
IMPLEMENTATION AND EVALUATION

OF AN ADAPTIVE NEURAL FUZZY

INFERENCE CONTROL ALGORITHM

FOR A MOBILE ROBOT

BACHELOR THESIS 2

In Partial Fulfillment

of the Requirements for the Degree

“Bachelor of Science in Engineering”

Course of Studies:

“Mechatronic - Mechanical Engineering”
Management Center Innsbruck

Thesis Advisor:

Dr. Gordon Lee
(San Diego State University)

Thesis Reviewer:

Dr. Andreas Mehrle
(Management Center Innsbruck)

Author:

Gerold Huber
0810602018

2

Declaration in Lieu of Oath

I hereby declare, under oath, that this bachelor thesis has been my independent
work and has not been aided with any prohibited means. I declare, to the best
of my knowledge and belief, that all passages taken from published and unpub-
lished sources or documents have been reproduced whether as original, slightly
changed or in thought, have been mentioned as such at the corresponding places
of the thesis, by citation, where the extent of the original quotes is indicated.

The paper has not been submitted for evaluation to another examination au-
thority or has been published in this form or another.

Place, Day / Month / Year Signature

I

Acknowledgements

I wish to thank all my friends and family for their inspiration and believe in my
dreams, the Austrian Marshall Plan Foundation for the financial support, their
representative at the MCI for helping me with the application, Dr. Lee, Dr. Paolini
and all the other people from the San Diego State University for the good collabo-
ration and answers to any questions and especially my parents, who make all my
adventures even possible. I could not have done this thesis without you, Thank
You!

II

Abstract of the Thesis

This project deals with the implementation of an adaptive neuro fuzzy inference
system (ANFIS) controller on an Arduino ATmega microcontroller board used in
a mobile robotic system at the San Diego State University (SDSU). An ANFIS is
a fusion of two traditional intelligent control algorithms: a Fuzzy Inference Sys-
tem and an Adaptive Neural Network. This makes the ANFIS architecture an
appealing and widely used control strategy, as it features advantages of both ap-
proaches.

The current robotic system was developed through several projects and is de-
signed as a tele-robotic system. This makes it possible to control the robot via a
web interface, using an arbitrary Internet browser. The robot could for example
navigate in San Diego, while the user is controlling it using a smart phone in Aus-
tria. The interface shows a live stream of the webcam on the robot, as well as the
most relevant data about the robot itself and a certainty grid, showing the robot’s
environment detected by an ultra sonic sensor array.

To operate in an autonomous mode, the ANFIS code provides the additional
opportunity of tracking a path, planned by e.g. a virtual field force strategy. The
implemented ANFIS code is designed to be very flexible and adaptable, through
processing serial requests from the single board computer, using the developed
’pcb2arduino’-protocol. Besides the ANFIS code, an inertial measurement unit
serves as an orientation sensor and a simple path tracking strategy was imple-
mented. It is possible to change the architecture and load/store different param-
eter sets from/on the EEPROM as well as switching between tele-operated and
autonomous mode. Hence, the robot with the ANFIS-controller provides a mobile
robotic testbed, that can be used for future algorithm research studies.

III

Kurzfassung

Dieses Projekt beschäftigt sich mit der Implementierung eines ’Adaptive Neuro
Fuzzy Inference Systems’ (ANFIS) auf ein Aruino ATmega Microcontroller-Board,
das auf einem mobilen Roboter der ’San Diego State University’ zum Einsatz
kommt. Ein ANFIS, ist dabei eine Mischung der beiden traditionellen Ansätze
für intelligente Steuerung: ’Fuzzylogic’ und ’Neuronale Netzwerke’. Die neue
Technik des ANFIS vereint die Vorteile beider Ansätze und kommt heute in ver-
schiedensten Steuereinrichtungen häufig zum Einsatz.

Der erwähnte Roboter basiert auf dem bekannten Roomba Staubsaugerroboter
und wurde im Zuge mehrere Projekt- und Abschlussarbeiten, als ein über das
öffentliche Internet fernsteuerbares Tele-Robotic System enwickelt. Dies macht
es möglich den Roboter, der in San Diego stationiert ist, zum Beispiel über
einen beliebigen Internet Browser auf einem Smartphone von Österreich aus
zu steuern. Der/die Benutzter/Benuzterin sieht den Livestream einer auf dem
Roboter angebrachten Kamera, sowie ein Koordinatennetz, das von Ultrasonic-
Sensoren detektierte Objekte in der unmittelbaren Umgebung des Roboters anzeigt.

Um den Roboter auch in einem autonomen Modus zu betreiben, wurde der
erwähnte ANFIS-Controller implementiert. Dieser erlaubt es dem Roboter einem
mittels ’Virtual Field Force’ geplanten Pfad zu folgen und dabei aus seinen Fehlern
zu lernen. Das Microcontroller-Programm wurde als möglichst flexibel entwickelt
und erlaubt es Befehle laut dem eigenen ’pcb2arduino’-Protokoll entgegen zu
nehmen und zu bearbeiten. Neben dem ANFIS Code, wurde auch eine ’Inertial
Measurement Unit’ (IMU) als essentieller Orientierungs-Sensor und eine einfache
Pfadverfolgungs-Strategie implementiert. Um nur die wichtigsten Optionen zu
nennen, können zum Beispiel verschiedene Parametersets geladen/gespeichert
werden und sogar die komplette Architektur, kann mit unterschiedlicher Anzahl
von Eingängen und ’Membershipfunctions’ des Systems, während des Betriebes
des Roboters verändert werden. Damit bildet das neue Roboter-Controller Sys-
tem eine ideale Grundlage für weitere Algorithmusstudien und Entwicklungen und
eröffnet neue Möglichkeiten zur Forschung der Verbindung Mensch-Maschine.

IV

Contents

1 Introduction 1
1.1 Background . 1
1.2 Thesis Organization . 1

2 The Mobile Robotic System 3
2.1 iRobot . 4
2.2 Sensors . 5

2.2.1 Webcam . 5
2.2.2 Ultrasonic Sensor Array . 5
2.2.3 Thermal Sensor . 7
2.2.4 Inertial Measurement Unit 8

2.3 Arduino Platform . 8
2.4 Single Board Computer . 9

2.4.1 Telerobotic System . 10
2.4.2 Path Planning . 12

3 Inertial Measurement Unit 14
3.1 IMU Sensors . 14
3.2 AHRS Code . 15

4 Path Tracking 17
4.1 Definitions of the Coordinate Systems 17
4.2 Position Dead Reckoning . 18

4.2.1 Using IMU Data . 18
4.2.2 Using Desired Data . 18

4.3 Tracking Strategy . 20

5 Communication Protocol between SBC and Arduino 22
5.1 Single Board Computer to Microcontroller 25

5.1.1 Print Data Commands . 25
5.1.2 ANFIS Commands . 26

V

CONTENTS

5.1.3 Path Tracking Commands 29
5.1.4 Miscellaneous . 29

5.2 Microcontroller to Single Board Computer 29

6 ANFIS Controller 31
6.1 How an ANFIS Controller Works 31

6.1.1 Fuzzy Inference System . 31
6.1.2 Adaptive Neural Network 32
6.1.3 Adaptive Neural Fuzzy Inference System 33

6.2 Learning Algorithms . 36
6.2.1 Gradient Descent Method 36
6.2.2 Least Squares Estimation 38
6.2.3 Hybrid Learning Procedure 40

6.3 Implementation of the ANFIS-Code 40
6.3.1 Issues with the Micro-Controller 40
6.3.2 Modified MIMO ANFIS Controller 42
6.3.3 Collecting Training Data . 46
6.3.4 Off-Line Learning . 48
6.3.5 On-Line Learning . 49

7 Results 51
7.1 ANFIS Training . 51
7.2 ANFIS Responding Time . 53
7.3 Tracking in Telerobotic Mode . 54
7.4 Tracking in Autonomous Mode . 57

8 Conclusions and Future Work 60

Figures VII

Tables IX

References X

Abbreviations XIII

Attachment XIV

VI

Chapter 1

Introduction

1.1 Background

The field of robotics has grown from simple industrial robots that paint cars and
place components on an assembly line to robots that have human-like qualities,
can work in colonies and can learn from their mistakes. Today, there are many
applications in military, commercial and civilian scenarios where one or more
robots must perform complex tasks in an uncertain environment. For example,
autonomous intelligent robot colonies may be used in reconnaissance missions
or seek-and-capture scenarios involving a complex set of interactions between
machines as well as between machines and humans and may cover long dis-
tances to remote sites. Because of the nature of the tasks, new classes of robotic
systems will be required that have a high level of specification for efficiency and
reliability. This can only be accomplished through sophisticated intelligent control
and efficient sensor integration as an integral part of the design of the robot and
the robot’s supporting systems.

In this thesis, we present some results of ongoing research in developing in-
telligent controller for mobile robots. The work presented here focuses on a non-
parametric control strategy with an adapt to varying environments, avoid obsta-
cles while moving towards a goal.

1.2 Thesis Organization

This Thesis is organized in 6 different chapters. Following the introducing chap-
ter, Chapter 2 discusses the mobile robotic system which is the result of several
past projects at the San Diego State University and in particular some hardware
development, a video streaming program and telerobotic user interface.

1

CHAPTER 1. INTRODUCTION

Chapters 3 to 7 are the result of the authors work on the project. In chapter 3,
the IMU (Inertial Measurement Unit) is discussed which is based upon an open
source AHRS (Attitude Heading Reference System) code. Chapter 4 discusses a
first simple path tracking strategy and Chapter 5 explains the defined protocol for
the communication between the SBC (Single Board Computer), controlling the
robot and the connection to the web interface, and the Arduino microcontroller
board, running the ANFIS code and organizing the sensors. The main contri-
bution to the overall robot project, is the implementation of the ANFIS code on
the microcontroller described in Chapter 6. Chapter 7 and 8 show experimen-
tal results of the mobile robot system, with the use of the implemented ANFIS
controller, and discusses conclusions and future work.

2

Chapter 2

The Mobile Robotic System

The robotic system combines a robot base with several of the SDSU-developed
modules as shown in Figure 2.1. The center of the architecture is a single board
computer. This board provides an interface between the web server with its
graphical user interface, the microcontroller board with its connected sensors,
the webcam and the robot base with the wheels.

Figure 2.1: System Architecture of the Mobile Robotic System

3

CHAPTER 2. THE MOBILE ROBOTIC SYSTEM

Figure 2.2: The Mobile Robotic System

2.1 iRobot

The robot is based upon customizing an iRobot Create R© system as shown in Fig-
ure 2.3 [1]. The low cost platform, which is commercially used by the robot com-
pany iRobot Corporation as an automated vacuum cleaning robot, is designed
in a way that it can be easily adopted for hobby use but also research projects.
It contains 32 built-in sensors, two powered wheels, a castor, a cargo bay with
mounting points and an expandable DB25 input/output port as well as serial in-
terfaces, for the integration of custom sensors and actuators. Besides the SBC,
the acrylic case also holds in place an external 12V4200mAh NiMH recharge-
able battery. In a future project, a custom circuit will allow the iRobot to dock
and recharge not only the robot’s battery, but also the external 12V NiMH battery

4

CHAPTER 2. THE MOBILE ROBOTIC SYSTEM

through a charging base.

Figure 2.3: Top and Bottom View of the iRobot Create Platform

2.2 Sensors

To let the robot interact with its surrounding, in addition to the iRobot integrated
sensors a ultrasonic sensor array has been developed to detect obstacles around
the robot and a thermal sensor has been implemented to distinguish between
warm and cold objects. Due to the thermal picture, one can distinguish between
static, cold objects such as like a chair, and dynamic, mostly warm objects such
as a human or an animal. As it is not possible to navigate the robot without
knowing its actual position and orientation, we also use an inertial measurement
unit (IMU) for this operation.

2.2.1 Webcam

The camera is an Unibarin Fire-iTM digital system which is connected to the SBC
via a 400Mbps IEEE1394 (Firewire) interface and supports video streaming at a
resolution of 640x480 pixels with up to 30fps [2].

2.2.2 Ultrasonic Sensor Array

In order of recognizing obstacles in the robot’s environment, an USS (Ultrasonic
Sensor Array) was developed [3]. To cover a 360degree field of view, 10 of the
MaxBotix LV-EZ1 ultrasonic range finder sensors are used, as shown in Figures
2.4 and 2.5. With this sensor array, we can recognize obstacles in a range of

5

CHAPTER 2. THE MOBILE ROBOTIC SYSTEM

150mm to 6500mm at a resolution of 25.4mm. To do so, the sensor works as a
transceiver. It sends out a high frequency sound wave (42kHz), which is reflected
by an obstacle and received again by the sensor. From the elapsed time interval,
the sensor can determine the distance to the obstacle. If all the sensors send the
same sound wave and wait for an answer, and the signal is reflected in a diffuse
way, the sensors would interfere if they all measure at the same time. To solve
that problem, the USS works as a so called daisy chain. One sensor after the
other takes its measurement at different time intervals. With this technique we
achieve a measurement update of the whole array at a frequency of 2Hz.

Figure 2.4: Ultra Sonic Sensor Array

6

CHAPTER 2. THE MOBILE ROBOTIC SYSTEM

Figure 2.5: Acoustic Cone Pattern of the Ultra Sonic Sensor Array

2.2.3 Thermal Sensor

As dynamic objects are more dangerous to collision, because of their range of
movement compared to static objects, it is useful to identify a obstacle as either
static or dynamic. As we know most of static objects are ’cold’ e.g., a wall, a
chair, or a desk whereas many dynamic obstacles such as a human or an ani-
mal are warm bodies. Thus we can use a thermal measurement to distinguish
between static and dynamic objects. We use a thermal array sensor TPA81, with
a spectral response that is typically between 2µm and 22µm, to categorize the
detected objects. This sensor array is mounted on a servomotor to achieve a
sensor detection field of 180degrees (this array will be replaced with a 360degree

servomotor as part of the robot’s future extensions). A example measurement is
shown in Figure 2.6 [3]. We see a 32x8px bitmap, according to the 8 adjacent
points that the sensor can measure simultaneously, and the 32 different positions
of the servomotor. One finds a more detailed description in the technical report
of the project [3].

7

CHAPTER 2. THE MOBILE ROBOTIC SYSTEM

Figure 2.6: 2-D Plot of Thermal Array Sensor Reading

2.2.4 Inertial Measurement Unit

The IMU is used to gather information about the robot’s orientation and move-
ment, which is the essential information for path tracking. Chapter 3 provides a
detailed description.

2.3 Arduino Platform

An ATmega1280 based microcontroller board by Arduino is used. This board has
54 digital i/o pins, 16 analog inputs, 4 serial ports and a 16MHz crystal oscillator.
This board processes all measurements of the inertial measurement unit (IMU),
the ultra sonic sensors (USS) and the thermal sensor (TS). Furthermore, it runs
the ANFIS-controller, whenever the command line interpreter on the controller

8

CHAPTER 2. THE MOBILE ROBOTIC SYSTEM

registers a ’pcb2arduino-protocol’ request (described in Chapter 5) from the sin-
gle board computer (SBC).

Figure 2.7: Used ATmega1280 Based Microcontroller Board by Arduino

2.4 Single Board Computer

The iRobot platform houses a Migrus C787 DCF-P single board computer with a
1.2GHz Eden ULV Processor. The Migrus C787 has a 16-bit card socket and a
flash socket. A Debian derived distribution of the Linux operating system called
Voyage Linux, is used as the operating system which is designed to run x86
–platforms. Further a FB-4652 compact flash adapter board is used for memory.
The connection to the web server is achieved with a Proxima 802.11g PCMCIA
adapter card with external 5db gain antenna.

9

CHAPTER 2. THE MOBILE ROBOTIC SYSTEM

Figure 2.8: Used Migrus C787 DCF-P Single Board Computer

2.4.1 Telerobotic System

The robot can be controlled in telerobotic mode via a graphical user interface on a
web browser. The interface, shown in Figure 2.9, contains a target area in which
the user can drive the robot by positioning the cursor. The user also sees a live
flash video stream from the webcam on the mobile robot system. This stream
is adaptive and dynamically modifies either the frame rate, or the quality scale,
such that the data rate required for streaming, depends on the data rate available
to the robot’s wireless transceiver, to guarantee a satisfying live stream. This
infrastructure was developed in the course of a Master Thesis at the San Diego
State University by Sudha Narajan [2, 4]. Furthermore, all relevant sensor values
from the robot and a certainty grid (Figure 2.10), which shows the probability of
recognized obstacles in the robot’s environment measured by the USS array and
the thermal sensor are displayed.

10

CHAPTER 2. THE MOBILE ROBOTIC SYSTEM

Figure 2.9: Simple AJAX Based Web Interface for Telerobotic Control of the Mo-
bile Robot System

11

CHAPTER 2. THE MOBILE ROBOTIC SYSTEM

Figure 2.10: Certainty Grid Compared With Real Environment

2.4.2 Path Planning

To achieve real-time obstacle avoidance using the data from the ultrasonic sensor
array, the Vector Field Histogram and Virtual Force Field methods were imple-
mented in one of the projects for the mobile robotic system [5]. Simulations, as in
Figure 2.11, show the success of the project.

12

CHAPTER 2. THE MOBILE ROBOTIC SYSTEM

Figure 2.11: Path Planning to Avoid Obstacles

13

Chapter 3

Inertial Measurement Unit

We use a 9 degree of freedom IMU from sparkfun [6]. We measure acceleration,
rotation and magnetic orientation of the sensors in all translational and rotational
axises. All measurements are gathered by a on-board ATmega328 microcon-
troller that turns the sensor board into a AHRS and sends a data string with the
sensor information via a serial port to the Arduino board on the robot.

Figure 3.1: 9 Degree of Freedom IMU from Sparkfun

3.1 IMU Sensors

The sensor board contains a triple-axis accelerometer ADXL345, a single-axis
gyro LY530ALH (yaw), a dual-axis gyro LPR530ALH (pitch and roll) and a triple-

14

CHAPTER 3. INERTIAL MEASUREMENT UNIT

axis magnetic compass HMC5843. With the used settings, the most significant
characteristics of the sensors, are shown in the Tables 3.1, 3.2 and 3.3.

Communication I2C

Measurement Range ±2 g

Resolution 3.9 mg/LSB

Measurement Rate 200 Hz

Table 3.1: Characteristics of the Acceleration Sensor ADXL345

Communication analog

Measurement Range ±300 ◦/s

Resolution 3 mV
◦/s

Measurement Rate 100 Hz

Table 3.2: Characteristics of the Gyro Sensors LY530ALH and LPR530ALH

Communication I2C

Measurement Range ±4 gauss

Resolution 7 mgauss

Measurement Rate 50 Hz

Table 3.3: Characteristics of the Magnetic Digital Compass HMC5843

3.2 AHRS Code

The Open Source code by Jordi Munoz [7], turns the sensor board into a Direc-
tion Cosine Matrix (DCM) based Attitude Heading Reference System (AHRS) with
gyro drift correction based on accelerometer (gravity) vector and magnetometer
(compass) vector.
This code was optimized by setting the measurement rate of the sensors to a
maximal frequency according to Tables 3.1, 3.2 and 3.3. The on-board micro-
controller then calculates the average values, over the elapsing time between the
requests of the ANFIS microcontroller board, and sends them to the ANFIS board
on the robot. With these average values over e.g. 5/10/20 measurements (at a re-
quest frequency of 10Hz of the ANFIS board), measurement noise can be filtered
in the first step. An advanced noise filter could be reached by using an Kalman

15

CHAPTER 3. INERTIAL MEASUREMENT UNIT

filter as described by Tom Pycke on [8]. However, this advanced version is not
implemented yet, as the IMU was not the focus of this thesis.

"[angle x] [y] [z] [gyro x] [y] [z] [accel x] [y] [z] [magn heading] [s] [v]"

Figure 3.2: Answer String of the IMU on a ANFIS-Board Request

The IMU board communicates with the ANFIS board via a serial port. The
data transfer is unidirectional and all values are sent in a character string of 12
values as described in Figure 3.2, where the magnetic heading is calculated from
the sensor values in latitude and longitude as in Equation (3.1). For the definitions
of directions and angles, see Chapter 4.1.

magn heading = π − arctan−MAGY
MAGX

(3.1)

where MAGx and MAGy are the tilt compensated values, magn is the magnetic mea-
surements and pitch and roll are the calculated tilt bearings:

MAGX = magnx · cos (pitch) +magny · sin (roll) · sin (pitch) +magnz · cos (roll) · sin (pitch)

MAGY = magny · cos (roll)−magnz · sin (roll)

(3.2)

The s and v values of the IMU string are simply the first and second derivatives
of the acceleration in the x direction, which is a straight movement of the iRobot.
As there is no tilt and Coriolis correction of the calculation of position and velocity
currently implemented, these values are not very useful, because each small tilt
in the calibration surface causes a variation in gravity measured by the acceler-
ation sensor in the x direction. The gravity acceleration is fairly big compared to
the robot’s movement. So any influence on the sensor in x direction brings an
unacceptable error in the calculations of position and velocity.

16

Chapter 4

Path Tracking

4.1 Definitions of the Coordinate Systems

To avoid misinterpretation and confusion about values and directions used in this
thesis, a global coordinate system for the mobile robotic system was defined as
shown in Figure 4.1. A forward movement of the robot means a movement in
the x direction. The relations to the other translational and rotational vectors are
defined in the common way of the right-hand rule, except the z vector facing the
earth, to create a positive value for the gravity.
The bearing of the robot relative to the magnetic north pole is defined with the
mathematical convention as a counter clockwise rotation meaning a positive value.
The last definition concerns the position of the robot. To work with a global coor-
dinate path leading to a target, it is necessary to describe this path in a defined
coordinate system. The coordinate system is always north oriented, where the x
value describes the direction west to east and the y value describes the south to
north direction. A point [0/0] refers to the origin of the path.
Unless mentioned differently, all values are given in millimeter mm and radians
rad.

17

CHAPTER 4. PATH TRACKING

Figure 4.1: Definition of (left) Translational and Rotational Directions in the Sys-
tem, (middle) the Robot’s Bearing and (right) the Coordinates for Global Position
of the Robot

4.2 Position Dead Reckoning

To have the robot track a path, it is essential to know where the robot’s actual
position is. Given the current position, one may then calculate the desired next
path coordinates. To do so, we can use different strategies as described in [9, 10].
According to the fact that our system is used in buildings, we confine our system
to inertial position dead reckoning, as GPS signals may not be reliable enough.

4.2.1 Using IMU Data

We can use the values sent from the IMU to calculate the robot’s position. By
integration of the acceleration measurement in the x direction we can calculate
velocity and the covered distance of the robot as in (4.1). However, as mentioned
in Chapter 3.1, a simple integration of the acceleration measurement in x direction
is not useful, due to the missing error compensation of the AHRS.

at = ax

vt =

∫
at = ax · t+ vt−1

st =

∫
vt = ax · t2 + vt−1 · t+ st−1

(4.1)

4.2.2 Using Desired Data

Currently the position dead reckoning is done by using the input (desired change
in bearing over time) and the given velocity from the last ANFIS computation, and

18

CHAPTER 4. PATH TRACKING

the elapsed time since then:

r =
vMold

ωold

(4.2)

Where ωold is the change in bearing over time and vMold is the given or ’middle’
velocity of the robot, which are the values of the last ANFIS request. We can then
use the radius r, the robot’s velocity vM and the time t to estimate the robot’s new
position as in Figure 4.2:

α = ωold ·∆t (4.3)

xr = r · sin (α)

yr = r · (1− cos (α))
(4.4)

v =
√

(x2r + y2r)

β = arctan

(
yr
xr

) (4.5)

x+= v · cos
(π

2
+ γ + β

)
y+= v · sin

(π
2

+ γ + β
) (4.6)

where γ is the actual bearing of the robot, reported by the IMU as the yaw value.
Also note, that due to our definition, counter clockwise angles have a negative
value.

19

CHAPTER 4. PATH TRACKING

Figure 4.2: Position Dead Reckoning

4.3 Tracking Strategy

As we are very limited with the memory on the microcontroller and the ANFIS
system is designed to be as flexible as possible, the path is not stored on the mi-
crocontroller. Instead the SBC, which also runs the path planning algorithm, just
the path coordinates are reported to the ANFIS controller, whenever the controller
requests a new coordinate.
For now, a very simple tracking strategy with 3 coordinates is implemented, as
shown in Figure 4.3. However this method can be improved in a future project to
achieve a smoother path tracking.

20

CHAPTER 4. PATH TRACKING

Figure 4.3: Path Tracking Strategy

The ANFIS microcontroller stores 3 coordinates: path0 is the last coordinate,
path1 is the current target and path2 is the next coordinate. Further v0 and v1 are
the vectors from the current estimated position pos to the coordinates path0 and
path1, respectively Θa is the actual bearing of the robot according to magnetic
north, as reported by the IMU. The bearing of v1 is the desired bearing for the
next step Θd = −π

2
+ α and is used as the ANFIS input, if autonomous mode is

chosen.
As soon as the robot reaches a threshold distance from the path1 coordinate and
v1 is smaller than v0, the ANFIS microcontroller requests a new coordinate from
the SBC. When the new path coordinate is received, the coordinates are shifted
as:

path0 ← path1

path1 ← path2

path2 ← pathnew

21

Chapter 5

Communication Protocol between
SBC and Arduino

The developed protocol is flexible designed so that it can be easily adopted for
other projects. One command from the SBC consists of the command mnemonic,
the length of the data block and the data block itself.

[mnemonic] [length n] [data]
1 Byte 1 Byte n Byte

Figure 5.1: Structure for a Request from the SBC to the Arduino

Packages are processed if the length-Byte (amount of Bytes in data block) is
equal to amount of received data bytes. Furthermore, a # indicates messages
from ANFIS board to the SBC, whereas a $ indicates requests from the ANFIS
board to the SBC. Commands from the SBC to the ANFIS board do not have a
special start character and have a structure like shown in Figure 5.1. Note that
a request from the SBC to the microcontroller does not have any determiner,
whereas the determiner between values of the answer string of the microcon-
troller to the SBC is a “ ” (whitespace). The current program version uses the
protocol of Table 5.2 and the definition of values as in Table 5.1.

22

CHAPTER 5. COMMUNICATION PROTOCOL BETWEEN SBC AND ARDUINO

variable value description

SBC to Arduino
[vm] 0..+500 mm/s as 2 Byte Integer big-endian;
[Ot] −179..+179 kompass bearing in degrees as 2 Byte Integer big-

endian;
[x]/[y] mm as 2 Byte Integer big-endian; xy-coordinate

relativ to point of origin (reset with ’set path origin’
command);

[para set] 1, 2 set number as 1 Byte Integer;
[mode] 1, 2, 3 mode number as 1 Byte Integer;

Arduino to SBC (all sent as char strings with space seperator)
[vr] −500..+500 int value in mm/s

[vl] −500..+500 int value in mm/s

raw data sensor value as integer
inches data converted sensor value as float
cm data converted sensor value as float
[angle x] −π..+π roll; float value in radiant

[angle y] −π/2..+π/2 pitch; float value in radiant

[angle z] −π..+π yaw; float value in radiant

[gyro x/y/z] −300..+300 float value in rad/s

[accel x/y/z] −2g..+2g float value in m/s2

[magn heading] 0..2π float value in radiant

[s] float in mm

[v] float in mm/s

[pos x]/[pos y] int value in mm

Table 5.1: Description of Protocol Values

23

CHAPTER 5. COMMUNICATION PROTOCOL BETWEEN SBC AND ARDUINO

command mnemonic data answer

Print Data
print raw data ’1’ "[uss 0]...[uss 9]"

print inches data ’2’ "[uss 0 · INCH PER VOLT]

...[uss 9 · INCH PER VOLT]"

print cm data ’3’ "[uss 0 · CM PER VOLT]

...[uss 9 · CM PER VOLT]"

print IMU data ’4’ "[angle x][y][z]

[gyro x][y][z]

[accel x][y][z]

[magn heading][s][v]"

print cm & IMU data ’5’ "[output like ’3’]

[output like ’4’]"

ANFIS commands
tele-robotics mode ’t’ "#ACK"

autonomous mode ’a’ "#ACK"

anfis update ’u’ [vm] [Ot] "[vl][vr][pos x][pos y][RMSE]"

extended anfis update ’U’ [vm] [Ot] "[output like ’u’]

[output like ’3’]

[output like ’4’]"

learning mode ’m’ [mode] "#ACK"

set up new anfis ’n’ [para set index] "#ACK"

save para to EEPROM ’s’ "#ACK"

print parameter ’0’ list of all parameters as
string

set step size ’z’ [stepsize]
[inc rate]
[dec rate]

"#ACK"

Path Tracking
set path origin ’o’ "#ACK"

get path coordinate ’p’ [x] [y] "#ACK"

Miscellaneous
reset IMU ’r’ "#ACK"

debug on/off ’d’ "#ACK"

Table 5.2: List of Commands from SBC to Arduino

24

CHAPTER 5. COMMUNICATION PROTOCOL BETWEEN SBC AND ARDUINO

5.1 Single Board Computer to Microcontroller

Examples of requests follow and show the sent byte values (they do not have any
determiner in between). Note that the first byte is the mnemonic and is sent as
the ASCII-value of the command.

5.1.1 Print Data Commands

print raw data

Mnemonic: ’1’ or ASCII 49

Description: Prints the raw values of the USS array, as they are read from
the sensors.

Example Request: 49 0

Example Respond: "38 30 105 32 29 118 53 59 52 43"

print inches data

Mnemonic: ’2’ or ASCII 50

Description: Prints the distance measurements of the USS array in
[inch].

Example Request: 50 0

Example Respond: "18.93 14.94 52.31 15.94 14.44 58.79 26.40 28.89

25.90 21.42"

print cm data

Mnemonic: ’3’ or ASCII 51

Description: Prints the distance measurements of the USS array in [cm].
Example Request: 51 0

Example Respond: "48.09 37.97 132.88 40.50 36.70 149.33 67.07 73.40

65.81 54.42"

25

CHAPTER 5. COMMUNICATION PROTOCOL BETWEEN SBC AND ARDUINO

print IMU data

Mnemonic: ’4’ or ASCII 52

Description: Prints the IMU measurements as shown in table 5.2 with the
3 calculated AHRS-angles, the raw 3 gyro and 3 acceleration
measurements and the magn heading, which already includes
tilt compensation in roll and pitch

Example Request: 52 0

Example Respond: "0.000 0.002 3.006 0.000 0.000 0.016 0.000 -0.040

9.810 3.017 2.041 0.059"

print cm & IMU raw data

Mnemonic: ’5’ or ASCII 53

Description: Prints the measurements of the USS array in [cm] and also
the IMU data. So the SBC just needs 1 request to gather all
the information.

Example Request: 53 0

Example Respond: 48.09 37.97 132.88 40.50 36.70 149.33 67.07 73.40

65.81 54.42 0.000 0.002 3.006 0.000 0.000 0.016

0.000 -0.040 9.810 3.017 2.041 0.059

5.1.2 ANFIS Commands

telerobotics mode

Mnemonic: ’t’ or ASCII 116

Description: Turns the ANFIS program to telerobotic mode. So the AN-
FIS uses the reported bearing Θ and velocity v from the
graphical user interface for it is velocity computations.

Example Request: 116 0

Example Respond: "#ACK"

26

CHAPTER 5. COMMUNICATION PROTOCOL BETWEEN SBC AND ARDUINO

autonomous mode

Mnemonic: ’a’ or ASCII 97

Description: Turns the ANFIS program to autonomous mode. The de-
sired change of bearing is then calculated via path tracking
strategy and solely the velocity v from the GUI is used as
the robot’s middle velocity. If no velocity is sent with the ’an-
fis update’ command, the ANFIS controller uses the most
recent given velocity.

Example Request: 97 0

Example Respond: "#ACK"

anfis update

Mnemonic: ’u’ or ASCII 117

Description: The ANFIS uses the reported bearing Θ and/or velocity v to
calculate the new velocities, and reports them with the new
calculated robot’s position and the last RMSE. It is optional
to send a bearing and/or velocity with the request.

Example Request: 117 4 0 45 1 44

Example Respond: "200 -352 120 1115 0.002"

extended anfis update

Mnemonic: ’U’ or ASCII 85

Description: Same function as ’anfis update’, but reports additionally the
USS array and IMU values, to use just 1 request instead of
’u’,’3’ and ’4’

Example Request: 85 4 0 45 1 44

Example Respond: 200 -352 120 1115 0.002 48.09 37.97 132.88 40.50

36.70 149.33 67.07 73.40 65.81 54.42 0.000 0.002

3.006 0.000 0.000 0.016 0.000 -0.040 9.810 3.017

2.041 0.059

27

CHAPTER 5. COMMUNICATION PROTOCOL BETWEEN SBC AND ARDUINO

learning mode

Mnemonic: ’m’ or ASCII 109

Description: Set the learning mode of the ANFIS. Possible modes are:
(0) → no learning, (1) → update premise parameters in
layer 1, (2) update consequent parameters in layer 4, (3)
update all parameters in layer 1 and 4.

Example Request: 109 1 3

Example Respond: "#ACK"

set up new anfis

Mnemonic: ’n’ or ASCII 110

Description: Rebuild ANFIS architecture and load the requested param-
eter set from the EEPROM.

Example Request: 110 1 6

Example Respond: "#ACK"

save para to EEPROM

Mnemonic: ’s’ or ASCII 115

Description: Save actual parameter set to EEPROM at given set posi-
tion.

Example Request: 115 1 10

Example Respond: "#ACK"

print parameter

Mnemonic: ’0’ or ASCII 48

Description: Print the actual parameter set.
Example Request: 48 0

Example Respond: "3.810000 2.000000 -3.810000 3.810000 2.000000

3.810000 0 0 0 0 "

set step size

Mnemonic: ’z’ or ASCII 122

Description: Set step size and update factors.
Example Request: 122 3 10 90 110

Example Respond: "#ACK"

28

CHAPTER 5. COMMUNICATION PROTOCOL BETWEEN SBC AND ARDUINO

5.1.3 Path Tracking Commands

set path origin

Mnemonic: ’o’ or ASCII 111

Description: Reset robot’s position to [0/0]
Example Request: 111 0

Example Respond: "#ACK"

get path coordinate

Mnemonic: ’p’ or ASCII 112

Description: Sent new path coordinate for the path tracking strategy.
Should be sent after each ”#NP” request of the microcon-
troller board.

Example Request: 112 4 0 100 1 50

Example Respond: "#ACK"

5.1.4 Miscellaneous

reset IMU

Mnemonic: ’r’ or ASCII 114

Description: Send a reset signal to the IMU board. IMU request takes
about 6 seconds, until the Arduino board responds with ac-
knowledgement.

Example Request: 114 0

Example Respond: "#ACK"

debug on/off

Mnemonic: ’d’ or ASCII 100

Description: Switch debug mode on/off. In debug mode, the ANFIS
board reports more information about the ANFIS update
etc.

Example Request: 100 0

Example Respond: "#ACK"

5.2 Microcontroller to Single Board Computer

As the microcontroller side is very passive in the communication, there is just
one real request ”$NP” from the ANFIS board to the SBC. All the other messages

29

CHAPTER 5. COMMUNICATION PROTOCOL BETWEEN SBC AND ARDUINO

are either responding answers to requests from the SBC, or just a message if
the request was acknowledged or an error occurred (Table 5.3). The request
for the next path point is sent whenever the path tracking strategy needs a new
coordinate.

request comment
"$NP" request next path point
"#ERR" error with request
"#ACK" request acknowledged

Table 5.3: Messages from Arduino to SBC

30

Chapter 6

ANFIS Controller

6.1 How an ANFIS Controller Works

An ANFIS is a combination of the two traditional intelligent control algorithms,
Fuzzy Inference Systems and Adaptive Neural Networks. The Fuzzy System’s
strength is the possibility to implement human expertise without describing it with
a mathematical model. Instead the expert’s knowledge is formulated in simple
linguistic expressions as control rules. What still has to be done, though, is to
shape the membership functions, which weight the rules. As the form of the
membership functions has an drastic effect on the controllers characteristic, it is
usually hard to set them in an optimal way; trial and error is typically done.
The Neural Network has its strength in the autonomous fine tuning of the system
itself. However, it is a very complex network and is more or less just a black
box for the user. The ANFIS combines the advantages of both systems and is
a powerful and widely used tool in the field of control engineering. As a result,
we have a system with the transparency of a Fuzzy System, but an autonomous
tuning capability of the membership functions through a Neural Network [11].

6.1.1 Fuzzy Inference System

Basically a Fuzzy Inference System functions as shown in Figure 6.1. The steps
of a fuzzy inference are:

1. Compare the input variables with the membership functions to obtain mem-
bership values of each linguistic label (fuzzification)

2. Combine the membership values (usually multiplication or min.) to get a
’firing strength’ of each rule and generate accordingly the output of each
rule (rule evaluation)

31

CHAPTER 6. ANFIS CONTROLLER

3. Combine the outputs of all rules to achieve a crisp output (defuzzification)

For a more detailed description and the evaluation of several types of fuzzy rea-
soning have a look at [12] and [13].

Figure 6.1: Fuzzy Inference System

6.1.2 Adaptive Neural Network

An adaptive neural network is a multilayer feed-forward network as shown in Fig-
ure 6.2. It consists of an input layer, one or more hidden layers and an output
layer. It functions principally as the human brain. Each circle symbolizes a neuron
with adaptive parameters and each arrow a connection between neurons. Each
of this nodes has a node function to combine the inputs and handles the outputs
with different weights. If the system learns, it simply changes the weights of the
connections in a way to minimize an overall error between desired and actual sig-
nals. This learning algorithms are discussed in Chapter 6.2 and can be adopted
for the ANFIS. The number of nodes in the hidden layers is arbitrary. However,
more nodes make the system more complex; hence computation is more, and
not necessarily better. A detailed description is given in [14].

32

CHAPTER 6. ANFIS CONTROLLER

Figure 6.2: Adaptive Neural Network

6.1.3 Adaptive Neural Fuzzy Inference System

As mentioned before, an ANFIS is a combination of the two common intelligent
control algorithms: a Fuzzy Inference System and an Adaptive Neural Network.
They are combined in the way that we use the semantic of an Fuzzy Inference
System, but describe it as a Neural Network with its node functions, weights and
connections (Figure 6.4). A square node (Layer 1 and 4) means it has adaptive
parameters, whereas a circle node just consists of a node function. Table 6.1
shows the description of the 2-input-ANFIS layers by Jang [11].

33

CHAPTER 6. ANFIS CONTROLLER

Figure 6.3: Single Input Single Output ANFIS

Figure 6.4: Multi Input Single Output ANFIS

34

CHAPTER 6. ANFIS CONTROLLER

Layer Node Function Description

1 Oi = µAi
(x) Membership Functions: Ai is the linguis-

tic label A for node i. In other words it is
the membership function µ and specifies
the degree to which the given input x sat-
isfies the quantifier A. Usually we choose
µA to be a bell-shaped function with max-
imum equal to 1 and minimum equal to 0,
such as

µAi
(x) =

1

1 +
(
x−ci
ai

)2
· bi

or

µAi
(x) = exp

(
−
(
x− ci
ai

)2
)

where {ai, bi, ci} are adaptive parameters.
Accordingly the shape of the membership
functions change throughout learning. Pa-
rameters in this layer are referred to as
premise parameters.

2 ωi = Π µji (j = A,B..n) Rule Fulfillment: Every node in this layer
multiplies the incoming signals from the
membership function nodes in layer 1 and
sens the product out. Each node output
represents the firing strength of a rule.

3 ω̄i =
ωi

ω1 + ω2

, (i = 1, 2) Sum of Rules: The i th node in the layer
calculates the ratio of the i th rule’s firing
strengths. The firing strength gets normal-
ized.

4 Oi = ω̄ifi = ω̄i (pix+ qiy + ri) Rule Output: The nodes in this layer
contain among the node function the
adaptive parameters {pi, qi, ri}. Parame-
ters in this layer will be referred to as con-
sequent parameters.

5 Oi = Σω̄ifi =
Σωifi

Σωi
Over All Output: The single node in this
layer computes the overall output as the
summation of all incoming signals.

Table 6.1: Layer Description of an ANFIS35

CHAPTER 6. ANFIS CONTROLLER

The complexity of the an ANFIS structure is shown in Table 6.2, where Inn is
the number of inputs, Rulen is the number of rules and Noden is the number of
nodes. Rulen and Noden can be calculated from the following formulas:

Rulen = Mf Inn
n

Noden = Inn + Inn ·Mfn + 3 ·Rulen + 1
(6.1)

Further the amount of adoptable parameters in layers 1 and 4 is:

parametern = 3 · Inn ·Mfn + (Inn + 1) ·Rulen + 1 (6.2)

Layer Name #Nodes #Parameters

0 Input Inn -
1 Membership Functions Inn ·Mfn 3
2 Rule Fulfillment Rulen -
3 Sum of Rules Rulen -
4 Rule Output Rulen Inn + 1

5 Overall Output 1 -

Table 6.2: Amount of Nodes and Parameters in an Single-Output ANFIS

6.2 Learning Algorithms

The ANFIS can be tuned with different learning methods. However, the most
used ones are the Gradient Descent Method and the Least Squares Estimation.
Moreover, it is also possible to combine different algorithms to make the method
even more efficient, as proposed by Jang in [11].

6.2.1 Gradient Descent Method

The GDM [15] is a back-propagation learning method and works with a calculated
squared error. This error is calculated as the following:

E = (Od −Oa)
2 (6.3)

whereOd is the desired Output andOa is the actual Output. We can then calculate
the error rate from (6.3):

∂E

∂O
= −2 · (Od −Oa) (6.4)

36

CHAPTER 6. ANFIS CONTROLLER

The error rate of the internal nodes can be derived with use of the chain rule:

∂E

∂Ok

=

#(k+1)∑
m=1

∂E

∂Ok+1

· ∂Ok+1

∂Ok

(6.5)

where k stands for the layer and i for the position in the kth layer. As a result, the
update formula for the generic parameter α is

∆α = −η · ∂E
∂α

(6.6)

η is a learning rate and can be expressed as

η =
S√∑
α

(
∂E
∂α

)2 (6.7)

where S is the step size. S can vary the speed of convergence to the optimal
function. However, a step size that is too large causes an overshoot in the learn-
ing curve.

In the adopted code by Jang, an adaptive step size with 2 update rules (Figure
6.5) is used. The step size gets increased, when RMSE is decreasing 4 times in
a row and the step size gets decreased, if 2 bounces in a row occur (Figure 6.5.
With these simple rules, a faster and more efficient learning curve is achieved.
The difference in convergence speed is shown in Figure 6.6. However, the GDM
is known to be generally slow and likely to become trapped in a local minima.

Figure 6.5: Step Size Update Rules

37

CHAPTER 6. ANFIS CONTROLLER

Figure 6.6: Comparison of Off-Line Training With and Without Adaptive Step
Sizes

6.2.2 Least Squares Estimation

This algorithm is a common method to approach the best solution in an overdeter-
mined system and was first described by Carl Friedrich Gauss around 1794 [16].
Jang describes its use for an adaptive network in [11]. We assume, for simplicity,
that an adaptive network has only one output

output− F
(
~I, S
)

(6.8)

where ~I is the set of input variables and S is the set of parameters. The elements
of S can be identified by the LSE, if there is a function H, such that the com-
posite function H ◦ F is linear in some of the elements of S. If the set S can be
decomposed into two sets

S = S1 ⊕ S2 (6.9)

38

CHAPTER 6. ANFIS CONTROLLER

(where ⊕ represents a direct sum) such that H ◦ F is linear in the elements S2,
then upon applying H to (6.8), we have

H (output) = H ◦ F
(
~I, S
)

(6.10)

which is linear in the elements of S2. We can use our training data as the elements
of S1 and obtain a equation

A ·X = B (6.11)

where A are the input of our training patterns, X is an unknown vector whose
elements are the consequent parameters in ANFIS-Layer 4 (Figure 6.4), and B is
the output value of the training patterns. As we have more than 1 pattern, this is
an overdetermined problem and therefore there is no exact solution to (6.11). So
we want to calculate the least squares estimate (LSE) of X, X∗, which is sought
to minimize the squared error [A ·X −B]2 [11]. The most well-known formula for
X∗ uses the pseudo-inverse of X:

X∗ =
(
AT ·A

)−1 ·AT ·B (6.12)

where AT is the transpose of A, and
(
AT ·A

)−1 ·AT is the pseudo-inverse of A if
AT ·A is non-singular. As (6.12) is very computation heavy, we use the sequential
Kalman Filter formulation for the LSE:

Xi+1 = Xi + Si+1 · gai+1

(
bTi+1 − aTi+1 ·Xi

)
Si+1 = Si −

Si · ai+1 · aTi+1 ·Si
1 + aTi+1 ·Si · ai+1

, i = 0, 1, . . . , P − 1
(6.13)

If we add a forgetting factor λ to (6.13), to weight the patterns and consider
the most recent computations as more important, the LSE-equations become the
following:

Xi+1 = Xi + Si+1 · ai+1

(
bTi+1 − aTi+1 ·Xi

)
Si+1 =

1

λ
·
[
Si −

Si · ai+1 · aTi+1 ·Si
λ+ aTi+1 ·Si · ai+1

]
, i = 0, 1, . . . , P − 1

(6.14)

The value of λ is between 0 and 1, where a smaller number means a faster decay
of old values. However, a small λ can also cause numerical instability and should
be avoided.

39

CHAPTER 6. ANFIS CONTROLLER

6.2.3 Hybrid Learning Procedure

Jang proposed a Hybrid Learning Procedure in [11], which combines the Gra-
dient Descent Method and the Kalman Filter formulation of the Least Squares
Estimation. In a first pass the consequent parameters from ANFIS-Layer 4 are
pre-set via LSE, and after calculating the error of the system, in the second pass
the error is back-propagated via the GDM, and the premise parameters of Layer
1 are updated. See Table 6.3 for an overview.

Forward Pass Backward Pass

Premise Parameters Fixed Gradient Descent
Consequent Parameters Least Squares Estimate Fixed
Signals Node Outputs Error Rates

Table 6.3: Two Passes in the Hybrid Learning Procedure by Jang

6.3 Implementation of the ANFIS-Code

6.3.1 Issues with the Micro-Controller

The main issue in implementing the ANFIS was the limitation of memory available,
especially the availability of the SRAM, which is 8kByte on the Arduino Mega
microcontroller board, as the ANFIS architecture and its calculations require big
arrays for computation. The on-line version of the ANFIS is based on the open
source code version, written in C by Jang [11]. In a first step, data-types for the
ANFIS structure were changed, such as using byte instead of integer if possible.
A huge amount of working memory could be saved, with taking the Kalman Filter
out of the code, as there is no use for the LSE algorithm in the on-line version of
the ANFIS code. The reason for this is described in Chapter 6.3.5. Another way to
save memory is to replace the configuration file with all the node connections as
Jang does it in his code, with the algorithm that creates the file, and calculate the
connections just while building the ANFIS. Moreover, to keep the ANFIS program
as flexible as possible, the parameter set is stored in the EEPROM. With a special
reading algorithm, it is even possible to read and store different parameter sets
from the EEPROM which are stored as in Figure 6.7. To test the ANFIS code, a
off-line trained parameter set was loaded into the ANFIS architecture and trained
on-line, by randomly moving the IMU to simulate an error of the output and thus
forcing high update values of the gradient descent method. Figure 6.8 shows
the learning capability of the on-line ANFIS code on the Arduino microcontroller

40

CHAPTER 6. ANFIS CONTROLLER

board.

set 1 set 2 . . .
In n Mf n Stepsize parameter 1 parameter 2 . . . In n Mf n

1 Byte 1 Byte 4 Byte float 4 Byte float

Figure 6.7: Datastructur of Parametersets in EEPROM

The final version of the code is able to run a single input ANFIS from 2 to 7
membership functions and 2 input ANFIS with 2 to 4 membership functions. The
used space of the total 8219Bytes is shown in Table 6.4.

#Inputs #Membershipfunctions Used SRAM [byte]
1 2 1680

3 2000
4 2300
5 2619
6 2980
7 3365

2 2 2456
3 4335
4 7680

Table 6.4: Used Amount of SRAM on the Microcontroller Board

41

CHAPTER 6. ANFIS CONTROLLER

Figure 6.8: Test Learning Capability of the On-Line ANFIS Code

6.3.2 Modified MIMO ANFIS Controller

Previously, we discussed the implementation of a multi-input-single-output AN-
FIS. However, we have a multi-input-multi-output ANFIS Controller as it reports 2
velocities for the robot’s wheels.
The user reports a desired change of bearing and a velocity of the robot. De-
pending on the chosen mode, the ANFIS uses the users bearing or the bearing
reported by the tracking strategy. As the modified MIMO-ANFIS Controller works
as an inverse model of the robot itself, it corrects the desired bearing in a way that
the robot’s movement corresponds with the desired movement.

42

CHAPTER 6. ANFIS CONTROLLER

Figure 6.9: Integration of a MIMO Anfis Controller into the iRobot

As the SBC has to request every new ANFIS computation but should not lose
connection to the server, the ANFIS microcontroller board is implemented in the
existing code with a separate running thread as in Figure 6.10. To avoid a buffer-
ing of requests on the ANFIS microcontroller, which is very slow in the GUI, we
use mutex protected global variables between the ANFIS Thread and the Main
Thread. In this way we can guarantee that a new ANFIS request is always made
with the newest GUI commands of the user. The Main Thread updates the vari-
ables velocity v and change in bearing ω whenever the user interacts with the
user interface. Accordingly, the ANFIS Thread runs in a timed action (determined
through the responding time of the microcontroller board and optional with a timed
action) and always requests the ANFIS board with the most recent values. The
ANFIS on the microcontroller then requests the IMU due to update information
about the robot, as shown in Figure 6.11, to also work with the most recent mea-
surements of the AHRS.

43

CHAPTER 6. ANFIS CONTROLLER

Figure 6.10: Flow Diagram of the ANFIS Thread Running on the SBC

44

CHAPTER 6. ANFIS CONTROLLER

Figure 6.11: Flow Diagram of the iRobot Controller Running on the Arduino Mi-
crocontroller Board

45

CHAPTER 6. ANFIS CONTROLLER

6.3.3 Collecting Training Data

Theoretical Function

For an ideal case, perfect symmetric motor characteristics are assumed, and no
regard on acceleration ramps of the motors, nor wheel slippage is taken. If the
robot rotates around a point R, the geometrical relations between the velocities
of the left wheel, right wheel and the middle velocity of the center of the robot, are
then as shown in Figure 6.12.

As the angular velocities between the wheels are equivalent ωL = ωM = ωR, it
is possible to derive a formula for the change in orientation ω = f (∆v), using the
geometric congruence of velocities and radii:

r

vM
=
r + k

2

vR

r =
k · vM

2 · (vR − vM)

(6.15)

With ω =
vM

r
and vM =

vL + vR

2
we can calculate ω as:

ω =
(vR − vL)

k
=

∆v

k
(6.16)

where k is the distance between the wheels. With a maximum velocity of ±500mm
s

[17] and measured wheel distance k ≈ 262mm, we get maximum ω ≈ ±3.81 rad
sec

.
Accordingly, the formula to create training data with ω as the input and ∆v as the
outputs:

∆v = ∆ω · k, ∆ω = −3.81,−3.80, . . . ,+3.81 (6.17)

Figure 6.12: Theory of the Robot’s Movement

46

CHAPTER 6. ANFIS CONTROLLER

Collecting Data with iRobot

In comparison to the theoretical training data, another set of training data is col-
lected by using the robot itself. Thus, the training data for the off-line training
already contains the dynamic characteristics of the iRobot.
The training data is created out of a log file (e.g. Fig.6.5 with the full log in the
appendix) from a test drive in telerobotic mode. From such a log, the desired
bearing thetaD, which is the user input from the GUI 2.9, is used as ωc, and
the actual change in bearing over time ωb is calculated with thetaA, which is the
logged magnetic compass value from the IMU. Additionally ωy is calculated with
yaw, which is the bearing value reported from the AHRS on the IMU with.

ωbt =
thetaAt+1 − thetaAt
timet+1 − timet

(6.18)

and alternatively
ωyt =

yawt+1 − yawt
timet+1 − timet

(6.19)

Training patterns are created with the desired ωd, and respectively
dωd

dt
, as

inputs, and ∆v as output
ωd = ωb (6.20)

or
ωd = ωy (6.21)

and
∆v = ωc · k (6.22)

where k is again the wheel distance.

47

CHAPTER 6. ANFIS CONTROLLER

time[s][ms] v r thetaD thetaA yaw rmse
...

...
...

...
...

...
...

25 740 170 215 279 38.45 28.02 0.02
25 881 170 215 279 42.23 33.86 0.058
26 34 170 215 279 47.38 39.71 0.035
26 136 175 787 303 54.6 45.15 0.003
26 264 175 787 303 58.38 51.34 0.058
26 403 130 1191 320 63.08 56.09 0.076
26 535 130 1191 320 64.34 58.38 0.134
26 659 120 -1929 8 64.34 60.5 0.064
26 792 120 -1929 8 65.83 61.48 0.038
26 936 120 -1929 8 66.86 62.4 0.025
27 66 145 -1739 16 65.6 63.03 0.065
27 195 145 -1739 16 65.49 63.43 0.002
27 328 145 -1739 16 64.46 63.71 0.106
27 451 145 -1739 16 63.6 63.71 0.101

...
...

...
...

...
...

...

Table 6.5: Log of a Test Drive in Telerobotic Mode

6.3.4 Off-Line Learning

For the supervised learning procedure, the open source ANFIS code (written in
C) by Jang is used, as proposed in [11]. Trained with our ideal function (6.17) the
membership functions for a single input system with 2 to 7 membership functions
are shown in Figure 6.13. Due to the training data being derived from an first-
degree polynomial function, the membership functions are perfectly symmetric.

48

CHAPTER 6. ANFIS CONTROLLER

Figure 6.13: Membership Functions After Off-Line Training on Theoretical Func-
tion Set

6.3.5 On-Line Learning

The second part of the ANFIS training takes place right on the robot during oper-
ation. Therefore, after every ANFIS update request from the SBC, the microcon-
troller operates using the following 5 steps, shown in Figure 6.11:

First: At the beginning of each ANFIS computation, a Gradiant Descent Method
(Chapter 6.2.1) is applied. The error of the ANFIS is calculated by compar-
ison of the desired change in bearing ωd, which was the input of the last
ANFIS pass, and the actual change in bearing ωa reported by the IMU as
in (6.3). The parameters in layer 1 and/or layer 4 (depending on chosen
learning mode) then get updated as described in equations (6.4) to (6.6).

Second: After the learning algorithm, the information about the robot’s orien-
tation is updated, through requesting new values from the IMU. The new
position of the robot is calculated as discussed in Chapter 4.2.2.

49

CHAPTER 6. ANFIS CONTROLLER

Third: To work with the latest measurement of the IMU, the microcontroller re-
quests the IMU just before computing the ANFIS. Depending on telerobotic-
or autonomous mode, the desired change in bearing ωd as input, is either
taken from the SBC request as GUI input, or calculated with the tracking
strategy of Chapter 4.3. After the correction of possible bearing changes
from 3rd to 4th quadrant the inputs get set.

Fourth: Compute the new inputs through all ANFIS layer and set the ANFIS
ouput ∆v.

Fifth: The last step of the ANFIS-update-request-cycle is the computation of the
new velocities for the wheels, using the ANFIS output ∆v and the given
velocity for the robot vg. These take effect until the next update request of
the SBC, which takes place in a periodic manner.

We can not adopt the Kalman formulation of the LSE from Jang’s Code to
compute the consequent parameters of Layer 4 because the essential function
(6.11) can not be solved, as B is unknown during operation since the actual
change in bearing of the robot during the next time period can not be predicted.
Consequently, this on-line version of the Code is not a hybrid learning ANFIS, as
it solely uses the GDM for learning. However, as the ANFIS is always trained and
thus the ANFIS function is formed, the disadvantages of the GDM i.e., being slow
and susceptibility to getting trapped in minima, are not a problem as the ANFIS is
solely fine tuned while operating on-line.

50

Chapter 7

Results

7.1 ANFIS Training

The comparison of the ideal function (6.17) and the collected data from a log, as
discussed in Chapter 6.3.3, is shown in Figure 7.1. We see, that the measure-
ments of actual change in bearing ωy, calculated with the yaw and time values of
the log in (6.5), are following the ideal function.

51

CHAPTER 7. RESULTS

Figure 7.1: Comparison of Ideal Function and Experimental Data Collection

However, they are very dispersed, due to the noisy sensor measurements of
the IMU and taking a measurement approximately every 120ms, which causes an
amplification of the error by about a factor 8, when projecting the value to bearing
per second. For our experiments, we used different ANFIS architectures that are
trained with the theoretical linear function of Chapter 6.3.3 during off-line training,
as the collected training data is too dispersed. The ANFIS representing function,
will then be fine tuned in on-line mode, to compensate, for the nonlinearities in the
robot’s characteristics, Figure 7.2 shows the ANFIS characteristics for a 2 input
system after a short test drive.

52

CHAPTER 7. RESULTS

Figure 7.2: Representing Surface of the 2 Input ANFIS System

7.2 ANFIS Responding Time

The microcontroller program was tested with a special programmed serial mon-
itor program that lets a laptop communicate with the arduino board through the
’pcb2arduino’-protocol, and measures the elapsed time, from sending the request
to receiving the last byte of the answer. It turns out that an increase in complex-
ity of the ANFIS structure results in an exponential increase of computation time
(Table 7.1). This can be explained due to (6.1) and (6.2), which show the strong
increase of used nodes. The table also shows that the serial communication it-
self, without the ANFIS computation, takes about 14ms. Further, experiments may
show that if there is a significant delay between the request and the actual setting
of the wheels, a less complex ANFIS architecture can be used instead.

53

CHAPTER 7. RESULTS

Inputs Membership-functions ANFIS Computation Time Response Time

1 2 3-4 16-18
3 7-8 20-23
4 9-11 23-26
5 13-15 26-29
6 17-19 30-32
7 22-23 36-38

2 2 12-14 26-28
3 30-31 44-46
4 80-82 94-96

Table 7.1: Responding Time of the ANFIS Microcontroller System

Figure 7.3: Responding Time of the ANFIS Microcontroller System as in table 7.1

7.3 Tracking in Telerobotic Mode

To test the ANFIS in telerobotic mode, the same log file from the test drive in
Chapter 6.3.3 was used to plot some graphs as shown in Figures 7.4 and 7.5.
For this first test drives, the learning mode of the ANFIS was set to ’no learning’.
The first plot shows the unfiltered desired change in bearing (ωd), with the mea-
sured compass (ωc) and yaw values (ωy) of bearing changes over time. The sec-
ond plot shows the same changes with an average window filter over 10 mea-
surements. The middle plot shows the root mean square error as described in

54

CHAPTER 7. RESULTS

Chapter 6.3.5 and the lower 2 plots show the bearing (Θ) as cos and as absolute
value of the bearing. This last 2 plots just show the yaw values, as they are less
noisy than the simple magnetic compass sensor measurements reported by the
IMU.
Figure 7.4 shows how the ANFIS tracks the desired change in bearing ωd. The
bearings Θ, shown in the lower 2 plots, moves further apart, as Θ =

∑
ω ·∆t,

and the errors in ω are summed in Θ. Furthermore, in Figure 7.5, we see how the
robot follows the arbitrary desired commands.
In Figure 7.6 the learning mode was set to ’update all parameters’ and we can
see how the ANFIS learns; hence, the RMSE is minimized .

0

5

10

15

20

25

280 285 290 295 300 305 310

Θ
 [
ra

d
]

time[s]

yaw
desired

-1

-0.5

0

0.5

1

280 285 290 295 300 305 310

c
o
s
(Θ

)[
ra

d
] yaw

desired

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

280 285 290 295 300 305 310

R
M

S
E

 [
ra

d
/s

]

-1.5
-1

-0.5
0

0.5
1

1.5

280 285 290 295 300 305 310

ω
 [
ra

d
/s

]

compass
yaw

desired

-1.5
-1

-0.5
0

0.5
1

1.5

280 285 290 295 300 305 310

ω
 [
ra

d
/s

]

compass
yaw

desired

Figure 7.4: Telerobotic Test Drive: ANFIS Reaction on a Continuous Change of
Bearing

55

CHAPTER 7. RESULTS

-15

-10

-5

0

5

200 220 240 260 280 300

Θ
 [
ra

d
]

time[s]

yaw
desired

-1

-0.5

0

0.5

1

200 220 240 260 280 300

c
o
s
(Θ

)[
ra

d
] yaw

desired

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

200 220 240 260 280 300

R
M

S
E

 [
ra

d
/s

]

-1.5
-1

-0.5
0

0.5
1

1.5

200 220 240 260 280 300

ω
 [
ra

d
/s

]

compass
yaw

desired

-1.5
-1

-0.5
0

0.5
1

1.5

200 220 240 260 280 300

ω
 [
ra

d
/s

]

compass
yaw

desired

Figure 7.5: Telerobotic Test Drive: ANFIS Reaction on an Arbitrary Change of
Bearing

56

CHAPTER 7. RESULTS

0.5
1

1.5
2

2.5
3

3.5

130 131 132 133 134 135

Θ
 [
ra

d
]

time[s]

yaw
desired

-1

-0.5

0

0.5

1

130 131 132 133 134 135

c
o
s
(Θ

)[
ra

d
] yaw

desired

0

0.02

0.04

0.06

0.08

0.1

130 131 132 133 134 135

R
M

S
E

 [
ra

d
/s

]

-1.5
-1

-0.5
0

0.5
1

1.5

130 131 132 133 134 135

ω
 [
ra

d
/s

]

compass
yaw

desired

-1.5
-1

-0.5
0

0.5
1

1.5

130 131 132 133 134 135

ω
 [
ra

d
/s

]

compass
yaw

desired

Figure 7.6: Telerobotic Test Drive: ANFIS Tracking and Learning

7.4 Tracking in Autonomous Mode

For an autonomous test, we disabled the request for a new path coordinate from
the Arduino board and instead, the coordinate path was automatized to follow an
eternal eight with 52 path points (Figure 7.7) with

x(i) = 500 ∗ sin(i)

y(i) = 1000 ∗ sin(i). ∗ cos(i)

i = 0,
2 · π
21

. . . 2 ·π

(7.1)

Figure 7.7 shows the logged path coordinates of the robot and how it tries to
follow the planned path, using a 1 input ANFIS with 5 membership functions and
the simple path tracking strategy discussed in Chapter 4.3. This proofs, that with
the assumption of the robot knowing its real position, the system is able to follow
a path described in coordinates. The yaw vectors show the reported orientation
from the IMU at each update of the ANFIS. The thick threshold line shows the
threshold of the coordinates with 50mm.

57

CHAPTER 7. RESULTS

Figure 7.7: Autonomous Test Drive: Eternal Eight

However, experiments about the comparison of desired movement, real move-
ment and assumed movement show that the position calculation out of the com-
mands is not accurate enough. The average results (out of 3 performances) of
the commands, measured distances and calculated positions are shown in Fig-
ure 7.8, where calc w/ is the calculated distance with the reported yaw of the IMU
and calc wo/ is the calculated distance without regard of the yaw value. That
means calc wo/ used a simulated static yaw = 0 instead. The error of calc w/

can be traced to the robot thinking it drives in little left/right turns, due to the noisy
yaw measurement. As a result, the distance in the figure represents the vector
calculated to the end position of a curved movement. According to this error, the
robot’s movement is not the same as the logged positions of Figure 7.7. With
additional sensor information on the actual position of the robot, it is anticipated
that better results can be generated, which is an area of future research.

58

CHAPTER 7. RESULTS

Figure 7.8: Comparison of the Robot’s Movement

59

Chapter 8

Conclusions and Future Work

The ANFIS controller together with protocol was designed as a very flexible sys-
tem. With the developed adaptive ANFIS controller, a mobile robot testbed was
created that can be used for future control engineering research projects, such
as studies with different ANFIS architectures and the development of learning
algorithms but also more advanced path tracking and path planning strategies.
To improve the system, above all it is necessary to improve the IMU algorithm as
discussed in [18] or with a Kalman filter as in [8]. Hence, implementation of a com-
pensation algorithm that makes it possible to estimate the robot’s position from
the sensor values in addition to the dead reckoning using the wheel velocities; so
slippage of the wheels does not cause an error in position calculation anymore.
Another research topic would be the tracking strategy algorithm which calculates
the desired orientation from the path coordinates which is then sent to the ANFIS
controller to achieve a sufficient tracking in autonomous robot operation. It is ex-
pected that this new mobile robotic testbed will provide additional opportunities
for future algorithm development and testing as well as human-machine interface
advances.

60

List of Figures

2.1 System Architecture of the Mobile Robotic System 3
2.2 The Mobile Robotic System . 4
2.3 Top and Bottom View of the iRobot Create Platform 5
2.4 Ultra Sonic Sensor Array . 6
2.5 Acoustic Cone Pattern of the Ultra Sonic Sensor Array 7
2.6 2-D Plot of Thermal Array Sensor Reading 8
2.7 Used ATmega1280 Based Microcontroller Board by Arduino 9
2.8 Used Migrus C787 DCF-P Single Board Computer 10
2.9 Simple AJAX Based Web Interface for Telerobotic Control of the

Mobile Robot System . 11
2.10 Certainty Grid Compared With Real Environment 12
2.11 Path Planning to Avoid Obstacles 13

3.1 9 Degree of Freedom IMU from Sparkfun 14
3.2 Answer String of the IMU on a ANFIS-Board Request 16

4.1 Definition of Directions, Bearing and Coordinates 18
4.2 Position Dead Reckoning . 20
4.3 Path Tracking Strategy . 21

5.1 Structure for a Request from the SBC to the Arduino 22

6.1 Fuzzy Inference System . 32
6.2 Adaptive Neural Network . 33
6.3 Single Input Single Output ANFIS 34
6.4 Multi Input Single Output ANFIS 34
6.5 Step Size Update Rules . 37
6.6 Comparison of Off-Line Training With and Without Adaptive Step

Sizes . 38
6.7 Datastructur of Parametersets in EEPROM 41
6.8 Test Learning Capability of the On-Line ANFIS Code 42
6.9 Integration of a MIMO Anfis Controller into the iRobot 43

VII

LIST OF FIGURES

6.10 Flow Diagram of the ANFIS Thread Running on the SBC 44
6.11 Flow Diagram of the iRobot Controller Running on the Arduino Mi-

crocontroller Board . 45
6.12 Theory of the Robot’s Movement 46
6.13 Membership Functions After Off-Line Training on Theoretical Func-

tion Set . 49

7.1 Comparison of Ideal Function and Experimental Data Collection . 52
7.2 Representing Surface of the 2 Input ANFIS System 53
7.3 Responding Time of the ANFIS Microcontroller System 54
7.4 Telerobotic Test Drive: ANFIS Reaction on a Continuous Change

of Bearing . 55
7.5 Telerobotic Test Drive: ANFIS Reaction on an Arbitrary Change of

Bearing . 56
7.6 Telerobotic Test Drive: ANFIS Tracking and Learning 57
7.7 Autonomous Test Drive: Eternal Eight 58
7.8 Comparison of the Robot’s Movement 59

VIII

List of Tables

3.1 Characteristics of the Acceleration Sensor ADXL345 15
3.2 Characteristics of the Gyro Sensors LY530ALH and LPR530ALH . 15
3.3 Characteristics of the Magnetic Digital Compass HMC5843 15

5.1 Description of Protocol Values . 23
5.2 List of Commands from SBC to Arduino 24
5.3 Messages from Arduino to SBC . 30

6.1 Layer Description of an ANFIS . 35
6.2 Amount of Nodes and Parameters in an Single-Output ANFIS . . . 36
6.3 Two Passes in the Hybrid Learning Procedure by Jang 40
6.4 Used Amount of SRAM on the Microcontroller Board 41
6.5 Log of a Test Drive in Telerobotic Mode 48

7.1 Responding Time of the ANFIS Microcontroller System 54

IX

Bibliography

[1] irobot create. http://www.botmag.com/articles/irobot_create.shtml,
June 2011.

[2] C. Paolini and S. Natarajan. Adaptive ajax-based streaming video for the
irobot create platform for use in buildings with infrastructure mode 802.11
networks. In World Automation Congress (WAC), 2010, pages 1–6. IEEE.

[3] A. Gallardo, J. Taylor, C. Paolini, H.K. Lee, and G. Lee. An anfis-based
multi-sensor structure for a mobile robotic system. In Proc. of the IEEE
Symposium on Computational Intelligence, April 2011.

[4] An adaptive streaming video infrastructure for a wireless irobot create plat-
form. Master’s thesis, San Diego State University, 2009.

[5] A. Gallardo. Implementation of the vector vield histogram and virtual force
field methods for mobile robots. Technical report, MESA/SDSU, 2010.

[6] 9 degrees of freedom - razor imu - ahrs compatible. http://www.sparkfun.
com/products/9623, June 2011.

[7] Ahrs for sparkfun’s ”9dof razor imu”. http://code.google.com/p/

sf9domahrs/, June 2011.

[8] Kalman filtering of imu data. http://tom.pycke.be/mav/71/

kalman-filtering-of-imu-data, June 2011.

[9] J. Borenstein, HR Everett, L. Feng, D. Wehe, NAVAL COMMAND CON-
TROL, OCEAN SURVEILLANCE CENTER RDT, and E DIV SAN DIEGO
CA. Mobile robot positioning: Sensors and techniques. Journal of robotic
systems, 14(4):231–249, 1997.

[10] AD King. Inertial navigation-forty years of evolution. GEC review, 13(3):140–
149, 1998.

[11] J.S.R. Jang. ANFIS: Adaptive-network-based fuzzy inference system. Sys-
tems, Man and Cybernetics, IEEE Transactions on, 23(3):665–685, 1993.

X

BIBLIOGRAPHY

[12] C.C. Lee. Fuzzy logic in control systems: fuzzy logic controller. i. Systems,
Man and Cybernetics, IEEE Transactions on, 20(2):404–418, 1990.

[13] C.C. Lee. Fuzzy logic in control systems: fuzzy logic controller. ii. Systems,
Man and Cybernetics, IEEE Transactions on, 20(2):419–435, 1990.

[14] W.T. Miller, R.S. Sutton, and P.J. Werbos. Neural networks for control. MIT
Press (MA), 1995.

[15] J.S.R. Jang. Self-learning fuzzy controllers based on temporal backpropa-
gation. Neural Networks, IEEE Transactions on, 3(5):714–723, 1992.

[16] H. W. Sorenson. Least-squares estimation: from gauss to kalman. IEEE
Spectrum, 7:63–68, July 1970.

[17] iRobot Corporation. iRobot Create Open Interface (OI) Specification, 2006.

[18] S.O.H. Madgwick. An efficient orientation filter for inertial and iner-
tial/magnetic sensor arrays. Report x-io and University of Bristol (UK), 2010.

XI

XII

BIBLIOGRAPHY

Abbreviations

ANFIS Adaptive Neural Network Fuzzy Inference Structure
AHRS Attitude Heading Reference System
DB25 D-sub miniature electrical connector with shell size B and 25 pins
DoF Degrees of Freedom
DCM Direction Cosine Matrix
fps Frames Per Second
GHz Giga Hertz
GPS Global Positioning System
GDM Gradient Descent Method
g Gravity ≈ 9.81m/s2

Hz Hertz
I2C Inter-Integrated Circuit; a serial communication bus
IMU Inertial Measurement Unit
LSE Least Squares Method
Mbps Mega Bits Per Second
m Meter
mAh Milli Ampere Hours
mg Milli Gravity ≈ 9.81mm/s2

mm Milli Meter
Ni-MH Nickel-Metal Hybrid Cell
PCB Personal Computer Board
px Pixel
rad Radiant
RMSE Root Mean Square Error
s Seconds
SBC Single Board Computer
SRAM Static random-access memory
TS Thermal Sensor
ULV Ultra Low Voltage
USS Ultra Sonic Sensors
USB Universal Serial Bus
V Volt
WLAN Wireless Local Area Network
◦ Degree

XIII

Attachment

1. Code

(a) iRobotController v1 (for Arduino ATmega1280)

(b) pcb2eeprom Protocol v1

(c) write2eeprom v1 1 (for Arduino ATmega1280)

(d) readeeprom v1 1 (for Arduino ATmega1280)

(e) off-line ANFIS code by Jang (C program)

(f) AHRS code by Doug Weibel and Jose Julio (for 9dof IMU)

2. Log Files

(a) Log Telerobotic Test Drive

(b) Log Autonomous Eight Test Drive

3. Data-sheets (Arduino/IMU/iRobot)

4. Used Papers (ANFIS/Navigation)

XIV

