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Preface 

This report emerged in the course of a research project on behalf of the Austrian Marshall 

Plan Foundation, conducted during an internship at the City University of New York, by 

Michael Aigner. It includes extracts of the master thesis Transcription Factor Binding 

Site Prediction by the Use of Profile Hidden Markov Models [1] and summarizes methods 

and results of the corresponding research. 
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1. Introduction 

Understanding homology among proteins starts with sequencing those proteins themselves. 

Commonly, protein sequences are represented by strings of amino acids, nucleobases or 

peptides. A considerable and continuously growing amount of protein sequences has already 

been explored and made available in online databases like PFAM [2], Swiss-Prot [3], and 

Astral [4]. Furthermore, the JASPAR Database [5] provides a considerable collection of 

sequenced Transcription Factor Binding Sites (TFBSs). Well known and with a big impact to 

the field, the Human Genome Project [6] finally paved the way to deal with sequences of the 

human genome. By this, studying the statistics of sequence data has become possible. 

Organizing and classifying the vast amount of sequence data which has already been explored 

and gathered, is part and the first step to understand and to gain knowledge out of the data, see 

[7, p. 1]. Organization and classification in this context is exactly the approach of protein 

homology search. To classify sequences, no matter of which representation, means to proof 

the similarity of one sequence to a set of others. This method is currently the cheapest and 

therefore the preferable for examination in the first place. 

From the point of view of a computer scientist, the first approach for showing similarities is to 

compare those strings, compute distances and, based on the resulting measures, classify them. 

Fortunately, this approach is not out of touch with reality. The "similar sequence - similar 

structure - similar function paradigm" [8] implies that the similarity of two sequences of 

proteins (respectively strings) is an indicator for a similarity of 3D structure and function. 

Exploring similarities among sequences is considered to reveal relationships between proteins 

of similar biological function. Therefore it should come as no surprise that "most of the 

problems in computational sequence analysis are essentially statistical" [7, p. 1]. 

In the early 90s a group around A. Krogh and D. Haussler introduced profile Hidden Markov 

Models (pHMMs) [9], adopting HMM techniques which have been used in speech 

recognition. HMMs had been used in biology before, but their paper had a dramatic impact, 

because HMM technology was well-suited to “profile” methods for searching databases using 

multiple sequence alignments (MSAs). Since then, bioinformatic groups use pHMMs as the 

underlying formalism for sequence profile analysis, see [10]. 

Decoding algorithms are used to find the sequence of hidden states (path) of pHMMs given an 

obtained sequence. In addition, by the use of decoding algorithms, the probability of that path 

both occurring and producing the obtained sequence can be estimated. 
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The probability whether a protein sequence contains a TFBS can be described by the resulting 

probabilities (scores) of decoding algorithms. Furthermore, the path can be used to determine 

a location of the TFBS within the obtained sequence. 

The basis for the implementation is the HMModeler framework. This framework provides, 

among others, tools for parsing protein sequence formats and parameterization and training of 

pHMMs. 

2. Selected Background Theory 

2.1. Transcription Factor Binding Sites 

Transcription is one of the fundamental processes of life. It is the first step in a procedure that 

translates the Desoxy-ribonucleic-acid (DNA), into proteins. This process is needed to 

enhance or repress the production of specific proteins to a certain time and amount. Imbalance 

of this systems lead, in the worst case, to severe effects. One of which is known as the major 

burden of mankind – cancer. [11] 

The key element in transcription and regulation are transcription factors (TF). These proteins, 

referred to as trans-elements, interact with specific regions of the DNA known as cis-

elements in order to enhance or suppress the transcription.  

An important paradigm in this context is that TFs bind to defined short stretches of DNA. 

These elements (typically 6–12 base pairs) so-called transcription factor binding sites, are 

scattered throughout the genome. Often they are localized near the starting site of 

transcription, known as promoter, marking the beginning of a gene, but they are also found 

several hundred base pairs off. 

A major question in current research is whether potential binding sites are functional and 

under what circumstances. In order to test this biological relevant state, they have to be 

identified first, which is challenging, considering that a simple string based search of the 

DNA sequence within a large genome finds large numbers of matching sequences. This task 

is further complicated by the fact that the most TFBSs are defined by a sequence that contains 

ambiguous bases and several proteins compete over one binding site. [12] 

Driven by increasing availability of sequence datasets, development of powerful tools for the 

search and identification of such elements is of highest interest. 
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2.2. Data, Formats and Protein Representation 

Proteins are coded as sequences of either amino acids or nucleobases. Therefore, several 

string representations have been developed, from which we will address two: the Amino Acid 

Alphabet and the Nucleic Acid Alphabet. 

2.2.1. Alphabets 

Alphabets in computer science are roughly just a set of characters. In bioinformatics, they 

contain a set of characters that is used to represent biological sequence information as a 

single-letter code. 

However, the most common alphabets are the ones containing amino acids or nucleobases, 

which will be discussed below. For both representations, several notations exist. Commonly 

they follow the IUPAC/IUBMB coding [13]. In addition, several approaches of reduced 

amino acid alphabets exist, which are not going to be addressed. 

2.2.1.1. Nucleic Acid Alphabet 

The term “Nucleic Acid Alphabet” has been adopted from IUPAC/IUBMB. For the sake of 

better understanding we continuously use the term “nucleobases” in order to refer to adenine, 

cytosine, guanine and thymine. The basic nucleic acid alphabet after IUPAC/IUBMB consists 

of the five characters "AGTCN", standing for these four nucleobases each represented by 

their first letter. Additonally, the character "N" is standing for an arbitrary nucleobase. The 

nucleic acid alphabet is used by the .sites file type of the JASPAR database, which is going to 

be dealt with. While not recommended by IUPAC, JASPAR .sites files contain "X" as well 

for unknown acids, see [14]. In terms of biological sequencing "N" and "X" have a different 

meaning, but from the computer sciences perspective, "N" and "X" have to be handled equally 

as long as no further information is available. 

2.2.2. FASTA Format 

The FASTA format is a common text-based format for representing either nucleobase, amino 

acid or peptide sequences or sets thereof. FASTA files with a set of sequences are called 

multi-FASTA files, see [13]. Although, the FASTA format does not specify the alphabet to be 

used for the sequence data, it is recommended to use the IUPAC single-letter codes [13]. 

Since FASTA format thus has less restrictions, it can be seen as a meta format. Several sub 

formats representing more specific sets of sequences use the FASTA format as well. 
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2.2.2.1. Files of Type .sites 

Files of this type are provided by the open access JASPAR CORE database (The JASPAR 

database). 

The .sites file represents the raw data for all sites of [5] for the construction matrix models of 

TF DNA-binding preferences. Since files of the type .sites represent TFBSs, the alphabet has 

been extended by using both lower case and upper case characters. Uppercase characters 

describe the exact location of the binding site itself. The following example illustrates that: 

>MA0036 GATA2 1 

cgatc AGATAggctgcctcgg 

>MA0036 GATA2 2 

ca GGATActtgacttgtggt 

The length of the binding sites is always constant in one file. Obviously the sequences are not 

aligned with respect to the binding sites. This leads to the conclusion that the alignment 

information for training the HMM lies in the upper case letters only. 

2.2.3. Data 

For all test implementations the data set of 28 .sites files containing TFBSs, provided by 

JASPAR [5] has been used. Each file represents a set of sequences containing binding sites 

for one particular transcription factor. Such a set is denoted as TFBS profile. The marked 

binding sites have a length of 5 to 19 nucleobases. 

2.3. Consensus Sequence and Position Weight Matrix 

Common methods, for TFBS prediction are the consensus sequence and the position weight 

matrix (pwm). 

In general, the consensus sequence represents a set of example sites by matching the example 

sites closely but not necessarily exactly. The number of allowed mismatches, the ambiguity of 

the consensus sequence and the sensitivity and precision of the representation are in a relation 

to each other. 

Creating consensus sequences is quite easy, but it is not optimal for predicting the occurrence 

of new sites. Several methods for generating consensus sequences have been compared by 

Day and McMorris in [14], see [15]  

The pwm is an alternative to the consensus sequence, which represent a multiple sequence 

alignment as a matrix where each cell represents a score for a nucleobase in the particular 

position. Pwms give more significant results for TFBS prediction than consensus sequences, 
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but have one major disadvantage. With pwms it is not possible to map insertions or deletions 

of nucleobases, caused by evolutionary mutations. A common way to map those mutations is 

the use of HMMs. 

2.4. Hidden Markov Models 

HMMs are stochastic models named after A. Markov, because of the underlying theory of 

Markov Chains. In general, HMMs are a tool to efficiently describe a stochastic model for 

sequences. These models distinguish internal states �� from emitted symbols ��. The intern 

state sequence is called the path � and follows a Markov chain. In bioinformatics, such chains 

are used to abstractly describe the skeleton or backbone of a family of sequences. For the 

determination of the path, given an observed sequence, decoding algorithms are used. 

Some parameters of HMMs are transition probabilities which are distinguished between the 

types transition probabilities ��� and emission probabilities ��. More precisely, we have 

 
��� = 	
�� = �	|	���� = �) , (1) 

where �� are the state variables and � and � are the actual states. Therefore the transition 

probability ��� is defined as the probability of a transition from state � in the i-1th position of 

the path, to state � in the ith position. Similarly, 

 
��
�) = 	
�� = �	|	�� = �) . (2) 

Thus, the emission probabilities �� are defined as the probability that symbol � is emitted 

when being in state �. 

The emitted sequence � is also called the observation. Considering protein homology search 

the observation represents a sequence of amino acids or nucleobases. 

In general, an HMM has no restriction in terms of possible transitions from any state to any 

other. These models are called fully connected models. Profile HMMs (pHMMs) can be 

considered as a group of more stringent models, with a particular architecture. 

2.4.1. Profile HMMs 

Commonly, pHMMs are used in protein homology search for aligning and distance measuring 

(scoring) of test sequences to a given sequence dataset. Therefore, the architecture of pHMMs 

should correspond to the criteria of the set the model is going to be trained with and the 

desirable opportunities for the alignment. 

The goal of aligning a sequence to a set of others is to find a way to align the sequence such, 

that a column-wise best possible match of the symbols emerges. Since parts of some 
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sequences can be missing (deletions) or additional parts can occur (insertions), this leads to 

three possible state types for pHMMs, see

Match states are those states which are emitting, at column 

��
�). Insert states are emitting symbols as well, but since these are additionally emitted to 

the model columns, this output is somewhat in between model columns. Therefore

emission probabilities for insert

respective alphabet, called qas

Delete states are also called silent states

2.4.2. Smith-Waterman Style pHMM

Additionally to the original pHMM 

Both are consisting of a begin state B

state IB (resp. IE) represented by a diamond

shaded circle. The corresponding transition probabilities are summarized as 

the flanking insert states) and 

���. 

These flanking models are connected to the

which allow a transition to each of the match states (

2.4.3. Parameterization of pHMMs

Parameterization of pHMMs m

parameters either to affect the automatic calculation/estimation of probabilities or to even 

substitute the estimation process 

models (see Chapter 2.5.1)

parameterization is to make the distribution, ove

the desired group of positives 

  

(deletions) or additional parts can occur (insertions), this leads to 

possible state types for pHMMs, see [16]. 

are those states which are emitting, at column �, a symbol � with the probability 

are emitting symbols as well, but since these are additionally emitted to 

the model columns, this output is somewhat in between model columns. Therefore

emission probabilities for insert states are taken from a background distribution of the 

qas. Delete states emit the symbol "-" which represents a gap. 

silent states, see [16]. 

tyle pHMM 

pHMM this model has two flanking simple self

begin state B (resp. an end state E) represented by a square

represented by a diamond and a silent state SB (resp. SE

The corresponding transition probabilities are summarized as 

and ��� (transitions to the flanking silent states) 

are connected to the incorporated original pHMM via 

which allow a transition to each of the match states (���	��
 and ���	��

). 

 

Figure 1: Smith Waterman pHMM 

Parameterization of pHMMs 

Parameterization of pHMMs means to incorporate prior expert knowledge by setting 

parameters either to affect the automatic calculation/estimation of probabilities or to even 

substitute the estimation process by assigning user defined values. Configuration

) is considered a parameterization as well

parameterization is to make the distribution, over the whole space of sequences 

group of positives (e.g. protein families or TFBSs), see [7, p. 107]

6 

(deletions) or additional parts can occur (insertions), this leads to 

with the probability 

are emitting symbols as well, but since these are additionally emitted to 

the model columns, this output is somewhat in between model columns. Therefore, the 

background distribution of the 

" which represents a gap. 

two flanking simple self-looping models. 

represented by a square, an insert 

SE) represented by a 

The corresponding transition probabilities are summarized as ��� (transitions to 

(transitions to the flanking silent states) where ��� = 1 �

incorporated original pHMM via the silent states 

eans to incorporate prior expert knowledge by setting 

parameters either to affect the automatic calculation/estimation of probabilities or to even 

onfiguration of Null 

as well. The aim of 

r the whole space of sequences peak around 

. 107]. 
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Parameters which are currently in use by the HMModeler are: pseudo counts for transition 

probabilities; background distribution or distribution mixtures for emission probabilities; 

fixed transition probabilities for the flanking models and there from outgoing intro transition 

probabilities; and the expected model length (eml), which takes account into the flanking 

transition probabilities and the simple null model. 

2.5. Decoding Algorithms 

Decoding algorithms tell us "what the observation sequence 'means' by considering the 

underlying states" [7, p. 107]. So, the aim of decoding algorithms is to find an intern path � 

through the HMM given an observed sequence �, which means a mapping of � → �, see [17] 

and [18]. In the case of the Viterbi algorithm the found intern path is the most probable path 

�∗. 

Furthermore, decoding algorithms find the probability that an HMM produces this sequence. 

This probability is usually used for deriving so-called scores for an HMM-sequence tuple. 

For general information about these algorithms please see literature like [7] and [19]. 

2.5.1. Null Models 

In order to assess significance of scores, those must be comparable. By decoding a sequence 

we get a probability that an HMM produces a certain sequence, but this probability is 

dependent on the length of the testing sequence. Since either all ��� ≤ 1 and all �� ≤ 1, the 

likelihood for a sequence   decreases with ! = 	 | |. This means that sequences with a variable 

length ! are not comparable up to here. To make the scores comparable, a correction method 

is needed, see [20]. 

The correction of the score is done by dividing the probability of the decoding algorithm 

result by the result of the null model (resp. subtracting in the log-space). 

2.5.1.1. Simple Null Model 

This model follows the approach of using a different model and scoring with the same 

sequence. 

The simple null model is equal to the Smith-Waterman style pHMM flankings. By correcting 

a score with the result of this model, length dependency of both the begin and the end cycle 

cancel out. Furthermore, the length dependency of the insert states of the core model are 

canceled out concerning the emission probabilities, see [21]. 
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2.5.1.2. Reverse Sequence Null Model 

The reverse sequence null model, follows a different approach by changing the sequence (by 

reversing it) and scoring it with the same model. 

Fortunately, the reverse model offers several benefits like easy implementation and a 

sufficient correction of length dependencies. Obviously, it is more time-consuming than the 

simple null model. 

2.5.1.3. Resulting Scores 

Resulting from the combination of decoding algorithm and null model, we can assign to each 

tested sequence a set of six scores. Therefore, we write "#( ) = "�(!) and $#( ) = $�(!) of 

the sequence   where "�(!) is the Viterbi score and $�(!) is the Forward score; %&( ) 
denotes the score of simple null model of sequence  ; and  �� stands for the reversed 

sequence  . 

 
 Viterbi algorithm Forward algorithm 
No null 
model 

viterbi score "#( ) forward score $#( ) 
Simple 
null model 

simple corrected 
viterbi score 

"#( ) − %&( ) simple corrected 
forward score 

$#( ) − %&( ) 
Reverse 
sequence 
null model 

reverse corrected 
viterbi score 

"#( ) − "#( ��) reverse corrected 
forward score 

$#( ) − $#( ��) 
Table 1: Resulting scores of combination of decoding algorithm and null model 

3. Application to TFBS prediction 

Simply put, TFBS prediction means locating particular sections of sequences which are highly 

likely TFBSs. By Viterbi decoding of a testing sequence we get, on the one hand the score 	(�∗) and on the other hand the path �∗. The path �∗ may contain a section of match states 

which would mark the most probable section of the TFBS, in the case we use a pHMM 

trained by TFBSs only. So, one way to locate and score a TFBS in a sequence is decoding it 

and determine the match states section as TFBS with the probability of 	(�∗). 
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3.1. pHMM from Ungapped MSAs of TFBSs 

Since JASPAR sequences do not contain any gaps and the marked TFBSs are continuous, 

every column of the MSA can be seen as a model column for the pHMM and we do not 

expect any insertions. This leads to a very particular version of the pHMM. 

As long as we do not modify the model by parameterization towards higher delete and insert 

probabilities, but even increase the pseudo counts for match to match transitions, we can 

expect a model with match to match transition probabilities close to 11. Further we can 

assume that the model has to be entered in the first column to assure an equal length of the 

TFBS to the example TFBSs. 

In terms of decoding this means that each nucleobase of one section of the testing sequence 

will be mapped to a match state and therefore is part of the match area. 

Thus, we can take advantage of flanking models to shift the alignment to the most probable 

region. This leads to the following conclusion: 

In the case of decoding a sequence by using a pHMM from an ungapped MSA 

of TFBSs with length ', a match area ( is the most probable continuous section 

producing the decoded sequence for the location of a TFBS, with length ', too. 

3.1.1. Parameterization of pHMMs from Ungapped MSAs 

For the intro transition probabilities we have set the probability of a transition from the silent 

begin state to the first match state to ���	�) = 	0.99. By doing this, we expect the path �∗ of 

the Viterbi algorithm to enter the pHMM in the first model column. We also increase the 

pseudo counts for match to match transitions to 100 and set pseudo counts for all other 

transitions to 1. 

 

Intro transition 
probabilities 

Flanking transition 
probabilities 

Pseudo Counts 

���	�) = 	0.99 
 ���	�-.) =	 0.01/ − 1 

��� =	2 − (| | − |1$2%|)(| | − |1$2%|)  

 ��� = 1 − ��� 

3�45ℎ	47	3�45ℎ = 100 �8 �94	47	�8 �94 = 1 :���4�	47	:���4� = 1 ;��8��8<	49�8 �4�78 = 1 �8497	49�8 �4�78 = 1 

Table 2: Parameterization for pHMMs 

Thus, the pHMM have been drastically simplified as visualized in Figure 2. Based on this 

parameterization, the grey marked transitions and states are highly unlikely to be applied by 

                                                 
1
 Due to calculation issues, = pseudocounts for all states are used. Thus, every transition probability is 1 − = at 

the maximum. 
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the decoding algorithms and consequently we ensure to achieve continuous match areas from 

the first to the last match state of the model. 

 

Figure 2: Reduced Smith Waterman pHMM 

3.2. Approaches of TFBS Prediction with HMModeler 

In taking advantage of these findings, a testing scenario can be sketched as follows: 

1. Parsing: parse a .sites file and create a MSA 

2. Parameterization: set a high amount of pseudo counts for match states and set a high 

probability for entering the pHMM in the first column. 

3. Training: leave one sequence of the MSA out and train the pHMM by calculating 

emission probabilities �� and transition probabilities ��	�. 
4. Decoding: decode the omitted sequence in order to the trained model, to determine a 

match area and the corresponding scores. 

5. Classifying: Check whether the match states are corresponding to the original position 

of the TFBS. If so, the score represents a positive sample, otherwise it could be seen as 

a negative. 

6. Threshold estimating: Repeat steps 1 to 5 and train a  Bayesian classifer in order to 

estimat thresholds for positve scores. 

Following this procedure, we get either a positive or a negative sample and the corresponding 

score per sequence. By decoding an unknown explorative sequence we can use the threshold 

to predict whether the sequence contains a TFBS and expose with the match area where it 

may be located. 

This is a first result but may not be satisfying, because of the following concerns: a) negative 

samples describe only scores which are a result of a decoding, where the match area does not 

match the original TFBS position, which is not tantamount with a confirmed negative sample; 

b) we do not know the significance of the resulting scores; c) we get one match area within 

one sequence, but possibly the sequence contains several likely positions of TFBSs.  
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3.2.1. Defining Positive and Negative Samples 

We need to answer the question what exactly is meant by a positive or a negative sample. 

Eventually scoring thresholds should be used to decide on the basis of a score whether a 

sequence contains a TFBS or not. To train a bayesian classifier we need at least two groups of 

samples: scores associated with sequences containing a TFBS (positives) and scores with 

sequences not containing a TFBS (negatives). This would be the ideal case, but proving 

whether a sequence do not have a TFBS is unrealistic, since this requires a lot of real-world 

laboratory experiments for each sequence. 

Unfortunately, real-world biology makes it even more difficult, since so-called repeats of 

TFBSs within the example sequences of JASPAR exist. Thus, in one sequence several 

potential TFBSs can occur, whereas only one is marked as such. This means there is a 

considerable probability that the decoding of a sequence results in matching repeats and 

consequently gains a high score, but has to be labeled as a negative sample, since it is not 

marked as a TFBS. 

However, currently there is no way for us to prove whether a negative sample is a de facto 

negative sample. Since we expect a higher 	(�∗) for positive samples, we can conclude that 

wrongly labeled negative samples raise a threshold, but we do not know by which factor. 

Although the definition is not entirely satisfying we stick to the follwing one: 

A positive sample describes a sequence-scores tuple where the match area 

coincides with the original location of the TFBS. 

A negative sample describes a sequence-scores tuple where the match area 

does not coincide with the original location of the TFBS or a tuple where the 

sequence does not even contain a known TFBS. 

3.2.2. Implementation 1: Threshold Estimation for TFBS Prediction, by the Use of 

Bayesian Classifier 

In order to get a first understanding of scores the above sketched testing scenario has been 

implemented. The used data set has been the full set of the 28 JASPAR .sites files. For each 

.sites file we have executed steps 1 to 5. The parameterization (step 2) was set as described in 

Chapter 3.1.1, except the flanking transition probabilities. Due to performance issues those 

were set to ��� =	 >�(?�|@���|)(?�|@���|) , where � = | |AAAA for each TFBS profile. The eml for the simple 

null model was set to | |AAAA. For the training (step 3) of pHMMs 10% of the sequences of each 

MSA have been taken out. These 10% amount to 2,513 sequences. The classification (step 5) 

followed the definition of Chapter 3.2.1. Noticeable at step 5, for 16 files all TFBS have been 

found correctly, so they do not produce negative samples. The remaining 12 files make up 
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540 negative samples, whereas only 5 files make up for 90% of those negative samples. In 

other words the majority of the negative samples are resulting from a minority of the tested 

files and may not be representative for the rest of the files. Another consequence is, that we 

cannot implement a threshold estimation for those 16 files (and consequently for the particular 

TFBS profiles, since the dataset contains no sequences causing a negative sample). 

Furthermore, we have a positive/negative ratio of approximately 4:1. 

For estimating the threshold for positive scores (step 6) a naive Bayes classifier has been 

trained by the Matlab function classify(sample, training, group, 'quadratic') . 

The parameter 'quadratic'  specifies the type of discriminant function. The training of the 

classifier was done with 70% randomly chosen samples. The testing of the classifier was done 

by the remaining 30%. The feature vector has been two dimensional, with the features simple 

corrected viterbi score and reverse corrected viterbi score. 

 

Figure 3: Decision regions and testing samples of Implementation 1 

Figure 3 shows the scatter plot of the trained classifier and the testing data. The blue surface 

describes the positive decision region, the red surface describes the negative decision region. 

Accordingly, the blue dots describe positive samples and the red dots negative samples. 

Due to the positive/negative ratio, the negative decision region is much smaller than the 

positive, which is true for the testing data, but may not for explorative data. A correlation of 

the two dimensions is obvious, but also expected, since both dimensions are related to the  
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Viterbi score. We also expected a higher threshold in consequence of wrong negative 

classification, so it is not surprising, that false positives are less likely than false negatives. 

With the Matlab function plotconfusion, we created the classification confusion matrix shown 

in Figure 5. The confusion matrix can be interpreted as described in Figure 4. 

 

# True Positives 
(TP) 1		 +/ 

# False Positives 
(FP) $		 +/ 

1	1	 + $	 

1 − 1	1	 + $	 

 

478 
63.4% 

23 
3.1% 

95.4% 
4.6% 

# False Negatives 
(FN) $/	 +/ 

# True Negatives 
(TN) 1/	 +/ 

1/1/ + $/ 

1 − 1/1/ + $/ 

 

114 
15.1% 

139 
18.4% 

54.9% 
45.1% 

@C@CD�E 

1 − 1	1	 + $/ 

@E1/D�C 

1 − 1/1/ + $	 

1	 + 1/	 +/  

1 − 1	 + 1/	 + /  

 

80.7% 
18.3% 

85.8% 
14.2% 

81.8% 
18.2% 

Figure 4: Legend for confusion matrices  Figure 5: Confusion matrix of implementation 1 
 

The confusion matrix represents the outcome of the testing of the Bayesian classification. For 

practical biological purposes the most interesting classification outcome is the sensitivity 

(SENS, marked in a green circle) and the false rejection rate (FRR, marked in a red rectangle). 

By implementing a varying threshold for moving the decision boundaries, the sensitivity can 

be increased by lowering the FRR and vice versa. The threshold can be adjusted in order to do 

cost optimization, depending on the costs of FPs and FNs. In terms of biological research 

these costs can be diverse. 

After calculating the log of all Bayesian posteriori probabilities for all points, the threshold is 

computed iteratively with 100 steps from the lowest to the highest probability. Plotting of the 

sensitivity against the FRR over the threshold is called receiver operating characteristic 

(ROC) and shown in Figure 6. The marked data point in Figure 6 represents the threshold 

equal to the Bayesian classification shown in Figure 3 and Figure 5. 
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Figure 6: ROC graph of implementation 1 

An optimum in terms of classification would be a rectangular graph corresponding to 

aforementioned sensitivity of 100% and FRR of 0%. 

Although, the results of the first test scenario are far better than random classification, they 

are not sufficient for actual application to TFBS prediction. Thus, the test implementation 

needs to be modified in order to solve aforementioned problems and probably achieve more 

satisfying results. 

3.2.3. Implementation 2: Threshold Estimation for TFBS Prediction for Sequence 

Segments, with a Fixed Length, by the Use of Bayesian Classifier 

Another way of generating a testing set for threshold estimation is not to decode whole 

sequences, but to slice the testing sequences into segments of equal length. In other words, we 

define a window F�→� where � is the sequence index of the first nucleobase position of the 

window and � is the last nucleobase position. The size of F�→� is |F| = � − � = � ∗ |1$2%| 
where � ≥ 1. We slide this window nucleobase-wise (for each position �) over the testing 

sequence. For each window, we execute steps 4 and 5 of the above testing scenario. Thus, one 

sample for each scored window or | | − |F| samples for each sequence will be produced. 

Relative to the window size, a number of windows will not contain the actual TFBS and result 

in a negative sample. Consequently this procedure leads up to a higher number of negative 

samples. 
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By doing this we can eliminate several of our concerns: a) due to the fact that negative 

samples are produced for each sequence (resp. each TFBS profile), for one thing, negative 

samples are less dependent on the particular TFBS profile and for another thing, we can 

implement threshold estimations for each TFBS profile; b) since we get a higher amount of 

negative samples, on the one hand the impact of wrong classification is reduced, and on the 

other hand the positive/negative ratio corresponds more to real-world application scenarios; c) 

the impact of length dependencies of scores will be reduced, due to a lower length variability 

of the testing sequences. 

Of course, computational effort increases, by using this method, since steps 4 and 5 have to be 

repeated | | − |F| times, for each sequence. 

The window size was set to |F| = |1$2%|. Consequently, we do not expect insertions in the 

flanking states. Due to calculation issues the flanking transition probabilities were set to ��� = 	= instead of 0. Due to segmentation, the number of testing samples has been increased 

to 554,151 with 2,513 positive samples and 551,638 negative samples. 

Besides aforementioned alterations, parameterization and execution of all other steps have 

been performed in conformity with implementation 1. 

As we can see in Figure 7 the decision regions changed their size drastically in comparison 

with Figure 3. Due to the positive/negative ratio of approximately 1:220, the positive decision 

region, for this test, is (much) smaller than the negative one. Not surprisingly, the correlation 

of the two features is still present. 

 

Figure 7: Decision regions and testing samples of implementation 2 
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The confusion plot (Figure 8) of the Bayesian classifier with a fixed threshold, shows that the 

test with a fixed window results in a higher recognition rate. The sensitivity has been 

increased to 98.4% and the FRR decreased to 3.5%. 

742 
0.4% 

5769 
3.5% 

11.4% 
88.6% 

12 
0.0% 

159723 
96.1% 

100.0% 
0.0% 

98.4% 
1.6% 

96.5% 
3.5% 

96.5% 
3.5% 

Figure 8: Confusion matrix of implementation 2 

Considering the ROC plot of this test implementation, the improving of recognition is even 

more obvious. The resulting graph is much closer to the rectangular desired one. The marked 

data point in the middle represents the Bayesian classification of Figure 7 and Figure 8. The 

lower left data point shows that we can reach a sensitivity of 90.15% with a FRR of 1%. 

Accordingly, the upper right one shows a FRR of 7.64% with a sensitivity of 99%. 

 

Figure 9: ROC plot of second test implementation 
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However, the estimated thresholds represent not one particular TFBS profile, but all profiles 

at once. For the application to explorative sequences, decoding of those has to be done for 

each profile, anyway. Therefore, threshold estimation for each TFBS profile may give more 

representative thresholds and thus, lead to higher recognition rates. 

3.2.4. Implementation 2 for Particular TFBS Profiles 

Since the sliding window test provides a set of positive and negative samples for each TFBS 

profile, this test is applicable for single TFBS profiles. The tests for particular profiles have 

been performed in conformity with the second test implementation for all steps including 

parameterization. In the following we show the tests for two single .sites files each 

representing one particular TFBS profile. 

In a current parallel research project which has been done by Saad Mneimneh at the City 

University of New York, the significance of the corrected Viterbi scores has been examined 

theoretically. By the central limit theorem for sums of local Viterbi scores, an estimation of 

the expected values for the thresholds of the scores has been derived. The current version still 

requires a numerical approximation algorithm. Nevertheless, we incorporate preliminary 

results into implementation 2 for particular TFBS profiles (shown as green lines in Figure 10 

and Figure 13). The proximity to our empirical results indicates this approach should be 

examined further and could eliminate the necessity of training examples for finding useful 

thresholds for the classification algorithm. The results of this research will be published 

within another paper. 

Figure 10 shows the decision regions for the TFBS profile Klf4 of the MA0039.2.sites file. 

Obviously, there is a high number of false positives. 
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Figure 10: Decision regions and testing samples of implementation 2 for the Kfl4 profile 

The confusion matrix (Figure 11) for this test confirms the high number of negative samples. 

The ratio of positive/negative test samples of approximately 1:194 (0.5% positives) shows 

that knowing the prior probabilities for positives and negatives, a random classification would 

be even better. 

126 
0.5% 

1327 
5.1% 

8.7% 
12.5% 

5 
0.0% 

24654 
94.4% 

100.0% 
0.0% 

96.2% 
3.8% 

94.9% 
5.1% 

94.9% 
5.1% 

Figure 11: Confusion matrix of implementation 2 for the Kfl4 profile 

The ROC plot in Figure 12 also shows a worse performance than the ROC of implementation 

2 (which was applied to all files). 
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Figure 12: ROC of the test implementation 2 for the Kfl4 profile 

Far more satisfying results of implementation 2 for particular TFBS profiles are given by the 

application to the CTCF profile of the MA0139.1.sites file. The decision boundary clearly 

separates (shown in Figure 13) positive and negative test data points. The misclassifications 

of four negative samples as positives can be neglected in terms of the ROC. The confusion 

matrix (Figure 14) demonstrates the excellent results, too. But coming back to the four false 

positives, the confusion matrix shows also, that every eighth as positive classified sample is 

false. Still, we do not know if those samples should not be labeled negative, because of 

discussed circumstances in Chapter 3.2.1. 
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Figure 13: Decision regions and testing samples of test implementation for the CTCF profile 

28 
0.6% 

4 
0.1% 

87.5% 
12.5% 

0 
0.0% 

5039 
99.4% 

100.0% 
0.0% 

100.0% 
0.0% 

99.9% 
0.1% 

99.9% 
0.1% 

Figure 14: Confusion matrix of the test implementation 2 for the CTCF profile 

The ROC (Figure 15) is close to the optimum of the aforementioned rectangular graph. In this 

case, we zoomed the ROC in order to show that it is still not perfectly rectangular. Again, the 

marked data point represents the threshold corresponding to the decision regions (Figure 13) 

and the confusion matrix (Figure 11). 
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Figure 15: Zoomed ROC of the test implementation 2 for the CTCF profile 

3.2.5. Implementation 3: Scoring Visualization of Single Sequences, Based on the 

Sliding Window Method 

A third test implementation visualizes the window test for one particular sequence. This test 

does not follow the sixth step of threshold estimation. Rather, a visualization of likely TFBS 

locations shall be given. For doing this, we have been using the resulting Viterbi scores and 

the match area of the Viterbi algorithm. 

The procedure follows steps 1 to 5 alike the second implementation, but in this case for only 

one TFBS profile. Furthermore, only one sequence has been left out for decoding. 

The resulting scores of each window can be shown as graphs over the tested sequence. By 

doing this, we give a visualization of the scoring peaks of eventual TFBSs. 

In order to produce a continuous graph for the whole sequence we have been computing the 

average of the simple corrected Viterbi score for each nucleobase position. Thus, we assign to 

each nucleobase position � the following score 

 

 (�) = ∑ "#(F�→�)�� |F| , � ≤ 	� ≥ �		 (3) 

where "#(F�→�) = "�(!) of the sequence segment F�→�. 
This works as follows: We move the window, as described in the second implementation, 

over the sequence. For each position of the window we decode its sequence. We assign the 
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resulting score, of each window, to each nucleobase within the window. After decoding the 

whole sequence, we take the average of the assigned scores for each nucleobase. The graph of 

the average simple corrected viterbi score over the sequence gives a continuous graph of the 

probability for each nucleobase being a part of a TFBS. 

Another way of visualizing the simple corrected viterbi score, is to assign the score not to 

each nucleobase, but to the one in the middle of the window. In this case, we do not have to 

take an average, because we assign only one score for each position. For the sake of clarity of 

the visualization, we artificially decreased this score by -10. Furthermore, now values would 

be assigned to the nucleobases of the positions 0 to 
|J|>  and | | − |J|>  to | |, since those do not 

occur as the middle of a window. Therefore we assign an initial value of -10 to these 

nucleobase positions. For all other nucleobase positions we assign the score 

 

 (�) = "# KF��|J|> 	→	�D|J|> L	 (4) 

We can also visualize likely locations of TFBSs, by showing the absolute frequency of each 

nucleobase being a part of the match area, see (5). This does not work for a window size |F| = |1$2%|, since it is highly likely that the nucleobases of the testing sequence, will be 

processed by match states equally often. But by increasing the window size we can apply this 

method. We decided for a window size of |F| = 1.5 ∙ |1$2%|   as a tradeoff between speed 

performance and significance of the results. The absolute frequency of being a part of the 

match area, does not give information about how likely a particular region is a TFBS, but 

rather gives the information which regions, are highly unlikely a TFBS. This graph usually 

results in a very recognizable shape of ups and downs, for which we call this a Manhattan I 

graph. 

  (�) = #(� ∈ Q)	 (5) 

A window size of |F| > |1$2%| let us also reconsider the assignment of the Viterbi scores to 

the nucleobases. Since we expect, that several regions of the testing sequence are potential 

TFBSs we expect those to be marked as match areas, more often than the surrounding regions. 

The match area thus is "more responsible" for the score than the surrounding inserts. So it 

comes naturally to mind to assign the scores only to the nucleobases which are part of the 

corresponding match areas. Since we assign a variable amount of scores to each nucleobase, 

again we have to take the average. We call the resulting graph Manhattan II and define it as 

shown in (6). 
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 (�) = S � ∉ Q → −15
� ∈ Q → ∑ "#(F�→�)��#(� ∈ Q) U (6) 

Another graph (orange) visualizes the most likely locations after the viterbi simple corrected 

score as ranks. We assign a value of 10 to the most probable region, and decrease the value 

for every further one by 1. But every position being part of the match area once, has a value of 

1 at least. If likely regions overlap, the higher rank will be preserved. 

Fehler! Verweisquelle konnte nicht gefunden werden. shows a visualization of the above 

described test implementation for the sequence MA0139.1 CTCF 3. The TFBS (marked by the 

peak of the green graph) has been classified correctly (orange graph). But, another region 

(first peak of orange graph) shows a high probability for being a TFBS as well. This region 

may be a repeat, whereas the sequence of that region is not equal to any reference TFBS of 

the MA0139.1.sites file. Obviously, this visualization makes it easy for a biological researcher 

to determine likely locations for TFBSs. 

4. Conclusion 4. Conclusion 

In summary, the use of pHMMs and the Viterbi algorithm is a qualified method for predicting 

TFBSs. In order to predict all likely locations of TFBSs, segmentation of testing sequences 

brings an added value to these methods. Furthermore, the specific use of match areas leads to 

new methods to assess and visualize likely TFBS locations. 

Training of pHMMs by ungapped MSAs, in terms of TFBS prediction is highly similar to 

usual methods like position weight matrices and consensus sequences. But using those 

provides the options to use the Viterbi algorithm and finally to extend the method in order to 

map gaps and insertions to the model. 

Classification of sequences (or sequence segments) as non TFBSs is not possible with current 

methods and makes up one of the hitches for using pattern recognition methods in this 

context. 

The reimplementation of the decoding algorithms and separation of alphabets allows the 

framework to decode sequences notated in arbitrary alphabets. Furthermore the 

implementation of the class Decoder, provides several new methods for a convenient access 

to the output of the decoding algorithms. These methods concern the computation matrices, 

the backtrack path, the match area and the full set of scores. 
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A seamless integration of the methods in HMModeler is planned. Furthermore, the methods 

should be extended by a multi-step procedure for realigning the sites of the JASPAR database 

allowing gaps (deletions) and insertions. 
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