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Abstract

The development of the 11th revision of the International Classification of Diseases (ICD-
11) by the World Health Organization (WHO) is one of the largest collaborative ontology
engineering projects today. In this paper, we present methods and measures that help
analyze pragmatic aspects of ontology engineering projects by using historical and tem-
poral data generated by users who collaborate on ontology construction. We will focus
on studying the distribution of changes, the stabilization of the ontology as it evolves,
and the propagation of changes through the ontology over time.

By applying our methods to an extensive usage log data from ICD-11, we find that work
on ICD-11 is distributed unequally, that the ontology is gradually stabilizing, and that
changes tend to propagate along the ontology taxonomic relationship. In addition to
our findings about the ICD-11 project, our work will have broader implications for the
design of collaborative ontology engineering platforms, and it could act as a stepping
stone for the pragmatic analysis of usage data from other large-scale ontology engineering
projects.

Furthermore, we present a novel web-based tool—iCAT Analytics—that allows to sys-
tematically investigate crowd-based processes in knowledge production systems. To-
wards that end, the tool supports interactive exploration of pragmatic aspects of on-
tology engineering such as how a given ontology evolved and the nature of changes,
discussions and interactions that took place during its production process. While iCAT
Analytics was motivated by ICD-11, it could potentially be applied to any crowd-based
ontology engineering project. We give an introduction to the features of iCAT Analytics
and present some insights specifically for ICD-11.

Keywords: collaborative ontology development, temporal analysis, network theory, ma-
chine learning, Semantic Web
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1 Introduction

The International Classification of Diseases (ICD) is the essential medical classifica-
tion published by the World Health Organization. WHO published a new release of
ICD approximately every decade. Governments and industries worldwide use ICD to
compile morbidity and mortality statistics, to monitor health-related spendings and to
inform policy makings. The most important contribution of ICD is that it enables the
exchange of comparable data from different regions, and it allows the comparison of
different populations over long periods of time [Israel, 1978]. ICD-10, the current ICD
revision, is in use in over one hundred United Nation countries, and it is available in
six official WHO languages, as well as in 36 other ones [World Health Organization,
2011c].

In 2007, WHO started the work on the 11th major revision of the classification (ICD-11).
The 11th revision introduces significant changes in comparison to previous ones, both
in terms of the content and of the revision process. While previous ICD revisions were
mainly lists of diseases containing only the disease titles and codes, ICD-11 has a much
richer representation of diseases based on a content model [World Health Organization,
2011b]. The content model defines the characteristics of diseases that will be captured
in ICD-11, such as the title of a disease, its textual definition, synonyms and alterna-
tive names, clinical descriptions, manifestation, causal properties or diagnostic criteria.
Several of these disease characteristics (for example, the body part or the causal prop-
erties) are modeled as references to terms in external medical terminologies, such as
SNOMED-CT [International Health Terminology Standards Development Organization
(IHTSDO), 2011]. The Web Ontology Language (OWL) provides the underlying rep-
resentation of the content model. OWL is a recommendation of the World Wide Web
Consortium (W3C) and it comes with a formal semantics and solid tool support. The
representation of the ICD-11 content model in OWL is described elsewhere [Tu et al.,
2010, Tudorache et al., 2010].

The development process for ICD-11 is also significantly different from the past ones.
While previous revisions had a closed development process, in which the decisions on
what to include in the classification were made by committees behind closed doors, for
the 11th revision, WHO encourages an open process, in which experts around the world
are contributing to the content using a Web platform similar—at least in some ways—to
Wikipedia. WHO delegates the work on different parts of ICD-11 to Topic Advisory
Groups (TAGs) that are specialized on certain domains (e.g., Internal Medicine, Mental
Health, Dermatology, Neurology, and so on). Each TAG is responsible for a set of
diseases and branches in the ontology. A TAG has a managing editor that oversees the
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Figure 1.1: The iCAT platform allows users to edit the ICD-11 ontology with domain
specific content. This view shows a hierarchy of the concepts in the ontology
to the left and the detailed view of the properties for one particular concept
to the right.

work of the group. TAGs organize themselves internally in terms of collaboration or
distribution of work. WHO assigns ontology branches to each TAG, with each TAG
being responsible for one or more branch.

In the current alpha phase of the project, around 70 international experts work on
the ICD-11 ontology using the ICD-11 Collaborative Authoring Tool [Tudorache et al.,
2010] (iCAT; see Figure 1.1). iCAT provides a collaborative Web-based platform that
presents the underlying ICD-11 ontology in a way that is friendly to domain experts.
iCAT presents the disease characteristics to the user as simple Web forms that they
need to fill in. iCAT has also extensive collaboration support that provides the data
that we analyze in this paper. Users can have contextualized discussion as part of the
development process by attaching threaded discussions directly to ontology classes. The
tool tracks all the changes that users make in a structured log. We have maintained the
log for ICD-11since November 2009, and now it provides a rich source for insight into
the ICD-11 development process.

The beta phase of the ICD-11 revision will start in May 2012. WHO expects that there
will be thousands of contributors to ICD-11. The scale of both the alpha phase and,
in particular, the envisioned beta phase far exceeds the sizes of collaborative ontology
projects that researchers had a chance to analyze. Thus, this study presents one of the
first studies of the pragmatics of such projects.

In this paper, we will analyze the extensive iCAT usage log data that captures changes
and notes that users make. We will introduce and apply methods and measures to
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analyze pragmatic aspects of ontology engineering including the distribution of work,
the stabilization of the ontology, and the propagation of changes through the ontology.
Studying these issues is not only of interest to the ICD-11 project itself (because it
sheds light on the history and general evolution of ICD-11), but also potentially to other
ontology engineering projects in the future. Another important motivation for our work
comes from the interactions with our WHO collaborators who expressed the need to
get an overview of the entire development process that will help them make informed
managerial decisions. Identifying areas of conflict in the ontology, or areas of neglect, is
paramount not only for the ICD-11 project, but for any large scale ontology development
effort. We also believe that understanding how users change the ontology, and trying to
identify patterns of change, will enable us to build better user interfaces that support
the work of the users in a more natural way. We hope that our work provides a stepping
stone for researchers who are interested in creating deeper insights into the evolution of
large-scale collaborative ontology engineering in general.

For ICD-11 in particular, we want to answer the following questions in this paper:

1. How is the work distributed among users and groups? Are there groups that act
more “democratically” than others?

2. What areas of the ontology receive the most attention by users, and which parts
of the ontology have been neglected so far?

3. Is there any sign of stabilization or convergence in the ontology? It might be
desirable to have an ontology stabilize before opening access to it to a broader
public.

4. Can we identify patterns in the way that users interact with the system and with
each other? These patterns can have implications on the design of the user inter-
face; they can also contribute to our understanding of the whole process.

Researchers have not extensively studied pragmatic and temporal aspects of large scale,
web-mediated ontology engineering projects because hardly any usage data is available.
Using the case of ICD-11 as a basis, our models, measures and insights represent the
first step in exploring whether we can better understand the state of an ever-changing
ontology by studying its evolution and historic data.

Furthermore, we present a web-based tool that allows analysts to investigate the crowd-
based knowledge production process behind ICD-11. Specifically, it displays interactive
networks for

1. concepts (“categories”), their relations, and their respective number of changes,
notes, and various other measures;

2. authors and their relations through mutually edited concepts and overrides; and

3. properties attached to concepts and their relations through follow-up changes.

10



In order to understand the pragmatic history of such crowd-based knowledge production
systems, and to gain both a quick overview and deeper insights into what areas are
active, conflicted or neglected, effective analytical instruments are required. The main
contribution of this part of the paper is the introduction of a novel analytical tool that
(i) has been applied to a very large collaborative ontology engineering project and (ii)
has the potential to increase our ability to make sense out of the complex dynamics and
processes behind crowd-based knowledge production systems.

Providing this information has several purposes:

• Content editors see what concepts are “trending” and can plan their own efforts
accordingly. They might be motivated by comparing their own contributions to
others.

• Managing editors get an overview of the whole ontology engineering process and the
current state of the ontology in terms of its history. They can evaluate collaboration
between authors and set future goals and milestones accordingly.

• Ontology engineers see what parts of the ontology have been actively used and
which parts have been neglected, giving them hints about possible improvements
in the underlying model or at least in the communication of the meaning of certain
properties to the editors.

The general goal is to provide further insights into specific crowd-based knowledge pro-
duction processes, with special focus on the social context of the production. Our tool
is released via open-source software licenses1 and is in active use in the development
process for ICD-112.

This report is based on work submitted for two publications. The modeling and ex-
plorative aspects (sections 4 through 6) were submitted to the Journal of Biomedical
Informatics [Pöschko et al., 2012b], while iCAT Analytics (section 8) is described in a
paper accepted for publication in the proceedings of the AAAI Spring Symposium 2012:
Wisdom of the Crowd [Pöschko et al., 2012a].

1http://github.com/poeschko/iCAT-Analytics
2http://icatanalytics.stanford.edu
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2 Related work

Because collaborative ontology engineering is still quite a new research domain, there
have been very few publications analyzing the actual collaboration process. Previous
work has rather focused on surveying the existing tool support for collaborative ontol-
ogy engineering. For example, Simperl and colleagues [Simperl and Luczak-Rösch, 2011]
present a survey of the current state of collaborative ontology development tools where
they focus on the methods and tools that enable collaboration, rather than on the analy-
sis of the actual collaboration data. Similarly, the workshop on Social and Collaborative
Construction of Structured Knowledge (CKC2007) hosted presentations and a challenge
of existing collaborative knowledge construction tools, and a report has been published
by IEEE [Noy et al., 2008].

Falconer et al. [2011] examine the collaborative aspects of ontology engineering in three
different community-driven ontology projects. However, the focus of the paper is mainly
on identifying roles of users and the relation of changes and notes, whereas in our paper,
we focus on several aspects related to pragmatics and the evolution of the ontology.
De Leenheer et al. [2009] propose a set of key social performance indicators (SPIs)
that could bring insights in the social arrangement evolving the ontology, and apply
it in the domain of competency-centric Human Resource Management (HRM). The
work focuses more on analyzing the content of discussions (notes) and how the authors
map to different skills. Schober et al. [2009] carried out an informal and observational
study where they observed users and analyzed the communication and interactions of
the users inside and outside the collaborative ontology editing tool. Similar to our
analysis, the authors found large differences in the level of activity and contributions of
authors.

Much more research on collaboration has already been done for the case of Wikipedia.
Measures for author contributions [Adler et al., 2008], the development with respect to
different user groups [Suh et al., 2009], and convergence of article texts [Thomas and
Sheth, 2007] have been suggested. Other work has suggested to compute trust from
the revision history of an article [Zeng et al., 2006], which could represent a starting
point for developing similar techniques for ontologies. Nevertheless, we need a deeper
understanding of the pragmatics of collaborative ontology engineering in order to un-
derstand whether principles of collaboration in wikis apply to projects such as the ICD-
11.

12



3 Materials and methods

This chapter gives an introduction to the dataset that we used, the corresponding formal
model that is general enough to be applicable to other ontology engineering projects, and
a short overview of some of the methods that we used in this study.

3.1 Structure of the data

The subject of the ICD are diseases, causes of deaths and other health-related problems
and their categorization. ICD-11 is an OWL ontology, where diseases are represented as
OWL classes. Each class has a large number of datatype and object properties attached
to it. For example, the class Tuberculosis has title and definition as properties [Tudo-
rache et al., 2010]. Table 3.2 shows some of the ICD-11 disease properties; the complete
list of properties is part of the ICD-11 Content Model Reference Guide [World Health
Organization, 2011a]. The OWL classes constitute a taxonomy, or an is-a class hi-
erarchy. This hierarchy is rooted in an artificial root class ICDCategory. Figure 1.1
shows parts of the hierarchy. One class in the hierarchy may have multiple parents.
The ICD-11 domain experts use multiple inheritance to classify a disease according to
multiple axes. Thus, the ICD-11 hierarchy forms a directed graph, rather than a tree.
We will refer to a representation of a disease in ICD-11 as either a “class” or a “con-
cept.”

Domain experts can make various kinds of changes to the ontology in iCAT: For exam-
ple, they can create a new class or add a definition to a particular disease. Users can
add threaded notes to individual classes (e.g., add a comment on the class Tuberculosis)
or to a particular property value of a class (e.g., add an explanation for the definition
of class Tuberculosis). We record all changes and notes in a structured format as in-
stances in the Changes and Annotations Ontology (ChAO), a declarative representation
of ontology changes and notes [Noy et al., 2006]. ChAO contains a classification of the
types of changes a user can make (e.g. adding a new class, or a property value), as well
as a typology of notes available in the platform (e.g., comments, explanations, propos-
als, and so on). A change representation includes the change metadata, such as a user
friendly description of a change (e.g., “Created class with name ’Miliary tuberculosis’,
parents: Tuberculosis”), the author of the change and its timestamp. Frequently, one
change by a user results in several atomic changes. For example, creation of a new class,
typically involves (1) creation of the class as a child of the root class, (2) addition of the
actual parent to the class, and removal of the root class as a parent, (3) assignment of
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default property values for several properties. The ChAO ontology contains the com-
bination of these atomic changes as a special type of change called composite change
and creates a user friendly description for this composite change. To save disk space,
the archiving system periodically discards atomic changes and keeps only composite
changes.

We use the structured log of changes and the notes stored in ChAO to conduct the data
analysis described in this paper.

3.2 Extracted data used in evaluation

The dataset that we examined consists of the ICD-11 ontology and its corresponding
ChAO change log as of September 9, 2011, with 32,093 concepts, 227,929 changes, and
27,181 notes, archived since the beginning of the project on November 18, 2009. Because
atomic changes are discarded periodically in favor of composite changes, in order to
get a consistent analysis, we considered only composite changes in our evaluations. We
reconstructed their individual types of action from their automatically generated textual
descriptions. We discarded the changes that iCAT triggered automatically and there
were not directly initiated by the user. For example, a large set of values was imported
automatically, through a script. Even though this process triggered many changes such
as property-value assignments, we discarded these changes from the analysis. After this
pre-processing, we had 119,382 relevant changes to analyze.

Table 3.1 lists the most frequent types of changes in the iCAT change log and their
respective number of occurrences. Here are some examples of these change descrip-
tions:

• Replaced property value: Replaced ICD Title of Q92.7 Triploidy and polyploidy.
Old value: Triploidy and polyploidy. New value: Polyploidy

• Added new property value: Added a new diagnostic criteria to F50.2 Bulimia
nervosa

• Change in hierarchy: Change in hierarchy for class: C87 Primary cutaneous B-cell
lymphomas. Parents added: LQ Malignant neoplasms involving the skin

• Created class: Created class with name ’Miliary tuberculosis’, parents: Tuberculosis

As the data in Table 3.1 shows, by far the most changes happen to values for properties of
concepts, followed by changes to the hierarchy, and by the creation of new classes. Table
3.2 lists the 15 properties that have the largest number of values filled in. The table also
shows the number of changes for the property. It is interesting to note that the remaining
61 properties in the content model had assigned values for fewer than 100 concepts, with
more than half of them having values for fewer than 10 concepts.

14



Table 3.1: Most frequent types of changes in the iCAT change log and their respective
number of occurrences.

Change Type No. of Changes

Replaced property value 62,793
Added new property value 19,940
Changed position in the hierarchy 13,485
Created class 12,234
Deleted property value 3,710
Retired class 415

Recall that many branches also had TAGs assigned to them: members of the TAG are pri-
marily responsible for editing this branch, although any user is allowed to edit anywhere.
Of the 32,093 concepts, 24,108 have a Primary TAG assigned.

3.3 Formal model

Formally, let us denote the set of all relevant changes by C, the set of concepts by K,
the set of authors by A, the set of author groups by G, and the set of properties by
P .

We can characterize the set C of changes by tuples

c = (tc, ac ∈ A, kc ∈ K, pc ∈ P, oldc,newc) ∈ C,

denoting the time, author, affected concept, affected property (if any), old value, and new
value of a change c.1 Note that this model can easily be related to other models of collab-
orative systems such as social tagging systems [Helic et al., 2011].

Each author a ∈ A is also assigned to a TAG (“group”) ga.

We describe the set K of concepts in the ontology as follows:

k = (parentsk, childrenk, gk) ∈ K,

where gk denotes the TAG the concept is primarily assigned to. The links between
concepts and their parents and children result in a directed graph

GK = (K,E(GK) = {(k, p) | p ∈ parentsk, k ∈ K})

of the hierarchy encoded by the ontology.

1When a user moves a class from one place in the hierarchy to another, ChAO represents this change
as the change on the sub-concept: the sub-concept changes a parent.
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Table 3.2: Properties, the number of respective distinct concepts that have a value for the
property, changes, authors, and the Gini coefficient of the author distribution.
Those 15 properties with the most distinct concepts are shown here, out of
76 properties in use. Properties marked with an asterisk (*) are non-textual
properties, such as references, and will be excluded in some parts of our
analysis.

Property Concepts Changes Authors Gini

sorting label 5936 9526 25 0.841
use* 5362 37109 16 0.959
icd title 2889 3747 23 0.839
short definition 2815 7067 32 0.846
synonym 2202 8683 23 0.959
display status* 1590 1635 9 0.785
type* 1226 1323 24 0.915
inclusions* 983 3789 20 0.771
icd numerical code 570 995 4 0.852
exclusions* 469 1876 18 0.723
definition prefilled 440 1145 16 0.952
diagnostic criteria 393 4652 15 0.980
primary tag* 386 409 3 0.597
detailed definition 355 783 16 0.801
secondary tags* 290 296 3 0.861
body system 147 256 14 0.800
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3.4 Methods

In our analysis, we rely on several established statistical methods. To answer questions
about the equality of distributions—for instance, of changes among users—we mainly use
the Gini coefficient [Atkinson, 1970], which yields 1 for a uniform distribution and 0 for
a “spike” distribution, i.e., a distribution with Gini coefficient of 1 is very “democratic”,
while a value of 0 indicates that it is dominated by a single entity (e.g., an author making
all changes to a given concept).

When studying correlations between features of objects, we use the common Pearson
product-moment correlation coefficient together with a test for statistical significance
(p-value). The correlation coefficient yields a value between 1 (for a positive linear
correlation) and −1 (for a negative linear correlation), where a value of 0 means “no cor-
relation at all.” A small p-value (usually < 0.05) indicates that the result is statistically
significant.

To test whether an empirical distribution matches a theoretic distribution, we use
maximum-likelihood parameter estimation and the Kolmogorov-Smirnov test [Massey,
1951].

To analyze the stabilization of concepts and especially property values, we use edit
distance measures such as the Levenshtein distance [Levenshtein, 1966] and the length
of a longest common subsequence.

In addition to these methods, we also introduce and define new methods. For example,
we capture the propagation of changes in an ontology by a new measure and tested for
significance using a baseline approach.
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4 Distribution of changes and collaboration

Analyzing how the work in the ontology is distributed among users, will help us under-
stand were the gaps in the ontology are, what are the dynamics of collaborative editing,
who are the most active users and what their implicit or explicit roles are, and whether
the users observe the boundaries assigned to their groups or edit in the branches assigned
to other TAGs. This analysis provides both the insight for managers of the project and
for tool developers as they can adjust the user interface to different roles of users or
structure the UI to encourage particular types of contributions.

4.1 Distribution over time

There are several peaks of activity in the development process, as can be seen in the
total number |CW | of changes per week W in Figure 4.1. Activity peaks are usually
located right before specific deadlines set by WHO for the ICD-11 project. For example,
the activity peaked in weeks 16 and 34, right before two important WHO meetings in
May and September 2010.

The number of distinct concepts that were changed each week, |{kc | c ∈ CW }|, highly
correlates with the number of changes (correlation coefficient 0.893, p < 0.001). The
respective ratio (see Figure 4.2) tells us that if a concept is changed in a particu-
lar week, it gets changed 3.39 times on average. Interestingly, the two figures diverge
during the most recent weeks, meaning that more work was concentrated on fewer con-
cepts.

4.2 Distribution in the ontology

Figure 4.3 shows that changes are distributed very unequally in the ontology. The
most changed concept is F01.1 ’Multi-infarct dementia’ with 148 changes, followed by
F00 ’Dementia in Alzheimer disease’ and B50 ’Plasmodium falciparum malaria’. How-
ever, the majority of concepts were never changed (39.8%) or were changed only once
(14.6%). We can likely attribute this observation to the ICD-11 project being in its early
stages.

While the shape of the distribution could suggest a log-normal distribution (which is the
case for Wikipedia [Wilkinson and Huberman, 2007]), we found no statistical evidence
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Figure 4.2: Ratio of changes per concept for weeks with at least 25 distinct changed
concepts, and the overall average ratio of changes per concept (dashed).
Weeks with less than 25 distinct changed concepts are left out from the plot.

for such a distribution in ICD-11 (p ≈ 0 using maximum-likelihood parameter estimation
and a Kolmogorov-Smirnov test). We also did not find any statistical evidence for an
exponential or Pareto distribution. While explaining this difference is beyond the scope
of this paper, this difference could either be due to fundamental differences between
collaboration in Wikipedia and ontology engineering projects, or due to the early stage
of ICD-11.

The analysis performed by Falconer and colleagues [Falconer et al., 2011] on an earlier
ICD-11 data set concluded that the number of changes per concept highly correlates
with the number of notes. With the current data, we get a very similar correlation
coefficient of 0.560 (p < 0.001). This high correlation is due partially to the fact that
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Figure 4.3: Changes of individual concepts, sorted by rank.

certain operations in iCAT (e.g., creating a class) requires the user to enter a rationale
for the change. Other comments are added by the users either to clarify their change,
or express their doubts about certain values, especially when they do not “own” the
changed concept. We also did not observe deep threaded discussions. The users did
not engage in such discussion perhaps because the ICD-11 project is still in its early
stages.

To elaborate on where changes happen, we examine the correlation of the number of
changes with the depth of the changed concept (the distance of the concept to the
root concept in GK). It turns out that there is a small negative correlation (−0.179,
p < 0.001), which means that the more central concepts tend to get changed slightly
more often, but probably not as much more as one might expect. Specifically, the average
number of changes per concept for concepts with depth 1 is 16.23, while for concepts
with depth 2 it is 5.70, for depth 3 it is 9.49, and for greater depths it is ≤ 5 (see Figure
4.4). Thus, the high-level concepts and concepts on the 3rd level are changed more often
than the rest, but there is no significant difference in the number of changes among the
other depths.

4.3 Distribution among users

The distribution of work among users is approximately exponential, as can be seen in
Figure 4.5.1 The most active user, LB, accounts for 40,936 changes and 8,497 notes,
followed by AR, RC, and JR. LB is a high-level managing editor at WHO, while the
other users are responsible for the content of specific TAGs.

Most concepts are only changed—if at all—by a single author; the mean number of
distinct authors per concept, for concepts that have been changed at least once, is 1.31,
with a standard deviation of 0.62. This is qualitatively similar to Wikipedia, where the

1In this and other figures, we replaced the names of the authors with their initials to preserve their
anonymity.
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Figure 4.4: Average number of changes by concept for different depths in GK .
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Figure 4.5: Total number of changes by individual authors on a logarithmic scale, sorted
by rank.

number of distinct authors per article follows a power-law distribution [Buriol et al.,
2006].

However, when we simply define collaboration between two authors in terms of the
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Figure 4.6: Collaboration graph of users with node sizes proportional to the sum of
changes and notes, and edge sizes corresponding to the number of mutually
changed or annotated concepts.

number of mutually changed concepts or commonly commented upon concepts, the
collaboration graph in Figure 4.6 (created using Gephi [Bastian et al., 2009]) shows that
there is collaboration happening.

Most pairs of authors collaborated only once, and many of these collaborations arise
from a few concepts that were changed by many distinct authors, such as A15 ’Respira-
tory tuberculosis, bacteriologically and histologically confirmed’ and I ’Certain infectious
and parasitic diseases’ with seven distinct authors of changes each. Apart from that,
collaboration is centered around key users such as LB, RC or AR, who are active in all
areas of the ontology.
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4.4 Distribution within Topic Advisory Groups

Work within TAGs is distributed very unequally. In most TAGs, the Gini coefficient of
the distribution of changes among authors is greater than 0.85. This stems from the fact
(and indicates, likewise) that in many groups, people do not use iCAT individually, but
one managing editor enters all collected information for his or her TAG. Therefore, in
the current phase of the ICD-11 project it is of little interest to examine TAGs as simple
collections of authors, as this is almost equivalent to examining individual authors, which
is what we focus on.

Nevertheless, it is interesting to associate the author groups with the assignment of
concepts to TAGs, which can be seen as a clustering of the ontology into several areas.
This analysis helps to explore answers to a number of interesting questions, including:
how many of the assigned concepts were actually changed so far, how many of these
changes were performed by users in the TAG itself, and how does the distribution of
authors in those different areas of the ontology look like?

Table 4.1 addresses these questions. It shows that there are TAGs where most concepts
were changed at least once, such as Ophthalmology (96.1%) and Dermatology (94.7%),
while of the 1,724 concepts in the External Causes TAG only 9.2% were touched. This
result suggests that there is still substantial work to be done in this area of the ontol-
ogy.

It is striking that for many TAGs, most changes of their assigned concepts are actually
performed by users outside the TAG. This might be the result of general managers like
LB who edit concepts in many areas, but are not assigned to a specific TAG. On the
other hand, there are two rather “self-contained” TAGs, Rare Diseases (only 13.4% of
changes by users outside the TAG) and Dermatology (14.5%).

Although we were not able to identify fully “democratic” TAGs (as measured by the Gini
coefficient), it is interesting to examine the number of distinct authors of changes to con-
cepts assigned to a TAG. The External Causes TAG, for instance, has many distinct au-
thors, while having relatively few changes on a small number of concepts.
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Table 4.1: Distribution of changes within Topic Advisory Groups (TAGs).

TAG Assigned
primary
concepts

Concepts
thereof

changed

Ratio
changed /

assigned

Changes
on assigned

concepts

Changes thereof
by people

outside TAG

Ratio
outside /

all

Distinct
authors

Gini
coefficient
of authors

Dentistry 151 118 0.781 490 490 1.000 6 0.904
Dermatology 1724 1632 0.947 14206 2065 0.145 23 0.967
External Causes 5386 498 0.092 1276 756 0.592 24 0.844
GURM 2416 1734 0.718 6802 3914 0.575 17 0.839
Internal Medicine 5620 4531 0.806 27020 20854 0.772 38 0.891
Mental Health 593 372 0.627 5105 5105 1.000 15 0.949
Musculoskeletal 1096 907 0.828 5166 4855 0.940 17 0.865
Neoplasms 1213 548 0.452 2724 2724 1.000 18 0.770
Neurology 902 648 0.718 5127 4397 0.858 21 0.826
Ophthalmology 1301 1250 0.961 6783 6561 0.967 18 0.891
Paediatrics 145 114 0.786 334 334 1.000 7 0.787
Rare Diseases 2566 2341 0.912 8452 1133 0.134 17 0.951
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5 Stabilization of properties

To asses the current state or maturity of an ontology, we determine whether or not
its textual properties converge, and if they do, how far convergence has progressed at
any given moment. In this section, we introduce several measures to capture such a
convergence or stabilization of semantics, at least for textual properties. Stabilization of
other aspects, such as ontology relations, would be interesting to investigate, too, but is
beyond the scope of this paper.

5.1 Edit distance

We measure the overall stabilization of the property values in the ontology, by ana-
lyzing the changes to textual values as they get overridden by authors. We use the
Levenshtein edit distance [Levenshtein, 1966] LD(c) for each change c as an initial proxy
measure. The Levenshtein distance measures the number of characters that have to
be added, deleted, or modified to turn the old property value oldc into the new value
newc.

In this analysis, we consider only the changes that comprise edits to a textual property
and exclude edits to properties that have references, flags, and other properties where
the extent of the change is not reflected in the number of edited characters (see Table
3.2). This set of changes to textual properties, Ctext, has 29,831 changes (out of total of
119,382 changes).

Figure 5.1 shows the average Levenshtein distance accumulated up to each point in time,
that is,

LD(T ) =
1

|{c ∈ Ctext : tc ≤ T}|
∑

c∈Ctext:tc≤T
LD(c).

Apparently, changes became bigger with each peak of activity after the weeks 2010/16
and 2010/32. During these periods, a lot of work was done on the title and diagnostic
criteria properties, respectively. Recently, the average size of changes is in decline and
seems to slowly stabilize at around 100 characters.

For Wikipedia researchers have shown that the extent of edits decreases towards the final
version of an article [Thomas and Sheth, 2007]. Our hypothesis is that this trend is also
true for textual properties in an ontology. For ICD-11 this would imply that although
changes are slowly becoming smaller, they are still too big to speak of a stabilization of
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Figure 5.1: Average Levenshtein distance per change of a textual property, accumulated
up to each point in time.

the ontology. Given the early stage of the project, this stabilization would probably not
even be desired.

5.2 Preservation of original content

Another measurement for stability is the fraction of content that is preserved in sub-
sequent changes. In order to analyze that, we restrict the set of considered changes
further to those 6,088 modifying changes that have an old and a new value attached,
and examine the preservation rate,

PR(c) =
LCS(oldc,newc)

|oldc|
,

where LCS(α, β) denotes the longest common subsequence of two strings α and β. Again,
we accumulate the average over all concepts up to a certain time T , yielding PR(T )
analogously to LD(T ).

As depicted in Figure 5.2, the average preservation rate is very stable at around 0.8, after
a few fluctuations in the beginning. That means that in each modifying edit, around
80% of the original content are preserved on average.

Similarly to the previous section 5.1, one would expect changes to become of smaller
extent towards the final version of the ontology, i.e., the preservation rate would become
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Figure 5.2: Average preservation rate of textual properties per textual change, accumu-
lated up to each point in time.

higher. This is apparently not the case for ICD-11 yet. However, preserving 80% of the
previous content in each edit could already be interpreted as a certain sign of quality
in the content; at least the authors did not see the need to change more than that so
far.

5.3 Vocabulary size

We can also look at the overall vocabulary size of the ontology, that is, the size of the
set of words, words(p), in all textual properties p, where a word is simply defined as a
sequence of letters without digits, spaces, and other punctuation. We can express the
vocabulary size in terms of the change history as

V (T ) =

∣∣∣∣{w :
∣∣{c ∈ Ctext : w ∈ words(newc)}

∣∣ > ∣∣{c ∈ Ctext : w ∈ words(oldc)}
∣∣}∣∣∣∣,

that is, the number of words that were added more often than removed.

Figure 5.3 shows that while the total number of words in the ontology steadily increases,
the number of unique words tends to stabilize, as can be expected.

The overall vocabulary size V (T ) at a point T divided by the number of changes up
to time T yields the average gain in vocabulary resulting from changes up to point
T . Figure 5.4 shows that changes in the beginning increasingly extended the bag of
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Figure 5.3: Total number of words and number of distinct words in textual property
values.

words in the ontology, while the average number of new words introduced by one change
gradually decreased to around 0.6 in the second phase. From this we can infer that
at the current stage of ICD-11, the vocabulary in the ontology is still far from being
stable.
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Figure 5.4: Average vocabulary gain, accumulated up to each point in time.
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6 Follow-up changes

To get a better understanding of the temporal aspects in ontology engineering, we want
to explore the following questions: Given a certain change taking place, what happens
next? Do related concepts (parents, children) of the changed concept change as well,
that is, do changes propagate along the taxonomic (i.e., parent-child) relations in the
ontology? In terms of authors, we are also interested in who will edit the changed concept
or property next. Understanding the way changes occur can have implications for the
design of the user interface as well as for identifying user roles and, more generally,
judging the state of the overall ontology engineering process.

6.1 Propagation of changes through the
ontology

To study the propagation of changes through the ontology, we take network-centric
approach by raising the following question: Given a random child-parent relation, what
is the likelihood that a change is propagated on it within a certain time, either from
child to parent or the other way? We distinguish between the case where changes on
both ends are done by the same author and the case where they can be done by any
author.

For each child-parent relationship e = (u, v) ∈ E(GK) we determine the minimum time
a change was propagated through it from child to parent (if any),

pt↗((u, v)) = min
c∈C:kc=u

d∈C:kd=v,td>tc

td − tc,

(the propagation time) and define the propagation from parent to child as

pt↘((u, v)) = prop↗((v, u)).

Restricting to changes with the same author yields

ptA↗((u, v)) = min
c∈C:kc=u

d∈C:kd=v,td>tc,ad=ac

td − tc

and ptA↘((u, v)) analogously.
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Figure 6.1: Distribution of propagation times.
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We now investigate the fraction PT(t) of links with propagation time ≤ t for different
times t,

PT.
.(t) = |{e ∈ E(GK) | pt..(e) ≤ t}| / |E(GK)| .

To test the significance of our results, that is, the influence of the actual links on the
resulting propagation times, we provide the following experimental baseline: Using a
configuration model [Bollobás, 2001], we generate a random graph G̃K with the same
distribution of in- and out-degrees as GK , and apply the same analysis on G̃K . The
difference between this baseline and the actual propagation times then tells us the influ-
ence of the actual relations in the ontology. Note that from the symmetrical definition
of pt↗ and pt↘ it follows directly that in the random graph, these two measures will
approximately be the same.

Figure 6.1 shows that:

1. Changes significantly propagate along actual ontology taxonomic relations, as the
comparison to the random baseline shows,

2. Top-down propagation is more frequent than bottom-up, and

3. Restricting to changes by the same author on both ends of the relation (Figure
6.1(b)) does not make a big difference for the actual distribution of propagation
times, only for the baseline.

It is interesting to note that 40% of the relations in the ontology are traversed within ten
hours top-down, but only 20% bottom-up. Without any time limit, about PT↘(∞) =
55.8% of the links are traversed top-down (PTA

↘(∞) = 50.0% when restricting to the
same author), while for bottom-up it is 42.6% (34.9% with same author).

6.2 Overrides by authors

For Wikipedia, the number and structure of reverts are often used to infer characteristics
of articles and authors [Suh et al., 2007, Zeng et al., 2006, Adler et al., 2008]. As there
is currently no explicit notion of a revert in the case of ICD-11, we examine an override
ovr(c) of a change c ∈ C, which we define to be the first change of the same property pc
on the same concept kc by a different author than ac, that is,

ovr(c) = argmind∈next(c):ad 6=ac td,

where next(c) = {d ∈ C | kd = kc, pd = pc, td > tc}. For two authors a, b ∈ A, we exam-
ine the number ovr(a, b) of changes by a that were overridden by b,

ovr(a, b) =

∣∣∣∣ ⋃
c∈C:ac=a

{d ∈ ovr(c) | ad = b}
∣∣∣∣.
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Figure 6.2: Override graph with node sizes proportional to overrides performed by au-
thors and edge weights according to the number of overrides between two
authors.

While this is only a proxy measure for reverts, it sheds light on which authors’ changes
follow up on other authors’ changes. In the spirit of the work by Suh et al. [2007], we
examine the override graph with weighted edges according to ovr between author nodes
(see Figure 6.2).

To identify user roles in the overriding process, we executed the HITS algorithm [Klein-
berg, 1999] in NetworkX [Hagberg et al., 2008]. It yields a hub and an authority score
for each node. In general, the scores are recursively defined such that a hub is a node
that links to many authoritative nodes, while an authoritative node is being linked to
from many hubs. In the case of our override graph where edges point from overriding
to overridden authors, hubs can be interpreted as authors that override others who are
often overridden, which would be the authorities—rather counter-intuitively, given the
name.

By far the highest authority score (0.81) is “achieved” by LB, followed by AR (0.08).
The highest hub scores are assigned to RJ (0.46), JR (0.32), MC (0.05), and FC (0.05).
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Interestingly, this corresponds to their roles in the ontology engineering process: LB is a
high-level managing editor whose changes are partly “refined” by domain experts. This
suggests that the authority and hub scores can be used to identify ontology experts and
central domain experts in a sense similar to the line of work done by Falconer et al.
[2011].
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7 Prediction of changes

We make an attempt to develop models that allow to predict which concepts will be
changed in the future. This can be used

• to judge how stable a concept is (concepts that are likely to be changed can be
considered unstable), and

• as a first step towards implementing recommender systems that suggest potential
edits to users.

7.1 Experimental setup

To learn and evaluate models, we split the dataset of changes in two periods of time;
one set A from the start of the project on November 11, 2009, through April 21, 2011;
and one set B of four weeks from the latter day through July 28, 2011. The task is now
to predict whether concepts will have a change in B given a certain characteristics from
the changes in A.

The features can be seen in Table 7.1. They include features

1. resulting from the change history of a given concept,

2. describing the distribution of changes along time,

3. regarding changes of related concepts (parents and children),

4. characterizing the network properties of a concept in the ontology.

We use randomized 5-fold cross-validation with ten repetitions to evaluate the models
learnt. In a first step, we compare different machine learning algorithms on a 20% sample
of the concepts. The best algorithm is then applied to the whole dataset.
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Table 7.1: Features used for predicting changes.

Change history
number of changes
number of annotations
distinct authors of changes & annotations
distinct authors of changes
distinct authors of annotations
Gini coefficient of author distribution

Distribution along time
days after last change
days before first change
days after median change
days after last annotation
days before first annotation
days after median annotation

Related changes
number of changes of parents
number of annotations of parents
number of changes of children
number of annotations of children

Network properties
number of parents
number of children
depth in network
clustering coefficient
betweenness centrality (directed)
betweenness centrality (undirected)
Page rank
closeness centrality

Table 7.2: Precision/recall scores for different machine learning algorithms on the class
of concepts that did change in the second period of time.

Classifier Precision Recall F1

Naive Bayes 0.1832 0.6749 0.2882
SVM 0.5526 0.0273 0.0520
k-Nearest Neighbor 0.5386 0.4720 0.5031
CN2 0.5895 0.3940 0.4723
Classification Tree 0.5375 0.4941 0.5149

7.2 Results

As the dataset includes more concepts that were not changed in the second period B, it
is more interesting to compare the performance on the class of concepts that did change.
The resulting precision/recall scores on this class can be seen in Table 7.2. They suggest
that Classification Tree performs best. A high recall (with still moderate precision)
is particularly desired as this means that many concepts that will change are actually
identified as such.

Applying Classification Tree to the whole dataset results in the following confusion
matrix:

Prediction
= 0 ≥ 1

Correct
= 0 23177 1169 24346
≥ 1 1450 2394 3844

24627 3563 28190
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This implies that 2394/3844 = 62.3% of the concepts that will be changed can be
identified as such, which is a rather good result given that only 3844/28190 = 13.6%
of all concepts actually change. (Thus, a trivial model would classify all concepts as
not changing.) Still, this result can probably be further improved by adding additional
features and tuning the learning algorithm.

It is also interesting to examine the concrete model that is produced by Classification
Tree, which can be interpreted as a set of nested rules how to classify concepts as
changing or not changing. It suggests that more central concepts in the ontology net-
work GK that have been changed more recently are more likely to be changed in the
future.
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8 iCAT Analytics

In this chapter, we present a tool that allows to systematically investigate crowd-based
processes in knowledge production systems. We give an introduction to its features and
present some insights specifically for ICD-11.

8.1 Underlying dataset

iCAT Analytics can naturally handle data from any ontology that is edited using iCAT,
but is easily extensible to visualize pragmatic aspects related to arbitrary ontology engi-
neering projects, given that data about changes and possibly notes is available. Specifi-
cally, the tool assumes data about

• the ontology characterized by concepts and relations among them. In the case of
ICD-11, which is primarily a taxonomy, we focus on parent-child (“is-a”) relations.
Furthermore, data is required about

• changes and notes to the ontology identified by their respective author, by the
affected concept, its properties (if any) and a timestamp.

In the current stage of ICD-11, we deal with 119,382 changes and 27,181 notes by 68
different authors. The data in iCAT Analytics is updated frequently through automatic
mechanisms, to reflect changes in the underlying process.

8.2 Measuring conflict

Interesting questions related to crowd-based knowledge production systems include whether
areas of conflict in the ontology exist, and if so, whether they can be identified easily.
Or what users get contradicted often, and who frequently corrects others? Since there
is no explicit notion of a revert in a non-version-controlled system such as ICD-11—as
opposed to Wikipedia, for instance—we define an alternative construct of “conflict” for
the purpose of our study object (ICD-11).

In this work, we focus on conflict in property values, leaving out changes to the hierarchy
of the taxonomy. This is reasonable, as 76.8% of all changes affect property values, and
another 10.9% are about creating a class, which is hardly ever reversed. We define three
measures regarding the changes in property values:
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Table 8.1: Examples for the measures of conflict and author contributions on one concept
with several properties.

Property Authors of changes
(sorted by time)

Overrides Edit sessions Distinct
authors

by property

P1 AABBCAAA 3 4 3
P2 BBBBCBB 2 3 2
P3 A 0 1 1

overall measure 5 8 6

• Overrides is the number of times one author edits the same property as another
author did previously.

• Edit sessions is the number of changes grouped by consecutive changes by the
same author on the same property.

• Distinct authors by property counts the number of distinct authors for each prop-
erty and sums over all properties.

See Table 8.1 for an illustration of these measures.

8.3 Browsing networks

The typical way of interacting with iCAT Analytics is through visualizations of weighted
networks, i.e., sets of nodes (with different sizes and possibly colors) and connecting edges
(with different sizes). Networks are laid out using either the twopi (radial) or sfdp (multi-
scale force-based “spring model”) layout of Graphviz [Ellson et al., 2003]. While the
radial layout is better suited for a hierarchical taxonomy like ICD-11, a force-based layout
could be more appropriate for other ontologies and networks.

The user can browse the visual networks by scrolling around using common drag-and-
drop principles, and by zooming in and out using either the mouse wheel or dedicated
zoom buttons. Another button allows to jump to the center of the graph quickly.
The general look-and-feel is meant to resemble common applications such as Google
Maps1.

For large networks with tens of thousands of nodes (the network of concepts, in our
case), it is not useful to display all of them at the same time, especially as in this case,
the focus is still on the attributes of individual nodes (their size and color) and not on
the overall layout of the network. To account for this, iCAT Analytics displays only the
most “important” nodes in a given view, where importance is defined by the node weight

1http://maps.google.com
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Figure 8.1: Titles of nodes are shown when moving the cursor over them. Moreover,
related nodes are highlighted and a short form of their respective title is
shown as well.

function the user chooses. Given the coordinates of the user view’s bounding box, the
displayed part of the network is selected in the following way:

1. The bounding box is divided into 10 × 10 raster boxes. For each box, the node
with the highest weight is selected.

2. All nodes on a directed path from any selected node to the root node are selected,
too.

3. All edges between any two selected nodes are selected.

Step 2 is important to include the context for each node (concept). Without information
about the parents of a concept, it would not be possible for the user to make sense of
individual nodes.

Showing all node titles at the same time would be too much visual clutter. However,
by moving the cursor over nodes, their title can be shown, and related nodes are high-
lighted and a shortened version of their respective title is shown as well (see Figure
8.1).

Clicking on nodes leads to a detail page of the corresponding concept, author, or prop-
erty.
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8.4 Network views

The user can select to display either the network of categories, authors, or proper-
ties.

8.4.1 Categories

The categories network shows the concepts in the ontology and their parent-child rela-
tions. The user can choose one of several node weight functions, which is used to (1)
select the nodes that are displayed (see the previous section), and (2) size them accord-
ingly. A list of all features and the corresponding questions they address can be seen in
Table 8.2.

The color of the nodes reflects their display status, which is assigned by the editors of
the ontology and can be

• red: the concept has not been edited in detail yet;

• yellow: the concept is being worked on, but it is not ready yet; or

• blue: all aspects of the concept have been edited and it is ready for public consid-
eration.2

Nodes that have not been assigned a display status are displayed gray. See Figure 8.2 for a
screenshot showing the categories with their respective number of changes.

An interesting aspect of the visualization with regard to the display status is that it
gives a quick overview of the current production system state, i.e. how display status
is distributed and nested. As can be seen in Figure 8.2, one branch of the ontology
(XII ’Diseases of the skin’ ) is almost entirely blue, meaning that it is quite finished.
Apart from that, blue nodes are rather spread out, suggesting that concepts are often
considered ready without their parent and child concepts being so.

Apart from the overall view of concepts and corresponding features, iCAT Analytics
also allows to focus on individual authors and to view the network of concepts that they
changed. This can be interesting both to the users themselves and to managers to get an
overview of where authors have been active, and what kind of contributions they have
made. Figure 8.3 shows two examples of such networks. Figure 8.3(a) suggests that
it corresponds to a kind of “ontology manager” who mostly makes high-level changes
across all branches of the ontology, whereas 8.3(b) seems to represent a different kind of
user—a “domain expert” [Falconer et al., 2011]—who focuses on one particular part of
the ontology.

2The color green was intentionally avoided by WHO because it would signal full completeness without
further changes, which might not always be the case.
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Figure 8.2: The main view of iCAT Analytics showing the ontology with concept nodes
sized according to their respective number of changes, and edges denoting
parent-child relations.
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(a) Changes in all parts of the ontology classify this author as an “ontology man-
ager”.

(b) Changes in one specific branch suggest this author being a “domain expert”.

Figure 8.3: Network of changed concepts by a single author. Node sizes correspond to
the number of changes by the author, edges denote parent-child relations.
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Table 8.2: Features that can be selected as node weights and to sort concepts, and the
questions they address.

Feature Question addressed

Changes and notes history
Number of changes Where are highly edited areas in the ontology?
Number of notes Where are highly discussed areas in the ontology?
Changes + notes Where are highly active areas in the ontology?
Distinct authors of changes and notes Which concepts attract many different authors?
Distinct authors of changes ”
Distinct authors of notes ”
Authors Gini coefficient Which concepts are edited more “democratically”?

Contrarily, where are areas that are dominated by
many changes by a single author?

Overrides Which concepts cause most dispute?
Edit sessions Where are highly active areas (modulo consecutive

changes of the same property by the same author)?
Distinct authors by property Which concepts have many properties that are edited

by many different authors?

Network features
Number of parents Which concepts have many parents? (This is partic-

ularly interesting in the case of ICD-11, as multiple
parents were not possible in ICD-10 and are therefore
introduced gradually.)

Number of children Which concepts have many children?
Depth in network Which concepts are very deep in the taxonomy?
Betweenness centrality (directed) What are central concepts in the taxonomy?
Betweenness centrality (undirected) ”
Pagerank ”
Closeness centrality ”

8.4.2 Authors

The network of authors shows nodes corresponding to users in the ontology engineering
process in two different variants:

1. Mutually touched categories shows edges between authors weighted according to
the number of concepts that were edited or annotated by both authors, and node
sizes reflect the total number of changes by each author. This gives an overview
of the state of collaboration in a crowd-based knowledge production system.

2. Overrides (see Figure 8.4) weighs edges according to the number of changes by one
author that were overridden by another author; node sizes reflect the fraction of
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Figure 8.4: Part of the override graph of authors
Part of the override graph of authors.

changes by an author that were overridden. This answers both the question who
gets contradicted most often and the question who actually contradicts them.

8.4.3 Properties

It is also possible to view a network of properties in the ontology, where weighted edges
indicate the number of follow-ups on a different property, i.e., the number of changes
of a given property that were followed by a change on a given other property. This
can be further restricted to those follow-ups within a time frame of three hours. See
Figure 8.5 for a portion of the resulting network as it can be browsed in iCAT Analyt-
ics.

This network visualization aims to provide new insights for the creators of the on-
tology and the pragmatic usage of it. Strong connections between properties sug-
gest

• that there is a strong semantic relation between them, and

• that they should probably be placed close together in the user interface for the
editors.
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Figure 8.5: Part of the properties network
Part of the properties network.

8.5 Additional rankings and detail pages

In addition to the network views for categories, authors, and properties, there are
overview pages in iCAT Analytics that show the corresponding entities ranked by the
different features that can also be selected as node weights in the network views. This
allows for quickly finding the most (or least) changed concepts in the knowledge pro-
duction system, the most active users, etc., without having to scan through the whole
network visualization (which is meant to provide an overview, not so much a linear
ranking).

Following the links to concepts or authors in either the network view or the rank-
ings, a detail page is shown. Figure 8.6 shows such a detail page for a concept. It
allows to make conclusions about the history of a concept, answering questions such
as,

• when was it edited the last time?

• How was work on the concept distributed over time?

• How was work distributed among authors?
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Figure 8.6: Category detail page
Category detail page showing a timeline of the number of changes and notes on the

concept, a chart depicting the contributions of different authors, and a list of parents
and children of the concept. Further down (not visible in this screenshot) would be a

detailed list of all changes and notes.

8.6 Implementation details

iCAT Analytics was largely implemented in Python3 using the Django Web framework4.
For network calculations, NetworkX [Hagberg et al., 2008] is used, employing Graphviz
[Ellson et al., 2003] for computing graph layouts. The data from iCAT is exported using
the Protégé5 API and stored in a MySQL database.

On the client side, JavaScript with AJAX (“Asynchronous JavaScript and XML”) is
used to dynamically load and display parts of the networks. This part is maintained in
a separate open-source project6.

3http://python.org
4http://djangoproject.com
5http://protege.stanford.edu
6http://github.com/poeschko/nexp-js
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9 Discussion of results

In the following, we will briefly reflect on the motivating research questions of this paper,
and discuss them in the light of our findings.

Question 1 “Distribution of work”: We found that work on ICD-11 is distributed very
unequally, both among users, among TAGs (user groups), and inside them. Apparently,
the tool to collaborate on the new ontology is not used by all participating authors
directly, but most changes are entered into the system by a handful of managing editors.
This distribution indicates that different people take on different roles, which has to be
considered in future stages of the project. In the future, many more people will be able
to make notes and requests for further changes; getting more people involved in directly
working with iCAT will be inevitable to handle all those requests.

Question 2 “Areas of neglect”: Our results show that large areas of the ontology have
been ignored in the editing process, both in terms of particular concepts in the hierarchy
as well as in terms of properties that were defined by ontology engineers. However, there
is no strong correlation between the depth in the ontology of a concept and its number
of changes.

Question 3 “Stabilization”: After a few peaks of activity, both in terms of the number of
changes and their actual size, the ontology seems to gradually stabilize. Nevertheless, we
must be careful in interpreting our proxy measures of semantic stability. Further work is
required before presenting a stable and mature enough version to a general public when
starting the ICD-11 beta phase [Kraut et al., 2006].

Question 4 “Interaction”: One interesting hypothesis emerging from this work is that
changes tend to propagate along taxonomic relations, and more specifically, users of ICD-
11 tend to work top-down rather than bottom-up when traversing the ontology. In the
context of ICD-11, developers might consider this trend when developing recommenders
for users on what to edit next after a particular change, for instance. In the context of
collaborative ontology engineering in general, further work is required to assess whether
this phenomenon is specific to our case, or whether it applies to other projects as well.
In addition, we applied the HITS algorithm to identify users whose changes tend to be
overridden by others, and users who tend to override others. This measure was not meant
to judge the quality of contributors, but to generate information about their roles in the
process, which can be used as a starting point for the identification of collaborating and
conflicting groups. We believe that this kind of analysis will be particularly important
when the system will be opened to a larger audience.
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10 Conclusions

In this paper, we presented a formal model for changes to collaboratively constructed
ontologies and used it to define several measures to gain insights into the evolution of
ontologies, specifically the distribution, stabilization, and propagation of changes. We
conducted our analysis on data from a large collaborative ontology engineering project
(ICD-11), and found preliminary evidence that in ICD-11 (i) work is distributed un-
equally, (ii) some areas of the ontology are neglected, (iii) concepts in the ontology
gradually stabilize, and (iv) changes predominately propagate through the ontology in
a top-down manner.

Furthermore, we presented a novel web-based tool, iCAT Analytics, to interactively ex-
plore pragmatic aspects of crowd-based knowledge production systems. Our tool focuses
on analyzing changes and notes that were made during the production process. The way
this data is presented visually allows to get a quick overview of what happens where in
the ontology. Particularly, it indicates

• which areas in the ontology have been actively used and which areas have been
neglected,

• which concepts are edited more “democratically” than others,

• how work is distributed among authors,

• which areas are disputed,

• what authors collaborate with each other and to what extend they contradict each
other,

• how properties in the ontology are used and in which order.

Examining these questions is already interesting for the limited collaboration that has
happened so far in the process of ICD-11, but it will be even more useful to monitor crowd
behavior and -processes continuously when the system is open to a much broader public.
Furthermore, iCAT Analytics can potentially be used in other knowledge production
contexts that focus on ontologies as a collective product.

There are several extensions to the tool that would be interesting to pursue:

1. Providing a way to compare different “snapshots” of the ontology over time could
be useful to monitor recent changes.
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2. Integrating more aspects “rewarding” authors for their contributions could encour-
age broader participation.

3. A deeper integration into iCAT itself (or other ontology engineering tools) would
be desirable, especially in combination with 2.

Future work could apply the methods used and presented in this paper to other ontology
projects that have usage and change logs available in order to get a better understanding
of collaborative ontology engineering processes. It would be interesting to explore how
our results compare to other projects, and which observations are domain independent
vs. domain dependent. The eventual goal could be to develop theoretical and practical
models which allow to assess the overall maturity of ontologies by studying their history
and evolution.
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