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2 Overview

2.1 Introduction

This report summarizes the scholarship holder’s 10 month stay at the Com-
puter Security Group of the University of California, Santa Barbara. I con-
tributed to the project “Malicious Code Analysis and Detection”, working
on a JavaScript attack mitigation framework. The stay was financially sup-
ported by the Marshall Plan foundation. Other than the primary research
target the seclab is active in hacking competitions, both on the competitors
side as well as on the organizing side (UCSB iCTF.) These competitions will
be described in the Events section.

2.2 Malware

Malware is short for malicious software, it is the root cause of most com-
puter security threats today. In the past people have been working on such
programs alone in their cellars for fun and were only seldom causing harm.
Nowadays Malware has become a business, criminal organizations can profit
through it in various ways, i.e.: extortion through DDoS (Distributed De-
nial of Service) attacks, credit card fraud with stolen data and spam. This
group of software includes viruses, trojans, spyware, worms and others. The
common denominator in these programs is that their intent is contrary to
the users’ belief about it, given that the person even knows of it being run-
ning on its system. Often Malware is propagated through vulnerabilities in
software which is already installed on the users’ computer. Prominent tar-
gets have been Microsoft Outlook, Internet Explorer and Adobe’s Acrobat
Reader. The user can get infected while surfing on some website (drive-by-
downloads) or reading an email. Once the Malware is operative in the users’
environment it may become part of a botnet where it can be used to send
spam, participate in DDoS attacks, host phishing sites or steal passwords
and credit card data. These botnets can consist of millions of computers
(Conficker, Zeus, Mariposa) and pose a serious threat to the internet as a
whole.

2.3 Advanced Persistent Threats

A subtype of Malware are so called Advanced Persistent Threats (APT).
These don’t target hosts at random, their goal is to steal inside information
from companies or governments and stay undetected to be able to operate
over long periods of time. Institutions which have data that is worth being
stolen in such a clandestine way usually have no generic setup. Hence this
Malware has to be tailored to the institutions’ network and host security
specifics. Techniques used include zero-day exploits of previously unknown
vulnerabilities, strong encryption, polymorphism, binary obfuscation and
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others. Once the network has been penetrated by an APT it can start col-
lecting data and leak it to the outside attacker. Since the main goal of an
APT is to remain undetected it is hard to ascertain how many networks
are actively leaking data through such threats. The advanced nature of this
Malware means that teams of expert attackers need to be well funded. De-
veloping APTs belongs to the domain of major companies and governments.

A recent discovery of APT was Operation Aurora, an attack that targeted
various high-tech companies including Google, Adobe, Juniper, Rackspace
and potentially others. Attackers have gained access to their networks
around mid-2009, they were accessing the companies’ internal information
including source code and potentially modifying it.

Goals of the research stay

The goal of the stay was to create new methods and algorithms to detect
APT - for example by hardening JavaScript programs against CSV attacks.
My approach is to combine hidden/dormant code analysis [8, 15, 29] with
long term network monitoring which makes it possible to reverse engineer
the network protocols [17, 39] and detect hidden botnet communication
channels [20].

The UCSB security group has developed state-of-the-art intrusion de-
tection and Malware analysis tools which I will refine and extend with new
capabilities regarding APT. My work will contribute to the research project
“Malicious Code Analysis and Detection”.

Reason of relocation

The security group at UC Santa Barbara is a global leader in the fight against
malicious code. Their tools were the first to create an in-depth analysis of
the aurora exploits making Santa Barbara the ideal location for this project.
Furthermore they have developed a number of tools for Malware analysis
and tracking, that allowed them to collect a unique data set that I can work
with.

Moreover, there are many people with deep insights into cybercrime,
the internet underground economy and excellent connections with internet
service providers. This allows me to apply my new analysis and detection
algorithms on large, real-world data sets. These possibilities for an empirical
evaluation are not available at Vienna University of Technology. Finally, the
group is well-established, allowing me to perform world-class research and
involvement in the security community.

The UC Santa Barbara security group is part of the International Secure
Systems Lab, like the Viennese Seclab where I wrote my bachelor’s thesis
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and was working on a practicum. My work contributed to the emulation-
based Malware detection software Anubis [10, 11, 12, 26].

3 Events

This section describes one-time events, conferences and CTF hacking com-
petitions.

3.1 2011/04 Seclab retreat

The Seclab retreat was a one-time event at which every member of the
lab had to present her current project covering problem statement, ap-
proach, evaluation, missing components, the next steps plus an idea for
a new project. Two additional talks were held, “How to have success as
a graduate student” by Christopher Kruegel and “How to succeed as an
academic” by Giovanni Vigna.

3.2 2011/04 Plaid CTF

Capture the flag (CTF) competitions are hacking competitions in which
teams have to compete for points by breaking challenges or hacking each
other. These competitions test skills in areas such as computer forensics,
cryptography, binary analysis, web security and others. Plaid CTF [4] was
the first competition held by the CMU hacking team Plaid Parliament of
Pwning. One particularly interesting challenge covered a cold boot attack,
we had to gain access to an encrypted TrueCrypt volume by recovering the
key from a memory dump. The scholarship holder summarized the approach
in a blog post [1]. EpicFail (the UCSB hacking team) scored 7th.

3.3 2011/05 IEEE Symposium on Security and Privacy

The IEEE Symposium on Security and Privacy in Oakland is one of the
best conferences in the field and is a platform where high impact papers
get presented. Most of the lab members were able to join the event. A
paper that was directly related to my research was Taly et al.’s Automated
Analysis of Security-Critical JavaScript API the talk helped to gain new
insights. Johnson et al.’s paper Differential Slicing: Identifying Causal Ex-
ecution Differences for Security Applications also gave me good input on
some problems.

3.4 2011/06 DEFCON CTF qualifications

The DEFCON CTF is considered being the hacking world championship.
Many teams want to compete, but only the best twelve teams from the qual-
ification round can actually participate in the CTF hosted at the DEFCON
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conference. The qualifications are a 53 hour non-stop online competition
in which teams have to solve challenges of various complexity levels to gain
points. Team Shellphish includes the UCSB team (EpicFail), UCSB alumni
and some other individuals close to the seclab. Shellphish secured the 8th

place and qualified.

3.5 2011/08 DEFCON CTF

DEFCON CTF is hosted at the DEFCON conference which had its 19th

anniversary this year and takes place right after Black Hat in Las Vegas.
The competition was run the third time by ddtek [3]. As a notable event,
at least one team (lolersk8erz) gained access to the competitors machines
and was able to enter the jailed operating systems of all other teams. We
finished on the 9th place. Although DEFCON hosts interesting talks and
events all the participants of the lab were stuck behind the screen, fighting
for points, from the beginning to the end of the event.

3.6 2011/08 USENIX Security

This conference is similar in impact to Oakland S&P. Two interesting JavaScript
papers that are close to my field of research were presented: ZOZZLE: Fast
and Precise In-Browser JavaScript Malware Detection by Curtsinger et al.
and ADsafety: Type-Based Verification of JavaScript Sandboxing by Politz
et al.

3.7 2011/12 UCSB iCTF

2011 was the 10th edition of the UCSB iCTF [2] which is the biggest CTF
competition worldwide. Teams of over 80 universities (more than 1000 in-
dividual players) competed for bragging rights and money.

I contributed several of the challenges, two of them covered JavaScript
security. Furthermore I was in charge for administering the Internet Relay
Chat (IRC) server during the competition that was used as primary means
of communication between the teams and the organizers.

The UCSB iCTF was the first competition to allow participants to con-
trol objects in the physical space (in 2010.) In 2011 participants were able
to control an unmanned drone over the internet. A write-up to some of
the challenges and a visualization of the progress on how teams solved the
challenges over time can be found on on the scholarship holders website [1].
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4 Repeated Events

4.1 Hackmeetings

Hackmeetings occurred about every other week. In these meetings we would
train for hacking competitions by breaking challenges of previous events or
other available targets.

4.2 SRG - Security Reading Group

Every SRG member can propose papers. The elected paper will be read and
discussed in the weekly session. SRG is an important instrument to keep
the lab members updated on state of the art papers that may be outside of
their direct research scope.

4.3 Flashmeetings

During a flashmeeting all members of the lab get two to three minutes to
talk about advances in their research and problems they were struggling with
since the last meeting. Open problems lead to discussions in the group which
can help to solve the problem right away. Topics that would consume too
much time get rescheduled to separate meetings with the advisors. Flash-
meetings were held twice a week when I joined the lab and later reduced to
a weekly schedule.

4.4 Meetings with advisors

The scholarship holder was meeting with the advisors either at follow-up
meetings after the flashmeetings, or individual appointments on request.

5 Research Project - ZigZag

This section presents details on project ZigZag, my main task during the
stay. ZigZag is the name of the prototype of instrumentation framework for
CSV attack detection for JavaScript programs. Some of these attacks can
be classified as APT.

5.1 Introduction

In recent years, through the introduction of technologies such as AJAX and
Web 2.0, there has been a major paradigm shift in the way that software
is developed and deployed. Ten years ago, most software was written for
and executed on desktop machines (PCs) of end users. However, with the
growth of the Internet and the recent push towards cloud computing, the
landscape has changed. These days, many applications are no longer running
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on the client alone. Instead, there exists a hybrid deployment model where
a part of the application is running on a remote server (often in the cloud),
while the other part of the application is running in the browser of the user.
This client-side part is typically written in JavaScript, and it makes use of
asynchronous calls to connect to the server (AJAX).

Compared to traditional desktop software, the security of Web 2.0 ap-
plications is not well-understood. This is a significant problem as one can
expect that an increasing number of applications will be written following
this model. One important class of vulnerabilities for Web 2.0 applications
are client-side validation (CSV) vulnerabilities. CSV vulnerabilities are pro-
gramming mistakes in the client-side portion of web applications. These
vulnerabilities can be exploited by an attacker who can send inputs to these
programs, using a number of channels that allow sites (scripts) in differ-
ent browser windows, and from different origins (web sites) to communicate
and exchange data. Examples include the cross-window communication in-
terface, referrer data, and reflected flows. By sending inputs to a vulnerable
application, the goal of the attacker is to perform actions through this ap-
plication on behalf of the victim user. For example, the attacker can send
emails through a vulnerable web mail program, obtain cookie data, or dis-
play a phishing site to obtain a user’s credentials. What makes these attacks
special is that they cannot be detected on the server side – they are only vis-
ible on the client (web browser). Hence, security advances and hardening at
the server side do not help to mitigate client-side validation vulnerabilities.
Instead, novel, client-side solutions are required.

The goal of this project is to develop novel techniques and
tools to protect the execution of the client-side parts of web ap-
plications. In particular, we propose to automatically instrument
client-side scripting code so that its execution can be monitored.
We use this monitoring framework to (i) build models that cap-
ture normal program runs, and (ii), subsequently leverage these
models to detect (and prevent) attacks as they unfold.

The programming language that is used for most client-side components
is JavaScript. Until recently, JavaScript was mostly used for small scripts
that enhance the appearance and user experience of web sites. While se-
curity implications of small, isolated scripts were studied in the past, in-
teracting and complex components, which are typical for new Web 2.0 ap-
plications, pose a different threat. Moreover, new HTML features, such as
postMessage do not adhere to the “same origin policy (SOP).” The SOP
enforces constraints on data accesses based on the origin of the request: For
example, a cookie written by a script loaded from example.com cannot be
accessed by code loaded from attacker.com. This policy is implicitly en-
forced by the browser, not only on cookies but also on JavaScript methods
and web page contents. It is well-understood by developers, and hardens
the client-side against attacks.
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postMessage was introduced to allow scripts from different origins to
communicate directly with each other. This significantly eases the process
of creating web mashups and makes response times shorter. However, for
a safe use of this function, the recipient of a message must check that data
was sent by a legitimate, expected script. Unfortunately, these checks are
often forgotten, which allows an attacker to write malicious scripts that
send messages to vulnerable applications. To this end, a malicious web site
can include the vulnerable application in a hidden iframe and directly send
messages to it. Such vulnerabilities are not simply theoretical, but have
already had real-world impact. In a recent attack against Google Gmail,
such a vulnerability was exploited to allow attackers to access victims’ mails
or to send mails on their behalf.

As a typical example of a CSV vulnerability, consider the following simple
code that first opens a popup window (Line 10) and then uses this window
to display messages received from a backend server at csv-example.com

(Lines 11 to 15):

1: var messagesURL = "http://csv-example.com";

2: popURL = "messages_popup.html";

3: var popup;

4: ...

5: function receiveMessages(msg) {

6: var message = getMessage();

7: popup.postMessage(message,messagesURL);

8: }

9: ...

10: popup = window.open(popURL);

11: for(;;) {

12: ...

13: receiveMessages(msg);

14: ...

15: }

The problem here is that it is the programmer’s responsibility to validate
that the messages that the popup window receives are indeed coming from
the legitimate domain csv-example.com. For example, consider the follow-
ing code that the popup window might use to receive and display messages:

1. function displayMessage (evt) {

2. var message;

3. message = "I got " + evt.data;

4. }
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Unfortunately, the developer does not validate the origin, and hence,
this code is vulnerable! Any malicious website could send a message to the
popup window that is then displayed to the user. To fix this vulnerability,
the developer would have to insert a piece of code that validates the origin,
such as the following:

1. if (evt.origin !== "http://csv-example.com") {

2. message = "You are not worthy";

3. }

4. else {...

Although the example we provided is simple, similar to cross-site script-
ing (XSS) attacks, the possibilities of exploitation of a CSV by an attacker
are only limited by her imagination. Among the possible attacks are ori-
gin misattribution, code injection, command injection, and cookie-sink at-
tacks [31].

Given the strong trend towards web applications, and the increasing
support for complex, client-side components by new HTML standards and
browser improvements, we expect to see more and more critical applications
developed following the Web 2.0 paradigm. Of course, this means that
client-side vulnerabilities will become more widespread, and the severity of
exploits will increase. This makes the development of new techniques to
protect client-side code critical. Zigzag represents the first step towards this
goal.

5.2 State of the Art

There are two main approaches [19] to test software applications for the
presence of bugs and vulnerabilities: white-box testing and black-box test-
ing. In white-box testing, the source code of an application is analyzed to
find flaws. In contrast, in black-box testing, input is fed into a running
application and the generated output is analyzed for unexpected behavior
that may indicate errors.

When analyzing web applications for vulnerabilities, black-box testing
tools [6, 13, 24, 37] are the most popular. Some of these tools (e.g., [6])
claim to be generic enough to identify a wide range of vulnerabilities in
web applications. However, recent studies [9, 18] have shown that scanning
solutions that claim to be generic have serious limitations, and that they are
not as comprehensive in practice as they pretend to be.

Two well-known, older web vulnerability detection and mitigation ap-
proaches in literature are Scott and Sharp’s application-level firewall [32]
and Huang et al.’s [21] vulnerability detection tool that automatically ex-
ecutes SQL injection attacks. Scott and Sharp’s solution allows to define
fine-grained policies manually in order to prevent attacks such as parameter
tampering and cross-site scripting.
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With respect to white-box testing of web applications, a large number
of static source code analysis tools (e.g., [23, 34, 40]) that aim to identify
vulnerabilities have been proposed. These approaches typically employ taint
tracking to help discover if tainted user input reaches a critical function
without being validated. Previous research has shown that the sanitization
process can still be faulty if the developer does not understand a certain
class of vulnerability [7].

Note that there also exists a large body of more general vulnerability
detection and security assessment tools (e.g., Nikto [27], and Nessus [35]).
Such tools typically rely on a repository of known vulnerabilities and test
for the existence of these flaws.

With respect to scanning, there also exist network-level tools such as
nmap [22]. Tools like nmap can determine the availability of hosts and
accessible services. However, they cannot detect higher-level application
vulnerabilities or CSV vulnerabilities.

CSV vulnerabilities were first highlighted by Saxena et al. [31]. In their
work, the authors propose FLAX. FLAX is a framework for CSV vulnera-
bility discovery that combines dynamic taint analysis and fuzzing into taint
enhanced blackbox fuzzing. The system operates in two steps. First, a
JavaScript application under test is executed to dynamically identify all
data flows from untrusted sources to critical sinks (where critical sinks are
functions such as cookie writes, eval, or XMLHttpRequest operations). This
flow information is processed into small executable programs, called acceptor
slices. These programs accept the same inputs as the original program but
are reduced in size. Second, the acceptor slices are fuzzed using an input-
aware technique to find inputs to the original program that can be used
to exploit a bug. A program is considered to be vulnerable when a data
flow from an untrusted source to a critical sink can be established. Later,
the same authors improved their FLAX system by replacing the dynamic
taint analysis component with a static analysis component [30]. Again, the
goal of the static analysis is to find unchecked data flows from inputs to
critical sinks. Because the system uses static analysis, its false negative rate
decreases.

The main difference between our proposed work and the FLAX system
is that FLAX can only detect attacks where foreign JavaScript code is in-
jected into the vulnerable application (and executed by the sink function).
Our approach, on the other hand, also handles situations where anomalous
program executions are caused by malicious data that is injected into the
vulnerable process. In this case, no new code is added to the application,
but existing code is misused by executing existing functions in an unwanted
order and/or with invalid arguments. To draw a similarity with more tradi-
tional attacks against programs written in C, FLAX would handle cases in
which an attacker injects shellcode into the vulnerable process. Our solution,
on the other hand, is more complete and, in addition to basic code injection
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attacks, also covers return oriented programming (ROP) exploits [33] and
non-control-flow attacks [14].

As we will see later, our solution requires that client-side JavaScript
is instrumented. Previous research has examined various ways in which
JavaScript instrumentation can be implemented. This is a non-trivial prob-
lem because JavaScript can be considered to be self-modifying code (as a
running program can generate input code for its own execution). This ren-
ders (static) instrumentation without execution impossible since not all code
can be processed by the initial instrumentation step. Hence programs have
to be instrumented before execution and consequently all writes to the pro-
gram’s code have to go through another instrumentation step. An interesting
proxy-based approach to JavaScript instrumentation was discussed by Yu et
al. [25, 41]. For our work, we can leverage existing proposals for JavaScript
instrumentation. The novel part of our research is to determine what needs
to be instrumented, and how security violations can be detected.

5.3 Statement of Work

The objective of this project is to develop a system, called ZigZag, that
performs automated code instrumentation of the client-side JavaScript por-
tion of web applications. The purpose of this instrumentation is twofold: In
a first step, during a monitoring phase, the instrumentation code observes
the execution of the client-side code and builds models that characterize and
capture normal program runs. Once these models are built, ZigZag switches
into detection and enforcement mode. In this mode, the instrumentation
code checks the program execution for anomalies. Such anomalies are in-
dications of attacks. In a stricter setting, the model can also enforce the
execution so that it is never permitted to violate a model. Of course, the
instrumentation has to be complete (to cover different attack vectors) and
efficient (minimizing penalties to code performance).

The project will be structured as the following complementary and closely-
related main tasks, which fall into three main research activities:

• Task 1: CSV Classification and Theory

Subtask 1.a: Study and collect well-known real-world CSV exploits
and examples.

Subtask 1.b: Construct a classification and taxonomy as a guideline
for the development and evaluation of detection and prevention ap-
proaches designed to cover whole classes of CSVs.

• Task 2: Data Collection

Subtask 2.a: Construct and evaluate basic data collection components
for the monitoring and instrumentation of client-side JavaScript code.
This component will focus on function calls and their argument values.
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Subtask 2.b: Improve the basic collection component to create a more
comprehensive (but possibly more costly) data collection framework.
This framework will collect data from local variable assignments, data
invariants, global context, and timing information.

Subtask 2.c: Investigate and develop distributed data collection tech-
niques that divide up the load of building program execution profiles
over multiple (many) program executions.

• Task 3: Detection Models

Subtask 3.a: Construct models that use the information collected by
the basic collection component to characterize benign program runs
and detect anomalies as client-side attacks.

Subtask 3.b: Generalize and improve the models to take into account
the additional information provided by the advanced data collection
framework.

Subtask 3.c: Perform extensive experiments with real code to evaluate
the detection models and prototypes for their ability to identify and
prevent exploitation based on CSVs.

Subtask 3.d: Develop techniques to lower potential false positives and
integrate detection capabilities into the browser.

5.4 Detailed Research Plan

In the following paragraphs, we discuss the research plan in more detail.
First, we provide a brief overview of the general approach. Then, we discuss
key challenges. Finally, we present our approach to realize the individual
components of ZigZag.

5.4.1 Research Overview

The goal of ZigZag is to protect client-side JavaScript execution against
exploitation. To this end, we propose to leverage proven anomaly detection
techniques. In particular, our approach helps to decide whether a monitored
execution run deviates from models learned for legitimate executions. When
such a deviation (an anomaly) is detected, the program can be terminated
to avoid putting the user at risk. As a result, the application that executes
on the client-side will be armored against CSV vulnerabilities.

Anomaly detection is an approach to that is complementary to the use
of signatures in detecting attacks. It relies on models of the normal behavior
of applications to identify anomalous activity that may be associated with
attacks. The main advantage of anomaly-based techniques is that they
are able to identify previously unknown attacks. By defining the expected,

14



Michael Weissbacher mweissbacher@iseclab.org

normal behavior, any abnormality can be detected, whether it is part of a
known attack or not.

As part of the anomaly detection process, we need to build models of
normal program activity. This requires three steps: First, we need to de-
termine features (or properties) that define the execution of a program. For
example, we could record the sequence of function calls that a program
makes, or we can infer invariants between variables that must hold for all
benign executions. Second, we require a mechanism to record the activity
of a specific program execution. In our case, this implies that we need a
component at the client-side that can monitor the execution of scripts. The
collected data is needed for the third step. In this third step, we use the in-
formation collected for legitimate program runs to build models that capture
a notion of “normality.” Of particular interest for the detection of attacks
against web applications are machine learning-based techniques, which can
build a model of the normal behavior of an application by observing the
usage patterns of the application during a training period.

Once the model of normal behavior is established, the system switches to
“detection mode” and compares the behavior of the application with respect
to the model learned during the training period, with the assumption being
that anomalous behavior is likely to be associated with an attack (and that
an attack will result in anomalous behavior). Since we aim to protect client-
side executions, the models need to be sent to the client together with the
script that should be protected.

For both the training and the detection phase, it is necessary to monitor
the execution of client-side JavaScript code. For this, we could instrument
the browser or require users to install a plug-in. Of course, this severely
restricts the ease of deployment. Thus, we propose to develop an instru-
mentation framework that can add the necessary data collection and de-
tection/enforcement hooks directly to the client-side scripts before they are
sent to the web browser. This instrumentation framework can be integrated
with the server-side part of the web application or with a proxy. Using a
proxy has the advantage that the instrumentation is fully transparent to the
web application.

5.4.2 Research Challenges

Research Challenge: How can we create detection models that can identify
malicious client-side JavaScript activity?

Our goal in this project is to create a system that can automatically
monitor and identify attacks against client-side JavaScript code. We envision
a system that can automatically produce attack alerts (and potentially block
them) after a pre-defined training period. The key idea is to create a system
that can use machine learning algorithms to train on a set of behavioral
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features, and that can then detect executions that exhibit malicious, attack-
like behavior.

The first step in creating effective detection models will be to identify
behavioral features that are indicative of attacks. For example, we will
investigate if function call sequences, parameters, timing information are
useful features in detecting attacks.

Research Challenge: How can we deal with dependencies of client-side
code on third-party tools and systems?

Web applications are highly interactive today, and they often live in
a heterogeneous environment. For example, they may depend on backend
servers and databases, and may even depend on other websites for delivering
content.

When building an anomaly-based malicious activity detection system,
it is, hence, very important to take such dependencies into account. The
behavior of the client-side code may change not because there is an attack,
but because there is a failed dependency at some point. For example, a
crashed database may cause the client code to behave in an anomalous,
suspicious way.

One of the challenges of this research is to devise novel techniques to
deal with non-standard situations when instrumenting and monitoring the
executions of the client code. That is, heuristics need to be developed that
can identify anomalous behavior as being an error (e.g., a database crash)
rather than an attack. One way of achieving this, for example, would be
to analyze application logs for classic signs of error messages. For instance,
correlating a “database connection refused” message with a corresponding
non-standard behavior would eliminate the false positive.

Research Challenge: How can we deal with the complexity of client-side
code that typically consists of thousands of lines of code and decide on what
to instrument?

In the earlier days of the web, web applications typically contained a few
lines of JavaScript code. Since then, there has been a dramatic change in the
size and complexity of client-side web application code. Today, JavaScript
code in a highly-interactive, sophisticated web application (e.g., GMail,
Facebook) easily exceeds several thousand lines of code.

JavaScript code is critical and decisive for developers to be able to im-
plement interactive web applications that are performant and that provide
an appealing look and feel. At the same time, JavaScript code suffers from
the same type of bugs found in traditional software such as race conditions,
logic errors, performance bottlenecks, and even memory leaks.

In comparison to traditional software, one of the challenges of monitor-
ing and analyzing JavaScript code is that there is a lack of isolation between
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different parts of the code. Typically, the code is not developed in mod-
ules (e.g., by using namespaces) and the fact that the code is running on
the user’s (or potentially, the attacker’s) machine means that it cannot be
trusted.

When designing a monitoring and detection system that aims to protect
applications against attacks that are based on CSVs, it is important to
assume that the developed components on the client might be operating in
an adversarial setting. Furthermore, novel techniques and approaches are
required to deal with the complexity of the code, and to decide how and
what to instrument.

We plan to study well-known examples of CSVs (e.g., such as the attack
against GMail as discussed in the introduction), and use these case studies as
a starting point into what and how to instrument. We will then generalize
the instrumentation strategies that are based on specific attacks to cover
more generic attacks.

Research Challenge: How can we deal with client-side script execution
environments that are non-standard?

Web 2.0 application code that runs on the client shares most of the
development challenges of traditional, complex software systems. One of the
core challenges of analyzing and monitoring Web 2.0 applications is that they
may sometimes rely on non-standard execution environments. For example,
although the JavaScript language has been standardized in 1999 (i.e., ECMA
1999), the implementations of the JavaScript execution environments may
differ. As a result, real-world Web 2.0 implementations may sometimes
contain incompatibilities across different browsers.

For example, certain event handlers that have been registered for the
same event (e.g., logging key presses) may fire in a different order on differ-
ent browsers. Clearly, as the implementations of browsers differ, so do the
implementations of the run-time environments. Note that these differences
in browser behavior are well-known by attackers, and are sometimes used
to launch attacks (e.g., in a cross site scripting attack, a script tag may be
encoded as “script” on a specific browser in order to bypass filtering mecha-
nisms. That is, while this may work on Firefox, it may fail on IE 6. Hence,
a defender that is solely relying on the behavior of IE 6 when creating filters
would be vulnerable to an attack if the user uses Firefox).

In order to deal with the potentially differing behaviors of browsers,
we plan to deploy and test the monitoring techniques on different popular
browsers (e.g., Firefox, IE, Safari).

Research Challenge: How can we design instrumentation and monitoring
approaches that are performant and efficient?

One downside of code instrumentation for monitoring is that the in-
strumented code will inherently take a performance hit. Hence, one of the
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challenges of monitoring and attack detection systems is that they do not sig-
nificantly impact the performance and efficiency of an application. Clearly,
an application that is secure, but not performant (and hence not usable by
users) would not be effective in practice.

A technique we could use to to deal with performance issues is to make
the instrumentation and monitoring adaptive and distributed. Web 2.0 ap-
plications typically support multiple users and hence, the instrumentation
of code can be distributed across a large user population.

One of the research challenges in this work is to decide how to distribute
the instrumentation load so that the instrumented web application does not
suffer a significant performance hit. To make sure that the performance
hit is acceptable, we plan to conduct regular performance experiments with
real code, and then to use the results to improve the architecture and the
implementation of the prototypes.

5.4.3 Architecture of ZigZag

As discussed previously, the deployment of the tool consists of two main
phases: the Training Phase and the Detection Phase. In the Training Phase,
the web application is instrumented and execution data is collected. Using
this data, models for anomaly detection are generated. In the Detection
Phase, these models are deployed on the web client, and they detect and
prevent CSVs.

The ZigZag system consists of three main components: First, we require
a framework that allows the instrumentation of JavaScript (JS) programs.
Second, we require components to model the execution of JS. Third, we
require an anomaly-based attack detection component to check and enforce
the execution of a JS program, given a set of execution models. These
components are discussed in more detail in the following sections.

5.4.4 Data Collection and Code Instrumentation

For the training phase, it is necessary to instrument a client-side script
with code that can record certain properties of the execution. For example,
this can be the fact that a specific function is called, or the assignment of
values to variables as a certain program point. For the detection phase, it
is necessary to instrument client programs with hooks into the detection
models, which verify whether the current run is legitimate (i.e., conforms to
the given the models).

For the instrumentation component of ZigZag, a possibility would be
to use a source-to-source compiler for JavaScript. It is to be determined,
however, whether the level of granularity is sufficient to gather all needed
features. For deployment, the idea is to add a proxy in front of the web
application so that all code that is sent from the server to the client can
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be transparently instrumented by our system, without any changes to the
back-end web application and without requiring any annotations from the
application developers.

The idea of the instrumentation phase is to rewrite the JavaScript code of
the web application, and to include instrumentation code for communicating
with the data collection components, and to insert monitoring and attack
detection code. All function calls of the original program are augmented
with a call to the trace function as the first line of code.

One of the design issues that will be investigated in this work is how often
the collected data should be sent to the analysis server. Clearly, uploading
the collected data too often will have a performance impact. We plan to
store the collected data in buffers, and to flush these buffers periodically
to the analysis server or once the buffer reaches a predefined size. Timing
functions are important to determine whether the monitored code is still
being executed, or is inactive.

Note that establishing the communication between the client program
and the analysis server is not a straightforward task. We have to work
around the single origin policy of JavaScript which restrains the communi-
cation possibilities of the program to the host/protocol/port the JavaScript
program has been loaded from. This problem can be resolved by installing
a proxy between the client and the server. Messages can be sent that start
with a key that does not occur in the application, and the proxy can inter-
cept these and forward them to the analysis server.

To ensure the instrumented JavaScript programs are still performant
after the instrumentation, we will consider several data transfer possibili-
ties to the analysis server. The most favorable one seems to be a transfer
that leverages JavaScript worker technology. With this functionality, we will
be able to perform the upload to the analysis server in a separate thread.
The only shortcoming is that this feature is only available in the Firefox
and Google Chrome browsers. Microsoft Internet Explorer does not sup-
port JavaScript workers. However, if the browser the script is running in
does not support workers, we can still drop back to data transfers that use
XMLHttpRequest. Hence, we can make sure that we are compatible with
many browsers, while at the same time making sure that the performance
hit as small as possible.

Despite optimizations, it is possible that the data collection process is too
costly (slow), especially when all possible features are collected for each run.
To address this problem, we plan to investigate the idea of distributed data
collection. That is, we leverage the fact that when the system is deployed,
instrumented code is run by many users in many browsers. The key idea is
that we do not need to collect all possible data for each run. Instead, we
can collect only parts for each run, and then combine all collected data into
a single model that reflects, as accurately as possible, all potential program
executions. Of course, we cannot simply remove data collection points at
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random. For example, when we want to check for the relationship between
certain variables, we need to see both variables in a single execution run.
Also, when we collect sequences of events, it is difficult to drop random
events from this sequence, as crucial information would be missing.

5.4.5 Modeling Program Executions

To guide the collection of data, we need to define features that capture
(JavaScript) program executions. The anomaly detection approach envi-
sioned in this proposed work is based on the application-specific analysis of
individual function calls of the JavaScript code running on the client. For
each function invoked by the application, a distinct profile will be created.
Each of these profiles captures the notion of a “normal” function invocation
by characterizing “normal” values (e.g., the order in which the arguments
are given, the time it takes to execute the function, etc.).

The expected “normal” executions of individual functions are determined
by models. A model is a set of procedures used to evaluate a certain feature
of a function, such as the length of its arguments and the number of local
variables that it defines during execution.

To determine features that can capture and characterize the benign be-
havior of an application, we will initially study well-known instances of CSV
attacks and investigate how the malicious executions of the sample code dif-
fer from benign runs. After this analysis period, we will start to experiment
with features that are able to capture malicious executions. The goal in this
step will be to define detection feature sets where each feature might be a
tell tale sign for a CSV-based attack. Clearly, it is improbable that a feature
by itself can indicate with certainty that an execution is malicious. Rather,
a combination of these features will help determine the probability that we
are observing a malicious JavaScript execution.

In the following, we describe some of the feature sets that we will inves-
tigate, and explain why we believe that they may be sufficient to capture
malicious behavior. Note that the discussed list is not comprehensive, and
that research and experimentation will be required to identify models that
perform well in practice.

Sequences of Function Calls: One of the first features we can analyze
are the sequence of function calls. The intuition here is that an attack may
change the normal sequence of functions that is observed during benign runs.
For example, imagine a case where the attacker is able to inject a malicious
script into an application by exploiting a CSV. If we monitor the order in
which the functions in the scripts are typically invoked, the injected script
would deviate the execution and cause an anomaly.

Monitoring function sequences and creating training techniques that are
based on the order in which functions are invoked is analogous to intrusion
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detection techniques that are based on system call sequences.

Function Arguments: One interesting feature set to investigate consists
of argument values that are passed to JavaScript functions. We are inter-
ested in the values that these arguments assume, their typical ordering, and
their lengths.

For example, imagine the case length of the first argument of a function
in the script code rarely exceeds a hundred characters and mostly consists
of human-readable characters. Suppose, now, that malicious input is passed
to this function that consists of several hundred characters in size as the
attacker is launching a cross site scripting attack, and is injecting code. Our
training on the normal length of the first argument would show that the
attacker’s input is anomalous, and we would be able to detect this attack.

As another example, recall the simple CSV vulnerability we presented
in Section 5.1. In the example, an attacker was able to inject messages into
a popup window. In this case, the argument value in benign runs would
always consist of http://csv-example.com. However, if an attacker would
inject, say, http://www.attacker.com, this input would be identified as
being anomalous and potentially malicious.

When considering the argument length, the goal of the model is to ap-
proximate the actual but unknown distribution of the lengths of a string
argument and detect instances that significantly deviate from the observed
normal behavior. Clearly, one cannot expect that the probability density
function of the underlying real distribution would follow a smooth curve.
One also has to assume that it has a large variance. Nevertheless, the model
should be able to identify obvious deviations.

When analyzing function arguments, one could also look at character
distributions. The string character distribution model would capture the
concept of a “normal” or “regular” string argument by looking at its charac-
ter distribution. The approach is based on the observation that strings have
a regular structure, are mostly human-readable, and almost always contain
only printable characters.

Often, the manifestation of an exploit is immediately visible in function
arguments as unusually long strings or strings that contain repetitions of
non-printable characters. There are situations, however, when an attacker
is able to craft her attack in a manner that makes its manifestation appear
more regular. For example, non-printable characters can be replaced by
groups of printable characters. In such situations, we need a more detailed
model of the function argument. This model can be acquired by analyzing
the argument’s structure. For our purposes, the structure of an argument
could be the regular grammar that describes all of its normal, legitimate
values. Structural inference is the process by which this grammar is inferred
by analyzing a number of legitimate strings during a training phase.
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Execution Timing: A promising feature that may help detect CSV at-
tacks is the timing information related to the execution of a script. The
key insight here is that an attack will often cause a delay in the execution
when the attacker deviates from the benign execution to the malicious one.
By creating execution timing profiles of of the client-side code of a web
application, we expect to be able to identity anomalous situations.

For example, imagine a situation where the attacker is able to inject
JavaScript code into a web application by exploiting a CSV that is hosted
on a remote server http://www.attacker.com/attack.js. The attacker’s
code reads the application cookie of the victim, and sends this to a remote
server that the attacker has access to. By using execution timing profiles,
there is a good chance that we would be able to spot an attack such as
this one. That is, the time that it would take the application to complete a
specific benign functionality would change as extra statements injected by
the attacker (e.g., reading the cookie) would be invoked.

One of the challenges in using execution timing as a feature to identify
anomalous behavior is that such timing profiles may be fragile and may
cause false positives. For instance, the timing profile of code may also change
because of errors, or delays in communication. Hence, one of the objectives
of the proposed work will be to investigate what portions of the client-side
code can be instrumented to record timing profiles while at the same time
providing reliable signs for malicious activity.

Global Context and Variable Invariants: In a typical attack, the at-
tacker is able to deviate the execution of the targeted code from normal
behavior by injecting or using statements that implement her malicious in-
tent. While doing this, the attacker will often need local or global variables.
For example, she may access the contents of a global variable that stores
the value of a sensitive parameter (e.g., session ID). As another example,
she may define local variables that hold the value of the application cookie
before it is sent to a remote server under the attacker’s control.

Hence, suspicious, anomalous definitions of variables during execution,
and abnormal patterns of access to them can be good indicators for detect-
ing malicious activity. In this work, we plan to investigate how variable
definitions and usage can be utilized to model program execution and to
create a “normal” execution profile.

Moreover, for legitimate program executions, it is often possible to ex-
tract “relationships” between variables that always hold. Such invariants are
frequently violated as part of an attack where the malicious code or data
tampers with the intended application functionality.
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5.4.6 Generating Models and Detecting Attacks

Based on the features described in the previous section and the data collected
from client-side program runs, we can build detection models. The first
step for building the detection models will be to construct the training set.
Clearly, the quality of the results produced by a machine learning algorithm
strongly depends on the quality of the training set [36]. Hence, our goal will
be to develop a classifier that is able to label executions as being benign,
or belonging to an attack. Thus, we require a training set that contains a
representative sample of benign and malicious executions. To this end, one of
our tasks will be to study many known examples of client-side vulnerabilities
and attacks, and then to use these for constructing the training set.

For this work, we are planning to use machine learning techniques that
have proven to be effective in practice. An important step in building the
detection models will be to select a suitable classifier. A popular choice for
binary classification is Support Vector Machine (SVM) [16]. SVM consists
of a set of supervised learning methods that build a hyper-plane from the
training set in order to divide the elements of the training set into different
spaces with the maximum distance possible. Another choice is J48 [38].
J48 is an implementation of the C4.5 algorithm [28] that is designed for
generating either pruned or unpruned C4.5 decision trees. It constructs
a decision tree from a set of labeled training set by using the concept of
information entropy.

Although SVM is the most successful classification method for binary
classification, it has some disadvantages (e.g., such as the performance and
having hidden decision factors). Hence, the reason why a decision has been
taken is not always clear. Therefore, in our system, we plan to correlate the
results of an SVM and a J48 decision tree classifier so that we are able to
have good results (while at the same time, also being able to understand the
reasons for the decisions).

After establishing models of benign behavior, we do not require addi-
tional information from clients. Instead, models are included in the code
that is sent to clients. In particular, the client code will be instrumented to
check whether the previously-established models (i.e., learned by training)
are violated.

Note that CSV cannot be detected at the server, since it involves one ma-
licious script attacking another one. Thus, it is necessary to insert detection
capabilities at the client-side. Because we do not want to change browsers,
the instrumentation of JavaScript code is the natural choice. Also, by learn-
ing models (and specifications) of normal program execution from a large
number of legitimate runs, we can create comprehensive descriptions that
tightly model permissible behaviors.
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