Group Definitions
Stringency: | Minimum
Stringency: | High ngency:
[ show Predicted Domains
[ show Predicted Domains
[T Use Non-Standard Reference Proteome
[Fluse Non-Standard Reference Proteome

Figure 3.3: A side-by-side view of different selections in the Protein Scan input page showing the
two options for entering a protein, and the three motif-selection options

The result-page of a high stringency protein scan for all mammalian motifs using the SwissProt
protein VAV_HUMAN and the default reference proteome with domains is displayed in Figure 3.4. It
is easy to see that the result page is split in seven sections: Protein Overview, Scan Overview, Protein
Plot, Predicted Motif Sites (Table), Repeat Scan, Download Results, and Additional Analyses. Each
of these sections is collapsible by clicking on the grey title-areas. This helps getting to the bottom
of the page if a long list of predicted sites is displayed.

In the Protein Overview section, some information about the input protein is listed, including alter-
native identifiers and keywords (for proteins given by identifier only), and the protein’s molecular
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Protein Scan Results: VAV HUMAN (swissprot)

Protein Overview
Protein Scanned: VAV_HUMAN (see SwissProt, see PhosphoSite)
Descriptions: RecName: cogene vav;
y - Proto-oncogene, SH3 domain, Metal-binding, Acetylation, 3D-structure, Phosphoprotein, Zinc, Zinc-finger, Reference proteome, Repeat, Complete proteome, Guanine-nucleotide releasing factor, SH2 domain
Accessions: Q15860, P15488, VAV_HUMAN
Molecular Weight: 98326 3
Isoelectric Point: 6 20

Scan Overview

Motifs searched for: 1433_m1, Abl_Kin, Abl_SH2, Abl_SH3, Ak_Kin, Amphi_SH3, AMPK, ATM_Kin, AuroA, AuroB, Cam_Kin2, Casn_Kin1, Casn_Kin2, CapC_§H3, Cdc2_Kin, CDK1_1, CDK1_2, Cdk5_Kin, Clk2_Kin, Cort_SH3,
Crk_SH2, Crk_SH3, DNA_PK, EGFR_Kin, ErkDD, Erk1_Bind, Erk1_Kin, Fgr_Kin, Fgr_SH2, Fyn_SH2, Grb2_SH2, Grb2_SH3, GSK3_Kin, GSK3b, InsR_Kin, Itsn_SH3, Itk_Kin, Itk_SH2, Itk_SH3, Lck_Kin, Lck_SH2, Nck_2nd_SH3,
Nek_SH2, p3s_kin, pg5_SH2, pg5_SH3_m1, p8s_SH3_m2, PDGFR_Kin, PDK1_Bind, PDZ_nNOS_1, PDZ_NNOS_3, PDZ_class1, PDZ_class2, PIP3_PH, PKC_commen, PKG_delta, PKC_epsilon, PKG_mu, PKG_zeta, PLCg_CSH2,
PLCg_NSH2, PLCQ_SH3, PLK1, PKA_Kin, Shc_PTB, Shc_SH2, SHIP_SH2, Src_Kin, Src_SH2, Src_SH3

Domains requested: Yes

Stringency: High

of all scored sites: Vertebrata (swissprot)
Number of predicted motif sites: 13
Protein Plot
Predicted PFAM-Domains (from InterProScan): CH (7 - 118), RhoGEF (198 - 372), PH (405 - 504), C1 1 (516 - 565), SH3 1 (617 - 652), SH2 (671 - 745), SH3 1 (788 - 834)
Note: The domains' positions are retrieved from InterProScan. For this reason the numbers may differ slightly from PFAM-retrieved domains.

Go to PEAM.
Acid ST kin
5135
SH2
¥ Kin
Y142
¥ in 5522
Y160 SH2
SH2 Yo03
¥ Kin SH2 Acid ST kin
yaza reot e Predicted Sites
; — . |
CH RhoGEF PH c11 SH3 1 SHZ2 SH31 pomains
(7.118) (138.372) (4055048 (516-565) (E17.652) (£71.745) (7858340
} {845 Als
100 200 300 400 500 600 700 800

Surface Accessibility
1.0

Protein: VAY_HUMAN (swissprot)

Predicted Motif Sites (Table)
Please ailow popups in your BrowSer Settings to make /inks in the table work property!

. . § Surrace Gene Previously Mapped
-
Score  Percentile  Motif Motifgroup Site  Sequence — Pk P
0379 0.184% Casein Kinase 2 (Casn_Kin2) Acidophilic serinefthreonine kinase group s135 PFPTEEESVGDEDTY  1.1298 CSNK28
(Acid_ST_kin)
0252 0.142% PLK1 Kinase (PLK1) Acidophilic serine/thireoning kinase group T760  CFRSLDTCLOFEFRE  0.0858 PLK1
(ACid_ST_kin)
0166 0.017% PDK1 Binding (PDK1_Bind) Kinase binding site group (Kin_bind) S522  GHDFQMFSFEETTSC  0.6835 PDPK1
PhosphoEL M
0201 0.070% Lek SH2 (Lek_SH2) Src homology 2 SH2 Y174  EAEGDETVEDLMRSE 10397 Lek
== < (Lek_shz) re homology 2 group (SH2) = Phosphosite
PLCg C-terminal SH2
X ¥604  MEVFOEYvGLEEEEG
0343 0.120% (PLog oty Src homology 2 group (SH2) 12207 PLCG1
PhosphoELM.
0368 0.082% Shc SH2 (Shc_SH2) Sre homology 2 group (SH2) Y142  SVGDEDIVSGLSDOI 04597 sHC1 EhosphoELM
Phosphosite
PhosphoELM
0325 0.024% She SH2 (She_SH2) Src homology 2 group (SH2) Y174  EAEGDEIVEDLMRSE  1.0807 SHC1
Phosphosite
0398 0.179% She SH2 (She_SH2) Src homology 2 group (SH2) Y603  KMEVFQEVYGLPPRE  1.3772 SHC1 Phosphosite
PhosphoEL M.
0.397 0.146% Lk Kinase (Lok_Kin) Tyrosine kinase group (Y_kin) ¥142 SVGDEDIVSGLSDOT ~ 0.4597 Lok Enospofl M
Phosphosite
- PhosphoELM
0412 0.199% Lck Kinase (Lck_Kin) Tyrosine kinase group (Y_kin) Y160  VEEDEDLVDCVENEE  0.3286 LCK
Phosphosita
PhosphoELM.
0.289 0.011% Lk Kinase (Lek_Kin) Tyrosine kinase group (Y_kin) Y174 EAEGDETVEDLMRSE  1.0397 Lok Enospholl M
Phosphosite
PhosphoEL M
0408  0.163% Sre Kinase (Src_Kin) Tyrosine kinase group (Y_kin) Y160  VEEDEDLYDCVENEE  0.3286 SRC p—
Phosphosite
PhosphoELM.
0312 0.022% Src Kinase (Src_Kin) Tyrosine kinase group (Y_kin) ¥174 EAEGDETVEDLMRSE  1.0397 SRC Enospnoll M
. . § i Surface Gene Previously Mapped
Score  Percentile  Motif Motifgroup site  Sequence N— Pk P

DISCLAIMER: These results are purely speculative and should be used with EXTREME CAUTION because they are based on the assumption that the peptide library data is correct and sufficient to predict a site!
Also, if an evidence for a site is given ('previously mapped site') it is only site- and protein-specific, meaning that this site is known to be phosphorylated by some kinase, but not necessarily by the kinase Scansite
associates with this site!

Repeat Scan

Stringency: | Medium [v| Scan!

Repeat Search with Difierent Parameters |

Download Results

Download resulis as tab separated file.
Additional Analyses

Score sites using DisPhos (Disorder-Enhanced Phosphorylation Site Predictor)... |

Figure 3.4: A Protein Scan result page showing a number of high confidence hits, many of
which are supported by PhosphoSitePlus and PhosphoELM. All the sites (except for S522) are in
between functional domains predicted by InterProScan, which generally can be interpreted as a
confidence-increasing fact.
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weight and isoelectric point. The Scan Overview summarises the input-parameters of the search
and displays the number of sites that have been detected using these settings. A plot of the protein
gives a visual overview of the search results, annotated with some additional information in the
next part of the page (Protein Plot). If domain information was requested, the predicted domains
are listed here, followed by an image that displays the predicted sites (annotated with the position
and motif group), the protein’s domains (if requested) along with their names and positions, and a
surface accessibility plot that shows what parts of the protein are likely to be exposed to the surface.
If domains have not been requested earlier, a button will be displayed below the image that allows
the user to request domain prediction at this point. The links in the list of displayed domains refer
to these domains’ PFAM-pages.

Proteome Reference Histogram for 'Lck Kinase' Site Search

Abs Freg:
66074

B.2886

Motif: Lck_Kin

Taxon Class:
Number of Proteins:

Number of Scored Sites:

Datasource: swissprot
Vertebrata

82353
1063523

Protein: VAW _HUMAM [swissprot)

Percentile:

1008

Site: v174
Sequence: EAEGDELYEDLMESE

Robust Z-Score Estimate: -4.1205 F

Your sequence scores in the best 0.011%
of sites when compared to all records used
in this search.

—tbsolute Frequency
—Percentile

0.2 0.3 0.4 85 06 0.7 8.8, 09 1.0 1. 1.2 1.3 1.4
—_—

Median: ©.842
Median Abs Dev: 0.880

T
o0 61
Scare

Mote: Although the distribution may look similar to a normal for searches with mary sites, the percentile and Z-score reported here are computed directly from
the histogram, and MOT frarn aZ-table.

Figure 3.5: This histogram displays the whole proteome scores calculated for all vertebrate proteins
in SwissProt using the motif that describes the recognition affinity of the lymphocyte-specific
protein Y-kinase. In 82,353 proteins about 1 million sites were scored, the scores of which were
used to draw this histogram. This histogram shows the site Tyr174 which, with a score of 0.2886,
is reported to be in the top 0.011% of this histogram. The left axis shows the absolute frequency of
site-scores, the right axis the percentile of scores.

The sites that are outlined in the protein plot are listed in more detail in the table view below
(Predicted Motif Sites). All columns can be sorted by clicking on the label in the table’s header.
Here, each site that was found is displayed along with the motif information (motif, motif group,
hyperlink to motif’s gene information page), its score and percentile, and the surrounding sequence.
In addition, Scansite 3 offers hyperlinks to PhosphoSite, PhosphoELM, and / or Phosida if they
have reported a phosphorylation of the site before. Of course, this is only possible for proteins from

41



3.3 Features and Use Cases

public protein databases and works best with proteins from SwissProt. The other links displayed in
the table, specifically the columns Score and Sequence, refer to a histogram view of a site in the
reference proteome (Fig. 3.5) and to view that shows a site’s sequence highlighted in the protein’s
sequence (Fig. 3.6), respectively. The latter view offers a link that submits the site’s sequence (15
amino acids) to NCBIs basic local alignment search tool (BLAST) (Altschul et al., 1990). This is
a simple approach to see if a site is conserved in organisms that are expected to be physiologically
similar to the one at hand.

Location of site Y174 in Protein VAV_HUMAN (swissprot)

1 MELWRQCTHW LIQCRVLPPS HRVIWDGAQV CELAQALRDG VLLCQLLNNL
51 LPHAINLREV NLRPQMSQFL CLENIRTFLS TCCEKFGLKR SELFEAFDLF
101 DVQDFGEVIY TLSALSWIPI AQNRGIMPFF TEEESVGDED IYSGLSDQID
151 DIVEEDEDLY DCVENEEAEG DEIYEDLMRS EPVSMPPKMI EYDKRCCCLR
201 EIQQTEEKYT DTLGSIQQHF LEKPLQRFLKP QDIEIIFINI EDLLRVHTHF
251 LKEMKEALGT PGAANLYQVF IKYKERFLVY GRYCSQVESA SKHLDRVAAR
301 REDVQMKLEE CSQRANNGRF TLRDLLMVEM QRVLEKYHLLL QELVKHTQEA
351 MEFKENLRLAL DAMRDLAQCV NEVERDNETL RQITNFQLSI ENLDQSLAHY
401 GRPKIDGELE ITSVERRSKM DRYAFLLDKA LLICKRRGDS YDLKDFVNLH
451 SFQVRDDSS5G DRDNKFWSHM FLLIEDQGAQ GYELFFKTRE LEEKWMEQFE
501 MATSNIYPEN ATANGHDFQM FSFEETTSCE ACQMLLRGTF YQGYRCHRCR
551 ASAHKECLGR VPPCGRHGQD FPGTMEEDKL HRRAQDKKRN ELGLPEMEVF
601 QEYYGLPPPP GAIGPFLRLN PGDIVELTKA EAEQNWWEGR NTSTNEIGWF
651 PCNRVEFYVH GPPQDLSVHL WYAGFMERAG AESILANRSD GTFLVRQRVE
701 DAAEFAISIK YNVEVEKHIKI MTAEGLYRIT EKKAFRGLTE LVEFYQQNSL
751 KDCFKSLDTT LQFPFEEPEK RTISRPAVGS TKYFGTAKAR YDFCARDRSE
801 LSLKEGDIIK ILNEKEGRQGW WRGEIYGRVG WFPANYVEED YSEYC

BLAST this site!

Figure 3.6: The site-in-sequence view of Tyr174 in VAV_HUMAN. The hyperlink at the bottom
submits the site’s sequence to NCBI’s BLAST.

In the Repeat Scan section of the result page it is possible to either directly rerun the scan with a
different stringency setting, or to go back to the input page to change other search parameters. The
next part in the page (Download Results) offers a link to a downloadable version of the table shown
above (tabulator-separated file). At the bottom of the result page (Additional Analyses) users can
directly submit the current protein’s sequence to DisPhos, a “Disorder-Enhanced Phosphorylation
Site Predictor” (Iakoucheva et al., 2004).

Scanning a Sequence Database for Motif-Hits

The Scansite feature Search Sequence Database for Motifs or short Database Search performs the
opposite search. Given a motif (or a set of motifs) and a sequence database, it searches for sequences
that contain motif-relevant sites. One of the most powerful parts of this tool is the option to restrict
searches to proteins of a specific organism class, species, molecular weight range, isoelectric point
range, annotation, and / or sequence property. For example, this tool can be used to help identifying
unknown bands in two dimensional gel electrophoresis experiments. This feature, again, allows
different kinds of inputs. Here, this mainly means different ways to select motifs. Users can
search for hits of single motifs, user-defined motifs, so-called “quick” motifs, and multiple motifs
(Figures 3.7 and 3.8). The differences are explained in the following.

Searches for single motifs from the Scansite database are the easiest option to choose (Fig. 3.7a).
If enough information about the affinities of the kinase or binding domain is known, a motif file
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Search a Sequence Database for Motifs
Choose Search Method: | patabase Motit[~]

Please select the motif you want o use for your database search
Motf Class: © Mammalian (70 kinases/domains)  Yeast (54 kinases/domains)

Mot
1435 Mode 1 B
‘Select database o search: | g yissprot &

Warning: General searches in large databases (especially Trembl and
GenPept) can take a very long time!

For this reason we strongly recommend you to restrict your search as
much as possiblet

¥ Restrict Search (optional, but recommended)

This search can be restricted in several ways to keep the results more targeted

and relevant to specific experiments. All these restriction categories are optional.

For the most general results, simply leave all the fields blank in this category.

Please be aware that the more general your search is the longer it will take! So in

order to get a quick result, you may prefer to at least select the organism class

Search a Sequence Database for Motifs

Choose Search Method: [jnput votir <]

Please choose the motif-fle you prepared from your filesystem and enter a name for
‘Your motir. The fle should be plain text contaning tab-delimited columns. See the
tutoralin our EAQ for more details about how to prepare your own motiffe.

Dt sumanien | Keine susgewinit

Mol file:
Motif name: | USER_MOTIF

Select database to search: | g ssprot &)

ge databases (especially Trembl and

For this
much as possible!

mmend you to restrict your search as

¥ Restrict Search (optional, but recommended)
“This search can be restricted in several ways to keep the results more targeted
and relevant to specific experiments. Al these restriction categories are optional.
For the most general results, simply leave allthe fields biank in this category.

Search a Sequence Database for Motifs

Choose Search Method: quick et [<]

If you lack quantitaive affinities but have a consensus sequence or other qualitative information, this program will make a
‘simple matrix for searching Scansite. Write in one or more strongly favored residues in the top row positions in this form. If
you know some secondary binding preferences, place those residues in the second row. (A fixed residue s required at
position 0, which is why no secondary preference s allowed at that position )

You with below. I none of
just entering allresidues you want into one input field, such as "DEST".

iping you want, make your own group by

Enter your sequence pattem
Motif Name: | USER_MOTIF

etier amino acid

Please enter your primary preferences:

Please be aware that the more general your search is the longer it wil take! So in v v R Ja st Ja &
(Mammals, Vertebrates, etc.)

order to get a quick result, you may prefer to at least select the organism class o e B B B o B R N B R
Organism class: Mammals[~] Descriptions (Mammals, Vertebrates, etc).

rganism ck Mamma ription lease enter your secon nces:

Single Species o Organism class: ammais [+] Descriptions Please enter you dary preferer

Single Species: Examples A
Phosphorylated Sites: | 0[7] Help 'gle Spec e

Prosphoryted shes: [Ola] el S0 10 (S [ (S [ [ o N (2 (s A s e [
Molecular Weight Range: o Help B

Molecuar Weignt Rarge: © telp Motif: X][VIIX]IXILY (FYW)I[R(A)IAISTI[QIIDEIX]IXIXIIXIIX]
Isoelectric Point Range: to Help Setoct database

Isoelectric Point Range: to Help ‘atabase 10 Search: | swissProt 5]
Keyword Search Help

Keyword Search el Warning: General searches in large databases (especially Trembl and GenPept) can take a very long timel
Sequence Contains: Help e For this reason we strongly recommend you to restrict your search as much as possible!

Sequence Contains Help

» Restrict Search (optional, but recommendod)
oupatListsize: (5[]

Clear

Output ListSize: g5 [<]

Output List Size: g5 [<]

Submit Cleas

(b)

Submit

(a)

Submit |

(©)

Figure 3.7: Side-by-side overview of database search input strategies that involve only one motif: a
database motif, a user-defined motif, and a “quick” motif.

can be prepared, uploaded, and used for the search (Fig. 3.7b). This, however, requires a very
specific idea about the motif. Often, only very little detail about a motif is known. In cases like
these, the Quick Motif option is the best choice (Fig. 3.7c). For defining a quick motif, the user
can enter a set of primary and secondary preferences which are then turned into a Scansite motif.
The web-page describes a number of wildcards that can be used to easily define preferences for,
e. g., hydrophobic or positive residues. It is also possible to search for sequences that not only
contain one, but up to five motifs (Fig. 3.8). These searches can include either database-motifs,
user-defined motifs, or a combination of both. The score for multi-motif sites is the mean of the
scores of the sites involved. Co-occurrences of different motif-sites in proteins can be restricted
and filtered in different ways: First of all, it is possible to penalise gaps between sites of different
motifs (Fig. 3.8a). Gap penalty settings are either high, medium, low, or none. Penalties p are
then added to the score according to the maximum distance d,,,, between the involved sites (i. e.
position of site closest to C-terminus minus position of site closest to N-terminus), resulting in the
following penalty-values: pjo, = 0.001 - dyaxs Pmedium = 0.01 - dyaxs Phigh = 0.1 - dpyax. Secondly, it
is possible to define strict minimum and maximum distance bounds between motif-specific sites
(Fig. 3.8b). For example, a search for the motifs of the DNA damage kinases DNA PK and ATM,
and P38 MAPK can be restricted in the following way: sites of DNA PK and ATM have to be at
least 10 residues and at most 90 residues apart, and sites of ATM and P38 MAPK are required to be
closer than 150 residues. The number of restrictions that can be defined is limited to three. This
example is also shown in Figure 3.8b.

Since Database Searches may find a very high number of results, the number of sites that are
displayed is limited. By default, the size of the output list is limited to 50, but users can also choose
the sizes 100, 200, 500, 1000, and 2000. This is just the number of sites that are displayed in
the table on the result page. A file containing all the hits that were found in this search can be
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Search a Sequence Database for Motifs Search a Sequence Database for Motifs

- Choose Search Method:
Choose Search Method: | wipie Moits [ ] Muttiple Motits [~ ]

select the mo i i for and the way distances be 5 are nandled n the evaluation of Select the motifs you want to search for and the way distances between motifs are handied in the evaluation of the
lect the molifs you want to search for and the way distances betwsen molifs are handled in the evaluation of the predicted sites. Using the Gap Penalty Search only the best site of each motif in each protein is evaluated and a gap

predicted sites. Using the Gap Penalty Search only the best site of each motif in each protein is evaluated and a gap penalty is applied 1o the final combined score. The Sirict Distance Sounds Search will evaluate all sites of each matif in
penalty is applied te the final combined score. The Strict Distance Bounds Search will evaluate all sites of each motif in each protein and will retum only those combinations of sites that match the given restrictions. The Gap Penalty Search is
‘each protein and will retumn only those cOMDINALIONS of Sites that match the given restrictions. The Gap Penalty SEarch ISy faster of the two altematives.
the faster of the two altematives Please choose up to 5 Motifs:
Please choose up to 5 Motifs: Motif Class: @ (70 © Yeast (54
Moif Class: ®
@o Yeast (54 Vot
Motifs: Y
Crk SH3
DNA PK EGFR Kinase
EGFR Kinase Erk D-domain
Input Motifs:
Input Motifs:
USER_MOTIF [
another motif =
Add Input Molir.
Add Input Mo,
Resirict distance between predicled siles (Optional): Spocy strict distance bounds (slowen) [=]
Resirict distance between predicted siles (Optional). se Gap Penalty (faster) & 1. The distance between| DA PK  [=]2N9] ATM Kinase [=]1% at least (- [<] 10 Fesicues

2. The distance between| AT Kinase [7]and DNAPK  [7]1%|at most (<=) [v] 90 resicues.

Gap Penaly: | pegium [+
3. The distance between| AT Kinase [+]and | pas MaPK [7]is| at mast (<=) [¥] 150 esicues.

Select database to search: |5 icoprot B
Select database 1o search: | gyiesprot =

Warning: General in large y Trembl and GenPept) can take a very long

time! Warning: General searches in large databases (especially Trembl and GenPept) can take a very long

timet

For this reason we strongly recommend you to restrict your search as much as possible!
For this reason we strongly recommend you to restrict your search as much as possible!

P Restrict Search (optional, but recommended) » Restrict Search (optional, but recommended)
Output List Size: [ 5, Output List Size: 5y [-]
Clear Submit Clear Submit
(a) (b)

Figure 3.8: Both multiple motif search options. The gap penalty setting on the left, the strict limit
option on the right. Two user-defined motifs were uploaded in the gap penalty version.

downloaded too.

A result page of a Database Search is displayed in Figure 3.9. Here, four sections can be distin-
guished: The Search Input part of the page summarises the preferences defined in the input page.
Search Results gives an overview of the number of proteins in the entire sequence database, the
number of proteins found that match the given restrictions, and the number of sites found in these
proteins. In addition, the median and MAD of these sites’ scores is displayed. This part is followed
by a table-view of the sites found (Predicted Motif Sites). The table shows the (combined) site
score, some information about the protein that was found (including MW and pl), and displays
some site-specific information (site and surrounding sequence). For multi-motif searches a site and
sequence column for each motif in the motif’s site is given. The first column in the table allows to
directly scan the protein for other motifs. The link in the column labelled Accession takes the user
to the protein’s page in its primary database. The score-column links to a histogram that shows the
site’s score in comparison to all scores found in that search. At the bottom of the page options for
downloading the entire result-set and for repeating the search are given.

Searching Sequence Database for Simple Patterns

Scansite can find strictly defined sequence patterns in a protein databases by searching for a
sequence pattern defined by a regular expression. Although this is the most simple search feature, it
is also very powerful, especially because it allows users to search for sequences that contain one
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Database Search Results

Search Input

Motifs: ATM_Kin

Database: SwissProt

Organism Class: Mammals

Species restriction: homo sapiens

Keyword restriction: dna damage

Sequence restriction: *M.+TP_[QAV]C.+L$

Number of Phoshorylation Sites: 0

Isoelectric Point: from 0

Molecular Weight: from 0

Search Results

Total Number of Proteins in Database: 533049

Number of Proteins Matching Restrictions: 1 (these proteins have been scored using the given motif(s))
Number of Predicted Sites Found: 5

Median of Scores: 0.544

Median Absolute Deviation of Scores: 0.04610

Predicted Motif Sites

FPlease allow popups in your browser seltings to make links in the table work properiy!

Displaying up to 50 predicted motif sites. You can download the complete list of results in the section below!

Scan Site
St [ATM Molecul:
this 4 Score  Accession Protein Annotations [ATM equence | olecular )
. : Kinase] Weight
Protein! Kinase]
Description: RecName: Full=Fanconi anemia group B protein; Short=Protein FACE; AlfName:
can! 0473 Full=Fanconi anem polypeptide of 96 kDa; = 96;; Key - DNA 5210 [ ——— [ 779
- damage, Phosphoprotein, Fanceni anemia, DNA repair, Reference proteome, Complete
proteome, Nucleus; Accessions: B2RMZ4, Q7Z2U2, QBNBO1, Q86XG1T;
Description: RecName: Full=Fanconi anemia group B protein; Short=Protein FACE; AltName:
Scan! 0.498 EANCB HUMAN Full=Fanconi anem - G1ED k?a: e (ARG [ reR I T187 CLSEEECtQEPSKSD 97738.6 7.79
— — = damage, Phosphoprotein, Fanconi anemia, DNA repair, Reference proteome, Complete
proteome, Nucleus; Accessions: B2RMZ4, Q722U2, Q8NE91, Q86XG1;
Description: RecName: Full=Fanconi anemia group B protein; Short=Protein FACE; AltName:
Scant 0544 FaNCE Full=Fanconi anemia-associated polypeplide of 95 kDa; Short=FAAPS5;; Keywords: DNA se23 VCGRVFLSLEDLSTG — 779
== SEEEESEEE damage, Phosphoprotein, Fanconi anemia, DNA repair, Reference proteome, Complete
proteome, Nucleus; Accessions’ B2RMZ4, QTZ2U2, QBNB91, QBEXGT;
Description: RecName: Full=Fanconi anemia group B protein; Short=Protein FACB; AltName:
_— A J— Full=Fanconi anemia- of 95 kDa; =i 95;; Keywords: DNA s102 TR TG 2
— - = = damage, Phosphoprotein, Fanconi anemia, DNA repair, Reference proteome, Complete
protecme, Nucleus; Accessicns: B2RMZ4, Q7Z2U2, QBNBO1, Q86XG1;
Description: RecName: Full=Fanconi anemia group B protein; Short=Protein FACE; AltName:
Scant 0616 FANCE_HUMAN 'l anem P of 95 kD3; - 95;; Key * DNA s28 EVLVFQLSKGNFADE  07738.6 7.79
— I = damage, Phesphoprotein, Fanconi anemia, DNA repair, Reference proteome, Complete
proteome, Nucleus; Accessions: B2RMZ4, Q722U2, QBNB91, QEEXG1;
Scan Site
this Score Accession Protein Annotations [ATM S?quence IATM Mol far pl
_ N Kinase] Weight
Protein! Kinase]

DISCLAIMER: These results are purely speculative and should be used with EXTREME CAUTION because they are based on the assumption that the peptide library data is correct and sufficient
to predict a site!

Also, if an evidence for a site is given (‘previously mapped site') it is only site- and protein-specific, meaning that this site is known to be phosphorylated by some kinase, but not necessarily by the
kinase Scansite associates with this site!

Download Results
Download results as tab separated file...
Repeat Search with Different Parameters |

Figure 3.9: The result of a very rigorously restricted database search using ATM: Only one protein
(FANCB_HUMAN) was found that matches the given restrictions. Within this protein 5 putative
ATM phosphorylation sites were predicted.
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Sequence Match Results

Sequence Match Overview

Database: SwissProt

Searched Database for:
VIISTWQIIA-Z)AZ][CIIAZIAZIFYW]

- [GAVILM][PI[S][Q]

Organism Class: Mammals

Species Search: homo sapiens.

Keyword restriction: damage

Number of Phoshorylation Sites: 0

Isoelectric Point: from 0

Molecular Weight: from 0

Total Number of Proteins in Database: 533049

Total Number of Sequence Matches: 4

Number of matched Proteins: 2

Matched Proteins

Please allow popups i Your Browser SEttings to make INKs in the table work properiy!

Pattern: [V] Pattern:

STWQI[AZ] Molecul Isoelect
apoteinip  STWARZLmaim) Protein Annotations olecular - Isoslecine
ziClAz) o Weignt Point
[AZIIFYW]
Rechame: Full=Ubiquitin carboxyl-terminal hydrolase 28; EC=3.4.19.12; AltName: Full=Deubiquitinating enzyme 28; AltName:
Show 1 Full=Ubiquitin thiolesterase 28; AltName: Full=Ubiquitin-specific-processing protease 28; DNA damage; Protease;
UBP2E_HUMAN Shi 1 itch 122506431 5.095
SRRef AUMAL Showimaleh aien Phosphoprotein; Hydrolase; Thiol protease; Ubl conjugation pathway; DNA repair; Reference proteome; Complete proteome;
Nucleus; Alternative splicing; QOP213; BOYJCO; BOYJC1; QIERUZ;
_— RecName: FUIEINOBD complex subunit D; DNA damage: b ion; Transcription regulation: DNA repair;
INOD HUMAN  Showimaich oo Reference proteome: Complete proteome; Nucleus; DNA recombination; Alternative splicing: BOEGT7: Q63TQE: QINXDS; 98186083 8483
QEPKAI; QBPJCE; BIKUGE; Q6PIUT;
Pattern” [V]
Pattern:
’ [STWQ]|A-Z] ) ) Molecular  Isoelectric
Protein ID [AZI[ClIA-Z) :S]A[\S{;I[_:]] Protein Annotations Weight Point
[AZIIFYW]

Download Results

Download results as tab separaled file...
Repeat Search with Different Parameters |

Figure 3.10: The Sequence Match result page of a search for two patterns which were found once
in each of the two proteins returned by the search, totalling four pattern matches

or more (up to five) simple amino acid patterns. In addition, it is easy to create statistics about
occurrences of sequence patterns (e. g. in different organisms) in protein databases. This helps to
find out how common or uncommon a pattern is. The feature that allows users to do searches like
these is referred to as Find Sequence Match, or simply Sequence Match. Users can directly search
for a regular expression, or have Scansite create regular expressions from sequence-preferences.
Entering a regular expression allows a very flexible search that at the same time can be very specific.
Entering sequence patterns offers the option of searching for multiple patterns at once. Also, the
latter alternative assists the user in creating a search pattern, so that this feature can easily be used
even if the user does not know anything about regular expressions. Figure 3.10 shows a sequence
match result page, displaying the two proteins that each contain the two queried patterns once. The
table displays information about the matched proteins and provides links to the protein’s page in its
native database. In addition, links to the matched sites in the sequence are provided. At the bottom
of the page, a tabulator-separated file that contains this search’s entire result-set can be downloaded.

Other features

In addition to the search options described before, Scansite also provides a feature that calculates
and displays the molecular weight and isoelectric point for protein sequences with a user-defined
number of hypothetical phosphorylation sites (Calculate MolWeight and pl in navigation section).

Another helpful feature can be used to Calculate the Amino Acid Composition in a given protein
around a given amino acid. Once a protein (either by sequence or by accession) is submitted, a
matrix is displayed that shows the composition of amino acids around the selected centre residue in
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Results for VAV _HUMAN

Center Amino Acid: @ Serine () Threcnine ) Tyrosine ) Other:| Alanine E
Ratio Composition of All Amino Acids Surrounding

Please click on one of the links in the table. The positions of the selected amino acid relative to the selected center (S/T/Y) will be highlighted. In case
you are not sure about any of the amino acids' one-letter-codes, just move your mouse over these labels and a tooltip will present the actual name.

A R N D Cc E Q G H I L K M F P s T w Y v u o]
-7 002 005 002 010 002 012 007 005 002 012 005 007 002 005 002 007 000 002 000 007 000 OGO -7

-6 002 005 005 005 007 005 005 007 002 005 002 005 005 007 002 010 002 002 0712 002 000 000 -6
-5 002 010 000 010 005 012 005 000 002 007 002 007 000 0412 005 002 007 000 002 007 000 000 -5
-4 005 045 007 007 000 0.2 000 007 000 002 010 002 000 002 005 005 002 000 005 012 000 000 -4
-3 005 015 002 005 005 047 0710 002 000 000 010 005 002 005 002 007 005 000 002 000 000 000 -3
-2 010 005 005 015 000 007 007 005 000 005 005 005 005 005 005 002 007 000 002 005 000 000 -2

-1 005 013 003 005 005 008 003 005 003 008 018 003 003 003 003 003 008 003 003 003 000 000 -1
Ser 000 000 000 000 000 0.00 000 000 000 000 000 0.00 0.00 000 000 100 000 000 000 0.00 0.00 000 Ser
+1 008 003 003 005 003 008 008 005 005 010 010 005 003 005 000 003 008 003 003 008 000 000 +1
+2 003 005 003 008 003 008 008 008 008 003 013 013 005 003 008 003 003 000 000 003 000 000 +2
+3 010 005 003 010 003 010 003 000 003 003 010 005 000 005 005 002 005 000 008 008 000 000 +3
+4 000 010 008 010 008 010 000 003 005 005 008 005 0.00 005 003 005 0038 005 003 003 000 000 +4
+5 008 005 005 018 003 003 005 010 000 000 013 005 005 005 000 003 005 003 005 003 000 000 +5
+6 005 003 005 008 000 005 008 003 000 010 005 010 003 008 005 010 008 003 000 005 000 000 +6
+7 008 008 005 008 003 005 000 013 000 005 003 040 003 008 005 008 003 000 003 008 000 000 +7
A R N D €C E @ G H 1 L K M F P S T W Y Vv U O
Composition of . -1 residues from in Protein

1 MELWRGCTHW LIQCRVLPPS HRVIWDGAQV CELAQALRDG VLLCQLLNNL
51 LPHAINLREV NLRPQMSQFL CLENIRTF S5 TCCEKFGLER SELFEAFDLF
101 DVQDEGEVWIY T 'S& SWIBI AQNRGIMPFP TEEESVGDED IYSGLSDRID
151 DIVEEDEDLY DCVENWEEAEG DEIYEDLMRS EPVSMPPEMT EYDKRCCC]

351 [KRDNETL RQITNFQLSI ENLDQSLAHY

501 IYPEN ATANGH]

551 GQD FPGTMEKDEKL HRRAQDEKEN ELGLPEMEVF
601 QEYYGLPPPPF GAIGPF]
651 [RVEKPYVH GPPQDLSVHL

751 KDCFKSLDIT LQFPFEKEPEK RTISRPAVGS TKYFGT.
B

Highlighted Sites: 580; 5113; 5116; S5146; 5389; 5667, 5802;
Tip: Mouse-over regions with background-color to see the highlighted domains' names.

5
‘s hs s S s S
CH RhoGEF PH Cc11 SH31 SH2 SH31 ppmains
(7118} (188-372) (405504} (816-CE5) (E1T-£S2) [ET1-T4C) (788834}
} |545 Ads
100 200 300 400 500 600 700 800

Serines having Leucines in -1 residue relative distance
Frotein: VAY_HUMAN {(swissprot)
Predicted PFAM-Domains (from InterProScan): CH (7 - 118), RhoGEF (198 - 372), PH (405 - 504), C1_1 (516 - 565), SH3 1 (617 - 652), SH2 (671 - 745),
SH3 1 (788 - B34)
Note: The domains’ positions are retrieved from InterProScan. For this reason the numbers may differ slightly from PFAM-retrieved domains.
Go to PEAM.

Figure 3.11: The amino acid composition view of the protein VAV_HUMAN. The table shows the
relative frequencies of amino acids surrounding the centre residue, serine. Lysine at position —1
has been selected in this view, and the sequence and image view below show all occurrences of
serines preceded by lysines in the given sequence. In addition, the protein’s domains are displayed
in both these views.
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relative numbers (Figure 3.11). By default, the centre residue is serine, but all other amino acids can
be selected as well. The matrix that is shown displays the relative frequencies of other amino acids
47 residues from the selected centre. Hence, the matrix has 22 columns (amino acids) and 15 rows
(positions around the centre residue). For example, the value of 0.13 in position —1 for arginine
(R) displayed in the matrix in Figure 3.11 means that out of all amino acids in this sequence that
directly precede serines (centre) 13% are arginines. In the screenshot, leucine in position —1 is
selected, showing 18%. The values in the matrix are rounded, so not all row-values sum up to
exactly 1. When a protein is submitted for the composition overview, InterProScan is used to search
for domains in the sequence. A message is displayed when the domains are ready to be displayed.

All values in the matrix are clickable. Clicking on a value highlights the selected residue in the
two views below the matrix: the sequence view and the image-view (which is shown as soon as
the domain search has finished). Wherever the selected residues (centre and selected) occur in
the chosen distance from each other, the sequence view highlights both residues. The image only
shows the centre residue in order to not clutter the image too much. If domains were found, they
are displayed in both views in matching colours.

Restricting Database and Sequence Searches

All database searches (including searches using the sequence match feature) can and, most impor-
tantly, are recommended to be restricted in some way. For most use-cases it is not necessary to
search an entire protein database, since the (hopefully targeted) question driving the search usually
provides enough prior knowledge to exclude a large group of proteins by, for example, focusing on
a single species. Also, the broader a search is (i. e. the more proteins are included in the search), the
longer the search takes, and the more irrelevant sites are included in the list of results. This again,
makes examining the resulting predictions harder. The main reason why this is of relevance is the
enormous size of many protein databases that are included in Scansite 3, especially GenPept and
TrEMBL which include around 9 and 18 million protein entries, respectively. Complete searches
in these two resources can take up to hours. This is why it is recommended to restrict searches.
All the restrictions utilise the power of filtering strategies in queries to relational databases. This
handling not only makes the filtering process much easier from a programming point-of-view, but
also saves time since a smaller result-set is transferred to from the database to the application.
However, in order to make it possible to perform queries like that based on the Scansite-relevant
data, it is necessary to save data in a redundant way and to store values that could be calculated
from others (e. g. isoelectric points and molecular weights can be calculated from the sequence, but
have to be stored in order to allow efficient queries).

Restrictions can be applied in different ways: To start with, the search can be restricted to proteins
from a specific species or organism class. Species can be entered using regular expressions to match
not only a single species, but a number of related species. For example, all species of genus Homo
can be found by entering “*Homo”. An organism class in Scansite does not directly correspond to
the taxonomic definition of a class, but is a term for groups of species that are frequently used, such
as “Bacteria”. The following organism classes are defined in Scansite:
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Mammals: Members of the actual taxonomic class Mammalia.

Vertebrates: Members of the sub-subphylum Vertebrata, including class Mammalia.
Invertebrates: All members of superkingdom Eukaryota excluding vertebrates, plants, and fungi.
Plants: Members of kingdom Viridiplantae.

Fungi: Members of kingdom Fungi.

Bacteria: Members of superkingdoms Archaea and Eubacteria.

Viruses: Members of superkingdom Viridae.

Other: Members that don’t fit in any other category, for example, plasmids and synthetic se-
quences.

All:  All organisms, including those from category Other.

Next, upper and lower boundaries can be defined to restrict the search to proteins of certain weight
(MW, in Dalton) or isoelectric point (pI), which is calculated according to Bjellqvist et al. (1993).
As these values vary dependent on whether a protein is phosphorylated (and if so, how many
times) or not, these boundaries can be applied to a number between zero and three hypothetical
phosphorylations. In addition, if the search is performed in a well-annotated protein database like
SwissProt, a keyword can be included to restrict the search to proteins that are annotated with this
keyword. This can be used to find proteins annotated as, for example, phosphatases. The database
search (not, however, the sequence match search) also includes the option of adding a sequence
match requirement. This means, that only proteins are included in the search that match a given
sequence pattern. This can be used to apply a motif search to a previously run sequence match
search.

Creating a Scansite Motif

Both main search options in Scansite allow the use of user-defined motifs. These motifs have to be
defined in tabulator-separated text files (commonly known as tsv-files) of a Scansite-specific format.
Here, the most important steps to create a file like this are described. All user-defined motifs that
are uploaded to Scansite 3 are only used for the user’s searches and are deleted as soon as the user
leaves the site.

The main idea is to create a file that represents a motif’s PSSM with values that Scansite’s scoring
algorithm can deal with. PSSMs in Scansite describe amino acid specific affinity values for a
sequence window of 15 residues. Lines correspond to positions in the sequence window, columns
(separated by tabulators) to amino acids. The first line (row 1) defines the residue-to-column
assignments by the amino acids’ one letter codes. In order to let Scansite know which residue
is the deciding one for a given PSSM, Scansite requires (at least) one residue to be invariant in
the motif sequence. For example, the fixed residue should be a tyrosine for motifs recognized by
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tyrosine-kinases, and serine and threonine for S-/T-kinases. The middle position, row 9, holds the
fixed residue in the matrix which is defined by a value of 21. This value is intended to be used only
for fixed residues. The N-terminal side of the motif is defined by rows 2 through 8, and rows 10
through 16 hold the scores for the C-terminal side.

The number of columns in the matrix can vary: If, for example, the underlying peptide library
screen did not include some residues, these columns can be left out of the matrix and Scansite
will assign them default values of 1 everywhere except in the fixed position, where the default
score is 0. Scansite can also deal with special requirements: A motif’s preference for a protein
sequence’s N- or C-terminus can be incorporated by using a column labelled “$” (dollar sign)
or “*” (asterisk), respectively. This applies, for example, to PDZ-domain recognising motifs
which recognise C-terminal regions. These positions are assigned values of 0 by default. As
mentioned before, Scansite 3 also recognises the rarely occurring amino acids selenocysteine
(U) and pyrrolysine (O), which can be added by their one letter code as well. Due to their
similar chemical structure, the default numbers for these residues are the values of cysteines
and lysines, respectively. Lastly, some wildcard values can be used for very special cases: “B”
(aspartate/asparagine), “Z” (glutamate/glutamine), “J” (leucine/isoleucine), and “X” (any residue).
These symbols are included because they occur rarely in public protein databases, but they generally
have no relevance for actual research purposes. The default values for these wildcards are the mean
values of the amino acids that they encode. Therefore, a user-defined Scansite motif has 16 rows
(15 rows of numbers + one header) and between 1 (the fixed residue) and 28 (including wild card
amino acids) residues. A sample matrix is shown in Table 3.1.

Scansite’s scoring system ranges from O to roughly 21. Giving an individual amino acid a score
of 1 at one position in the motif indicates that no preference exists, positive or negative, for that
particular amino acid in that position. Giving all amino acids in one position of the motif a score of
1 (i. e. making all values in a single row of the matrix equal to one) indicates no preference exists
for any particular residue type at that position in the motif. Values higher than 21 are permitted
to indicate very strong affinities. However, negative values are not permitted for defining a strong
disfavouring of amino acids. Instead, values between zero and one should be used for that purpose.
Beware that the scoring function uses natural logarithms, so values less than 1, particularly those
less than 0.5, strongly penalise for that particular residue in a motif. In fact, the penalty of negative
selection from a matrix value of 0.1 in the final score is equivalent (though opposite) to the positive
selection obtained with a value of 10 for another residue in the motif.

3.3.2 Using the Web Service

The Scansite 3 web service!!

is intended to be used for batch-processing motifs and proteins.
However, not all features are available as a web service, but only those that are expected to be used
in that manner. The features that are offered for computational access are single-motif Database

Searches with Scansite-motifs, Sequence Match searches using regular expressions, and Protein

Yhttp://scansite3.mit.edu/ Scansite3Webservice
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Table 3.1: An example of what a user-defined Scansite motif file may look like. To start with, the
order of the columns does not matter. This example shows a PSSM that encodes a motif with central
tyrosine (Y with central value 21). Each row shows affinity values for amino acids in positions
around this central residue.

A Sample Scansite Motif

N P Y F G A C Q R
.12 0.6 1 0.4 1 1.2 1 2.125 1
5278 1 22 0413 1 2 1.6 098 1
0.11 0872 0 2.89 0.6 243 088 0298 1
428 062 0 1.124 3.19 1.78 1372 0411 1
313 0451 O 1.35 3.882 0.724 0.736 0.62 1
1.789 062 O 0.88 355 054 1.07 0451 2.12
3.123 0548 O 129 145 1.151 1.155 0.62 1

0 0 21 O 0 0 0 0 0

2.0 0.411 293 076 1.07 0357 0.11 1.21
191 012 O 1.36 097 126 2219 428 22
821 014 O 252 038 0.686 0.994 3.13 0.2
1.02 05 22 061 068 0781 0.895 3.19 1.2

=)

0213 212 0 129 213 1 1 6.88 1
082 1.6 02 04 1.10 098 2 1 1
0.11 1 0 0.4 1 0298 312 121 1

Scans. In addition, some utility functions allow access to Scansite data, including queries for all
available motifs and datasources. All of these can be accessed in a RESTful service-like manner.
Generally, the features can be accessed with URIs of this format:

http:// [WEBSERVICE-URI]/[FEATURE] (/ [PARAMETER= (VALUE) ?]) *

This annotation means that after the web service’s URI (uniform resource identifier) an identifier of
the feature that the user wants to use follows, separated by a slash (“/”). This can be followed by a
number of key-value pairs that represent parameters and their values, each of which is separated
from the rest of the URI by a slash. The question mark (“?”’) and the asterisk (“*”’) represent optional
values that may occur once or multiple times, respectively. Parentheses are used to group the scope
of these quantifiers: For some features one or more parameters are required, some features require
parameters, but have optional values, and others do not require any parameters at all. The result
of all web service features are valid and well-formed XML-files with self-explanatory tag-names.
These can easily be parsed and processed using state-of-the-art XML-parsers that are available for
all commonly used programming and scripting languages.

Some of the parameter-options in the features described below allow only a restricted set of values,
which can be acquired by using the utility-functions that are provided. Table 3.2 shows a list of
abbreviations used in the definition of all the services. In the following the web service’s base URI
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Table 3.2: Overview of the abbreviations and quantifiers used in the description of the web service’s
features. The services mentioned in the descriptions listed here are utility services that return all
possible values for a given parameter-option or give information about whether an entity exists in
the Scansite 3 database. For example, the motifDefinitions-service returns information about all
the motifs that are currently publicly available and the proteinExists-service returns true or false
dependent on whether a given protein identifier was found in the given database.

Abbreviations used in web service definitions
[URI] The web service’s URL
[ANY] Any value
[DEC] Numbers with decimal point are allowed
[NUM] Integer value
[NP] Only a number in the range [0-3] is allowed

[MC]  Only a motif class as returned by the motifClasses-service is permitted
[M] Only one motif nickname as returned by the motifDefinitions-service is permitted
[MS]  Only motif nicknames as returned by the motifDefinitions-service are permitted. If
multiple motifs are used, they have to be separated by a tilde (“~”
[DS]  Only datasource’s nicknames as returned by the datasources-service are permitted
[OC]  Only organism classes as returned by the organismClasses-service are permitted.
[ST]  Only stringency values as returned by the stringencyValues-service are permitted
[P] A valid protein identifier is required. The proteinExists-service can be used to find
out whether a protein exists in Scansite’s database. This service returns true for valid
protein identifiers.
[SEQ] Only a protein sequence (i. e. amino acid one letter codes) is permitted
? Optional parameter: The value of the parameter (i.e. the right-hand-side of the
equals-sign “=") can be left blank. In general, parameters are mandatory. Only
parameters with this quantifier are optional!

is excluded from the service-string in order to save space. For a similar reason, line breaks are
introduced that are not part of the service-URIs. These are indicated by a backslash (“\”).

Datasources: Get a list of all datasources that are available. The datasources’ nicknames in the
returning XML-file can be used for defining a datasource in other services.

[URI]/datasources

Organism Classes: Gets a list of all the organism classes that can be used to restrict a database
search or sequence match.

[URI]/organismClasses

Motif Classes: This service returns a list of all motif classes that are available at the moment.

[URI]/motifClasses

Motifs: Service for getting information about all the motifs associated with the given class.
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[URI]/motifDefinitions/motifClass=[MC]

Stringency Values: Returns a list of valid stringency options.

[URI]/stringencyValues

Proteins: Service for checking if a protein identifier is found in one of Scansite’s data-repositories.
It requires a protein identifier and a datasource nickname as parameters.

[URI] /proteinExists/accession=[ANY]/datasourceNickname=[DS]

Protein Scan with Protein Identifier: Runs a Protein Scan with the given parameters on the given
protein. Before this service is started, it is recommended to check the protein’s availability
in the database with the proteinExists-service. The parameter motifNicknames is marked as
optional. This means that, if no motif is given, all motifs of the given motif class are included
in the scan.

[URI] /proteinScan/accession=[P]/datasourceNickname=[DS]/motifClass=[MC] \
/motifNicknames=[MS]?/stringencyValue=[ST]

Protein Scan with Protein Sequences: Runs a Protein Scan with an input sequence and the given
scan-parameters. As for the proteinScan-feature described above, the absence of motif-
definitions means that all motifs of the given class are included in the search.

[URI] /proteinScan/proteinName=[ANY]?/sequence=[SEQ]/motifClass=[MC] \
/motifNicknames=[MS]?/stringencyValue=[ST]

Sequence Match: Runs a Sequence Match search using a regular expression pattern and the
defined restrictions.

[URI]/sequenceMatch/sequenceMatchRegex=[ANY]/datasourceNickname=[DS] \
/organismClass=[0C]/speciesRestrictionRegex=[ANY]? \
/numberOfPhosphorylations=[NP] \
/molWeightFrom=[NUM]?/molWeightTo=[NUM]? \
/isoelectricPointFrom=[DEC]?/isoelectricPointTo=[DEC]? \
/keywordRestrictionRegex=[ANY]?

Database Search: A service for running a Database Search using a Scansite motif of a given class
and a set of restrictions.

[URI]/databaseSearch/motifNickname=[M]/datasourceNickname=[DS] \
/organismClass=[0C]/speciesRestrictionRegex=[ANY]? \
/numberOfPhosphorylations=[NP] \

/molWeightFrom=[NUM] ?/molWeightTo=[NUM]? \
/isoelectricPointFrom=[DEC]?/isoelectricPointTo=[DEC]? \
/keywordRestrictionRegex=[ANY]?/sequenceRestrictionRegex=[ANY]?

The following example will demonstrate how these services are intended to be used: In order to
repeat the Protein Scan described in Section 3.3.1 using a web service the user has to first check if
the protein exists in the database of interest, and what the datasource’s identifier (‘“nickname”) is.
In order to do this, the datasources service is used, which returns the nickname “swissprot” for
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the SwissProt database. This can then be used to check if the protein of interest VAV_HUMAN is
available in Scansite’s mirror of SwissProt.

[URI]/proteinExists/accession=vav_human/datasourceNickname=swissprot

If this service returns false, either the given protein accession is invalid, or it does not exist in
Scansite’s database. Here, the service returns frue, which means it is safe to continue. Next, the
rest of the parameters for the protein scan have to be defined: This search should use the highest
stringency value. In order to determine the key to use, the stringencyValues-service is used. It returns
“High” as the key to use. The motifClasses-service offers “YEAST” and “MAMMALIAN" motifs.
Here, the latter is used. Since the search should include all motifs of this class, no information
about motif’s identifiers is needed. This results in the following query URI:

[URI]/proteinScan/accession=VAV_HUMAN/datasourceNickname=SWISSPROT \
/motifClass=MAMMALIAN/motifNicknames=/stringencyValue=High

The result file contains a collection of sites, information about these sites, and the protein’s sequence
and identifier. All other features included in the web service can be used in a similar manner.

3.4 Technical aspects of Scansite 3

The main goal in implementing Scansite 3 was to re-engineer Scansite 2 from scratch using state-
of-the art web-technologies to create a software framework that can easily be extended, debugged,
and updated. Another important goal in this project was to create an easy-to-use web-interface that
not only is easy to use for Scansite 2 users, but also intuitive for people who have not worked with
Scansite before.

Scansite 3 was completely implemented in Java using the Google Web Toolkit library!? for the
client-side web interface. Additional libraries were used for client-server communication (GWT
Dispatch!?) and file-upload (GwtUpload'*). Using a single programming language for both the
server-side and the client-side code makes the development of new features much easier. Of
course, the code that defines the user-interface cannot be interpreted and displayed by browsers.
Instead, the GWT compiler creates highly optimised JavaScript code from the Java-code which
browsers can deal with easily. This is a remarkable advantage, since it is not straight-forward to
(1) integrate Java and JavaScript code in one application and (2) to do this in a performant way.
Hence, a lot of issues can be avoided this way. The web service uses the Jersey library!>, Oracle’s
reference implementation of JAX-RS (Java API for RESTful Web Services). The data-backend is
a MySQL database that, generally speaking, stores motif- and substrate-related information and

2 pttp /7 developers.google.com/web-toolkit/
B http://code.google.com/p/ gwt-dispatch/
Yhtp://code.google.com/p/ gwtupload/
Shttp://jersey.java.net/
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mirrors several publicly accessible protein databases for performance reasons. This design allows
easy additions of new public databases or other protein collections, like domain-specific subsets of
databases, and the easy addition of new motifs. Some tables needed to be denormalised in some
way in order to allow more performant access. Although Scansite 3 was only tested with Apache
Tomcat so far, it can be deployed in any web application server. In addition to the user-accessible
web-front end, a number of Java command line applications have been created that can be used to
populate and update the data-backend.
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Chapter 4. Enrichment of Protein-Protein Interaction Networks with Novel Interactors

Chapter 4

Enrichment of well-known
Protein-Protein Interaction Networks
with Novel and Relevant Interactors

Single healthy proteins (i. e. correctly transcribed from non-mutated genes and properly translated)
do exactly what they are biochemically capable of, which is what they are — from an evolutionary
point of view — supposed to do. They do not know what their part in a bigger biological picture
(e. g. that of its organism) is. Kinases assist in the phosphorylation of proteins, but do not care
what their substrates are going to do once they are phosphorylated. Each of these entities is
restricted to this very constrained view of its surroundings. This very view is the same scope that
all computational protein-protein interactionprediction tools, including Scansite 3, have. From a
semantic point of view, much more insight and information can be found by focusing not only on
single interactions, but on the biological context that the interactions happen in. For example, a
single phosphorylation event might induce other phosphorylation events and so on, which in further
consequence may result in a given phenotype. This view outlines the cellular signalling pathway
view of biological systems that has been used to describe many important biological phenomena
(e. g. blood coagulation pathways or insulin signal transduction pathway). Connecting pathways
at points where they share genes allows an even more relevant and closer-to-complete view of
the actual interaction network. Merging pathway information with independently reported binary
interaction data resulted in a variety of public protein-protein interaction databases (some of which
are described in Section 2.1.2 on page 16). However, the interaction networks that are currently
available in these databases are probably far from complete and may include a large number of false
positives as they store data originating from different types of experiments executed by different
research groups. There are many caveats associated with the data stored in these databases, with the
origin of the data being the most important one. Also, these networks are too complex and big to
be analysed manually. Luckily, some databases provide scores that give some estimate about how
likely interactions are to be true. Although these scores are just a simple predictor of the confidence
of interactions, they are very helpful as they allow some comparison of sometimes confusingly
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annotated interaction data, which makes it possible to distinguish interactions that are more likely
to be true from others.

Parts of the reported interactome represent the accepted standard of what the scientific community
in a research area currently thinks of as being frue. Each research field has its own “transient
gold-standards” which, of course, vary over time. These standards are usually published in reviews,
but, due to their time-dependent variability, are not accessible as datasets that can be easily worked
with. Instead, this information requires to be extracted from the literature, which gives anyone who
tries to work with the current standard a different base-line. This leads to a couple of questions:
What is the best way to make this domain-, time-, and data-dependent interaction-information
publicly available? Is it possible to find out which interactions are the most relevant? Extracting the
relevance of interaction data from a proteome-wide interactome is not a straight-forward task, but a
very important challenge as it may assist in finding extended functional clusters in interaction data
which may guide the design of experiments.

Here, a first draft of a method is presented that allows the enrichment of a well-known protein-
protein interaction network with novel and potentially relevant interactors. Given a protein-protein
interaction network, a set of genes that may be related to this network in some way, and an
underlying interactome (e. g. parts from a protein-protein interaction database), the method tries to
connect the given genes to the network, using interactions from the interaction database, and then
reduce this extended network to only the most relevant interactions. In addition, computationally
predicted interactions are included as these may introduce edges in the interaction-graph, that have
not yet been experimentally reported. An overview of the steps involved in this method is given in
Figure 4.1. This generally applicable method was applied to enrich the current view of what the
DNA damage response protein-protein interaction network looks like with chromatin-modifying
genes from a high-content RNAi-screen. The STRING database was used along with predictions
from Scansite 3 to provide additional interaction data. Since there is no dataset of the protein-protein
interactions involved in the DNA damage response available, the process of creating this dataset is
mentioned here too.

4.1 Terminology

The method presented here uses four different entities of data, each of which will be referred to
with different terms. These terms will be defined here:

¢ The well-known interaction network of interest: This is the network that is known (or
believed) to be of high confidence and will be referred to as core-network, or simply core-net.

* Potentially important genes / interactors: The genes that are tried to be associated to the
core-network are called target genes, or short targets. The genes in this list are expected to be
related to the core-net in some way and should be part of the underlying interaction network
(at least partially).
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Figure 4.1: Overview of the main steps involved in the method presented in this chapter. After
the data was prepared, the different datasets are merged into one network. Predicted interactions
that already exist in the underlying network of known interactions are not included in the merged
network. In the reduction-step, connections from the target genes to the core-network are searched
(here, via a maximum of one intermediate gene). The extraction step then reduces the previously
created sub-network to a tree that only contains the most relevant interactions and nodes.

 Interactome-like network: The base-network (or base-net) is a network of known protein-
protein interactions. The method expects this network to contain the core-net, or at least
overlap with it. Also, this network is expected to be highly connected.

» Putative interactions: These farget-interactions (or predicted interactions) are optional to
use, but should be included in order to add the possibility to find new interactions. If no
predicted interactions are included, the method will just try to associate the target genes with
the core-net using base-net interactions. Interactions in this category are either interactions
with genes from the core-net or with target genes. This restriction was only introduced to
simplify the network.

Although recommendations about the origins of the different groups of data are given it is possible
to use any data that can be connected in a way the method can use it. This means, that this method
cannot only be applied to protein-protein interaction data, but to basically any data that can be
represented in a graph-/network-model and overlaps in the way described above (the base-net
should include at least parts of the core-net and target genes). However, the method might not make
sense with some kinds of data.

Protein-protein interaction networks are graphs that use protein interaction data. For this reason,
genes will often be referred to as nodes or vertices, and interactions between genes as edges.
Wherever vertex- and edge-scores are used, they will be referred to as v;yp. and e;y,., with the
subscript fype being the node’s or edge’s type. Similarly, if an index is given in this annotation
(Vistype» €irype), Only a single value is referred to. The same naming convention is used for other
scores (Srype)-
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4.2 Methods

The goal of the method described here is to try to answer the question how a set of genes is
connected to a network of proteins that are known to interact closely by associating these with the
well-known network and extracting the most relevant interactions. This is achieved in four steps:

1. Prepare network data
2. Associate target genes with core-network (create “subnet”)

* Merge network data

* Reduce merged network
3. Prepare network-scores

4. Extract relevant interactions from subnet (create tree from graph)

These steps will be described in more detail here, exemplifying the most important points and
caveats using the DNA damage response interaction network as core-network and RNAi screen
data as targets. The relevance of interactions is determined based on preliminary scores that are
associated with the network data in the very beginning. These scores are then prepared for the
extraction step after a subnet was created.

4.2.1 Preparing Network Data

The first important step when preparing the network data is to think about how to represent the
data. This mainly refers to the representation of nodes (naming convention) in the interaction-graph
which is mostly important because node-names should be easily readable and understandable in
order to make preparation and visualisation of network data more convenient for the people working
with it. Surrogate identifiers (e. g. 0, 1, 2,...) or some standardised identifiers — especially those
that are primarily numeric — are therefore a bad choice (e. g. ENSG00000149311 and IP100298306
both represent the ATM kinase) as these will require many additional ID-mapping efforts in every
step one wants to take a look at the data. Although the applications that are used here work with any
kind of node-identifier, it is important to stick to a single type of IDs in order to avoid ambiguities
and hidden duplicates (due to different names for the same nodes). Here, approved gene symbols
from the HUGO Nomenclature Commitee! (HGNC) are used. These gene symbols are, generally
speaking, the gene names used in papers (or very similar to them, such as CHEK] instead of CHK1
for the checkpoint kinase 1) and therefore well-known by researchers in the field. Another thing to
consider is that the mapping process itself may result in new duplicates. This issue can be illustrated
by the mapping of protein- to gene-identifiers: A single gene may have multiple gene-products,
many of which may be known and associated with a separate identifier. A list of protein-identifiers

Lhttp://www.genenames.org/
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can therefore be summarised by the gene that encodes this protein. Mapping a gene-identifier to
a protein-identifier is in this case not possible without avoiding ambiguities. However, mapping
a protein identifier to a gene symbol is straight-forward. If this mapping process is applied to a
network of protein-IDs the mapping to gene symbols inevitably creates duplicate edges wherever
multiple nodes are merged into one.

Once a type of identifier was chosen, the different parts of data have to be prepared. This includes
the mapping process as well as assigning scores to nodes and edges. The scores that are used can
be divided into two different groups with opposite semantics: node-scores, which are the higher
the more important the nodes are considered, and edge-scores, which have scores closer to zero
the more reliable they are considered. The reason for this use of scores lies in the algorithm that
is used in the last step, the extraction of the most relevant interactions. This algorithm creates
a Prize Collecting Steiner Tree (PCST) from the enriched core-network by including as many
high-score-nodes as possible and avoiding the use of “expensive” edges (i. e. edges with high scores
and little evidence). In this problem-formulation, edges are penalised (by their score) if they are
included in the network, and nodes are rewarded if they are included. The goal is a tree of maximum
weight. This will be described in more detail in Section 4.2.4. Here, node- and edge-scores range
approximately from zero to one, but other ranges can be used as well.

Base-Network

The base-net that was used in this application is STRING, restricted to experimentally verified
interactions of human proteins. STRING provides a downloadable dataset, but uses Ensembl Protein
identifiers (e. g. ENSP00000278616 for ATM). There are a number of reasons why STRING
was used instead of any other protein-protein interaction database: First of all, this database
summarises data from other PPI databases and therefore excludes the problem of non-overlapping
interaction-data across different public databases (as mentioned in Section 2.1.2 on page 16).
This is important, because some overlap with the core-net, target genes, and target-interactions is
desired. The more nodes the base-net contains, the more likely overlaps are. Secondly, STRING
provides downloadable datasets. This is important because the steps described here require locally
stored datasets. Third, unlike most other database, the STRING database provides scores for all
interactions that give some estimate how likely an interaction is to be true. These scores include
information about how many publications an interaction was mentioned in and the experimental
method that reported the interaction (e. g. low throughput-methods are more reliable as high-
throughput methods), correcting for the probability that an interaction is observed by accident (Von
Mering et al., 2005). The availability of interaction scores is crucial for this method as they are
used in a later step for determining which interactions are the most relevant. After pre-processing
(mapping and removing duplicate genes and interactions) the STRING base-net used here consisted
of 12,429 genes and 105,990 interactions.
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Preliminary Scores. The downloadable dataset provides scores (ssrring) between 0 and 1000,
with higher scores meaning higher confidence. Here, these values are reversed and mapped to [0; 1]:

SSTRING

ase =17 1000

These scores give information about the interaction-confidence and are used only to describe
interactions. All node-scores in the base-network are set to zero (vp,e = 0), as these should neither
be favoured nor disfavoured in the PCST-step.

Core-Network

A core-net can either be a self-defined network or a precompiled interaction-list. In any case,
the core-network should be thought of correct, excluding interactions that are not thought of as
important. Here, the current knowledge of the DNA damage response was intended to be used.
Unfortunately, no dataset describing this network is available in the public domain. Parts of the
network (i. e. certain pathways) are available in the Kyoto Encyclopzdia of Genes and Genomes?
(KEGG) and some review-papers show different parts of the interaction network in different levels
of detail, but no complete or even close-to-complete network was found. For this reason, a network
was manually created by extracting binary protein-protein interactions mentioned in different
reviews and putting them together in a network. Based on the assumption that interactions and
genes mentioned in reviews from the past couple of years in high impact factor journals present the
state-of-the-art view of the field, reviews like these were used as starting points for the network. A
list of key references is shown in Table 4.1 However, extracting an interaction network from reviews
is not a straight-forward task. Missing references, opposing statements in different publications,
fuzzy wording, and ambiguous phrasing are only a few of the reasons that make the manual curation
process quite hard and time-consuming. Additional ambiguities are added due to different gene
names and naming conventions. These problems required the use of additional resources (another
40 publications).

In order to be able to track interactions back to their origin, each interaction (as pair of interacting
genes) was annotated with a list of references. In addition, the type of interaction (e. g. phosphory-
lation) was stored along with the interaction, wherever this information was given. Edge directions
and temporal aspects were ignored. Hence, the edges in the network only represent interactions,
no matter when they happen during the DNA damage response, and what role they play. It can be
concluded that nodes of a higher degree (number of outgoing edges) are more important. However,
this is a dangerous assumption as the presence of more edges does not necessarily mean that there
are no other genes that have a higher degree or are more important, but just that this gene (and its
direct interactors) has been studied in detail since it is currently thought of as important.

Preliminary Scores. Scores in the core-network are determined in a later step, meaning that the
initial values defined for this network do not matter.

2http://www.kegg.jp/
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Table 4.1: A list of references that served as starting points in creating a high-confidence protein-
protein interaction network of the DNA damage response

Key References in Creating the DNA Damage Response Core-Network

Title Reference
The Smc complexes in DNA damage response Wu and Yu (2012)
Susceptibility pathways in Fanconi’s anemia and breast cancer D’ Andrea (2010)

The DNA damage response: making it safe to play with knives ~ Ciccia and Elledge (2010)
Kinases that control the cell cycle in response to DNA damage: Reinhardt and Yafte (2009)
Chk1, Chk2, and MK2

ATR: an essential regulator of genome integrity Cimprich and Cortez (2008)
The DNA damage response: ten years after Harper and Elledge (2007)
The role of double-strand break repair — insights from human O’Driscoll and Jeggo (2006)
genetics

Molecular mechanisms of mammalian DNA repair and the Sancar et al. (2004)
DNA damage checkpoints

Regulating mammalian checkpoints through Cdc25 inactiva- Donzelli and Draetta (2003)
tion

ATM and related protein kinases: safeguarding genome in- Shiloh (2003)
tegrity

Target Genes

The genes used in this work as targets are derived from a high-throughput, high-content quantita-
tive automated microscopy assay which was applied to an RNAi-screen of chromatin-modifying
enzymes and interacting proteins (Floyd et al., 2012). Changes in chromatin structure are known
to be important events in the response to DNA damage. However, the molecular details of how
chromatin is altered in response to DNA single- and double strand breaks are not known in detail
yet. In their work, the authors used 44 384 well plates (with knockdowns for 2209 genes), each
well containing on average 550 cells, resulting in about 9.3 million (44 - 384 - 550) cells. DNA
damage was induced in these cells using ionising radiation and the effects were examined at four
time-points (no irradiation, and 1, 6, and 24 hours after irradiation) with measurements of 615
features that covered five phenotypic readouts: DNA damage induced signalling, cell cycle status,
mitotic entry, apoptosis, and mitotic progression. In the analysis of that enormous amount of data
(2TB of image data in a single experiment), first the most significant features are chosen, followed
by a hit identification method that extracts those genes that showed the most statistically significant
JRiger false discovery rate (Rameseder, 2012). The jRiger-method is based on a gene set enrichment
analysis described in Subramanian et al. (2005). The target genes used here are the top 110 hits
found by this method.
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Preliminary Scores. The values provided by the jRiger-method s jgiger C N are used to calculate
scores for the target genes:
Si;jRiger
Vistarget =
maX(SjRiger)

Target Interactions

In order to allow this method to introduce potentially important edges that have not yet been
identified in experiments and which may be important missing links between pathways or functional
units, predicted interactions are added to the base-network. Basically any prediction tool can be
used to create a list of predicted interactions. Here, the Scansite 3 framework was used for this
purpose. The reasons are obvious: First of all, Scansite focuses on kinase-substrate interactions,
which are — as emphasised many times before — incredibly important in signal transduction
networks. Secondly, scores are needed that allow to compare the predicted results to each other and
to other interactions in the base-net. And, of course, the prediction tool should be computationally
accessible, as predictions have to be repeated for many proteins. The availability of the Scansite 3-
framework was thus also an important point. Two strategies have to be considered when deciding
where predicted interactions should be included: interactions with target genes and interactions
with core genes (both these categories may, of course, overlap). If the core-network is expanded,
a huge number of interactions will be included (given the size of the core-network) which will
unnecessarily blow up the network’s size. Adding predicted interactions to target genes, however,
adds more possible starting points to connect the targets to the core-net. Given the assumption that
all target genes are of interest, but nothing is known about which core-nodes are the most important
the latter strategy makes more sense, which is also why this strategy is used and described here.
Although easily possible, the combination of both methods has not been tried yet. Using Scansite,
a high-stringency Protein Scan has been performed for every target gene. All the interactions
predicted this way were then included in the data set of predicted interactions. For this purpose a
Java application that uses the Scansite 3 framework was created and used. One protein can contain
a motif several times, with different scores at each site. Here, only the best score is saved and used.

Preliminary Scores. After a protein was scored with all mammalian motifs, the scores from this
search (Sscansire) are mapped to the range [0; 1].

Si:Scansite

max (SScunsite) —min (SScunsite)

1 _
ei;predicted -

This is done in order to be able to compare all protein scan searches to each other. Since high
Scansite scores do not have the node-score semantic that is required in this method (good Scansite
scores are close to zero, whereas good node-scores are closer to one), the scores are reversed for all
vertices:

_ 1
Vpredicted = 1— predicted
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4.2.2 Associating Target Genes with Core-Network

Once all datasets are prepared, the targets can be associated with the core-network. This is done
using interactions from the base-network and predicted interactions and can be divided into two
steps: (1) Merging all the data together into one large network, and (2) extracting a sub-network
(also referred to as extended core-network, or simply “subnet”) from this network. This is done by
a Java application (SubNetter application) that was created for this very purpose.

The merging step starts with reading the base-network. If edges occur multiple times, the mean
of their scores is used. This applies both to genes and interactions. The same is done for all other
datasets. Once all datasets are in memory, they are merged. In the merging process, scores are
overwritten, and the nodes’ type information is set. This is done to be able to easily visualise the
network in a later step (which only makes sense if the network is not too large). First, the core-net
is added to the base-net. In this step the core-network has priority and overwrites all overlapping
nodes’ scores in the base-network. Then, the target genes are marked in (or added to) the base-net,
again having priority. Lastly, the target interactions are merged, not overwriting any node- or
edge-information, only adding new edges and nodes.

Once all the networks are merged into one, the subnetting-step is started. The algorithm that does
this works like this: Starting from every target gene in the network, a path along all edges to all of
this node’s neighbours and all of their neighbours is “walked” recursively. If the core-network is
reached using less than a given number of intermediate nodes, the nodes on this path are added to
the subnet. In order to make sure that all the most important parts are in the resulting sub-network,
the core-network and the target genes are added to the subnet in the very beginning. In this step,
two important parameters come into play: maximum path length and maximum edge score. The
maximum path length defines how many steps a target is allowed to be away from the core-network
(number of intermediate nodes minus one). For example, if a node X is connected to Y via two
nodes A and B (X~A-B-Y) and the maximum path length is 2, the nodes are not added to the subnet,
whereas if this parameter has a value of 3, the nodes on this path are added to the sub-network. The
other parameter defines a score-limit for edges that are used on a path like this. If, for example,
a value of 0.5 is given as maximum edge score, only edges with a score less or equal to 0.5 are
considered in the path. Edges with a higher score are ignored.

In the end of this step, the core-net is, dependent on the parameter-settings, associated with all, none,
or a subset of the target genes. This network is the starting point for the last step, the extraction of
the potentially most relevant interactions.

4.2.3 Preparing Network Scores

Before the SubNetter application writes the subnet to the filesystem in different file-formats it
prepares the edge- and vertex-scores for the next step. This is necessary, because the scores used in
the network come from different sources and thus different distributions. An evaluation of what
scores are the most important needs to be done at this point. Starting with vertex-scores, there are
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three different vertices in the subnet: nodes from the core-network, target genes, and intermediate
genes (either from the base-net or from target-interactions). The most important vertex-scores
are those of the target genes, since these are the ones this method focuses on. These, along with
the core-network nodes, are the ones the end-result should contain. Intermediate nodes are not
specifically favoured (most of all, because no prior knowledge about their importance is available),
but are welcome to show up in the result, especially because they are the links between the other two
node-categories. Hence, it makes sense to make all node-scores dependent on the targets’ scores.
Similarly, there are three types of edges in the subnet: intra-core interactions, predicted interactions,
and other out-of-core interactions. Here, the most relevant values are the out-of-core edge-scores,
since they are derived from the base-network and thus come from the STRING database. Edges
within the core should be slightly favoured as they are known to be important. Predicted interactions
should be favoured in a similar manner, as these offer the inclusion of novel interactions.

As mentioned previously, vertex-scores can be interpreted as profits, and edge-scores as costs.
Therefore, a score of 0 means the same for nodes and edges, i. e. that they are neither favoured nor
disfavoured. A high score means a strong favouring for nodes to be included in the final result, but a
disfavouring for edges. By combining these ideas into simple formulas the following vertex-scores
were used:

Si; jRiger
Vistarget = LT (as defined before)
maX(SjRiger)

Vintermediate = 0
Veore = median(vtarget) + MAD(Vtarget)

Interaction-scores are calculated in a similar manner:

Cintermediate = €base

€core = medlan(eimermediate) -2 MAD(eimermediate)

1 : 1
€. predicted mln(epredicted)

! i !
max(epredicted) mln(epredicted

The scoring convention used here is just a simple approach to combine these ideas, but is far from

€i:predicted = ) " €core

perfect. In this first version of the method, however, the focus was not to produce the best possible
results, but to show that the method works and is worth following-up on.

4.2.4 Extraction of Relevant Interactions by creating a Prize Collecting Steiner
Tree

At this point, a protein-protein interaction network is available that contains the core-network with
additional interactors, including the desired target genes of interest. Starting from this, the question
that is asked is, how can this network be reduced to only the most relevant interactions? Given
the size of the network created in the preceding step (thousands of genes and interactions), it is
necessary to have a computational tool that assists in identifying important genes and interactions
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from the network. The relevance of interactions is determined by the scores given in the network.
Here, the network was reduced by building a Prize Collecting Steiner Tree (PCST).

The PCST problem is a special version of the Minimum Steiner Tree problem which is defined
as follows: Given a connected, undirected graph G = (V, E,¢) that consists of a set of edges E,
vertices V, a cost function that defines edge-distances ¢ : E — RZ? and a set of Steiner nodes
S CV, a Steiner Tree Ts = (Vs, Es) which is a subgraph of G is searched with S C Vg C V and
Es C{(vi,v2) | (vi,v2) € E,{vi,v2} C Vs} (Mehlhorn, 1988). In other words, a Steiner Tree is
a tree subgraph of G that contains all nodes S. Paths in G are defined as sequences of vertices
V1,V2y. ..,V Of V with Vi<jcpi : (vi,viy1) € E. Lengths of paths are the sum of the distances of the
edges along the path. A graph’s total distance is the sum of all distances. Gy is called a minimal
Steiner Tree if G is a Steiner Tree and the tree’s total distance is minimal. Finding a minimal
Steiner Tree has been shown to be an NP-complete problem (Garey and Johnson, 1979).

The primary target when building a minimal Steiner Tree is to have all Steiner nodes connected
to each other. This goal is changed in the more specialised formulation of the Prize Collecting
Steiner Tree problem: Given a graph G = (V,E, p,c) with V, E, and ¢ as above and p being a
profit-function p : V — R=9, a Prize Collecting Steiner Tree Tp = (Vp, Ep) is searched that does
not minimise the graph’s total distance, but instead maximises the graph’s profit function:

profit(Tp) =Y. p(v)— ) c(e)

veVp ecEp

The most important difference in this version of the problem is that there is no set of Steiner vertices
S involved. Instead, the profits of the nodes determine whether a node will be included in the tree.
In the application of this problem here, the target genes are considered to be Steiner vertices, which
do not necessarily have to be included in 7p. Those that are included in the 7p are referred to as Sp
(Sp C S C Vp), those that are not included as Sp = S\ Sp.

The PCST problem can be applied to any network structure and became popular in the context of
telecommunication companies wanting to find a cost-efficient way to expand their network in a city:
In this example, vertices V are blocks of buildings and edges E are the connecting infrastructure
that has to be built by the company. Hence, the profits p (associated with buildings) are the charges
that the company expects the people using their infrastructure to pay, the costs ¢ (associated with
edges) are the costs that are associated with connecting the buildings. It is in the company’s interest
to only include blocks of buildings that they can expect a high profit from by at the same time
avoiding to build unnecessary connections. The original graph G in this example includes all the
various ways to connect all the buildings in an area.

A number of methods have been developed that create a Minimum Steiner Tree from a set of genes
in a surrounding protein-protein interaction network (White and Ma’ayan, 2007; Berger et al., 2007;
Chen et al., 2012). However, using these methods it is not possible to find out which genes are of
relevance with respect to a known network, since all targets are connected in this approach. This is
why the method described here uses an application that solves the PCST problem.

Four different applications that involve a solver for the PCST problem were tried; one of these
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applications, DHEA (Ljubic et al., 2005, 2006), is an application that implements an optimal
solver for this problem and is used by two of the other applications that were tried. However, since
this application uses commercial software libraries for some optimisation steps, this application
could not be used. The next application that was tried was the heinz package® (“heavy induced
subgraphs”) which uses the DHEA software in a Python library to solve the maximum-weight
connected subgraph problem (Dittrich et al., 2008). Here, again, the missing software libraries
posed a problem since the application requires to be run locally. The same group extended this
Python library to an R-package (BioNet), replacing the heuristics from the commercial software
libraries with algorithms available in R (Beisser et al., 2010). Unfortunately, the method provided
in this package did not allow the use of self-defined edge-scores which was the reason why another
method was searched for. SteinerNet* (Huang and Fraenkel, 2009), a web-application that uses the
DHEA-program to build a PCST from a given scored network is the application that was used in
the end. The SteinerNet-output was then visualised and analysed using Cytoscape®.

4.3 Results

One of the key results of this project is the DNA damage response PPI network that was manually
created. Figure 4.2 shows a Cytoscape-view (Shannon et al., 2003) of the network. This view
not only gives an overview of the most important genes that are involved in the response to DNA
damage, but also allows to quickly identify which of these important gene products certain proteins
interact with. The interaction-data can easily be annotated with interaction types and other additional
information and thus is not just a useful resource for the work described here, but also for everyone
else who works with DNA damage response data. It is easy to identify those genes that are studied
the most, which indicates that they are very important in this context. These genes are highly
interconnected hubs in the network: ATM kinase, one of the most important players in the DNA
damage response, can easily be found in the centre of the figure. Other important hub-like genes
are ATR, BRCA1/2, H2AFX, TP53, PARP1/2, PRKDC and CHEK1/2, most of which have been
mentioned in the overview of the DNA damage response in Section 2.2.

In addition, some functional complexes and clusters can be identified easily by just looking at the
network. This includes, for example, the CDK2/CDC25 cluster in the bottom right corner where
many genes involved in the initiation and maintenance of the G1/S checkpoint arrest (Sancar et al.,
2004) are displayed. Another functional complex that is easy to see without much effort is the
PARP1/2 cluster which has been primarily studied because of its important role in the sensing of
DNA single strand breaks. PARP-inhibitors are used as cancer therapeutics (for example, for breast
and ovarian cancers). They block the single strand break repair pathway (because the necessary
sensors are turned off) in cancerous cells, which may result in lethal (for the cell) double strand
breaks. In healthy cells the PARP-repair pathway is backed up by another repair pathway (e. g.
NHEJ or HR). Another big important cluster can be seen in the bottom left corner: The cluster of

3 http://www.mi. fu-berlin.de/w/LiSA/Heinz
4hitp://fraenkel.mit.edu/ steinernet/
Shttp:// cytoscape.org/
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FANC-genes shows genes involved in the Fanconi’s anemia (FA) repair pathway. FA has become
an attractive model for studying breast cancer susceptibility genes because of similarities of FA
genes to BRCA-genes (Wang, 2007). Two protein complexes that are also worth mentioning can
also be found easily: The MRN-complex, consisting of MREI1A, RAD50, and NBN — located
inside the “arc” on the top right side — is one of the first molecular reactions to DNA double strand
breaks. The 911-complex has a similar function at single strand breaks and consists of RADYA,
HUSI, and RAD]. This complex can be found in the centre of the lower third of the figure.

When describing the SubNetting-step, two parameters were mentioned: The maximum path length
and the maximum edge score. These two options offer a way to change the size of the resulting
network. The greater the value for the maximum path length is chosen, the more nodes are allowed
to be used as intermediates between core-net and targets, which, due to the high interconnectedness
of protein-protein interaction networks, not only results in a greater number of proteins and edges
included in the subnet, but also in a longer runtime. At the same time, a high number of intermediate
nodes increases the probability of finding a connection for every node. A way to restrict the number
of edges and nodes included in the network is to filter by the score of the edges that are used.
Table 4.2 shows these results based on runs with maximum path lengths of 2 and 3, meaning one
and two intermediates, respectively. Also, the scores were either not restricted at all, or with a value
of 0.3.

Table 4.2: Starting from a merged network (merged base, core, targets, and target-interactions)
with 12,483 vertices (| V |) and 106,627 (| E |) the SubNetter-application created networks of the
sizes listed in the table. In addition, the runtime for the application to do so, and the number of
excluded target genes (| S |= 111) are listed. The abbreviations PLR and ESR stand for Path Length
Restriction and Edge Score Restriction, respectively. The given runtime values are the rounded
mean-values of 20 runs.

SubNetting-Results for Different Settings

PLR/ESR | VP | | EP | | S_p | Runtime
2 / none 1,137 14,957 22 18s
2/03 605 3,902 25 3s
3/ none 3,247 43,664 21 1,460s
3/03 1,414 9,628 24 97s

Surprisingly, the number of target nodes that the application was not able to connect to the core-
network (| Sp |) did not vary too much across the different settings. Based on how the SubNetting-
method works it is not surprising however, that the nodes that were excluded overlapped entirely
in the settings listed in the table. That is, the run with the most exclusions excluded all the nodes
that were also excluded in the run with the next smaller number of exclusions, and so on. It is
safe to assume that these nodes are indeed not too closely connected to the DNA damage response
PPI network. The application’s runtime mostly depends on the combination of parameters that
is chosen. Generally speaking, a high maximum path length requires a very strongly restricted
edge-score. If the quality of the sub-network is considered based on the number of target genes that
were not connected, it is easy to see that even with settings that vary just between two values the
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network sizes and runtimes change a lot, with always including about three quarters of the target
genes. This is why the most restrictive and fastest setting was chosen to create the subnet that was
used in the next and final step.

The SteinerNet web application reduced this network to the tree shown in Figure 4.3. Most nodes
in the tree are core-nodes, which is not surprising, since these nodes are (1) the bigger part of the
subnet that was used as input for SteinerNet and (2) the scores were chosen in a way to favour
them. The most important nodes to look at in this network are the target nodes, and the way they
are connected to the core-nodes. 28 targets (from | Sp |= 86 in the subnet) stayed in the network.
Some of these nodes were found to directly interact with core or base genes, others were connected
via predicted interactions with core or base genes. The way the subnet was reduced shows a severe
separation between core genes and target genes (top/bottom in the figure) which can be interpreted
in at least two ways: To start with, there may be functional differences in the two sets of nodes.
The core focuses on DNA damage response, the target genes are mostly genes that are known to
be involved in chromatin modification. This may be one reason why there is a separation in the
tree. Alternatively, the scores may have been chosen poorly. As mentioned before, the scores are
calculated in an easy way to test the method in this first instance and, since the scores are what the
PCST step is based on, the results may look completely different if the scores are changed. At least
those parts of the tree that are connected via experimentally verified edges can be considered true,
including connections via nodes from the base-net (INPP5SE, CTU1, PI4K2A, PIK3R4, LRGUK,
ZGPAT, SCYL3, PKIB, CSNKI1G3, and SPRPR). Genes that are connected to the core-net (directly
or via base-nodes) with predicted interactions may be true as well. UCK/ and CLK3 are especially
important results, since they are potentially relevant links to the DNA damage response network
that have not been verified yet (or not reported in the dataset used in this work). All the interactions
and genes below (in the figure) the SRPR—AURKB arm have to be handled carefully as they are
mainly connected via predicted interactions and do not include any core genes at all.

In any case, the question whether the genes that were connected to the core-net using this method
are actually involved in the DNA damage response needs different methods to be answered. At this
point of the work presented here it is too soon to draw conclusions about the biological significance
of the tree that was created. Before this can be done, more effort needs to be spent on scoring
techniques and more parameter-combinations for creating sub-network have to analysed with
respect to the sub-networks that are created.
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Figure 4.2: The manually created DNA damage response core-network. Edges in this view only
mean that in some publication (noted in the original binary interaction data set) evidence was found
that the connected genes interact. There is no temporal or directional component given in that
graph.
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Chapter 5

Conclusion

The preceding chapters introduced protein-protein interactions in general and their relevance in
biological networks exemplified on the DNA damage response. One specific interaction-type,
phosphorylation, was described in more detail. Phosphorylation is one of the most important
post-translational modification in cell signalling networks as it provides molecular switches that,
combined in a network, allow a very fine-grained control of what happens in a cell. However,
identifying phosphorylations experimentally is not always easily possible and takes a lot of effort,
both in time and costs. Hence, tools that allow a high-confidence prediction of phosphorylation
are necessary to help scientists design experiments and target their research in an efficient and
reliable way. This work focused on one tool like that: Scansite 3 is based on the identification of
short linear sequence-motifs recognised by kinases and binding domains, a concept that has been
proven to be useful and valid since the first version of Scansite was made available online in 2001.
In further consequence, the Java-based Scansite-suite that was created in this work and presented
here was used to associate a set of genes derived from an RNAi-screen with a manually created
DNA damage response protein-protein interaction network via known and putative interactions.
Although this method needs some more refinement and tweaking in its application, it is a first part
of an algorithmic pipeline that will be created for putting genes (e. g. outputs from knockdowns or
other experiments) in their place in a network the researchers are interested in. This method has
potential to allow scientists to quickly identify which genes (out of potentially thousands) are most
relevant to the model (represented by a network of protein-protein interactions) they are studying,
which allows to save time and costs, and helps to decide which results are worth following up on
(“low-hanging fruit strategy”).

The kinase-substrate interaction prediction tool Scansite 3 is now available online for researchers
all over the world. Users are encouraged to report bugs, and submit ideas about how Scansite can be
improved. Since the entire Scansite suite is implemented in Java, it is easy to introduce new features
without worrying about the interplay between different technologies. A number of new features are
described in Chapter 3 on page 30, all of which assist users in identifying sites and help them to
decide whether these sites are real. Still, it is important to always bear the caveats of the method
applied in mind: Scansite’s predictions are based on the assumption that peptide library data is
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sufficient information for predicting an interaction, and that the experimentally derived PSSM-data
is correct. Hence, Scansite’s predictions, and results from computational prediction tools in general,
have to be scrutinised with extreme caution before they are included in the design of (potentially
expensive and time-consuming) experiments. Structural information, as well as other factors, is
important for interactions to happen in vivo. This is why Scansite provides a variety of supporting
information for the sites it predicts, including a site-score and -percentile, domain information, a
surface-accessibility value, general information about motifs and proteins, and links to previously
mapped sites. Links to other bioinformatics tools allow users to quickly “get a second opinion”
about sites in the protein they are analysing. Different kinds of additional supporting information
were thought about in detail, and will be available in future versions of Scansite:

* Subcellular localisation information can be added to sites if the kinase and putative substrate
are found in the same cellular compartments. Obviously, only proteins that physically meet
in a cell are able to interact. This idea can be extended in a way that also co-expression is
considered.

 Similarly, protein interaction networks can be used to identify which substrates are phos-
phorylated by the same kinases, which allows to draw conclusions about how likely potential
interactions are to be true.

¢ Another important factor when looking at phosphorylation sites is evolutionary conserva-
tion. This is taken into account in Scansite only in a very subtle way (BLAST-search for site
sequences). Algorithms are available for determining if a single amino acid is conserved
(e.g. Zhang et al., 2007), but no model has been published so far that extends this idea to an
entire motif. A model like this may improve Scansite’s predictions even further.

* Including parts of this data or the data that Scansite already provides in Scansite’s scoring
function (and providing this score in addition to the site-only score) would make it easier to
keep track of this whole arsenal of different information.

These are just a few ideas that were considered but needed to be deferred due to time-restrictions on
the work presented here. Scansite is one of the most widely used tools for identifying short linear
sequence-motifs in proteins and has been the “quasi-gold standard” in almost every publication that
compared different kinds of kinase-substrate interaction prediction tools in the past years.

The application of Scansite 3 in the enrichment of already known interaction networks with new
genes showed that Scansite’s data can be used in different ways. Even by just using the web-
interface, it is possible to build potentially relevant signalling cascades / pathways by incrementally
repeating Protein Scans and Database Searches. This work described a new way to use Scansite’s
data by embedding predicted interactions in a network view. The goal in this application was to
create a first step in an algorithmic pipeline that allows researchers to associate genes with an
interaction network in a quick and easy way. The method has been shown to work, but it still needs
some improvements: To start with, the scoring-strategy for nodes and edges needs to be improved
in a way that is more statistically comprehensible, meaning that the system chosen at the moment is
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based only on a simple idea that suits the PCST-scoring scheme, but does not take the distributions
of the initial scores (as they come from different sources) into consideration. More sophisticated
scores will probably yield better and more biologically relevant results. Secondly, the parameters
of the SubNetter application require some experimenting: The maximum path length, of course, is
highly dependent on how close the genes are expected to be related with the network that is looked
at. Finding a good score-threshold, however, is a much harder task as it is highly dependent on the
scores that are used and where the data is taken from. Also, different parameters to control the
SubNetting-step could be introduced. For example, a limit on node-scores, a limit on the score of a
path (which is the sum of the edges in the path), or a limit on the number of publications that have
reported certain edges. The method could also be greatly improved, if more data was considered
in general. At the moment, only binary protein-protein interaction data and associated scores are
looked at. But this data can be enriched with GO-terms, colocalisation data, gene-expression data,
or other biologically relevant information. Including more data, however, comes at the cost of
increased complexity, which could make the method less comprehensible.

Once the method has been finalised, a detailed analysis of the links shown in the resulting PCST
is required to check if the results are indeed biologically relevant. This ultimate question is what
drove the development of this method in the first place. When analysing the tree-data, one may
consider also taking a look at the subnet that was used to create the tree (if it is not too large). This
may help understanding the tree on a different level and gives an overview of which genes are the
most important hubs in that intermediate network. However, it is important to mention that this
method cannot only be applied to biological data, but to any kind of network data that is available.
In a far-fetched example, this method could be applied to user-interaction data in social networks
in order to answer the following question in a hiring process of companies: Based on who users
(targets: applicants for job) in a social network (base-network) interact with, how likely is it that
people fit in this new social environment (core-net: the company, and social interactions within)?
Of course, scores have to be calculated in a completely different way in other applications, but the
idea persists.

Finally, one of the most important results in this work was the construction of a high-confidence
network that represents the current view of what genes are important in the molecular response
to DNA damage and how these genes interact with one another. Since nothing like this has been
published before, it is a valuable resource for anyone who works with DNA damage response data,
and provides a helpful overview for people who are new to this very field. It can be used as a
quick-reference for biologists, or as a dataset for computational analyses. This network needs to
be kept up-to-date as new publications in that research area will show that new interactions are
important and others may be proven to be wrong (or insignificant).

In conclusion, this work described a novel way to associate genes to a network of interest and
gave an overview of the new version of Scansite which can now be accessed online. The network-
enrichment project will be followed up on by Jonathan Rameseder in his thesis project (Rameseder,
2012).
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