Designing a 3D visualization
framework for distributed,

synchronized execution
Documentation of hands-on experiences gained from
redesigning a single-user physics visualization framework
written in Java to an efficient multi-user architecture

Master’s Thesis - DRAFT
at
Graz University of Technology

submitted by

Christian Schratter

Supervisor: Dipl.-Ing. Dr. techn. Christian Giitl

Institute for Information Systems and Computer Media (IICM)
Graz University of Technology
A-8010 Graz, Austria

Co-Supervisor: Associate Director V. Judson Harward

Center for Educational Computing Initiatives (CECI)
Massachusetts Institute of Technology
Cambridge, MA 02139, USA

TU H B Massachusetts
I I Institute of
Grazm Technology

Graz University of Technology

© 2012, Christian Schratter
April 1th 2012

Design eines 3D Visualisierungs-
Frameworks fur verteilte,

synchronisierte Umgebungen
Dokumentation der Uberarbeitung eines Java Physik
Visualierungs-Frameworks fiir Desktops zu einer effizienten
Client-Server Architektur

Diplomarbeit - ENTWURF
an der
Technischen Universitat Graz

Vorgelegt von

Christian Schratter

Betreuer: Univ.-Doz. Dipl.-Ing. Dr. techn. Christian Gitl

Institut flir Informationssysteme und Computer Medien (IICM)
Technische Universitdt Graz
A-8010 Graz, Osterreich

Co-Betreuer: Associate Director V. Judson Harward

Center for Educational Computing Initiatives (CECI)
Massachusetts Institute of Technology
Cambridge, MA 02139, USA

T

Grazm

B B Massachusetts
I I Institute of
Technology

© 2012, Christian Schratter
01. April 2012

Affirmations

Affirmations

Statutory Declaration

I declare that I have authored this thesis independently, that [have not used other than the
declared sources / resources, and that [have explicitly marked all material which has been quoted
either literally or by content from the used sources.

(Place, Date) (Signature)

Eidesstattliche Erklirung

Ich erkldre an Eides statt, dass ich die vorliegende Arbeit selbststindig verfasst, andere als die
angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen woértlich und
inhaltlich entnommene Stellen als solche kenntlich gemacht habe.

(Ort, Datum) (Unterschrift)

Designing a 3D visualization framework for distributed, synchronized execution

ii

Acknowledgments

Acknowledgments

First of all [would like to thank my supervisor at the Graz University of Technology Christian
Giitl for supporting me with his expertise, inputs and ideas on how to approach and carry out this
thesis to come up with interesting results. His continued believe in me and my skills paved the
way for an enduring collaboration over the course of the last couple of years, eventually
convincing him to recommend me to his scientific acquaintances at the MIT, resulting in this
university-spanning project.

Consequentially I have to thank all the people working together with me at the CECI
department at the MIT: Judson Harward for co-supervising me, John Belcher and Phil Bailey for all
their explanations, inputs and constructive talks on how to evolve TEALsim for a better as well as
Meg, Kirky, Maria, Jim and Mark for everything they did to make my stay in the United States as
enjoyable and productive as possible.

Furthermore [would like to thank the following institutions for funding this thesis as such
and/or its associated stay in the USA:

the Marshall Plan Foundation! for granting a ‘Marshall Plan Scholarship’, the
Industriellenvereinigung Kiarnten? for granting an ‘Exzellenzstipendium’, the Verband
selbststdndig Wirtschaftstreibender Kérntens for granting an ‘Auslandsstipendium’, Dr. Josef
Martin for granting a scholarship for studies in foreign countries as well as the Faculty of
Informatics3 at the Graz University of Technology for granting a ‘Férderungsstipendium’.

Last but not least [would like to take the opportunity to thank my family for supporting my
studies at every point of time in every possible way, enabling me to gather an incredible amount
of different experiences and having a great time which [would not want to trade for anything else.

Christian Schratter

Graz, Austria, March 2012

1 Marshall Plan Foundation - http://www.marshallplan.at
2V Karnten - http://www.iv-kaernten.at
3 Faculty of Informatics - http://www.dinf.tugraz.at/

iii

http://www.marshallplan.at/�
http://www.iv-kaernten.at/�
http://www.dinf.tugraz.at/�

Designing a 3D visualization framework for distributed, synchronized execution

iv

Contents

Contents
7 W 00 = 100) O i
ACKNOWIEAGMENLES.....coiimrisusnsmssssssmsmssasssssssssssssssssassssssssassnsssssassnssnss ii
00 03 0 1) 4 1 o v

I General background........cccomsmmmmsmssmssmmsnssmssmsssssssssssssssssssssssssnns 1

1 State of the TEALSIM ProJecCt......imiimsmsssasssses 3
1.1 Issues with redundant and/0Or ODSCUIE COAEmurmrnmmirnmereeseeseesseesesseessessessessseessesssssessssans 6
1.2 MovVe from CVS t0 SVN ... ssanns 8
1.3 Integration into Netbeans, rework of the build SCIipt......coocrenreneeseennereeseeeeseeseeseessees 8
1.4 Addition Of (JYUNIL TESTS .cureeiereereesseeeeeseessersesssessessessse s sesssessssssssssssssss et sassss s sssssssssssssassssssanes 11

1.4.1 Addition of a mocking frameWorK....... s ————— 12
1.5 Addition of a logging framework, allowing dynamic adjustment of log settings via e.g.
NEIPET WITIAOWS...ov ettt se e es bbb bR R s bbbt 13
1.6 Streamlining the USer INtEITACE. ... rrer e ssess s s 15

2 Synchronizing distributed applications........coumms—————— 18
2.1 INIHALIAEA wirrerersirsrrssssiss s 18
2.2 AerNatiVe aPPIrOaACh ...ttt s e s bbb 22
2.3 Comparison of former design versus alternative desSign.......eeeeseesneesnseeseesseessessenes 24

2.3.1 Complexity of TEALSIM frameWOorK ... ssssssssssssssssssssssssens 25

2.3.2 Complexity of OWL MOAUIE.....cc ettt essee s sesssssssans 25

2.3.3 Complexity to create new content (SIMUlAtioNs)coreermeereeererenseessesseeesseesessseesssesanes 26

2.3.4 Network congestion / SCalabilify ..o ssssssse s ssssssssseeans 26

2.3.5 Code extensibility / QULONOMYcocoveoreereereeseessersee e rssessesssesssesssssessesssessssssssssssssssssssssesans 26

B0 L ST VA - 1 1§10 27

Designing a 3D visualization framework for distributed, synchronized execution

2.3.7 Server hardware reqUITEIMENTS. ..o cereererreesseessessesssesssssesssesssesssssssssassssssssssssssesssssssssesans 27
2.3.8 Client hardware reqUIremMents ... s sssssssns 27
2.4 Issues of implicit synchronization of simulation calculationcoueeneenseenseneesseeneceneenn. 28
2.4.1 Double precision divergence across multiple clients........ccomenreenecneenseneeseensesseesseenees 28

2.4.2 Divergence across multiple clients when computing certain algorithms with

different aMOUNT Of STEPSvu ettt ss s es s bbb s bbb s e 29

2.5 Synchronization at property level compared to synchronization on event level........... 29
2.5.1 Concept of synchronization on eVent leVel.......neneneeeeeeseseseesssesseeeseeens 30

2.5.2 Concept of synchronization on property levVel...... e 30

3 Designing a deterministic simulation engine..........ccou———— 31
3.1 ISSUES Of fOIrMET AESIGI...vuuiuieeeeeeereereteesscseessee s esteseesse s es bbbt 31
3.2 Ideas behind a ‘deterministic’ algOTTtNIMo.ovceeereereeereesre s senessenns 31
3.3 Concept of the configurable simulation €NgINe........coenreneennenmseseeseeeeeseeeseesseesseees 32
3.4 Design of the algorithm for local simulation calculationc.cecneereneeseseesseenseseesseesees 33
3.5 Details of the simulation engine running in state streaming mode.........couumurinrrsnrennne. 36

4 Defining the expected system behavior........ccm————————— 37
4.1 Use cases for important design aSPECLSceerersserseesssessessssssssssesssesssessssssssessssssssssssssans 37
4.1.1 Simulation and graphics engine loGiCccouueeerrreenmeereersmeeeesssesseeesesssssseessessessssessesseees 37
4.1.2 Synchronization of CONIOISTAtE ...t seess e sss s sseens 38

4.2 Details regarding SimulationTime calculationcoeeneenreeernserneesssesssesseessesesseesssesseesnns 42

II Implementation detailscccrrrrrnsnsnsnnsnssnsnsssssnsnsnnnnnn 43

5 General aspects of a client-server architecture for TEALSIM......cocuousmsmsessssnsnns 45
5.1 SECUTILY corttrererseersssessssssssss st ssssss s s s s s R R 45
6 The underlying Nnetwork layer ... 46
6.1 General design of the NEtWOTK IaYer. ...t ssssssesseens 47
6.2 Socket based implementation 0f CONNECTION.......ccouriereeuriereereesereee e seesseesee s ssesssessesneans 50
6.3 Implementation of a Connection for communication within a single JVM......cccccoucuneeenn. 51
6.4 Open Wonderland specific implementation of CONNectionoovernenmeneensenenssnsessnenns 52
7 Starting / using the TEALSIim frameworkK.......cummmmmmmmsmssssssmssssssssssssns 54
7.1 Options to start the desktop version of TEALSIMuessssssssssssssseens 54

vi

Contents

7.1.1 Configuring the client and Server COMPONENTocureeereeereeserseessessessessseesssssessessssssesans 54

7.2 Using TEALsim framework in a 3rd party application like OpenWonderland................. 55

8 Analysis of the design of various TEALSim cOMPONENLtS......cocvmsmsmsmssssssnsessssnsnns 57
8.1 Introducing clear Object OWNETISHIP ... es s ssesssesens 57

8.1.1 Resulting design for TEALsim’s simulations and their more general components58

8.2 Design of the components involved in computing and rendering the simulation......... 59
8.2.1 State of the former simulation ENGINE.....cco e erseeseesaes 59
8.2.2 Design of the revamped simulation €NgINe ... ssesseesseenns 59
8.2.3 Application flow of the rendering ProCess ... enrreeseesesssesseessessessees 60
8.2.4 Design of SynchronizableGENETICS ..o rerereerseeesersersessseesssssssessseessssssssssssessessesssessees 61

0 A0 20 U o) 1 0 U %

9 Ideas for future work respectively open iSSUESc.ccummmmsmsmsmsssssmsmssssssssssssssnns 64
9.1 IMPOItant iSSUES £0 fiX ciuveuriereerieurereereesseeseesesseessessess s seesses e s ses e s s bbb 64
9.2 Design issues in need of @ redeSIZN ...t eses s 64
9.3 List of nice-t0-have features.....————————————— 65

IV AppendiX....mmmmmememsmsssssssssssssssssssssssssssssssses 07

3L 2] 11 B) 69
10.1 DiIiaGram LEGEINAS ..cveueeeeeereemeeseersersessseesssesssesssessssessssss s ssss s s s s s ss s s sessssssss s s ssssssaas 69
10.1.1 UML class diagram liKe CONTENT......oureuiereereeereesereisecsseesessessseessss e esssssssssssssssssssssesans 70

0 23 ()) 1 L 73
T1.1 RELEIEICES couteeeuienetreeuretees et e s ess s ess e s s R R bR bR s bbb s nn b 73
11.2 Table of the most important software (t00lS) USEd.......ommmrmmneminesnesminessssssssssese 75
I 19 1] 1) (7o 77
B2 I - 0] (= o) 4= U (=T3PPS 77
B2 - 0] (= o) 7= o) TP 78
12.3 TaDIe Of ISTINES ..ruucurieurereeurereesseesseseesseesesse e s s ssse s sess s bbb bbb bbb 78
12.4 TabDIE Of USE CASES..ruuiereereemieseersstrsessseesssesssesssesssesssssssssessessss s s s sssess s ssssesssssssssassssaas 78
3 1 T G 79
S 700 T 0 1017 | o770 PSPPSR 79

vii

Designing a 3D visualization framework for distributed, synchronized execution

S 107 0 - PP
13.3 DiIGILAl ASSELS iuuerrrersreeseeeeeesseeseesssesssesssess s s s sssees s s s R R s bR R

viii

Part 1

General background

Chapter 1

State of the TEALsim project

Currently TEALsim (Massachusetts Institute of Technology, 2012) is not in a releasable state.

This situation held true at the beginning of the work for this thesis and did not change up until
now. While there was certainly a point of time when the framework appeared to people - at least

those who were not intensely engaged in the project - to work pretty well (see the binaries

compiled with older code?), several factors negatively impacted the project and pushed the trunk

of the source code back into a state resembling a demonstration version instead of something

which could be used in a real teaching environment. Amongst others the following reasons can be

identified which lead to the current situation:

a)

b)

Student projects - over the course of the last couple of years most of the work to
enhance TEALsim has been done in the form of student projects. Taking into
consideration output limiting constraints like an approximate length of 6 months for a
student project, the considerable size of the project paired with the lack of high-quality
in-depth (design-) documentation, the general best practice to spend 50% of
development time to test the software (50PctTest) in contrast to the desire of students
to come up with a maximum of interesting results to support an extensive thesis like
this, one can easily spot the area of conflict between these aspects. In the case of
TEALsim usually the pursuit of ideas for new features (and thus documentable results)
was preferred at the expense of software quality.

Lack of (paid,) continued work on the framework - this item has been already partially
touched in the former paragraph. The lack of paid and therefore continuing, dedicated
work to funnel deviating feature branches, created by temporary collaborators, back
into the trunk to match a unified style and design paradigm exacerbated the problem of
diminishing software quality. While the absence of detailed documentation or system
specification itself indicates that the framework’s design was mostly defined on-the-fly

4 TEALsim binaries based on older code - http://web.mit.edu/viz/EM/simulations/

http://web.mit.edu/viz/EM/simulations/�

1 State of the TEALsim project

(and therefore got inconsistent over the years - see the Lava Flow AntiPattern (Brown,
Malveau, McCormick 111, & Mowbray, 1998)), the missing authority to evolve and watch
over the code ultimately lead to an even more lava-flow like situation, which will be
discussed in the succeeding paragraphs.

c) Changing client hardware/software - naturally software and hardware is evolving
rapidly over the years. Given the fact that the TEAL project was started in the year
2000 (Scheucher, 2010) where Java version 1.3 was the most recent library available,
TEALsim was faced with more or less comprehensive new client environments at least
a couple of times throughout its lifetime. This circumstance implies the requirement for
code maintenance activities of various scales, which in turn becomes an issue in
absentia of dedicated workforce (see the former paragraph).

As mentioned TEALsim appears as a perfect example for a project which evolved over time
matching the explanations for the Lava Flow AntiPattern given in (Brown, Malveau, McCormick
[1I, & Mowbray, 1998).

Lead Enginzer left, Mew :

Lead had =better= Ooops, DDE no longer
approach, but nervous supported - but save the
about deleting stuff code, we'll use it for OLEL
until he was more

familiar with the code

Support for
Java Beans

Figure 1.1: Illustration of the Lava Flow AntiPattern - Source: (Brown, Malveau, McCormick III,
& Mowbray, 1998)

1.1 Issues with redundant and/or obscure code

To further stress the significance of this AntiPattern, following is a quote of the most evident
consequences (that is drawbacks in the case of an ‘anti’ pattern) with a subsequent check whether
or not the particular assertion also held true for the TEALsim framework:

“It is poor design, for several key reasons:

a) Lava Flows are expensive to analyze, verify, and test. All such effort is expended entirely in
vain and is an absolute waste. In practice, verification and test are rarely possible.

b) Lava Flow code can be expensive to load into memory, wasting important resources and
impacting performance.

c) As with many AntiPatterns, you lose many of the inherent advantages of an
object-oriented design. In this case, you lose the ability to leverage modularization and
reuse without further proliferating the Lava Flow globules.” (Brown, Malveau,
McCormick IlI, & Mowbray, 1998)

Brief check of existence of Lava Flow AntiPattern issues in TEALsim source code:

applicable

assertion | \rEALsim?

description

Dozens, if not hundreds, of hours were spent analyzing program flow
and object creation to trace bugs or find out a way to extend the
software. As mentioned in chapter 1.4 prior to this thesis hardly any
more comprehensive and centralized (J)unit tests were available.

A good example for this behavior was the rendering system which was
fed a list of objects to render which contained every item twice.

Cascades of interfaces assigning roles to classes which made no sense
and were not used, e.g. the SimPlayer ultimately was also a
TElementManager thus forced to implement all its methods while they
were in fact never used (or if so, it was an erroneous usage!)

Table 1.1: Lava Flow AntiPattern issues found in TEALsim source code

Consequentially one part of the practical work for this thesis was to clean up as many dead
‘features’ and design inconsistencies as possible. To illustrate the results of this effort the next
chapter 1.1. summarizes and comments the changes to the code base of TEALsim. Although this
task arguably changed the code base to the better, the description for the Lava Flow AntiPattern in
(Brown, Malveau, McCormick III, & Mowbray, 1998) also gives a hint at why the framework
seemingly worked worse after the end of this thesis than before:

“As suspected dead code is eliminated, bugs are introduced. When this happens, resist the urge to
immediately fix the symptoms without fully understanding the cause of the error.”

In simple terms, the time spent coding was too short to reach the point where the runtime
behavior of the framework inarguably exposed apparent improvements over its former state.

1 State of the TEALsim project

The following sub chapters will cover very general aspects of the TEALsim project, which
generally apply to alien projects as well. More technical details like the design of the deterministic
simulation engine or the integrated network layer are covered in later chapters.

1.1 Issues with redundant and/or obscure code

As mentioned one of the big challenges encountered during the course of this project was to
understand the ‘design’ of the TEALsim framework and track down its execution flow. Code
artifacts of abandoned features and design decisions bloated the amount of code to analyze. The
following table 1.1 illustrates with approximate figures the work performed to clean up the
frameworks codebase.

. blank lines of lines of
files .
lines comment code

feature branch of TEALsim with SVN revision 150 602 | 17629 31286 74852
network, runtime argument and test packages

added after original check-in to SVN repository 46 772 1930 2654
resulting leftover from original check-in 556 | 16857 29356 72198
original check-in to SVN repository (revision 2) 582 | 17902 29534 76205
variance of leftover to original content of check-in -26 | -1045 -178 -4007

Table 1.2: Overview over evolution of lines of code resp. amount of files of TEALsim project5

Most mentionable for table 1.1 is the reduction in lines of code by approximately 4 kLOC which
would equal to ~5% of the whole project. Usually such code consisted of classes forced to
implement methods due to them implementing inappropriate interfaces, or derived classes
repeatedly re-implementing the same methods instead of calling into their base class. As
reference for ‘new code submits’ the packages containing TEALsim’s new network capabilities,
the runtime argument parser and the JUnit test suite were chosen, since these were definitely
non-existent previous to this thesis. While a magnitude of changes to files in other packages were
applied as well, taking them into exact consideration is arguably quite challenging, for which
reason it was assumed that the measurable effects of these changes would cancel each other out.

5 Figures calculated with the tool CLOC - http://cloc.sourceforge.net/

1.1 Issues with redundant and/or obscure code

, blank lines of lines of | lines of comments
files . .
lines | comment code per line of code
network and runtime argument pack- | 5 | g4 1813 | 2102 0,862511893
ages added after original check-in
resulting leftover from original 556 | 16857 29356 | 72198 0,406604061
check-in

Table 1.3: Overview over amount of in-line documentation of TEALsim projecté

To emphasize the improving quality of the framework’s code emanating from this thesis’
practical work, table 1.3 summarizes the ratio of lines of comments to lines of code for old code
versus new code submits. Apparently a degree of documentation more than twice as
comprehensive as prior outlines the improving software quality.

Despite the fact that at this thesis’ start it was of importance to provide means to effectively
test the code base, eventually the attention shifted over to eliminate design flaws and implement
new features (e.g. for network capabilities) which mainly left the testing suite behind as a solid
starting point for future work in this area. As such, code comprising the JUnit tests are rather
unsophisticated in their current state, generally consisting of copied and pasted boilerplate code,
which is the reason why the test package was excluded in table 1.3.

. . lines of lines of lines of comment
files | blank lines)
comment code per line of code
feature branch of OWL TEALsim
module with SVN revision 150 21 437 47 1475 0,370847458
original check-in of OWL
TEALsim module 23 783 810 2731 0,296594654
change of project contents _ _ _ _
from check-in to rev. 150 2 346 263 1256 0,074252804

Table 1.4: Overview over evolution of OpenWonderland TEALsim module project?

For the sake of completeness table 1.4 confirms that changes to the TEALsim framework did
not come at the cost of increased complexity in related projects like the Open Wonderland
module. Correlative to the developments in the TEALsim code base, the TEALsim OWL module
code base was reduced in complexity while getting slightly more thoroughly documented alike.
Effectively this turned it into a real player-like wrapper, responsible to embed TEALsim into OWL
without redefining aspects or the design of the simulation framework.

6 Figures calculated with the tool CLOC - http://cloc.sourceforge.net/
7 Figures calculated with the tool CLOC - http://cloc.sourceforge.net/

1 State of the TEALsim project

1.2 Move from CVS to SVN

One of the first activities was the migration from the formerly used CVS revision control
system to the more recent SVN8 system. Performing this step before anything else was a logic
consequence, since experience has shown that the move from one support system to another one
often implies the loss of various information while additionally the necessary amount of time to
do the migration increases with the amount of information contained in the former system.
Motivations for this task were amongst others

e the extended functionality of SVN, which allowed for example to easily move folders
(e.g. via drag and drop within Windows Explorer using TortoiseSVN?)

e a unified workflow while developing TEALsim in parallel to OWL and the
corresponding module (since OWL used SVN as well),

e and in general the broader experience with SVN compared to CVS of people involved in
this project.

The SVN host of choice was Sourceforge, and the all of the source code is currently publically
available?o,

1.3 Integration into Netbeans, rework of the build script

Next on list was the migration of the TEALsim project from Eclipse to Netbeans. Motivation for
this work was again the desire to create a more streamlined development workflow, since Open
Wonderland itself (and all of its related projects created/maintained by the Open Wonderland
Foundation), the TEALsim OWL module as well as one of its most important frameworks - the
MTGame Graphics Engine!! - are also both Netbeans projects. Unifying the amount of utilized
integrated development engines to a minimum not only decreases the amount of time required to
setup a working station and get involved in the project, but also leverages productivity with the
concrete IDE by allowing usage of advanced features like step-by-step debugging with stepping
into code of other projects controlled by the same IDE, etc..

With Java and Netbeans getting everything right to allow usage of all of Netbeans’ features
usually becomes a serious challenge without profound knowledge about Ant!2 build scripts in
general and Netbeans way to deal with things in particular. Adding into this consideration the
complex structure of the former build script (see figure 1.2), which existed without any
documentation or any formal system specification for the deliverables, a serious amount of time
was required to achieve a tight and properly working integration with Netbeans.

8 Subversion revision control system - http://subversion.apache.org/

9 Tortoise SVN client - http://tortoisesvn.tigris.org/

10 TEALsim project hosted on Sourceforge - http://sourceforge.net/projects/tealsim/
11 MTGame Graphics Engine - http://code.google.com/p/openwonderland-mtgame/
12 Ant software build tool - http://ant.apache.org/

http://subversion.apache.org/�
http://tortoisesvn.tigris.org/�
http://sourceforge.net/projects/tealsim/�
http://code.google.com/p/openwonderland-mtgame/�
http://ant.apache.org/�

Hul

N A
_ _
aseajal aloa puadapul 184208 Adoa qejAdoa aloa—Adoa SLUIS Ado3 kadinosallel
A A A A A A A A A A A A A

-] B IR [

1.3 Integration into Netbeans, rework of the build script

Figure 1.2: Dependency graph of the former TEALsim build script

1833051 p|Ing |leaopenel J0peAB[21037 p|INg
A A A A A
- [[
fE|lpling Joperel” diz SLUISTpIng
A A A A
ge el auo— el diurAdoa aloa el sLs el
A A A A
_ |
LE=|2 Aps 151p
A A A
_ |
PErIES uopnos|p ysijgnd

1 State of the TEALsim project

distribution javadocall clean
| I
A Y
javadoc fauild
I
h J A1 h 4 Y
-jar-ilab -jar-all -jar-sims -jar-core
I L I1
Y Y L S Y Y
-build-ilab -build-isocket -build-sims -build-core
I I
YYYYY
init
=t
-init-jnlp -init-libs

Figure 1.3: Dependency graph of the streamlined TEALsim build file

<<workspace containing folders>>

1) initialize build
4) build
OWL &hl TEALsim
modules it OWL module
[TEALsim 2) check if TEALsim library is up to date
3b) [OPTIONAL] copy updated library
3a) [OPTIONAL] build TEALsim
| Open
Wonderland

Figure 1.4: lllustration of TEALsim’ OWL module build sequence

10

1.4 Addition of (J)Unit Tests

Figure 1.3 shows the final build.xml file used by Netbeans to build, debug and profile the
TEALsim project. Besides the TEALsim project also the TEALsim OWL module project was slightly
adapted. Most mentionable the module’s build script became considerable smarter by usage of a
custom Ant-Contrib Tasks!3 build, which allows to check if the module uses the most recent
TEALsim library file (that is it checks if compiling TEALsim would yield a more recent binary, and
if so triggers the build and fetches the new library - see figure 1.4 for an illustration of this
process).

1.4 Addition of (J)Unit Tests

Integral part of any project but maybe very experimental R&D prototypes is the testing suite.
Since TEALsim surprisingly did previously not include any extensive package for this task at all,
an inevitable duty was to introduce a suitable framework for this purpose. The library of choice
was JUnit!4, not least because it is recognized as being a standard tool in Java for test-driven
software development paradigms like Extreme Programming (ExtrProgjunit). Another advantage
of JUnit is its tight integration into the Netbeans IDE (see figure 1.5) which allows for a smooth
workflow while working on the TEALsim code. Due to the amount of time required for other areas
of this thesis, unfortunately the testing aspect ultimately ended up being treated rather poorly
again. One major issue currently limiting the usefulness of tests was an error with the JME15
graphics library which refused to close its canvas between single tests, making it impossible to
test TEALsim with this particular graphics setting. Presumably the root for this error is way down
in the source code of the JME framework. Eventually search for this bug was postponed because of
its complexity.

One of the currently available tests resembles a black-box style test (BlckBoxTest) only
checking the proper, exception-free startup of TEALsim based on 2 lists of simulations: one
comprehensive list, covering almost all available simulations and one subset of the former list
consisting of a selection of important simulations used by John Belcher in his classes at MIT.

A few other tests exist as well, checking the correct execution of runtime arguments or the
determinism of the simulation engine, but definitely more work in this area would be required.

13 Ant-Contrib Tasks - http://ant-contrib.sourceforge.net/
14 JUnit project page - http://junit.sourceforge.net/
15 JME graphics framework (see the Wonderland branch) - http://code.google.com/p/jmonkeyengine/

11

http://ant-contrib.sourceforge.net/�
http://junit.sourceforge.net/�
http://code.google.com/p/jmonkeyengine/�

1 State of the TEALsim project

g3 -

a4 @Test

as = public void testMain() {

gé

87 TealSimApp test_app = null;

aa try {

29 test_app = new TealSimApp():

90 test_app.init (args_}:

91 Thread.slesp(2000);

92 test_app.dispose():

93 Thread.slesp(1000);

a4 } catch (Throwable e) {

495

98 if (test_app != null)

97 test_app.dispose();

98

@ e.printStackTrace():

100 fail("Failed example :: " + Arrays.tostring(args_] + " Exception: " + e.toString()):
101 }

102 - }

103 ¥
: Usages | Tasks : Java Call Hierarchy | Qutput | Search Re:
TEALsim x |

u> [T —

ub 10 tests passed, 5 tests failed. (40,41 5)
: L tealsim, TealSimAppLectureRelevantTest FAILED

-

e testMain[0] passed
e testMain[1] passed
e testMain[2] passed
e testMain[3] passed

(4,136 5)
(4,136 5)
3 998 <)
(3,228 5)
7 gac <
(3,995s)

(4,0415)

4} e testMain[4] passed (4,602 =)

& G- /% testMain[5] FAILED: Falled example :: [-ofx, 13D, -n, tealsim.physics.em.FaradaylcePailShield]
e testMain[6] passed (3,5555)
e testMain[7] passed (3,835s5)
testMain[8] FAILED: Failed example :: [-gfx, 13D, -n, tealsim.physics.em. filedCylindershell]
e testMain[d] passed (3,9165)

\, testMain[10] FAILED: Failed example :: [-gfx, J30, -n, tealsim.physics.em. GaussLawFlux]

- testMain[11] FAILED: Failed example :: [-gfx, 13D, -n, tealsim.physics.em.Landscape]
e testMain[12] passed (3,31:5)

\, testMain[13] FAILED: Failed example :: [-gfx, J30, -n, tealsim.physics.em.RadiationCharge]

e testMain[14] passed (3,767 =)
4 | i |

Exception: java.lang.IlegalArgumentException: java.lang. ClassMotFoundExcey

Exception: java.lang.IlegalArgumentException: java.lang. ClassMotFoundExcepti

Exception: java.lang.IlegalArgumentException: java.lang.MullPointerException
Exception: java.lang.IlegalArgumentException: java.lang. ClassMotFoundException: te

Exception: java.lang.IlegalArgumentException: java.lang.reflect. InvocationTarg

i
{5}

m|

3

Figure 1.5: Screenshot taken in Netbeans IDE showing the result of a JUnit test run

1.4.1 Addition of a mocking framework

To enable very generic testing of certain components an additional framework providing
mocking features was also added to TEALsim. The library of choice was EasyMock!6. An example
of its usefulness is the test which checks the soundness of the algorithm responsible to execute
the RuntimeArguments according to the declared specifications (e.g. fail if a developer
accidentally declared arguments depending on each other, creating a circular reference). In the
concrete test an instance of each available type of RuntimeArguments gets generically created,
and this set of arguments is fed to the execution logic. Since the algorithm will eventually execute
every single argument - which usually interacts with an environment which is not available for
this test - the called method on the RuntimeArgument has to be mocked to prevent exceptions

16 EasyMock project - http://www.easymock.org/

12

http://www.easymock.org/�

1.5 Addition of a logging framework, allowing dynamic adjustment of log settings via e.g.
helper windows

breaking the test. A mocking library like EasyMock takes care of this task, providing e.g. functions
to record calls to mocks. In the test mentioned above every argument has to be executed exactly
once to pass the test. Adding mocking capabilities to the test suite enables very elegant, precise
tests without the need to create a huge amount of hacks to emulate a required support
environment.

1.5 Addition of a logging framework, allowing dynamic
adjustment of log settings via e.g. helper windows

Another missing component indispensable for any larger project was a capable logging facility.
While there existed a rudimentary class providing static methods which essentially allowed
printing various types of objects to System.out, it definitely suffered from several drawbacks:

e equivalent to the rest of the project hardly any documentation

e resembling old-style C code by being parameterized via plain integers instead of e.g.
enums

e being real source code requiring recompilation for changes

To solve these issues any new code written consistently utilized the standardized logging
facilities included in the Java framework since JDK 1.417, while many of the former debugging
messages were changed to do so as well. In the face of the amount of code constituting the
TEALsim framework unfortunately not all of the debugging messages utilizing the former debug
system could be changed to use the DK version - this should be done incrementally as further
work is done to enhance the framework.

Apparently the JDK logging utilities tackle all of the mentioned problems of the self-made
debugging system, adding on top the benefits of outsourcing the task to maintain or even extend
this system as well as being a widely recognized standard which allows to use other 3rd party
applications to plug into the logging system for even more sophisticated log analyses. As an
example for this serves the currently included LogGui (InforMatrix GmbH, 2007) library, which
opens up a separate logging window (see figure 1.6)to allow adjustments to the logging output at
application runtime!

17]DK logging facilities - http://docs.oracle.com/javase/6/docs/api/java/util /logging/package-
summary.html

13

1 State of the TEALsim project

|£| Capacitor = | = 2

File Electro-Magnetic Mechanics Examples View ResetView Help

Parameters (7)

Capacitor 1- Mumber of charges: 12
Individual partide charge: 5

Capacitor 2- Mumber of charges: 12

Individual partide charge: -5

File Options View Help (&)

Logger | Handler | Filter | Formatter | Console| |Grass seeds |

. Root Logger - - al
----- # imx.loggui.handler HandlerView || Logger: teal.app. SimPlayer _|t|a

----- # global

----- # sun.awt.AppContext

----- # sun.awtim.InputContext
----- # java.awt.mixing. Container
----- # imx.loggui.lib.ICollectionEditor Filter: [odfilter
----- # teal.app.SimPlayerApp -
----- # imx.loggui.lib. ITextField
----- L fmx.Ilb.llsifener.LlstenerBag LogGui Version 1.0

----- # imx.loggui.logger Loggerview | Copyright {¢) 2003-2007
----- # imx.lib.gui. Console InforMatrix GmbH

----- .

Log level: .parent level =1

Handler: |no handler =

m

----- # imx.loggui. handler. Configurablel http: /fwww.informatrix.ch
----- # teal.synchronization.network.co

----- # imx.loggui.LogMasterview

----- # java.awt.mixing.Component

----- # sun.awt.windows. WDesktopPro|
----- # java.awt.focus.Defaultkeyboar:
----- # imx.loggui. formatter . SimpleSele
----- # sun.awt.windows, shape,WCom(
----- # sun.awt.SunToolkit i

4| 1} | »

Figure 1.6: Screenshot of TEALsim being started up with an exchangeable tool for adjustments
of debugging output at runtime - tool used:(InforMatrix GmbH, 2007)

Besides the mentioned possibility to plug 3rd party applications into the logging system,
another of its key features is the dynamic configurability without recompilation. In TEALsim’s
case this is currently achieved via a configuration file in the project root folder called
logging.properties. An example for a couple of instructions can be seen in listing 1.1, with a sample
of the corresponding logging output in Netbeans shown in figure 1.7.

Listing 1.1: Example for instructions found in logging.properties file

Set the standard Loglevels

.level= INFO

this tells the handler to use our custom formatter
java.util.logging.ConsoleHandler. formatter = teal.util.CustomLoggingFormatter

you don't need to specify the next Tline, which demonstrates a very terse log format
teal .util.CustomLoggingFormatter. format =[%t] %L: %n [%C./M]

AAUVTh WN R

14

1.6 Streamlining the user interface

: Usages | Tasks : Java Call Hierarchy | Qutput -
TT IToTTT INIT- CUNSCLUC Iy T FICIL OIS CIONC I eI [y IICIII UL &= T LUIC I LEI T - ©III T
[1332523631548] INFO: RAdded = new connection of type — tesl.synchronizstion.network.connection
[1332523€31548] INFC: Starting Handshake process immediztely! [SynchronizetionClient.<inits>]
[1332523€31548] INFC: Sterting handshake with server! [SynchronizationClientfl.handleEvent]

[] [1332523€31548] INFC: Sending & brosdcast (on 2ll Connections) with message —-> tezl.synchroniz

%g [1332523€31571] INFO: SimEngine thread running! [Engine.run]

[1332523€31572] INFGO: Befreshed engine [Engines5.call]
[1332523€31572] INFGO: Befreshed engine [Enginez5.call]
[1332523631e82] INFO: Sending a regquest for & property change - walue='25"'" [SynchronizstionCli
[1332523631882] INFO: Sending a brosdeast (on 2ll Connections) with message -»> tezl._synchroniz

Figure 1.7: Log messages from customized formatter

1.6 Streamlining the user interface

Another part of the work comprised a slight redesign of the user interface to match widely
spread tools which appear to users to have an equivalent behavior like TEALsim. For a screenshot
of TEALsim running with its original Ul see figure 1.8. The screenshot shows the Capacitor
simulation running on a Microsoft Windows machine. This simulation - like almost all of the other
available simulations - acts comparable to a movie, that is basically it can be controlled via a set of
playback controls familiar from media players (at this place neglecting special controls provided
by e.g. ControlGroups, since they were not touched during the course of this project). Figure 1.9
shows a close-up of the previously used playback control (which was called ‘EngineControl’)
annotated with the purpose of the particular button.

15

1 State of the TEALsim project

| £/ Capacitor =& B3
File View Help
Parameters "é)
Plate 1 - Number of charges: 12
Individual partide charge: 5.0
Plate 2 - Number of charges: 12
Individual particle charge: -5.0
Generate Field Visualization (&)
[Electric Field: Grass Seeds]
[Electric Potential]

[|+ || 00 [= |[1« |

Figure 1.8: Screenshot of an older version of TEALsim showing the former user interface

| > |[» | o [= || 14 |
Step Start Pause Stop Reset

Figure 1.9: The former simulation controls and their associated properties - Source: (Belcher,
McKinney, Bailey, & Danziger, 2007)

For a sketch outlining the proposed look of the new Ul see figure 1.10. Consecutively is a brief
break down of the ideas behind the new buttons:

Most evidently the new Ul emulates modern media player’s style to merge the play and
pause button to one toggle button, since both states are mutually exclusive.

The underlying behavior of ‘Reset’ should change from its former concept of setting
everything back to a random value to setting everything back to a defined state (thus
repeated resets would always return to the same state). This would be more consistent
with the common understanding of what a reset in everyday life usually does.
Inevitably this may create the need to provide the means for a real randomized restart

16

1.6 Streamlining the user interface

for certain simulations. For this purpose a dedicated button could be placed on demand
next to reset, clearly describing its effect.

e The former ‘Stop’ button was removed since its main purpose was to pause the
simulation and prevent it from being started again. For most simulations - e.g. in the
case of the capacitor - this did not make much sense after all, while those few
simulations which really need this kind of behavior could simply trigger pause and
disable the controls themselves.

e Since a button to forward the simulation by a predefined time value AT existed ever
since, a logic consequence was to provide a button with an inverse behavior as well.

e Last but not least a slider was added to give users control over the pace of the
simulation, essentially multiplying the predefined time value AT.

Sirnulation title. ..

ControlGroup X

.‘ E- Simulation speed:
, Q pre——e———— _
1]

N~ ~— —cfeated with Balsarig Mockups - www.balsamig.com

reset randomlze set simulation speed as

step play / step multiple of simulation AT
back pause forward

Figure 1.10: Sketch of the proposed refurbished user interface created with the free online
version of Balsamiq Mockup tool!8

18 free online version of Balsamiq Mockup tool - http://builds.balsamig.com/b/mockups-web-demo/

17

http://builds.balsamiq.com/b/mockups-web-demo/�

Chapter 2

Synchronizing distributed applications

This chapter outlines theoretical aspects related to the synchronization of an application (that
is a TEALsim simulation in this case) across multiple clients via a network (and in particular with
OWL as host framework). Part of this discourse is a summary of the status quo which was
available at the start of this thesis, a suggestion for an alternative approach finishing with a
comparison explaining why the new design was eventually introduced to the TEALsim
framework.

Subsequently follows a confrontation of the principles and consequences of those two
synchronization paradigms which were identified as the fundamental ways how to synchronize
user interactions.

2.1 Initial idea

The essential intention behind the former concept was to keep the main project of TEALsim as
unchanged as possible, essentially leaving it as a real desktop application while packaging
everything related to a client-server architecture into the separate TEALsim OWL module.
Inherent to such an approach is the circumstance that for the development of the module in-depth
knowledge about TEALsim’s architecture is required because core components have to be rebuilt
to enable the framework’s executability in the distributed environment. Another side aspect is the
relative complexity of the module originating from the fact that superimposing a client-server
architecture on an underlying desktop system usually causes design inconsistencies and requires
considerable hacks to make both worlds work together.

Principles behind the architecture outsourced in a second project

For TEALsim’s OWL module the simulation engine was outsourced from the client to the
server. To understand the implications of this decision, one has to be aware that — while there are
in general many threads running, like in any other modern-day application with a GUI - the
simulation-part of the framework adheres to a single-threaded design. In simple terms there is

18

2.1 Initial idea

only one thread which is responsible to calculate the state of all of the simulation’s elements for
the next frame. Upon completion of the calculation the simulation thread informs the rendering
package (which can be considered as black-box consisting of an arbitrary amount of threads) to
render the view based on the updated states of the elements. Since everything - simulation
thread, rendering package, etc. — operates on the same set of states, the simulation thread has to
wait for the rendering process to finish before resuming its duty and repeating the same
procedure again.

Due to the fact that some possible (usually tricky) use cases were not specified (let alone being
implemented - e.g. satisfying solution to slider synchronization) inevitably no final, thorough
explanation outlining every detail of the proposed synchronization mechanism can be given.
Nevertheless, synchronization of the simulation elements amongst all clients was achieved by
putting that part of the simulation logic onto the server-side which is responsible for calculating
the dependent values of these objects. In further instance these values were broadcasted to all
clients who finished any outstanding auxiliary calculations based on them before triggering the
render process. As a result of this design the simulation had to be kept - more or less completely -
in memory on both sides - the server as well as on the clients.

In the end this lead to a situation where clients were sort of streaming the simulation states
like a video stream.

Performance characteristics of the client-server architecture

To illustrate the effects of this design on bandwidth requirements table 2.1 summarizes the
occurring congestion for 3 basic simulations. Measurement of these figures was done by logging
the size of EngineMessages being sent from the server to the client (that is after the serialization
of a message and before it being handed over to the OWL/RedDwarf Server infrastructure for
transmission). As such the values may only be considered as a rough estimation since any further
processing of the message on the layers below - possibly increasing or decreasing the total
amount of bytes to transmit, e.g. by compressing the messages or adding meta information, etc. -
is not reflected in the table. Besides, an important detail is the fact that the table relates to a single
client receiving the stream of dependent values. Because OWL currently does not utilize any
techniques like multicast (Kaplan, 2012), any successive client joining the simulation increases
network congestion by the denoted figures. Additionally the EngineMessages are only dispatched
when the simulation is in a running state.

19

2 Synchronizing distributed applications

o #point | Bytes | resulting | 3 /i | kb /s with | Kb/s per PC
Simulation name charges per Bytes per 20fps 20fps with 30fos
(PC) frame* PC** p p p

Capacitor 12 1312 109 26 38 3
Capacitor 18 1888 105 37 55 3
Charge by Induction 10 1328 133 26 39 4
Charge by Induction 20 2288 114 45 67 3
Falling Coil - 224 - 4 7

* approximate values based on the size of a message dispatched from server to client
** disregarding any overhead potentially caused by e.g. message header, etc.

Table 2.1: Bandwidth usage of OWL module for different simulations

One interesting aspect of table 2.1 is the last column. Considering that the simulation engine is
currently capable of calculating at least 200 point charges simultaneously on computer dating
from September 2009 (Intel Core i5 2.66 GHz Quad-Core CPU, 4 GB RAM, Nvidia GeForce 260 GTX,
Windows 7 64 bit), which would result in approximately 600 kb/s bandwidth utilization for each
client streaming such a simulation, it becomes evident there is a conceptual bottleneck (unless
network bandwidth is considered to be unlimited).

Two more pieces of information can be extracted from table 2.1 relating to the visual
appearance of TEALsim.

First of all the framework used to run with a frame rate of 20 frames per second (fps). Since the
human eye requires a frame rate of at least 24 fps to get the impression of smooth transitions
(24FPS), the prevailing situation could be considered suboptimal. Therefore the column with the
figures for bandwidth requirements with 20 fps is more of a historical record serving as reference
point for further thoughts (that is as a basis for the extrapolation for the columns with 30 fps).

Secondly the last two columns show figures with extrapolations of the 20 fps measurements
for a frame rate of 30 fps. This value seems to be a fair tradeoff between increased computational
load and improved visual presentation, and it is also the (minimum) rate of choice for most video
consoles nowadays (30FPS).

Last but not least table 2.1 also outlines that not every simulation takes advantage of the
available server-side processing power (and it is open if this could be changed in a way which
makes sense). The Falling Coil simulation for example, which is in its current, low-optimized state
a very resource hungry application, causes very little network traffic. For simulations like this, the
server takes on more of a role matching the scenario describe as alternative approach in the
succeeding chapter 2.2 than its intended role as a remote workhorse relieving the clients of
computational demanding tasks.

20

2.1 Initial idea

Limitations introduced by 3" party frameworks

Besides the already mentioned, expectable issues caused by superimposing a client-server
architecture on a desktop system, the underlying RedDwarf Server!® used by OWL introduced
another set of limitations, further intensifying the difficulties. Following is a consolidated list of
constraints which are of potential relevance for the TEALsim OWL module, taken from (Berger,

2012):

“Code run on PD has to follow several guidelines (RedDwarf Server Application Tutorial, 2010):

a)

b)

9)

All objects must implement the serializable interface. Without that the mentioned
atomicity of a task can not be provided. PD throws an exception if an object not being
serializable.

A single managed object must not contain too much data. Otherwise the de-serialization
and re-serialization process would take too much time and the task will be thrown away
very often.

All inner classes should be static since the time taken for the serialization increases
significantly if they are not.

Synchronization blocks must not be used among managed objects and their members.
Since PD uses it’s own locks those can conflict with the ones the user defined code uses.
This can easily lead to a deadlock.

Static fields which are not constant vanish on re-serialization. Although this problem can
be solved with Java semantics another problem with this fields appear. Such fields are
specific to a single Java virtual machine. This behavior undergoes the feature of PD to run
on more than one virtual machine.

Java’s exception base class java.lang.Exception should never be caught. This is because PD
uses its own exceptions which would in this case be caught by the user code. This is
especially important for debugging and testing new functionality since the exception base
class is often used together with such approaches.

No objects except managed objects themselves should be referenced by more than one
managed object. After the first serialization process they will not be identical any more
since a new object is created on re-serialization.”

Recapitulation

Evidently the design explained in this chapter comes with certain limitations which are difficult
to overcome based on mere tweaks and minor reiterations. Additionally, complexity of the code
turned out to be rather high, for which reason a different approach to handle synchronization will
be discussed in the succeeding chapter 2.2.

19 RedDwarf Server homepage - http://www.reddwarfserver.org/

21

http://www.reddwarfserver.org/�

2 Synchronizing distributed applications

2.2 Alternative approach

Learn from the best

Starting point for a reconsideration of the existing design is an analysis of what has to be
synchronized. In its former state the TEALsim OWL module had to synchronize two things
between server and client(s):

a) user inputs (e.g. button clicks, or slider dragging,...)
b) simulation states (of the simulation elements - via EngineMessages)

Item a) - user input - is always going to be unpredictable and will therefore require a
mechanism for synchronization hence only item b) - simulation states - remains as a candidate
for potential optimization.

Techniques used to build multiplayer video games could help to find the right approach for this
issue - after all simulations built upon the TEALsim framework can be regarded as a kind of game
as well (particularly since ideas exist to evolve TEALsim into a direction where it allows for even
more game-like simulations to be created). For a very popular title in this area, that is the first-
person shooter Half-Life, its developer Valve Corporation2? published a series of articles on its
Developer Community web page?!, describing various aspects of their technology. Most
interestingly their engine and network logic does not synchronize each frame, but rather expects a
certain kind of determinism in the game flow (which equals to the ‘simulation flow’ with regards
to TEALsim). This determinism usually only gets violated by user input. Due to this reason a lot of
brainpower was invested to optimize methods for game flow prediction, e.g. by extrapolating and
interpolating client states, with one overall goal being to decrease perceivable network latency
(subsumed under the term ‘lag compensation’ - see (Bernier, 2001)). Since a competitive
multiplayer game is always prone to hacking attacks by individuals trying to gain an unfair
advantage, their system comprises a supervising server instance computing the game flow in
parallel to the clients, verifying that user events stay within the boundaries of possible. Still,
communication between client(s) and server basically consists of user inputs influencing the
game in a way which alter the predictable future, or in other words: only new impulses, changing
the ‘direction’ the game converges to, are transmitted. This is possible because all of the involved
parties (server and clients) share the same set of algorithms which calculate the same output
based on the same input.

20 Valve Corporation - http://www.valvesoftware.com/
21Valve Developer Community page - https://developer.valvesoftware.com

22

http://www.valvesoftware.com/�
https://developer.valvesoftware.com/�

2.2 Alternative approach

Apply best practices

Applying this paradigm to TEALsim creates the requirement for the simulation engine to
become deterministic. Formally the engine’s responsibility is to calculate the next, future state for
all simulation elements (= output) based on their former states and a specified amount of time to
forward the scenery (= input).

Naturally computational intensive tasks from other, in parallel running processes on the same
machine are able to delay the computation of new frames for TEALsim (by racing for
computational resources). Beforehand there existed no specified logic to ensure that the engine
made up for the time it was lagging behind after such a delay occurred. Put simply, the most
important thing that has to be changed to make the engine predictable is its behavior from
calculating new outputs on a best effort basis to a stricter specification forcing it to produce
defined outputs in certain intervals with the option to fill in supplementary outputs depending on
available processing power (and furthermore skip in-between steps/frames as long as it is lagging
behind). More details on how the engine is supposed to work will be given in chapter 3.

Assuming that this requirement for determinism can be met, in general no additional
synchronization would be required on that score. Just like in the case of Half-Life synchronization
could be restricted to mere user inputs, drastically reducing bandwidth utilization. Above all no
need for server-side calculations exists for the TEALsim framework because it is currently not
intended for use in a real competitive environment hence the issue how to ensure that integrity is
maintained is of no concern. For this reason the sever could resemble a lightweight broker service
responsible to interconnect its clients, resolve race conditions occurring between clients trying to
change the same simulation element within a short time interval as well as store an up-to-date
version of the current simulation state (which could be queried from one of the connected clients)
for persistence purposes .

Impacts on TEALsim’s design

As mentioned adoptions to the simulation engine are necessary to ensure its determinism.
Beyond that, the integral part of the proposed design is the shift of TEALsim’s design from
desktop to client-server architecture, regardless of the actual environment the simulation is
intended to run in. The background for this paradigm change is the notion that it is easier - and
from a design point of view more consistent - to emulate a distributed environment for a desktop
application than it is to superimpose a client-server architecture on a desktop application.

For technical details how this aspect was realized in TEALsim see chapter 6. In general the
framework references a minimalistic connection interface for which an appropriate
implementation gets instantiated depending on the prevailing host environment.

The client-server architecture itself is of an authoritative nature, which means that the client
(the TEALsim simulation) indispensably requires a server to authorize user inputs. Though, due
to the abstraction of the connection the client does not care whether the server runs in parallel on
the local machine (either as independent process or in the same Java virtual machine) or remotely
- it is the concrete connection’s responsibility to close the gap between client and server.

23

2 Synchronizing distributed applications

Besides the need for a package containing the network layer and changes to the simulation
engine, the third mentionable effect of the new design on TEALsim is its requirement to slightly
adapt all existing simulations. Similar to the concept of multi-threaded programming, where the
Java language provides standardized constructs to synchronize concurrent threads on various
levels of scope (e.g. via synchronized methods and blocks, reentrant locks, etc.), equivalent
decisions have to be made when designing applications for distributed execution. To reduce the
amount of work required to adjust the whole project to adhere to the new paradigm two major
types of objects will be part of the network package:

1) A generic property which meets the requirement to set its value asynchronously only
after server authorization. In further instance it will also be used to provide
synchronization on block level.

2) A package of properties referencing Swing Ul elements, which can be synchronized
with all other clients and furthermore linked to generic properties

Technical information regarding these properties can be taken from chapter 8.2.4.

Recapitulation

The proposed alternative design is based on paradigms successfully used for proprietary
multiplayer games. It will inevitably increase the amount of TEALsim’s code base (and
consequently also the complexity by a certain degree), since the network capabilities become
integral part of the framework instead of being outsourced to secondary projects. In return any
project aiming for distributed execution will become more comprehensible and more consistent
in design by a magnitude. The optimization of the system for client-server architecture will
provide considerably improved performance in this area while suffering - if at all - from
negligible performance hits in the desktop scenario. Once adapted to the new architecture,
simulations built on the TEALsim framework can be used with little to no adjustments in
frameworks like OWL. Beyond that no noticeable additional work to create new simulations
should derive from the new architecture due to the availability of simple to use properties which
encapsulate the synchronization logic.

2.3 Comparison of former design versus alternative design

In this chapter the term ‘former design’ relates to the concept explained in chapter 2.1 Initial
idea, whereas the term ‘alternative design’ references the ideas depicted in chapter 2.2 Alternative
approach.

The following table summarizes various relevant aspects which will be briefly explained in the
listed chapters thereafter. The assessment of the superiority of one design over another shall
serve as a simple and quick reference to the conclusions which can be drawn from the
explanations in the corresponding chapters. In this case a check means that one design could be
considered superior to the other design for this particular aspect.

24

2.3 Comparison of former design versus alternative design

superiority
aspect former design | alternative design

2.3.1 Complexity of TEALsim framework v

2.3.2 Complexity of OWL module v
2.3.3 Complexity to create new content (simulations) v v
2.3.4 Network congestion / scalability (+) v
2.3.5 Code extensibility / autonomy v
2.3.6 Versatility v
2.3.7 Server hardware requirements v
2.3.8 Client hardware requirements (+) s

Table 2.2: Summary of pros and cons for the former compared to the alternative
synchronization design

2.3.1 Complexity of TEALsim framework

Considering TEALsim’s code base isolated from all other related projects, the client-server
architecture of the alternative design doubtlessly adds in a certain amount of complexity
compared to the former design. In this context it is important not to mix code and complexity
reducing effects of the cleanup duties described in chapter 1.1 with the consequences to the
framework’s code caused by the new design. Instead the former activity has to be seen
independently and it would have benefited both designs alike.

2.3.2 Complexity of OWL module

Unlike the reduction of code in TEALsim’s main project (as discussed in the former chapter
2.3.1) is the decreased size and complexity of TEALsim’s OWL module (see chapter 1.1) directly
related to the introduction of the new client-server architecture. This is due to the downgrade of
OWL'’s role to something resembling a simple media player.

In fact everything that was needed to make the TEALsim simulations run in OWL was to create
a specific implementation of the connection system as well as provide adapted classes to allow
embedding the viewer into the OWL world (which already existed for the module based on the
former design).

Currently there are still some classes with redundant/obsolete code left in the module; further
work in this area with the goal to completely take away the requirement to know any TEALsim
framework internal details, would make it even easier to embed TEALsim in 3rd party
applications.

25

2 Synchronizing distributed applications

2.3.3 Complexity to create new content (simulations)

Complexity to create new simulations should stay equal regardless of the underlying design of
the TEALsim framework. The documentation of the former design owes detailed answers to
certain use cases which require synchronization. For this reason it is sensible to assume that
eventually similar mechanisms like those described in chapter 8.2.4 would have to be
implemented as well to cover the fundamental types of synchronization levels (see chapter 2.5).
With such tools as explained in chapter 8.2.4 content developers have a fine-grained control over
what they want to be synchronized on an easy to use basis.

2.3.4 Network congestion / scalability

Network congestion caused by synchronization of user inputs should be almost identical for
both designs.

Beyond that the flexible operation mode of the alternative design requires a distinction of the
expectable benefits depending on the situation:

e Compared to the former design, network traffic is reduced by a magnitude in the
alternative design’s standard mode, since synchronization amongst all clients is
generally done implicitly by a deterministic simulation flow. For one (capable) client
little bandwidth usage will arise from the server’s subscription to receive regular
updates of the simulation state (to share with connecting clients).

e In this context the worst case scenario occurs with computational weak clients (like
smartphones or tablets) who could switch into an operating mode resembling the
former design (where they will receive a stream of simulation states to avoid having to
compute the simulation flow themselves).

2.3.5 Code extensibility / autonomy

With the former design TEALsim’s network capabilities originated solely from the (tight
integration into the) OWL framework. This situation could be described as a vendor lock-in
because no easy integration of TEALsim in any other 3rd party multi-user framework was
conceivable.

Furthermore extension of the main project itself was challenging, not least because of the split
engine design serving as basis for the OWL module. When trying to change the TEALsim
framework this setup made it difficult to entirely comprehend and anticipate the consequences on
depended projects like the OWL module. In absence of extensive tests to verify the code’s
functionality this issue becomes especially severe.

The alternative design packages everything into one coherent project. As a result verification of
the correct operation of all features becomes more centralized and consequently easier and more
reliable. In further instance the development of new features for TEALsim should become more
rapid due to isolating changes to one (small) project instead of having to work with multiple

26

2.3 Comparison of former design versus alternative design

interconnected projects, which all come with their own set of limitations and rules regarding e.g.
debugging, compilation etc.

2.3.6 Versatility

Not least due to its flexibility to switch between operating modes, the alternative design opens
up additional possibilities for future developments and fields of operation of TEALsim.

On the one hand focus could be put on the simulation core to cover more physics experiments
or even other fields of science again (e.g. biochemistry). In line with such developments would be
the tasks to try to add more sparkle and/or improve performance on the visualization side. This
direction would especially benefit computational powerful computers like laptops or
workstations.

On the other hand attention could be directed to work on use cases relating to the execution of
TEALsim on slower devices. Such devices often come with a unique set of constraints to mind, like
reduced screen sizes which would need special adjustments to the user interface to allow for a
good user experience.

While the former design operated similar to the streaming mode of the alternative design and
thus shares the same set of possible future fields of operation, its tolerance for more graphical
brilliance is potentially limited by the available network capacity.

2.3.7 Server hardware requirements

Hardware requirements for the server are on its bare minimum for the alternative design. In
its current conception this design does not offload any computational intensive tasks from the
client-side on to the server-side. Instead the server merely has to decide if incoming requests are
admissible and forward them. Consequently a server running the alternative design’s service
could doubtlessly handle a vast amount of clients and/or simulations simultaneously.

With the former design the threshold for concurrent clients and simulations was much lower.
For the maximum amount of clients the available network bandwidth was decisive (see chapter
2.1 and in particular table 2.1). Finding a feasible set of simulations the server could handle was
even more complex given the awareness that besides significant computational requirements for
the simulations themselves also auxiliary tasks of the server, which were running in parallel and
consuming performance, had to be considered.

2.3.8 Client hardware requirements

In theory the former design was based on the concept that computational intensive tasks - like
calculation of the simulation flow - should be delegated from the client to the server, thereby
relieving the client. In practice not all simulations were equally suitable for such a divided
computation model (see table 2.1 and the related discussion), hence slow clients could only run a

27

2 Synchronizing distributed applications

subset of the available simulations whereas fast clients were not always able to take full
advantage of their computing power but were often forced to idle waiting for the server to
provide missing parts of the calculation.

For slow clients running TEALsim in the streaming mode of the alternative design equal
constraints to the former design hold true.

The true benefit of the alternative design lies in its better utilization of otherwise untapped
resources. In this regard the client hardware requirements could be considered to be higher,
which becomes irrelevant though due to the possibility to switch over to the streaming mode.

2.4 Issues of implicit synchronization of simulation
calculation

2.4.1 Double precision divergence across multiple clients

One serious challenge impeding the task to create a flexible but still deterministic simulation
engine emanates from the definition of floating point numbers. Since computers on their lowest
level can only handle two different types of values - zero and one - ultimately everything has to
be mapped to a binary presentation. The same holds true for floating point numbers.
Mathematical operations which appear easy to solve to a human might effectively return
unexpected results once executed on a computer. An example for such an issue can be taken from
listing 2.1 (Retain precision with Doubles in java, 2008).

Listing 2.1: Code sample to demonstrate precision issue with floating point numbers

Vs

1 | public class doublePrecision {

2 public static void main(String[] args) {

3 double total = 0O;

4 total += 5.6;

5 total += 5.8;

6 System.out.printin(total); //prints 11.399999999999
7 }

81}

.

28

2.5 Synchronization at property level compared to synchronization on event level

Based on the mentioned considerations the following, initial approach to log the elapsing
SimulationTime could not be used, even though it might seem perfect written on a piece of paper.

Idea:
AT 1000 [ms]

Astep X

x = Astep *1000 / AT

Explanation:

In the example above we increase the simulation exactly by a value of AT over the course of 1
second. By computing the next engine state (that is simulation state) based on aAstep means to
forward the virtual SimulationTime by the factor x. Since computation of x requires a
multiplication and a division the result of the operation is almost certainly prone to minor

rounding. Considering the rounding to occur for each frame the engine calculates it becomes
obvious that various clients with an alternate frame rate will quickly deviate from each other.

2.4.2 Divergence across multiple clients when computing certain
algorithms with different amount of steps

Besides rounding occurring due to floating point numbers exceeding the amount of
information storable in their associated objects in computer memory, also the underlying
algorithms describing physical effects may produce slightly varying results depending on the
amount of sub-steps used to compute an aggregated end result.

2.5 Synchronization at property level compared to
synchronization on event level

Listing 2.2: Pseudo code declaring a basic Ul and the relation of its elements

Vs

Button btn = new Button("Increment);
TextField fieldl = new TextField(0);
TextField field2 = new TextField(0);

btn.addActionListener(hew ActionListener() {
public void actionPerformed(ActionEvent e) {
fieldl.setValue(fieldl.getValueQ + 1);
field2.setValue(field2.getValueQ + 1);
}
b;

Qoo NOOUVIAWNR

=

.

29

2 Synchronizing distributed applications

2.5.1 Concept of synchronization on event level

Synchronization on event level could be considered as the counterpart of Java’s multithreading
synchronization on block respectively method level. With the example in listing 2.2 in mind this
would result in a single message to the server trying to synchronize the ActionEvent which
occurred after a user clicked the Increment button.

2.5.2 Concept of synchronization on property level

For the example given in listing 2.2 synchronization on property level would mean to
synchronize each call to a textfield’s setValue method independently. Depending on the context
this might cause problems when successive, unsynchronized code references e.g. the textfields
which were not yet synchronized (that is the response from the server is still missing).

30

Chapter 3

Designing a deterministic simulation engine

3.1 Issues of former design

Put simply, the initial simulation engine algorithm was just not predictable respectively
configurable enough to use it in an environment with the requirement to have an algorithm which
reaches an exactly defined state at an exactly defined point of time to execute arbitrary tasks
without impacting its overall determinism. One of the reasons why a complete redesign of the
simulation algorithm was preferred over an - as minimalistic as possible - adaption of the existing
one was definitely the lack of a thorough design-document specifying the in place procedure. As a
result, the only way to get to understand the engine’s design was to read the (sparsely, if at all
documented) source code. Part of this challenge was the complexity of the engines execution flow
based on the amount of states it was able to assume (see Figure 8.3)

3.2 Ideas behind a ‘deterministic’ algorithm

The new engine algorithm is implemented in a flexible way which allows it to compute more or
less sub-steps (so called in-between frames) depending on the underlying hardware capabilities.
For each calculation round the engine advances the simulation by a fraction of the totalAT called
Astep. AT is the amount of SimulationTime to forward the simulation from one key frame to the
next key frame. Consequently Astep is the amount of SimulationTime from one in-between frame
to the next in-between frame.

For a given simulation AT is either set to a specific value by the simulation creator, or
otherwise a standard value from the AbstractEngine is used. During runtime this value can be
adjusted via the available slider (see figure 1.10).

31

3 Designing a deterministic simulation engine

3.3 Concept of the configurable simulation engine

SIMULATION
BOOT LIP

simulationmode = COMPLUTATIO simulationmode = STREAMIMNG

simulation mode

STREAMING COMPUTATION

simulation mode

may be triggered either by user input

. . . [=== T
Simulation engine : Simulation engine 1:
logic for state streaming | logic for state computation |
I e I
) | i . |
| L |
|
|
} % : [|
[7] | : !
!] I
| I I
| |
, !
_______________________ S S i = N

Figure 3.1: Diagram of the concept of a switchable simulation engine

32

may be triggered by algorithm detecting slow hardware

3.4 Design of the algorithm for local simulation calculation

3.4 Design of the algorithm for local simulation calculation

A simulation ‘cyele’ 1asts for a constanttime period called 'KEY_FRAME_INTERWAL".

During this cycle the engine tries to compute as many frames as specified via TARGET_FRAMES".
During this cycle the engine advances the simulation by exactly AT, independent ofthe amount of
frames which were ultimately calculated.

During this cycle the calculation and rendering of a single frame should not take more than
MAX_T_ROUNDTRIP time, which is the quotient of KEY_FRAME_INTERVAL | TARGET_FRAMES

START

Zhstep=10

framesLeft= TARGET_FRAMES

t_start = System.currentTimeMillis()
t_nextCycleStart=1_start + KEY_FRAME_INTERWVAL

ifthe real maintainable framerate would he faster than the desired rate, keep
Astep stable and idle the computer in-hetween execution cycles, otherwise
. increase Astep to fit the lower framerate, that is to guarantee a fixed sum

of Astep (=AT) for a given period (= 'cycle’)

framesLeft

Y

framesLeft=1

YES MO

framesLeft= 0

t_toRenderDelay +=time to apply changes
1

apply changes /
execute tasks

A

NO YES

available for execution?

g Astep = (AT - ZhAstep) i framesLeft
i ZAstep += Astep
L
-kl -
= Ir compute and render next EngineState i
= | |
= 5 — -) —
E } = ! the time remaining specifies how much time is
o | = i ! left until the simulation has to be forwarded by an
iy | ! '_;’ amount of exactly AT (thatis, the current eycle ends)
— .~ s 4
bl i
g t_remaining = t_ne}dCycI?étart- System.currentTimeMillis()
g
M i ifthe last EngineState computation was hased
g‘ /r’ on alarge Astep due to the hardware being
% t remannm - expected to be slow, while in fact the hardware
E = g managed to calculate the state faster, then wait
EI with the start of the next computation cyele to keep
= Ithe simulation progress constant in real-time |
=
S YES MO i
I (AT - Zhstep) =0 !
= |
- |
w I
Q [l
E H
i '

m \

t_toRenderDelay o YES O i = MO

{_nextCycleStart S a=

= Astep Zhstep=10
t_nextCycleStart += KEY_FRAME_INTERVAL
t_remaining = t_nextCycleStart- System.currentTimeMillis() Y

sleep far:
1 toRenderDelay +=t_remaining| tremaining

Figure 3.2: Overall design of the deterministic algorithm for local simulation calculation

33

3 Designing a deterministic simulation engine

YES
framesLeft =1

simulationTime

simulationTime += KEY_FRAME_INTERVAL

Y Y

compute in-between-frame
hased on Astep

the computed frame defines the EngineState

EngineState ‘

has EngineState MO
subscription?

compute key-frame

~ export EngineState |

____________ = measure time t_roundtrip for the whole computation
required to reach the point again to draw a new frame, e.g.:
(the first round will presurmahly be slightly wrong)

t_tmp = System.currentTimeMillis();

t_roundtrip =t_tmp - t_start-t_toRenderDelay:
t_start=1_tmp;

t_roundtrip
1_start

YES

MO
KEY_FRAME_INTERVAL /t_roundtrip

LtoRenderDelay = >TARGET FRAMES

MAX_T_ROUNDTRIP - t_roundtrip

t_toRenderDelay

sleep for:
t_toRenderDelay

run logic to evaluate
whether or not the

engine should switch
to streaming mode

fppCalc = TARGET_FRAMES

fppCale <€
fppCale = KEY_FRAME_INTERVAL /t_rounctrip

render frame

Figure 3.3: Computational part of the algorithm doing simulation calculation locally

34

3.4 Design of the algorithm for local simulation calculation

START simulation senver
IUB PROCES can subscribe 2 modes

-1 key-frames only
-1 all frames

Y

-y

subscriptionType

A

last computed
frame matches
uhscriptionType

YES MO

this sub process is completely
optional; without a valid

deep copy subscription it will be skipped
EngineState altogether.
Additionally the client will most
¥ likely add data regarding the
fps he's running on, to give the
send EnginaState server an idea whether or not

he should switch the subscription
to a different, more capahle client.

EXIT
UB PROCES

Figure 3.4: Logic to export engine states to the remote computers (most notably the server)

35

3 Designing a deterministic simulation engine

3.5 Details of the simulation engine running in state streaming
mode

subscribe for
EngineState stream

after subscribing for
Enginestates the senver

streams them to the client

if no other clientis available to '

perform the simulation compu-
tation, inform the streaming
client about this circumstance

incaming
EngineStates
huffer

MO

huffer empty
notify ahout new EngineState

apply EngineState
render frame

walke if simulation mode
| should be switched

consume EngineState]

switch
simulation
maode

MO

Figure 3.5: Execution flow for simulation engine when streaming simulation states

36

Chapter 4

Defining the expected system behavior

In the successive chapter - unless explicitly specified in another way - the expression ‘client’
refers to the TEALsim client side implementation whereas the expression ‘server’ refers to the
TEALsim server side implementation.

The expression ‘ControlState’ serves as a placeholder term for something which may be
changed by the user but which has to be synchronized between all clients (and therefore has to be
previously authorized by the server). An example for this would be the simulation state (running
or paused). Furthermore by using the term ControlState to describe something which has to be
synchronized implies that changes to this element (after authorization) also changes all of its
associated elements (e.g. if ‘ControlState’ relates to the value of a text field, which is used to
specify the charge value of an arbitrary amount of point charges, changing the ControlState will
subsequently also change the point charges).

‘SimulationTime’ is defined as the sum of |AT| the simulation engine progressed the simulation
(state), hence a paused simulation does not change its SimulationTime.

4.1 Use cases for important design aspects

4.1.1 Simulation and graphics engine logic

Use case 1: Multiple clients running with out-of-sync SimulationTime

Pre- 2 clients (A and B) opened the same simulation, connected (and therefore
condition | synchronized) with the server, and the simulation is paused

Client A requests to start the simulation. Due to the authoritative principle of the
underlying design specifying how to handle user input, the request to start the
Story simulation is forwarded to the server before anything may happen.

In further instance the server verifies whether or not the requested ControlState
change may be authorized (see the use cases in the succeeding chapter 4.1.2

37

4 Defining the expected system behavior

Synchronization of ControlState). Assuming that the change is authorized, all of the
clients connected to the server are notified about the new state (that is to start the
simulation). Due to differing latencies between the server and its connected clients,
all of the clients will ultimately start running their simulation at a different point of
(real world) time.

Post-
condition

All clients are running but ultimately they might be out of sync assuming an
omniscient supervisor capable tracking such marginal differences.

Remark

Assuming latencies to be in the area below 1000 [ms] for modern networks,
having 2 clients next to each other connected e.g. via LAN to a local server, the
overall difference of alternating SimulationTimes between both clients should not be
visible with the human eye.

While it probably may never be possible to achieve a 100% synchronization,
certain techniques could be implemented to decrease the effective difference in
SimulationTime amongst all clients - for example by accounting for diverging client
latencies when starting a simulation, and therefore slightly fast forwarding a
simulation on demand

4.1.2

Synchronization of ControlState

Use case 2: Change of ControlState without user input collisions and the

simulation is running

Pre-
condition

2 clients (A and B) opened the same simulation, connected (and therefore
synchronized) with the server, and the simulation is running

Story

Client A causes a change of the ControlState (e.g. by user input). Client A logs the
SimulationTime and sends a ControlState change request to the server.

The server receives the ControlState change and verifies in its internal lookup
table that the changed element(s) was(/were) not changed by any other client at a
later SimulationTime. Upon successful validation of this constraint the server
broadcasts the ControlState change to all connected clients and updates its internal
ControlState (that is state and timestamp of last change). The broadcasted
ControlState change message contains a field telling the clients at which
SimulationTime to execute the state change. For details regarding the calculation of
this SimulationTime value, see chapter 0

Details regarding SimulationTime calculation

All of the connected clients receive the broadcast message and have one of two

options:

a) For example if they have a fast connection to the server (that is low latency)
their internal SimulationTime might be before the timestamp in the ControlState
change message specifying the point of time to update the simulation. In this case
the particular client caches the received order and executes the change as
scheduled.

b) Contrary if they would have a slow connection to the server their simulation
will be beyond the point of time specified in the ControlState change message. In

38

4.1 Use cases for important design aspects

this case they have to record their current SimulationTime and roll back the
simulation by negating AT until the point of time the ControlState change has to
be executed. Then the change gets applied and the simulation is fast forwarded to
the original SimulationTime.

All clients and the server share the same ControlState.
At a global point of time X (that is real world time) it is not guaranteed that clients

PO?"_’ display exactly the same rendered view because it is not guaranteed that their
condition | jnternal SimulationTime is exactly the same relative to point X. It is guaranteed
though that at a given SimulationTime clients will eventually show exactly the same
rendered view.
Remark

Use case 3: Change of ControlState without user input collisions and the

simulation is not running

Pre- 2 clients (A and B) opened the same simulation, connected (and therefore
condition | synchronized) with the server, and the simulation is not running
Client A causes a change of the ControlState and sends a request to the server.
The server receives the ControlState change, runs the verification process (which
should always succeed) and sends a broadcast message to all clients with
Story SimulationTime set to:
(SimulationTime from change request)
All of the connected clients receive the broadcast message and apply the
contained change.
Post- All clients and the server share the same ControlState.
condition
Remark This use case is related to use case 2 - due to this reason some technical details

have been omitted.

Use case 4: Change of ControlState with user input collisions - case 1 -

lagging behind client B

Pre- 2 clients (A and B) opened the same simulation, connected (and therefore
condition | synchronized) with the server, and the simulation is running
Client A causes a change of element X. Client A logs the SimulationTime Y and
sends a ControlState change request to the server.
Story The server receives the ControlState change and verifies and broadcasts it to all

connected clients.

Client B causes a change of element X before receiving respectively applying the
broadcasted change from the server. Client B logs the SimulationTime (Y - Z) [where

39

4 Defining the expected system behavior

Z > 0] and sends a ControlState change request to the server.

The server receives the ControlState change but the verification process fails
causing the change not to be authorized (that is not sent back).

Eventually all (including client B) connected clients will receive the broadcasted
change originating from client A and update their simulation accordingly.
Additionally client B might receive a notification that he’s lagging behind compared
to other clients which caused one change to be dropped.

Post- All clients and the server share the same ControlState based on the change caused
condition | by client A.
Constraint: in general, clients’ SimulationTime is assumed to be not too far off
amongst each other (see use case 1).
Remark

This use case is related to use case 2 - due to this reason some technical details
have been omitted.

Use case 5: Change of ControlState with user input collisions - case 2 -

advanced client B

Pre-
condition

2 clients (A and B) opened the same simulation, connected (and therefore
synchronized) with the server, and the simulation is running

Story

Client A causes a change of element X. Client A logs the SimulationTime Y and
sends a ControlState change request to the server.

The server receives the ControlState change and verifies and broadcasts it to all
connected clients.

Client B causes a change of element X before receiving respectively applying the
broadcasted change from the server. Client B logs the SimulationTime (Y + Z) [where
Z > 0] and sends a ControlState change request to the server.

The server receives the ControlState change and verifies it. In this case the
server’s verification process will succeed, causing it to save the new state and issue a
new broadcast to all clients with the state of client B.

Eventually all clients will receive the broadcasted change originating from client
A and update their simulation accordingly. In further instance all clients will receive
the change originating from client B. Regular rules apply with regards to the way
clients deal with simulation changes, that is they will - if needed - roll back their
simulation state to the timestamp value contained in the change message, apply the
change and fast forward the simulation to the former point of time.

Post-
condition

All clients and the server share the same ControlState based on the change caused
by client B.

Remark

Constraint: messages are expected to arrive in fixed order.

This use case is related to use case 2 - due to this reason some technical details
have been omitted.

40

4.1 Use cases for important design aspects

Us

e case 6: Change of ControlState with user input collisions - case 3 -
equal SimulationTime

Pre-

2 clients (A and B) opened the same simulation, connected (and therefore

condition | synchronized) with the server, and the simulation is running

Story

Client A causes a change of element X. Client A logs the SimulationTime Y and
sends a ControlState change request to the server.

The server receives the ControlState change, verifies and broadcasts it to all
connected clients.

Client B causes a change of element X before receiving respectively applying the
broadcasted change from the server. Client B logs the SimulationTime Y and sends a
ControlState change request to the server.

The server receives the ControlState change, runs the verification process and
reacts on it depending on which particular of the following two possible scenarios
applies:

1. The simulation is in the state ‘running’ with both clients causing a
contradicting change at exactly the same point of SimulationTime, but for
example client B’s latency is greater than client A’s. This issue is resolved by
applying a first-come, first-serve paradigm on the server resulting in the
rejection of client B’s change and preferring the change arriving sooner.

2. The simulation is currently paused (therefore the SimulationTime is
temporarily constant). Since successive changes will always wear the same
timestamp none of them may be dropped. Therefore any change will overwrite
prior ones (resulting in new change broadcasts), in effect favoring changes
caused by high latency clients.

Post-

1. If the simulation is in running state all clients and the server will share the
same ControlState based on the change caused by client A.

condition | 2 If the simulation is in paused state all clients and the server will share the

same ControlState based on which change was received last by the server.

Remark

This use case is related to use case 2 - due to this reason some technical details
have been omitted.

Use case 7: Change of ControlState with user input collisions - v4

Pre-

2 clients (A and B) opened the same simulation, connected (and therefore

condition | synchronized) with the server, and the simulation is running

Story

Client A causes a change Y of element X. Client A logs the SimulationTime and
sends a ControlState change request to the server.

The server receives the ControlState change, verifies and broadcasts it to all
connected clients.

Client B causes a change Y of element X before receiving the broadcasted change
from the server. Client B logs the SimulationTime and sends a ControlState change
request to the server.

The server receives the ControlState change and runs the verification process.

41

4 Defining the expected system behavior

Since the state of element X on the server is equal to the requested change by client
B, the request by client B gets dropped silently.

Eventually all (including client B) connected clients will receive the broadcasted
change originating from client A and update their simulation accordingly.

Post- All clients and the server share the same ControlState based on the change caused
condition | by client A which is equal to the change requested by client B.

This use case is related to use case 2 - due to this reason some technical details

Remark
have been omitted.

4.2 Details regarding SimulationTime calculation

The SimulationTime defining the point of time when changes should be applied to the
simulation is calculated as follows:

(SimulationTime from change request)
+ (originating clients 1-way latency)

+ (median 1-way latency of all connected clients)

= SimulationTime to apply changes

The formula above seems to be a robust implementation to determine the point of time when
to apply changes to a simulation. While this design naturally causes some delay for user input, it
also reduces the amount of simulation roll back computation required on other clients (and
therefore graphic ‘stuttering’). Additionally this design pays tribute to the idea to reward “high
efforts” in a sense that clients can directly influence the perceived feeling of input lag by
improving their own network connection and therefore reduce one of the delay factors.

The second factor influencing the delay of user interactions impacting the whole system can be
regarded as some kind of social parameter to improve the experience for slower clients. While
theoretically this value could be abused for fraud (in a sense of disturbing the experience for
others), its practical security relevance is supposedly minor since it requires approximately as
much evil clients as those who are present with good ambitions.

42

Part 11

Implementation details

43

Chapter 5

General aspects of a client-server architecture
for TEALsim

5.1 Security

The system was designed to be used in a closed environment which is assumed to be free of
aggressors. Due to this reason security concerns did not influence the design of the
implementation in general. Evident security risks were tried to be addressed as good as possible
unless it involved a serious effort of redesign or increase of complexity. Throughout this thesis
known issues are mentioned purely for the sake of documentation without even trying to
compose a comprehensive list covering a fair amount of aspects. For this purpose an independent,
in-depth analysis would be required which presumably would require a huge amount of work.

45

Chapter 6

The underlying network layer

46

6.1 General design of the network layer

6.1 General design of the network layer

Shared compaonents

—{ WonderlandServersideNode

—{ WonderlandClientsideNode

—{WunderlandSer\rersideCnnneminri

—{ WonderlandClientside Connection

4{

—{ SocketNode
—{ InnerProcessNode
Vi
NetworkNode

InnerProcessConnection

getConnection : Connection

SocketConnection |

_{

can generate messages for itself,
e.q.when a clientis notreachahble

p——

anymaoare -~ -

v " h

ifthe corresponding Connection is a 'serv

Connection <1 extends NetworkNode> i

Connection it will manage multiple no

reas client' Connections will only have
1x node (thatis the server)

whe G

consume() - Message

send(Message msaq)

close()

==ConnectionEventListener maintenance methods=

Message

fisrc node is set by the receiver
transient MetworkMode sourceMaode
transient Collection=MNetworkMode= targethodes

I\

[

ControlMessage ‘

PropertyChangeMessage ‘

1.*
Al
L

SynchronizationSkeleton

send(Message msg_)
hroadcastiMessage msg_)

Server companents

SynchronizationServer

handle{ControlMessage msag_)
handle(FropertyChangeMessage msg_)

Client compaonents

SynchronizationClient

handle(ControlMessage msg_)
handle(PropetyChangeMessage msg_)

Figure 6.1: Class diagram of TEALsim’s network layer

47

6 The underlying network layer

User Client
start TEAL=im .“i
select simulation Ab

server

start up client instance

create Engine,
EngineControl,...

send "Connect” for simulation A

P

reply "ConnecticnEstablished”

set simulation live

zend PCCommandiessage
for EngineState subscription

lml

run simulation

(= Property u:hangna

Q
g

apply Property change

send PCAuthorizationReguestMessage
for PC with SimulationTime = 0

P

authorize PC with SimulationTime = 0
(= broadcast PC)

.

apply Property change
|: (=run =imulation}

loop|[while has subscription])

send EngineState for KeyFrame
(and maybe all frames if streaming

is reqpired)

P

can be triggered localky by
the user when starting
the application, or
remotely by another user
{on another system)

‘start up server instance

create a new SimulationSynchronizer
for zimulation A

update Property state

the Enginestate could be
implemented as an

unsynchronized Property

update EngineState

Figure 6.2: Standard start up sequence of TEALsim’s client-server architecture

6.1 General design of the network layer

<4

-«

3pIs puBY-1J2| 2y} UD BLWIBYDS
oy} o1 anso|eue s| apis puey-jysu

uoI123UU0) Jo uonejuawWadw|

uoI133UUO)

U012 SUORZIUCIYIUAS

J3AJI3SUCIEZIUCIYDUAS

1USI|DUOIIBZIUOIYDUAS

JaziuoayduAsuone|nwis

uonenwiIs

Z 22uelsul uonedidde

PR

Uo13I2UUOY JO uoieusW|dw|

31240U02 01 21Dads

uOoI123UU0) JO uoilejuaWwa|dwl

A

y

noge Ajlzou

uondaUUO)

w

SJUSAJUONIISUUOD
_L:On_m Ajnou

S1UAZUOIII2UUO)D

! sagessawl A sagessawl
m ppe U013 SUOIIBZIUCIYIUAS ppe
DA L5 a8essa a|puey
A.:uummu_umﬂ._n_ Y Y

/ (+)puss J2AJI2SUOIIRZIUOJYIUAS 1Usl|JuUOIIRZIUOIYDUAS
asuodsal & 4 sa3ueyo pareniul
: S8essaN a8essaly Jasn duAs *dsaJ Joj uols
| m__u:m;, 9elauss -siwiad yueud/1sanbal

“““““““““ r--->{ JazIVOIYDUASUOREINWIS uonenwis

UoMn2eIa1ul Uasn
SzIUOJYIUAS

T 22uelsul uoiieddde

concrete
Connection

message abstract
Connection

dispersion

application

layer

layer

layer

layer

Figure 6.3: layers of TEALsim’s network architecture

49

6 The underlying network layer

6.2 Socket based implementation of Connection

NetworkNode

Connection <T extends NetworkNode=>

getConnection(: Connection |

7

consume() : Message

send(Message msa)

close()

==ConnectionEventListener maintenance methods=

SocketNode

SocketMode(lnetSocketAddress addr_)
getWorker : ClientWorkerThread

cross reference each other

N

ClientWorkerThread e

SocketConnection<SocketNode>

ClientWorkerThread({SocketMode node) *
send(Message msg_)

SocketConnection{SocketConnectionParameter parg
ClientWorkerThread(SocketMode node)
send(Message msg_)

_’
DeliveryThread
uses for creation
w
addhessage(Message msg_) SocketConnectionParameter
String host
ListenThread int port

=

Thread

Figure 6.4: Class diagram of the socket based implementation of Connection

50

6.3 Implementation of a Connection for communication within a single JVM

thin

1cation wi

le JVM

6.3 Implementation of a Connection for commun
a sing

Qasoa (-
Qawnsuoa (-
Opuas (-
‘BIA SlaBISU|

apopNssad0lJiauu|

T

|
UoRIsUU0DSSasaldiaul))
Guls au!

Uum J|asy salasiBall

|
h 4

v

U0NPAUUD)SSAI 0l JIaul|

. 14

aljuoneziuoiyauls

uonejnuiSIoensqy ||peayy

Jauodwos Uz

L

.
Jayng s uoaauung
aysoddo sy oy Agaanp
safessaw yaedsip

b

pealy 12100 d

v

pealy|

Jauodwos paleys

apoU Sy} ssa30d
a|qisuodsal uopaauuc
8] 0] aaUslalEl B S

apONYIOMIBN

I
| £
|
|

o]

uonIBUUOY

aziuonpulsuone|nwis

ry
I
]

]

[l
‘digeliea 2nL)S B EIA JEIZIUNO BPIS JAAAS 5] SpUl uoneuaLdaduw®
UONaaUUnDSsaI0ldlauul uala ayl Aualing uonaauuod 1o suone]
-UaLua|diul Jualagip 1o JUnoLwe AeIdIE LE aABL AELU JaAIES 8L]

‘

hantaguoneziuolysuls

peaiy]

Juauodwog dgfdag

Figure 6.5: Class diagram of the implementation of Connection used to run client and server

within one JVM

51

6 The underlying network layer

6.4 Open Wonderland specific implementation of Connection

Openwonderland framework

forward communicationy| A mn9ncall L————
to OWL framework App2DCell

Client component

used by the Connectio to
dispatch messages via OWL's
communication architecture

.| TealSimCell

I

registers ClientTealMessageReceiver| ClientPlayer
to receive messages of OWL's
communication architecture

TEALsim package i

|

Simulation !

|

? Message i

|

SynchronizationClient !
Y I

WonderlandClientside Connection
Lok 3

wraps TEALSIMS messages in
an OWL compatible message
and dispatches itvia the Cell

Q

WonderlandClientsideNode
App2DCell cell

TealMessage

b

usedwhen dis-fconnecting to OWL's
communication architecture to inform
server component about new client node

T
]
|
|
|
]
]
|
:
I
i Message msg
|
|
|
]
]
|
|
|
I
]
]
|

farwards incoming ChannelActivityMessage

message of OWL's ~ | IIJOIM or LEAVE
communication architectura EventType type

. 4

gets called from OWL framgwarkd

ClientTealMessageReceiver

Figure 6.6: Class diagram of the client-side implementation of Connection for OWL

52

6.4 Open Wonderland specific implementation of Connection

Openwaonderland framewoaork |

|
|

gets called from OWL framework m——————————1 . I W————_ I__
I App2DCell0 =] WunderlandCIientSendeM

e\ I\ -

e e e e e e e e e ————————————————————— -

Server compaonent |
|

——~| ChanneIAmivityMe&:agEReceiver‘ TealSimCellMOQ

| TealMessageReceiver |——— |Syn-::hrunizatiunServerM0|

notifies about new message
or client join/leaves

—){ WunderlandSewersideCunnectiuq
T wraps TEALSIMS messages in

an OWL compatihle message
and dispatches itviathe Cell O

WonderlandServersideNode

TealMessage

WonderlandClientlD clientiD
WonderlandClientSender sender Message msg

forward communication
to OWL framework

Figure 6.7: Class diagram of the server-side implementation of Connection for OWL

53

Chapter 7

Starting / using the TEALsim framework

7.1 Options to start the desktop version of TEALsim

7.1.1

Configuring the client and server component

By utilizing TEALsim’s runtime argument feature its desktop version may be started in

different ways. Especially the behavior when no server instance is required may seem odd at first

glance but it is owed to the way the RuntimeArgument mechanism is implemented. Basically the
possible ways to start TEALsims desktop version are ...

with no particular runtime arguments at all

this will cause TEALsim to start with a local server instance running with exactly one
associated Connection of the sub-type InnerProcessConnection. Instances of simulations
will create SynchronizationClient instances utilizing themselves a Connection of sub-type
InnerProcessConnection. This behavior ensures a minimum amount of conflicts which
may be caused by firewalls, etc. when the socket based implementation of Connection
would be used for desktop use of TEALsim. Furthermore the InnerProcessConnection
performs much better compared to the socket based Connection type due to the fact that
messages are exchanged by passing around pointers.

with arguments for the server part of TEALsim but no special arguments for the
client part

this will cause TEALsim to start with a local server instance running with all of the
specified Connections plus one additional of the sub-type InnerProcessConnection.
Instances of simulations will create SynchronizationClient instances utilizing themselves a
Connection of sub-type InnerProcessConnection. Remote clients may connect to the local
server by means of any of the instantiated Connection types.

with a ‘no server’ argument for the server part of TEALsim and a specific server for
the client part

this will cause TEALsim to start with a local server instance running with an instance of

54

7.2 Using TEALsim framework in a 3rd party application like OpenWonderland

the Connection sub-type InnerProcessConnection. After this instance is created the server
related runtime argument will cause the server to shut down. Instances of simulations will
create SynchronizationClient instances utilizing a sub-type of Connection matching the
given runtime argument.

In a nutshell:

o If not explicitly specified in a different way the client side of TEALsim (that is the
SynchronizationClient) will use instances of Connections of the sub-type
InnerProcessConnection.

e Unless specified via the ‘no server’ argument a local server instance will be created with
at least one Connection of sub-type InnerProcessConnection.

7.2 Using TEALsim framework in a 31 party application like
OpenWonderland

Client package

one Cell ohject for each instance
. of TEALsim in the OWL world

[
|
L configure to create

k“-;.) WonderlandClientsideConnections
TealSimCell

forwards OWL actions to the play-
er (e.g. simulation selection via
the properties dropdown menu)

— ClientViewer

W

ClientPlayer (> ClientGUI

configure to create correct

|
|
|
; . ,
factory implementation Simulation :
o ? i
SceneFactory !
SynchronizationClient[$
uses LAy :
w
ClientSceneFactory
{7 WonderlandClientsideConnection
SceneFactoryJME ?

WonderlandClientsideNode

Figure 7.1: Schema of required client-side components to integrate TEALsim into OWL

55

7 Starting / using the TEALsim framework

Server package

o=
TealSimCellMO r = .
one Cell object for each instance
T of TEALsim in the OWL world

SynchronizationServerMO

I
i
I
—{> Serializable

TEALsim package

|

|

|
SynchronizationServer !
|

|

L—-[::- |
Thread i

|

WonderlandServersideConnection

1

WonderlandClientsideNode

Figure 7.2: Schema of required server-side components to integrate TEALsim into OWL

56

Chapter 8

Analysis of the design of various TEALsim
components

8.1 Introducing clear object ownership

3) initialize
T
|)
1) create] 3) create
117 initialize | SiMPlayer | 4) register simulation
PR ———
|
|
I J
|
|
|
|
¢ 5) asks for EngineControl
r and sets it internally L L
A3 rd
TSimulation o SimEngine H™= Runnahle
10) initialize
£
l
“
M
h =1 8=1E3
. 2) create BBl a2l .
S CileClmEsl B
Y [T] T m
u Bl 2wl ol 2
. W 2@ ED E
Y =
LY — [x} =
\\\ =] IC:E E}:E
‘\\ g w
A
Simulation3D EngineContral €
SimWorld

A

SimEM SimkKinemati

Figure 8.1: Snapshot of execution flow and object ownership of former simulation construction

57

8 Analysis of the design of various TEALsim components

Jeduodawmbug _nm_,_

M A
_‘ ﬁmﬁw_w._uw :
! ! !
_ W

ddyJakelduns _mm_,_

]
LI EETRES
3 |

W),

uoneINWISIPESqY (5 Jahejguns (3)
]]]]] 1
pmmmmm e e £ BRI e e e ?ﬂéi_ b ? --espsia L (i
I
1
m a)Bal s r---ﬁﬁmts:-.“ i m
! “ Lo b
\r Wl | Ny e F *
¥ | W W
aubug _nw_,_ JCAIMIp _,xw_,_ AECamaiy _@,_ JURIPUOREZIUCNPUAS _,xw_,_ | INouIs _n.w_,_ NIomawedq| _.\M._
|
b i
|
|
]
auibuzReasqy (3 agRmMIA1Ra5qY () !
|
. e |
[byl Lo jm————= 3 I ===
I | “ ! |
“ € m:m ala® | “
I | | |
| | ' _ bl bl el |
.mm_ﬁm_uu. A * 1 W wls ‘ Aol o Wl
i |[dwipawbulyg (3) auibugunsy (1) JBM3IIAL (T) 7 uonenuIs) (1)
| 2 5 3 3
-
| I 3 I
_ |dwiraubugpesqy _@,_ lauajsiapuay | _.\w._ Jabeuepjuaw=iy) _.\w._

Resulting design for TEALsim’s simulations and their more

general components

8.1.1

Figure 8.2: Design of TEALsim (based on client-server architecture)
58

8.2 Design of the components involved in computing and rendering the simulation

8.2 Design of the components involved in computing and
rendering the simulation

8.2.1 State of the former simulation engine

Due to the vast amount of objects allowed to change the simulation’s state to any state an
accurate state diagram outlining the allowed transitions is difficult to extract from the code.

Q

Figure 8.3: State diagram of the former simulation engine

8.2.2 Design of the revamped simulation engine

construct (Simulation)Engine

= previous step =
= next step =
= reset simulation =
= randaomize simulation =

=

= run simulation =

Figure 8.4: State diagram of the deterministic simulation engine

< previous step =

= next step =

= pause simulation =

= reset simulation =

= randomize simulation =

8 Analysis of the design of various TEALsim components

8.2.3 Application flow of the rendering process
3. (optional)
renders all necessary =<ipterfaces==
elements and notifies
all listeners about TViewer
completion ==~

g render()
! addRenderListener(TRenderListenar rl)

J removeRenderListener(TRenderListener rl)

[5 A ZN

1] . i

i forwards render |

i requestto all :

Lregistered T"-.-'Iie"."'."'il'S:

|

! {Abstract)Simulation

]
kg triggerRender(-

“~____ 4| addRenderListener(TRenderListener rl)
removeRenderListener(TRenderListener rl)

e
|

1. I
triggers rendering i
via triggerRendear])

I

F.
registers for
renderComplete(..)
notifications

(Abstract)Engine

I
v implements

Y

registers for renderCompletel..) notifications

==interface==

TAbstractRendered

=<interface==

TRenderlListener

renderComplete(TViewer viewer)

s

implements

set of elements to render

Figure 8.5: Schema of the rendering process in TEALsim

60

8.2 Design of the components involved in computing and rendering the simulation

8.2.4 Design of SynchronizableGenerics

Relation HashSet<SynchronizableGeneric>
O SynchronizedPropertiesSet
RelationPair
* requiresSenverAuthorization(: hoolean
\ 4

SynchronizahleGeneric<T extends Serializable>

addLinkedProperty(SynchronizableGeneric linkedProperty) : void
setvalue(T newhalue) : void

getvalue - T

requiresSenverAuthorization{boolean condition) : void

A

— SynchronizableAbstractButton

— SynchronizahleTextField

— SynchronizahleSpinner

— SynchronizahleSlider

— SynchronizableFormattedTextField

Figure 8.6: Class diagram of SynchronizableGenerics and the associated Ul wrapper objects

61

Part 111

Outcome

63

Chapter 9

Ideas for future work respectively open issues

9.1 Important issues to fix

An important issue to fix is the synchronization of calls to the randomization oracle
(and subsequently enabling a reset of the oracle)

Properly rolling back the simulation engine state to a former point of time - currently it
is not exactly clear which variables have to be set back

While stepping forward in simulations works, the inverse action of stepping backward
does not, thus the Ul button currently has no function

A bug in the JME library seems to prevent the canvas from being closed. This is
particularly bad because it prevents effective unit testing of the TEALsim desktop
application

9.2 Design issues in need of a redesign

SynchronizableProperties - they capture changes triggered by the user at a certain
point of time. Based on the current design connecting clients start their execution
based on the last computed engine state + the set of all changed
SynchronizableProperties (that is their last state). What happens if changes besides the
last change to a SynchronizableProperty alter the simulation in a way which is not
currently reflected by the engine state (e.g. elements are added to the simulation by
repeatedly clicking a UI button etc.)?

Improve the SimulationEngine algorithm to become more stable in situations where
the required computing power exceeds the available hardware capacities. The current
logic exposes the drawback that in situations where the hardware is unable to calculate
at least the key-frame within the given KEY_FRAME_INTERVAL period, delays are
accumulated causing the algorithm to stay unresponsive for an increased amount of

64

9.3 List of nice-to-have features

9.3

time, even if for example the simulation was changed by the user to a state which could
be calculated faster (for example less elements).

e Another issue of current design is its single threaded execution flow which does
computation of the next frame on demand (that is when it is required for rendering). A
better solution would be a consumer/producer scenario where engine states get
calculated (that is ‘produced’) in advance and eventually ‘consumed’ by the rendering
engine. This would supposedly also help to change the engines design to be capable of
multi threaded execution, which would help to increase performance on modern and
future hardware.

e D generation of SynchronizableProperties currently has to be done manually by
content developers. The question is if there is a generic (automatic) way to do this, or is
it always up to the user to set unique IDs?

e Currently TEALsim still comprises a serious amount of inconsistent design which
creates a redundant, bloated codebase. For example the use of factory methods which
could be configured to produce the right type of objects is not utilized throughout the
TEALsim (and its correlated OpenWonderland module) project. In this context the
ClientPlayer class in the OWL module might be cleaned up considerably - potentially
up to the point where it becomes a featureless shell.

List of nice-to-have features

e Picking, selecting dragging via the mouse

e Verification of simulations soundness via Unit-Tests
e Formal specification of Ant build scripts deliverables
e Change all of TEALsim to use java.util.logging

e Fix the broken test which searches for circular dependencies in the set of existing
derivations of RuntimeArgument. Since those derived classes are no longer inner static
classes of RuntimeArgument, the technique to query for all declared classes in
RuntimeArgument obviously does not yield any results anymore

65

Part 1V
Appendix

67

Chapter 10

Remarks

10.1 Diagram legends

The diagrams, schemas, charts, etc. in this thesis do not strictly stick to any specific standard
(like the UML standard?2). Basically there are 2 reasons for this decision:

1) the chapters of this thesis related to TEALsim and the TEALsim Open Wonderland
module do not intend to serve as a full technical documentation in the narrow sense,
but shall rather give an overview over the performed programming work and the ideas
and concepts behind the implemented features

2) almost all diagrams were created manually (instead of automatic generation from
source code), not least because no suitable, affordable tools were available during the
course of the project

As such the diagrams sometimes mix different sets of graphical notations, even though effort
was taken to adhere to familiar and wide spread norms. After all, the careful selection of content
by a human being - to keep the drawings as minimalistic as possible while maximizing its pictured
information - should outweigh the loss of standardization by far.

Following there is a compilation with descriptions of the most commonly used notations.

22 Specification of the UML standard -
http://www.omg.org/technology/documents/modeling_spec_catalog.htm#UML

69

http://www.omg.org/technology/documents/modeling_spec_catalog.htm%23UML�

10 Remarks

10.1.1 UML class diagram like content

a) | AClassWithoutDetails
#,.F—-——————*[explanatiun
) Something [
inherits from
9 SubClass —— = SuperClass
impl 1
" Class -I—ﬁlp—E—T—EE—S—[:::- Interface
= has ==interface==
ass ([
e) = | Something
hasireferences
f) Class >——— 1 SomeClass
0.1
Uses
o) Class » SomeClass
relates to
h) Class SomeClass

AClassShowingMethods

setString(String str)
tostring(: String

AClassShowingFields

String name

k) | AnAbstractClass

Figure 10.1: Drawings with UML class diagram like content

a) usually class/interface/etc. representations (during the course of this chapter
referenced as ‘elements’) are kept as minimalistic as possible, hiding most or all
methods/fields/etc. (during the course of this chapter referenced as ‘properties’).

70

10.1 Diagram legends

b)

d)

g)

h)

Therefore a simple box without any other information but the name of it does not
imply that there is no functionality contained in this element, but it shall rather be seen
as a black box fulfilling all of the tasks which can be logically derived from its name. If
one particular property may be of special interest or may further help to clarify the
purpose of the element, it may be included in the drawing.

Usually access levels of properties are omitted, but generally one can assume that all
properties included in drawings are publically accessible, either directly or via access
methods

if something may not be immediately evident out of the drawing but might be
necessary/useful for its understanding (respectively to understand the context of the
pictured elements), a box with an orange to yellow gradient was used to add more
details in a textual form

inheritance of one element from another is indicated with a solid line and an arrow,
usually without the textual hint attached to the line

a class implementing an interface is indicated with a dashed line and an arrow, usually
without the textual hint attached to the line. In some places a stereotype notation is
used to indicate that a box constitutes an interface (for example if a class relates to
other classes/objects via an aggregation but only demands the related classes to
implement a certain interface - for instance the next item d))

since composition and aggregation symbols are very often controversially defined in
literature, little effort was taken to align all diagrams with one final, strict rule. Usually
a composition in this thesis indicates that the part-element may (or at least should) not
exist without the owner-element. Due to the blurry difference between composition
and aggregation, without doubt one notation may be substituted by the other
occasionally.

Additionally in this thesis a specialty of Java - that is Inner Classes - are usually
connected to its parent class with a composition. While there exist various
recommendations for non-standardized symbols like (Holub, 2011), for the sake of
simplicity this approach was chosen.

If omitted, then multiplicity is assumed to be 1

as indicated in item e) aggregations usually put elements in a relation which may exist
independently. Again, if omitted, then multiplicity is assumed to be 1

shows a class which uses another class in some way. Usually additional textual
information is available indicating the purpose of this interaction

shows a class which relates to another class in some way. Usually additional textual
information is available indicating the purpose respectively nature of this relation

shows an element where at least two methods seem to be of particular interest for its
understanding. While the ‘setString(...)’ method has a void return type, the ‘toString()’
method returns an object of type ‘String’

71

10 Remarks

j) shows a class where at least the ‘name’ field seems to be of particular interest for its
understanding

k) classes showing an italicized name are definitely abstract

Additionally group nodes were used in various places to give a hint about how classes belong
together in a broader sense, but this notation should be self-explanatory.

72

Chapter 11

References

11.1 References

Belcher,]., McKinney, A., Bailey, P., & Danziger, M. (2007, December 16). TEALsim: A Guide to the
Java 3D Software (Version 1.1). Cambridge, Massachusetts, USA.

Berger, S. (2012). Virtual 3D World for Physics Experiments in Higher Education(Master's Thesis).
Graz, Austria: Graz University of Technology.

Bernier, Y. W. (2001). Latency Compensating Methods in Client/Server In-game Protocol Design and
Optimization. Retrieved from Valve Developer Community:
https://developer.valvesoftware.com/wiki/Latency_Compensating_Methods_in_Client/Se
rver_In-game_Protocol_Design_and_Optimization

Brown, W.]J., Malveau, R. C., McCormick III, H. W., & Mowbray, T. J. (1998). Anti Patterns. New
York: John Wiley & Sons, Inc.

Holub, A. I. (2011, September 26). Allen Holub's UML Quick Reference. Retrieved from Hollub:
http://www.holub.com/goodies/uml/index.html

InforMatrix GmbH. (2007). InforMatrix LogGui. Retrieved from
http://www.informatrix.ch/loggui/index.html

Kaplan, J. (2012, March 28). Open Wonderland Forum: Utilization of Multicast in OWL. Retrieved

from Google Groups:
http://groups.google.com/group/openwonderland/browse_thread /thread/5a6cdec9ca7
2fd75

Massachusetts Institute of Technology. (2012, March 1). TEALsim Project at MIT. Retrieved from
http://web.mit.edu/viz/soft/visualizations/tealsim/index.html

73

11 References

RedDwarf Server Application Tutorial. (2010, March). Retrieved from RedDwarf Server Project:
http://sourceforge.net/apps/trac/reddwarf/attachment/wiki/Documentation/RedDwarf
%?20ServerAppTutorial.odt

Retain precision with Doubles in java. (2008, November 27). Retrieved from Stack Overflow:
http://stackoverflow.com/questions/322749 /retain-precision-with-doubles-in-java

Scheucher, B. (2010, March). Remote Physics Experiments in 3D(Master's thesis). Graz, Austria:
Graz University of Technology. Retrieved from
http://www.iicm.tugraz.at/thesis/MA_%?20Bettina_Scheucher.pdf

74

11.2 Table of the most important software (tools) used

11.2 Table of the most important software (tools) used

TEAL Simulation Framework
http://web.mit.edu/viz/soft/visualizations/tealsim/index.html
http://sourceforge.net/projects/tealsim/

Open Wonderland
http://www.openwonderland.org

Netbeans IDE
http://www.netbeans.org/

Intelli] Idea Ultimate (evaluation version)
http://www.jetbrains.com/idea/

yEd Graph Editor
http://www.yworks.com

Balsamiq Mockups
http://www.balsamiq.com/

CLOC
http://cloc.sourceforge.net/

EasyMock
http://www.easymock.org/

Ant-Contrib Tasks
http://ant-contrib.sourceforge.net/

InforMatrix LogGui
http://www.informatrix.ch/loggui/index.html

75

http://web.mit.edu/viz/soft/visualizations/tealsim/index.html�
http://sourceforge.net/projects/tealsim/�
http://www.openwonderland.org/�
http://www.netbeans.org/�
http://www.jetbrains.com/idea/�
http://www.yworks.com/�
http://www.balsamiq.com/�
http://cloc.sourceforge.net/�
http://www.easymock.org/�
http://ant-contrib.sourceforge.net/�
http://www.informatrix.ch/loggui/index.html�

11 References

TopThreads JConsole plug-in
http://lsd.luminis.nl/top-threads-plugin-for-jconsole/

76

http://lsd.luminis.nl/top-threads-plugin-for-jconsole/�

Chapter 12

Listings

12.1 Table of figures

Figure 1.1: Illustration of the Lava Flow AntiPattern - Source: (Brown, Malveau, McCormick III, &

MOWDTAY, 1998 ..uccuieurirnerriaseissssssssesssesssssssss s s s ssssss st s s s s s s et 4
Figure 1.2: Dependency graph of the former TEALSIM build SCIPt...coueeneeneenrernneeseeeseeeseesseeeseeeseeseenns 9
Figure 1.3: Dependency graph of the streamlined TEALsim build file ... 10
Figure 1.4: Illustration of TEALsim’ OWL module build SEQUENCEcoueriunrerienmeereeneineeereereeseesseeseeseeans 10
Figure 1.5: Screenshot taken in Netbeans IDE showing the result of a JUnit test runcceeeneeenee 12
Figure 1.6: Screenshot of TEALsim being started up with an exchangeable tool for adjustments of

debugging output at runtime - tool used:(InforMatrix GmMbH, 2007).....ccouereeureeenmreseernmermeesreessseennens 14
Figure 1.7: Log messages from customized fOrMAatLer ... eeeereeeseeeseesseessessseesssssssssssssesssssssssssees 15
Figure 1.8: Screenshot of an older version of TEALsim showing the former user interface.............. 16

Figure 1.9: The former simulation controls and their associated properties - Source: (Belcher,
McKinney, Bailey, & Danziger, 2007 ... eeerernmerseseseessesesssssssssssssssesssesssessssssssessssssssssssssssssssssssessaees 16
Figure 1.10: Sketch of the proposed refurbished user interface created with the free online

version of Balsamigq MOCKUP L00L..... e sseeecs s ssss s sss s sssssssans 17
Figure 3.1: Diagram of the concept of a switchable simulation engine..........erneneenseeneeseenn. 32
Figure 3.2: Overall design of the deterministic algorithm for local simulation calculation 33
Figure 3.3: Computational part of the algorithm doing simulation calculation locallyc.cccoecnniuuneee 34
Figure 3.4: Logic to export engine states to the remote computers (most notably the server)....... 35
Figure 3.5: Execution flow for simulation engine when streaming simulation states..........cccccoumeeees 36
Figure 6.1: Class diagram of TEALSIM’S NEtWOTIK IaYercoiieerrernmereereerseesseesseeeseesssesssessesssssssessssssssssens 47
Figure 6.2: Standard start up sequence of TEALsim'’s client-server architecturecoueensernreenees 48
Figure 6.3: layers of TEALSIM’S NetWOTrK archit@CtUTIE......ccoieeereenneiseesseessecssesessesseessesss s sssesssesssnees 49
Figure 6.4: Class diagram of the socket based implementation of Connection........ccceeeneeesseesseennees 50
Figure 6.5: Class diagram of the implementation of Connection used to run client and server

WITIIN 0118 JVIMueee sttt s s a s s R bbbt 51
Figure 6.6: Class diagram of the client-side implementation of Connection for OWL.......cccouuenrirnees 52
Figure 6.7: Class diagram of the server-side implementation of Connection for OWL.......cccocconmiuunee 53

77

12 Listings

Figure 7.1: Schema of required client-side components to integrate TEALsim into OWL................... 55
Figure 7.2: Schema of required server-side components to integrate TEALsim into OWL................. 56
Figure 8.1: Snapshot of execution flow and object ownership of former simulation construction.57
Figure 8.2: Design of TEALsim (based on client-server architeCture)eeeeeseernseeseesseesssesseees 58
Figure 8.3: State diagram of the former simulation eNgINe ... 59
Figure 8.4: State diagram of the deterministic simulation engine........ononenreneeneenseseenseesecseeneeenens 59
Figure 8.5: Schema of the rendering process in TEALSIMcocceenienenneessesseesssessesssesssesssesssesssesseeens 60
Figure 8.6: Class diagram of SynchronizableGenerics and the associated Ul wrapper objects......... 61
Figure 10.1: Drawings with UML class diagram like CONtENT........coucureereeneeenienrerreeneesseeseeseesseeese s sseseeaes 70

12.2 Table of tables

Table 1.1: Lava Flow AntiPattern issues found in TEALSIM SOUICE COAEnwurrmrereerreeeseessersensseesssesnees 5
Table 1.2: Overview over evolution of lines of code resp. amount of files of TEALsim project........... 6
Table 1.3: Overview over amount of in-line documentation of TEALSImM Project.......oneereenes 7
Table 1.4: Overview over evolution of OpenWonderland TEALsim module project.......ccooeneeereennes 7
Table 2.1: Bandwidth usage of OWL module for different simulations.........ccoeereneeenenneneesseeneeseennees 20
Table 2.2: Summary of pros and cons for the former compared to the alternative synchronization
(0 LT3 o3 DTSSR 25

12.3 Table of listings

Listing 1.1: Example for instructions found in logging.properties file..........onevneessenneseesseeneenss 14
Listing 2.1: Code sample to demonstrate precision issue with floating point numbers.........cccoecennee. 28
Listing 2.2: Pseudo code declaring a basic Ul and the relation of its elementscceonrenreereeereeenneens 29

12.4 Table of use cases

Use case 1: Multiple clients running with out-of-sync SimulationTimec.coneemenseseenseenseseeeseeseens 37
Use case 2: Change of ControlState without user input collisions and the simulation is running ...38
Use case 3: Change of ControlState without user input collisions and the simulation is not running

.. 39
Use case 4: Change of ControlState with user input collisions - case 1 - lagging behind client B...39
Use case 5: Change of ControlState with user input collisions - case 2 - advanced client B.............. 40
Use case 6: Change of ControlState with user input collisions - case 3 -equal SimulationTime.......41
Use case 7: Change of ControlState with user input colliSIONS — V4coeneennernneeneenneesseesseeeseeeseesseenns 41

78

Chapter 13

Index

13.1 Glossary

CECI - Center for Educational Computing Initiatives
CVS - Concurrent Versions System or Concurrent Versioning System
fps - frames per second

kLOC - linesofcode x 1000
MIT - Massachusetts Institute of Technology
PD - Project Darkstar
TEAL - Technology Enabled Active Learning
TEALsim - TEAL Simulation Framework

Ul - userinterface

79

13 Index

13.2 Index

No index entries found.

80

13.3 Digital assets

81

	Affirmations
	Acknowledgments
	Contents
	General background
	State of the TEALsim project
	1.1 Issues with redundant and/or obscure code
	1.2 Move from CVS to SVN
	1.3 Integration into Netbeans, rework of the build script
	1.4 Addition of (J)Unit Tests
	1.4.1 Addition of a mocking framework

	1.5 Addition of a logging framework, allowing dynamic adjustment of log settings via e.g. helper windows
	1.6 Streamlining the user interface

	Synchronizing distributed applications
	2.1 Initial idea
	2.2 Alternative approach
	2.3 Comparison of former design versus alternative design
	2.3.1 Complexity of TEALsim framework
	2.3.2 Complexity of OWL module
	2.3.3 Complexity to create new content (simulations)
	2.3.4 Network congestion / scalability
	2.3.5 Code extensibility / autonomy
	2.3.6 Versatility
	2.3.7 Server hardware requirements
	2.3.8 Client hardware requirements

	2.4 Issues of implicit synchronization of simulation calculation
	2.4.1 Double precision divergence across multiple clients
	2.4.2 Divergence across multiple clients when computing certain algorithms with different amount of steps

	Synchronization at property level compared to synchronization on event level
	2.5.1 Concept of synchronization on event level
	2.5.2 Concept of synchronization on property level

	Designing a deterministic simulation engine
	3.1 Issues of former design
	3.2 Ideas behind a ‘deterministic’ algorithm
	3.3 Concept of the configurable simulation engine
	3.4 Design of the algorithm for local simulation calculation
	3.5 Details of the simulation engine running in state streaming mode

	Defining the expected system behavior
	4.1 Use cases for important design aspects
	4.1.1 Simulation and graphics engine logic
	4.1.2 Synchronization of ControlState

	4.2 Details regarding SimulationTime calculation

	Implementation details
	General aspects of a client-server architecture for TEALsim
	5.1 Security

	The underlying network layer
	6.1 General design of the network layer
	6.2 Socket based implementation of Connection
	6.3 Implementation of a Connection for communication within a single JVM
	6.4 Open Wonderland specific implementation of Connection

	Starting / using the TEALsim framework
	Options to start the desktop version of TEALsim
	Configuring the client and server component

	7.2 Using TEALsim framework in a 3rd party application like OpenWonderland

	Analysis of the design of various TEALsim components
	8.1 Introducing clear object ownership
	8.1.1 Resulting design for TEALsim’s simulations and their more general components

	8.2 Design of the components involved in computing and rendering the simulation
	8.2.1 State of the former simulation engine
	8.2.2 Design of the revamped simulation engine
	8.2.3 Application flow of the rendering process
	8.2.4 Design of SynchronizableGenerics

	Outcome
	Ideas for future work respectively open issues
	9.1 Important issues to fix
	9.2 Design issues in need of a redesign
	9.3 List of nice-to-have features

	Appendix
	Remarks
	10.1 Diagram legends
	10.1.1 UML class diagram like content

	References
	11.1 References
	11.2 Table of the most important software (tools) used

	Listings
	12.1 Table of figures
	12.2 Table of tables
	12.3 Table of listings
	12.4 Table of use cases

	Index
	13.1 Glossary
	13.2 Index
	13.3 Digital assets

