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Abstract

In this paper we present an implementation for computing bivariate dimension
polynomials of finitely generated modules over a Weyl algebra in Maple. We
recall some basic results in order to explain the notion of dimension polyno-
mials and to introduce methods for their computation based on Gröbner basis
techniques. We explain input options for the mentioned implementations and
provide several examples.

Keywords:
Weyl algebra, D-module, Berstein polynomial, (x, ∂)-dimension polynomial,
(x, ∂)-Gröbner basis

1. Introduction

Bernstein [3] introduced an analog of the Hilbert polynomial for a finitely
generated filtered module over a Weyl algebra. Analytical applications of this
study can be found, e.g., in Björk’s book [5]). In particular, Bernstein [4] was
enabled to prove Gelfand’s conjecture on meromorphic extensions of functions
Γf (λ) =

∫
Pλ(x)f(x)dx in one complex variable λ defined on the half-plane

Re(λ) > 0 for any polynomial P in n real variables P (x) = P (x1, . . . , xn) and
for any function f(x) = f(x1, . . . , xn) ∈ C∞0 (Rn).
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In [8] the existence of dimension polynomials in two variables associated
with the natural bifiltration of a finitely generated module over a Weyl algebra
An(K) was proved and methods for their computation based on Gröbner basis
techniques were given. In what follows we recall algorithms of computation of
Bernstein polynomials as well as bivariate dimension polynomials.

The paper is organized as follows. In Section 2 we review some basic concepts
of the theory of Weyl algebras and D-modules that are used in the paper. We
recall the theorem on Bernstein polynomials of a filtered D-modules. In Section
3 we introduce a bifiltration of a Weyl algebra An(K) and define two natural
term orderings in An(K). Then we define a reduction with respect to two term
orderings in a free An(K)-module giving rise to the definition of (x, ∂)-Gröbner
basis. We recall a generalized Buchberger-type algorithm first presented in
[8] for their computation and explain how (x, ∂)-Gröbner bases can be used
for the computation of bivariate dimension polynomials of finitely generated
modules over Weyl algebras. We conclude with some examples of computation
of bivariate dimension polynomials.

2. Preliminaries

Throughout the paper Z, N and Q denote the sets of all integers, all non-
negative integers and all rational numbers, respectively. Q[t] denotes the ring
of polynomials in one variable t with rational coefficients and o(tn) denotes a
polynomial in Q[t] of degree less than n. By a ring we always mean an associative
ring with unit element. Every ring homomorphism is considered to be unitary
(mapping unit element onto unit element), every subring of a ring contains the
unit element of the ring. By the module over a ring R we always mean a unitary
left R-module.

If for 0 < n ∈ N we consider an element a ∈ Nn then we assume that
a = (a1, . . . , an) for a1, . . . , an ∈ N.

We consider a Weyl algebra as an algebra of differential operators over a
polynomial ring. More precisely, let K be a field of zero characteristic, and
0 < n ∈ N. For any set S by [S] we denote the commutative monoid generated
by S. We consider indeterminates x1, . . . , xn, ∂1, . . . , ∂n. Let R = K[x1, . . . , xn]
be a polynomial ring in indeterminates x1, . . . , xn and for i = 1, . . . , n consider
∂i to be the operator on R corresponding to partial differentiation with respect
to xi. Then An(K) is defined as the ring of differential operators over R. In
other words An(K) is obtained by appending [∂1, . . . , ∂n] to the polynomial ring
R and equipping R[∂1, . . . , ∂n] with the commutation rules

i. ∂i∂j = ∂j∂i, and

ii. ∂ir = r∂i + ∂
∂xi

(r)

for all i, j ∈ {1, . . . , n}. A left module over a Weyl algebra is called a D-module
or An(K)-module if we want to emphasize n.

Throughout this paper we will use multi-index notation, i.e., for a = (a1, . . . ,
an) ∈ Nn by xa we denote the term xa11 · · ·xann and by ∂a we denote the term
∂a11 · · · ∂ann . Furthermore by |a| we denote the sum a1 + · · ·+ an.
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The set Θ := {xa∂b | a, b ∈ Nn} forms a K-basis of An(K) (see [5, Chap-
ter 1, Proposition 1.2]). Hence, for every element D ∈ An(K) and a, b ∈ N
there exist unique coefficients ka,b ∈ K such that D can be written as a sum∑
a,b∈Nn ka,bx

a∂b with only finitely many ka,b not vanishing. For D 6= 0 the
number ord(D) := max{|a| + |b| | ka,b 6= 0} is called the order of the element
D. We define ord(0) := −∞.

For r ∈ N define sets Wr by

Wr := {D ∈ An(K) | ord(D) ≤ r},

and for 0 > r ∈ Z define Wr := {0}. Since for any D1, D2 ∈ An(K)\{0} we have
ord(D1D2) = ord(D1) + ord(D2) the Weyl algebra An(K) can be considered as
a filtered ring with the nondecreasing filtration (Wr)r∈Z.

Let M be a finitely generated left An(K)-module with a system of generators
g1, . . . , gp and for r ∈ Z define

Mr :=

p∑
i=1

Wrgi.

Then

i. for r ∈ Z the set Mr is a finitely generated K-vector space,

ii. for r, s ∈ Z we have WrMs = Mr+s, and

iii.
⋃
r∈NMr = M .

Hence, M can be considered as a filtered An(K)-module with the filtration
(Mr)r∈Z.

The next result is proved in [3] (cf. [5, Chapter 1, Corollaries 3.3, 3.5, and
Theorem 4.1]).

Proposition 2.1. With the above notation, there exists a polynomial ψM (t) ∈
Q[t] with the following properties:

i. ψM (r) = dimK(Mr) for all sufficiently large r ∈ Z (i.e., there exists r0 ∈ Z
such that the last equality holds for all integers r ≥ r0),

ii. n ≤ deg(ψ(t)) ≤ 2n, and

iii. if ad, . . . , a1, a0 ∈ Q such that ψ(t) = adt
d + · · ·+ a1t+ a0, then the degree

d of the polynomial ψ(t) and the integer d!ad do not depend on the choice
of the system of generators g1, . . . , gp of M . These numbers are denoted by
d(M) and e(M), they are called the Bernstein dimension and multiplicity
of the module M , respectively.

Definition 2.2. The polynomial ψM (t) whose existence is established by Propo-
sition 2.1 is called the Bernstein polynomial of the An(K)-module M associated
with the given system of generators. If d(M) = n then M is called holonomic.
The family of all finitely generated holonomic left An(K)-modules is called Bern-
stein class and is denoted by Bn.
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Example 2.3. Let an A1(K)-module M be generated by a single element f
satisfying the defining equation

xa∂bf + ∂a+bf = 0 (2.1)

with a, b ∈ N\{0}. Then M is isomorphic to the factor module of a free A1(K)-
module A1(K)e with one free generator e by its A1(K)-submodule N = A1(K)g
where g = (xa∂b + ∂a+b)e. Let π be the natural A1(K)-epimorphism of A1(K)e
onto M , i.e., π : e 7→ f , and α the natural A1(K)-epimorphism of the free
filtered module F a+b onto the A1(K)-module N ⊆M equipped with the filtration
(Wrg)r∈Z, given by α : h 7→ g. The Bernstein polynomial ψM (t) associated with
the generator f of the A1(K)-module M can be obtained from the exact sequence
of finitely generated filtered modules

0 −→ F a+b α−→ A1(K)e
π−→M −→ 0

where M and A1(K)e are equipped, respectively, with the filtrations (Wre)r∈Z
and (Wrf)r∈Z defined in Section 2, and F a+b is a free filtered A1(K)-module
with a single free generator h and filtration (Wr−(a+b)h)r∈Z.

Since for all r ∈ N sufficiently large we have

dimK(Wr) = |{xi∂j |i+ j ≤ r}|

=

(
r + 2

2

)
, and

dimK(Wr−(a+b)h) =

(
r + 2− (a+ b)

2

)
for all r ∈ Z sufficiently large we obtain

ψM (r) = dimK(Wre)− dimK(Wr−(a+b)h)

=

(
r + 2

2

)
−
(
r + 2− (a+ b)

2

)
.

Hence,

ψM (t) =

(
t+ 2

2

)
−
(
t+ 2− (a+ b)

2

)
= (a+ b)t− (a+ b)(a+ b− 3)

2
.

The following statement (see [5, Chapter 1, Propositions 5.2 and 5.3 as well
as Theorem 5.3]) gives some properties of holonomic D-modules.

Proposition 2.4. i. If 0 → M1 → M2 → M3 → 0 is an exact sequence of
left An(K)-modules, then M2 ∈ Bn if and only if M1 ∈ Bn and M3 ∈ Bn.

ii. If M ∈ Bn, then M has a finite length as a left An(K)-module. In fact, ev-
ery strictly increasing sequence of An(K)-modules contains at most e(M)
terms.

iii. If M is any filtered An(K)-module with an increasing filtration (Mr)r∈Z
and there exist positive integers a and b such that dimK(Mr) ≤ arn+b(r+
1)n−1 for all r ∈ N, then M ∈ Bn and e(M) ≤ n!a.
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3. Numerical polynomials in two variables

Definition 3.1. Let f(t1, t2) ∈ Q[t1, t2] be a polynomial in the two variables t1
and t2 with rational coefficients. f is called a numerical polynomial if f(t1, t2) ∈
Z for all t1, t2 ∈ Z sufficiently large, i.e., there exist r0, s0 ∈ Z such that f(r, s) ∈
Z for all integers r ≥ r0 and s ≥ s0.

Obviously, every polynomial f(t1, t2) ∈ Z[t1, t2] is numerical. Now let 0 <
m ∈ N, 1 < n ∈ N. Then the polynomial

g(t1, t2) =

(
t1
m

)(
t2
n

)
=

t1(t1 − 1) · · · (t1 −m+ 1)

m!
· t2(t2 − 1) · · · (t2 − n+ 1)

n!

with rational coefficients is numerical.
Consider a polynomial 0 6= f(t1, t2) =

∑
b=(b1,b2)∈N2 abt

b1
1 t

b2
2 ∈ Q[t1, t2]

where only finitely many coefficients ab ∈ Q are not vanishing. By deg(f),
degt1(f) and degt2(f) we denote the total degree, degree with respect to t1 and
degree with respect to t2 of f , respectively,

deg(f) := max{b1 + b2 | ab 6= 0},
degt1(f) := max{b1 | ab 6= 0},
degt2(f) := max{b2 | ab 6= 0}.

The following proposition proved in [13] gives a ”canonical” representation
of bivariate numerical polynomials we are going to use later.

Proposition 3.2. Let f(t1, t2) ∈ Q[t1, t2] be a numerical polynomial, and let
degt1(f) = p, degt2(f) = q. Then for 0 ≤ i ≤ p, 0 ≤ j ≤ q there exist uniquelly
defined integer coefficients aij such that

f(t1, t2) =

p∑
i=0

q∑
j=0

aij

(
t1 + i

i

)(
t2 + j

j

)
. (3.2)

Let m,n ∈ N and A ⊆ Nm+n. Recall that the product order on the set
Nm+n is a partial order ≤P such that (c1, . . . , cm+n) ≤P (d1, . . . , dm+n) if and
only if ci ≤ di for all i = 1, . . . ,m+ n. We define the set VA by

VA := {b ∈ Nm+n | @a∈Aa ≤P b}.

For r, s ∈ N we define A(r, s) ⊆ A by

A(r, s) := {(a1, . . . , am+n) ∈ A | a1 + · · ·+ am ≤ r, am+1 + · · ·+ am+n ≤ s}.

The following proposition is a special case of [14, Chapter II, Theorem 2.2.5]
and generalizes Kolchin’s well-known result on numerical polynomials associated
with subsets of Nk (see [12, Chapter 0, Lemma 17]).
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Proposition 3.3. Let A ⊆ Nm+n. Then there exists a numerical polynomial
ωA(t1, t2) in two variables t1, t2 such that

i. ωA(r, s) = |VA(r, s)| for all sufficiently large r, s ∈ N,

ii. deg(ωA) ≤ m+ n, degt1(ωA) ≤ m, and degt2(ωA) ≤ n,

iii. deg(ωA) = m+ n if and only if the set A is empty in which case we have

ωA(t1, t2) =

(
t1 +m

m

)(
t2 + n

n

)
,

and

iv. ωA(t1, t2) = 0 if and only if (0, . . . , 0) ∈ A.

The following proposition is a special case of [14, Chapter II, Proposition
2.2.11] and provides a formula for the numerical polynomial ωA(t1, t2) whose
existence has been established in Proposition 3.3

Proposition 3.4. Let m,n, p ∈ N, A = {a1, . . . , ap} a finite subset of Nm+n and
for i = 1, . . . , p let ai = (ai1, . . . , ai,m+n). Furthermore, for any l ∈ {0, . . . , p},
let Γ(l, p) denote the set of all l-element subsets of the set Np = {1, . . . , p}, and
for any δ ∈ Γ(l, p), j ∈ {1, . . . ,m+ n} let

āδj = max{aij |i ∈ δ}

bδ =

m∑
i=1

āδi, and

cδ =

m+n∑
i=m+1

āδi.

Then the polynomial ωA(t1, t2) whose existence has been established by Proposi-
tion 3.3 is given by

ωA(t1, t2) =

p∑
l=0

(−1)l
∑

δ∈Γ(l,p)

(
t1 +m− bδ

m

)(
t2 + n− cδ

n

)
.

4. (x, ∂)-Gröbner bases of submodules in free An(K)-modules

The use of Gröbner bases for the algorithmic computation of Hilbert poly-
nomials associated with polynomial ideals as well as finitely generated modules
over polynomial rings is well understood (see, e.g., [2, Chapter 9] and [10, Sec-
tion 15.10]). In [11] and [14, Chapter 4] the notion of Gröbner bases has been
extended to finitely generated modules over rings of differential operators allow-
ing for the computation of dimension polynomials associated with such modules.
In this section we recall the notion of reduction with respect to two orderings
and of (x, ∂)-Gröbner bases as introduced in [8].
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Let a, b ∈ Nn with a = (a1, . . . , an), b = (b1, . . . , bn). If θ = xa∂b, then define
θx = xa := xa11 . . . xann and θ∂ := ∂b = ∂b11 . . . ∂bnn . It is easy to see that the sets
{θx | θ ∈ Θ} and {θ∂ | θ ∈ Θ} are commutative multiplicative monoids.

Definition 4.1. Let a, b ∈ N and θ = xa∂b ∈ Θ. We define the x-order ordx(θ)
or order with respect to {x1, . . . , xn} and the ∂-order ord∂(θ) or order with
respect to {∂1, . . . , ∂n} of θ by

ordx(θ) := |a| and ord∂(θ) := |b|.

For all r, s ∈ N define the set Θ(r, s) by

Θ(r, s) := {θ ∈ Θ | ordx(θ) ≤ r, ord∂(θ) ≤ s}.

The notions of x-order and ∂-order can be extended to An(K) in the follow-
ing way.

Definition 4.2. Let 0 6= D =
∑
a,b∈Nn ka,bx

a∂b ∈ An(K) where only finitely
many ka,b are not vanishing. Then the x-order ordx(D) and ∂-order ord∂(D)
of D are defined by

ordx(D) = max{|a| | ka,b 6= 0}, and

ord∂(D) = max{|b| | ka,b 6= 0}.

For all r, s ∈ N define Wrs by

Wrs := {D ∈ An(K) | ordx(D) ≤ r, and ord∂(D) ≤ s},

and for all (r, s) ∈ Z2 \ N2 let Wrs := 0. Then we have

i. Wrs ⊆Wr+1,s for all r, s ∈ Z,
ii. Wrs ⊆Wr,s+1 for all r, s ∈ Z, and
iii.

⋃
{Wrs|r, s ∈ Z} = An(K).

Furthermore, WrsWkl ⊆Wr+k,s+l for any r, s, k, l ∈ Z and WrsWkl = Wr+k,s+l

if r, s, k, l ∈ N. Hence, we can consider the Weyl algebra An(K) as a bifiltered
ring with the bifiltration (Wrs)r,s∈Z.

For a, b, c, d ∈ Nn, θ, θ′ ∈ Θ with θ = xa∂b and θ′ = xc∂d we define two
orderings <x and <∂ of the set Θ by

θ <x θ
′ :⇐⇒ (ordx(θ), ord∂(θ), a1, . . . , an, b1, . . . , bn)

<lex (ordx(θ′), ord∂(θ′), c1, . . . , cn, d1, . . . , dn),

where <lex denotes the lexicographic order on N2n+2, and similarly

θ <∂ θ
′ :⇐⇒ (ord∂(θ), ordx(θ), b1, . . . , bn, a1, . . . , an)

<lex (ord∂(θ′), ordx(θ′), d1, . . . , dn, c1, . . . , cn).

Let θ = xa∂b, θ′ = xc∂d ∈ Θ. We say that θ divides θ′ if xa divides xc

and ∂b divides ∂d, that is, a ≤P c and b ≤P d (remember that ≤P denotes the
product order on Nn). In this case we also say that θ′ is a multiple of θ and

write θ | θ′. Then the monomial θ0 = xc−a∂d−b is denoted by θ′

θ .
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Definition 4.3. Let θ′, θ′′ ∈ Θ. The least common multiple lcm(θ′, θ′′) of θ′

and θ′′ is defined by

lcm(θ′, θ′′) := lcm(θ′x, θ
′′
x) lcm(θ′∂ , θ

′′
∂).

Let An(K)E be a finitely generated free An(K)-module with set of free
generators E = {e1, . . . , eq}. Then An(K)E can be considered as a K-vector
space with the basis ΘE = {θei | θ ∈ Θ, 1 ≤ i ≤ q} whose elements will be
called terms. For any term θej with θ ∈ Θ, 1 ≤ j ≤ m we define the x-order
ordx(θej) and ∂-order ord∂(θej) of this term by

ordx(θej) := ordx(θ), and ord∂(θej) := ord∂ θ,

respectively. If T ⊆ Θ, then let TE := {tei | t ∈ T, 1 ≤ i ≤ m}. In particular,
for any r, s ∈ N we have

Θ(r, s)E = {θei | ordx(θ) ≤ r, ord∂(θ) ≤ s, 1 ≤ i ≤ m}.

Since the set of all terms ΘE is a basis of the K-vector space An(K)E, every
nonzero element f ∈ An(K)E has a unique representation of the form

f =
∑
λ∈ΘE

aλλ (4.3)

where only finitely many aλ are different from 0. We say that a term λ appears
in f (or that f contains λ) if aλ 6= 0.

A term λ = θ′ei is called a multiple of a term µ = θej if i = j and θ|θ′. In
this case we also say that µ divides λ, write µ|λ and define

λ

µ
:=

θ′

θ
.

We consider two orderings of the set ΘE defined as follows: if θei = xa∂bei,
θ′ej = xc∂dej ∈ Θe, then

θei <x θ
′ej :⇐⇒ (ordx(θ), ord∂(θ), i, a1, . . . , an, b1, . . . , bn)

<lex (ordx(θ′), ord∂(θ′), j, c1, . . . , cn, d1, . . . , dn), and

θei <∂ θ
′ej :⇐⇒ (ord∂(θ), ordx(θ), i, b1, . . . , bn, a1, . . . , an)

<lex (ord∂(θ′), ordx(θ′), j, d1, . . . , dn, c1, . . . , cn),

where <lex denotes the lexicographic order.

Definition 4.4. Let 0 6= f =
∑
λ∈ΘE aλλ ∈ An(K)E with only finitely many

aλ not vanishing. Then the x-leader ltx(f) and ∂-leader lt∂(f) of f are defined
as the leading terms of f with respect to <x and <∂ , respectively,

ltx(f) := max
<x

{λ | aλ 6= 0}, and lt∂(f) := max
<∂

{λ | aλ 6= 0}.

By lcx(f) and lc∂(f) we denote the leading coefficient of f with respect to <x
and <∂ , respectively,

lcx(f) := altx(f), and lc∂(f) := alt∂(f).
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Now we can formulate the definition of (x, ∂)-Gröbner bases.

Definition 4.5. Let E = {e1, . . . , eq} be a finite set of free generators of a
free An(K) module AN (K)E and let N be an An(K)-submodule of An(K)E.
A finite set G ⊆ N \ {0} is called an (x, ∂)-Gröbner basis of N if for any
0 6= f ∈ N , there exists g ∈ G such that

i. ltx(g)| ltx(f), and

ii. ord∂( ltx(f)
ltx(g) g) ≤ ord∂(f).

Remark 4.6. Let N ⊆ An(K)E be a submodule. From condition i. of Defini-
tion 4.5 of (x, ∂)-Gröbner bases it follows that any (x, ∂)-Gröbner basis of N is
also a Gröbner basis of N with respect to <x.

A finite set of nonzero elements G ⊆ An(K)E is said to be an (x, ∂)-Gröbner
basis if G is an (x, ∂)-Gröbner basis of the An(K)-submodule

∑
g∈GAn(K)g it

generates.

Definition 4.7. Let f, g ∈ An(K)E \ {0} and h ∈ An(K)E. If there exists
θ ∈ Θ such that

i. ltx(θg) = ltx(f),

ii. ord∂(θg) ≤ ord∂(f), and

iii. h = f − lcx(f)θ g
lcx(g) ,

then we say that the element f is (x, ∂)-reducible to h modulo g in one step and
write

f
g−−→
x,∂

h.

Definition 4.8. Let f ∈ An(K)E\{0}, h ∈ An(K)E and let G ⊆ An(K)E\{0}.
If there exist elements g(1), g(2), . . . , g(p) ∈ G and h(1), . . . , h(p−1) ∈ E such that

f
g(1)−−→
x,∂

h(1) g(2)−−→
x,∂

. . .
g(p−1)

−−−−→
x,∂

h(p−1) g(p)−−→
x,∂

h

then we say that f is (x, ∂)-reducible to h modulo G and write

f
G−−→
x,∂

h.

In [8] the following theorem is presented.

Theorem 4.9. Let f ∈ An(k)E and let G = {g1, . . . , gr} ⊆ An(K)E. Then
there exist elements g ∈ An(K)E and Q1, . . . , Qr ∈ An(K) such that

f − g =

r∑
i=1

Qigi

and g is not (x, ∂)-reducible with respect to G.
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Algorithm 4.10 reduction algorithm

IN: f ∈ An(K)E \ {0}, G = {g1, . . . , gr} ⊆ An(K)E \ {0}
OUT: An element g ∈ An(K)E such that there exist Q1, . . . , Qr ∈ An(K) with
g = f −

∑r
i=1Qigi and g is not (x, ∂)-reducible with respect to G

Q1 := 0, . . . , Qr := 0, g := f

while there exists i ∈ {1, . . . , r} such that ltx(gi)| ltx(f) and ord∂( ltx(f)
ltx(gi)

gi) ≤
ord∂(f) do

Qi := Qi + lcx(g)
lcx(gi)

ltx(g)
ltx(gi)

g := g − lcx(g)
lcx(gi)

ltx(g)
ltx(gi)

gi
end while
return g

The process of reduction described in Definition 4.8 can be realized with
Algorithm 4.10.

We obtain the following theorem. For a proof we refer to [8].

Theorem 4.11. Let G ⊆ An(K)E be an (x, ∂)-Gröbner basis of an An(K)-
submodule N of An(K)E. Then

i. f ∈ N \ {0} if and only if f
G−−→
x,∂

0, and

ii. if f ∈ N and f is not (x, ∂)-reducible with respect to G, then f = 0.

Definition 4.12. Let E = {e1, . . . , eq} be a finite set of free generators of a
free An(K)-module An(K)E and let f, g ∈ An(K)E. Let

θ
(x)
f =

lcm(ltx(f), ltx(g))

ltx(f)
, and θ(x)

g =
lcm(ltx(g), ltx(g))

ltx(g)
.

Then the element

Sx(f, g) =
1

lcx(f)
θ

(x)
f f − 1

lcx(g)
θ(x)
g g

is called the x-S-polynomial of f and g.

The following theorem is a generalized version of [1, Lemma 1.7.5.] and has
been proved in [8].

Theorem 4.13. Let 0 < r ∈ N, f, g1, . . . , gr ∈ An(K)E \ {0} and let θ1, . . . , θr
∈ Θ, c1, . . . , cr ∈ K such that

f =

r∑
i=1

ciθigi.

For all j, k ∈ {1, . . . , r} let ujk = lcm(ltx(gj), ltx(gk)). Suppose that θ1 ltx(g1) =
· · · = θr ltx(gr) = u, ltx(f) <x u and ord∂(θigi) ≤ ord∂(f) for all i ∈ {1, . . . , r}.
Then for 1 ≤ j, k ≤ r there exist elements cjk ∈ K such that
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i. f =
∑r
j=1

∑r
k=1 cjkθjkSx(gj , gk), where θjk := u

ujk
,

ii. for all j, k ∈ {1, . . . , r} we have θjk ltx(Sx(gj , gk)) <x u, and

iii. for all j, k ∈ {1, . . . , r} we have ord∂(θjkSx(gj , gk)) ≤ ord∂(f).

The following result provides the theoretical foundation for the algorithm
for constructing (x, ∂)-Gröbner bases. For a proof we refer to [8].

Theorem 4.14. With the above notation, let G = {g1, . . . , gr} be a Gröbner
basis of an An(K)-submodule N of E with respect to the order <∂ . Furthermore,
suppose that for any gi, gj ∈ G we have

Sx(gi, gj)
G−−→
x,∂

0.

Then G is an (x, ∂)-Gröbner basis of N .

The last theorem allows one to construct an (x, ∂)-Gröbner basis of an
An(K)-submodule of E starting from a finite Gröbner basis of N with respect to
the term order <∂ . The corresponding generalization of Buchberger’s algorithm
is as follows.

Algorithm 4.15 (x, ∂)-Gröbner basis algorithm

IN: G̃ ⊆ E \ {0} a finite Gröbner basis of an An(K)-submodule N of E with
respect to the order <∂ .

OUT: G ⊆ E \ {0} being an (x, ∂)-Gröbner basis of N .
G := G̃
while there exist g, g′ ∈ G such that Sx(g, g′) is not (x, ∂)-reducible to 0
modulo G do
G := G ∪ {reduction algorithm(Sx(g, g′), G)}

end while
return G

5. Bivariate dimension polynomials associated with An(K)-modules

Throughout this section we consider the ring An(K) as a bifiltered ring with
respect to the natural bifiltration (Wrs)r,s∈Z introduced above.

Definition 5.1. Let M be a module over a Weyl algebra An(K) and consider
a family (Mrs)r,s∈Z of K-vector subspaces of M such that

i. if r ∈ Z is fixed then Mrs ⊆ Mr,s+1 for all s ∈ Z and Mrs = 0 for all
sufficiently small s ∈ Z; similarly, if s ∈ Z is fixed then Mrs ⊆Mr+1,s for
all r ∈ Z and Mrs = 0 for all sufficiently small r ∈ Z,

ii.
⋃
r,s∈ZMrs = M , and

iii. for any r, s ∈ Z, k, l ∈ N we have WklMrs ⊆Mr+k,s+l.

Then (Mrs)r,s∈Z is called a bifiltration of M .

11



Example 5.2. Let M be a finitely generated An(K)-module with generators
f1, . . . , fm and for r, s ∈ Z define the K-vector space Mrs by

Mrs :=

m∑
i=1

Wrsfi.

Then (Mrs)r,s∈Z is a bifiltration of the module M which is called a natural bifil-
tration of M associated with the system of generators f1, . . . , fm. Furthermore
for any r, s, k, l ∈ N we have WklMrs = Mr+k,s+l and the vector space Mrs is
finitely generated.

In [8] (x, ∂)-Gröbner bases have been used to prove the existence and obtain a
method of computation of bivariate dimension polynomials of finitely generated
An(K)-modules.

Theorem 5.3. Let M be a finitely generated An(K)-module with a system of
generators {f1, . . . , fm} and let (Mrs)r,s∈Z be the corresponding natural bifiltra-
tion of M given for r, s ∈ Z by

Mrs :=

p∑
i=1

Wrsfi.

Then there exists a numerical polynomial φM (t1, t2) in two variables t1, t2 such
that

i. φM (r, s) = dimKMrs for all sufficiently large (r, s) ∈ Z2. (That means
that there exist r0, s0 ∈ Z such that the equality holds for all r ≥ r0, s ≥
s0),

ii. degt1(φM (t1, t2)) ≤ n and degt2(φM (t1, t2)) ≤ n, so that deg(φM (t1, t2))
≤ 2n and for all 0 ≤ i, j ≤ n there exist aij ∈ Z such that the polynomial
φM (t1, t2) can be represented as

φ(t1, t2) =

n∑
i=0

n∑
j=0

aij

(
t1 + i

i

)(
t2 + j

j

)
. (5.4)

Definition 5.4. The numerical polynomial φM (t1, t2), whose existence is estab-
lished by Theorem 5.3 is called the (x, ∂)-dimension polynomial of the module
M associated with the system of generators {f1, . . . , fm}.

For the computation of the (x, ∂)-dimension polynomial of the module M
associated with the system of generators {f1, . . . , fm} the following theorem is
provided in [8].

Theorem 5.5. Let M be a finitely generated An(K)-module with system of gen-
erators {f1, . . . , fm}, An(K)E a free An(K)-module with basis E = {e1, . . . , eq},
and π : An(K)E −→ M the natural An(K)-epimorphism of An(K)E onto M ,
i.e., π(ei) = fi for i = 1, . . . ,m. Furthermore, let the An(K)E-submodule
N be given by N = Ker(π) and let G be an (x, ∂)-Gröbner basis of N . For
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any r, s ∈ N, let Mrs =
∑m
i=1Wrsfi and Urs = U ′rs ∪ U ′′rs, where the sets

U ′rs, U
′′
rs ⊆ Θ(r, s)E are given by

U ′rs = {λ ∈ Θ(r, s)E | @g∈G ltx(g)|λ}
U ′′rs = {λ ∈ Θ(r, s)E | ∀g∈G,θ∈Θ(ltx(θg) = λ =⇒ ord∂(θg) > s)}.

Then π(Urs) is a basis of the K-vector space Mrs. In particular, the (x, ∂)-
dimension polynomial φM (t1, t2) of the module M associated with the system of
generators {f1, . . . , fm} for all r, s ∈ N sufficiently large satisfies

φM (r, s) = |Urs|.

Under the conditions of Theorem 5.5 let ω1(t1, t2), ω2(t1, t2) ∈ Q[t1, t2] be
two numerical polynomials fulfilling for all r, s ∈ N sufficiently large the equa-
tions

ω1(r, s) = |U ′rs| and ω2(r, s) = |U ′′rs|.
Obviously, ω1(t1, t2) can be computed using Proposition 3.4. For ω2(t1, t2) the
following approach is provided in [8].

In order to express |U ′′rs| in terms of r and s, for 1 ≤ i, j, k, · · · ≤ d let ai :=
ordx(ltx(gi)), bi := ord∂(ltx(gi)), ci := ord∂(lt∂(gi)), aij := ordx(lcm(ltx(gi),
ltx(gj))), bij := ord∂(lcm(ltx(gi), ltx(gj))), aijk := ordx(lcm(ltx(gi), ltx(gj),
ltx(gk))), bijk := ord∂(lcm(ltx(gi), ltx(gj), ltx(gk))), . . . . Then

U ′′rs =

d⋃
i=1

{[Θ(r − ai, s− bi) \Θ(r − ai, s− ci)] ltx(gi)}.

By the combinatorial principle of inclusion and exclusion (see [6, Chapter 5,
Theorem 5.1.1]) we obtain

|U ′′rs| =

d∑
i=1

|{[Θ(r − ai, s− bi) \Θ(r − ai, s− ci)] ltx(gi)}|

−
∑

1≤i<j≤d

|{[Θ(r − ai, s− bi) \Θ(r − ai, s− ci)] ltx(gi)⋂
[Θ(r − aj , s− bj) \Θ(r − aj , s− cj)] ltx(gj)}|

+
∑

1≤i<j<k≤d

|{[Θ(r − ai, s− bi) \Θ(r − ai, s− ci)] ltx(gi)⋂
[Θ(r − aj , s− bj) \Θ(r − aj , s− cj)] ltx(gj)⋂
[Θ(r − ak, s− bk) \Θ(r − ak, s− ck)] ltx(gk)}|

− . . .

Furthermore, for any two different elements gi, gj , we have

∣∣∣∣[Θ(r − ai, s− bi) \Θ(r − ai, s− ci)] ltx(gi)
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⋂
[Θ(r − aj , s− bj) \Θ(r − aj , s− cj)] ltx(gj)

∣∣∣∣
=

∣∣∣∣{θ lcm(ltx(gi), ltx(gj)) | θ ∈ Θ, ordx(θ) ≤ r − aij , ord∂(θ) ≤ s− bij ,

ord∂

(
θ

lcm(ltx(gi), ltx(gj))

ltx(gi)
lt∂(gi)

)
= ord∂(θ) + bij − bi + ci > s

}∣∣∣∣
= |{θ | θ ∈ Θ, ordx(θ) ≤ r − aij , ord∂(θ) ≤ s− bij ,

ord∂(θ) > s−min{ci + bij − ai, cj + bij − aj}}|

=

(
r + n− aij

n

)
[(
s+ n− bij

n

)
−
(
s+ n−min{ci + bij − bi, cj + bij − bj}

n

)]
.

Similarly, for any three different elements gi, gj , gk we have∣∣∣∣[Θ(r − ai, s− bi) \Θ(r − ai, s− ci)] ltx(gi)⋂
[Θ(r − aj , s− bj) \Θ(r − aj , s− cj)] ltx(gj)⋂
[Θ(r − ak, s− bk) \Θ(r − ak, s− ck)] ltx(gk)

∣∣∣∣
=

(
r + n− aijk

n

)[(
s+ n− bijk

n

)
−
(
s+ n−min{ci + bijk − bi, cj + bijk − bj , ck + bijk − bk}

n

)]
,

and so on.
Thus, for all sufficiently large (r, s) ∈ N2, |U ′′rs| = ω2(r, s) where ω2(t1, t2) is

the following numerical polynomial:

ω2(t1, t2) =

d∑
i=1

(
t1 + n− ai

n

)[(
t2 + n− bi

n

)
−
(
t2 + n− ci

n

)]
−

∑
1≤i<j≤d

(
t1 + n− aij

n

)[(
t2 + n− bij

n

)

−
(
t2 + n−min{ci + bij − bi, cj + bij − bj}

n

)]
(5.5)

+
∑

1≤i<j<k≤d

(
t1 + n− aijk

n

)[(
t2 + n− bijk

n

)

−
(
t2 + n−min{ci + bijk − bi, cj + bijk − bj , ck + bijk − bk}

n

)]
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− . . .

We have implemented the described algorithms and formulas in the MapleTM

package xd available at [9] for the case K = Q which provides an easy way
for computing (x, ∂)-dimension polynomials. Our implementation makes uti-
lizes the MapleTM packages Ore Algebra and Groebner for computations in free
D-modules, Gröbner basis computations and computations of S-polynomials,
respectively. Both packages are part of Chyzak’s Mgfun project [7]. In the
following examples we will first compute (x, ∂)-dimension polynomials by hand
and verify our results using the implementation.

Example 5.6. With the notation of Theorem 5.3 let n = 1 and let an A1(K)-
module M be generated by a single element f satisfying the defining equation

x2f + ∂2f + x∂f = 0.

In other words, M is isomorphic to the factor module of a free A1(K)-module
A1(K)e with a free generator e by its A1(K)-submodule N = A1(K)g where

g = (x2 + ∂2 + x∂)e.

Clearly, {g} is an (x, ∂)-Gröbner basis of N . Applying Proposition 3.4 (and
using the notation of Theorem 5.5), we obtain ltx(g) = x2e, lt∂(g) = ∂2e, and

ω1(t1, t2) =

(
t1 + 1

1

)(
t2 + 1

1

)
−
(
t1 + 1− 2

1

)(
t2 + 1

1

)
= 2t2 + 2.

Furthermore, formula (5.5) shows that

ω2(t1, t2) =

(
t1 + 1− 2

1

)[(
t2 + 1

1

)
−
(
t2 + 1− 2

1

)]
= 2t1 − 2.

Thus, the (x, ∂)-dimension polynomial of the module M associated with the gen-
erator f is given as

φM (t1, t2) = ω1(t1, t2) + ω2(t1, t2) = 2t1 + 2t2.

We load the package in MapleTM by
> libname := libname, ”/path/to/xd.mla”:

> with(xd);

[DimensionPolynomial ]

The package exports the procedure DimensionPolynomial which accepts a list
or set S of elements of An(Q) as input and returns the (x, ∂)-dimension poly-
nomial of the module generated by the elements of S associated with the given
generators. Since using a standard keyboard layout it is quite troublesome to
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input a ∂ symbol, all instances of ∂ are represented by d. In the case of cyclic
modules, i.e., generated by one element, specifying the generator is not neces-
sary. If n = 1 then x1 and x as well as d1 and d are considered to be identical,
respectively.
> DimensionPolynomial

(
{x2 + d2 + xd}

)
;

2t1 + 2t2

> DimensionPolynomial
(
{(x2 + d2 + xd)f}

)
;

2t1 + 2t2

> DimensionPolynomial
(
[x2

1 + d2 + xd]
)
;

2t1 + 2t2

Hence, we obtain the same result using our implementation.

Example 5.7. Let M be an A2(K)-module generated by two elements f1, f2

satisfying the defining equations

(x3
1∂

3
1 + ∂5

1)f1 = 0, and x2
2f1 − x1f2 = 0.

Then M is isomorphic to the factor module of a free A2(K)-module E =
A2(K)e1+A2(K)e2 with free generators e1, e2 by its A2(K)-submodule N , where
N is generated by g1 and g2 defined by

g1 := x2
1∂

3
1e1 + ∂5

1e1, and

g2 := x2
2e1 − x1e2.

A Gröbner basis of N with respect to the order <∂ is given by G := {g1, g2, g3},
where

g3 := x1∂
5
1e2 + 5∂4

1e2 + 3x2
1∂

2
1e2 + x3

1∂
3
1e2.

By Definition 4.12 the x-S-polynomial of g1 and g2 is given by

Sx(g1, g2) = x3
1∂

3
1e2 + 3x2

1∂
2
1e2 + x2

2∂
5
1e1,

and is (x, ∂)-reducible modulo g3 to x2
2∂

5
1e1 − x1∂

5
1e2 − 5∂4

1e2 which is in turn
(x, ∂)-reducible modulo g1 to 0. Furthermore we have Sx(g1, g3) = Sx(g2, g3) =
0. So by Definition 4.5, G is an (x, ∂)-Gröbner basis of N . Applying Proposition
3.4 and using the notation of Theorem 5.5 we obtain

ω1(t1, t2) = 4 + 3t1 + 2t22 +
3

2
t21t2 +

3

2
t1t

2
2 + 6t1t2,

and formula (5.5) shows

ω2(t1, t2) = t21t2 −
5

2
t21 + t1t2 −

5

2
t1 − 4t2 + 10.
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Thus, the (x, ∂)-dimension polynomial of the module M associated with the gen-
erators f1, f2 is given by

φM (t1, t2) =
5

2
t21t2 +

3

2
t1t

2
2 −

5

2
t21 + 7t1t2 + 2t22 +

1

2
t1 − 4t2 + 14.

Using our implementation we obtain
> DimensionPolynomial(x2

1d
3
1e1 + d51e1, x

2
2e1 − x1e2);

5

2
t21t2 +

3

2
t1t

2
2 −

5

2
t21 + 7t1t2 + 2t22 +

1

2
t1 − 4t2 + 14

which confirms our computations.

Example 5.8. Let M be an A3(K)-module generated by one element f satis-
fying the defining equations

(x2 + 1)f = 0, x1f = 0, and (∂3 − 1)f = 0.

Then M is isomorphic to the factor module of a free A3(K)-module E = A3(K)e
with free generator e by its A3(k)-submodule N generated by

g1 := (x2 + 1)e,

g2 := x1e, and

g3 := (∂3 − 1)e.

It can be easily verified that G := {g1, g2, g3} is a Gröbner basis of N with
respect to <∂ . The x-S-polynomials of g1 and g2 as well as g2 and g3 are given
by Sx(g1, g2) = Sx(g2, g3) = x1e which obviously (x, ∂)-reduces to 0 modulo g2.
The x-S-polynomial of g1 and g3 is given by Sx(g1, g3) = (x2 +∂3)e. It is (x, ∂)-
reducible modulo g1 to (∂3 − 1)e which, in turn, obviously is (x, ∂)-reducible to
0 modulo g3. Hence, G is an (x, ∂)-Gröbner basis of N . Applying Proposition
3.4 and using the notation of Theorem 5.5 we obtain

ω1(t1, t2) =
1

2
t1t

2
2 +

3

2
t1t2 +

1

2
t22 + t1 +

3

2
t2 + 1,

and ω2(t1, t2) = 0. Thus the (x, ∂)-dimension polynomial of the module M
associated with the generator f is given by φM (t1, t2) = ω(t1, t2). Again we use
our implementation to obtain
> DimensionPolynomial({x1, d3 − 1, x2 + 1});

1 + t1 +
3

2
t2 +

1

2
t22 +

1

2
t1t

2
2 +

3

2
t1t2

which confirms our computations.

Working with (x, ∂)-dimension polynomials is justified because they carry
additional invariants compared to Bernstein polynomials. The following theo-
rem is provided in [8].
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Theorem 5.9. Let M be a finitely generated An(K)-module with finite system
of generators {g1, . . . , gp}. For 1 ≤ i, j ≤ n let aij ∈ Z such that

φM (t1, t2) =

n∑
i=0

n∑
j=0

aij

(
t1 + i

i

)(
t2 + j

j

)

is the (x, ∂)-dimension polynomial associated with the system of generators
{g1, . . . , gp} of M . Furthermore, let Λ = {(i, j) ∈ N2 | 0 ≤ i, j ≤ n and aij 6= 0},
and let µ = (µ1, µ2) and ν = (ν1, ν2) be the maximal elements of the set Λ
relative to the lexicographic and reverse lexicographic orders on N2, respectively.
Then d = deg(φM ), ann, µ, ν, the coefficients amn, aµ1,µ2 aν1,ν2 of the polyno-
mial φM (t1, t2), and the coefficients of all terms of φM (t1, t2)of total degree d
do not depend on the finite system of generators of the An(K)-module M this
polynomial is associated with.

For (Wr)r∈Z as introduced in Section 2 and for all r ∈ N we have Wr ⊆ Drr ⊆
W2r. Let M be an An(K)-module with system of generators {g1, . . . , gp}. By
ψM (t) and φM (t1, t2) we denote the Bernstein polynomial and (x, ∂)-dimension
polynomial of M associated with {g1, . . . , gp}, respectively. Then for all r ∈
Z sufficiently large we have ψM (r) ≤ φM (r, r) ≤ ψM (2r) which implies n ≤
deg(ψM (t)) = deg(φM (t1, t2)) ≤ 2n and M is a holonomic D-module if and
only if deg(φM (t1, t2)) = n.

The following example of a finitely generated An(K)-module was first pre-
sented in [8] and shows that an (x, ∂)-dimension polynomial φM (t1, t2) can carry
more invariants than the Bernstein polynomial ψM (t).

Example 5.10. Let M be as in Example 2.3, i.e., M is the A1(K)-module
generated by f satisfying the defining equation

xa∂bf + ∂a+bf = 0 (5.6)

with a, b ∈ N \ {0}. As we saw, M is isomorphic to the factor module of
a free A1(K)-module A1(K)e with a free generator e by its A1(K)-submodule
N = A1(K)g where g = (xa∂b + ∂a+b)e. Obviously, {g} is an (x, ∂)-Gröbner
basis of the module N . Since ltx(g) = xa∂be and lt∂ g = ∂a+be, we obtain (using
the notation of Theorem 5.3) that

ω1(t1, t2) =

(
t1 + 1

1

)(
t2 + 1

1

)
−
(
t1 + 1− a

1

)(
t2 + 1− b

1

)
= bt1 + at2 + a+ b− ab.

Furthermore, formula (5.5) shows

ω2(t1, t2) =

(
t1 + 1− a

1

)[(
t2 + 1− b

1

)
−
(
t2 + 1− (a+ b)

1

)]
= at1 + a(1− a).
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Hence, the (x, ∂)-dimension polynomial of the module M associated with the
generator f is given by

φM (t1, t2) = ω1(t1, t2) + ω2(t1, t2)

= (a+ b)t1 + at2 + 2a+ b− ab− a2.

In Example 2.3 it was shown that the Bernstein polynomial ψM (t) of M asso-
ciated with f is given by

ψM (t) =

(
t+ 2

2

)
−
(
t+ 2− (a+ b)

2

)
= (a+ b)t− (a+ b)(a+ b− 3)

2
.

The Bernstein polynomial carries two invariants, its degree 1 and the leading
coefficient a + b. The (x, ∂)-dimension polynomial carries three invariants, its
total degree 1, a+ b, and a.

Example 5.10 suggests an application of the (x, ∂)-dimension polynomial to
the isomorphism problem for D-modules. The following example shows that
it is possible that two non-isomorphic finitely generated modules over a Weyl
algebra have the same set of invariants carried by Bernstein polynomials of the
modules, but have different sets of invariants carried by their (x, ∂)-dimension
polynomials.

Example 5.11. Consider two cyclic A1(K)-modules M1 and M2 generated by
m1 and m2 satisfying the defining equations

x4m1 = 0, x3∂m1 = 0,

and

x2∂2m2 = 0, x3∂m2 = 0,

respectively. Then M1 and M2 are isomorphic to the factor modules of a free
A1(K)-module A1(K)e with free generator e by its A1(K)-submodules N1 and
N2 generated by {x4e, x3∂e} and {x2∂2e, x3∂e}, respectively. As in Example
2.3 we obtain that the Bernstein polynomial associated with M1 is given by

ψM1
(t) = 2t+ 1,

and the Bernstein polynomial associated with M2 is given by

ψM2(t) = 2t+ 1.

It can be easily verified that G1 := {x2e} and G2 := {x∂e} are Gröbner bases of
N1 and N2, respectively, with respect to to the order <∂ . Since G1 and G2 consist
of one element each, there are no x-S-polynomials to consider. Hence, G1 and
G2 are (x, ∂)-Gröbner bases of N1 and N2, respectively. Applying Proposition
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3.4 and using the notation of Theorem 5.5 we obtain that the (x, ∂)-dimension
polynomial associated with M1 is given by

φM1(t1, t2) = 2t2 + 2,

and the (x, ∂)-dimension polynomial associated with M2 is given by

φM2
(t1, t2) = t1 + t2 + 1.

> DimensionPolynomial({x4e, x3de});

2t2 + 2

> DimensionPolynomial({x2d2e, x3de});

t1 + t2 + 1

It follows from Theorem 5.9 that M1 and M2 are not isomorphic as modules
over the Weyl algebra A1(K).
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