
Modeling and Verification of Continuous Object
Behavior and Discrete Control Actions in

Situation Awareness Systems★

Stefan Mitsch

Marshall Plan Scholar
Johannes Kepler University Linz

Altenbergerstr. 69, 4040 Linz, Austria

Abstract. Large-scale control systems, as needed in road traffic man-
agement, typically deal with highly dynamic environments. They provide
vast amounts of information about real-world objects (e.g., tunnels) and
events (e.g., accidents). To counteract information overload in such sys-
tems, situation awareness aims at supporting human operators in taking
appropriate control actions pro-actively, thus preventing critical events.
As a pre-requisite for reasoning about the effects of control actions, ob-
ject and event evolution must be modeled in a fine-grained manner, for
instance in terms of describing future positions of objects on the basis
of their velocity, or describing traffic flow in terms of vehicle density and
flux. The effects of control actions (e.g., set speed limit) can then be de-
scribed in terms of influencing the behavior of objects and events (e.g., a
speed limit reduces the velocity of objects). As ultimate vision, operat-
ing procedures including control actions should be implemented within a
situation awareness system in order to issue actions automatically. Such
situation awareness systems would not be particularly useful, if the lead
to incorrect control decisions. Therefore, the validity of the operating
procedures must be verified, and certain invariants must be guaranteed
within the system (e.g., control actions must not cause accidents).
In this work, we study how CPS technology can help improve control
actions in traffic centers by combining local car GPS positioning, traf-
fic center control decisions, and communication to achieve more tightly
coupled feedback control in intelligent speed adaptation. In addition, we
describe a textual modeling environment for the Eclipse platform, which
supports developing hybrid models for CPS and integrates with the the-
orem prover KeYmaera.

Keywords: Situation Awareness, Cyber-physical system, hybrid sys-
tem, modeling, verification

1 Introduction

Large-scale control systems, as needed in road traffic management, typically deal
with highly dynamic environments. They provide vast amounts of information

★ This work has been funded by Marshall Plan Foundation.

from multiple heterogeneous sources about a large number of real-world objects
(e.g., tunnels, bridges) and events (e.g., accidents, traffic jams), which are an-
chored in time and space. In such systems, human operators are vulnerable to
information overload and may fail to be aware of the overall meaning of available
information and its implications. To counteract information overload, situation
awareness aims at supporting human operators in assessing current situations
and in predicting possible future ones to take appropriate actions pro-actively,
preventing critical events.

Recently, ontology-based situation awareness systems have been proposed,
including our prior work in the FIT-IT Semantic Systems project BeAware!
[7]. In the course of this project, a qualitative approach to situation prediction
has been developed, which augments conceptual neighborhood graphs represent-
ing evolution in qualitative spatial relation calculi with coarse-grained evolution
events, such as motion, scaling, and rotation thus being able to increase pre-
diction precision [6]. An encoding of these conceptual neighborhood graphs and
evolution events in so-called Situation Prediction Nets [8] provides for a reasoner
being capable of qualitative prediction and simulation.

In this qualitative prediction approach, the effects of control actions must be
mapped onto one of the qualitative evolution possibilities. As a pre-requisite for
reasoning about the effects of control actions, however, besides these qualitative
options, object and event evolution must be modeled in a more fine-grained
manner, for instance in terms of describing future positions of traffic objects
on the basis of their velocity (in the case of individual vehicles), or describing
traffic flow in terms of vehicle density and flux of vehicles. The effects of control
actions (e.g., set speed limit) can then be described in terms of influencing the
behavior of objects and events (e.g., a speed limit reduces the velocity of objects),
resulting in more expressive predictions of possible future situations. As ultimate
vision, not only the effects of possible control actions should be highlighted to
human operators, but the operating procedures should be implemented within
the system in order to issue actions automatically. As a pre-requisite for this,
the validity of the operating procedures must be verified, since certain invariants
must be guaranteed (e.g., the control actions must never result in causing an
accident). In this work, we discuss the following contributions.

1. Fine-grained modeling of continuous object behavior with differential equa-
tions, since many real-world phenomena can be described by functions and
their derivatives (e.g., position in terms of velocity)

2. Modeling of control actions as the basis for action decisions of human oper-
ators in terms of reactions to real-world preconditions in a discrete manner
(e.g., set speed limits)

3. Verifying control action validity and their implementation in terms of dis-
crete controllers; we describe continuous behavior models and control actions
in differential dynamic logic [28, 29], and complement these models with sys-
tem invariants, which altogether are verifiable by the KeYmaera prover.

In the next section, we describe a textual modeling environment for problem
specifications in dℒ provable by KeYmaera. This textual modeling environment

targets at supporting fine-grained modeling of continuous behavior, control ac-
tions, and system environments, and can load these models into the KeYmaera
prover. Basing on this modeling environment, in Sect. 3, we describe a case study
of a cooperation between a (semi-)autonomous vehicle and a traffic center. In
this case study, the vehicle has to respect speed limits issued by the traffic cen-
ter, which in turn must guarantee to only issue speed limits that are within
the physical reaction boundaries (e.g., braking capability) of the vehicle. This
case study was modeled in the described textual modeling environment, and its
validity was proven in KeYmaera.

2 Textual Modeling of d퓛 Problem Specifications for
KeYmaera

In this section, we describe our textual modeling environment KeYmaera Eclipse
editor. It is built using Eclipse Xtext1, and bases on the grammar of KeY [24]
and a description of the hybrid program syntax for hybrid systems2. Figure 1
shows a screenshot of the KeYmaera Eclipse editor.

Fig. 1: Syntax-highlighting in the KeYmaera Eclipse editor

1 www.eclipse.org/Xtext/
2 www.symbolaris.com/info/KeYmaera-guide.html#keymaerafile

As introduction into hybrid systems modeling, in the following section, dif-
ferential dynamic logic (dℒ) is described, which supports hybrid programs [28,
29] as a program notation for hybrid systems.

2.1 Preliminaries: Differential Dynamic Logic

For specifying and verifying correctness statements about hybrid systems, the
KeYmaera Eclipse editor bases on differential dynamic logic dℒ [28, 29]. The
syntax of hybrid programs is summarized together with an informal semantics
in Tab. 1.

The sequential composition �; � expresses that � starts after � finishes (e.g.,
first let a traffic center choose a maximum speed, then a position for a speed
limit area). The nondeterminic choice � ∪ � follows either � or � (e.g., let a
traffic center decide nondeterministically between keeping an existing speed limit
or choosing a new one). The nondeterministic repetition operator �∗ repeats �
zero or more times (e.g., let a traffic center choose new speed limits arbitrarily
often, not just once). Discrete assignment x := � instantenously assigns the value
of the term � to the variable x (e.g., let a car choose a particular acceleration),
while x := ∗ assigns an arbitrary value to x (e.g., let a car choose any acceler-
ation). x′ = � & F describes a continuous evolution of x within the evolution
domain F (e.g., let the velocity of a car change according to its acceleration,
but always be greater than zero). The test ?F checks that a particular condition
expressed by F holds, and aborts if it does not (e.g., check that an arbitrarily
chosen acceleration stays within the physical limits of a car because physically
impossible accelerations are never considered). Finally, if(F) then � else � is a
deterministic choice that executes � if F holds, and � otherwise (e.g., let a traffic
center decide upon the position of a car whether or not a speed limit should be
issued).

To specify the desired correctness properties of the hybrid programs, differen-
tial dynamic logic (dℒ) provides modal operators [�] and ⟨�⟩, one for each hybrid
program �. When � is a dℒ formula (e.g., a simple arithmetic constraint) describ-
ing a safe state and � is a hybrid program, then the dℒ formula [�]� states that
all states reachable by � satisfy �. Dually, formula ⟨�⟩� expresses that there is a

Table 1: Statements of hybrid programs
Statement Effect

�; � sequential composition, first performs � and then � afterwards
� ∪ � nondeterministic choice, following either � or �
�∗ nondeterministic repetition, repeating � n ≥ 0 times
x := � discrete assignment of the value of term � to variable x (jump)
x := ∗ nondeterministic assignment of an arbitrary real number to x(
x′1 = �1, . . . , continuous evolution of xi along differential equation system

x′n = �n & F
)
x′i = �i, restricted to maximum domain or invariant region F

?F check if formula F holds at current state, abort otherwise
if(F) then � else � perform � if F holds, perform � otherwise

state reachable by the hybrid program � that satisfies formula �. The dℒ formu-
las are generated by the following EBNF grammar (where ∼ ∈ {<,≤,=,≥, >}
and �1, �2 are arithmetic expressions in +,−, ⋅, / over the reals):

� ::= �1 ∼ �2 ∣ ¬� ∣ � ∧ ∣ ∀x� ∣ ∃x� ∣ [�]� ∣ ⟨�⟩�

Differential dynamic logic is not only a specification language for hybrid sys-
tems (as hybrid programs) and desired correctness properties (as dℒ formulas),
but also comes with a verification technique to prove those correctness properties.
The textual modeling environment can load problem specifications expressed in
dℒ into KeYmaera, which is a verification tool that implements Platzer’s [28, 29]
proof calculus for dℒ. In the next section, we describe the modeling features of
the KeYmaera Eclipse editor.

2.2 The KeYmaera Eclipse Editor

The KeYmaera Eclipse editor supports problem specification file editing with
content assists, code folding, and syntax checking. The available content assists,
cf. Fig. 2(a), comprises features such as automated code completion, and cross
references between variable declarations and variable usages.

(a) Content assistance, code completion
and outline view of a hybrid program

(b) A hierarchical quick outline of the
complete problem specification

(c) Syntax checking (d) Code folding of entire blocks

Fig. 2: Editing capabilities of the KeYmaera Eclipse editor

An outline view, which is in Fig. 2 (a) placed to the right of the text editor,
summarizes the main constituents of a hybrid program: declared variables, initial

state description, system dynamics in terms of continuous object behavior and
discrete control decisions, and a postcondition defining system invariants. The
same outline structure can additionally be superimposed on the text editing
view, as shown in Fig. 2 (b). Editing of hybrid programs is supported through
syntax checking while typing (cf. Fig. 2 (c)), in order to avoid common mistakes
such as mistyped keywords, undeclared variables, as well as missing parentheses
and brackets. In large hybrid programs, entire blocks can be folded to save space;
the content of currently folded blocks is displayed in a tooltip as shown in Fig.
2 (d).

These and further editor features, such as navigating to the declaration of a
variable, opening the quick outline, content assistance, renaming elements, vali-
dating the current hybrid program, suggesting quick fixes for syntax problems,
finding references to declarations, and running hybrid programs in the KeYmaera
prover, are available through the context menu of the KeYmaera Eclipse editor,
see Fig. 3.

Fig. 3: Features of the KeYmaera Eclipse editor in the context menu

Hybrid program maintenance is supported through consistent renaming of
variable declarations and variable usage, see Fig. 4 (a). Eclipse automatically

tracks versions in a local repository, and the KeYmaera Eclipse editor is equipped
with a comparison view that highlights differences between the different versions
of a single file, and between different files, as shown in Fig. 4b.

(a) Renaming all occurrences of a vari-
able

(b) Comparing two problem specification
files: in this example, different versions
of the same file in the local history are
compared

Fig. 4: Refactoring and code browsing in the KeYmaera Eclipse editor

The KeYmaera Eclipse editor can be configured to load hybrid programs and
completed proofs from the editor into the KeYmaera prover. As a pre-requisite
for this, KeYmaera must be installed separately, and then configured in the
KeYmaera Eclipse editor (installation directory and libraries). This configuration
can be edited for the complete KeYmaera Eclipse editor in the editor preferences
(cf. Fig. 5 (a)), or per loaded proof file on the run configuration page, see Fig. 5
(b).

Each hybrid program or proof file loaded via the run configuration of the
KeYmaera Eclipse editor results in a dedicated KeYmaera instance being loaded,
see Fig. 5 (c). Every KeYmaera instance is represented with its own console in-
side the editor. The console view, as any Eclipse console, supports scroll lock-
ing, switching between consoles, and forcing the associated KeYmaera instance
to shut-down. In order to share a KeYmaera instance between multiple hybrid
programs or proof files, as an alternative, the KeYmaera Eclipse editor sup-
ports drag-and-drop of hybrid programs and proof files into an already running
KeYmaera instance. Previously loaded proofs can be reloaded into KeYmaera
with the run history of Eclipse, see Fig. 5 (d).

Now that we have seen the modeling of hybrid programs and their execution
as proofs in KeYmaera, in the next section, we utilize both dℒ and the textual
modeling syntax to specify models of freeway traffic control.

(a) Configuring KeYmaera for multiple
runs: installation path and libraries

(b) Configuring a proof run in
KeYmaera: project, problem spec-
ification, libraries, and KeYmaera
installation path

(c) Proof and error output in the
KeYmaera console, the KeYmaera prover
user interface is depicted in the back-
ground. The prover can be stopped at
any time through the stop button in the
console.

(d) Repeating a previous proof

Fig. 5: Configuring and running KeYmaera from within the KeYmaera Eclipse
editor

3 A Case Study in Formal Verification of Traffic Control

In this section, we describe a case study of formal verification of freeway traffic
control. A major revision and extension of this section was submitted to the
International Conference on Cyber-Physical Systems3.

Traffic centers have the goal of ensuring global functioning and safety of a
freeway or highway network. The available control options comprise, for instance,
variable speed limits, ramp metering, lane closures, detours, arterial traffic light
control, and warning signs displaying traffic incident information (e.g., traffic
jams, construction sites, or driving conditions). A number of theoretical and
experimental results have shown that such global highway and freeway traffic
control increases safety [2, 21], homogenizes traffic flow [32], and may increase the
flow during peak periods [9, 10]. Today’s highway and freeway traffic control is
centralized in traffic centers (e.g., on a per state level) with little direct influence
on the behavior of cars, making it an open-loop control system. Typically, advice
to drivers is displayed on dynamic traffic signs mounted on gantries, broadcasted
via radio stations, or to GPS navigation systems.

With the advent of more precise and pervasive sensing as well as car-to-
car (C2C) and car-to-infrastructure (C2I) communication, a large amount of
dynamic traffic information about individual cars becomes available. It is a
promising idea to exploit such dynamic traffic information and complement the
(geographically) static road infrastructure with dynamic infrastructure-to-car
communication. As a result, custom traffic advice could be provided to each car
individually, broadcast to all cars in an area, and, in the futre, may even be fed
directly as set values into the controllers of (semi-)automatic driver assistance
technology in the cars.

At this point, at the latest, the scenario is a prototypical cyber-physical sys-
tem (CPS) case. On the one hand, we find the physics of the movement of a car
or a collection of cars down the streets. On the other hand, we have onboard
computers embedded in the car and various of its controllers as well as com-
puters in the traffic center that analyze dynamic traffic flow information and
support humans with traffic management decisions. In the middle, we find the
communication that sends status, traffic, and flow information from the roadside
sensor infrastructure and the car GPS’s to the traffic centers and the commu-
nication that broadcasts, e.g., variable speed limit decisions back to cars and
dynamic traffic signs. The CPS is especially interesting when we close the loop
and use car information to enhance traffic center decisions and provide traffic
center control for individual cars, both connected via C2I communication. The
hope is that integrated CPS could direct the fleet of cars more efficiently than a
relatively uninformed traffic center without means for direct feedback.

This technology would not be particularly useful if it lead to vastly subopti-
mal or incorrect control decisions, possibly even endangering safety on the road
instead of improving it. For one thing, decision time delays, which may be neg-
ligible in more local control scenarios, have a serious impact on the overall CPS

3 iccps2012.cse.wustl.edu/

dynamics and its behavior over time given the long-range communication and
control loop. One particularly interesting challenge to help develop such next
generation road traffic control, thus, is the question of how to ensure correct
functioning and reliability of such a system. Another challenge is to identify safe
margins on the system within which traffic flow can be optimized without endan-
gering safety. First steps towards the verification of safety in road traffic control
have been taken by verifying that cars with local adaptive cruise control cannot
collide [20]. As a next step, we introduce global control by highway authorities.
Our main contribution is a model of a distributed intelligent speed adaptation
system and a formal proof that this system correctly disseminates speed limit
information and guarantees for cars adhering to the speed limit. For this, we
identify constraints on the input and output parameters that car and traffic cen-
ter controllers need to obey to remain within the safely operable bounds of the
system.

These constraints are also relevant in local control loops that replace the traf-
fic center with in-car driver assistance systems, such as traffic sign, pedestrian,
or obstacle detectors, picking up control decisions from roadside infrastructure
or detecting incidents along the road. The constraints can serve as a basis for
precise requirements for driver assistance systems with regard to, for instance,
image resolution, focal length of the camera lense, and computation time. In
combination with car control, this scenario represents a fully autonomous, ac-
tive intelligent speed adaptation system [27].

In summary, our contributions are as follows.

1. A model of a distributed intelligent speed adaptation system obtaining speed
advice from traffic centers, traffic sign detectors, or obstacle detectors

2. Lower and upper bounds on the position of speed limit area beginnings
relative to the position of a car

3. Requirements for the implementation of such systems that directly follow
from the bounds

This section is organized as follows. In the next section, we discuss related
research concerning global control in traffic centers and local control with in-car
driver assistance technology, with a focus on formal verification. In Sect. 3.2 we
discuss the challenges in intelligent speed adaptation and, from these, derive the
input and output parameters and the general structure of the system. Section 3.3
then presents a model and verification of a lower bound for speed limit choices.
Finally, Sect. 3.4 concludes the case study with an outlook on future work.

3.1 Related Work

We discuss related work from the application areas that we focus on: firstly
concerning global control in traffic centers from the viewpoint of intelligent speed
adaptation, secondly considering advanced driver assistance systems, and, finally,
concerning formal verification of traffic control systems.

Lu et al. [22] demonstrate with simulations that higher-level control strate-
gies, such as variable speed limits, can help increase traffic flow and reduce

congestion in bottleneck areas. Dia et al. [13] also used simulation to assess the
impact of incident management techniques such as ramp metering, route diver-
sion, and variable speed limits. We verify that such variable speed limits can
be disseminated to cars in a safe manner, and that these cars comply with the
speed limit at all times. Intelligent speed adaptation [1] and variable speed limit
sign systems [2] have increasingly gained attention as a means to increase road
traffic safety. Related research in these areas, however,

1. focuses on experiments and simulations of traffic behavior [9, 10] and models
for determining optimal speed limits [15],

2. shows the effectiveness of speed adaptation in terms of reducing casualties
[2, 26], homogenizing speed [32], increasing compliance with speed limits [1],
as well as

3. discusses impacts on travel time and throughput.

We, instead, investigate constraints that implementations of such a system must
respect and verify the safety that can be guaranteed under these constraints.

Automated highway control has been the focus, for instance, of the California
PATH project (for an overview see [31]), which also investigated the integration
of vehicles and roadside infrastructure [23]. Particularly relevant is the work of
Ioannou et al. [17] on an integrated roadway/adaptive cruise control system,
which was shown to improve travel times and smoothen traffic flow. Similarly,
Baskar et al. [5] combined automated vehicle platooning with conventional traffic
control in a hierarchy of cooperating controllers with different responsibilities.
Again, these works tested safety only partially (mostly using simulation), and do
not derive constraints for implementation. Our model is similar, in that it also
divides responsibilities between distributed controllers. However, our verification
results allow us to derive constraints for the cooperation between higher-level
controllers, such as area, regional, or super-regional controllers [5] and highway
traffic management control [17] (i.e., traffic centers), and lower-level platoon and
vehicle controllers.

With the recent commercialization of advanced driver assistance systems,
such as adaptive cruise control, braking assistants, and lane guard systems, also
research on traffic sign, crosswalk, and pedestrian detection (cf., for instance,
[12, 11, 16, 18, 25]) gained popularity. Such systems are also vital in realizing the
vision of fully autonomous vehicles [19]. While investigating detection quality
and computation speed, both being undisputedly important characteristics of
these systems, none of the works focused on determining the necessary bounds
within which such a system can be operated safely.

Verification of safety has been the focus of Loos et al. [20] in their work on
adaptive cruise control. Their model focused on mutual safety of cars following
each other on a highway. In contrast, we discuss the interplay of cars and road-
side infrastructure. Traffic centers disseminating virtual information that may
change arbitrarily (i.e., whose positions are not constrained by physical limits
and continuity). We, thus, need to find appropriate bounds for traffic center
decisions. Moreover, our model allows physical entities on a freeway (e.g., in-
cidents) to move opposite to the driving direction, which was assumed not to

happen in [20]. Movement authorities, which are somewhat similar to speed lim-
its, have been used in verifying the European train control system [30]. They
are issued centrally at frequent intervals and trains are not allowed to move
without frequent clearance. These results are not applicable to road traffic, be-
cause permanent negotiation for movement clearance does not scale to the vast
number of cars on a highway (in comparison to the small number of trains on a
railroad network). Also, motion was only allowed in accordance with the driving
direction of a railroad link. In [3], online verification techniques are presented
to derive collision probabilities for autonomous cars. However, deriving bounds
and implementation requirements has not been the focus in their work.

3.2 Challenges in Intelligent Speed Adaptation

A typical application of intelligent speed adaptation with variable speed limits is
to lower and homogenize speed in the area of traffic incidents [2]. For example,
Lu et al. [22] use variable speed limit control to maximize bottleneck flow in
an area of a lane drop, such as encountered when lanes merge or lanes are
closed due to road work. The nature of traffic incidents in conjunction with the
distributed setting of cars and traffic centers, however, poses several challenges
on the integration of roadside infrastructure and vehicle control in general, and
on the implementation of intelligent speed adaptation systems in particular, as
detailed below.

Traffic incidents can not only occur at a geographically fixed position (i.e.,
be static, such as construction sites), but also change their position (e.g., traffic
jams, wrong-way drivers) in the worst case in the opposite direction of traffic
on a freeway. Often, motion of traffic incidents can only be approximated using
complex models (e.g., shock waves traveling opposite to the driving direction
on a freeway [14]). However, estimations about the velocity of incidents can be
made, for instance, on the basis of traffic operator experience, or from traffic
throughput measurings of induction loop detector arrays.

Nevertheless, the positions and points in time at which incidents occur are
completely nondeterministic. As a result, special focus must be laid on the trade
off that traffic centers have to make upon occurrence of an incident: as many
cars as possible should be warned, which means that speed limits have to be
enacted as close as possible to an incident, while at the same time speed limits
should only be enacted at safe positions (i.e., at positions that guarantee for cars
being able to meet the speed limit).

These matters are even made worse by the fact that the communication delay
between a traffic center and a car is non-negligible. During this communication
delay, the car moves and the incident changes its position. In order to be effective,
variable speed limits must be enacted (from the viewpoint of cars traveling on
a freeway) in front of an incident. As a consequence, the traffic center has to
estimate a latest speed limit position, which ensures that a car receives its speed
limit in any case before it meets an incident.

The promising effects of roadside infrastructure and vehicle integration demon-
strated in [17] in terms of better managed traffic with reduced travel times and

smoothened traffic flow, which in turn may lead to improvements in safety and
environment, however, make it worthwile to accept these challenges.

The result of this paper is a formally verified model of a straight stretch of
highway (which may comprise traffic incidents, such as accidents, construction
sites, and traffic jams) controlled by a traffic center and a car following its local
control and the variable speed limit issued by the traffic center (i.e., the car
does not purposefully violate speed limits). The car has a position, velocity,
and acceleration and must obey the laws of physics. The model additionally
accounts for sensor and actuator delay within the car, communication between
the car and the traffic center, and computation in both. The possible delays
caused by communication with central facilities are non-negligible.

Complex maneuvers, such as lane changes, and cars entering and leaving the
highway, are not essential for the purpose of our proofs and therefore omitted
in the model. It is of utmost importance that the control choices of the car and
the traffic center at all times ensure safety of the car, that is, make it possible
for the car to meet the speed limit, and safety of the traffic center decision—i.e.,
set the speed limit at a position on the lane that is between the car and the
incident. In the next section, we prove that the speed limit choices of the traffic
center can at all times be followed by the car.

3.3 Variable Speed Limit Control

As a first step towards verifying traffic control, the problem that we are solving is:
a car on a straight lane can accelerate, coast and brake and we prove that it will
not exceed the speed limit set by the traffic center or indicated by a traffic sign
detector at any point. This system contains discrete and continuous dynamics,
thus it is a hybrid system. Alone, the necessity for issuing a speed limit may arise
at any time. As a consequence, both the traffic center and the traffic sign detector
can repeatedly issue new speed limits—comprising a maximum speed and a
position denoting the speed limit area—or decide to stick with already set ones.
Newly issued speed limits are communicated to the car controller (in the case
of the traffic center, e.g., wirelessly or via conventional roadside infrastructure),
which, anyway, takes time. In the meantime, of course, the car’s position evolves
according to its velocity and acceleration. As a consequence, the traffic center
must take into account the car’s position, velocity, and acceleration, and the
time needed for communicating to and processing the decision in the car when
choosing the maximum speed and position of a speed limit area, in order to avoid
issuing speed limits that cannot be complied with (e.g., we cannot demand the
car to brake from 30 m/s to 20 m/s within 1 m). Likewise, a traffic sign detector
must be able to correctly recognize a speed limit sign at a distance depending on
the car’s velocity and acceleration, and the time needed for processing the speed
limit sign image, communicating to and processing the speed limit in the car
controller. At the cost of more conservative decisions and distance/processing
bounds, this information demand can be relaxed by assuming generic maximum
values for velocity, acceleration, and communication and processing time.

Here, we abstract from the details of traffic centers and traffic sign detectors
by modeling the relevant characteristics of the decisions both have to make (i.e.,
the maximum speed allowed in and the geographical position of the speed limit
area), as described in the following paragraph. Formal verification of the model
guarantees safety in all considered situations. This allows us to derive from the
model the bounds for (i) maximum speed and geographical position relevant for
the traffic center, and (ii) distance and processing time of a traffic sign detector.
Since we use individual speed limits for each car (realized with direct communi-
cation between traffic centers and cars, or with traffic sign detectors inside the
car), we can safely simplify our model to a single car.

Modeling Based on the adaptive cruise control model of Loos et al. [20], we
develop a formal model of a distributed intelligent speed adaptation system
as a hybrid program (HP). The car has state variables describing its current
position (xc), velocity (vc), and acceleration (ac). The continuous dynamics of
the car is described by the differential equation system of ideal-world dynamics
for longitudinal position changes (x′c = vc, v

′
c = ac). We assume bounds for

acceleration ac in terms of a maximum acceleration A ≥ 0 and a minimum
positive braking power b > 0. We introduce a constant " that provides an upper
bound for sensor and actuator delay, communication between the traffic center
or traffic sign detector and the car controller, and computation in both. The car
controller4 and the traffic center may react and exchange messages as quickly as
they want, but they can take no longer than ".

The car is allowed to brake at all times through (3) having no precondition,
which is also the only option if there is not enough distance between the car
and the speed limit area to maintain speed or accelerate. If the car is still at
a safe distance from the speed limit area, it may choose its acceleration freely
within the bounds of its braking power and acceleration, cf. (4). Safety of the
car is given when (7) and (8) are satisfied, i.e., if the car can drive up to " time
units with any choice of acceleration, and still adhere to the speed limit. For
this, the distance between the car’s current position xc and the beginning of
the speed limit area xsl must account for two components: first, the car may
need to brake from its current velocity vc down to vsl, and in the course of this
travel the distance given in (7). Second, since the car may not notice the speed
limit up to " time units, we must additionally take into account the distance
that the car may travel with its current velocity and worst-case acceleration A
and the distance needed for compensating its potential acceleration of A during
that time with braking power b, see (8). In the speed limit area the car may
choose its acceleration within its physical limits and depending on the current
velocity difference to the speed limit, see (5). Note that for the implementation
of a car controller that computes its acceleration only on the basis of the physical
boundaries of the car (i.e., A and b), the additional restriction ac ≤ vsl−vc

" can
be used as a precondition using maximum acceleration vc +A ⋅ " ≤ vsl. Finally,

4 Note that the car controller may also be a human driver, in which case the processing
time in the car is mostly attributed to the reaction time of the driver.

Model 1 Variable speed limit control (vsl)

vsl ≡ (ctrl; dyn)∗ (1)

ctrl ≡ ctrlcar∣∣ctrlctr; (2)

ctrlcar ≡ (ac := −b) (3)

∪
(
?Safexsl ; ac := ∗; ?(−b ≤ ac ≤ A)

)
(4)

∪
(
?xc ≥ xsl; ac := ∗;

?(−b ≤ ac ≤ A ∧ ac ≤
vsl − vc

"
)
)

(5)

∪ (?vc = 0; ac := 0) (6)

Safesl ≡ xc +
v2c − v2sl

2 ⋅ b (7)

+

(
A

b
+ 1

)
⋅
(
A

2
⋅ "2 + " ⋅ vc

)
≤ xsl (8)

ctrlctr ≡ (xsl := xsl; vsl := vsl) (9)

∪
(
xsl := ∗; vsl := ∗; ?(vsl ≥ 0 ∧ Safesl)

)
(10)

dyn ≡ (t := 0;x′c = vc, v
′
c = ac, t

′ = 1 (11)

&vc ≥ 0 ∧ t ≤ ") (12)

the car may choose to stand still if its current velocity is zero already (6), since
the continuous dynamics, in accordance with freeway traffic rules, do not allow
velocities below zero (i.e., driving opposite to the driving direction on a freeway
is prohibited).

The traffic center may choose to keep a current speed limit, cf. (9), or set a
new speed limit vsl (which, of course, must not force the car to drive backwards)
at a new, safe position xsl; see (10). This safe position guarantees, that the
car is still able to meet the speed limit even if it does not receive and cannot
react on the new speed limit for up to " time units. For making this decision,
it is essential that the controller in the traffic center knows or can estimate the
current position, velocity, braking and acceleration capabilities of the car, and
the time needed for reaction. Note that it is only mandatory to communicate the
current position of the car (allowing, of course, some inaccuracy) to the traffic
center. At the expense of a less stringent speed limit area (i.e., the safety distance
may be larger than absolutely necessary), worst case estimations can be used for
all other values (e.g., general highway speed limits, typical car acceleration, and
minimum braking power demanded by law).

Car and control center can repeatedly choose acceleration and speed limit,
respectively, which is represented by the nondeterministic repetition operator
∗ in (1). The controllers of the car and the traffic center operate in parallel,
cf. (2). Since the controllers are independent with respect to their read and
write variables, the parallel operation can also be modeled using a sequential
composition. The order of components in a sequential composition is significant:

we model the control of the car followed by the control of the traffic center,
and finally the dynamics of the system. As a result, the system evolves before
the traffic center decisions reach the car controller at the next iteration, which
models communication delay between the traffic center and the car.

The continuous dynamics (11) of the model describe the evolution of the car’s
position and velocity according to the current acceleration. We use a variable
t that evolves with constant slope (i.e., a clock) for measuring time within the
upper bound ", and constrain the evolution of velocity vc to non-negative values,
see (12).

Listing 1.1 in Appendix A shows the hybrid program notation of Model 1 in
the syntax of the textual KeYmaera Eclipse editor.

Verification We verify the safety of a speed limit choice as modeled above, using
a formal proof calculus for dℒ [28, 29]. In this use case, the car must comply with
the speed limit inside a speed limit area at all times. The following condition
captures this requirement as an invariant that must hold at all times during the
execution of the model:

c↘ sl ≡
(
vc ≤ vsl ∨ xsl ≥ xc +

v2c − v2sl
2 ⋅ b

)
∧ vc ≥ 0 ∧ vsl ≥ 0

The formula states that a speed limit chosen by the traffic center or detected
by the traffic sign detector can be complied with when the car’s current velocity
is already less or equal to the speed limit, or there is still enough distance for the
car to brake (and the car must drive forward, and the speed limit not demand
driving backwards).

Proposition 1 (Safety of speed limit). If a car is at a safe distance from
xsl initially, then it will not exceed the speed limit past the beginning of a speed
limit area while the car controller and the traffic center or traffic sign detector
follow the vsl control model. Compliance with the speed limit is expressed by the
provable formula (c↘ sl)→ [vsl](xc ≥ xsl → vc ≤ vsl)

We proved Proposition 1 using KeYmaera, a theorem prover for hybrid sys-
tems. The resulting proof files are available online as projects in KeYmaera5.

Safe bounds The condition Safesl, see (7), provides bounds on the minimum
distance of a speed limit area to the current position of a car (assuming a certain
maximum speed), as well as the maximum speed (assuming a certain minimum
distance) of a variable speed limit area. Concerning a traffic sign detector, the
worst case minimum distance that a car needs in order to comply with a speed
limit is most interesting. This worst case minimum distance, at which a traffic
sign detector must be able to identify a speed limit sign at the latest, is given
through (13).

5 http://symbolaris.com/info/KeYmaera.html

xsl − xc ≥
v2c − v2sl

2 ⋅ b
+

(
A

b
+ 1

)
⋅
(
A

2
⋅ "2 + " ⋅ vc

)
(13)

For instance, with a current velocity of 60 km/h, typical values for maximum
acceleration (4 m/s2) and maximum braking power (9 m/s2), and assuming a
speed limit sign that shows 50 km/h, computation time of 50 ms and another
50 ms for communication and reaction, the distance at which the traffic sign
detector must start at the latest is about 8 m from the traffic sign. When applying
a comfortable braking power of only 2 m/s2 [4], the distance grows to over 26 m.
Taking a look at the camera and resolution used by Deguchi et al. [12], a speed
limit sign of 0.5 m width in a distance of 26 m would be represented in the
resulting image with a width of 12 pixels6, which is below the 15–45 pixels
image width used in their evaluation. This is an example where formal analysis
can be used to infer design decisions of CPS.

3.4 Conclusion and Future Work

Traffic centers focus on the global functioning of a freeway or highway network
and, for this, impose dynamic constraints (e.g., variable speed limits) on the
control choices of car controllers. At the same time, sensor and driver assistance
systems make cars increasingly aware of their environment, and enable them to
react autonomously (e.g., adaptive cruise control, or obstacle detection that ini-
tiates emergency braking). It is a promising idea to combine global traffic control
choices—which could be communicated directly from a traffic center to a car,
or sensed by driver assistance systems—and car control into a fully autonomous
system. Yet, such a combination is only economically feasible without costly
post-deploy upgrades or even possible hazards when its safety can be ensured.

In this work, we presented a distributed intelligent speed adaptation system
comprising a car controller and a speed limit controller (e.g., a traffic center or a
driver assistance system) with direct communication in-between. We presented
formal verification results that guarantee safe operation of cars (i.e., cars always
comply with speed limits). In the process of verification, we found important
invariants, which are needed to ensure such safe operation if implemented in
actual physical controllers. These invariants comprise bounds on the distance
between cars and speed limit areas. They can be further transformed into precise
requirements and help decide trade-offs even for design parameters of traffic
centers and driver assistance systems that are not modeled formally (e.g., image
resolution, focal length, and computation time of driver assistance systems).

Future work includes addressing arbitrarily many incidents, and homoge-
nizing speed with consecutively arranged speed limits of decreasing maximum
speed. Also, the models discussed in this paper will be further refined by intro-
ducing explicit communication channels, which allows multiple control decisions
during one communication roundtrip.

6 Given a chip width (wcℎip) and focal length (lfocal) of both 63 mm and 640 pixels
of horizontal image width (wimage), using res = wimage/(d ⋅ wcℎip/lfocal), we get a
resolution of 24 pixels/m for an object at a distance (d) of 26 m.

Acknowledgments

This work has been partly funded by Marshall-Plan Foundation. This material
is based upon work supported by the National Science Foundation under NSF
CAREER Award CNS-1054246 and NSF EXPEDITION CNS-0926181 as well
as Grant Nos. CNS-1035800, and CNS-0931985.

References

1. N. Agerholm, R. Waagepetersen, N. Tradisauskas, and H. Lahrmann. Intelligent
speed adaptation in company vehicles. In Proceedings of the IEEE Intelligent
Vehicles Symposium, pages 936 –943. IEEE, 2008.

2. P. Allaby, B. Hellinga, and M. Bullock. Variable Speed Limits: Safety and Oper-
ational Impacts of a Candidate Control Strategy for Freeway Applications. IEEE
Transactions on Intelligent Transportation Systems, 8(4):671 –680, 2007.

3. M. Althoff, O. Stursberg, and M. Buss. Safety assessment of autonomous cars
using verification techniques. In Proceedings of the American Control Conference
(ACC), pages 4154–4159, 2007.

4. G. Anagnostopoulos, M. Coltman, and R. Suever. Compendium of executive sum-
maries from the maglev system concept definition final reports. Technical Report
DOT/FRA/NMI-93/02, U.S. Department of Transportation, 1993.

5. L. Baskar, B. De Schutter, and H. Hellendoorn. Dynamic speed limits and on-ramp
metering for ivhs using model predictive control. In Proceedings of the 11th In-
ternational IEEE Conference on Intelligent Transportation Systems (ITSC), pages
821–826. IEEE, 2008.

6. N. Baumgartner, W. Gottesheim, S. Mitsch, W. Retschitzegger, and W. Schwinger.
On Optimization of Predictions in Ontology-Driven Situation Awareness. In Pro-
ceedings of the 3rd International Conference on Knowledge Science, Engineering
and Management (KSEM), pages 297–309. Springer, 2009.

7. N. Baumgartner, W. Gottesheim, S. Mitsch, W. Retschitzegger, and W. Schwinger.
BeAware!—Situation Awareness, the Ontology-driven Way. International Journal
of Data and Knowledge Engineering, 69(11):1181–1193, 2010.

8. N. Baumgartner, W. Gottesheim, S. Mitsch, W. Retschitzegger, and W. Schwinger.
Situation Prediction Nets—Playing the Token Game for Ontology-Driven Situation
Awareness. In Proceedings of the 29th International Conference on Conceptual
Modeling (ER), pages 202–218. Springer, 2010.

9. R. Bertini, S. Boice, and K. Bogenberger. Using ITS data fusion to examine traffic
dynamics on a freeway with variable speed limits. In Proceedings of Intelligent
Transportation Systems, pages 1006–1011. IEEE, 2005.

10. R. L. Bertini, S. Boice, and K. Bogenberger. Dynamics of variable speed limit sys-
tem surrounding bottleneck on german autobahn. Transportation Research Record:
Journal of the Transportation Research Board, pages 149–159, 2006.

11. A. Broggi, P. Cerri, S. Ghidoni, P. Grisleri, and H. G. Jung. A new approach
to urban pedestrian detection for automatic braking. Intelligent Transportation
Systems, IEEE Transactions on, 10(4):594 –605, dec 2009.

12. D. Deguchi, M. Shirasuna, K. Doman, I. Ide, and H. Murase. Intelligent traffic
sign detector: Adaptive learning based on online gathering of training samples. In
Intelligent Vehicles Symposium (IV), 2011 IEEE, pages 72–77, 2011.

13. H. Dia, W. Gondwe, and S. Panwai. Traffic impact assessment of incident man-
agement strategies. In Intelligent Transportation Systems, 2008. ITSC 2008. 11th
International IEEE Conference on, pages 441–446, 2008.

14. M. R. Flynn, A. R. Kasimov, J.-C. Nave, R. R. Rosales, and B. Seibold. Self-
sustained nonlinear waves in traffic flow. Physical Review E, 79:056113, May 2009.

15. R. Gallen, N. Hautiere, and S. Glaser. Advisory speed for intelligent speed adap-
tation in adverse conditions. In Intelligent Vehicles Symposium (IV), 2010 IEEE,
pages 107 –114, 2010.

16. A. Haselhoff and A. Kummert. On visual crosswalk detection for driver assistance
systems. In Intelligent Vehicles Symposium (IV), 2010 IEEE, pages 883–888, 2010.

17. P. Ioannou, Y. Wang, and H. Chang. Integrated roadway/adaptive cruise con-
trol system: Safety, performance, environmental and near term deployment con-
siderations. Technical Report UCB-ITS-PRR-2007-08, California PATH program,
Institute of transportation studies, University of California, Berkeley, 2007.

18. R. Kastner, T. Michalke, T. Burbach, J. Fritsch, and C. Goerick. Attention-based
traffic sign recognition with an array of weak classifiers. In Proceedings of the 2010
Intelligent Vehicles Symposium (IV), pages 333 –339. IEEE, 2010.

19. J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Kolter,
D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. Stavens, A. Teichman,
M. Werling, and S. Thrun. Towards fully autonomous driving: Systems and al-
gorithms. In Intelligent Vehicles Symposium (IV), 2011 IEEE, pages 163–168,
2011.

20. S. M. Loos, A. Platzer, and L. Nistor. Adaptive cruise control: Hybrid, distributed,
and now formally verified. In M. Butler and W. Schulte, editors, 17th Interna-
tional Symposium on Formal Methods (FM), volume 6664 of LNCS, pages 42–56.
Springer, 2011.

21. F. Lu and X. Chen. Analyzing the speed dispersion influence on traffic safety. In
International Conference on Measuring Technology and Mechatronics Automation
(ICMTMA), volume 3, pages 482–485. IEEE, 2009.

22. X.-Y. Lu, P. Varaiya, R. Horowitz, D. Su, and S. Shladover. A new approach for
combined freeway variable speed limits and coordinated ramp metering. In Intel-
ligent Transportation Systems (ITSC), 2010 13th International IEEE Conference
on, pages 491 –498. IEEE, 2010.

23. J. Misener and S. Shladover. Path investigations in vehicle-roadside cooperation
and safety: A foundation for safety and vehicle-infrastructure integration research.
In Proceedings of the Intelligent Transportation Systems Conference (ITSC), pages
9–16. IEEE, 2006.

24. W. Mostowski. The key syntax. In B. Beckert, R. Hhnle, and P. Schmitt, edi-
tors, Verification of Object-Oriented Software. The KeY Approach, volume 4334 of
Lecture Notes in Computer Science, pages 599–626. Springer, 2007.

25. L. Oliveira and U. Nunes. Context-aware pedestrian detection using lidar. In
Intelligent Vehicles Symposium (IV), 2010 IEEE, pages 773–778, 2010.

26. M. Paine, D. Paine, and I. J. Faulks. Speed Limiting Trials in Australia. In
Proceedings of the 21st International Technical Conference on the Enhanced Safety
of Vehicles, 2009.

27. M. Paine, D. Paine, M. Griffiths, and G. Germanos. In-vehicle Intelligent Speed
Advisory Systems. In Proceedings of the 20th International Conference on the
Enhanced Safety of Vehicles, 2007.

28. A. Platzer. Differential dynamic logic for hybrid systems. J. Autom. Reas.,
41(2):143–189, 2008.

29. A. Platzer. Logical Analysis of Hybrid Systems: Proving Theorems for Complex
Dynamics. Springer, Heidelberg, 2010.

30. A. Platzer and J.-D. Quesel. European Train Control System: A case study in
formal verification. In K. Breitman and A. Cavalcanti, editors, ICFEM, volume
5885 of LNCS, pages 246–265. Springer, 2009.

31. S. Shladover. PATH at 20—history and major milestones. Transactions on Intel-
ligent Transportation Systems, 8(4):584–592, 2007.

32. E. van den Hoogen and S. Smulders. Control by variable speed signs: results of the
Dutch experiment. In 7th International Conference on Road Traffic Monitoring
and Control, pages 145–149. IEEE, 1994.

A Variable Speed Limit Control as a Hybrid Program

Listing 1.1: Variable speed limit

1 \problem {

2 \[

3 /* variable declarations */

4 R xc , vc , ac , t; /* car 1 */

5 R vsl , xsl; /* traffic center */

6 R B, A, ep; /* system parameters */

7 \]

8 (vc >= 0

9 & vsl >= 0

10 & xc <= xsl

11 & 2 * B * (xsl - xc) >= vcˆ2 - vslˆ2

12 & A >= 0

13 & B > 0

14 & ep > 0

15 -> \[(

16 /* control car */

17 /* braking is always allowed */

18 (ac := -B)

19 /* outside the speed limit , ensure that the car

can still brake to meet the speed limit */

20 ++ (?xsl >= xc + (vcˆ2 - vsl ˆ2) / (2 * B) + (A / B

+ 1) * (A / 2 * epˆ2 + ep * vc);

21 ac := *; ?-B <= ac & ac <= A)

22 /* comply with the speed limit by not accelerating

too much */

23 ++ (?xc >= xsl; ac := *; ?-B <= ac & ac <= A & ac

<= (vc - vsl) / ep);

24

25 /* traffic center */

26 /* keep previous speed limit */

27 (xsl := xsl; vsl := vsl)

28 /* or set a new speed limit */

29 ++ (xsl := *; vsl := *; ?vsl >= 0 & xsl >= xc + (

vcˆ2 - vsl ˆ2) / (2 * B) + (A / B + 1) * (A / 2

* epˆ2 + ep * vc));

30

31 t := 0;

32 /* dynamics */

33 {xc’ = vc , vc ’ = ac , t’ = 1, vc >= 0, t <= ep}

34)* /* repeat non -deterministically */

35 @invariant(vc >= 0 & vsl >= 0 & (vc <= vsl | xsl >= xc

+ (vcˆ2 - vslˆ2) / (2 * B)))

36 \] (xc >= xsl -> vc <= vsl)

37)

38 } /* end problem */

