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Preface

This report emerged in the course of a researdglegiron behalf of the Austrian Marshall
Plan Foundation, conducted during an internshifhatCity University of New York, by
Michael Aigner. It includes extracts of the madieesisTranscription Factor Binding
Site Prediction by the Use of Profile Hidden Marldedels[1] and summarizes methods
and results of the corresponding research.
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1. Introduction

Understanding homology among proteins starts wattpjuencing those proteins themselves.
Commonly, protein sequences are represented hygstof amino acids, nucleobases or
peptides. A considerable and continuously growimgpant of protein sequences has already
been explored and made available in online datablilse PFAM [2], Swiss-Prot [3], and
Astral [4]. Furthermore, the JASPAR Database [Sjvptes a considerable collection of
sequenced ranscription Factor Binding SiteqFFBSs). Well known and with a big impact to
the field, the Human Genome Project [6] finally pdwthe way to deal with sequences of the
human genome. By this, studying the statistics efjuence data has become possible.
Organizing and classifying the vast amount of sagaelata which has already been explored
and gathered, is part and the first step to unaledsand to gain knowledge out of the data, see
[7, p. 1]. Organization and classification in tlugntext is exactly the approach of protein
homology search. To classify sequences, no mattethich representation, means to proof
the similarity of one sequence to a set of oth€mss method is currently the cheapest and
therefore the preferable for examination in thstfplace.

From the point of view of a computer scientist, fingt approach for showing similarities is to
compare those strings, compute distances and, loastée: resulting measures, classify them.
Fortunately, this approach is not out of touch witality. The "similar sequence - similar
structure - similar function paradigm” [8] impligsat the similarity of two sequences of
proteins (respectively strings) is an indicator &osimilarity of 3D structure and function.
Exploring similarities among sequences is consiiéoaeveal relationships between proteins
of similar biological function. Therefore it shoultbme as no surprise that "most of the
problems in computational sequence analysis asngaly statistical" [7, p. 1].

In the early 90s a group around A. Krogh and D. d4s#ar introduced profile Hidden Markov
Models (pHMMs) [9], adopting HMM techniques which viea been used in speech
recognition. HMMs had been used in biology befdmat, their paper had a dramatic impact,
because HMM technology was well-suited to “profife&thods for searching databases using
multiple sequence alignments (MSASs). Since theoinbarmatic groups use pHMMs as the
underlying formalism for sequence profile analyses [10].

Decoding algorithms are used to find the sequehb@&lden states (path) of pHMMs given an
obtained sequence. In addition, by the use of dagaalgorithms, the probability of that path
both occurring and producing the obtained sequeanée estimated.
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The probability whether a protein sequence cont@aimMEBS can be described by the resulting
probabilities (scores) of decoding algorithms. Rerinore, the path can be used to determine
a location of the TFBS within the obtained sequence

The basis for the implementation is the HMModelanfework. This framework provides,
among others, tools for parsing protein sequencadts and parameterization and training of
pHMMs.

2. Selected Background Theory

2.1. Transcription Factor Binding Sites

Transcription is one of the fundamental proces$digeolt is the first step in a procedure that

translates the Desoxy-ribonucleic-acid (DNA), inpooteins. This process is needed to
enhance or repress the production of specific prote a certain time and amount. Imbalance
of this systems lead, in the worst case, to sesfeets. One of which is known as the major
burden of mankind — cancer. [11]

The key element in transcription and regulationtearscription factors (TF). These proteins,
referred to adranselements, interact with specific regions of the AMKnown ascis
elements in order to enhance or suppress the tigtiso.

An important paradigm in this context is that Thsdbto defined short stretches of DNA.
These elements (typically 6—12 base pairs) sodatenscription factor binding sitesare
scattered throughout the genome. Often they aralied near the starting site of
transcription, known as promoter, marking the begig of a gene, but they are also found
several hundred base pairs off.

A major question in current research is whetheemtl binding sites are functional and
under what circumstances. In order to test thidofioal relevant state, they have to be
identified first, which is challenging, consideriigat a simple string based search of the
DNA sequence within a large genome finds large remnbf matching sequences. This task
is further complicated by the fact that the mosBEE are defined by a sequence that contains
ambiguous bases and several proteins compete pedyinding site. [12]

Driven by increasing availability of sequence datssdevelopment of powerful tools for the
search and identification of such elements is ghést interest.
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2.2. Data, Formatsand Protein Representation

Proteins are coded as sequences of either aminis acinucleobases. Therefore, several
string representations have been developed, fromhwire will address two: th&mino Acid
Alphabetand theNucleic Acid Alphabet

2.2.1. Alphabets

Alphabets in computer science are roughly justtaofeharacters. In bioinformatics, they
contain a set of characters that is used to reprdselogical sequence information as a
single-letter code.

However, the most common alphabets are the ondsinorg amino acids or nucleobases,
which will be discussed below. For both represaémiat several notations exist. Commonly
they follow the IUPAC/IUBMB coding [13]. In additig several approaches of reduced
amino acid alphabets exist, which are not goinige@ddressed.

2.2.1.1. Nucleic Acid Alphabet

The term “Nucleic Acid Alphabet” has been adoptezhf IUPAC/IUBMB. For the sake of
better understanding we continuously use the temacléobases” in order to refer to adenine,
cytosine, guanine and thymine. The basicleic acid alphabeafter IUPAC/IUBMB consists

of the five characters "AGTCN?", standing for thdser nucleobases each represented by
their first letter. Additonally, the character "Ns' standing for an arbitrary nucleobase. The
nucleic acid alphabes used by thesitesfile type of the JASPAR database, which is gomg t
be dealt with. While not recommended by IUPAC, JABPsitesfiles contain "X" as well
for unknown acids, see [14]. In terms of biologisafjuencing "N" and "X" have a different
meaning, but from the computer sciences perspec¢iiVeand "X" have to be handled equally
as long as no further information is available.

2.2.2. FASTA Format

The FASTA format is a common text-based formatrémresenting either nucleobase, amino
acid or peptide sequences or sets thereof. FASIEA With a set of sequences are called
multi-FASTA files, see [13]. Although, the FASTA faat does not specify the alphabet to be
used for the sequence data, it is recommendedeahgs IUPAC single-letter codes [13].
Since FASTA format thus has less restrictionsai be seen as a meta format. Several sub
formats representing more specific sets of sequense the FASTA format as well.
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2.2.2.1. Files of Type .sites

Files of this type are provided by the open acd&sSPAR CORE database (The JASPAR
database).

The .sitesfile represents the raw data for all sites offfg]the construction matrix models of
TF DNA-binding preferences. Since files of the typgesrepresent TFBSs, the alphabet has
been extended by using both lower case and upper caaracters. Uppercase characters
describe the exact location of the binding sitelits he following example illustrates that:

>MAOO365ATA2 1

cgatc AGATAygctgcctcgg
>MAOO365ATA2 2

ca GGAT Attgacttgtggt

The length of the binding sites is always constamne file. Obviously the sequences are not
aligned with respect to the binding sites. Thisde#o the conclusion that the alignment
information for training the HMM lies in the uppeaise letters only.

2.2.3. Data

For all test implementations the data set of.@&sfiles containing TFBSs, provided by
JASPAR [5] has been used. Each file represents af s2quences containing binding sites
for one particular transcription factor. Such a isetlenoted agFBS profile The marked
binding sites have a length of 5 to 19 nucleobases.

2.3. Consensus Sequence and Position Weight Matrix

Common methods, for TFBS prediction are domsensus sequenaad theposition weight
matrix (pwn).

In general, the consensus sequence represent®iesatmple sites by matching the example
sites closely but not necessarily exactly. The nemab allowed mismatches, the ambiguity of
the consensus sequence and the sensitivity angbipreof the representation are in a relation
to each other.

Creating consensus sequences is quite easy, ibutat optimal for predicting the occurrence
of new sites. Several methods for generating causesequences have been compared by
Day and McMorris in [14], see [15]

The pwmis an alternative to the consensus sequence, whmtesent a multiple sequence
alignment as a matrix where each cell represerstsoge for a nucleobase in the particular
position.Pwmsgive more significant results for TFBS predictithan consensus sequences,
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but have one major disadvantage. Withmsit is not possible to map insertions or deletions
of nucleobases, caused by evolutionary mutationsorAmon way to map those mutations is
the use of HMMs.

2.4. Hidden Markov Models

HMMs are stochastic models named after A. Mark@gawse of the underlying theory of
Markov Chains. In general, HMMs are a tool to effitly describe a stochastic model for
sequences. These models distinguish internal staté®m emitted symbolg;. The intern
state sequence is called the patand follows a Markov chain. In bioinformatics, buthains
are used to abstractly describe the skeleton dkblome of a family of sequences. For the
determination of the path, given an observed sempjatecoding algorithms are used.

Some parameters of HMMs are transition probalslitshich are distinguished between the
types transition probabilitias,; and emission probabilities,. More precisely, we have

a =P =1l|m_1=k), (1)

wherem; are the state variables akdand! are the actual states. Therefore the transition
probability a,,; is defined as the probability of a transition fretatek in the i-I" position of
the path, to statkin the I position. Similarly,

ex(b) =P(x; =b|m; =k). (2)

Thus, the emission probabilitieg are defined as the probability that symbois emitted
when being in statk.

The emitted sequenceis also called the observation. Considering proteimology search
the observation represents a sequence of amins acitlicleobases.

In general, an HMM has no restriction in terms ofgble transitions from any state to any
other. These models are called fully connected tsod&rofilie HMMs (pHMMs) can be
considered as a group of more stringent models, aygarticular architecture.

24.1. ProfileHMMs

Commonly, pHMMs are used in protein homology sedoclaligning and distance measuring
(scoring) of test sequences to a given sequenesetail herefore, the architecture of pHMMs
should correspond to the criteria of the set thalehds going to be trained with and the
desirable opportunities for the alignment.

The goal of aligning a sequence to a set of otisets find a way to align the sequence such,
that a column-wise best possible match of the sysnlemnerges. Since parts of some
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sequences can be missigletions) or additional parts can occur (insesjo this leads t
threepossible state types for pHMMs, [16].

Match states are those states which are emitting, at colii, a symbolb with the probability
e;(b). Insert states are emitting symbols as well, but since these dditianally emitted tc
the model columns, this output is somewhat in betwenodel columns. Theref(, the
emission probabilities for ins: states are taken from laackground distribution of tr
respective alphabet, calleghs. Delete states emit the symbol "™ which represents a ga
Delete states are also callatént state, see [16].

2.4.2. Smith-Waterman Style pHMM

Additionally to the originapHMM this model haswo flanking simple se-looping models.
Both are consisting of laegin state (resp. arend state [Erepresented by a squ, aninsert
state IB(resp.IE) represented by a diamc and a silent stat®B (resp.SE) represented by a
shaded circleThe corresponding transition probabilities are samped asag,; (transitions to
the flanking insert statesnd aps (transitions to the flanking silent statewhereay; =1 —
Qrg.

These flanking modelare connected to t incorporated original pHMM vithe silent states
which allow a transition to each of the match stdagg », anday, sg)-

Figure 1: Smith Waterman pHMM

2.4.3. Parameterization of pHMMs

Parameterization of pHMMs eans to incorporate prior expert knowledge by rsg
parameters either to affect the automatic calanédistimation of probabilities or to ev
substitute the estimation proceby assigning user defined valuesor@iguratior of Null

models (see Chapter 2.5.is considered a parameterizatiaas wel. The aim of
parameterization is to make the distribution,r the whole space of sequengpeak around
the desiredyroup of positivey(e.g. protein families or TFBSSs), see [7,107.
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Parameters which are currently in use by the HMNtdare: pseudo countfor transition
probabilities; background distributionor distribution mixturesfor emission probabilities;
fixed transition probabilitiedor the flanking models and there from outgoinggartransition
probabilities; and thexpected model lengtfeml), which takes account into the flanking
transition probabilities and the simple null model.

2.5. Decoding Algorithms

Decoding algorithms tell us "what the observati@yuence 'means’ by considering the
underlying states" [7, p. 107]. So, the aim of deegdlgorithms is to find an intern path
through the HMM given an observed sequencehich means a mapping of— m, see [17]
and [18]. In the case of the Viterbi algorithm foend intern path is the most probable path

*

.

Furthermore, decoding algorithms find the probapilhat an HMM produces this sequence.
This probability is usually used for deriving sdled scoresfor an HMM-sequence tuple.

For general information about these algorithmsg#esee literature like [7] and [19].

25.1. Null Modeds

In order to assess significance of scores, thos& bricomparable. By decoding a sequence
we get a probability that an HMM produces a certs@gguence, but this probability is
dependent on the length of the testing sequencee Sither alla,,; < 1 and alle; < 1, the
likelihood for a sequencedecreases with = |s|. This means that sequences with a variable
length L are not comparable up to here. To make the scomeparable, a correction method
is needed, see [20].

The correction of the score is done by dividing grebability of the decoding algorithm
result by the result of the null model (resp. satting in the log-space).

2.5.1.1. Simple Null Model

This model follows the approach of using a difféeremodel and scoring with the same
sequence.

The simple null model is equal to the Smith-Waterstyle pHMM flankings. By correcting

a score with the result of this model, length delegicy of both the begin and the end cycle
cancel out. Furthermore, the length dependencyhefinsert states of the core model are
canceled out concerning the emission probabilites,[21].
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2.5.1.2. Reverse Sequence Null Model

The reverse sequence null model, follows a diffeegproach by changing the sequence (by
reversing it) and scoring it with the same model.

Fortunately, the reverse model offers several hisndike easy implementation and a
sufficient correction of length dependencies. Obsly, it is more time-consuming than the
simple null model.

2.5.1.3. Resulting Scores

Resulting from the combination of decoding algaritand null model, we can assign to each
tested sequence a set of six scores. ThereforgyriteV (s) = VE(L) andF(s) = FE(L) of
the sequence whereVE(L) is the Viterbi score an@®(L) is the Forward score§(s)
denotes the score of simple null model of sequencand s~! stands for the reversed
sequencs.

Viterbi algorithm Forward algorithm
No null viterbi score V(s) forward score F(s)
model
Simple | simple corrected | V(s) —S§(s) | simple corrected | F(s) — S(s)
null model | viterbi score forward score
Reverse | reverse corrected | V(s) — V(s™1) | reverse corrected | F(s) — F(s™1)
sequence | viterbi score forward score
null model

Table 1: Resulting scores of combination of decoding algorithm and null model

3. Application to TFBS prediction

Simply put, TFBS prediction means locating partécidections of sequences which are highly
likely TFBSs. By Viterbi decoding of a testing seqae we get, on the one hand the score
P(m*) and on the other hand the path The patht* may contain a section of match states
which would mark the most probable section of tHeBS¥, in the case we use a pHMM
trained by TFBSs only. So, one way to locate amitesa TFBS in a sequence is decoding it
and determine the match states section as TFBShatprobability ofP (™).
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3.1. pHMM from Ungapped M SAs of TFBSs

Since JASPAR sequences do not contain any gapshancharked TFBSs are continuous,
every column of the MSA can be seen as a modelnuoltor the pHMM and we do not
expect any insertions. This leads to a very pddrceersion of the pHMM.

As long as we do not modify the model by paramed¢ion towards higher delete and insert
probabilities, but even increase the pseudo cofartsnatch to match transitions, we can
expect a model with match to match transition philies close to 1 Further we can
assume that the model has to be entered in thecbhsmn to assure an equal length of the
TFBS to the example TFBSs.

In terms of decoding this means that each nucleob&®ne section of the testing sequence
will be mapped to a match state and thereforerisghdhematch area

Thus, we can take advantage of flanking models ift tsie alignment to the most probable
region. This leads to the following conclusion:

In the case of decoding a sequence by using a pHMM from an ungapped MSA
of TFBSs with length L, a match area u is the most probable continuous section

producing the decoded sequence for the location of a TFBS, with length L, too.

3.1.1. Parameterization of pHMMsfrom Ungapped M SAs

For the intro transition probabilities we have thet probability of a transition from the silent
begin state to the first match stateatg ,, = 0.99. By doing this, we expect the path of
the Viterbi algorithm to enter the pHMM in the firodel column. We also increase the
pseudo counts for match to match transitions to 400 set pseudo counts for all other
transitions to 1.

Intro transition Flanking transition Pseudo Counts
probabilities probabilities
aspm, = 0.99 _ 2—(s| - ITFBS|) match to match = 100
Arr = (Is| = |TFBS)) insert to insert = 1
0.01 delete to delete = 1
AsBMjzo = N _1 aps = 1 — ag; flanking transitions = 1
intro transitions = 1

Table 2: Parameterization for pHMMs

Thus, the pHMM have been drastically simplifiedvésualized in Figure 2. Based on this
parameterization, the grey marked transitions datés are highly unlikely to be applied by

! Due to calculation issues, & pseudocounts for all states are used. Thus, every transition probability is 1 — ¢ at
the maximum.
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the decoding algorithms and consequently we ertsuaehieve continuous match areas from
the first to the last match state of the model.

Figure 2: Reduced Smith Waterman pHMM

3.2. Approaches of TFBS Prediction with HM M odeler

In taking advantage of these findings, a testingace can be sketched as follows:

1.
2.

Parsing parse asitesfile and create a MSA

Parameterizatianset a high amount of pseudo counts for matclestand set a high
probability for entering the pHMM in the first cahn.

Training leave one sequence of the MSA out and train tH®M by calculating
emission probabilitieg, and transition probabilities;, ;.

Decoding decode the omitted sequence in order to theewamodel, to determine a
match area and the corresponding scores.

Classifying Check whether the match states are corresponditige original position

of the TFBS. If so, the score represents a posséreple, otherwise it could be seen as
a negative.

Threshold estimatingRepeat steps 1 to 5 and train a Bayesian adaissiforder to
estimat thresholds for positve scores.

Following this procedure, we get either a positivex negative sample and the corresponding
score per sequence. By decoding an unknown explers¢quence we can use the threshold
to predict whether the sequence contains a TFBSeapdse with the match area where it

may be located.

This is a first result but may not be satisfyingchuse of the following concerns: a) negative
samples describe only scores which are a resatdafcoding, where the match area does not
match the original TFBS position, which is not tanbunt with a confirmed negative sample;
b) we do not know the significance of the resultsagres; c) we get one match area within
one sequence, but possibly the sequence contaiesakikely positions of TFBSs.
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3.2.1. Defining Positive and Negative Samples

We need to answer the question what exactly is tiaam positive or a negative sample.
Eventually scoring thresholds should be used taddeon the basis of a score whether a
sequence contains a TFBS or not. To train a bayetssifier we need at least two groups of
samples: scores associated with sequences cogtaaniiFBS (positives) and scores with

sequences not containing a TFBS (negatives). Tlosldvbe the ideal case, but proving

whether a sequence do not have a TFBS is unrealsstice this requires a lot of real-world

laboratory experiments for each sequence.

Unfortunately, real-world biology makes it even madlificult, since so-calledepeatsof
TFBSs within the example sequences of JASPAR edisus, in one sequence several
potential TFBSs can occur, whereas only one is ethrks such. This means there is a
considerable probability that the decoding of ausege results in matching repeats and
consequently gains a high score, but has to bdeldlss a negative sample, since it is not
marked as a TFBS.

However, currently there is no way for us to pravieether a negative sample is a de facto
negative sample. Since we expect a highgr*) for positive samples, we can conclude that
wrongly labeled negative samples raise a threskwitdwe do not know by which factor.

Although the definition is not entirely satisfyimge stick to the follwing one:

A positive sample describes a sequence-scores tuple where the match area
coincideswith the original location of the TFBS.

A negative sample describes a sequence-scores tuple where the match area
does not coincide with the original location of the TFBS or a tuple where the
sequence does not even contain a known TFBS.

3.2.2. Implementation 1: Threshold Estimation for TFBS Prediction, by the Use of
Bayesian Classifier

In order to get a first understanding of scoresaheve sketched testing scenario has been
implemented. The used data set has been the fulif $ke 28 JASPARsitesfiles. For each
sitesfile we have executed steps 1 to 5. The parameten (step 2) was set as described in

Chapter 3.1.1, except the flanking transition plolitges. Due to performance issues those
2—(x—|TFBS|)
(x—|TFBS|)

null model was set tgs|. For the training (step 3) of pHMMs 10% of the sences of each

MSA have been taken out. These 10% amount to Z8@8ences. The classification (step 5)
followed the definition of Chapter 3.2.1. Noticealalt step 5, for 16 files all TFBS have been
found correctly, so they do not produce negative@as. The remaining 12 files make up

were set taay = , wherex = [s| for each TFBS profile. Theml for the simple
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540 negative samples, whereas only 5 files makéoup0% of those negative samples. In
other words the majority of the negative sampl@srasulting from a minority of the tested

files and may not be representative for the regheffiles. Another consequence is, that we
cannot implement a threshold estimation for thasélés (and consequently for the particular
TFBS profiles, since the dataset contains no sempsercausing a negative sample).
Furthermore, we have a positive/negative ratioppraximately 4:1.

For estimating the threshold for positive scordep($6) a naive Bayes classifier has been
trained by the Matlab functionlassify(sample, training, group, 'quadratic’)

The parameteruadratic' specifies the type of discriminant function. Thainiing of the
classifier was done with 70% randomly chosen sasnflke testing of the classifier was done
by the remaining 30%. The feature vector has b&erdimensional, with the featuresnple
corrected viterbi scorandreverse corrected viterbi scare
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Figure 3: Decision regions and testing samples of | mplementation 1

Figure 3 shows the scatter plot of the trainedsifi@s and the testing data. The blue surface
describes the positive decision region, the rethsardescribes the negative decision region.
Accordingly, the blue dots describe positive samaled the red dots negative samples.

Due to the positive/negative ratio, the negativeisien region is much smaller than the
positive, which is true for the testing data, butymat for explorative data. A correlation of
the two dimensions is obvious, but also expectawesboth dimensions are related to the
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Viterbi score. We also expected a higher thresholdconsequence of wrong negative
classification, so it is not surprising, that fagsitives are less likely than false negatives.

With the Matlab functiorplotconfusionwe created the classification confusion matriavatn
in Figure 5. The confusion matrix can be interpretedlescribed in Figure 4.

#True Positives | # False Positives TP
(TP) (FP) TP+ FP 478 23 95.4%
TP FP TP 63.4% 3.1% 4.6%
P+N P+N TP + FP
# False Negatives | # True Negatives TN
(FN) (TN) TN+ FN 114 139 54.9%
FN TN TN 15.1% 18.4% 45.1%
P+N P+N TN + FN
TN TP +TN
TN+FP P+ N 80.7% 85.8% 81.8%
TP LN [ _TP+TN 18.3% 14.2% 18.2%
L= TprFN TN +FP P+N
Figure 4: Legend for confusion matrices Figure5: Confusion matrix of implementation 1

The confusion matrix represents the outcome otdbing of the Bayesian classification. For
practical biological purposes the most interestihgssification outcome is the sensitivity
(SENS, marked in a green circle) and the falsectigje rate (FRR, marked in a red rectangle).

By implementing a varying threshold for moving tiecision boundaries, the sensitivity can
be increased by lowering the FRR and vice versa.tiiteshold can be adjusted in order to do
cost optimization, depending on the costs of FR$ FENs. In terms of biological research

these costs can be diverse.

After calculating the log of all Bayesian posteriprobabilities for all points, the threshold is
computed iteratively with 100 steps from the lowtesthe highest probability. Plotting of the
sensitivity against the FRR over the threshold afled receiver operating characteristic
(ROC) and shown in Figure 6. The marked data pioirifigure 6 represents the threshold
equal to the Bayesian classification shown in Fegdiand Figure 5.
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Figure 6: ROC graph of implementation 1

An optimum in terms of classification would be actemgular graph corresponding to
aforementioned sensitivity of 100% and FRR of 0%.

Although, the results of the first test scenarie tar better than random classification, they
are not sufficient for actual application to TFB&dliction. Thus, the test implementation
needs to be modified in order to solve aforemesetibproblems and probably achieve more
satisfying results.

3.2.3. Implementation 2: Threshold Estimation for TFBS Prediction for Sequence
Segments, with a Fixed Length, by the Use of Bayesian Classifier

Another way of generating a testing set for thréshestimation is not to decode whole
sequences, but to slice the testing sequencesegitoents of equal length. In other words, we
define a windoww,_,; wherek is the sequence index of the first nucleobasetipasof the
window and! is the last nucleobase position. The sizevpf; is |[w| =1 —k = x x |TFBS]|
wherex > 1. We slide this window nucleobase-wise (for eachitpmn i) over the testing
sequence. For each window, we execute steps 4 ahth® above testing scenario. Thus, one
sample for each scored window |gf — |[w| samples for each sequence will be produced.
Relative to the window size, a number of windowl mot contain the actual TFBS and result
in a negative sample. Consequently this procedeads! up to a higher number of negative
samples.
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By doing this we can eliminate several of our consea) due to the fact that negative
samples are produced for each sequence (resp.Té&® profile), for one thing, negative

samples are less dependent on the particular THBflepand for another thing, we can

implement threshold estimations for each TFBS f@ph) since we get a higher amount of
negative samples, on the one hand the impact afigvetassification is reduced, and on the
other hand the positive/negative ratio correspandee to real-world application scenarios; c)
the impact of length dependencies of scores willdakeiced, due to a lower length variability
of the testing sequences.

Of course, computational effort increases, by usimgmethod, since steps 4 and 5 have to be
repeateds| — |w| times, for each sequence.

The window size was set tev| = |TFBS|. Consequently, we do not expect insertions in the
flanking states. Due to calculation issues thekilag transition probabilities were set to
ap; = € instead of 0. Due to segmentation, the numbeesifrig samples has been increased
to 554,151 with 2,513 positive samples and 551163fhative samples.

Besides aforementioned alterations, parameterizaimd execution of all other steps have
been performed in conformity with implementation 1.

As we can see in Figure 7 the decision regions gdnheir size drastically in comparison
with Figure 3. Due to the positive/negative ratfi@pproximately 1:220, the positive decision
region, for this test, is (much) smaller than tlegative one. Not surprisingly, the correlation
of the two features is still present.

50

40+

20+

reverse corrected viterbi score

30

40 1 1 1 | 1 1 |
-40 -30 -20 -10 0 10 20 30

simple corrected viterbi score

Figure 7: Decision regions and testing samples of implementation 2
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The confusion plot (Figure 8) of the Bayesian dfeeswith a fixed threshold, shows that the
test with a fixed window results in a higher recitign rate. The sensitivity has been
increased to 98.4% and the FRR decreased to 3.5%.

742 5769 11.4%
0.4% 3.5% 88.6%

12 159723 100.0%
0.0% 96.1% 0.0%
98.4% 96.5% 96.5%
1.6% 3.5% 3.5%

Figure 8: Confusion matrix of implementation 2

Considering the ROC plot of this test implementatithe improving of recognition is even
more obvious. The resulting graph is much closehéorectangular desired one. The marked
data point in the middle represents the Bayesiassdication of Figure 7 and Figure 8. The
lower left data point shows that we can reach aigeity of 90.15% with a FRR of 1%.
Accordingly, the upper right one shows a FRR o#i%®6with a sensitivity of 99%.
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Figure 9: ROC plot of second test implementation
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However, the estimated thresholds represent noparteular TFBS profile, but all profiles
at once. For the application to explorative seqgasndecoding of those has to be done for
each profile, anyway. Therefore, threshold estiomafor each TFBS profile may give more
representative thresholds and thus, lead to higdoaxgnition rates.

3.24. Implementation 2 for Particular TFBS Profiles

Since the sliding window test provides a set ofitpaesand negative samples for each TFBS
profile, this test is applicable for single TFBSfiles. The tests for particular profiles have
been performed in conformity with the second tesplementation for all steps including
parameterization. In the following we show the ge$br two single.sites files each
representing one particular TFBS profile.

In a current parallel research project which hasnbgone by Saad Mneimneh at the City
University of New York, the significance of the oected Viterbi scores has been examined
theoretically. By the central limit theorem for ssirof local Viterbi scores, an estimation of
the expected values for the thresholds of the sdoas been derived. The current version still
requires a numerical approximation algorithm. Néwsess, we incorporate preliminary
results into implementation 2 for particular TFB®fpes (shown as green lines in Figure 10
and Figure 13). The proximity to our empirical résundicates this approach should be
examined further and could eliminate the necegditfraining examples for finding useful
thresholds for the classification algorithm. Theules of this research will be published
within another paper.

Figure 10 shows the decision regions for the TFBSilp KIf4 of the MA0039.2.sites file.
Obviously, there is a high number of false positives
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Figure 10: Decision regions and testing samples of implementation 2 for the Kfl4 prcfile
The confusion matrix (Figure 11) for this test aonk the high number of negative samples.
The ratio of positive/negative test samples of apipnately 1:194 (0.5% positives) shows
that knowing the prior probabilities for positivesd negatives, a random classification would
be even better.

126 1327 8.7%
0.5% 5.1% 12.5%
5 24654 100.0%
0.0% 94.4% 0.0%
96.2% 94.9% 94.9%
3.8% 5.1% 5.1%

Figure 11: Confusion matrix of implementation 2 for the Kfl4 prdfile

The ROC plot in Figure 12 also shows a worse perémice than the ROC of implementation
2 (which was applied to all files).
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Figure 12: ROC of thetest implementation 2 for the Kfl4 prdfile

Far more satisfying results of implementation 2garticular TFBS profiles are given by the

application to the CTCF profile of the MA0139.lesitfile. The decision boundary clearly

separates (shown in Figure 13) positive and negaé&st data points. The misclassifications
of four negative samples as positives can be neglda terms of the ROC. The confusion

matrix (Figure 14) demonstrates the excellent testo. But coming back to the four false

positives, the confusion matrix shows also, thargeighth as positive classified sample is
false. Still, we do not know if those samples sHonbt be labeled negative, because of
discussed circumstances in Chapter 3.2.1.
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Figure 13: Decision regions and testing samples of test implementation for the CTCF prdfile

28 4 87.5%
0.6% 0.1% 12.5%
0 5039 100.0%
0.0% 99.4% 0.0%
100.0% 99.9% 99.9%
0.0% 0.1% 0.1%

Figure 14: Confusion matrix of thetest implementation 2 for the CTCF prdfile

The ROC (Figure 15) is close to the optimum ofdaf@ementioned rectangular graph. In this
case, we zoomed the ROC in order to show thatsitilisnot perfectly rectangular. Again, the
marked data point represents the threshold comelsipg to the decision regions (Figure 13)
and the confusion matrix (Figure 11).
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Figure 15: Zoomed ROC of thetest implementation 2 for the CTCF profile

3.25. Implementation 3: Scoring Visualization of Single Sequences, Based on the
Sliding Window Method

A third test implementation visualizes the windagttfor one particular sequence. This test
does not follow the sixth step of threshold estioratRather, a visualization of likely TFBS
locations shall be given. For doing this, we haeerbusing the resulting Viterbi scores and
the match area of the Viterbi algorithm.

The procedure follows steps 1 to 5 alike the sesomdementation, but in this case for only
one TFBS profile. Furthermore, only one sequenseblean left out for decoding.

The resulting scores of each window can be showgrashs over the tested sequence. By
doing this, we give a visualization of the scorpeaks of eventual TFBSs.

In order to produce a continuous graph for the wlsglquence we have been computing the
average of the simple corrected Viterbi sctomeeach nucleobase position. Thus, we assign to
each nucleobase positiothe following score

-
sy =2V W) | s (3)
lwl
wherel’ (w,_,;) = VE(L) of the sequence segmemn._,;.

This works as follows: We move the window, as désct in the second implementation,
over the sequence. For each position of the windewdecode its sequence. We assign the
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resulting score, of each window, to each nucleoléat®n the window. After decoding the
whole sequence, we take the average of the asssgoees for each nucleobase. The graph of
theaverage simple corrected viterbi scaveer the sequence gives a continuous graph of the
probability for each nucleobase being a part of BIF

Another way of visualizing theimple corrected viterbi scorés to assign the score not to
each nucleobase, but to the one in the middleeefaimdow. In this case, we do not have to
take an average, because we assign only one smogadh position. For the sake of clarity of
the visualization, we artificially decreased the®i® by -10. Furthermore, now values would

be assigned to the nucleobases of the position%’é and|s| — ";’—' to |s|, since those do not

occur as the middle of a window. Therefore we assg initial value of -10 to these
nucleobase positions. For all other nucleobase pasitve assign the score

s =7 <w._M qw) (4)

=3 2

We can also visualize likely locations of TFBSs,dhywwing the absolute frequency of each
nucleobase being a part of the match area, sedllffy.does not work for a window size
|w| = |TFBS]|, since it is highly likely that the nucleobasestld testing sequence, will be
processed by match states equally often. But lngasing the window size we can apply this
method. We decided for a window size|ofl = 1.5 - [TFBS| as a tradeoff between speed
performance and significance of the results. Theokbe frequency of being a part of the
match area, does not give information about howlyila particular region is a TFBS, but
rather gives the information which regions, arehhigunlikely a TFBS. This graph usually
results in a very recognizable shape of ups andhdp®r which we call this Manhattan |
graph.

s(i) = #(i € p) (5)

A window size oflw| > |TFBS]| let us also reconsider the assignment of the Mitaores to
the nucleobases. Since we expect, that severan®egif the testing sequence are potential
TFBSs we expect those to be marked as match aneas,often than the surrounding regions.
The match area thus is "more responsible” for ttweesthan the surrounding inserts. So it
comes naturally to mind to assign the scores amlthé nucleobases which are part of the
corresponding match areas. Since we assign a l@@aafiount of scores to each nucleobase,
again we have to take the average. We call thdtimggraphManhattan lland define it as
shown in (6).
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i¢u——15
s =4, Tk V(Wisn) (6)
leu— —#(i =)

Another graph (orange) visualizes the most likelgakions after theiterbi simple corrected
scoreas ranks. We assign a value of 10 to the mostabtelregion, and decrease the value
for every further one by 1. But every position lgepart of the match area once, has a value of
1 at least. If likely regions overlap, the highank will be preserved.

Fehler! Verweisquelle konnte nicht gefunden werden. shows a visualization of the above
described test implementation for the sequéné®139.1 CTCF 3The TFBS (marked by the

peak of the green graph) has been classified dtyréarange graph). But, another region
(first peak of orange graph) shows a high probigbibr being a TFBS as well. This region
may be a repeat, whereas the sequence of thanregimt equal to any reference TFBS of
theMAO0139.1.sitedile. Obviously, this visualization makes it eagy & biological researcher

to determine likely locations for TFBSs.

4. Conclusion

In summary, the use of pHMMs and the Viterbi altjori is a qualified method for predicting
TFBSs. In order to predict all likely locations ®FBSs, segmentation of testing sequences
brings an added value to these methods. Furtherit@epecific use of match areas leads to
new methods to assess and visualize likely TFB&tioes.

Training of pHMMs by ungapped MSAs, in terms of TFPBrediction is highly similar to
usual methods like position weight matrices andseosus sequences. But using those
provides the options to use the Viterbi algorithmad dinally to extend the method in order to
map gaps and insertions to the model.

Classification of sequences (or sequence segmantsdn TFBSs is not possible with current
methods and makes up one of the hitches for usaiterp recognition methods in this
context.

The reimplementation of the decoding algorithms aeg@aration of alphabets allows the
framework to decode sequences notated in arbitralghabets. Furthermore the

implementation of the clad3ecoder provides several new methods for a conveniengsscc

to the output of the decoding algorithms. Thesehowt concern the computation matrices,
the backtrack path, the match area and the fubfsstores.
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A seamless integration of the methods in HMModdeplanned. Furthermore, the methods
should be extended by a multi-step procedure faigeing the sites of the JASPAR database
allowing gaps (deletions) and insertions.
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