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ABSTRACT

Tools for designing signal processing systems with their semantic foundation in

dataflow modeling often use high-level graphical user interfaces (GUIs) or text based

languages that allow specifying applications as directed graphs. Such graphical represen-

tations serve as an initial reference point for further analysis and optimizations that lead

to platform-specific implementations. For large-scale applications, the underlying graphs

often consist of smaller substructures that repeat multiple times. To enable more concise

representation and direct analysis of such substructures in the context of high level digital

signal processing (DSP) specification languages and designtools, we have developed the

modeling concept oftopological patterns, and proposed ways for supporting this concept

in a high-level language. This report shows how the dataflow interchange format (DIF)

language can be augmented with constructs for supporting topological patterns, and topo-

logical patterns can be effective in various aspects of embedded signal processing design

flows using specific application examples.
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Chapter 1

Introduction

Dataflow modeling is used extensively for designing signal processing systems.

There are various existing design tools with their semanticfoundations in dataflow model-

ing such as Agilent ADS [25], National Instruments LabVIEW [2], Compaan/Laura [31],

and SysteMoc [13]. DSP-oriented dataflow design tools typically allow high-level ap-

plication specification, software simulation, and possibly synthesis for hardware or soft-

ware implementation. These tools employ high-level description languages for applica-

tion specification. These languages, which may be either GUIor text based, provide

syntactic and semantic constructs for specifying graphical representations of DSP appli-

cations. Such graphical representations are then parsed and converted into intermediate

representations suitable for further processing.

In this work, we address the problem of representing large-scale and scalable dataflow

graphs that have complex topologies. Such graphs comprise of various kinds of functional

substructures that are parameterizable and can be represented in terms of concise, scalable

specifications.

For example, the dataflow graph of anN-point fast Fourier transform (FFT) algo-

rithm consists of a combination of scaled versions of a well-known pattern called the

butterfly diagram[24], and a systolic array is ameshof computing elements having

a specific dataflow structure that can solve problems such as QR-decomposition based
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recursive least square adaptive filtering, and minimum variance distortionless response

beamforming [19]. We identify such common structures in dataflow graphs astopologi-

cal patterns, and treat this kind of pattern as a first class citizen in the modeling process.

Furthermore, we demonstrate and experiment with the use of topological patterns in the

DIF, a textual design language and associated software package for specification, analysis,

and synthesis based on DSP-oriented dataflow models of computation [15], [26].

Topological patterns not only permit scalable specifications of dataflow substruc-

tures but also expose the underlying graph structure explicitly to the corresponding design

tool. This allows design tools to exploit any analysis or optimization advantages offered

by the substructures without having to “discover” those structures through additional lev-

els of pre-processing analysis. Some of the key components of the design flow that can

potentially benefit from explicitly exposed patterns include various kinds of scheduling

transformations, and techniques for buffer memory optimization. Furthermore, by mak-

ing it easier and more efficient to apply substructure-specific analysis techniques, pro-

gramming support for topological patterns encourages the development of such analysis

techniques, and provides a natural interface for reusing them across different applications

and tools.

In this report, we provide background on dataflow modeling, and the DIF language

as well as discuss the relevant prior work in Chapter 2. The concept of topological patterns

is elaborated in Chapter 3, including a description of how weextend the DIF language

to integrate topological patterns as a first class modeling construct. In Chapter 4, we

show how topological patterns can be used by dataflow based design tools for dataflow

graph analysis and transformations. We show how topological patterns can be used for
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graph analysis; extracting implementation-specific features; representing schedules; and

experimenting with pattern-specific schedules.
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Chapter 2

Background and Related Work

This chapter provides background on dataflow modeling and the DIF language. We

also discuss earlier research efforts that are relevant to this work.

2.1 Dataflow Modeling

Dataflow modeling involves representing an application using a directed graph

G = (V,E), whereV is a set of vertices (nodes) andE is a set of edges. Each ver-

tex u ∈ V in a dataflow graph is called anactor, and represents a specific computation

block, while each directed edge(u, v) ∈ E is a first-in-first-out (FIFO) buffer that repre-

sents a communication link between thesourceactoru and thesinkactorv. A dataflow

graph edgee can also have a non-negative integerdelay, del(e), associated with it, which

represents the number of initial data values (tokens) present in the associated buffer.

Dataflow graphs operate based ondata-driven execution, where an actor can be

executed (fired) whenever it has sufficient amounts of data (numbers of “samples” or

“data tokens”) available on all of its inputs. During each firing, an actor consumes a

certain number of tokens from each input and produces a certain number of tokens on

each output.

In synchronous dataflow (SDF), these numbers are constant across all actor firings

for a given input or output [21]. In SDF graphs, we refer to these numbers of tokens
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consumed and produced in each actor execution as theconsumption rateandproduction

rate of the associated input and output, respectively. SDF is an especially popular form

of dataflow that is used in many DSP-oriented design tools.

For a dataflow graph edgee, src(e) andsnk(e) denote the source actor and sink actor

of the edge, respectively. Additionally, ife is an SDF edge, thenprd(e) represents the

number of tokens produced on the edge by each firing ofsrc(e), while cns(e) represents

the number of tokens consumed from the edge by each firing ofsnk(e).

Usually production and consumption rate information is characterized in terms of

individual input and output ports so that each port of an actor can in general have a dif-

ferent production or consumption rate characterization. Such characterizations can have

constant values as in SDF [21]; periodic patterns of constant values as in cyclo-static

dataflow (CSDF) [6]; or more complex forms that are data-dependent (e.g., see [7], [4],

and [26]).

A schedulefor a dataflow graphG is a sequence of actors inG, and represents the

order in which actors are fired during an execution ofG. In case of SDF graphs, it is

possible to construct a periodic schedule that repeats itself during application execution.

In the rest of the report, by a “schedule” for an SDF graph, we mean a periodic sched-

ule. Each actoru ∈ V fires exactlyq(u) times in a periodic schedule, whereq(u) is its

repetition count which is obtained by solving the balance equation

q(src(e))× prd(e) = q(snk(e))× cns(e) (2.1)

for each edgee ∈ E [21].

For example, consider the SDF graph shown in Fig. 2.1(a). Therepetition counts
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Figure 2.1: (a) An SDF graph for a sample rate converter. (b) Aschedule for this graph

that is represented using a GST.

for actorsA, B, andC in this graph are10, 2, and3, respectively. A flat schedule for

an SDF graph consists of firing every actor as many times as itsrepetition count in an

order given by the topological sort of the application graph. A flat schedule for the SDF

graph in Fig. 2.1(a) is given by(10 A)(2 B)(3 C), where(n X) specifiesn successive

invocations of a schedule element (possibly an actor)X. It is possible to construct a

schedule having nested loops that generally has fewer number of tokens accumulated

on buffer edges during its execution. One nested looped schedule for the SDF graph in

Fig. 2.1(a) is given by(2 (5 A)B)(3 C). In both of these schedules, every actor appears

only once. We refer to such schedules as single appearance schedules.

2.2 Generalized Schedule Trees

A schedule for an application dataflow graph obtained after analyzing the graph is

often represented using a graphical structure called a generalized schedule tree (GST).

GSTs provide a dataflow-model-independent representationof schedules, which can be
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utilized as an input to subsequent stages of the design flow, such as simulation and code

synthesis [18]. GSTs are ordered trees with leaf nodes pointing to the actors of the asso-

ciated application dataflow graph. An internal node of a GST denotes a loop count (an

iteration construct to be applied when executing the schedule). We denote the loop count

and actor associated with a nodeu in a GST bycount(u) andactor(u), respectively. The

GST representation allows exploiting topological information and algorithms for ordered

trees in order to access and manipulate schedule elements. The execution of a schedule

involves traversing the GST in a depth-first manner, and during this traversal, the sub-

schedule rooted at any internal node is executed as many times as specified by the loop

count of that node. Fig. 2.1(b) shows a GST for a valid looped schedule for the SDF graph

shown in Fig. 2.1(a). This particular GST represents the firing sequence(2 (5A)B)(3 C).

2.3 The Dataflow Interchange Format

To describe dataflow applications for a wide range of DSP applications, application

developers can use the DIF language, which is a standard language founded in dataflow

semantics and tailored for DSP system design [15]. DIF provides an integrated set of syn-

tactic and semantic features that can fully capture essential modeling information of DSP

applications without over-specification. From a dataflow point of view, DIF is designed

to describe mixed-grain graph topologies and hierarchies as well as to specify dataflow-

related and actor-specific information. The dataflow semantic specification is based on

dataflow modeling theory and independent of any design tool.

Fig. 2.2 illustrates some of the available constructs in theDIF language along with
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[dataflowModel] graphID {
basedon {

graphID;
}

[topology] {
nodes = nodeID, ...;
edges = edgeID(srcNodeID, snkNodeID), ...;

}

[builtInAttribute] {
elementID = value;
elementID = id;
elementID = id1, id2, ...;

}

[attribute] userDefinedAttribute {
elementID = value;
elementID = id;
elementID = id1, id2, ...;

}
}

Figure 2.2: The DIF language

the syntax used for application specification. More detailson the DIF language can be

found in [15]. Thetopology block of a DIF specification specifies the graph topology,

which includes all of the nodes and edges in the graph. DIF supports built-in attributes

such as annotations that give the production and consumption rate constants for SDF

edges. These pre-defined attributes are designated throughspecial keywords in the lan-

guage. DIF also allows user-defined attributes, which have asimilar syntax as built-in

attributes except that they need to be declared with theattribute keyword.

To facilitate use of the DIF language, the DIF package (TDP) has been built. Along

with the ability to transform DIF descriptions into manipulable internal representations,

TDP contains graph utilities, optimization engines, verification techniques, a comprehen-
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sive functional simulation framework, and a software synthesis framework for generat-

ing C code [15], [26]. These facilities make TDP an effectiveenvironment for model-

ing dataflow applications, providing interoperability with other design environments, and

developing and experimenting with new tools and dataflow techniques. Beyond these

features, DIF is also suitable as a design environment for implementing dataflow-based

application representations. Describing an application graph is done by listing nodes and

edges, and then annotating dataflow specific information.

2.4 Related Work

Block diagrams are a natural and convenient way of describing DSP algorithms,

and hence, DSP systems designers find it intuitive to have a high-level application speci-

fication that captures such a description. GUI based dataflowlanguages try to capture this

intuition using visually appealing representations, while text based languages provide

syntax that looks similar to common procedural languages, such as C, but with semantic

constructs that model the dataflow structure of DSP block diagrams. To effectively han-

dle the increasing complexity of signal processing system design, these languages must

provide frameworks for modular and scalable representations with sufficient expressive

power.

Earlier research efforts have focused on supporting commonly used and highly ex-

pressive constructs from procedural languages, such as recurrences, iteration, and condi-

tionals, in dataflow-oriented languages [20]. Subsequent work includes evolution of var-

ious textual languages for DSP system design, such as SILAGE[33], StreamIt [32], and
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CAL [11]. The StreamIt language provides high-level, architecture-independent abstrac-

tions for streaming applications geared toward large-scale program development. The

CAL language is an actor-oriented language, which has been applied actively for field

programmable gate array (FPGA) implementation and reconfigurable video coding appli-

cations. The SILAGE language has been developed with an emphasis on support for high

level synthesis and multidimensional signal processing.

While these previous efforts have employed useful techniques for deriving and ex-

ploiting various types of specialized dataflow substructures within their respective com-

pilers, they lack a general method for explicit and scalablerepresentation of such sub-

structures by the programmer. Such a programming interfacefor topological patterns is

essential to capture the broad range of relevant patterns inways that are scalable, and flex-

ibly extensible to accommodate new types of patterns as theyemerge from new applica-

tions and modeling techniques. Our concept of topological patterns is designed precisely

to bridge this gap.

In other prior work, higher-order functions have been shownto permit elegant con-

struction of structured subsystems in dataflow representations [23]. Higher-order func-

tions are functions that take functions as inputs or producefunctions as outputs. Topolog-

ical patterns provide a related but technically different approach since topological patterns

operate on generic directed graph vertices (e.g.,nodes in DIF), where the actual bind-

ing to actor functionality and associated actor parameter values is specified separately,

possibly through additionalparameter propagation patterns(PPPs) [28]. Thus, unlike

higher-order functions that take functions as arguments, topological patterns take only

generic graph vertices (or arrays of such vertices) as arguments. Furthermore, our devel-
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opment of topological patterns is tightly integrated with textual graph representation and

arrays of graph vertices and edges, which are useful for providing scalable representations

and managing large-scale designs.

Perhaps the most closely related prior work is that on support for arrays of vertices

and edges in the DIF language with array construction syntaxand semantics similar to

those in the C language [9]. These constructs provide a useful shorthand notation for

specifying related groups of graph elements (nodes or edges) as arrays in which individual

elements can be easily indexed. A typicalelementID in the DIF specification (see

Fig. 2.2) when referred to asbaseName[N], generates an array ofN elements. For

example,tap[N] in DIF specifies an arraytap of N nodes. Theith node, wherei =

0, 1, . . . , N−1, can be accessed using its index astap[i]. However, in thisfirst-version

array support within DIF, there is no mechanism for instantiating (declaring) collections

of related edges automatically as structured mappings among corresponding subsets of

nodes. It is also not possible to configure parameters acrossarrays of actors as functions of

the array indices. These two features — scalable, programmatic instantiation of graphical

substructures, and association of parameter values — are provided by our development of

topological patterns.

This development is orthogonal to the existing support for syntactic and semantic

hierarchy in the DIF language, which allows constructing hierarchical dataflow graphs.

The focus here is to allow the designer to specify already identified topological patterns in

the design and expose such patterns to the enclosing design tool or design process, which

is generally not achieved through conventional methods forusing hierarchical dataflow

graphs.
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This report presents formulation of the concept of topological patterns and its ap-

plication to dataflow modeling. To prototype this concept inDIF, we build upon the first-

version framework of arrays in DIF, and introduce new modeling and language constructs

that are dedicated to topological patterns. We also demonstrate the use of topological

patterns to derive efficient implementations.

An initial formulation of topological patterns was presented in [28], where applica-

tions of topological patterns to representing equivalent homogeneous SDF (HSDF) graphs

of SDF and CSDF application graphs was also presented, as well as trade-off analysis for

an FPGA implementation of a JPEG image compression application. The work presented

here goes beyond the developments of [28] by significantly expanding the exploration

of application scenarios for topological patterns. Specifically, we explore the utility of

topological patterns in analyzing dataflow graphs and extracting implementation-specific

features. We also use topological patterns to represent schedules obtained after applying

scheduling transformations to dataflow graphs, and derive more efficient implementa-

tions from such representations. Additionally, we show howspecific topological patterns

can be exploited to construct structured schedules, and howdesigners can experiment

with corresponding scheduling trade-offs. A version of this work was published recently

in [29].
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Chapter 3

Topological Patterns

We have developed the concept of topological patterns for concise specification

of functional structures at the dataflow graph (inter-actor) level. Topological patterns

provide a scalable approach to specifying regular functional structures in a manner that is

analogous in some ways to the use of design patterns in objectoriented software [12], but

with additional properties associated with being formallyintegrated with the framework

of dataflow. This integration allows not only for specification of functional patterns but

also for their analysis and optimization as part of the larger framework of dataflow.

Topological patterns build on the concepts ofgraph element arrays, which allow

indexed families of graph elements to be declared and treated as single units for pur-

poses of graph construction and analysis. As with arrays in conventional programming

languages, graph element arrays can be single- or multi-dimensional. Additionally, they

can be parameterized in terms of dataflow graph attributes sothat their sizes and other

characteristics can be conveniently adapted.

3.1 Topological Patterns in Signal Processing

We motivate the utility of incorporating topological patterns into dataflow frame-

works for DSP system design by illustrating the pervasive nature of these patterns in

the domain of DSP. We have already discussed a few such patterns in Chapter 1 — in

13



particular, thebutterfly andmesh patterns, which have applications in FFTs and

systolic arrays, respectively. Additionally, thechain pattern is one of the most com-

monly found topological patterns. This pattern finds applications in modeling multi-stage

sample rate converters, delay lines in finite impulse response (FIR) filters, or configura-

tions of pipeline stages. A chain of delay blocks, a chain of adders, and anarray of

filter taps collectively specify a complete FIR filter when connected together. A natural

extension of this pattern is a2-dimensional mesh structure. Such a structure is of partic-

ular use to model DSP architectures in which data flows acrossa network of processing

elements connected to form a2-D grid such as a systolic array, as discussed earlier in

Chapter 1 [19].

A ring pattern represents a cycle in a graph as may be introduced by aphase-

locked loop [22] or more generally, afeedback loop in the system. The FFT block is

one of the most abundantly found blocks in DSP systems. AnN-point FFT computation

involves FFT computation stages of smaller dimensions thatcan be implemented as scaled

versions of the2-point FFT. These FFT stages resemble a butterfly-like pattern [24]. Such

patterns can also be found in other applications, such as sorting networks [8]. Entropy

encoding algorithms such as Huffman coding make use of thebinary tree structure,

a commonly found data structure in many computer algorithms[17]. A pattern in which

edges connect a source node to multiple sink nodes can be termed as abroadcast

pattern. This pattern finds use in applications that have computation blocks in multiple

stages with blocks in one stage connected to those in the subsequent stage. Such patterns

are observed in multi-layer neural networks used for pattern classification [10] and trellis

coding algorithms used in digital communication [22]. It isalso common to find its

14



dual, themerge pattern, which connects multiple source nodes to a single sink node.

Applications may also have parallel connections between corresponding nodes in adjacent

stages. We identify this pattern as aparallel pattern in which edges form a one-to-

one correspondence between nodes in two different sets. We also identify a pattern called

multiedge that creates multiple edges between a given pair of nodes.

3.2 Topological Patterns in DIF

We extend the DIF language by supporting topological patterns as first class citizens

in the modeling framework. These patterns can be defined as built-in patterns, which are

recognized and processed through corresponding keywords in the language. To enable

more flexible application of patterns, we also support declaring arbitrary (user-defined)

patterns, whose associated graph construction functionality can be carried out through

procedural language code (Java or C in the case of DIF) that islinked with the graph

specification.

We have added, as built-in topological pattern specifiers, new keywords in DIF

corresponding to topological patterns that are relativelycommon in signal processing sys-

tems. These keywords, such asring,parallel,merge,butterfly,broadcast,

andchain, allow specifying patterns explicitly as part of thetopology block in a DIF

specification. When declaring an instance of such a pattern,the designer must provide

a sequence of vertices and an optional set of parameter values. The pattern construct,

when parsed, generates the required edges, inserting the new edges into the graph that is

being constructed. The pattern construct also configures the underlying nodes using the
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parameter propagation mechanism explained in [28].

A typical way to specify a sequence of nodes is through the useof DIF notation

for representing nodes in an array. For example, for an arrayof 7 nodes, specified as

A[7] (as in C, DIF arrays are indexed starting at 0), we can specifythat5 of its elements

form a ring structure using the constructring(A[1:1:5]) in thetopology block

of the DIF code as shown in Fig. 3.1. The argumentA[1:1:5] to the constructring,

specifies an array of nodes starting fromA[1], ending atA[5], and having an array

index increment of1. Note that, outside of the pattern instantiation construct, the nodes

in the arrayA can be accessed by their indices to create edges that are not part of the

ring pattern. Thus, one can flexibly embed patterns within arbitrary structures including

structures that contain other patterns.

It is also possible to generate multiple patterns that have one or more nodes common

to them, as shown in Fig. 3.1. It is, thus, possible for the designer to effectively identify

one or more types of overlapping topological patterns in theapplication graph.
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A0 A1 A2 A3 A6

A4

A5

(a)
topology {

nodes = A[7];
edges = e0(A[0], A[1]), e1(A[3], A[6]),

ring_0[5] -> ring(A[1:1:5]),
ring_1[3] -> ring(A[1], A[3], A[2]);

}

(b)

Figure 3.1: Overlapping patterns: (a) a graph topology having tworing patterns that
have three nodes common to them, and (b) a corresponding DIF representation.
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Chapter 4

Applications of Topological Patterns

As described earlier, we envision topological patterns to offer a wide range of ad-

vantages at various stages of the design flow from modeling toplatform-specific imple-

mentation. In Chapter 3, we have identified topological patterns in various DSP system

specifications. In the following sections, we examine otheraspects of the design flow

where topological patterns can be effectively used.

4.1 Graph Analysis

The explicit specification of known graphical structures astopological patterns can

significantly facilitate various types of dataflow graph analysis algorithms. For example,

one of the first and most important steps in many dataflow graphscheduling strategies

is to analyze the input graph to identify strongly connectedcomponents (SCCs). An

SCC is a maximal subgraph in which every pair of distinct nodes is connected through a

cyclic path. It is often useful to cluster SCCs — for example,SCCs can be clustered to

improve scheduling of SDF graphs (e.g., see [16]). Such clustering of SCCs is typically

performed in order to obtain a top-leveldirected acyclic graph(DAG). For a directed

graphG = (V,E), SCCs can be identified inΘ(|V |+ |E|) time [8].

Consider an application graph that contains multiple feedback paths that can be

modeled and specified using thering pattern. Aring represents a cycle in the graph

18



A0 B0

B1

C0

A1

C1A2 B2

B3

C2

A3 C3

D0

D2

D1

D3

topology {
nodes = A[4], B[4], C[4], D[4];
edges = fft2_0[4] -> butterfly(A[0:1], B[0:1]),

fft2_1[4] -> butterfly(A[2:3], B[2:3]),
fft4[8] -> butterfly(C[0:3], D[0:3]),
e_par[4] -> parallel(B[0:3], C[0:3]);

}

Figure 4.1: Dataflow graph for a 4-point fast Fourier transform and thetopology block
in its DIF specification.

and hence, a subset of vertices that form an SCC. Such a cycle,when directly specified as

aring can be readily reduced into a single clustered actor. Aring with M nodes in it,

when clustered into a single node, effectively reduces the number of nodes in the graph

G by M − 1. Suppose that a graphG has manyring patterns that have been identified

in the graph specification. Then by identifying these rings in constant time, which an

analysis tool can do easily from explicit topological pattern specifications, the number of

nodes and edges in the graph can be reduced significantly. This can lead to more efficient

SCC computation, especially for large graphs.

4.2 Extracting Implementation-Specific Features

Fig. 4.1 shows an HSDF graph that models a 4-point FFT application [24], and

the topology block in its DIF specification. Note the underlying topological pat-

terns —butterfly andparallel — in the graph. It should also be noted that
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butterfly(C[0:3], D[0:3]) is a scaled version of abutterfly pattern with

just 4 nodes, and is equivalent to twobutterfly patterns formed by the node subsets

{C0, C2, D0, D2} and{C1, C3, D1, D3}.

Apart from scalability, there is another useful feature in this HSDF graph repre-

sentation. In particular, the bi-partite nature of both thepatterns —butterfly and

parallel — allows us to generate a pipelined implementation of this application.

Here, segmentsA, B, C, andD, consisting of nodesA[0:3], B[0:3], C[0:3], and

D[0:3], respectively, may be considered as pipeline stages of the FFT implementation.

This inherent pipelined nature of the FFT application can beidentified easily using the bi-

partite nature of the underlying topological patterns. Of course, for FFTs, many efficient

implementations have been developed in the literature, andthe use of topological pat-

terns does not add any obvious value to the large library of existing FFT implementation

techniques. However, this example succinctly illustratesthe general potential of topolog-

ical patterns for exposing useful implementation options more clearly and efficiently to

designers and to analysis modules within design tools.

4.3 Representing Schedules

The utility of topological patterns is not limited to representation of application

graphs alone. Their utility can be extended to create concise and parameterizable repre-

sentations of structures typical to schedules for certain application graphs. This can be of

particular importance in functionally simulating application graphs, and porting schedules

across design tools or languages. We elaborate on this usingthe following example.
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Figure 4.2: Dataflow graphs for (a) the generic class of applications under consideration,
and (b) a simplified adaptive modulation scheme.

We consider a class of applications typically found in the domain of wireless com-

munications, and signal processing systems that exhibit dataflow graph structures similar

to the one shown in Fig. 4.2(a). A typical example of this typeis that of the adaptive

modulation scheme (AMS) shown in Fig. 4.2(b). The AMS is a dynamic communication

application, which is an important part of modern wireless standards such as theworld-

wide interoperability for microwave access(WiMAX) [3] and3rd generation partnership

project — long term evolution(3GPP—LTE) [1] standards. For details of AMS, we refer

readers to [27]. There exist other applications that exhibit the general dataflow structure

illustrated in Fig. 4.2(a), such as prediction error filters[14] and systems for frequency

domain block adaptive filtering [30]. Such dataflow graphs can be efficiently simulated

by constructing parameterized looped schedules (PLSs) as described in [27] and [18].

Fig. 4.3 shows a PLS for the AMS application. A PLS of this typeis of particular

importance since it can capture the dynamic dataflow behavior inherent in the applica-

tion without compromising compile-time analysis. It is possible to perform useful anal-

ysis (e.g., estimation of upper bounds on total buffer memory requirements) for PLSs at
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1

Mapper mi Mapper Channel 2 ni

Bits Demapper Sink

topology {
nodes = Root, N[6], B, D, Snk;
edges = e0[6] -> broadcast(Root, N[0:5]),

e1(N[1], B), e2(N[4], D), e3(N[5], Snk);
}

Figure 4.3: A PLS for the application in Fig. 4.2(b), and thetopology block in a
corresponding DIF representation. Table 4.1 provides parameters associated with each
node in the DIF specification.

compile-time.

In Fig. 4.2(a), the consumption rateci and production ratepi can vary over finite

ranges of positive integer values with known upper boundscmax andpmax, respectively.

The subscripti in the symbolspi andci represents the dependence of this production and

consumption rate pair on the actor execution indexi — thus,pi represents the number of

tokens produced ontoe4 in theith execution (firing) of D2, andci represents the number

of tokens consumed frome1 during theith firing of D1. In Fig. 4.3, the loop countsmi

andni are computed dynamically.

In the context of this AMS example, topological patterns help not only in specifi-

cation of the application dataflow graph using thering pattern, which can be used to

identify the pair of dynamic actors easily, but also representation of generated PLSs using

broadcast patterns with hierarchical nodes for SDF-schedules, as shown in Fig. 4.3.

For such a well-structured schedule representation, it is possible to hand-tune an imple-

mentation and use that representation explicitly for applications having similar dataflow

22



Table 4.1: Actors and loop counts associated with nodes in the PLS graph representation.
Here,NULL indicates an internal node in the GST that does not have any actor associated
with it.

Node Actor Loop Count

Root NULL 1
N[0] Mapper 1
N[1] NULL mi

N[2] Mapper 1
N[3] Channel 1
N[4] NULL 2
N[5] NULL ni

B Bits 1
D Demapper 1

Snk Sink 1

Table 4.2: Average simulation times for different sink control conditions (numbers of
tokens consumed by the sink) for the PLS in Fig. 4.3 using (1) GST traversal, and (2) a
hand-tuned pattern-specific schedule.

Sink control condition Average simulation time (ms)Improvement

(Number of tokens) (1) (2) (%)

10000 73 32 56.16
20000 90 47 47.78
50000 148 62 58.11
100000 248 93 62.50

behavior instead of traversing the GST using a generic process to derive a software or

hardware implementation. In this case, topological patterns provide a framework by

which hand-tuned schedules can be formally specified and reused across different ap-

plications or target platforms.

Table 4.2 shows a comparison between simulation times usingGST traversal and

hand-tuned pattern-specific implementation for the PLS in Fig. 4.3. These simulation

experiments — the results of which are presented in Table 4.2— differ from related ex-

periments that we have reported on previously (e.g, in [29])in that we have eliminated
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some of the common overheads by suppressing printing of routine debug and status infor-

mation. This allows us to determine the extent of effect of these two simulation strategies

on simulation speed, and compare them more precisely. It canbe seen that the hand-tuned

software implementation results in faster simulations by afactor of up to62%. Further-

more, through its formulation in the framework of topological patterns, the hand-tuned

implementation can be analyzed, maintained, ported, and reused effectively across differ-

ent design contexts.

4.4 Experimenting with Pattern-Specific Schedules

When specifying signal processing systems, an important motivation for using topo-

logical patterns is to facilitate application of pattern-specific transformations, such as

pattern-specific scheduling transformations. In such a context, it can be useful for a design

tool to provide features that allow the designer to experiment with various “scheduling

patterns” at a high level of abstraction. Since topologicalpatterns provide well-defined,

scalable topological information, one can generate a structured schedule from a given

pattern. We demonstrate this application of topological patterns through an example of a

commonly usedbutterfly pattern.

Consider an SDF graph having abutterfly pattern, as shown in Fig. 4.4(a). One

commonly used scheduling transformation involves applying clustering transformations

on one pair of connected actors at a time such that no cycle is introduced in the resul-

tant graph, and then generating a hierarchical schedule forthe given application graph by

iteratively applying such acyclic pairwise clustering (APC) [5]. In case of SDF graphs,
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c5 c6 l3

l1 l2

(c)

Figure 4.4: (a) An SDF graph with abutterfly pattern. (b)-(c) two possible GST
structures using schedules that are based on acyclic pairwise clustering (iteratively clus-
tering two actors at a time).
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a group of actors can beSDF-clusteredif its component actors can be scheduled to-

gether (i.e., the group can be scheduled as a single unit in the overall schedule for the

graph) without introducing deadlock [5]. It can be observedthat more than one schedule

can be generated using APC depending on the pair of actors clustered at every stage of

scheduling. In case of SDF graphs, the total buffer memory requirements depend upon the

choice of a schedule, and in general, a schedule that has minimum total buffer memory

requirements is desirable in many applications. A scheduling technique based on APC

called acyclic pairwise grouping of adjacent nodes (APGAN)has been described in [5]

that chooses a pair of actors to be clustered at every stage ofscheduling using a metric

based on repetition counts of the actors in the graph. This heuristic is widely used and

attempts to minimize the total buffer memory requirements.We refer readers to [5] for

more information on SDF-clustering, and SDF scheduling heuristics that are based on

APC including APGAN.

A useful class of SDF schedules is that of single appearance looped schedules, as

described in Section 2.1. LetG(V,E) denote the graph in Fig. 4.4(a), where

V = {u0, u1, wo, w1}, and E = {(u0, w0), (u0, w1), (u1, w0), (u1, w1)}, (4.1)

and suppose that we apply APC to the graph. Based on the steps involved in APC, there

are only two possible GST structures for this example. Thesetwo structures are shown

in Fig. 4.4(b) and (c). Here, eachci, i = 0, 1, · · · , 6, denotes a loop count, while each

li, i = 0, 1, · · · , 3, denotes the actor pointed to by a leaf node in the GST. The existence

of exactly two unique GST structures for this example can be verified from the following

observations regarding the operation of APC (see [5] for further details on the operation
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of APC for SDF graphs).

1. LetU = {u0, u1}, andW = {w0, w1}. Then we can describe the graphG(V,E) as

V = U ∪W, and E = U ×W. (4.2)

2. Lete ∈ E denote the group of actors clustered during the first clustering step. Then,

l1 ∈ U , andl2 ∈ W . This follows from the bipartite nature of thebutterfly

pattern.

3. Following the first APC step, operation of APC ensures thatl0 ∈ (U \ {l1}), and

l3 ∈ (W \ {l2}). This is because clustering actorsa andb such thata ∈ U and

b ∈ W at this stage would amount to adding a cycle into the clustered graph, which

is not permitted by APC.

4. Loop countsci, i = 0, 1, · · · , 6, can be accordingly determined using the SDF

repetitions vector (the vector of minimal repetition counts in a periodic schedule)

for the application graph.

Given that each of the4 pairs of actors can be grouped in the first-step, which,

in turn, results in possibly two different schedules upon further grouping, we observe

that there are at most8 different single appearance looped schedules generated using

this approach. Such different schedules can in general havedifferent buffer memory

requirements [5]. Thus, it can be useful for a designer to experiment with alternative

schedules, estimate the buffer memory requirements for these schedules, and identify the

schedule that best matches the application requirements and resource constraints.
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Figure 4.5: (a)-(b) SDF graphs withbutterfly patterns. (c)-(d) GSTs for minimizing
buffer memory requirements of the SDF graphs in (a) and (b), respectively.

Table 4.3: Buffer memory requirements for single appearance schedules generated from
the SDF graph shown in Fig. 4.5(a).

Schedule Single Appearance ScheduleTotal buffer requirement
(number of tokens)

Flat (20 A)(15 B)(30 C)(12 D) 300
1 (5 (4 A)(3 B(2 C)))(12 D) 140
2 (20 A)(3 (5 B(2 C))(4 D)) 148
3 (5 (3 B)(2 (2 A)(3 C)))(12 D) 150
4 (15 B)(2 (5 (2 A)(3 C))(6 D)) 216
5 (15 B)(4 (5 A)(3 D))(30 C) 255
6 (15 B)(2 (2 (5 A)(3 D))(15 C)) 225
7 (20 A)(3 (5 B)(4 D))(30 C) 260
8 (20 A) (3 (5 B)(4 D)(10 C)) 180
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Table 4.4: Buffer memory requirements for single appearance schedules generated from
the SDF graph shown in Fig. 4.5(b).

Schedule Single Appearance ScheduleTotal buffer requirement
(number of tokens)

Flat (5 A)(4 B)(10 C)(6 D) 72
1 (4 B)(5 A(2 C))(6 D) 64
2 (5 A)(2 (2 B)(5 C)(3 D)) 56
3 (5 A)(2 (2 B)(5 C))(6 D) 62
4 (5 A)(2 (2 B)(3 D))(10 C) 66
5 (5 A)(2 (2 B)(3 D)(5 C)) 56

For thebutterfly pattern shown in Fig. 4.5(a), Table 4.3 shows9 different

schedules, including a flat schedule for comparison. It can be seen that each of these

schedules has different buffer memory requirements. In a given design context, a de-

signer may want to experiment with all schedules that fit the available resources in the

target platform. The optimal schedule from the viewpoint oftotal buffer memory cost

(schedule (1)) has a total buffer memory cost of 140 memory units, and is generated

using the APGAN strategy.

However, APGAN is in general a heuristic and is therefore notalways guaranteed

to derive an optimal solution. For example, consider thebutterfly pattern shown in

Fig. 4.5(b). Table 4.4 shows6 different schedules for this graph, including, again, a flat

schedule, and5 different looped schedules. Here, schedule (1) is the one generated by ap-

plying the APGAN strategy, and it can be seen that schedules (2), (3), and (5) outperform

this schedule in terms of total buffer memory requirements.

This example demonstrates the utility of experimenting with alternative schedules

even if established heuristics, such as APGAN, are available. Topological patterns facil-
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itate such experimentation through their capabilities forschedule representation. In par-

ticular, topological patterns allow designers to construct structured patterns of schedules,

which can then be examined separately to determine which oneis most suitable in a given

design context. Furthermore, topological pattern representations can be used to maintain

libraries of subsystem-specific schedules, which can then be drawn upon efficiently when

constructing larger applications that employ those subsystems.
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Chapter 5

Summary and Conclusions

We have introduced the concept of topological patterns, which can be used to iden-

tify and concisely iterate across arbitrary structures in adataflow application graph. We

have shown how the types of flowgraph substructures that are pervasive in the DSP appli-

cation domain can be effectively represented in terms of topological patterns, and thereby

used to generate compact, scalable application representations.

We have also shown how an underlying design tool can exploit ahigh-level applica-

tion specification consisting of topological patterns in various aspects of the design flow.

In particular, we have demonstrated the efficacy of topological patterns in dataflow graph

analysis, and extracting implementation-specific features. We have applied the concept of

topological patterns to represent schedules for application graphs. Such representations

are useful, for example, when porting schedules generated using one design tool to other

platform-specific tools or design languages. We have demonstrated the utility of experi-

mentation with pattern-specific scheduling transformations, and how topological patterns

facilitate such experimentation.

Useful directions for further investigation include automating the application and

integration of topological patterns and analysis techniques that are driven by specific topo-

logical patterns.
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