EFFICIENT DESIGN OF EMBEDDED SIGNAL PROCESSING
SYSTEMS USING TOPOLOGICAL PATTERNS BASED DATAFLOW
GRAPH REPRESENTATIONS

by

Nimish Sane

Report submitted to the
Salzburg University of Applied Sciences, Salzburg, Aastri
in partial fulfillment of the requirements for the
Marshall Plan Scholarship
2011

Advisor:
Professor Shuvra S. Bhattacharyya

Department of Electrical and Computer Engineering, and
Institute for Advanced Computer Studies

University of Maryland, College Park, USA.

(© Copyright by
Nimish Sane
2011

ABSTRACT

Tools for designing signal processing systems with themasgic foundation in
dataflow modeling often use high-level graphical user fatars (GUIs) or text based
languages that allow specifying applications as directag@lys. Such graphical represen-
tations serve as an initial reference point for further gsialand optimizations that lead
to platform-specific implementations. For large-scaldliiappons, the underlying graphs
often consist of smaller substructures that repeat maltipies. To enable more concise
representation and direct analysis of such substructnithe icontext of high level digital
signal processing (DSP) specification languages and dasidg) we have developed the
modeling concept aibpological patternsand proposed ways for supporting this concept
in a high-level language. This report shows how the dataft@erchange format (DIF)
language can be augmented with constructs for supportpajdgical patterns, and topo-
logical patterns can be effective in various aspects of eite signal processing design

flows using specific application examples.

Acknowledgments

| express my sincere gratitude toward my advisor Prof. Sh@rBhattacharyya
for his guidance and support throughout this research wdikadvice, technical inputs,
and feedback have been extremely valuable.

| thank the Austrian Marshall Plan Foundation for awarding titme Marshall Plan
Scholarship (MPS). The MPS has supported the researchnpeesa this report. It al-
lowed me to participate in the semester-long student exgghapportunity at the Salzburg
University of Applied Sciences/ Fachhochschule SalzbBHS), Salzburg, Austria. Per-
sonally, this was one of my most memorable experiences.

The research presented in this report was also sponsored imypthe US Air Force
Research Laboratory (AFRL-FA87501110049), Laboratoryfelecommunication Sci-
ences, National Radio Astronomy Observatory, and US NatiSnience Foundation. |
acknowledge them with thanks for their suppbrt.

| am thankful to the FHS for hosting me as an MPS recipientahkhProf. DI Dr.
Gerhard Jochtl, Head, Degree Program in Information Teldgy and Systems Man-
agement (ITS) at the FHS for his personal attention in enguan excellent research
environment, and access to facilities at the FHS. | alsokii@a other faculty and staff
of the ITS program at the FHS. In particular, | am thankful toSdmon Kranzer, DI Dr.
Robert Merz, DI Sabine Klausner, Prof. Dr. Karl Entached &nof. Dr. Stefan We-

genkittl for not only the wonderful technical discussiong also their warm hospitality,

1] acknowledge Government’s support in publication of tieigart. Any opinions, findings, and conclu-
sions or recommendations expressed in this report are tifake author and do not reflect the views of

AFRL, LTS, NRAO, or NSF.

and support. | thank Sandra Lagler, and Sonja Treiber far gugpport. | also thank
Andreas Unterweger, Peter Ott, Benjamin Lachmayer, Cddosbrina, and Bernadette
Himmelbauer of the ITS program at the FHS for their wondechrhpany.

| am grateful to Prof. Mag. Dr. Gabriele Abermann for her dberet assistance in
facilitating this student exchange at the FHS, and co-aitdig the MPS related arrange-
ments. Without her and others from the International Offide@FHS, the transition into
the environment at the FHS, and in Austria, in general, woolchave been so smooth. |
also thank Laura Streitburger, Mag. Teresa Rieger, Rodatler, and Ines Aufschnaiter
for the same.

| would also like to thank Dr. Hojin Kee (of National Instrumts, Inc., Austin,
Texas, USA), Dr. Gunasekaran Seetharaman (of the US AireHResearch Laboratory,
Rome, New York, USA), and Shenpei Wu (of the University of Mland, College Park,

Maryland, USA) for their valuable contributions to someedp of this research.

5

Table of Contents

Introduction

Background and Related Work

2.1 DataflowModeling
2.2 Generalized Schedule Trees.
2.3 The Dataflow Interchange Format
24 RelatedWork

Topological Patterns
3.1 Topological Patterns in Signal Processing

3.2 Topological PatternsinDIF

Applications of Topological Patterns

4.1 GraphAnalysis
4.2 Extracting Implementation-Specific Features
4.3 RepresentingSchedules

4.4 Experimenting with Pattern-Specific Schedules

Summary and Conclusions

Bibliography

Chapter 1

Introduction

Dataflow modeling is used extensively for designing signmakcpssing systems.
There are various existing design tools with their semdatiaodations in dataflow model-
ing such as Agilent ADS [25], National Instruments LabVIE®,[Compaan/Laura [31],
and SysteMoc [13]. DSP-oriented dataflow design tools sifiallow high-level ap-
plication specification, software simulation, and possgynthesis for hardware or soft-
ware implementation. These tools employ high-level desiom languages for applica-
tion specification. These languages, which may be either @Ué&xt based, provide
syntactic and semantic constructs for specifying graphegaesentations of DSP appli-
cations. Such graphical representations are then parskdosmwerted into intermediate
representations suitable for further processing.

In this work, we address the problem of representing laogdesand scalable dataflow
graphs that have complex topologies. Such graphs comgnseious kinds of functional
substructures that are parameterizable and can be refgeéseterms of concise, scalable
specifications.

For example, the dataflow graph of arpoint fast Fourier transform (FFT) algo-
rithm consists of a combination of scaled versions of a \etwn pattern called the
butterfly diagram[24], and a systolic array is meshof computing elements having

a specific dataflow structure that can solve problems suchRagggomposition based

recursive least square adaptive filtering, and minimumavene distortionless response
beamforming [19]. We identify such common structures iraflatv graphs asopologi-
cal patterns and treat this kind of pattern as a first class citizen in tloel@ing process.
Furthermore, we demonstrate and experiment with the usapoldgical patterns in the
DIF, a textual design language and associated softwarapeadkr specification, analysis,
and synthesis based on DSP-oriented dataflow models of datigru[15], [26].

Topological patterns not only permit scalable specificetiof dataflow substruc-
tures but also expose the underlying graph structure ettplic the corresponding design
tool. This allows design tools to exploit any analysis orimation advantages offered
by the substructures without having to “discover” thosadtires through additional lev-
els of pre-processing analysis. Some of the key componénite aesign flow that can
potentially benefit from explicitly exposed patterns irdguwarious kinds of scheduling
transformations, and techniques for buffer memory optatian. Furthermore, by mak-
ing it easier and more efficient to apply substructure-gpeanalysis techniques, pro-
gramming support for topological patterns encourages ¢veldpment of such analysis
techniques, and provides a natural interface for reusiegtacross different applications
and tools.

In this report, we provide background on dataflow modelimgl, the DIF language
as well as discuss the relevant prior work in Chapter 2. Theept of topological patterns
is elaborated in Chapter 3, including a description of howexend the DIF language
to integrate topological patterns as a first class modelowgsttuct. In Chapter 4, we
show how topological patterns can be used by dataflow bassgdrdols for dataflow
graph analysis and transformations. We show how topolbgaterns can be used for

2

graph analysis; extracting implementation-specific festurepresenting schedules; and

experimenting with pattern-specific schedules.

Chapter 2

Background and Related Work
This chapter provides background on dataflow modeling aa®tk language. We

also discuss earlier research efforts that are relevahtdavork.

2.1 Dataflow Modeling

Dataflow modeling involves representing an applicatiomgsa directed graph
G = (V,E), whereV is a set of vertices (nodes) aritlis a set of edges. Each ver-
texu € V in a dataflow graph is called actor, and represents a specific computation
block, while each directed edde, v) € F is a first-in-first-out (FIFO) buffer that repre-
sents a communication link between smurceactoru and thesinkactorv. A dataflow
graph edge can also have a non-negative intedefay, del(e), associated with it, which
represents the number of initial data valuedkén3 present in the associated buffer.

Dataflow graphs operate based data-driven executignwhere an actor can be
executed fired) whenever it has sufficient amounts of data (numbers of “sesipr
“data tokens”) available on all of its inputs. During eachnfi; an actor consumes a
certain number of tokens from each input and produces aicertamber of tokens on
each output.

In synchronous dataflow (SDF), these numbers are constargsaall actor firings

for a given input or output [21]. In SDF graphs, we refer tosen@umbers of tokens

consumed and produced in each actor execution asoiigumption ratandproduction
rate of the associated input and output, respectively. SDF isspe@ally popular form
of dataflow that is used in many DSP-oriented design tools.

For a dataflow graph edgesrc(e) andsnk(e) denote the source actor and sink actor
of the edge, respectively. Additionally, éfis an SDF edge, theprd(e) represents the
number of tokens produced on the edge by each firing«dt), while cns(e) represents
the number of tokens consumed from the edge by each firingkgé).

Usually production and consumption rate information israbterized in terms of
individual input and output ports so that each port of anracém in general have a dif-
ferent production or consumption rate characterizatiarxchSharacterizations can have
constant values as in SDF [21]; periodic patterns of comstalues as in cyclo-static
dataflow (CSDF) [6]; or more complex forms that are data-ddpet (e.g., see [7], [4],
and [26]).

A scheduldor a dataflow grapld- is a sequence of actors @, and represents the
order in which actors are fired during an executiorof In case of SDF graphs, it is
possible to construct a periodic schedule that repeat$ digseng application execution.
In the rest of the report, by a “schedule” for an SDF graph, veama periodic sched-
ule. Each actor. € V fires exactlyg(u) times in a periodic schedule, wheyéu) is its

repetition count which is obtained by solving the balanagagign

q(src(e)) x prd(e) = g(snk(e)) x cns(e) (2.1)

for each edge € F [21].

For example, consider the SDF graph shown in Fig. 2.1(a). répetition counts

5 2
(o) D
(a) (b)
Figure 2.1: (a) An SDF graph for a sample rate converter. (bgiedule for this graph

that is represented using a GST.

for actorsA, B, andC' in this graph arel0, 2, and3, respectively. A flat schedule for
an SDF graph consists of firing every actor as many times agistition count in an
order given by the topological sort of the application grapHlat schedule for the SDF
graph in Fig. 2.1(a) is given by10 A)(2 B)(3 C), where(n X) specifiesn successive
invocations of a schedule element (possibly an achor) It is possible to construct a
schedule having nested loops that generally has fewer nuofltekens accumulated
on buffer edges during its execution. One nested loopedisbidor the SDF graph in
Fig. 2.1(a) is given by2 (5 A)B)(3 C). In both of these schedules, every actor appears

only once. We refer to such schedules as single appearaneduses.

2.2 Generalized Schedule Trees

A schedule for an application dataflow graph obtained aftefyzing the graph is
often represented using a graphical structure called argkzedd schedule tree (GST).

GSTs provide a dataflow-model-independent representafischedules, which can be

utilized as an input to subsequent stages of the design flmk, &s simulation and code
synthesis [18]. GSTs are ordered trees with leaf nodesipgitd the actors of the asso-
ciated application dataflow graph. An internal node of a G8matdes a loop count (an
iteration construct to be applied when executing the sdie¢dWe denote the loop count
and actor associated with a nodé a GST bycount(u) andactor(u), respectively. The

GST representation allows exploiting topological infotima and algorithms for ordered
trees in order to access and manipulate schedule elemdmtsexgcution of a schedule
involves traversing the GST in a depth-first manner, andndutinis traversal, the sub-
schedule rooted at any internal node is executed as mang @isepecified by the loop
count of that node. Fig. 2.1(b) shows a GST for a valid loopéedule for the SDF graph

shown in Fig. 2.1(a). This particular GST represents thedisequencé (5 A)B)(3 C).

2.3 The Dataflow Interchange Format

To describe dataflow applications for a wide range of DSPieajbns, application
developers can use the DIF language, which is a standarddgegounded in dataflow
semantics and tailored for DSP system design [15]. DIF piexan integrated set of syn-
tactic and semantic features that can fully capture esdentideling information of DSP
applications without over-specification. From a dataflomnpof view, DIF is designed
to describe mixed-grain graph topologies and hierarctsesdl as to specify dataflow-
related and actor-specific information. The dataflow seroamtecification is based on
dataflow modeling theory and independent of any design tool.

Fig. 2.2 illustrates some of the available constructs inDielanguage along with

[dat af | omvbdel | graphl D {

basedon ({
gr aphl D;
}
[topol ogy] {
nodes = nodel D, ...;
edges = edgel D(srcNodel D, snkNodel D), ...;
}
[builtlInAttribute] {
el ement | D = val ue;
elenentI D = id;
elementI D = idl, id2, ...;
}
[attribute] userDefinedAttribute {
el enent | D = val ue;
elenentI D = id;
elementI D = idl, id2, ...;
}

Figure 2.2: The DIF language

the syntax used for application specification. More detailghe DIF language can be
found in [15]. Thet opol ogy block of a DIF specification specifies the graph topology,
which includes all of the nodes and edges in the graph. DIpaup built-in attributes
such as annotations that give the production and consumpdie constants for SDF
edges. These pre-defined attributes are designated thspeghal keywords in the lan-
guage. DIF also allows user-defined attributes, which hasendar syntax as built-in
attributes except that they need to be declared witlather i but e keyword.

To facilitate use of the DIF language, the DIF package (TD#)leen built. Along
with the ability to transform DIF descriptions into maniphle internal representations,

TDP contains graph utilities, optimization engines, veafion techniques, a comprehen-

sive functional simulation framework, and a software sgsth framework for generat-
ing C code [15], [26]. These facilities make TDP an effecév&ironment for model-

ing dataflow applications, providing interoperability widther design environments, and
developing and experimenting with new tools and dataflowrigpes. Beyond these
features, DIF is also suitable as a design environment fptamenting dataflow-based
application representations. Describing an applicatiaply is done by listing nodes and

edges, and then annotating dataflow specific information.

2.4 Related Work

Block diagrams are a natural and convenient way of desgribiSP algorithms,
and hence, DSP systems designers find it intuitive to havglalbeiel application speci-
fication that captures such a description. GUI based datédioguages try to capture this
intuition using visually appealing representations, whixt based languages provide
syntax that looks similar to common procedural languagesh as C, but with semantic
constructs that model the dataflow structure of DSP blocgrdias. To effectively han-
dle the increasing complexity of signal processing systesigh, these languages must
provide frameworks for modular and scalable represematith sufficient expressive
power.

Earlier research efforts have focused on supporting comhmmed and highly ex-
pressive constructs from procedural languages, such ageeces, iteration, and condi-
tionals, in dataflow-oriented languages [20]. Subsequenkmcludes evolution of var-

ious textual languages for DSP system design, such as SIJAB&EStreamlt [32], and

CAL [11]. The Streamlt language provides high-level, atetture-independent abstrac-
tions for streaming applications geared toward largeespabgram development. The
CAL language is an actor-oriented language, which has bpplied actively for field
programmable gate array (FPGA) implementation and recara#ige video coding appli-
cations. The SILAGE language has been developed with ana&sigobn support for high
level synthesis and multidimensional signal processing.

While these previous efforts have employed useful techesdar deriving and ex-
ploiting various types of specialized dataflow substruetuwithin their respective com-
pilers, they lack a general method for explicit and scalabjgesentation of such sub-
structures by the programmer. Such a programming inteftac®pological patterns is
essential to capture the broad range of relevant pattekayia that are scalable, and flex-
ibly extensible to accommodate new types of patterns asehmrge from new applica-
tions and modeling techniques. Our concept of topologiattepns is designed precisely
to bridge this gap.

In other prior work, higher-order functions have been shtwyermit elegant con-
struction of structured subsystems in dataflow represen&a{23]. Higher-order func-
tions are functions that take functions as inputs or prodiuecetions as outputs. Topolog-
ical patterns provide a related but technically differgagr@ach since topological patterns
operate on generic directed graph vertices (egdes in DIF), where the actual bind-
ing to actor functionality and associated actor paramedéres is specified separately,
possibly through additionglarameter propagation patterr(®PPs) [28]. Thus, unlike
higher-order functions that take functions as argumenslbgical patterns take only

generic graph vertices (or arrays of such vertices) as aggtsnFurthermore, our devel-

10

opment of topological patterns is tightly integrated withktual graph representation and
arrays of graph vertices and edges, which are useful foigirayscalable representations
and managing large-scale designs.

Perhaps the most closely related prior work is that on sugpoarrays of vertices
and edges in the DIF language with array construction syataksemantics similar to
those in the C language [9]. These constructs provide a luskefuthand notation for
specifying related groups of graph elements (nodes or ¢dgesrays in which individual
elements can be easily indexed. A typiedlenent | D in the DIF specification (see
Fig. 2.2) when referred to dsaseNane[N] , generates an array éf elements. For
examplet ap[N] in DIF specifies an arrayap of N nodes. Theth node, wheré =
0,1,...,N—1, can be accessed using itsindex ap[i] . However, in thidirst-version
array support within DIF, there is no mechanism for instrig (declaring) collections
of related edges automatically as structured mappings groorresponding subsets of
nodes. Itis also not possible to configure parameters aarmgs of actors as functions of
the array indices. These two features — scalable, progrdimmsatantiation of graphical
substructures, and association of parameter values —awva&pd by our development of
topological patterns.

This development is orthogonal to the existing support ymtactic and semantic
hierarchy in the DIF language, which allows constructingraichical dataflow graphs.
The focus here is to allow the designer to specify alreadytified topological patterns in
the design and expose such patterns to the enclosing desigor design process, which
is generally not achieved through conventional methodsigimg hierarchical dataflow
graphs.

11

This report presents formulation of the concept of topalapatterns and its ap-
plication to dataflow modeling. To prototype this concepDif, we build upon the first-
version framework of arrays in DIF, and introduce new mougénd language constructs
that are dedicated to topological patterns. We also demaiasthe use of topological
patterns to derive efficient implementations.

An initial formulation of topological patterns was preseauhin [28], where applica-
tions of topological patterns to representing equivalemibgeneous SDF (HSDF) graphs
of SDF and CSDF application graphs was also presented, aaswehde-off analysis for
an FPGA implementation of a JPEG image compression apipiicakhe work presented
here goes beyond the developments of [28] by significantharging the exploration
of application scenarios for topological patterns. Speilfy, we explore the utility of
topological patterns in analyzing dataflow graphs and etitrg implementation-specific
features. We also use topological patterns to represeatiatds obtained after applying
scheduling transformations to dataflow graphs, and derigeerefficient implementa-
tions from such representations. Additionally, we show lspecific topological patterns
can be exploited to construct structured schedules, anddesigners can experiment
with corresponding scheduling trade-offs. A version o§thwork was published recently

in [29].

12

Chapter 3

Topological Patterns

We have developed the concept of topological patterns facise specification
of functional structures at the dataflow graph (inter-gctevel. Topological patterns
provide a scalable approach to specifying regular funefistructures in a manner that is
analogous in some ways to the use of design patterns in abjeated software [12], but
with additional properties associated with being formaliegrated with the framework
of dataflow. This integration allows not only for specificatiof functional patterns but
also for their analysis and optimization as part of the lafgemework of dataflow.

Topological patterns build on the conceptsgoaph element arrayswhich allow
indexed families of graph elements to be declared and tteadesingle units for pur-
poses of graph construction and analysis. As with array®nventional programming
languages, graph element arrays can be single- or mulgrsional. Additionally, they
can be parameterized in terms of dataflow graph attributébataheir sizes and other

characteristics can be conveniently adapted.

3.1 Topological Patterns in Signal Processing

We motivate the utility of incorporating topological patis into dataflow frame-
works for DSP system design by illustrating the pervasiveingaof these patterns in

the domain of DSP. We have already discussed a few suchmaiteChapter 1 — in

13

particular, thebutt er f | y andnesh patterns, which have applications in FFTs and
systolic arrays, respectively. Additionally, tlednai n pattern is one of the most com-
monly found topological patterns. This pattern finds agtians in modeling multi-stage
sample rate converters, delay lines in finite impulse respgRIR) filters, or configura-
tions of pipeline stages. A chain of delay blocks, a chaindifeas, and amar r ay of
filter taps collectively specify a complete FIR filter whemoected together. A natural
extension of this pattern is&dimensional mesh structure. Such a structure is of partic-
ular use to model DSP architectures in which data flows aa@aes=twork of processing
elements connected to form2aD grid such as a systolic array, as discussed earlier in
Chapter 1 [19].

A ri ng pattern represents a cycle in a graph as may be introducedpbase-
locked loop [22] or more generallyfeeedback | oop inthe system. The FFT block is
one of the most abundantly found blocks in DSP systemsNApoint FFT computation
involves FFT computation stages of smaller dimensionsidwabe implemented as scaled
versions of th@-point FFT. These FFT stages resemble a butterfly-like pajgd]. Such
patterns can also be found in other applications, such @smgaretworks [8]. Entropy
encoding algorithms such as Huffman coding make use dbitmar y t r ee structure,

a commonly found data structure in many computer algoritfiig A pattern in which
edges connect a source node to multiple sink nodes can bedemmabr oadcast
pattern. This pattern finds use in applications that havepcation blocks in multiple
stages with blocks in one stage connected to those in thegubést stage. Such patterns
are observed in multi-layer neural networks used for patté&ssification [10] and trellis
coding algorithms used in digital communication [22]. Itaso common to find its

14

dual, thener ge pattern, which connects multiple source nodes to a single rsbde.
Applications may also have parallel connections betweemresponding nodes in adjacent
stages. We identify this pattern apar al | el pattern in which edges form a one-to-
one correspondence between nodes in two different setslsé/edantify a pattern called

mul t i edge that creates multiple edges between a given pair of nodes.

3.2 Topological Patterns in DIF

We extend the DIF language by supporting topological pastas first class citizens
in the modeling framework. These patterns can be definediltisSrbpatterns, which are
recognized and processed through corresponding keywortieilanguage. To enable
more flexible application of patterns, we also support dedaarbitrary (user-defined)
patterns, whose associated graph construction funciigrean be carried out through
procedural language code (Java or C in the case of DIF) tHatkied with the graph
specification.

We have added, as built-in topological pattern specifieesy keywords in DIF
corresponding to topological patterns that are relatigelymon in signal processing sys-
tems. These keywords, suchrasng, par al | el ,nmerge,butterfly,broadcast,
andchai n, allow specifying patterns explicitly as part of thepol ogy block in a DIF
specification. When declaring an instance of such a patteendesigner must provide
a sequence of vertices and an optional set of parametersvalllge pattern construct,
when parsed, generates the required edges, insertinguhedues into the graph that is

being constructed. The pattern construct also configueesitiderlying nodes using the

15

parameter propagation mechanism explained in [28].

A typical way to specify a sequence of nodes is through theofigeiF notation
for representing nodes in an array. For example, for an afaynodes, specified as
A[7] (as in C, DIF arrays are indexed starting at 0), we can sp#udtp of its elements
form a ring structure using the construgtng(Al 1: 1: 5]) in thet opol ogy block
of the DIF code as shown in Fig. 3.1. The argum&jnt: 1: 5] to the constructi ng,
specifies an array of nodes starting fré¥h1] , ending atA[5] , and having an array
index increment ofl. Note that, outside of the pattern instantiation constring nodes
in the arrayA can be accessed by their indices to create edges that arematf ghe
ri ng pattern. Thus, one can flexibly embed patterns within ahjtstructures including
structures that contain other patterns.

Itis also possible to generate multiple patterns that haeeoo more nodes common
to them, as shown in Fig. 3.1. Itis, thus, possible for thegies to effectively identify

one or more types of overlapping topological patterns ireghy@ication graph.

16

(@)

t opol ogy {
nodes = Al 7];
edges = e0O(A[0], A1]), el(A 3], A 6]),
ring O[5] ->ring(A1:1:5]),
ring_1[3] ->ring(A 1], A 3], A ?2]);

(b)

Figure 3.1: Overlapping patterns: (a) a graph topologydmwvor i ng patterns that
have three nodes common to them, and (b) a correspondingeptEgentation.

17

Chapter 4

Applications of Topological Patterns

As described earlier, we envision topological patternsfter@ wide range of ad-
vantages at various stages of the design flow from modeliqpgatborm-specific imple-
mentation. In Chapter 3, we have identified topologicalgrat in various DSP system
specifications. In the following sections, we examine othsgvects of the design flow

where topological patterns can be effectively used.

4.1 Graph Analysis

The explicit specification of known graphical structuresamlogical patterns can
significantly facilitate various types of dataflow graph lgses algorithms. For example,
one of the first and most important steps in many dataflow gsapleduling strategies
is to analyze the input graph to identify strongly conneatechponents (SCCs). An
SCC is a maximal subgraph in which every pair of distinct rsodeconnected through a
cyclic path. It is often useful to cluster SCCs — for exam@€ECs can be clustered to
improve scheduling of SDF graphs (e.g., see [16]). Suchediung) of SCCs is typically
performed in order to obtain a top-levairected acyclic grapi(DAG). For a directed
graphG = (V, E), SCCs can be identified @& (|V| + | E|) time [8].

Consider an application graph that contains multiple feelllpaths that can be

modeled and specified using theng pattern. Ari ng represents a cycle in the graph

18

t opol ogy {
nodes

edges

AL 4], B[4], (4], D4];

fft2 0[4] -> butterfly(A[0:1], B[0:1]),
fft2_1[4] -> butterfly(A2:3], B[2:3]),
ffta[8] -> butterfly(C0:3], DO0:3]),
e par[4] -> parallel (B[0:3], CO0:3]);

}

Figure 4.1: Dataflow graph for a 4-point fast Fourier transfand the opol ogy block
in its DIF specification.

and hence, a subset of vertices that form an SCC. Such a eyed®, directly specified as
ar i ng can be readily reduced into a single clustered actari Ag with M nodes in it,
when clustered into a single node, effectively reduces thmber of nodes in the graph
G by M — 1. Suppose that a gragh has many i ng patterns that have been identified
in the graph specification. Then by identifying these ringgonstant time, which an
analysis tool can do easily from explicit topological pattepecifications, the number of
nodes and edges in the graph can be reduced significantlyc@ihilead to more efficient

SCC computation, especially for large graphs.

4.2 Extracting Implementation-Specific Features

Fig. 4.1 shows an HSDF graph that models a 4-point FFT apit§24], and
the t opol ogy block in its DIF specification. Note the underlying topoloaji pat-

terns —butterfly andparal | el — in the graph. It should also be noted that

19

butterfly(C[0:3], D[0:3]) isascaled version of aut t er f | y pattern with
just4 nodes, and is equivalent to tvibut t er f | y patterns formed by the node subsets
{C0, C2, DO, D2}and{Cl, C3, D1, D3}.

Apart from scalability, there is another useful featurehis tHSDF graph repre-
sentation. In particular, the bi-partite nature of both pla¢terns —butterfly and
par al | el — allows us to generate a pipelined implementation of thigliegtion.
Here, segmentd, B, C', and D, consisting of nodes[0: 3], B[0: 3], ([0: 3], and
D 0: 3], respectively, may be considered as pipeline stages offfiarRplementation.
This inherent pipelined nature of the FFT application cardkatified easily using the bi-
partite nature of the underlying topological patterns. Qirse, for FFTs, many efficient
implementations have been developed in the literature tla@dise of topological pat-
terns does not add any obvious value to the large library istieg FFT implementation
techniques. However, this example succinctly illustrétesgeneral potential of topolog-
ical patterns for exposing useful implementation optiorarclearly and efficiently to

designers and to analysis modules within design tools.

4.3 Representing Schedules

The utility of topological patterns is not limited to repesegation of application
graphs alone. Their utility can be extended to create ceransl parameterizable repre-
sentations of structures typical to schedules for certaptieation graphs. This can be of
particular importance in functionally simulating applica graphs, and porting schedules

across design tools or languages. We elaborate on this tsrfgllowing example.

20

(a) < e
4 X
k G Y YO\ Z Z D
e 0 O o =)
1D
o <
1] 1
. k ¢ 1 1 | 1 p; Q|-
Bits T Mapper & —>|Channeli———>|Demapper 164 Sink

Figure 4.2: Dataflow graphs for (a) the generic class of appbns under consideration,
and (b) a simplified adaptive modulation scheme.

We consider a class of applications typically found in thendn of wireless com-
munications, and signal processing systems that exhitaflde graph structures similar
to the one shown in Fig. 4.2(a). A typical example of this type¢hat of the adaptive
modulation schemeAMS shown in Fig. 4.2(b). The AMS is a dynamic communication
application, which is an important part of modern wirelessmdards such as theorld-
wide interoperability for microwave accef&/iMAX) [3] and 3rd generation partnership
project — long term evolutioBGPP—LTE [1] standards. For details of AMS, we refer
readers to [27]. There exist other applications that exltlii@ general dataflow structure
illustrated in Fig. 4.2(a), such as prediction error filtfx4] and systems for frequency
domain block adaptive filtering [30]. Such dataflow graphs ba efficiently simulated
by constructing parameterized looped schedutss§) as described in [27] and [18].

Fig. 4.3 shows a PLS for the AMS application. A PLS of this typef particular
importance since it can capture the dynamic dataflow behavitwrent in the applica-
tion without compromising compile-time analysis. It is pide to perform useful anal-

ysis (e.g., estimation of upper bounds on total buffer mgmequirements) for PLSs at

21

t opol ogy {
nodes

edges

Root, N 6], B, D, Snk;
e0[6] -> broadcast (Root, N 0:5]),
el(N[1], B), e2(N 4], D, e3(N 5], Snk);

}

Figure 4.3: A PLS for the application in Fig. 4.2(b), and thepol ogy block in a
corresponding DIF representation. Table 4.1 providesrpatars associated with each
node in the DIF specification.

compile-time.

In Fig. 4.2(a), the consumption ratgand production rate; can vary over finite
ranges of positive integer values with known upper boungds andp,..., respectively.
The subscript in the symbolg; andc; represents the dependence of this production and
consumption rate pair on the actor execution ingdex thus,p; represents the number of
tokens produced ontg, in theith executionfiring) of D,, andc; represents the number
of tokens consumed fromy during theith firing of D;. In Fig. 4.3, the loop counts:;
andn; are computed dynamically.

In the context of this AMS example, topological patterngphsbt only in specifi-
cation of the application dataflow graph using theng pattern, which can be used to
identify the pair of dynamic actors easily, but also repnéson of generated PLSs using
br oadcast patterns with hierarchical nodes for SDF-schedules, assho Fig. 4.3.
For such a well-structured schedule representation, ib$siple to hand-tune an imple-

mentation and use that representation explicitly for agpions having similar dataflow

22

Table 4.1: Actors and loop counts associated with nodesifPtts graph representation.
Here,NULL indicates an internal node in the GST that does not have aoyassociated
with it.

Node| Actor Loop Count
Root| NULL 1
N[O] | Mapper 1
N[1] NULL m;
N[2] Mapper 1
N[3] | Channel 1
N[4] NULL 2
N[5] NULL n;
B Bits 1
D Demapper 1
Snk Sink 1

Table 4.2: Average simulation times for different sink gohttonditions (humbers of
tokens consumed by the sink) for the PLS in Fig. 4.3 using3ST traversal, an®2} a
hand-tuned pattern-specific schedule.

Sink control condition Average simulation time (ms) Improvement
(Number of tokens) | (1) (2) (%)
10000 73 32 56.16
20000 90 47 47.78
50000 148 62 58.11
100000 248 93 62.50

behavior instead of traversing the GST using a generic peot® derive a software or
hardware implementation. In this case, topological pastesrovide a framework by
which hand-tuned schedules can be formally specified anskdeacross different ap-
plications or target platforms.

Table 4.2 shows a comparison between simulation times WSBif traversal and
hand-tuned pattern-specific implementation for the PLSign #3. These simulation
experiments — the results of which are presented in Table-4differ from related ex-

periments that we have reported on previously (e.g, in [RBfhat we have eliminated

23

some of the common overheads by suppressing printing ahedebug and status infor-
mation. This allows us to determine the extent of effect esthtwo simulation strategies
on simulation speed, and compare them more precisely. bheaeen that the hand-tuned
software implementation results in faster simulations Wgchor of up to62%. Further-
more, through its formulation in the framework of topolagipatterns, the hand-tuned
implementation can be analyzed, maintained, ported, arsgceeffectively across differ-

ent design contexts.

4.4 Experimenting with Pattern-Specific Schedules

When specifying signal processing systems, an importativatmn for using topo-
logical patterns is to facilitate application of pattepesific transformations, such as
pattern-specific scheduling transformations. In such syt can be useful for a design
tool to provide features that allow the designer to expeninvath various “scheduling
patterns” at a high level of abstraction. Since topologpadterns provide well-defined,
scalable topological information, one can generate a tstred schedule from a given
pattern. We demonstrate this application of topologic#igras through an example of a
commonly usedbut t er f | y pattern.

Consider an SDF graph havindpat t er f | y pattern, as shown in Fig. 4.4(a). One
commonly used scheduling transformation involves applylustering transformations
on one pair of connected actors at a time such that no cyctdrzduced in the resul-
tant graph, and then generating a hierarchical schedutbéagiven application graph by

iteratively applying such acyclic pairwise clustering @F5]. In case of SDF graphs,

24

(b) (©)

Figure 4.4: (a) An SDF graph withlautt er f | y pattern. (b)-(c) two possible GST
structures using schedules that are based on acyclic gaichistering (iteratively clus-
tering two actors at a time).

25

a group of actors can b8DF-clusteredf its component actors can be scheduled to-
gether (i.e., the group can be scheduled as a single unieiovhrall schedule for the
graph) without introducing deadlock [5]. It can be obsertlest more than one schedule
can be generated using APC depending on the pair of actstectd at every stage of
scheduling. In case of SDF graphs, the total buffer memayirements depend upon the
choice of a schedule, and in general, a schedule that hasommitotal buffer memory
requirements is desirable in many applications. A schadukchnique based on APC
called acyclic pairwise grouping of adjacent nodes (APGABS3 been described in [5]
that chooses a pair of actors to be clustered at every stagghetiuling using a metric
based on repetition counts of the actors in the graph. Thisidte is widely used and
attempts to minimize the total buffer memory requirememt& refer readers to [5] for
more information on SDF-clustering, and SDF schedulingrisgas that are based on
APC including APGAN.

A useful class of SDF schedules is that of single appearaupeetl schedules, as

described in Section 2.1. Lé(V, E') denote the graph in Fig. 4.4(a), where

V= {u07 Uy, Wo, UJl}, and F = {(u07 w0)7 (u07w1)7 (Ul,'lUQ), (u17 wl)}v (41)

and suppose that we apply APC to the graph. Based on the stephgad in APC, there
are only two possible GST structures for this example. Tlwesestructures are shown
in Fig. 4.4(b) and (c). Here, each, i = 0,1,---,6, denotes a loop count, while each
l;,i=0,1,---,3, denotes the actor pointed to by a leaf node in the GST. Tistemde
of exactly two unique GST structures for this example candréied from the following

observations regarding the operation of APC (see [5] fahkrrdetails on the operation

26

of APC for SDF graphs).

1. LetU = {ug,us }, andW = {wy, w; }. Then we can describe the grapiiV, £) as

V=UUW,and E=U x W. (4.2)

2. Lete € F denote the group of actors clustered during the first clugjestep. Then,
ly € U, andl; € W. This follows from the bipartite nature of tHeutterfly

pattern.

3. Following the first APC step, operation of APC ensures that (U \ {/;}), and
I3 € (W \ {l}). This is because clustering actar&ndb such thats € U and
b € W at this stage would amount to adding a cycle into the cludtgraph, which

is not permitted by APC.

4. Loop counts;, @ = 0,1,---,6, can be accordingly determined using the SDF
repetitions vector (the vector of minimal repetition caint a periodic schedule)

for the application graph.

Given that each of thd pairs of actors can be grouped in the first-step, which,
in turn, results in possibly two different schedules uporthfer grouping, we observe
that there are at most different single appearance looped schedules generaied us
this approach. Such different schedules can in general diffezent buffer memory
requirements [5]. Thus, it can be useful for a designer teegrent with alternative
schedules, estimate the buffer memory requirements feetbehedules, and identify the
schedule that best matches the application requiremedteanurce constraints.

27

(© (d)

Figure 4.5: (a)-(b) SDF graphs withut t er f | y patterns. (c)-(d) GSTs for minimizing
buffer memory requirements of the SDF graphs in (a) and éspectively.

Table 4.3: Buffer memory requirements for single appeaawhedules generated from
the SDF graph shown in Fig. 4.5(a).

Schedule| Single Appearance SchedulgTotal buffer requirement
(number of tokens)
Flat (20 A)(15 B)(30 C)(12 D) 300
1 5(@A)3B(20C))(12D) 140
2 (20A)(3(5B(2 C))(4 D)) 148
3 5@B)(2(2A(BC))(12D) 150
4 (15 B)(2 (5 (2 A)(3 C))(6 D)) 216
5 (15B)(4 (5A)(3D))(30C) 255
6 (15 B)(2 (2 (5 A)(3 D))(15C)) 225
7 (20 A)(3 (5B)(4 D))(30C) 260
8 (20 A) (3 (5 B)(4 D)(10 C)) 180

28

Table 4.4: Buffer memory requirements for single appeaaahedules generated from
the SDF graph shown in Fig. 4.5(b).

Schedulel Single Appearance Scheduldotal buffer requiremen|[
(number of tokens)
Flat (5 A)(4 B)(10 C)(6 D) 72
1 (4B)(B5A*2C)(6D) 64
2 (5A)(2(2B)(5C)(3D)) 56
3 (5A)(2(2B)(5C))(6D) 62
4 (5A)2((2B)(3D)(100C) 66
5 (5A)(2 (2B)(3D)(5Q)) 56

For thebut t erf |y pattern shown in Fig. 4.5(a), Table 4.3 showslifferent
schedules, including a flat schedule for comparison. It Gasden that each of these
schedules has different buffer memory requirements. Invangdesign context, a de-
signer may want to experiment with all schedules that fit tvedlable resources in the
target platform. The optimal schedule from the viewpointaifl buffer memory cost
(schedule 1)) has a total buffer memory cost of 140 memory units, and seged
using the APGAN strategy.

However, APGAN is in general a heuristic and is thereforeatatys guaranteed
to derive an optimal solution. For example, considertihét er f | y pattern shown in
Fig. 4.5(b). Table 4.4 show&different schedules for this graph, including, again, a flat
schedule, and different looped schedules. Here, schedu)eq the one generated by ap-
plying the APGAN strategy, and it can be seen that sched)e8j], and 6) outperform
this schedule in terms of total buffer memory requirements.

This example demonstrates the utility of experimentindaiternative schedules

even if established heuristics, such as APGAN, are availlaldpological patterns facil-

29

itate such experimentation through their capabilitiessidredule representation. In par-
ticular, topological patterns allow designers to congtsticictured patterns of schedules,
which can then be examined separately to determine whicisanest suitable in a given
design context. Furthermore, topological pattern repragi®ns can be used to maintain
libraries of subsystem-specific schedules, which can tleadrdéwn upon efficiently when

constructing larger applications that employ those subgys.

30

Chapter 5

Summary and Conclusions

We have introduced the concept of topological patternsglvban be used to iden-
tify and concisely iterate across arbitrary structures dataflow application graph. We
have shown how the types of flowgraph substructures thatavagive in the DSP appli-
cation domain can be effectively represented in terms adlogpcal patterns, and thereby
used to generate compact, scalable application repré¢sssta

We have also shown how an underlying design tool can explodlalevel applica-
tion specification consisting of topological patterns ini@as aspects of the design flow.
In particular, we have demonstrated the efficacy of topaligiatterns in dataflow graph
analysis, and extracting implementation-specific fe@uvée have applied the concept of
topological patterns to represent schedules for applicagraphs. Such representations
are useful, for example, when porting schedules generaiad one design tool to other
platform-specific tools or design languages. We have detraied the utility of experi-
mentation with pattern-specific scheduling transfornretj@nd how topological patterns
facilitate such experimentation.

Useful directions for further investigation include autmimg the application and
integration of topological patterns and analysis techesghat are driven by specific topo-

logical patterns.

31

Bibliography

[1] 3GPP TS 36.211 V8.7.0 (2009-05): Physical channels andutation (2009)

[2] Andrade, H., Kovner, S.: Software synthesis from dataflmodels for G and
LabVIEW™. In: Signals, Systems Computers, 1998. Conference Reddtiko
Thirty-Second Asilomar Conference on, vol. 2, pp. 1705 Qlvdl.2 (1998). DOI
10.1109/ACSSC.1998.751616

[3] Andrews, J.G., Ghosh, A., Muhamed, R.: FundamentalsidAX: understanding
broadband wireless networking. Prentice Hall (2007)

[4] Bhattacharya, B., Bhattacharyya, S.S.: Parametemsdflow modeling of DSP
systems. In: Proceedings of the International Conferena&ocoustics, Speech, and
Signal Processing, pp. 1948-1951. Istanbul, Turkey (2000)

[5] Bhattacharyya, S.S., Murthy, P.K., Lee, E.A.: Softw&gnthesis from Dataflow
Graphs. Kluwer Academic Publishers (1996)

[6] Bilsen, G., Engels, M., Lauwereins, R., Peperstraet®,: JCyclo-static dataflow.
IEEE Transactions on Signal Processi#g2), 397—-408 (1996)

[7] Buck, J.T.: Scheduling dynamic dataflow graphs with baechmemory using the
token flow model. Ph.D. thesis, EECS Department, Univeddityalifornia, Berke-
ley (1993). URLhtt p://ww. eecs. ber kel ey. edu/ Pubs/ TechRpt s/
1993/ 2429. ht m

[8] Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, @troduction to Algorithms,
second edn. MIT Press and McGraw-Hill (2001)

[9] Corretjer, 1., Hsu, C., Bhattacharyya, S.S.: Configimratand representation of
large-scale dataflow graphs using the dataflow interchaogesft. In: Proceedings
of the IEEE Workshop on Signal Processing Systems, pp. 1B4sff, Canada
(2006)

[10] Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Clasdiicg second edn. John Wiley
and Sons, Inc. (2000)

[11] Eker, J., Janneck, J.W.: CAL language report, languagsion 1.0 — document
edition 1. Tech. Rep. UCB/ERL M03/48, Electronics Reseasaboratory, Univer-
sity of California at Berkeley (2003)

[12] Gamma, E., Helm, R., Johnson, R., Vissides, J.: Desigtefhs: Elements of
Reusable Object-Oriented Software. Addison-Wesley (1995

32

[13] Haubelt, C., Falk, J., Keinert, J., Schlichter, T.,estohr, M., Deyhle, A., Hadert,
A., Teich, J.: A SystemC-based design methodology for digiignal processing
systems. EURASIP Journal on Embedded Syst2a@s, Article ID 47,580, 22
pages (2007)

[14] Haykin, S.: Adaptive filter theory. Prentice-Hall, Ld996)

[15] Hsu, C., Ko, M., Bhattacharyya, S.S.: Software synth&em the dataflow inter-
change format. In: Proceedings of the International Wasksbn Software and
Compilers for Embedded Systems, pp. 37—49. Dallas, Texx#5{2

[16] Hsu, C., Ramasubbu, S., Ko, M., Pino, J.L., Bhattacyans.S.: Efficient simu-
lation of critical synchronous dataflow graphs. In: Prodegsl of the Design Au-
tomation Conference, pp. 893—-898. San Francisco, Cai&¢a906)

[17] Huffman, D.A.: A method for the construction of minimuredundancy codes. In:
Proceedings of the IRE, pp. 1098-1101 (1952)

[18] Ko, M., Zissulescu, C., Puthenpurayil, S., Bhattagigar S.S., Kienhuis, B., De-
prettere, E.. Parameterized looped schedules for compptgentation of execu-
tion sequences in DSP hardware and software implementdfi#E Transactions
on Signal Processingp(6), 3126—-3138 (2007)

[19] Kung, S.Y.: VLSI Array processors. Prentice Hall (1988

[20] Lee, E.A.: Recurrences, iteration, and conditionalstatically scheduled block
diagram languages. In: Proceedings of the Internationak$twmp on VLSI Signal
Processing (1988)

[21] Lee, E.A., Messerschmitt, D.G.: Static scheduling yichronous dataflow pro-
grams for digital signal processing. IEEE Transactions om@utersC-36(1), 24—
35 (1987). DOI 10.1109/TC.1987.5009446

[22] Lee, E.A., Messerschmitt, D.G.: Digital Communicatiokluwer Academic Pub-
lishers (1988)

[23] Lee, E.A., Parks, T.M.: Dataflow process networks. Bealings of the IEEE pp.
773-799 (1995)

[24] Oppenheim, A.V., Schafer, R.W.: Discrete-Time SigRabcessing. Prentice-Hall,
Inc. (1989)

[25] Pino, J.L., Kalbasi, K.: Cosimulating synchronous D&plications with analog
RF circuits. In: Proceedings of the IEEE Asilomar Confeeean Signals, Systems,
and Computers (1998)

[26] Plishker, W., Sane, N., Kiemb, M., Anand, K., Bhattaglya, S.S.: Functional DIF
for rapid prototyping. In: Proceedings of the Internatio§gmposium on Rapid
System Prototyping, pp. 17-23. Monterey, California (2008

33

[27] Sane, N., Hsu, C., Pino, J.L., Bhattacharyya, S.S.:u&itimng dynamic communi-
cation systems using the core functional dataflow model. Fraceedings of the
International Conference on Acoustics, Speech, and Sigradessing, pp. 1538—
1541. Dallas, Texas (2010)

[28] Sane, N., Kee, H., Seetharaman, G., Bhattacharyya, Sc8lable representation of
dataflow graph structures using topological patterns. hoc&edings of the IEEE
Workshop on Signal Processing Systems, pp. 13—18. Saniscarigay Area, USA
(2010)

[29] Sane, N., Kee, H., Seetharaman, G., Bhattacharyya, Topological patterns for
scalable representation and analysis of dataflow grapbmaiof Signal Processing
Systems — Special Issue on SiPS 2010 (2011). DOI 10.100266t011-0610-1

[30] Shynk, J.J.: Frequency-domain and multirate adaiitexing. IEEE Signal Pro-
cessing Magazing(1), 14-37 (1992)

[31] Stefanov, T., Zissulescu, C., Turjan, A., Kienhuis, Beprettere, E.: System design
using Kahn process networks: the Compaan/Laura approacRraceedings of the
Design, Automation and Test in Europe Conference and Ekbihivol. 1, pp. 340
—345\0l.1 (2004). DOI 10.1109/DATE.2004.1268870

[32] Thies, W., Karczmarek, M., Amarasinghe, S.: StrearAltanguage for streaming
applications. In: International Conference on Compilen§tauction. Grenoble,
France (2002)

[33] Verbauwhede, I.M., Scheers, C.J., Rabaey, J.M.: Spation and support for mul-
tidimensional DSP in the SILAGE language. In: IEEE Inteioadl Conference on
Acoustics, Speech, and Signal Processing, vol. 2, pp.31/4F476 (1994). DOI
10.1109/ICASSP.1994.389622

34

