
MARSHALL PLAN
SCHOLARSHIP

Report

prepared for the
Austrian Marshall Plan Foundation

submitted by:
Peter Ott

Supervisor UMD: Prof. Shuvra S. Bhattacharyya, Ph.D.
Will Plishker, Ph.D.

Supervisor FHS: FH-Prof. DI Dr. Gerhard Jöchtl

Salzburg, September 2011

Acknowledgement

First and foremost, I would like to thank Professor Shuvra Bhattacharyya for the great
opportunity to be in his research group and his guidance throughout the course of my
research. I would like to thank Dr. William Plishker for his thoughtful advices.

I am very grateful towards the Austrian Marshall Plan Foundation and University
of Maryland for making this overwhelming experience possible.

I would like to give a special thanks to FH-Prof. Mag.a Dr.in Gabriele Abermann
and Mag.a Teresa Rieger, MPA for their support with the application, as well as my
advisor FH-Prof. DI Dr. Gerhard Jöchtl for his assistance.

I would like to thank Akta, LaShanna, Vicky and Kristin for taking good care of
me, bringing me for lunch and showing me how to behave like an American. Further-
more, I would like to thank Mary for letting me sublet her room.

Special thanks goes to my awesome roommate Sarah, her family, her boyfriend Mike,
Mike’s family, especially Robert and Christine, as well as Mike’s best friend Jimmy.
You guys showed me an unforgettable time.

ii

Details

First Name, Surname: Peter Ott
University: University of Maryland
Department: Department of Electrical and Computer Engineering (ECE)
Research Group: DSPCAD
Supervisor UMD: Prof. Shuvra S. Bhattacharyya, Ph.D.

Will Plishker, Ph.D.
Supervisor FHS: FH-Prof. DI Dr. Gerhard Jöchtl

Keywords

1st Keyword: data conversion
2nd Keyword: data format description
3rd Keyword: data generation

Abstract

This report describes the conception and prototypical implementation of a graphical
web-based data conversion toolkit. A generic data model allows storing values of
arbitrary types, including inter-data dependencies and meta information. Furthermore,
an Extensible Markup Language (XML) based model is provided to describe data
formats. It enables toolkit components to convert data represented in existing formats
both from and to our proposed data model. It is shown that the XML model is Turing
complete. In addition, the components of a prototypical implementation are described.
It comprises a validator, a data converter and a data generator. In combination with
a data editor, parts of our prototypical implementation are employed in a use-case
scenario for an industrial application.

iii

Contents

Acknowledgement ii

Details iii

Keywords iii

Abstract iii

Table of Contents iv

List of Figures vi

List of Tables vii

1 Introduction 1

1.1 Related work . 2

2 Universal Data Conversion and Generation 3

2.1 The XML Model . 4

2.2 Turing Completeness of the XML Model 6

2.3 The Generic Data Model . 9

2.4 Implementation . 15

2.4.1 Use-case . 17

2.4.2 Performance . 18

2.4.3 Optimization approaches . 18

3 Conclusion 19

3.1 Findings . 20

3.2 Future work . 20

iv

Bibliography 21

List of Abbreviations 23

Appendix 24

A Use-Case Data Template 25

v

List of Figures

2.1 Test Framework overview . 3

2.2 Conceptual data template user interface 5

2.3 Example block configuration . 6

2.4 XML model based program illustrated as a Turing machine 7

2.5 Binary tree representation . 10

2.6 Data model conversion scheme . 11

2.7 Simplified ER model of the generic data model. 14

2.8 Web-based transformation language generator 16

2.9 Validation of a data template . 16

2.10 Data converter user interface . 17

vi

List of Tables

2.1 Sample data set for use-case scenario 17

vii

1

Introduction

Whenever huge quantities of information from industrial applications need to be stored,

transformation and manipulation of data is a complex issue. Vast amount of data com-

bined with proprietary data formats, which are generated from different data sources,

pose a great challenge for data handling. To address this issue, this report presents

a fully integrated solution which enables storage and transformation of arbitrary data

formats.

The presented solution is developed as part of the Simulation and Test Automation

Project at the Industrial Information Technology research group at the Salzburg Uni-

versity of Applied Sciences, Salzburg, Austria. It targets the need of generic test

management system, which covers the entire product life-cycle. Available solutions on

the market focus on specific task and cover parts of the test process chain. These

gaps within the test chain slow down the entire process. The project deals with a Test

Framework, which offers a modular approach in order to adapt to the companies in-

frastructure. It comprises different solutions to build a consistent test chain, providing

a single graphical user interface in order to omit the shift between the programs.

The knowledge about data flow processing and the description of data flow formats at

the DSPCAD research group at University of Maryland, College Park, MD, USA helps

to improve the innovative approach.

1

1. Introduction 2

1.1 Related work

Similar to the generic data format conversion approach presented within this report,

a transformation language has been realized in XSLT by the W3C [10]. While both

allow the conversion of arbitrarily complex data formats, XSLT requires a different

data format specification for each transformation direction (input and output). Fur-

thermore, the XSLT implementation does not specify how storage inside the database

is handled, while storage structures of the the presented approach are explicitly defined

by a generic data model. Therefore, the complexity of the transformations process is

reduced to the definition of a XML Model, which is presented in 2.1. Further transfor-

mation languages like biXid shown in [4], provide similar functionality, whereas biXid

was designed for the transformation of XML formats only. The same restrictions apply

to XMLTrans proposed in [12].

Besides that, many proprietary tools for data conversion exist, both open and closed

source. Examples of these kind are XML Convert1, Altova MapForce2 or ETL Suite3,

which all offer data integration solutions for business applications. While the first one

offers XML as the underlying data description form, it lacks filter options, decision-

based integration and a graphical user interface. The latter ones rely on direct conver-

sion approaches, mapping the input directly to the output. While this approach might

be suitable for one-time data migration scenarios, for continuous data integration a

unified data base scheme has to be provided in order to allow the storage of all possible

data structures within the company. The extension of an additional data format might

result in a change of the underlying business data base.

Most of these tools are capable of converting only between fixed data formats while the

presented approach enables users to specify their own formats for input and output.

This eliminates the design of a data base scheme by utilizing a generic data model

presented in 2.3. Moreover, the transformation language specified by an XML model

only requires information about the desired input or output format, respectively. A

web-based graphical editor presented in section 2.1 facilitates the usage.

1http://www.unidex.com/xflat.htm
2http://www.altova.com/mapforce.html
3http://www.adeptia.com/products/data_transformation.html

http://www.unidex.com/xflat.htm
http://www.altova.com/mapforce.html
http://www.adeptia.com/products/data_transformation.html

2

Universal Data Conversion and

Generation

The graphical conversion approach is based on two essential models: an Extensible

Markup Language (XML) model serving as the transformation language and a generic

data model data base scheme. The latter allows storage of arbitrary data formats,

including meta information and interdependencies. The XML model specifies data

formats and serves as the transformation language from and to the original data rep-

resentations. In addition, a universal data converter and a generator are implemented

in order to process arbitrary data both from and to the generic data model using the

XML format specification. Fig. 2.1 shows the complete conversion approach.

Universal

data

converter

Universal

data

generator

Data storage

Data
Data

Data DATA

XML

model

DATA

DATA

Figure 2.1: Overview of the data conversion and generation framework.

Based on the XML model, a program for transformation only needs to be specified

once for a particular data format. The same model will be used for both conversion

and generation. Data available in different formats is converted to the data model

3

2. Universal Data Conversion and Generation 4

representation using the data converter which transforms data based on a program

specified by the XML model. While the data editor allows for further manipulation

of the stored data, the data generator enables export into arbitrary formats. In com-

bination with the relational data base utilizing the generic data model, vast amount

of data can be processed online directly from the source to the desired output format.

Hence, the data conversion tool not only suits one-time data migration purposes, but

also allows online processing within heterogeneous data infrastructures.

2.1 The XML Model

In order to specify the format of data to be parsed or generated, an XML model is

developed, implemented in form of an XML schema [9] whose complexity is sufficient

to model any computer program. By design, programs specified by the model, i.e. data

format descriptions, are capable of both parsing and generating data. As a result, only

one description of the data format is required for specification and allows both reading

and writing data of this format.

For reading a file of a particular format, the data converter parses the file according to

the program specified by the XML model, storing all relevant data in the data base,

which can be accessed by the program. Similarly, the data generator reads data from

the data base and writes the output to a file according to the format specification.

As described below, both the data converter and the data generator rely on the same

programs which are specified by the XML model.

The XML model describes a set of blocks and block groups which form the core part

of the XML model. The functionality of a block is specified by its type and additional

parameters, including means to access the data base based on the conceptual generic

data model described in section 2.3. Depending on the context (parsing or generation),

blocks may behave differently. E.g., when used in a reading context, a certain block

will parse a constant character X from an input file. When used in a writing context,

the same block will generate a constant character X in an output file.

The default block types which have been specified allow for reading and writing of

2. Universal Data Conversion and Generation 5

constants as well as default data types supported by the data model. In order to

ensure the Turing completeness of the specified programs, so called register blocks

are introduced which can temporarily store values of a predefined type which may

be altered by change operations. For permanent storage, the data base connection

available for the data of each block can be used, relying on a physical data base model

of our proposed data model.

In addition to the blocks which are processed one after another, various control flow

operations are available. Conditional execution can be modelled by if sections which

allow for the values of blocks to be compared. This includes data base values, constants

and data input and output. Similar to any programming language, the true or false

branch is processed depending on the result of the comparison. Loops can be defined by

for sections which include a condition for termination similar to if sections as well as

an iterate section which is executed repeatedly until the termination condition occurs.

Since the definition of a data format description via the XML model requires prior

knowledge, a visual web-based editor has been implemented as depicted in Fig. 2.2.

data base

EOF

float

Toolbox
Type blocks

Flow blocks

VARIABLE

STATIC

Mapping

LOOP

CONDITION

STATIC

<for>
 <condition operator="eof" />
 <iterate>
 <block name="Temperature" type="variable">
 <datasource>
 <value type="float" />
 <parent ref="Temperature" />
 </datasource>
 </block>
 </iterate>
</for>

1
2
3
4
5
6
7
8
9

10
11

XML

0 Errors 0 Warnings 0 Messages

Error List

Figure 2.2: Conceptual graphical user interface for the data template creation.

The block concept is directly reflected in the graphical component of the editor. For

each block, the required parameters are displayed graphically. Graphical sequencing,

nesting and grouping of blocks allow easy prototyping of the XML model only requiring

minor programming skills. On the client side, the data format description is visually

constructed, while the XML model representation is generated automatically on the

server side, using asynchronous web requests [11]. A post model construction validator

2. Universal Data Conversion and Generation 6

ensures full XML model compliance. Validation against our XML schema definition

is performed, followed by a parser checking whether additional constraints are met.

E.g., such constraints are the string representation of the set of data types allowed by

default by the model (e.g. int32 is supported, while int128 is not).

The server components are implemented with Microsoft ASP.NET using C# [5]. There-

fore, the services are hosted as a web application on an IIS 7 webserver. Javascript on

the client-side provides user interface interaction.

The user specifies a data format’s structure either by using graphical blocks as depicted

in Fig. 2.3 or by defining it directly using our XML model. As soon as the structure

has been defined, the data transformation can be repeated for all data of the same

format.

data base

EOF

float

, char

for block with condition

static/variable block

operator/values

Figure 2.3: Graphical block and control flow representation for a given data format.

2.2 Turing Completeness of the XML Model

The XML model allows specifying both input and output formats with one single de-

scription. When only considering it as the specification of an input format, it describes

a program or, more abstract, a Turing machine [2] with two bands – one for reading

input from an arbitrary file and one for writing intermediate results to a temporary

storage or a data base. This includes space for a stack-like structure for the parameters

of operations similar to function calls. The latter is included solely for convenience and

may also be modelled by a third band of the Turing machine as depicted in Fig. 2.4.

The two (or three) bands are of finite length as they are limited by the number of bytes

in the input file and the memory available for storing intermediate results, respectively.

2. Universal Data Conversion and Generation 7

2 5 , 2 4 .

01..

..00

Data converter

Temp. storage / data base “Stack“

Input file

3 . EOF0

Program specified

by the XML model

Figure 2.4: XML model based program illustrated as a Turing machine

The alphabet of the input band is the set of UTF-8 characters [14] for text files or single

bits or bytes in the case of binary files. While one alphabet would be sufficient, the

second one is provided for the sake of convenience. Differently, the band used for

temporary storage uses an alphabet which is able to represent all available data types

in binary form, i.e. {0,1}* when omitting the limitation of a finite amount of available

memory used for representation.

To show the Turing completeness of the XML model, it is sufficient to proof that

any partial µ-recursive function (which is equivalent to a Turing machine in terms of

computable functions [6]), can be computed by a program specified by the model. This

is demonstrated in the subsequent paragraphs by showing that the building blocks

of partial µ-recursive functions, i.e. three functions and three operators [7], can be

represented by the XML model. The blocks in the XML model are able to store data

of different data types, such as integers, floats and many more. However, partial µ-

recursive functions operate on natural numbers which can be represented using uint64

data types for a limited range or using a custom data type of arbitrary size which stores

values only limited by the size of the available memory.

Considering partial µ-recursive functions, the constant function can be easily repre-

sented by a register block with the specified value. It can be referred to in other parts

of the program. E.g., to model the successor function, a change block will modify

2. Universal Data Conversion and Generation 8

the value of the register block by using the increment operator. Other operators are

allowed by the XML model for convenience, although they are not required for Turing

completeness.

Reading data from the input band, i.e. the input file being processed, the projection

function of the outermost function call can be modeled as a read operation from the

input band with a constant or variable offset, specified by the type of the corresponding

block. Although the read head of the input band can only be advanced but not reversed,

it is possible to save any information from the input band into register blocks and

retrieve it from them at a later stage. The projection function in general can be

modeled by a block group which is invoked by a block group reference. The actual

parameters of the function are passed using a param type block indicating the number

of arguments and the value of each parameter which are pushed onto a stack [13]. As

described earlier, this corresponds to the third band of the Turing machine. Function

evaluation relies on the return values of the appropriate block group references, passed

by result type blocks.

Composition can be modeled by repeated invocation of block group references, i.e. a

block group reference within a block group reference. Passing parameters is performed

in the same way as described above. Similarly, primitive recursion with h(y, x1, x2, ..., xn)

being f(x1, x2, ..., xn) for y = 0 and g(y, h(x1, x2, ..., xn), x1, x2, ..., xn) otherwise may

be represented by a block group consisting of an if condition comparing the first pa-

rameter (y) to zero. Depending on the result, either a sequence of blocks representing

function f (or a block group reference to it) is evaluated, or function h is evaluated

repeatedly through recursion and composed with g.

The minimization operator µ can be implemented using a for loop. The for loop

uses two register blocks; one for the loop counter and another one for the exit flag,

respectively. The exit flag is a Boolean register block which is initialized to false.

The for loop iterates until a condition changes the value of the exit flag to true. The

minimization operator µ is implemented by using the loop counter as an input argument

for the function to be minimized. The loop counter is incremented in each iteration of

the loop and the function is evaluated. If the result of the function is zero the minimum

of the function has been found.

2. Universal Data Conversion and Generation 9

The comparison to zero can be implemented using an equal operator within an if

section, comparing the returned value to the constant zero (specified as described

above for constant functions in general). In the case of a successful comparison, a

change block switches the value of the exit flag to true. By doing so, the program

flow exits the for loop at the point at which the function is zero with the loop counter

as its argument. This leaves the return value of the minimization operator (i.e., the

argument of the function at its minimum) in the loop counter register block for further

evaluation, e.g. for a result block to use it as the return value of a block group.

Since the XML model allows the specification of Turing complete programs, all input

files which can be interpreted by computer programs can be parsed by a program which

is specified by the proposed XML model. Turing machine equivalence also holds for

the generation of files, with the only difference being that the input and output band

are switched. Note that the input band in the data generation scenario may refer to

the data base and the data stored therein, specifying data access using appropriate

blocks. The additional band for function call parameters is optional and remains for

convenience, although it could be included into the second band as described above.

2.3 The Generic Data Model

In order to allow the representation of all existing and future data formats, a generic

data model is presented in the following. It allows storing arbitrarily complex data

types in binary form, including meta data which simplifies the conversion from and to

the format specified by the model. Due to the meta data being stored in addition to

the actual data, it is possible to represent encrypted and compressed data as well as

binary values of arbitrary size and endianness. The binary values represent the actual

data which is associated with a predefined (e.g. int16, int32, float according to IEEE

754 [3]) or a custom data type.

To represent list or tree structures, dependencies between single elements can be mod-

elled. Other arbitrary forms of dependencies can be modelled based on dependencies

between single elements. To represent a list, the data model is utilizing a series of

dependencies in form of a binary tree. The tree (depicted in Fig. 2.5) is constructed

2. Universal Data Conversion and Generation 10

in such a way, that one child node is containing an empty element (NULL), while

the other child node is containing a value and a sub-tree consisting of all subsequent

elements.

23.5°C 24.0°C 24.5°C

(–) (–)

(–)

(–)

Figure 2.5: Binary tree representation of a list of values.

In addition, association of the data with physical SI [1] units allows for a description

of the stored values and automated data conversion, which can be done implicitly up

to a certain degree.

Consider the following example: the SI units for meters and seconds are stored by

default in the unit table (in a data base derived from the ER model). To specify

velocity in meters per second as a new unit, meters are used as nominator and seconds

are used as denominator, respectively, both with a cardinality of one and no additional

factors.

In a similar way, to represent acceleration in meters per second squared meters are used

in the nominator with a cardinality of one and seconds are used in the denominator with

a cardinality of two. This approach to represent the units of data values also allows for

implicit conversion. E.g., to convert from meters per second to kilometres per hour,

kilometres per hour are specified as a new unit with the meters per second unit in the

nominator with a factor of 3.6 and an offset of zero. This is all the information required

for the conversion between data values with those two units.

In addition, each unit can be combined with a prefix, e.g. micro, Mega etc., which

is specified by a prefix symbol and a corresponding factor. The prefix can then be

associated with a unit. The combination of both can then again be used to derive new

units in the same fashion as described above. Consider the example of a unit specifying

cable cross-sections in square millimetres. Creating a milli prefix with a factor of 0.001

and combining it to a new unit mm (for millimetres), the unit mm squared can be

derived by using mm with a cardinality of two as nominator.

2. Universal Data Conversion and Generation 11

As our proposed data model also allows storing both absolute and relative measure-

ment errors for each data value, it is predestined to represent data sets acquired from

measurements of industrial processes, e.g. captured temperature values or voltages.

In addition, the data model is able to store whether a single data value is valid and

if it specifies an absolute or a relative value. Furthermore, a date and time stamp for

each measurement, as well as the sampling interval for a series of measurements can

be stored and used for calculating derivatives and accumulations, e.g., the amount of

water flowing through a tube in a specified time interval.

To illustrate the process of data storage the following simple example is considered: a

comma separated list of temperature values in degrees centigrade is available in form

of a plain text file as depicted in Fig. 2.6 (a). In order to read the temperature values

into the data base, an XML model for the given file format is specified and used by

the data converter. The input file format is specified by an description language using

the XML model presented in section 2.1 and called data template in the following.

23.5,24.0,24.5<EOF>

id parent id

– (NULL)id of 23.5

id of 23.5 id of 24.0

id of 24.0 id of 24.5

data type

float

float

float

binary data

41BC0000

41C00000

41C40000

unit

17 (°C)

17 (°C)

17 (°C)

(a)

(b)

(c)

<document>

 <temperature>296.65</temperature>

 <temperature>297.15</temperature>

 <temperature>297.65</temperature>

</document>

Figure 2.6: Data model representations of two example formats.

The universal data converter enables the transformation of acquired data sets into the

generic data model. It uses a parser which is specified graphically or by programming

based on the underlying XML model. The data which is processed by the program

is then stored in a database which is based on the generic data model for further

2. Universal Data Conversion and Generation 12

processing and storage. This allows for both modification and export into other formats

using the data generator.

Using a data template consisting of a variable type block referring to a float type data

base value and a static block representing the constant comma (","), allows separating

the values in the input file. These two blocks are enclosed by a for loop which iterates

until the end of the file (eof) is reached. The variable type block parses the float

values and uses the value from the last iteration as the parent element for the value

which is read in the current iteration (requiring the data converter to save this value

temporarily). Thus, it stores a list in form of a tree as described above. Note, that this

example does not consider platform dependent representations of floating point values

as this would exceed the scope of this example. Fig. 2.6 (b) shows a representation

of temperature values in the proposed data model, including both the data values

(represented as binary values according to IEEE754, as hexadecimal values) and SI

unit meta data.

When the data converter and an XML model is applied to an arbitrary file containing

temperature values which are formatted as described above as input, temperature

values of this file will be read into the data base. Since the XML model allows describing

the SI unit of each value, the information that all temperature values are stored in

degrees centigrade in the data base is included as meta information. The conversion

of units, e.g., degrees centigrade to Kelvin, is done implicitly. The basic SI units are

stored by default in the database, their arithmetic relation to derive units is in this

case specified by an offset (273.15) and a multiplicative factor (1) and used to convert

one unit into the other.

The temperature values which are stored in the data base can now be transformed into

any data format and any unit representation using the data generator and a corre-

sponding XML specification containing the desired file format and unit specification.

Suppose, the desired output is an XML file with temperature values in Kelvin. The

output of the given example is shown in Fig. 2.6 (c). The corresponding data tem-

plate requires an XML model specifying a document start and end tag using static

type blocks and a for loop which iterates until there are no child elements left, i.e.,

the content of the element is NULL. Within the for loop, there are two static type

2. Universal Data Conversion and Generation 13

blocks for the temperature start and end tags, respectively, as well as a variable block

as described in the input example above. The variable block specifies a list structure

of temperature values of type float.

In contrast to the previous example, the SI unit of the block data is set to Kelvin for

which an implicit conversion from degrees centigrade exists as described above. Given

this XML model, the data generator can write an XML style list of temperature values

in Kelvin, only requiring the first temperature value from the data base as a starting

point. This can be specified by using the data generator GUI depicted in Fig. 2.2.

The specification of the two formats can also be used to reverse the conversion process,

i.e. reading an XML style list of temperature values in Kelvin and writing them as

a comma separated list of values in degrees centigrade to a plain text file as depicted

in Fig. 2.6. Aside from text and XML files, arbitrarily complex input and output

data formats can be processed, including post script files, graphics and many more.

Since a single definition of a format through an XML model is being used for both

input and output, respectively, the specification process is greatly simplified resulting

in significant savings of time and resources.

During the interpretation of the XML file which specifies a data format, the file’s

elements, i.e. blocks, are represented in form of a tree consisting of their "child" blocks

and their properties. Each node is then processed sequentially by processing its child

nodes recursively, thereby parsing or generating files, depending on the input direction.

For each type of node (static block, for loop etc.), the software implements the required

actions (e.g. reading from or writing to the data base). It continues processing the next

node as specified by the data format, e.g. by jumping to another block group reference’s

node. If all required nodes have been processed and all input/output operations are

finished, the parsing or generating process is complete.

2. Universal Data Conversion and Generation 14

The specification of the two formats can also be used to reverse the conversion process,

i.e. reading an XML style list of temperature values in Kelvin and writing them as

a comma separated list of values in degrees centigrade to a plain text file as depicted

in Fig. 2.6. Aside from text and XML files, arbitrarily complex input and output

data formats can be processed, including post script files, graphics and many more.

Since a single definition of a format through an XML model is being used for both

input and output, respectively, the specification process is greatly simplified resulting

in significant savings of time and resources.

Data which is stored within the presented data model can be grouped, augmented

and changed in an intuitive way. To facilitate this, a graphical component for data

manipulation is developed, which endows a broad set of statistical functions to enhance

stored data and generate new data sets. E.g., this can be used to supply test data.

Unwanted or incomplete data can easily be enriched, changed or padded.

Fig. 2.7 depicts a simplified ER model of the generic data model. Attributes de-

noted with <Removed> are omitted for the sake of readability, specifying additional

properties of the corresponding entities. The central data value entity stores a binary

representation of a value, the other entities supply meta information.

Parent data value

Data value
DID
Data
Timestamp
Duration
Relative
Valid

<pi> Serial
Variable binary
Date & Time
Time
Boolean
Boolean

<M>

<M>

DID <pi>

Unit
UID
Symbol
Description
SI unit

<pi> Serial
Text
Text
Boolean

<M>
<M>

UID <pi>

Data value collection
DCID
Name
Description

<pi> Serial
Text
Text

<M>

DCID <pi>

Data type
DTID
Name
Constant size
Size

<pi> Serial
Text
Boolean
Integer

<M>
<M>
<M>

DTID
...

<pi>

Encoding
EID
Name
Endianness
<Removed>

<pi> Serial
Text
Boolean
Variable binary

<M>

<M>

EID <pi>

Compression
CID
Name
<Removed>

<pi> Serial
Text
Variable binary

<M>

CID <pi>

Prefix
PID
Symbol
Description
Factor
Offset

<pi> Serial
Text
Text
Float
Float

<M>
<M>

<M>

PID <pi>

Subunits denominator
Cardinality
Offset
Factor
...

Integer
Float
Float

<M>

Subunit nominator
Cardinality
Offset
Factor

Integer
Float
Float

<M>Data description
DDID
Short description
Long description

<pi> Serial
Text
Text

<M>
<M>

DDID <pi>

Figure 2.7: Simplified ER model of the generic data model.

2. Universal Data Conversion and Generation 15

2.4 Implementation

A prototypical implementation of the web-based graphical data converter was accom-

plished using state-of-the-art technology.

The web application is based on the Microsoft ASP.NET technology hosted on an

Internet Information Services webserver. The ASP.NET technology allows the creation

of dynamic web pages, using any .NET programming language on the server-side and

JavaScript (JS) on the client-side. For the server-side C# is chosen.

The repository for the acquired data sets utilizes a relational Data Base Management

System (DBMS). In this case a Microsoft SQL Server 2008 R2 is used. The the

connection to the DBMS is established by using the Microsoft Language Integrated

Query (LINQ) technology. It allows data base queries using native C# syntax. Fur-

thermore, C# allows the native serialization of object instances to a binary format

in the data base. Hence, no additional data transformation is required to store the

data. An additional security enhancement is given, as the serialized objects need the

corresponding class definition to deserialize them.

The graphical user interface presented in section 2.1 is based on the ExtJS1 framework.

It offers a comprehensive toolset of graphical user controls for web applications. It

features rapid-prototyping capability and cross-browser support. Therefore, the ExtJS

framework facilitates the graphical user interface design. A better integration of the

ExtJS framework into the ASP.NET environment is given by the Ext.NET2 framework,

which provides the ExtJS functionality as ASP.NET markup.

Fig. 2.8 depicts the prototypical graphical user interface of the data template editor.

On the left side within the toolbox are three example blocks given, to model a data

format. Further blocks should follow. The blocks can be dragged into the body area of

the transformation language generator. Configurations can be made according to the

block type. The configuration is context sensitive to the previously made configurations

to prevent possible model errors and warnings. An XML view is available, which is not

illustrated within Fig. 2.8.
1http://www.sencha.com/products/extjs
2http://www.ext.net

http://www.sencha.com/products/extjs
http://www.ext.net

2. Universal Data Conversion and Generation 16

Figure 2.8: Graphical user interface of the web-based data template editor.

A data model validator is depicted in Fig. 2.9 to verify the compliance of the data

template against the XML model. The validator is realized as an asynchronous web

request. The XML data of the data template is posted to the service and processed on

the server-side. The result are three different categories of messages. The first provides

additional processing information and design improvements. The second category com-

prise warnings which may cause minor drawbacks or design flaws. The third category

covers errors, which causes unstable behaviour of the data converter and generator.

Hence, data templates with errors can not be used for the conversion process.

Figure 2.9: Graphical user interface of the validator within the data template editor.

The graphical user interface of the data conversion process depicted in Fig. 2.10 is

utilizing HTML5 features to give the user a desktop application like experience. It

is possible to drag files onto the web application user interface. This facilitates the

2. Universal Data Conversion and Generation 17

uploading and processing of data files. For non-HTML5 compliant browsers, a fall-

back mechanism is implemented, which checks the browser of the supported upload

types. Available upload mechanisms in order of best experience are HTML5, Flash,

Silverlight and standard HTML file upload. Status updates for each individual task of

the current processing step is pushed to the client user interface using Reverse Ajax

technology. This omits the need of page refreshes.

Figure 2.10: Graphical user interface of the data converter.

2.4.1 Use-case

An industrial use-case has been designed for the data conversion process in cooperation

with a company, specialized in manufacturing semi-conductors. The use-case describes

the conversion of test results in plain text format and the representation of the test

results as a report. The tabular organization of the test results within the plain text

format consists of seven columns with different data types. Table 2.4.1 depicts an

anonymized sample data set.

ID Date Item ItemId XCoord YCoord Status
1 2011-07-01, 08:00:00 Foo1 10 000 0F 0F PASS
2 2011-07-01, 08:00:01 Foo1 10 000 0A 0F FAIL
...

Table 2.1: Sample data set for use-case scenario

2. Universal Data Conversion and Generation 18

A corresponding data template can be found in listing A.1.

2.4.2 Performance

The use-case was reviewed towards performance aspects. A data set of 2000 tuples

with seven values each, are converted and stored within the generic data base. The

data was processed on a Sun X2200 server with two dual-core AMD Opteron processors

and 24GB RAM.

A cold start scenario results in a processing time of 1:30 minutes for the sample data

set. The best case using a warm start was registered with 47.13 seconds. These results

are based on iterations of 20 times. The data base commit commands of the LINQ

technology (System.Data.Linq.DataContext.SubmitChanges()) take up to 60% - 70%

of time consumed by the entire program. The conversion process itself takes about

23% - 28% of the entire processing time. Averagely it takes about 23 seconds for the

example data set, which means about 11.5ms per tuple.

2.4.3 Optimization approaches

The first optimization step would be an evaluation to replace the LINQ technology

with the traditional ADO.NET technology. Another approach would be to accumulate

write tasks and perform a batch commit.

The conversion process can be enhanced by optimizing the data converter for parallel

operation. Right now, the data converter sequentially converts each data item and

builds up the tree structure within the generic data base. Since the tree structure is

specified by the data template, parallel tasks can be identified prior to the conversion.

The data converter also treats each data item individually without any knowledge

about predecessor and successor elements. This poses a major performance drawback

for tabular structures.

3

Conclusion

This paper describes the prototypical, graphical implementation of a generic data con-

verter and generator. It enables the conversion and storage of data from and to ar-

bitrary data formats. The XML model specifies data formats for the transformation

in both directions, i.e., reading and writing, respectively. Since this XML model is

Turing-complete, any format parsed or generated by a computer program can be pro-

cessed. In addition, the parsed data can be stored in a data base whose structure is

defined by the proposed generic data model. Data which is stored within the generic

data model can be grouped, augmented and changed in an intuitive way. To facilitate

this, a graphical component for data manipulation has been developed. Incomplete

stored data can easily be enriched, changed and padded.

The parts required to perform the data conversion and storage process have been pro-

totypically implemented. A web-based approach gurantees platform independency, as

well as minimum requirements on the client-side. The presented approach enables the

use and conversion of distinct and proprietary formats as well as persistent and sus-

tainable storage of the data contained therein. It greatly simplifies the transformation

of arbitrary data formats.

19

3. Conclusion 20

3.1 Findings

The conversion process has major performance issues as described briefly in section

2.4.2. Especially the data base commits for each data value consumes most of the pro-

cessing time. Therefore the LINQ technology may not be suitable for this application.

An evaluation for a better technology is suggested. Moreover the conversion process

may be enhanced by parallelism and intelligent algorithms to use synergy effects within

tabular data formats.

3.2 Future work

The data conversion process can somehow be seen as a data flow. The actor is the

data converter itself, which needs some kind of input. Once enough input tokens

are available, the data converter fires the conversion process. The system therefore

schedules the conversion task. An improvement of the scheduling approach might

improve the overall performance. The stream-based function approach described in

[8], enables the actor to choose from a pool of suitable functions for the next step,

depending on the state of the actor. This kind of choosing the best method is similar

to the human perception and pattern recognition. It might enable the data converter

to have artificial intelligence. Hence, less interaction with the user would be required

and the specification of a data format might be obsolete.

Bibliography

[1] Bureau International des Poids et Mesures: The International System of Units

(SI) 8th edition, 2006.

[2] Herken, Rolf: The Universal Turing Machine: A Half-Century Survey. Oxford

University Press, Inc., New York, USA, 1992.

[3] IEEE: IEEE Standard for Binary Floating-Point Arithmetic for microprocessor

systems (IEEE Std 754-1985), 1985.

[4] Kawanaka, S. and Hosoya, H.: biXid: A Bidirectional Transformation Language

for XML. In ICFP ’06: Proceedings of the eleventh ACM SIGPLAN International

Conference on Functional Programming, New York, USA, January 2006.

[5] Liberty, Jesse, Maharry, Dan, and Hurwitz, Dan: Programming ASP.NET 3.5.

O’Reilly Media, Inc., Sebastopol, USA, 4th edition, 2008.

[6] Singh, Arindama: Elements of Computation Theory. Springer Publishing Com-

pany, Incorporated, 2009, ISBN 1848824963, 9781848824966.

[7] Soare, Robert I.: Recursively enumerable sets and degrees. Springer-Verlag New

York, Inc., New York, USA, 1987.

[8] Sriram, Sundararajan and Bhattacharyya, Shuvra S.: Embedded Multiprocessors:

Scheduling and Synchronization. Marcel Dekker, Inc., New York, NY, USA,

1st edition, 2000.

[9] W3C: XML Schema Part 0: Primer Second Edition, 2004. http://www.w3.org/

TR/xmlschema-0.

21

http://www.w3.org/TR/xmlschema-0
http://www.w3.org/TR/xmlschema-0

Bibliography 22

[10] W3C: XSL Transformations (XSLT) Version 2.0, 2007. http://www.w3.org/TR/

xslt20.

[11] W3C: XMLHttpRequest, 2010. http://www.w3.org/TR/XMLHttpRequest/.

[12] Walker, Derek, Petitpierre, Dominique, and Armstrong, Susan: XMLTrans: a

Java-based XML transformation language for structured data. In Proceedings of

the 18th conference on Computational linguistics - Volume 2, COLING ’00, pages

1136–1140, SaarbrÃ¼cken, Germany, 2000. Association for Computational Lin-

guistics.

[13] Wirth, N.: Compiler Construction. Addison-Wesley, Wokingham, UK, 1996.

[14] Yergeau, F.: UTF-8, a transformation format of ISO 10646 (RFC 3629), 2003.

http://www.w3.org/TR/xslt20
http://www.w3.org/TR/xslt20
http://www.w3.org/TR/XMLHttpRequest/

List of Abbreviations

DBMS Data Base Management System

JS JavaScript

LINQ Language Integrated Query

XML Extensible Markup Language

XSLT Extensible Stylesheet Language Transformations

23

Appendix

24

A

Use-Case Data Template

1 <?xml version=" 1 .0 " encoding=" utf −8" ?>

2 <document xmlns=" h t tp : // i i t −t e s t . fh−sa l zburg . ac . at /TR/

DataTemplateSchema . xsd " xmlns :x s i=" h t tp : //www. w3 . org /2001/

XMLSchema−i n s t anc e ">

3 <head>

4 <name>Sample Use Case</name>

5 <d e s c r i p t i o n>Data template f o r sample t e s t case</ d e s c r i p t i o n>

6 <author>IIT−Team</ author>

7 <company>FH Salzburg</company>

8 <department>In fo rmat i ons t e chn ik & ; System−Management</

department>

9 <date>2011−07−31</ date>

10 </head>

11 <body>

12 <block type=" s t a t i c ">

13 <argument>

14 <value type=" s t r i n g ">ID	Date	Item	ItemId	XCoord

	YCoord	Status
</ value>

15 </argument>

16 </ block>

17 <block type=" r e g i s t e r " name=" Fi leData ">

18 <datasource>

19 <value type=" s t r i n g " />

20 </ datasource>

21 </ block>

22 <f o r>

23 <cond i t i on operator=" eo f " />

24 <i t e r a t e>

25

A. Use-Case Data Template 26

25 <block type=" r e g i s t e r " name=" DataEntry ">

26 <datasource>

27 <value type=" s t r i n g " />

28 <parent r e f=" Fi leData " />

29 </ datasource>

30 </ block>

31 <block type=" r e g i s t e r " name=" ID">

32 <datasource>

33 <value type=" s t r i n g " />

34 <parent r e f=" DataEntry " />

35 </ datasource>

36 </ block>

37 <block type=" dynamic ">

38 <datasource>

39 <value type=" u int8 " />

40 <parent r e f=" ID" />

41 </ datasource>

42 </ block>

43 <block type=" s t a t i c ">

44 <argument>

45 <value type=" char ">	</ value>

46 </argument>

47 </ block>

48 <block type=" r e g i s t e r " name=" Date ">

49 <datasource>

50 <value type=" s t r i n g " />

51 <parent r e f=" DataEntry " />

52 </ datasource>

53 </ block>

54 <block type=" dynamic ">

55 <datasource>

56 <value type=" datet ime " />

57 <parent r e f=" Date " />

A. Use-Case Data Template 27

58 </ datasource>

59 </ block>

60 <block type=" s t a t i c ">

61 <argument>

62 <value type=" char ">	</ value>

63 </argument>

64 </ block>

65 <block type=" r e g i s t e r " name=" Item ">

66 <datasource>

67 <value type=" s t r i n g " />

68 <parent r e f=" DataEntry " />

69 </ datasource>

70 </ block>

71 <block type=" dynamic ">

72 <datasource>

73 <value type=" s t r i n g " />

74 <parent r e f=" Item " />

75 </ datasource>

76 </ block>

77 <block type=" s t a t i c ">

78 <argument>

79 <value type=" char ">	</ value>

80 </argument>

81 </ block>

82 <block type=" r e g i s t e r " name=" ItemId ">

83 <datasource>

84 <value type=" s t r i n g " />

85 <parent r e f=" DataEntry " />

86 </ datasource>

87 </ block>

88 <block type=" dynamic ">

89 <datasource>

90 <value type=" s t r i n g " />

A. Use-Case Data Template 28

91 <parent r e f=" ItemId " />

92 </ datasource>

93 </ block>

94 <block type=" s t a t i c ">

95 <argument>

96 <value type=" char ">	</ value>

97 </argument>

98 </ block>

99 <block type=" r e g i s t e r " name="XCoord ">

100 <datasource>

101 <value type=" s t r i n g " />

102 <parent r e f=" DataEntry " />

103 </ datasource>

104 </ block>

105 <block type=" dynamic ">

106 <datasource>

107 <value type=" s t r i n g " />

108 <parent r e f="XCoord " />

109 </ datasource>

110 </ block>

111 <block type=" s t a t i c ">

112 <argument>

113 <value type=" char ">	</ value>

114 </argument>

115 </ block>

116 <block type=" r e g i s t e r " name="YCoord ">

117 <datasource>

118 <value type=" s t r i n g " />

119 <parent r e f=" DataEntry " />

120 </ datasource>

121 </ block>

122 <block type=" dynamic ">

123 <datasource>

A. Use-Case Data Template 29

124 <value type=" s t r i n g " />

125 <parent r e f="YCoord " />

126 </ datasource>

127 </ block>

128 <block type=" s t a t i c ">

129 <argument>

130 <value type=" char ">	</ value>

131 </argument>

132 </ block>

133 <block type=" r e g i s t e r " name=" Status ">

134 <datasource>

135 <value type=" s t r i n g " />

136 <parent r e f=" DataEntry " />

137 </ datasource>

138 </ block>

139 <block type=" dynamic ">

140 <datasource>

141 <value type=" s t r i n g " />

142 <parent r e f=" Status " />

143 </ datasource>

144 </ block>

145 <block type=" s t a t i c ">

146 <argument>

147 <value type=" s t r i n g ">
</ value>

148 </argument>

149 </ block>

150 </ i t e r a t e>

151 </ f o r>

152 </body>

153 </document>

Listing A.1: Data template for example data set shown in section 2.4.1

	Acknowledgement
	Details
	Keywords
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Related work

	Universal Data Conversion and Generation
	The XML Model
	Turing Completeness of the XML Model
	The Generic Data Model
	Implementation
	Use-case
	Performance
	Optimization approaches

	Conclusion
	Findings
	Future work

	Bibliography
	List of Abbreviations
	Appendix
	Use-Case Data Template

