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Abstract

This paper deals with the development of a new/novel, integrated model for a gran-

ulation process using population balance models (PBMs) and a detailed review on

the effective parameter estimation for PBM based crystallization models. The model

developed with regard to granulation process is an attempt on the author’s part to con-

nect the strong interactions between the various mechanisms involved in granulation

that affects the final granule property. A novel aggregation kernel has been proposed

which is semi-mechanistic in nature, yet computationally inexpensive. The PBMs for

such particulate processes involve various empirical estimation which require effective

estimation techniques. A detailed comparison has also been performed for the effective

parameter estimation for improved predictability of the PBMs representing pharma-

ceutically relevant processes. Experimental studies have also been conducted for the

fluid bed granulation process. This enhances the understanding of the effect of the

various process parameters on the various mechanisms governing the pharmaceutical

fluid bed granulation.

Keywords: Granulation, Crystallization, Multi-dimensional Population Balance Model,

Aggregation, Breakage, Experimental studies, Parameter estimation
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1 Introduction

Wet granulation is a crucial particle design process relevant to various particulate industries,

which involves agglomeration of fine powder to form larger granules with the addition of

external binder (Iveson et al., 2001). Granulated particles show improved flowability, re-

duction in the segregation of mixture, improved compressibility, controlled dissolution. Due

to the lack of knowledge in processes involving solids, granulation is carried out in a very

inefficient way in the industry with large recycle ratios (Salman et al., 2007). This necessi-

tates the need to develop higher fidelity models in order to obtain better process knowledge,

higher predictability and improved control and operation of the granulation process. From a

similar perspective, development of sophisticated modeling techniques for the predictability

of crystallization processes (crucial from a separation, size distribution and purification as-

pect) is yet another vital task to the pharmaceutical drug manufacturing. For instance, the

proper regulation and control of such particulate processes in the pharmaceutical industry

is of critical importance due to the imposition of a tight quality criteria by the regulating

authorities (Reklaitis et al., 2010; Boukouvala et al., 2011a,b).

Using PBMs to model particulate processes such as granulation and crystallization is

a well accepted practise prevalent in the scientific community (Litster, 2003; Iveson et al.,

2001; Ramachandran et al., 2008a; Marchal et al., 1988; Gunawan et al., 2004; Oullion et al.,

2007; Nagy, 2008). The biggest point that gives an edge to PBMs over other modeling ap-

proaches is the discrete nature of the PBEs which can very well capture the physics of the

particulate processes and can reflect the finer underlying details. PBEs can be solved using

various approaches such as finite element methods (Mantzaris et al., 2001), the method of
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moments (Hulburt and Katz, 1964), the method of characteristics (Qamar and Warnecke,

2007; Mesbah et al., 2009), high resolution algorithms (LeVeque, 2002), hierarchical two tier

technique (Immanuel and Doyle III, 2003; Pinto et al., 2007), Lattice Boltzmann approach

(Majumder et al., 2012), Monte Carlo methods (Braumann et al., 2010; Marshall Jr et al.,

2010; Marshall Jr. et al., 2011). Reduced order PBMs have also been studied by breaking

the multidimensional PBM into multiple one-dimensional PBEs using the marginal distri-

bution approach in order to obtain an equivalent system with less complicated numerical

solution (Hounslow et al., 2001; Biggs et al., 2003). Many one dimensional PBMs have been

reported in literature (Kapur and Fuerstenau, 1969; Sastry, 1975; Costa et al., 2007) which

usually utilize granule size as the only independent property affecting the granule growth

behavior. The inadequacy of considering one-dimensional models for granulation has been

previously reported by Iveson (2002). He had suggested that for granulation, granule binder,

porosity and in some cases, composition can vary between granules and thus needed to be ad-

dressed with the use of multidimensional PBEs alongwith the appropriate choice of internal

coordinates and more accurate submodels.

The multidimensional PBM for granulation is formulated based on the individual solid,

liquid and gas volumes as the internal coordinates in order to enable decoupling of the in-

tegrated process with respect to the individual meso-scopic subprocesses (Verkoeijen et al.,

2002). The various underlying mechanisms (as shown in Figure 1) governing granulation,

such as aggregation, breakage, drying/rewetting, consolidation, layering, have strong inter-

actions with each other. Most models observed in literature have failed in tracking the

induction behavior that exist in the granulation process. There is also a dearth of models
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which can effectively address the interactions between the various subprocesses affecting the

final outcome of granulation.

1 2

3

Binder droplets Nuclei

Dry powder

Daughter particles

Granule

4

Granule
Fines

Granules

(i) (ii)

Consolidated

granule

Figure 1: Various subprocesses affecting the final granulation outcome

The importance of multidimensional PBMs is already known to us (Iveson et al., 2001),

but framing the model in a way, such that, the interactions can be tracked effectively, is

a more challenging task. The significance of binder content in the growth of granules is

associated with the fact that with higher amount of the binder, there is a larger availability

of surface-wet granules (Knight et al., 1993) and that enhances the aggregation of finer par-

ticles (Link and Schlunder, 1997). As for the granule porosity is concerned, below a certain

critical porosity, liquid is squeezed onto the surface, thus resulting in surface-wet granules

which helps promote granule growth, hence porosity is an important particle trait that needs
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to be characterized (Ramachandran et al., 2008b). With the progress of consolidation, more

liquid is forced to squeeze out of the pores thus providing an increased surface liquid avail-

ability. So, as the impeller speed increases, the consolidation of particles increases and so

does the aggregation and the breakage. The system is observed to exhibit steady growth

when aggregation is more dominant. On the contrary, a less aggregation system is prone to

exhibiting induction behavior (as aggregation is catalysed with the liquid being squeezed out

of the pores as consolidation proceeds) under high consolidation (Walker, 2007). This work

involves the identification of crucial operating parameters that critically affect the granu-

lation process and expression of the mechanisms in terms of these measurable quantities.

Therefore, these mechanisms can be said to be affected by the more fundamental operating

properties such as rpm, granulator geometry and binder properties. Granulation can be

carried out in a high shear, drum or fluid bed equipment in a batch mode.

One of the major drawbacks of using PBMs to quantify the behavior of the granulation pro-

cess is the potential usage of empirical parameters. It is very important to use more mech-

anistic equations in order to have a more first principle based predictive model. Empirical

aggregation (Adetayo and Ennis, 1997; Madec et al., 2003) and breakage kernels (Pandya

and Spielman, 1983) have been more commonly observed in literature, but these kernels

cannot be used for extrapolating the system behavior under different operating conditions

and neither be utilized for predictive understanding of the process. Immanuel and Doyle III

(2005) had proposed a mechanistic kernel, based on the coalescence mechanisms identified by

Liu et al. (2000) and Ennis et al. (1991), which can be considered to be a more fundamental

representation of the granulation process as it takes into account the effect of key material
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Figure 2: Various granulation equipments in batch mode

properties and process parameters. Various other experimental studies have been carried

out in order to link the process variables and various microscopic properties of the parti-

cles with the granulation process (Liu et al., 2000; Stepanek and Rajniak, 2006). Similarly,

a more fundamental breakage kernel was proposed by Ramachandran et al. (2009) which

gives a better insight into the breakage mechanism. In this work we have proposed a semi

empirical aggregation kernel which takes into account the effects of critical parameters such

as contact angle, binder properties and the rpm of the granulator. Other considerations

taken into account are the inhomogenities related to binder distribution, which has been

addressed using a compartmental based model. An attempt has also been made to express

the various mechanisms as a function of the operating parameters which can be manipulated
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for controlling the process outcome.

In spite of using mechanistic equations for describing the various mechanisms governing the

granulation process, usage of empirical parameters can be reduced but not totally abolished.

For this purpose, a 1-D PBM describing crystallization has been utilized for a detailed re-

view on the popular parameter estimation techniques considering an inverse problem. This

study is aimed at providing a better insight on the parameter estimation techniques which

can be later extended for the multidimensional PBM representing the granulation process.

The main impetus behind this work is to connect the interactions between the mechanisms

influencing granulation so that a better physical representation can be derived which can

also enable improved control studies. Effective parameter estimation techniques also en-

hance the ability of the developed model to predict the real outcome of the process. Several

techniques have surfaced in the past years which propose an efficient optimization algorithm

for the accurate estimation of empirical parameters. The implementation of a weighted

least square objective function comprising of the estimated and the experimental data was

considered in the works of (S. and Ken, 1990; Tadayon et al., 2002). Some work has been

observed with the implementation of SQP (sequential quadratic programming) for the pa-

rameter estimation of crystallization processes (Kalbasenka et al., 2011). Gradient based

methods were employed with the help of NAG libraries in FORTRAN for fitting the ex-

perimental concentration and CSD data using splines by (Qiu and Rasmuson, 1991). Hu

et al. (2004) had considered a maximum likelihood function for the estimation of parame-

ters using the concentration and CSD, and the covariance matrix for testing the robustness

of their approach. A similar objective function was considered by Matthews and Rawlings
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(1998) for the parameter estimation procedure followed by incorporating the SQP algorithm

for the optimization. Optimal control problems in crystallization were previously studied

by Seki et al. (2012); Modares and Sistani (2011) using the particle swarm algorithm with

slight improvements. Reche-Lopez et al. (2009) had published an informative paper with

the comparison of the various meta-heuristic methods for the optimization of the biomass

power plants. In the past decade, using the dynamic optimization algorithm of gPROMS

for parameter estimation of PBEs for crystallization processes has been observed to be quite

popular (Nowee et al., 2007; Widenski et al., 2011). We have performed a comparative study

with the metaheuristic optimization techniques-Simulated Annealing (SA), Particle Swarm

algorithm (PSO) and the dynamic optimization algorithm implemented by PSE (Process

Systems Enterprise) in gPROMS.

The proposition of this work can be foreseen as a very good platform for improved control

and optimization studies. The model enables the quantification of the various mechanisms

individually, but as a function of the presence of other mechanisms acting simultaneously.

Some experimental investigations have also been performed using a fluidized bed equipment

for granulation in order to get a better insight on the effect of the various operating pa-

rameters. Advantages of fluid bed granulation over other granulation methods are usually

indicated to be higher product density, and lower solvent and energy consumption (Boerefijn

and Hounslow, 2005). Fluid bed granulation is an inherently complex process consisting of

many interconnected process variables that are available at the operator’s disposal in obtain-

ing a suitable recipe for achieving good granulation. The granulation process in a fluid bed

requires a binary nozzle, a solution delivery system and compressed air to atomize the liquid
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binder. When the binder liquid is sprayed on to a fluid bed, relatively loose and porous

granules are formed.

For a fluid bed process, binder content and the particle/excipient solubility have an

important role to play in the granulation process (Rajniak et al., 2007). The mode of

binder addition also has a major role to play in the formation of granules in wet granulation

(Reynolds et al., 2004).Non-uniformity of binder distribution is common in granulation and

studies have been conducted to address this heterogeneity in case of a fluid bed process

(Osborne et al., 2011). Various other exper- imental studies have been carried out in order

to link the process variables and various microscopic properties of the particles with the

granulation process (Liu et al., 2000; Stepanek and Rajniak, 2006). Aside from porosity and

bed humidity, other granule properties such as the Hausner index and the angle of repose

were also evaluated with the help of optimal experimental design (Rambali et al., 2003).

Information on the pneumatic behavior of the system undergoing fluid bed spray granula-

tion has also been obtained from Morl et al. (2007). The granule size distribution is also

dependant on the surface characteristics of the particle. Studies have shown that hydrophilic

particles show a more narrow particle size distribution as compared to hydrophobic particles

(Thielmann et al., 2008). Other simpler heat and mass balance based models have also been

developed in order to obtain the wettability, temperature and concentration distribution of

the particles (Heinrich and Morl, 1999). The biggest challenge with conducting granulation

in a fluid bed equipment is the complex intertwined effect of the multiple operating param-

eters (such as product temperature, air flowrate, liquid spray rate and so on) that affect the

process.
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2 Mathematical modeling for granulation

2.1 Model Formulation

The 3-D PBE, based upon our previous works (Poon et al., 2009; Ramachandran and Barton,

2010; Ramachandran et al., 2012; Chaudhury et al., 2012), describing granulation process

can be written as

∂

∂t
F (s, l, g, t) +

∂

∂g

[
F (s, l, g, t)

dg

dt

]
+

∂

∂s

[
F (s, l, g, t)

ds

dt

]
+

∂

∂l

[
F (s, l, g, t)

dl

dt

]
= ℜaggregation + ℜbreakage + ℜnucleation (1)

where F (s, l, g, t) represents the population density function. The solid, liquid and gas vol-

umes have been represented with the variables s, l and g. The respective partial derivative

terms represent the various growth mechanisms-layering,rewetting/drying and consolidation,

associated with the granulation process. An integrated model containing the various mech-

anisms significant in a fluid bed granulation process, such as aggregation, breakage, liquid

distribution and consolidation has been considered for the purpose of a detailed analysis.

Nucleation and layering has been ignored in this work but can be easily incorporated.

Aggregation is the phenomenon in which smaller particles collide to form a larger particle in

the presence of surface binder that acts like a liquid bridge between the two smaller mother

particles. This involves the loss of two or more particles in the smaller bin to give birth to

one large aggregate in a larger bin. The overall aggregation can thus be broken into the
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corresponding birth and death terms as

ℜagg(s, l, g) = ℜform
agg −ℜdep

agg, (2)

such that,

ℜform
agg =

1

2

∫ smax

0

∫ lmax

0

∫ gmax

0

β(s′, s− s′, l′, l − l′, g′, g − g′)

×F (s′, l′, g′, t)F (s′, s− s′, l′, l − l′, g′, g − g′, t)ds′dl′dg′ (3)

ℜdep
agg = F (s, l, g, t)

∫ smax

0

∫ lmax

0

∫ gmax

0

β(s′, s− s′, l′, l − l′, g′, g − g′)

×F (s′, l′, g′, t)ds′dl′dg′ (4)

where, β(s′, s− s′, l′, l− l′, g′, g− g′) is the aggregation kernel that governs the rate at which

two granules of internal coordinates (s′, l′, g′) and (s− s′, l − l′, g − g′) agglomerate.

Breakage is the process of disintegration of larger particles into smaller fragments due to

various external forces from the particles hitting the walls, another particle or the impeller.

When these forces exceed the intrinsic strength of particles, breakage of particles result.

Thus breakage involves the loss of one particle in the larger bin and the emergence of two

or more smaller particles in the smaller bins. Using this information, the breakage term can

be broken into its corresponding birth and death terms as

ℜbreak(s, l, g) = ℜform
break −ℜdep

break, (5)
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such that the birth and death terms can be explained using Equations (6) and (7)

ℜform
break =

∫ smax

0

∫ lmax

0

∫ gmax

0

Kbreak(s, l, g)b(s
′, s− s′, l′, l− l′, g′, g− g′)×F (s′, l′, g′, t)ds′dl′dg′

(6)

ℜdep
break = Kbreak(s, l, g)F (s, l, g, t). (7)

Consolidation is a negative growth process which represents the compaction of granules

as air escapes out of the pores. It can modeled as an empirical exponential decay rela-

tion (Verkoeijen et al., 2002) given by

dϵ

dt
= −c(ϵ− ϵmin), (8)

dg

dt
=

Ccon(s+ l + g)(1− ϵmin)

s
× [l − ϵmins

1− ϵmin

+ g] (9)

where, the porosity ϵ is

ϵ =
l + g

s+ l + g
(10)

Here ϵmin is the minimum porosity of the granules and c is the compaction rate constant.

From literature, it has been observed that the consolidation of particles increases with in-

creasing rpm of the impeller (Rahmanian et al., 2011). The effect of consolidation saturates

beyond a certain impeller speed. Therefore, in this work it has been approximated as a weak

exponential function of the impeller rpm as
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Ccon = kcon × e(
rpm
1000) (11)

Drying/rewetting denotes the increase or decrease of liquid content into or from the gran-

ulation system due to addition of binder or removal due to evaporation. For the sake of

simplicity, we have neglected the evaporation term (ṁevap = 0) in this work. The liquid

water balance (Chaudhury et al., 2012) can be written in (12) as

dl

dt
=

ṁspray(1− cbinder)− ṁevap

Msolid

, (12)

where,

Msolid = Msolid fraction + ṁspraycbinder∆t, (13)

Non-uniformity of binder distribution is common in granulation and studies have been con-

ducted to address this heterogeneity in case of a fluid bed process (Osborne et al., 2011).

Models have been developed to obtain the surface availability of moisture of granulation

purposes (Ronsse et al., 2012), which can be incorporated in the mechanistic kernel in order

to obtain and aggregation kernel with more system information embedded in it. The inho-

mogeniety associated with binder addition has been tackled using a compartmental based

model. In this work, we have subdivided the granulator into two compartments, however

using more compartments would enable us to track the inhomogeniety better and will give a

better representation of the real scenario. A compartment based model similar to the works

of Li et al. (2012) and Wnukowski and Setterwall (1989) was adopted in order to represent

the inhomogeniety associated with the binder distribution. Two compartments have been
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considered with the corresponding number distribution of particles as F1 and F2. Compart-

ment 1 is considered the spray zone which recieves 70 percent of the total liquid added and

compartment 2 is the bulk zone that is assumed to receive the remaining 30 percent of the

total liquid. The particles spend less time in the spray zone and the portion of the entire

population enclosed in the compartment depicting the spray zone is α1 and that for the bulk

zone is α2. There is also believed to be be a circulation between the two compartments thus

leading to an open system with exchange of powder and this rate is depicted as a.

Figure 3: Schematic of the compartmental model for binder distribution (Li et al., 2012)

Including the compartment based model, our PBM can be written in the form as shown

in Equations 14
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∂F1

∂t
+

∂

∂g

[
F1

dg

dt

]
+

∂

∂s

[
F1

ds

dt

]
+

∂

∂l

[
F1

dl

dt

]
= ℜ1,aggregation + ℜ1,breakage + ℜ1,nucleation

−a

(
F1

1− α
− F2

α

)
∂F2

∂t
+

∂

∂g

[
F2

dg

dt

]
+

∂

∂s

[
F2

ds

dt

]
+

∂

∂l

[
F2

dl

dt

]
= ℜ2,aggregation + ℜ2,breakage + ℜ2,nucleation

+a

(
F1

1− α
− F2

α

)
(14)

In this work, we have also made an attempt to derive a simplistic yet mechanistic aggrega-

tion kernel which could be expressed as a function of the more crucial operating parameters

such as the rpm of the impeller, the binder properties (viscosity, surface tension) and the

contact angle. The details about the aggregation kernel will be proposed in the subsection

2.2

2.2 Aggregation kernel

From literature, it has been observed that some of the crucial parameters affecting aggre-

gation are the impeller speed (Nursin, 2010), binder viscosity (Iveson et al., 2001), contact

angle and the amount of surface liquid (Immanuel and Doyle III, 2005). The binder vis-

cosity influences the Stoke’s criterion that has been previously used for various works that

has studied the aggregation of powder (Stepanek et al., 2009). The contact angle of the

binder liquid influences the wetting of the particle surface by the liquid and hence gives an

idea about the amount of wetted area and liquid depth available on the particle surface.

The wetted area and the liquid depth are crucial parameters that affect the aggregation of

particles.
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For this study, we have considered the system to operate under the drop controlled regime

where a single droplet hits one particle. Also, from the works of Hapgood et al. (2002, 2009),

we can obtain the volume of liquid on the surface of a porous particle at various time instants

as

V (t) = V0 − πRdϵ

√
γLVRporecosθ

2µ
t (15)

Where, V(t) is the volume of liquid on the surface at time, t, Rd is the radius of the

droplet, ϵ is the porosity, γLV is the surface tension of the liquid, µ is the viscosity of the

liquid, θ is the contact angle and Rpore is the radius of the pore that can be written as

Rpore = d32
3

ϵ
1−ϵ

. Due to addition of liquid during the wet massing period, the volume does

not remain constant, so we quantify the surface liquid as

V (t) = max

(
V (t− 1)− πRdϵ

√
γLVRporecosθ

2µ
δt, 0

)
+ Vdrop (16)

In our study, we have used a constant contact angle, although in real scenario, the contact

angle varies over time and is dynamic in nature following the Young-Dupre’s equation. The

dynamic contact angle could be expressed as a function of the surface tension and the friction

coefficient (Seveno et al., 2002). The drop penetration time described in previous works by

Hapgood et al. (2003) also gives an idea on the amount of time required by a droplet to

completely sink into a particle pore. The radius of the area wetted as a single droplet hits

the surface can be given as,

Rwet =
3V

π
Φ(θ) (17)
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where,

Φ(θ) =
sin3(θ)

2− 3cos(θ) + cos3(θ)
(18)

The area of the particle surface wetted by a droplet can be calculated by evaluating

the area of a circle having a radius of Rwet (assuming the surface to be flat and ignoring

the curvature). As time proceeds, more and more droplets hit the particles. So at time, t,

the area wetted by the droplets can be considered as N × Awet, where N is the number of

droplets that have hit the particle and to take some overlap of droplets into consideration,

an overlap factor, k is also multiplied. This also translates to the sigmoidal function that

was approximated by Stepanek et al. (2009) in his previous works. The final equation can

be written as shown in Equation (19).

Awet(t, s, l, g) = π ×R2
wet ×N × k (19)

The liquid sinks into the particles as long as the pores are not filled. Once the pores

get filled to its saturation point, the excess liquid remains on the surface and contribute to

higher aggregation of particles. The depth of the surface liquid, h0 present can be expressed

as a function of the volume and the wetted area as

h0(s, l, g) = 1.5× V (t, s, l, g)

Awet(s, l, g)
(20)

The surface asperity, ha is considered to be 0.2 times the particle diameter. Using these

information, the aggregation kernel is considered to be a product of a size dependant part

and a size independent part. The aggregation kernel can be represented as
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Kagg(s, l, g, s− s′, l − l′, g − g′) = B0Ψ(s, l, g, s− s′, l − l′, g − g′)× (21)

A(s, l, g, s− s′, l − l′, g − g′)× β0(s, l, g, s− s′, l − l′, g − g′)

Where, Ψ(s, l, g, s− s′, l− l′, g− g′) is a binary variable representing the Stoke’s criterion

and can be written as expressed in Equation (22), A(s, l, g, s − s′, l − l′, g − g′) is obtained

from the fractional wetted area of the two aggregating particles and β0 represents the size

dependant part of the kernel. Ψ(s, l, g, s− s′, l− l′, g− g′) can be calculated from the Stoke’s

criterion as

Ψ(s, l, g, s− s′, l − l′, g − g′) =


1, if St ≤ St∗

0, if St ≥ St∗

(22)

where, the Stokes number and the critical Stokes number can be written as a function

of the particle velocity u0, viscosity µ, average mass m̄, average diameter d̄, surface liquid

depth λ12 and surface asperities ha as

St =
8m̃u0

3πµd̃2

St∗ = 2ln
λ12

ha

(23)

The factor A(s, l, g, s − s′, l − l′, g − g′) represents the product of the fractional wetted
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area of the two aggregating particles and can be written as

A(s, l, g, s− s′, l − l′, g − g′) =
Awet(s, l, g)

Atotal(s, l, g)
× Awet(s− s′, l − l′, g − g′)

Atotal(s− s′, l − l′, g − g′)
(24)

The size dependant part of the kernal can be expressed using the kernel proposed by

Madec et al. (2003).

β0 = (L3
1 − L3

2)

(
(c1 + c2)

α

(
100− c1 + c2

2

)δ
)α

, (25)

where,

c =
volume of surface liquid

volume of agglomerate
100. (26)

The final aggregation kernel is taken to be a product of all these variables which focus

on the various aspects that influence the existance of a successful collision.

2.3 Breakage kernel

This work also takes into account the mechanistic breakage kernel proposed by Ramachan-

dran et al. (2009) which relates the kernel to fundamental properties such as viscosity, sur-

face tension, contact angle and volume fraction of the daughter particles formed. Sensitivity

analysis showed that these quantities significantly influence the output of the process. The

breakage kernel is said to be proportional to the ratio of the external stress, σext to the

intrinsic strength. The external stress is represented as

σext(s, l, g) =
Fext(s, l, g)

Ac(s, l, g)
(27)
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where Fext is the external forces acting on the particle and Ac is the contact area. In

order to evaluate the external forces and the contact area, various cases that influence the

total force/contact area have been considered. This includes the forces due to fluid flow,

particle-particle collisions,particle-wall collisions and particle-impeller collisions. For further

details, the authors would like direct the readers to the works of Ramachandran et al. (2009).

The intrinsic strength of the particle was found to be primarily influenced by the forces due

to mobile liquid bridges. Using these information, the breakage kernel, Kbreak was finally

expressed as

Kbreak(s, l, g) = f(θ, µ, γ, Y oung′s modulus, fraction of volume of daughter particles)

(28)

Figures 4, 5, 6 reveals a comparative study of the semi-mechanistic kernel proposed by

Soos et al. (2006), the empirical kernel proposed by Pandya and Spielman (1983) and the

mechanistic kernel developed by Ramachandran et al. (2009). This study was shown in

Ramachandran et al. (2009) and has been published thus justifying the use of a mechanistic

kernel in place of including empiricity. The semi-empirical kernel proposed by Soos et al.

(2006) can be expressed as

Kbreak(s, l, g) =

(
4

15π

) 1
2

×G×
(
− B

G2R(s, l, g)

)
(29)

where, G is the shear rate, R(s, l, g) is the radius of the particle and B is an empirical
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constant. The empirical proposed by Pandya and Spielman (1983) can be written as

Kbreak(s, l, g) = P1G(R(s, l, g))P2 (30)

where P1 and P2 are empirical constants, G is the shear rate and R(s, l, g) is the radius

of the particle.

This way the granulation PBM was framed which took into account the inter-relationship

between the various mechanisms that act as granulation proceeds.
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Figure 4: Shape of the semi-empirical kernel with respect to two dimensions keeping the
third constant: (a) volume of gas constant, (b) volume of liquid constant and (c) volume of
solid constant
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Figure 5: Shape of the empirical kernel with respect to two dimensions keeping the third
constant: (a) volume of gas constant, (b) volume of liquid constant and (c) volume of solid
constant
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Figure 6: Shape of the mechanistic kernel with respect to two dimensions keeping the third
constant: (a) volume of gas constant, (b) volume of liquid constant and (c) volume of solid
constant.
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3 1-D PBM for crystallization

3.1 Model development

The current work does not pertain to the crystallization of a specific substance. Neverthe-

less we would like to implement material attributes of well known substances to simulate a

realistic process. The process model describes a (well mixed) seeded batch cooling crystal-

lization process of a model API (API) in a model solvent (Sol). The model relevant material

material constants and process setting are listed and described in Table 1

Table 1: Material constants and process settings

Material constants Value Description
Molecular weight of API MWAPI = 180.16g/mol Molecular weight of Acetylsal-

icylic acid (Aspirin)
Molecular weight of Solvent MWSol = 46.07g/mol Molecular weight of Ethanol
Density crystalline phase ρcp = 1(kg/l) We assume an equal density
Density pure solvent ρsol = 1(kg/l) for the crystalline, pure solvent
Density solvent with dissolved ρsol+ds = 1(kg/l) and the solvent containing disso-
species lved species of the crystalline phase

To establish the solubility of our model API in our model solvent we used the solubility of

acetylsalicylic acid dissolved in pure ethanol. The latter can be described by a Nyvlt model

for the Temperature measured in Kelvin

log(Xcp) = N1 +
N2

T
+N3log(T ) (31)

with N1 = 27.769, N2 = −2500.906 and N3 = −8.323 (Maia and Giulietti, 2008). In the
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present work we use the supersaturation, S defined as

S =
c [mol/l]

c ∗ [mol/l]
(32)

where c∗ is solubility of the API in the Solvent and c its current concentration. The

conversion of the molecular fraction to the amount of moles per liter was performed according

to Equation 33 which describes the latter for the initial process conditions

G(S, T ) = k1.exp

(
−k2
RT

)
.(S − 1)k3 (33)

With the inverse problem consideration, the target values for the parameter estimation

have been generated from simulations with known empirical parameters. The values for the

various empirical parameters in Equation (33) are k1 = 10 [m/s], k2 = 104 [J/mol] and

k3 = 1.

In the present work we only consider experiments starting with the same mass ratio of API

and Sol. Therefore the initial seed mass (non dissolved amount of the API being already in

the crystalline phase) of the model API mcpinitial as well as the initial concentration of the

dissolved species cAPIinitial depends only on the solubility at the initial temperature Tinitial.

CAPIinitial[mol/l] =

(
ρsol+dsXcpTinitial

MWcp(XcpTinitial) + (1−XcpTinitial)MWsol

)
.103 (34)

mcp initial[kg] = mcp − ccp0.MWcp10
−3 (35)
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The PBM for crystallization considering the growth only mechanism can be written as

δF (L, t)

δt
+

δG(L, t)f(L, t)

δL
= 0 (36)

The initial CSD is expressed as a logarithmic distribution written as

f(L) =
1

Lσln

√
2π

exp

(
−1

2

(
ln(L/L50)

σln

)2
)

(37)

with σln = 0.4 and L50 = 100µm to defining the seed crystal’s CSD. Furthermore we assumed

cubic crystals (for the entire process) and defined the length as the characteristic length for

a particle defined by L. Therefore the total amount of particles of a specific size L could be

computed from mcpinitial if we assume cubic particles by using the constraint

∫ Lmax

0

f(L)L3ρcp =
def mcp 0 (38)

Five different experiments with different initial concentrations cAPI [mol/L] and cooling

rates col.rate are simulated to produce data necessary for estimation of kinetic parameters.

The process time was set to end the cooling crystallization process at Tend = 250C. If

surface integration or diffusion to the surface is the limiting factor in crystal growth depends

on material itself, its solubility in the used solvent and the supersaturating level. Growth

mechanisms and therefore the adequate mathematical representation of the growth rate

changes from surface integration limited to diffusion limited if the super saturation increases.

Therefore, we designed experiments in which the supersaturation does not exceed a level of

S = 1.5. We assume that our growth rate mechanism is surface integration limited for which
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the Equation (33) is valid. The process setting of the simulated experiments are listed in

Table 2

Table 2: Process settings for the simulated experiments

Experiment T 0
initialC mcp initial[kg] coolingrate[0C/s] tprocess[s]

1 45 0.348 0.005 4000

2 45 0.348 0.025 800

3 55 0.428 0.025 1200

4 55 0.428 0.005 6000

5 50 0.388 0.015 1666

3.2 Optimization algorithms

In this section, a brief overview is provided on the theory and implementation of the various

algorithms for the purpose parameter estimation. The value for the empirical parameters

are bounded using an upper and a lower bound. The range for the parameters is 0 < k1 <

500, 0 < k2 < 100000 and 0 < k3 < 10.

To avoid redundant computational effort, unrealistic combinations for k1, k2, k3 have not

been tested (not accepted in the case of SA, see section Simulated Annealing Algorithm, or

not made gbest or bbest in the case of PSA, see section Particle Swarm algorithm). To test if

a combination of k1, k2, k3 could be assumed to be unrealistic, the growth rate G (equation

2) for a level of supersaturation of S = 1.1 and a temperature of T = 300C was calculated

first and compared to a rough estimation of the growth rate for these parameters Gestimation.

Gestimation was roughly estimated from the average crystal size L̄ of the seeds CSD and those

of the product crystals at the end and the process time tprocess
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Gestimation =
L̄seed − L̄product

tprocess
(39)

An estimation of the growth rate from data of simulated experiments as described above

yields a value of Gestimation = 4 × 10( − 4)[(µm)/s]. Before the model was executed in

the presented optimization algorithms, the new parameters kn were tested on reasonability

according to the following constraints:

G(S = 1.1, T = 30|kn) < 1000Gestimation

G(S = 1.1, T = 30|kn)1000 > Gestimation (40)

(41)

The parameters were not tested if these constraints had been violated. Although the

estimation of the growth rate at fixed values of supersaturation and temperature from ex-

periments in which the temperature and the supersaturation are alternated is not feasible,

the constraints we made should be valid as we set the scope to three orders of magnitude.

Objective function

In the case of the stochastic algorithms (Simulated Annealing Algorithm and Particle Swarm

Algorithm) the estimation problem was minimized according to the objective function

ϕ(θ) =
a∑

i=1

b∑
j=1

ωij(Ŷij − Yij)
2 (42)

where Ŷij and Yij are the measurement and model prediction of the of the jth measured
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variable at the ith experiment, ωij is a weighting factor, b the number of measured variables

and a the number of experiments.

In the case of the growth only assumption we used the concentration values to Ŷij =

cij[mol/L] and weighted all concentration experiments for the considered experiments equally

omegaij = 1

3.2.1 Simulated Annealing Algorithm (SAA)

Simulated annealing is an algorithm that originates in material science engineering, originally

introduced to find the equilibrium configuration of a collection of atoms at a given tempera-

ture when a liquid is freezing and crystallize during an annealing process (Metropolis et al.,

1953). The algorithm was first used for solving optimization problems by Kirkpatrick et al.

(1983) The concept of SA is to find the global minimum by simulating a slow cooling process

on the computer. To this end we introduce an artificial temperature TSA and a probability

distribution pE(x|TSA), the so called acceptance distribution for a given configuration x at

a given artificial temperature TSA. The objective function to be minimized is denoted by

Φ(x). According to classical SA we choose

pE(x|TSA) =
1

Z
e

−Φ(x)
TSA (43)

which corresponds to a Boltzmann distribution with a normalization factor Z. The pur-

pose of pE is to assign a high probability to states with the objective function is small, i.e.

states x close to the global minimum. A random walker will spend more time near the

optimum states. The possibility for the walker also to go uphill and leave a local minimum,
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which makes SA a global optimization technique, is therefore depending on TSA.

Classical simulated annealing (CSA) involves three steps

1) Generation of states

Here the new states xn in the parameter space were generated from the current xc according

to a Gaussian.

p(∆xi = xi c − xi n) =
1

σi

√
2π

e
− 1

2

∆xi
σi

2

(44)

2) Acceptance of states

We chose the Metropolis probability to accept or deny the generated new states. We define

an acceptance probability of

paccept = min

[
1,

pE(xn|TSA)

pE(xc|TSA)

]
(45)

3) Cooling strategy

In the present work we used a cooling scheme of

TSA = TSA0.q
m (46)

The initial temperature TSA0 is of major importance. Overvaluing would lead to high com-

putational effort without any benefit because almost every new state is going to be accepted.

In the case of an undervalued TSA0 the walker might be trapped in a local minimum.

The tunable parameters q,m, σi as well as the initial values for xi used for the calculations

are documented in the results section. In the case that none of the states xn had been
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Figure 7: Summary of the simulated annealing algorithm for parameter estimation in our
case study

accepted for 200 suggestions, the algorithm was assumed to have reached convergence. If

the objective function was observed to be less during the computation at some other point

in the parameter space, the latter one was updated as the new state.

3.2.2 Particle swarm optimization (PSO)

The algorithm was initially proposed by Kennedy and Eberhart (1995), as a methodology

for the optimization of nonlinear functions. Various modifications have been made to the

original algorithm by researchers in order to make the method more suitable for their sys-

tem. Although, meta heuristic techniques (including PSO) take a very long time for its

computation owing to the multiple function evaluations involved, these function evaluations

can be later utilized for statistical analysis. The method tries to mimic the process of birds
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flocking and is based on the swarming theory. In the case of the PSA a bird is an element
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(b) Iteration 6: Birds begin to con-
centrate
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(c) Iteration 30: Concentration of
the birds increase in the region
around one point
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(d) Iteration 39: Birds found a
promising point and concentrate
around it
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(e) Final Iteration: The promising
point found by the birds get re-
fined and most birds concentrate
around it to form a ‘focus’

Figure 8: Distribution of the “birds” over the entire domain showing the principle of the
particle swarm algorithm
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moving in the parameter space where it calculates the corresponding objective function. The

algorithm is based on the synchrony of the flocking behavior and depends significantly on

the inter-individual distances between the birds and their neighbors. The birds are set to

“fly” in the search domain, i.e. the parameter space, according to the equations

vt+1
b = w.vtb + c1.rand1.(bbest − xt

b) + c2.rand2.(gbest − xt
b) (47)

xt+1
b = xt

b + vt+1
b .∆t (48)

Here b represents the bird, t is the number of iterations, vb and xb are the velocity and

position of the bird respectively, c1 and c2 are called the cognitive and social parameters, w

is the inertial weight which was an inclusion into the algorithm by Shi and Eberhart (1998),

rand1 and rand2 are random numbers, bbest is the best known position x having the lowest

objective function Φ(x) the bird itself and gbest is the best known position of the entire

particle (bird) swarm.

Initially N birds were distributed randomly in the parameter space (see table 4), with

a random initial velocity using a maximum value of a fourth of the parameter spaces elon-

gation per time step (∆t = 1). Birds leaving the parameter were updated according to the

“mirroring” concept in which the bird is mapped back into the parameter space with a sign

inversion of its velocity. After each time step it was checked if some bird was able to improve

his bbest or if gbest was being improved by the particle swarm. In our study, 20 birds were

considered at each iteration and a maximum of 100 iterations were allowed. The striking

characteristic of this algorithm is its aspect of having the birds spread all over in the search
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domain during the initial iterations and then have the birds more concentrated to the regions

which seems more promising. This way the algorithm tends to be more convergent towards

the later iterations. An initial value like in the case of the SSA is not required.

3.2.3 gEST using gPROMS

The dynamic optimization algorithm implemented by PSE, UK with the gPROMS software

is one of the finest technique existent in the present day optimization community. A flexibility

to use the maximum likelihood function or the least square objective function is available in

this parameter estimation platform. If is the measured variable ˆYijk and Yijk is the predicted

variable, the maximum likelihood function can be defined as

ϕ(k, θ) =
M

2
. ln(2π) +

1

2
.min

{
a∑

i=1

bi∑
j=1

ci,j∑
k=1

[
ln(σ2

ijk) +
( ˆYijk − Yijk)

2

σ2
ijk

]}
(49)

Where M is the total number of measurements taken during all experiments a, bi, ci,j

are the number of experiments, number of variables in the ith variable and number of

measurements in the ith experiment of the jth variable respectively. σijk is the variance

of the kth measurement of the jth variable in the ith experiment and can be defined by

many variance models such as a homoscedastic (constant variance) or a heteroscedastic

model (variance is a function of the measured and the predicted values). In case of the

homoscedastic variance model, the maximum likelihood function is simplified to a weighted

least square form whereas when a purely heteroscedastic model is chosen, the maximum

likelihood objective function takes a more complicated form with the variance, σ as a function

of the measured value raised to a parameter γ (which lies between 0 and 1). The two
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asymptotic conditions of the parameter, γ leads to the constant variance (γ = 0) and the

constant relative variance (γ = 1) cases.

Using the gEST parameter estimation algorithm available with the gPROMS platform,

any of the above mentioned variance models can be chosen and the other parameters can also

be specified by the user. However, we have used the homoscedastic models with constant

or constant variance models in this work. Since our measured/known quantity is generated

through simulations, the data is devoid of much variance, thus making it affordable to choose

a more simplistic variance model for accurate estimation.

3.3 Quality criterion

Figure 9: One value quality criteria of the PE output (PSA Exp1+3)

In the present work we introduce the one value quality criteria to evaluate and compare

the PE outputs of the different algorithms. To quantify the difference between the real

growth rate and the one obtained by substituting the parameters obtained by the PE into the

growth rate expression, we calculated the differences in a parameter space of temperature and

super supersaturation typically for the performed crystallization experiments/simulations.
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We defined the one value quality criteria QPE as follows:

QPE =

∫ 1.5

1.1

∫ 50

30

|Goriginal −GPE| dT [0C] S[−] (50)
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4 Materials and methods for experimental studies

Some experimental studies were also conducted using the fluid bed equipment manufactured

by Innojet technologies. The nozzle used for the spraying of liquid/liquid + binder was

the Innojet annular gap spray nozzle Rotojet type IRN 2 with 2mm annular gap diameter,

6.28 mm developed length, 0.25 mm gap width, 1.57 mm2 free spraying cross-section and

2.09 nl/s air consumption at 1 bar spraying pressure. The material used for the study was

a mixture of 0.82 fraction of Lactose (350gms) and 0.18 fraction of Starch (75gms). The

binder material used for granulation was Kollidon 25 with which a 0.15 mass fraction solution

was prepared. The batch size containing the solid material was 425 gms.

Control and operation of fluid bed equipment for granulation is more challenging owing

to the multiple operating parameters than affect the process. Different fluid bed granulation

systems require different set of variables. Important factors that affect the fluid bed granu-

lation process can be divided into two distinct groups which are equipment related variables

and process related variables. The former includes 1)pressure drop and 2)filter shaking. The

latter includes 1) inlet air temperature, 2) nozzle atomization pressure, 3) fluidization air

velocity and 4 )nozzle position. It has been identified that the cardinal parameters than need

to be controlled for efficient operation of the equipment is the product temperature, flow rate

of air, spray rate of the liquid, total liquid to solid ratio (L/S)and concentration of the binder

(Kollidon) in the solution. The total L/S ratio was manipulated by changing the time span

over which the equipment was operated for a specific flow rate. A DOE was prepared for

detailed analysis of the various operating parameters on the final outcome of the granulation

process using a fluid bed equipment. The base case for the study was considered having the
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Figure 10: Front view of the fluid bed equipment as in the laboratory

conditions: spray rate of the liquid=7gm/min, L/S=0.2, product temperature=350C, air

flowrate=34 m3/min, concentration of Kollidon in the spraying solution=15 % and atomiz-

ing pressure=1 bar. For this case, the granulation equipment had to be operated for 12.14

mins. Using this base case, various scenarios were run on the equipment with a high, low and

base case for each cardinal operating parameter affecting the granulation outcome. Table 3
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summarizes the various values for the operating parameters chosen for this study. For each

scenario, only one parameter was manipulated and all the others were held constant as per

the values for the base case.

Table 3: Design of experiments for the experimental study

Parameter name High Base Low

Liquid Spray rate (gm/min) 10 7 4

Total liquid to solid ratio (%) 25 20 15

Total time of operation (mins) 15.18 12.14 9.1

Product temperature (0C) 40 35 30

Air flow rate (m3/min) 40 34 28

Concentration of Kollidon 25 (%) 25 15 0
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5 Numerical Techniques for solution of the 3-D PBM

Besides the model development, employing an appropriate numerical technique for solution

to such hyperbolic integro-partial differential equation is yet another common challenge.

Various complexities are faced with the solution of the multidimensional PBM due to the

presence of multiple time scales and multiple dimensions. Therefore developing robust mod-

els with efficient solution techniques for such a framework is a crucial task.

Figure 11: Discretized non-linear grid in three dimensions

The partial derivatives with respect to the internal coordinates representing the various

underlying mechanisms are addressed using finite volumes. In order to span a broader size
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range, a non-linear grid has been used for the discretization followed by the cell average tech-

nique (Kumar et al., 2006) for the solution. Due to the non-linear grid, the newly formed

particles in aggregation and breakage mechanism do not exactly fall on the representative

volume for the discretized grid. Significant developments have been made in promoting the

use of cell average techniques. Kumar and Ramkrishna (1996b,a) led to the proposal of

the fixed-pivot discretization technique (FPDM) and moving pivot discretization technique

which could be used to allocate particles to the neighbouring grids when the daughter par-

ticle did not exactly fall on the pivot in a non-linear grid. Later Chakraborty and Kumar

(2007) extended this approach for higher dimensional formulations. This technique by Ku-

mar and Ramkrishna (1996b) was quite efficient but was accompanied by over-prediction

of particle property distribution. The shortcomings from this technique was alleviated to

a great extent by the cell-average technique proposed by Kumar et al. (2006, 2008). Both

the Fixed Pivot and Cell Average Techniques distribute birth falling on non-representative

points to the nearest representative points, with a certain fraction of the total birth going to

each neighbouring representative points. The Fixed Pivot technique distributes the births

as they occur. The Cell Average Technique, on the other hand, performs a local-averaging

for each cell (at each time step) before distributing it to the adjoining representative points

for a nonlinear, arbitrary grid. This justifies the implementation of cell average technique

for the purpose of solution of our PBM. Thus a new set of fractionation equations are re-

quired in order to reassign the newly formed particles to the adjoining bins such that the

volume/mass is conserved along with other lower moments. In our previous works, we have

dealt with obtaining the fractionation equations for the reassignment of particles (during

aggregation and breakage) for the non-linear grid, based on the cell average technique. The
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result is an ODE with respect to time wherein the growth terms, the source terms and the

circulation terms (between the two compartments) are in the form of algebraic equations.

This final ODE (IVP) is integrated using the first order Euler technique. Equation (1) can

be expressed in the discrete form as shown in Equations (51) and (52)

dF ′
1,i,j,k

dt
+

(
F ′
1,i,j,k

△si

ds

dt

∣∣∣
si
−

F ′
1,i+1,j,k

△si+1

ds

dt

∣∣∣
si+1

)
+

(
F ′
1,i,j,k

△lj

dl

dt

∣∣∣
lj
−

F ′
1,i,j+1,k

△lj+1

dl

dt

∣∣∣
lj+1

)
+

(
F ′
1,i,j,k

△gk

dg

dt

∣∣∣
gk
−

F ′
1,i,j,k+1

△gk+1

dg

dt

∣∣∣
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)
= ℜagg(si, lj, gk) + ℜbreak(si, lj, gk)− a

(
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1− α
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α

)
(51)
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)
+

(
F ′
2,i,j,k

△lj

dl

dt

∣∣∣
lj
−

F ′
2,i,j+1,k

△lj+1

dl

dt

∣∣∣
lj+1

)
+

(
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−
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)
(52)

Here F ′
i,j,k =

∫ si+1

si

∫ lj+1

lj

∫ gk+1

gk
F (s, l, g) ds dl dg, si is the value of the solid volume at the

upper end of the ith bin along the solid volume axis, lj is the value of the liquid vol-

ume at the upper end of the jth bin along the liquid volume axis, gk is the value of the

gas volume at the upper end of the kth bin along the gas volume axis. △si, △lj and

△gk are the sizes of the ith, jth and kth bin with respect to the solid, liquid and gas vol-

ume axis. Using this technique, the population balance equation, is reduced to a system

of ordinary differential equations in terms of the aggregation (ℜagg(si, lj, gk)) and break-

age (ℜbreak(si, lj, gk)). The triple integral for the aggregation term can thereby be eval-

uated by casting it into simpler addition and multiplication terms. Assuming that the
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particle fractions a1, a2, a3, a4, a5, a6, a7, and a8 are distributed to the neighbouring nodes

Pi,j,k, Pi,j+1,k, Pi+1,j+1,k, Pi,j+1,k, Pi,j,k+1, Pi,j+1,k+1, Pi+1,j+1,k+1, andPi,j+1,k+1, respectively, the

fractionation equations thus obtained from our previous works can be expressed as Equations

(53)-(60)

a1 =
(xi+1 − x̄i)(yj+1 − ȳj)(zk+1 − z̄k)

(xi+1 − xi)(yj+1 − yj)(zk+1 − zk)
Bijk (53)

a2 =
(x̄i − xi)(yj+1 − ȳj)(zk+1 − z̄k)

(xi+1 − xi)(yj+1 − yj)(zk+1 − zk)
Bijk (54)

a3 =
(x̄i − xi)(ȳj − yj)(zk+1 − z̄k)

(xi+1 − xi)(yj+1 − yj)(zk+1 − zk)
Bijk (55)

a4 =
(xi+1 − x̄i)(ȳj − yj)(zk+1 − z̄k)

(xi+1 − xi)(yj+1 − yj)(zk+1 − zk)
Bijk (56)

a5 =
(xi+1 − x̄i)(yj+1 − ȳj)(z̄k − zk)

(xi+1 − xi)(yj+1 − yj)(zk+1 − zk)
Bijk (57)

a6 =
(x̄i − xi)(yj+1 − ȳj)(z̄k − zk)

(xi+1 − xi)(yj+1 − yj)(zk+1 − zk)
Bijk (58)

a7 =
(x̄i − xi)(ȳj − yj)(z̄k − zk)

(xi+1 − xi)(yj+1 − yj)(zk+1 − zk)
Bijk (59)
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a8 =
(xi+1 − x̄i)(ȳj − yj)(z̄k − zk)

(xi+1 − xi)(yj+1 − yj)(zk+1 − zk)
Bijk (60)

These fractions were obtained from conservation equations ensuring the volume was con-

stant after the reassignment. These conservation equations can be written as

Then, the particle fractions must satisfy the following thirteen equations, to conserve the

total volume as well as the particle number.

Bijk = a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 (61)

a1xi + a2xi+1 = (a1 + a2)x̄i (62)

a3xi+1 + a4xi = (a3 + a4)x̄i (63)

a5xi + a6xi+1 = (a5 + a6)x̄i (64)

a7xi+1 + a8xi = (a7 + a8)x̄i (65)

a1yj + a4yj+1 = (a1 + a4)ȳj (66)

a2yj + a3yj+1 = (a2 + a3)ȳj (67)
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a5yj + a8yj+1 = (a5 + a8)ȳj (68)

a6yj + a7yj+1 = (a6 + a7)ȳj (69)

a1zk + a5zk+1 = (a1 + a5)z̄k (70)

a2zk + a6zk+1 = (a2 + a6)z̄k (71)

a3zk + a7zk+1 = (a3 + a7)z̄k (72)

a4zk + a8zk+1 = (a4 + a8)z̄k (73)

Using the abovementioned approach, the numerical steps have been hardcoded in MAT-

LAB (version 2012a) in order to solve the PBE using a robust technique. The same approach

is also used for solving the 1-D PBM for crystallization. The mechanistic kernels for aggre-

gation and breakage have also been coded in separate function files, where the modified

values for the quantities such as external surface liquid and reduction in porosity have been

updated instantaneously at each time step. The simultions were run on a machine with

quad-core Intel Corei7-870 CPU (2.93 GHz) processor and 8 GB RAM running Windows 7

(64 bit) OS. The stability of the numerical technique was ensured (while using the explicit
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Euler technique) by making an appropriate choice for the grid sizes and time steps, such

that the CFL conditions were not violated.
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6 Results and Discussion

Intuitively we have identified a few parameters that could be easily manipulated while run-

ning experiments in order to obtain a detailed sensitivity analysis of the proposed integrated

model that is expressed as a function of the key operating parameters. This study will enable

us to have a more vivid idea of which quantities are needed to be manipulated and to what

extent, when a certain final outcome is desired. The integrated model relates the various

mechanisms to the fundamental operating parameters in a way such that the model is not

completely decoupled, yet the solution technique is not very complicated. The interaction

between the various mechanisms such as consolidation and aggregation, with each other, can

be be addressed with the approach proposed in this paper. Some of the crucial operating pa-

rameters that affect the final outcome of the process are the number of rotations per minute

of the impeller (rpm), the viscosity of the binder (µ), the contact angle (θ) of the binder

liquid onto the surface of the particle and the liquid spray rate. The aggregation kernel

proposed in this work is also quite novel and takes into affect the various crucial operating

parameters such as the viscosity of binder, contact angle and impeller speed.

6.1 Comparison between the semi-mechanistic aggregation and

the empirical kernels from literature

The aggregation kernel proposed in this paper, and taken into account for our simulations, is

dynamic in nature such that the kernel can be updated along with the changes in the system

behavior. The aggregation kernel takes into account the appearance of surface liquid for

porous particles as liquid is sprayed over the particles with the progress of the granulation
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process. The amount of wetted area is also represented as a function of the contact angle

and the Stoke’s criterion takes into account the viscosity effects. The overall aggregation

kernel is expressed as a product of the fractional wetted area, the factor owing to the Stoke’s

criterion, the size dependant part represented by the kernel proposed by Madec et al. (2003)

and the constant value for scaling the kernel. In contrast to the empirical kernels more

commonly used, this kernel shows remarkable variations with respect to the different internal

coordinates, such as solid, liquid and gas volumes. Also, at the initial time, the particles that

are more porous and dry are considered to not have any aggregating tendency. These trends

cannot be captured using the empirical kernels. Figure 12 shows a comparison between the

empirical kernels and the kernel proposed in this work.

From Fig 12, we can see that for the empirical kernel, the individual volumes are just

lumped as the size and hence there is no realistic variation with respect to the individual

volumes. The semi-mechanistic kernel instead, shows more realistic variation with respect

to the solid, liquid and gas volumes. The kernel comprises of a size dependant and a size

independent portion. The size independent portion has been shown in Fig 12c where the

true behavior can be captured. For a constant solid and gas volume, as the liquid increases,

the fractional wetted area also increases, which is in agreement with the figure. On the

other hand, for a constant solid and liquid volume, the wetted area decreases as the porosity

increases. As the porosity increases, a significant amount of liquid is used up to fill in the

pores of the particle and after a certain point, surface liquid seems to emerge. Thus the

amount of surface liquid and thus the wetted area is reduced for highly porous particles. For

a constant liquid and gas volume, the fractional wetted area decreases as the solid volume

increases. Due to increased solid volume, the overall size of the particle increases, but the
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(c) Size independant portion of the semi-
mechanistic kernel

Figure 12: Comparison of the behavior of the semi-mechanistic kernel and the empiri-
cal kernels with respect to the individual volumes (β(1, 1, 1, 1, 1, :) for gas, β(1, 1, 1, 1, :
, 7) for liquid and β(1, 1, 1, :, 1, 1) for solid in both cases)

liquid amount is still constant hence the amount of wetted area is same, but the total surface

area present in the denominator is increased and hence the fractional wetted area is reduced.

These physical events can be well captured in the aggregation kernel proposed by us.
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6.2 Dynamic sensitivity analysis of the model inputs/operating

parameters

A dynamic sensitivity analysis has been showcased in this section which highlights the pros

and cons of considering this integrated model and the ability for it to capture the system

behavior that is observed in realistic scenarios. The integrated model which also takes into

account the various fundamental operating parameters, can capture the steady growth and

induction behavior under the conditions as also mentioned in the works of Walker (2007).

This suggests the effectiveness of the model to be able to predict realistic scenarios and

could be extended for control and optimization purposes. As already mentioned, the crucial

operating parameters that have been taken into consideration are viscosity of the binder,

contact angle of the binder on the particle surface, the amount of liquid added and the speed

of the impeller. The impeller speed affects both the aggregation and the consolidation of

the particles, the viscosity and contact angle affect both the aggregation and the breakage

mechanisms, the liquid added affects the aggregation and the liquid distribution. The com-

partmental based model gives a more realistic picture of the system due to the inhomogeneity

associated with the binder distribution. Although, consideration of two compartments is not

a very accurate representation, but this approach can be implemented with multiple com-

partments thus obtaining a more realistic picture. The dynamic sensitivity analysis can be

broadly classified into the steady state case and the induction behavior.
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Steady state growth

The steady state behavior was noticed for a system having higher aggregation, lower consoli-

dation, higher binder liquid addition and low porosity of the initial particles. The parametric

values used for the base case of the steady state behavior has been listed in the table 4.

Table 4: Parametric values for the simulations in the steady state case

Parameter name Value
ρsolid 2500 kg/m3

ρliquid 1000 kg/m3

ρgas 1 kg/m3

Number of grids in solid, liquid and gas volume 7
Grid width of the ith bin (same in each volume) (3× 10−13)× 3i m3

Initial mass charged to the granulation, F (1, 1, 1) 0.2 kg
Binder Spray rate, u 0.5 ml/sec
cbinder 0.1
ϵmin 0.2
Rpm of the impeller 220
Diameter of the impeller 0.02m
Consolidation constant, c 1× 10−13

Aggregation Constant for the kernel, b0 2× 1021

Granule saturation at which surface liquid first appears, s∗ 0.2
Viscosity µ 0.006 kg/m− sec
Liquid surface tension γlv 0.0728N/m2

Coefficient of restitution e 0.04
Surface asperity ha 0.01 of diameter
Droplet diameter 70 µm
Constant contact angle of the liquid on the particle surface 500degrees
Portion of the overall population enclosed in domain 1, α1 0.3
Circulation rate between the two compartments 1×−27
Premixing time 120 secs
Liquid addition time 120− 300 secs
Wet massing time 300− 400 secs
Parameters specific to the breakage kernel were
obtained from Ramachandran et al. (2009)

Initially the particles are dry, but as liquid is added, a huge amount of aggregation begins

to occur thus leading in the average diameter to shoot up. Also, since the consolidation of

particles is lower, the particles are not hugely dependent on the liquid to be squeezed onto

57



the surface from inside the pores. This leads to a steady growth of particles due to the large

aggregation tendency and the the liquid addition. We have studied the various cases, by

changing the crucial parameters as mentioned before.

6.2.1 Viscosity variation

Figure 13 shows the variation of the bulk and distributed properties with respect to the

viscosity of the binder liquid used. It can be intuitively said, that a higher viscosity will lead

to higher aggregation as the binder liquid enhances sticking together of fine powder to form

aggregates. A similar physics can also be observed in the aggregation kernel. The Stoke’s

criterion exhibits the effect of viscosity on the aggregation of particles. The viscous Stoke’s

number represented by equation (23) shows an inverse proportionality with the viscosity.

Thus when the viscosity is higher, the Stoke’s number is smaller and hence the variable

representing the fractional wetted area of the particles, Ψ is less sparse (with more 1’s

compared to 0’s). This enables more cases possible for aggregation thus leading to higher

aggregation and increased particle size. From the figures, we can see that for the value

of viscosity above the base viscosity that we have used for our simulations, there is no

significant change in the particle diameter. Thus, it is safe to comment, that for a certain

liquid sprayrate, beyond a certain viscosity, there is no significant increase in the particle

size.

The variation in viscosity does not have a significant effect on the porosity of particles.

There is some variation in the aggregation extent, but the influence on the porosity of

particles does not seem significant. Also, there is a higher content of bigger particles as the

viscosity is higher due to the formation of more aggregates. Also, it can be observed that
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(c) PSD at the end of liquid addition

0 100 200 300 400 500 600 700 800 900
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Size (µ m)

N
or

m
al

iz
ed

 n
um

be
r 

fr
eq

ue
nc

y 
(−

)

 

 
−20%
−10%
base
10%
20%

(d) PSD at the end of the wet massing time

Figure 13: Variation of viscosity for the steady growth process showing the effect on the
bulk and distributed properties

the PSD at the beginning and end of the wet massing period are different.

6.2.2 Liquid amount variation

From figure 14, we see the affect of the liquid spray and the total amount of liquid on the

average properties and the PSD at the end of liquid addition and wet massing time. It

can also be qualitatively suggested that with higher liquid, the total volume of the particles

increases, thus increasing the particle size and also with higher liquid addition, the number
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of droplets formed are higher (as the volume of each droplet is constant) due to which each

particle has a higher probability of being hit by a liquid droplet. Hence, the surface liquid

available is higher and the aggregation kernel is raised. This also leads to an increase in the

average size of the particles. The porosity of the particles are defined as the ratio of the

liquid+gas volume to the overall particle volume. So, we can imagine that the amount of

liquid directly affects the porosity of particles. Therefore, with increased liquid amount, the

particle size and porosity increases and also, there is a slight shift in the PSD towards the

right, indicating higher fraction of particles in the larger volume grids.

6.2.3 Impeller speed variation

Impeller speed has a significant effect on the aggregation, breakage and consolidation of par-

ticles. The affect of impeller speed is a bit more complicated than the previous subsections.

We can see how the bulk and distributed properties are affected by the impeller speed in

Figure 15. It can be noticed in the figure as well, that the effect of impeller speed is not

very straightforward. Due to increased impeller speed, the breakage and consolidation of

particles is higher due to higher collisions between particles. The particles tend to have

more collisions but due to higher kinetic energy of the particles they impact more strongly

against each other, thus leading to more breakage. There is some increase in the aggregation

as well but the overall outcome is a reduction in the diameter increase. From equation (11)

we can see that the consolidation rate has been expressed as a weak exponential function of

the impeller speed. So, with higher impeller speed, the consolidation of particles is increased.

Since, in the steady state case, the consolidation rate is not very high, so inspite of the fact

that the consolidation of particles is increased, the effect on the average porosity of particles
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(d) PSD at the end of the wet massing time

Figure 14: Variation of amount of liquid for the steady growth process showing the effect on
the bulk and distributed properties

is not very significant. Also the PSD of the particles seems to shift to the left for higher

impeller speed at the beginning of the wet massing period. At the end of the wet massing

period, there seems to be a higher fraction of smaller particles with increased impeller speed.

This is inkeeping with the observations for the bulk properties of the particles.
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(d) PSD at the end of the wet massing time

Figure 15: Variation of impeller speed for the steady growth process showing the effect on
the bulk and distributed properties

6.2.4 Contact angle variation

The contact angle of the binder liquid on the surface of the particle has a prominent influence

on the aggregation and breakage of the particles. A major influence of the contact angle

is on the fractional wetted area of the particles. The contact angle of the liquid on the

solid surface suggests the wettability of the particle with the binder liquid used. Smaller

contact angles suggest higher wettability and the converse is true for higher contact angles.
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(c) PSD at the end of liquid addition
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(d) PSD at the end of the wet massing time

Figure 16: Variation of contact angle between the binder liquid and the particle surface for
the steady growth process showing the effect on the bulk and distributed properties

Values for contact angles over 900 degrees indicates hydrophobicity of the surface when

water is used as the liquid. In our study, we have considered the contact angle to be such

that the entire domain of study is within the hydrophillic/wettable range. Lower contact

angle suggests a stronger liquid bridge between the two particles as seen in Equation (39)

in the work by Ramachandran et al. (2009). Thus, the intrinsic strength of the particles

is higher and it is more difficult to break the particles. With lower contact angles, the

wettability characteristics of the particle is also better. Thus, the wetted surface area of
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the particles is larger which also suggests a fractional wetted area of the particle closer to

1. This enhances the coalescence tendency of the particle as more area is available that

allows colliding particles to stick to each other and aggregate. This behavior is also seen

in Figure 16. The contact angle does not have an appreciable effect on the porosity of the

particles. There is some increase in aggregation, thus leading to a slightly higher porosity,

but the change in the average porosity is not very prominent. The PSD of the particle at the

beginning and end of the wet massing period show good agreement with the bulk property

plots. There is a higher fraction of bigger particles for a smaller contact angle.

Induction growth

The induction behavior can be realized for a system having relatively lower aggregation and

higher consolidation such that enlargement of particles does not take place at the instant

liquid is added to the surface. The values for the model parameters have been enlisted in

the Table 5.

We have studied the induction behavior for two cases-porous primary particles and less

porous primary particles. For the initial dry particles, there is a dearth in the surface

liquid and hence very less aggregation occurs. As consolidation proceeds, the particles are

compacted with reduced pore volume. This way, liquid is squeezed onto the surface of the

particle thus leading to the availability of liquid on the surface for the coalescence. Therefore,

there is a more gradual growth in the beginning but once the particles are enough wet, they

grow steadily. A similar study has been performed for the induction behavior of the particles

by varying the crucial operating parameters-viscosity of the binder liquid, amount and spray

rate of liquid added, impeller speed and the contact angle of the binder liquid on the surface
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Table 5: Parametric values for the simulations in the induction case

Parameter name Value
ρsolid 2500 kg/m3

ρliquid 1000 kg/m3

ρgas 1 kg/m3

Number of grids in solid, liquid and gas volume 7
Grid width of the ith bin (same in each volume) (3× 10−13)× 3i m3

Initial mass charged to the granulation, F (1, 1, 1) 0.2 kg
Binder Spray rate, u 0.5 ml/sec
cbinder 0.1
ϵmin 0.2
Rpm of the impeller 220
Diameter of the impeller 0.02m
Consolidation constant, c 4× 10−7

Aggregation Constant for the kernel, b0 7× 1019

Granule saturation at which surface liquid first appears, s∗ 0.2
Viscosity µ 0.006 kg/m− sec
Liquid surface tension γlv 0.0728N/m2

Coefficient of restitution e 0.04
Surface asperity ha 0.01 of diameter
Droplet diameter 70 µm
Constant contact angle of the liquid on the particle surface 500degrees
Portion of the overall population enclosed in domain 1, α1 0.3
Circulation rate between the two compartments 1×−27
Premixing time 120 secs
Liquid addition time 120− 300 secs
Wet massing time 300− 400 secs
Parameters specific to the breakage kernel were
obtained from Ramachandran et al. (2009)

of the particle.

6.2.5 Viscosity variation

The effect of viscosity on the granulation of particles is similar for the induction behavior as

that in the steady state behavior. The aggregation of particles is increased when the binder

liquid is more viscous, as that facilitates the sticking of fine powder to each other. Thus,

for more viscous liquid, the particles are a little larger. There is a slight difference in the
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(c) PSD at the end of liquid addition
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(d) PSD at the end of the wet massing time

Figure 17: Variation of viscosity for the induction behavior showing the effect on the bulk
and distributed properties

average diameter and the PSD of the porous and the less porous particles due to the higher

aggregation in case of the less porous particles. For analysis purpose, we have considered the

two class of particles to have the same average diameter and moisture content, yet the less

porous particles have higher solid content whereas the more porous particles have less solid

content but higher gas volume. As we analyse the evolution of the particles over time, we

see that the diameter of the particles are similar but the less porous particles have a slightly

higher size, as the latter tends to suck more liquid as binder is added to it. Therefore the

66



availability of surface liquid on the porous particles is less than the non porous particles,

leading to a lower rate of aggregation in case of the prior compared to the latter. Also,

highly porous particles have a higher tendency of breaking, contributing to the reduced

particle size of the population. The porosity of the porous primary particles consistently

stays high relative to the less porous primary particles, even as the process of granulation

proceeds. These trends are also revealed in Fig 13 which is able to capture the induction

behavior of particle growth under the conditions observed in experimental practice.

6.2.6 Liquid amount variation

As also seen in the case for the steady state growth, the spray rate and the amount of

liquid leads to an increase in the average diameter and the porosity of the particles. With

increased liquid, not only is the particle volume increased, but also the availability of surface

liquid is higher leading to higher aggregation of particles. The amount of liquid added in

the induction case is less than that considered in the steady state case, inkeeping with the

aggregation kernel used to exhibit the induction behavior. The porous particles tend to

have a slightly smaller particle size due to the excessive pore volume which captures more

liquid and leads to a reduced surface liquid availability on the particles suggesting reduced

aggregation (Fig 18).

6.2.7 Impeller speed variation

With an increase in the rotational speed of the impeller, the kinetic energy of the particles is

increased. This leads to a higher probability of collision but that involves a higher breakage

rate of the particles. The compaction of particles in the form of consolidation is also higher
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(d) PSD at the end of the wet massing time

Figure 18: Variation of amount of liquid for the induction behavior showing the effect on
the bulk and distributed properties

when the impeller speed is increased. Thus from Fig 19, we can see that with a higher

impeller speed, the particle size is reduced. This behavior has also been observed in case of

the steady state growth. As also discussed before, there is a slight difference in the average

diameter and particle size distribution of the porous and non porous particles due to the

increased aggregation and reduced breakage in case of the latter compared to the prior.
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(c) PSD at the end of liquid addition
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(d) PSD at the end of the wet massing time

Figure 19: Variation of impeller speed for the induction behavior showing the effect on the
bulk and distributed properties

6.2.8 Contact angle variation

Fig 20 reveals the effect of contact angle variation on the bulk and distributed properties

of a population which exhibits induction growth. As the particles are more hydrophilic

suggesting a smaller contact angle, a higher surface coverage for the same amount of surface

liquid is observed. This leads to a higher aggregation rate as the kernel has been proposed

with a direct influence of the fractional wetted area on the aggregation rate. Thus, with

reduced contact angle, the overall particle size of the population increases.
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(c) PSD at the end of liquid addition
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(d) PSD at the end of the wet massing time

Figure 20: Variation of contact angle between the binder liquid and the particle surface for
the induction behavior showing the effect on the bulk and distributed properties

6.3 Comparative study for sensitivity analysis

From the previous sections it is evident that viscosity, contact angle, impeller speed and

liquid content are the crucial parameters that have a prominent affect on the final granule

properties. In this section, we have presented a more systematic and comparative study

which shows the relative affect of each fundamental quantity on the population. The Fig 21

shows the 1-D plot for the bulk quantities at the end time for the steady and the induction

case. It can be seen that in case of both the steady state and the induction case, the affect
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(c) Average diameter for induction growth
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Figure 21: Variation of the crucial operating parameters on the bulk particle size and number
of particles at final time

of liquid is almost linear and more straightforward for the positive and negative perturbed

cases. With varying liquid, the average diameter varies linearly due to the increase in the

particle volume and also the total number of particles vary linearly due to the increased

aggregation rate which is proportional to the amount of liquid added. The viscosity of

the binder liquid has a more pronounced affect in the negatively perturbed cases than the

positive perturbation cases. It can be inferred that the effect of viscosity is more nonlinear,

where increasing the viscosity to a certain value helps, but beyond that point there is not
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Figure 22: Bar plots for steady growth showing effect of crucial parameters on bulk properties
(Liquid amount=red, µ = blue, rpm=yellow, θ = green)

much effect on the particle size when the viscosity if further increased. Also, the viscosity

of the binder affects the aggregation and breakage of the particles. Therefore, it can also

be observed that beyond a certain value of the viscosity, the change in the total number of

particles is also reduced suggesting reduced difference in the aggregation and breakage of

particles. The impeller speed has a converse effect on the particle size and the total number

of particles as the viscosity. In the positively perturbed region, there is a significant effect
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Figure 23: Bar plots for induction growth showing effect of crucial parameters on bulk
properties (Liquid amount=red, µ = blue, rpm=yellow, θ = green)

as the rpm of the impeller is increased, resulting in a decrease in the particle size. The total

number of particles also increase in the positively perturbed region. These observations

are a result of increased breakage of particles due to higher kinetic energy and impact of

the particles. The contact angle of the binder on the liquid has a pronounced effect on

the aggregation of particles as it directly affects the fractional wetted surface area of the

particles. In case of the steady growth process, the aggregation of particles is dominant

and thus the effect of contact angle on the particle size and the total number of particles is
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appreciable. For the induction growth case, the consolidation of particles is more dominant

with the contact angle not having a heavy affect on the bulk properties like average diameter

or total number of particles.

The bar charts as shown in Figs 22 and 23 reveal the relative affect in the form of bar

charts over the entire time span. These can help with a more detailed and comparative

understanding of the influence of the input fundamental parameters on the output measur-

able granule properties. Having a glance at the bar plots can help us have a better idea

on the extent to which each input parameter affects the output granule property. The bar

plots are also in agreement with the individual plots showing the bulk properties. Using

this information, better control and optimization studies can be performed, since a deeper

knowledge of the process can be obtained.

6.4 Experimental studies with fluid bed granulation equipment

Figure 24: Qicpic for PSD analysis
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(b) PSD with varying air flowrate

Figure 25: Plots showing the effect on PSD with varying liquid spray rate and air flowrate
as shown in Chaudhury et al. (2012)

Experimental studies for granulation in a fluid bed equipment was performed for a deeper

insight into the mechanisms governing granulation and the influence of the operating param-
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eters. The experiments were performed using the DOE mentioned in Table 3. The resultant

granules were analysed using Qicpic from Sympatec.

Figure 26: Cumulative PSD for the initial sample
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Figure 27: PSD for the initial sample

Qicpic is capable of measuring the PSD for fine particles. The granules formed from the base

case and a few other scenarios were too big compared to the capacity of the measuring device.

The alternative could be sieving the particles in order to obtain the PSD. The disadvantages

of sieving the bigger granules would be the lack of compatibility between the sets of PSDs.
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Sieving would lead to a narrow distribution due to the lack in resolution and the results would

be misguiding. This inhibits the ability to compare the results for the various scenarios and

obtain deductions from the results. Due to the shortage of time and lack of availability of the

equipment, the DOE could not be re-formulated and the experiments could not be re-run

for the purpose of better analysis. Figures 26, 28, 30, 32 show the PSD for the initial fine

powder, the high variations for air flowrate and product temperature and the low variation

for the liquid spray rate respectively.

From our previous works on the modeling aspects for a fluid bed granulation (Figure 25),

it was observed that with a reduction in the liquid flowrate, the PSD reveals greater number

of smaller particles. Thus, the PSD is shifted towards the left. Due to reduced liquid

addition, the availability of surface liquid is less thus reducing the extent of aggregation.

Similarly, with increasing air flowrate, the draft for drying of liquid increases. This leads to

a slight reduction in the average diameter of the particles. The PSD exhibits the existence

of larger number of smaller particles when the air flowrate is increased.

Figure 28: Cumulative PSD at final time for the high variation of air flowrate

The study was inconclusive owing to the lack of PSD information for the entire DOE set.
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Figure 29: PSD at final time for high variation of air flowrate

Figure 30: Cumulative PSD at final time for the high variation of product temperature

From Figures 26-32 it can clearly be seen that there is an overall increase in the particle size

as granulation proceeds. The PSD for the initial sample reveals the existence of very fine

powder, but the PSDs for the granulated material has a higher amount of larger particles.

A mechanistic model for the fluid bed granulation was developed in our previous works

(Chaudhury et al., 2012) showing the effect of the various parameters of the final granule

size distribution. This study was aimed at validating the observation previously proposed

using the modeling framework. The granules obtained using the other scenarios were too
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Figure 31: PSD at final time for high variation of product temperature

Figure 32: Cumulative PSD at final time for the low variation of liquid spray rate

big to analyse using Qicpic, thus suggesting the formation of bigger granules. Lower spray

rate controls the liquid distribution and prevents “lump” formation. Higher air flowrate

enhances the fluidization in the bed, thus dispersing the powder within the bed. Along with

the high product temperature, the high air flowrate also increases the drying of the powders

within the bed. This leads to a reduction in the surface liquid availability of the powder

and hence large agglomerates are significantly cut down. The resultant granule population
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Figure 33: PSD at final time for low variation of liquid spray rate

is more homogeneous with respect to size and the distribution is narrower compared to the

other unmeasurable scenarios. The air flowrate and the product temperature for the base

case is speculated to be too less for more homogeneous granules to be formed. Thus, for a

constant spray rate of liquid, smaller, measurable granules could not be obtained for lower

L/S ratio.

6.5 Parameter estimation results

The parameter estimation results can provide good insight towards the techniques and meth-

ods that can be employed for improved estimation of empirical parameters. A detailed review

on the techniques has been conducted taking into consideration metaheuristic techniques and

the standard gEST platform offered by gPROMS. For now, only estimates have been ob-

tained only for the model describing the growth case. The optimization algorithms have been

run using the square of error between the target and the simulated concentration evolution

profile. The optimization procedure used by the metaheuristic techniques give a global op-
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tima although the computational time required is large. The gEST optimization platform

provides a local optima for the minimization problem. Figure 34 shows the control on the

supersaturation profile and the CSD of the seed and the final product crystals.
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Figure 34: Supersaturation profile and the crystal size distribution of the initial and final
crystals simulated using the PBM

Figure 35 shows the trend in the objective function over the entire domain spanning the

lower and upper bounds for the various empirical parameters. It can be seen that there is

an extensive shallow region in the figure but the minima seems unique.

The optimization algorithms have been implemented on the objective function simulating

the error, and the respective estimates have been obtained for the empirical parameters.

We have subdivided this review into two categories, one applicable for smooth data and

the other for noisy data. It is more realistic to analyse the behavior of the optimization

algorithms towards estimating empirical parameters for noisy data, owing to the fact that

real data has a lot of noise in it for various factors. For the simulated annealing algorithm,
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Figure 35: Objective function plotted over the entire domain for k1, k2 and k3 fixed at 1 for
experiment 5 (left) and experiments 1-4 (right)

the various parameters used in the optimization algorithm have been mentioned in Section

3.2.1. The particle swarm algorithm was implemented using c1 = 2, c2 = 2 and w = 0.4.

It should be kept in mind that owing to the stochastic nature of the Simulated annealing

and the Particle swarm algorithm, the results obtained from the coarse optimization step

tend to vary (although minutely) after each runs. The bounds were strictly imposed while

doing the optimization using either of the algorithms. For the gEST toolbox, we have used

a constant relative variance model ranging between 0.1 − 0.15. The parameter estimation

was performed with multiple experiments using different combinations from the list provided

in Table 2. In order to have better results, we foresee the global optimization algorithms

having the role of a coarse optimizer followed by a gradient based method in the end of the
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(a) Concentration profile for experiment 1 (b) Concentration profile for experiment 2

(c) Concentration profile for experiment 3 (d) Concentration profile for experiment 4

Figure 36: Concentration profiles for the experiments listed in table 4 after the parameter
estimation using experiments 1 + 2 + 3 + 4 in gPROMS

(a) Concentration profile for experiment 1 (b) Concentration profile for experiment 3

Figure 37: Concentration profiles for the experiments listed in table 4 after the parameter
estimation using experiments 1 + 3 in gPROMS
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Figure 38: Concentration profiles for the experiments listed in table 4 after the parameter
estimation using experiment 5 in gPROMS

SAA and PSO algorithm (using the optimal values obtained from these algorithms as the

initial guess) for the fine tuning. Sequential quadratic programming (SQP) was used for the

gradient based method. The inbuilt SQP algorithm available in MATLAB Version 2012a

was used for the local optimization. This methodology leads us to the value for the estimates

as listed in Table 6 and 7

From the tables it can be seen that SAA gives better results without the gradient based

method used for the fine tuning. It should be kept in mind that SAA requires an initial

guess for its calculation unlike the PSO. The better results from the coarse optimization

algorithm could be an artifact of the initial guess. Since this work is still in continuation,

further investigations are being made and soon a statement can be provided in this regard.

The particle swarm algorithm is faster than SAA (computation wise). The birds in the PSO

start flying randomly but eventually their flight is biased by the communication between
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Table 6: Estimated parameters using SA, PSO and gEST
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Table 7: Estimated parameters using SA, PSO and gEST

each individual point in the flock. The birds seem to start concentrating near the point

where a global optimum is seen by any bird that is a part of the flock. This interaction

between the different points is missing in case of SAA. Thus, the convergence is faster in

case of PSO due to the interactive behavior of the data points while optimizing the objective

function. There is still some room for improvement with the algorithms by changing the

values for the adjustable parameters such as c1, c2 and w in PSO and the cooling rate in the

SA algorithm. With the gradient based, fine tuning algorithm at the end, the performance
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of both the PSO and SAA methods seems impeccable in estimating the ideal values used

to formulate the inverse problem. The estimation using gEST comes with an elaborate

statistical analysis in the execution output report, which provides details on the confidence

ellipsoids, variance-covariance matrix, variance value used and more similar data relevant to

the estimates to provide an idea on the quality of the estimated parameters.

0 500 1000 1500

1.2

1.4

1.6

1.8

2

2.2

2.4

time [s]

C
on

ce
nt

ra
tio

n 
[m

ol
/L

]

 

 

smooth data
noisy data

Figure 41: Concentration profile with noise added

As the smoothed, simulated data was used for the parameter estimation exercise, a study

has also been performed to test the performance of these algorithms on noisy data which is

a better replication of real data obtained from measurements. The noisy data was generated

using the previous smooth, simulated data and can be represented using the expression (74)

Ci,noise = Ci ±
Ci

100
σ randn (74)
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Figure 42: Objective function with noisy data over entire domain of k1, k2 and k3 = 1

The noisy data using Equation (74) and a σ value of 3 has been shown in Figure 41.

Similar to the smoothed data, the objective function has also been plotted for the noisy

data in the entire domain for k1 and k2, keeping k3 fixed at 1. It can be seen from the

previous discussions that the gradient based method at the end of the meta heuristic method,

significantly improves the estimates for the inverse problem. Thus, for the noisy data, we

are solely focussing on the performance of the optimization algorithm after the gradient

based method has been implemented. Table 8 summarizes the results obtained from the

minimization of the error using noisy data.

It can be noted that the performance of the PSO greatly deteriorates while handling noisy

data. The estimates obtained from the SA+SQP algorithm reveal a closer approximation to

the original values used for framing the inverse problem.
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Table 8: Estimated parameters using SA+SQP and PSO+SQP for noisy data
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7 Conclusion

This report deals with obtaining a semi-mechanistic aggregation kernel that is representative

of the influence of the input parameters on the output quantities. The model can effectively

capture the steady and induction growth behaviors under the conditions observed in experi-

ments. The dynamic sensitive analysis included in this work also gives a comparative study

on the extent at which each of the crucial fundamental parameter effects the final granule

character. This also provides with an insight on which input parameter could be manipu-

lated in order to obtain a granule population with a certain characteristic. This model could

also be beneficial for being extended for control, optimization or scheduling kind of work.

The ability of the model to be able to capture the intricate behavioral attributes observed

during the practical granulation process makes this work novel and this model different from

the pre-existing models noticed in literature.

The results from the experimental studies were inconclusive due to the absence of enough

measurable PSDs for the various scenarios listed in the DOE. Intuitively, the trends show

agreement with the outcomes predicted in previous works (Chaudhury et al., 2012). The

review for the various parameter estimation techniques suggest the applicability of the various

algorithms for effective estimation of empirical parameters using noisy and smoothed data.

The performance of the SAA and PSO were comparable for smooth data, but with noisy

data, the performance of PSO deteriorated significantly. Appropriate choice of the objective

function and number of experiments to be included for the estimation need further attention.
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8 Future work

The parameter estimation work is being extended further and a joint paper with the col-

leagues at RCPE is aimed at. This work requires further attention in terms of exploring the

different types of objective functions that could be used for the error minimization and the

number of experiments that need to be considered for improved estimates. Furthermore, the

results from the various algorithms need to be explored further in order to be able to make

solid statements that might ease the parameter estimation exercise for researchers. The 1-D

crystallization PBM considered includes only the growth mechanism. Estimation using more

mechanisms such as aggregation and nucleation and considering more measurable quantities

into the objective function (such as CSD) is yet another direction we are aiming at looking

into.
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