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Abstract

Renewable energies become increasingly important. Wind and solar energy sources are
playing a significant role in the field of climate change and smart grid applications. In this
research, we focused on wind. We especially looked at the correlation between wind power
injections from different wind power plants. Wind power plant output characteristics are
known to be S-distributed. We developed a way to model §-distributed random variables
with a desired correlation. Our simulation method is DC-load flow. We also took certain
line limits into account and used storage devices for storing the energy surplus to avoid
overloading the lines. Finally we used actual data to simulate the storage size and initial
charge level as well as the state of charge for storage devices located at the injection buses.

1 Introduction

1.1 Motivation

Electricity plays a decisive role in prosperity and technological progress.
Since the last centuries electricity has been available to the industry and
private households in many of the countries of the world. The generation
of electricity in the last centuries was very important to achieve the tech-
nological progress but almost the entire electricity production was not envi-
ronmentally compatible. Worldwide the electricity consumption grows from
year to year and the generation becomes more efficient and environmentally
friendly. In Fig. 1, we see the outlook for the global electricity consumption
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Fig. 1. Global energy consumption outlook 1980-2035 (current policies [1])



Research Report Harald Franchetti

up to the year 2035 with respect to the current energy policies [1]. To satisfy
this demand we need to build new power plants as well as to increase the
efficiency of existing grids and electrical equipment.

Since the discovery of electricity, significant efforts have been put into
developing new energy sources. Most used resources are fossil fuels such
as coal, oil and natural gas as well as water and nuclear power. Due to
oil crises, various nuclear power plant incidents and the present discussion
about the climate change, renewable energy resources become more and more
important and obtain more public acceptance and support. Wind and solar
power are the strongest rising renewable energies. In Fig. 2, we show the
cumulative installed capacity on wind power worldwide for the time frame
1996 to 2010 [2] and it is going to continue growing.
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Fig. 2: Global cumulative installed wind capacity 1996-2010 [2]

1.2 Problem Statement

Large amounts of electrical energy cannot be stored directly. We also cannot
bottle, sack or bag electrical energy to transport it. This means electrical
energy only can be transmitted in suitable amounts through wiring. For a
stable and reliable grid it is essential that the sum of generated power has to
be exactly equal to the sum of consumed power at each instant of time.

If more power is generated than consumed the frequency of the grid in-
creases as a result of physical laws. On the other hand, if not enough power is
produced the frequency goes down. Monitoring the frequency is the best way
to observe the power balance of the power grid. During normal operation,
the bandwidth of frequency variations are within a few per mill because of
continuous variations in load. As soon as the deviation increases, the trans-
mission grid operator has to counteract. This means that the generation
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has to be increased or reduced regarding to the frequency trend. Equivalent
changes to load can also be applied by connecting or disconnecting some
loads.

The load can be predicted with high accuracy based on historical mea-
surements but imbalances between supply and demand are inevitable. There
are different types of operating reserve to recover equilibrium. These reserves
are available from seconds for small amounts and up to several minutes for
larger amounts of energy. With help of this balancing power the daily oper-
ation is guaranteed.

The accuracy of forecasting wind speed and solar radiation is not as good
as required. Wind energy is the kinetic energy of moving air. It is converted
to wind power by wind turbines. This kinetic energy can be calculated based
on a mass element dm and the wind velocity v of a volume of moving air
that passes through the surface A [3]

1 2 1 3
dE = —dmv” = = pAvdt. (1)
2 2
The wind power that can be transformed into mechanical power to produce
electricity can be derived to

1dE 1 4
p—zg—iw- (2)

The wind power is proportional to the third power of wind velocity. This
means the error between predicted and effective wind speed causes a deviation
of predicted power that is to the power of three higher than the error itself.

Currently, the amount of intermittent renewable energies for electricity
generation worldwide is still small. There is enough operation reserve dis-
tributed throughout the grid to deal with the power and frequency variations.
But we need more energy generated by environmental-friendly technologies
to limit and counter the climate change. Worldwide we see a trend of intense
expansion of renewable energies. The whole world is subject to these changes
and considerations. A study by Harvard University shows that worldwide is
enough wind capacity available to cover more then 40 times the current global
electricity consumption [4]. A lot of research and development is ongoing and
much more is needed to have secure and reliable technologies for the future
applications and operations.

1.3 Contributions of this Research

World climate change is one of the most important and omnipresent topics
in power systems today. It is very important to look at unsolved issues
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with regards to renewable energies and to find solutions to this issues as
well as more efficient technologies. Every development and improvement is
a necessary step for a more environmental-friendly energy system, starting
from generation to transmission to consumption.

The focus in our research is set on probabilistic load flow (PLF) for cor-
related wind power plant outputs. Since 1974, as Borkowska proposed the
PLF-method for the first time [5], this method has been further developed [6].
Inputs for PLF simulations are probability density functions (PDFs) or cu-
mulative distribution functions (CDFs) of power injections and loads. Out-
puts are also PDFs or CDFs of all branches. We decided to use PDF for
our simulations. The relative frequency of occurrence of load values can be
seen directly when using PDF. The simulations are solved numerically by
using random variables with a specific distribution. This numerical method
is known as Monte Carlo.

The probability densities for wind park power outputs often can be de-
scribed as a Beta distribution [7, 8]. For two or more wind power plants,
the influence of wind on these power plants can be modeled as a correlation
between their power outputs with respect to their geographical distance to
each other.

For PLF with correlated gaussian distributions and PLF without corre-
lation, many different methods are available. Information on correlated and
non-gaussian distributed characteristics are very rare and this issue is an
object of research.

For two or three wind park outputs with specific -distributed density
function we can generate random variables with the required distribution
and a desired correlation in the range from zero to one, if the correlation is
possible. For two variables we can see how the distribution transforms from
no to a total correlation and vice versa.

As second important part, besides the correlation, we introduced storage
units into our model. On each bus where a wind power injection is connected
we located a storage unit. This storage facility will be used to optimize the
power transfer from the generation to the load and avoid overloaded lines.

We can simulate different types of storage usage for optimization. This
includes the combination of storage and wind power injection to provide a
net injection to the grid that follows the load for a specific time frame as
from five minutes to one year. For this simulation we used real data with a
resolution of five minutes. That is the reason why we have five minutes as
lower bound. Our data set covers one year. That is the upper bound for our
simulations.

We also can run the simulation to get a constant net injection as result.
Of course, we also have the same flexibility regarding the time frames for
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simulating. With these results we see what size of storage we would need if
we balance out the variations of wind generations directly at the injection
bus or a specific window of time. With real data we also can see what the
states of charge of the batteries are. The amount of energy that has to be
charged at the beginning is also a part of the simulations results.

Additionally, with a storage unit at each end of a line we also can take
certain line limits into account. We just looked at a limit at the last line
in a path. No consecutive limited lines are considered. We see then how
the probability density changes on the line if a line limit is combined with
storage units.

2 Correlated Wind Power Output

As already mentioned the distribution of a wind farm power output typically
has a (-characteristic. In this section we introduce the Beta distribution
and the linear correlation between two [-distributed random variables as the
composition of two or more ~-distributed random variables.

2.1 3-Distribution
The standard S-distribution [9] on interval [0, 1] is:

flaaf) = goga®=a)'" reifas>0 @
with Beta function
()T !
B(a, ) = % = /0 (1 —u)?du (4)

where o and 3 are the shape parameters of the distribution. By applying

the transformation
T —a

T= (5)

we obtain the S-distribution for the interval [a, b]:

f(@,a,b,a,B) = m(f—a)a_l(b—x/)ﬁ_l x' € la,b]; a, >0 (6)
with Beta function
b
B(a, b, a, ) — ?(Z)i(g)) D / (= ) (b—u)P~'du.  (7)
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2.2 Linear Correlation

We need a measure for the degree of association between two random vari-
ables to be able to make a statement about their relationship. This measure
must be independent from any units. The covariance is dependent on units
and therefore it is not the right choice.

The coefficient of a linear correlation is defined as the fraction of co-
variance and the product of the variances of the random variables. This
coeflicient is also called correlation coefficient [10]

Cov(X,Y
p=pxy = Corr(X,Y) = # (8)
Ox0Oy
If the correlation is zero the random variables are uncorrelated but they
do not have to be independent. On the other side, independent random
variables are definitely uncorrelated.

2.3 Correlated 3-Distributed Random Variables

There are different methods to generate correlated S-distributed random vari-
ables. We can group them into two main groups. In the first approach,
correlated uniform distributed random variables are generated first and then
transformed into S-distributions. This is used in many fields as we can see e.g.
in [11, 12]. This method produces some bias which cannot really be avoided.
The second major approach is to compose two or more ~y-distributed random
variables to a [-distributed one (for instance [13, 14]) e.g.

Uy

Vet
Uy + U,

(9)

Ul ~ g(’Yh)\)
U2 ~ g(’y%)\)

The symbol ~ stands for distributed as and G(v,A) or B(v1,72) denotes
a ~y-distribution with shape parameter v and scale parameter A, and a (-
distribution with scale parameters v; and 75, respectively.

Magnussen [14] also used the well known additivity of y-distributed ran-
dom variables

}VNﬂ%ﬁﬁ (10)

W= U, + U, (11)

Ul ~ g(’yla)\)
W~ A 12
U2 ~ g(72, )\) } g(f}q i ” ) ( )
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for the correlation. He introduced shared ~-variables as the correlation part
of two [-variables like

B X+ X,
X+ X, + X+ X,

X3+ X,
DX X+ X+ X
X, and X}, are shared variables added to (9) to obtain the desired correlation.
These variables are calculated from all shape parameters and the correlation.
In our simulation we used this method. We generated correlated (-
distributed random variables from 0% to 100 % correlation in 10 % steps
and summed them

Y,

(13)

(14)

Y,

Z=Y1+Y, (15)

with Yi ~ B(O&l,ﬁl) and }/2 ~ B(O&g,ﬁg).

From results of the simulations with respect to this method with shape
parameters a; = 0.87 and (; = 1.23 for the first and ap, = 0.87 and 5 = 1.23
for the second [-distribution can be concluded that the shape parameters «
and [ are too small for this method to achieve the desired correlations. The
values of the achieved correlations are a bit more as half of what they should
be (e.g. 26 % instead of 50 % or 55 % instead of 100 %). Tests with larger
parameters achieve the right correlation levels.

This effect is well known in signal processing and is called bias. In the
derivation of this method, Magnussen uses a first-order Taylor series expan-
sion. This approximation may cause the bias. A bias larger than 10 % may be
restricted to S-distributions with near exponential or exponential-types. But
in general, the bias is larger the smaller the parameters a and § are. For ap-
plications describing wind power output characteristics, usually parameters
less than 5 are used.

We noticed that this method has great capabilities and we adopted it
for our needs. The issue is the calculation of the shared variables and we
developed a method that works for our simulations.

For positive correlation we calculate our shared variables X, and X, by

Xo ~ G(p-max(ag,az), \) (16)

Xp ~ G(p - max(by, f2), A) (17)
and for a negative correlation

Xa ~ G(p-max(as, B2),A) (18)

Xp ~ G(p - max(fy, az), A). (19)
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In Fig. 3, this method was applied in our simulations. We tested the same
configuration, two [-distributions with shape parameters aq, 81 and asg, (o
and looked at the correlation in 10 % steps for the power output.

The achieved correlation is pretty good but it still has a small bias. Now
we can see the transformation of the sum from the case of the independent
random variables to totally correlated or identical variables. The light blue
curve is the calculated result of the convolution of the two probabilistic den-
sity functions (PDFs) of the independent random variables. The black curve
is the original source PDF and it is the same as 100 % correlation.

pdfl (041 = 087,61 = 123), pdf2 (O[Q = 087,62 = 123)
T T T T T T T

T
convoluted
0% corr
8% corr
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25% corr
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100% corr
source pdfs

Density

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Power [100%]

Fig. 3: Positive correlation and distributions with same shape

In Fig. 4, we show the simulation result for a contrary shape (ay = 1 and
ay = f1) of the p-distributions with positive correlation. With this difference
in shape only about 77 % of correlation is possible.

In Fig. 5 and Fig. 6, the same simulations are shown but with negative
correlation. Here, of course, a totally correlation is possible for contrary
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shapes and for the same shape only about 77 %. The term NaN stands for
Not a Number and this means the result during the simulation is not valid.

pdf; (aq = 0.87, 81 = 1.23), pdfy (g = 1.23, 32 = 0.87)
T T T T T T T
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NaN% corr
NaN% corr
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Density
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Power [100%]

Fig. 4: Positive correlation and distributions with contrary shape

A correlation of 80 %, 90 % or 100 % cannot exist in this case. For a total
correlation the PDF is only a peak at zero.
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pdfl (041 = 0.87,51 = 1.23), pdfg (042 = 0.87,52 = 1.23)
I I I I I I I I I
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Fig. 5: Negative correlation and distributions with same shape
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pdfl (oq = 0.87,51 = 1.23), pdfg (042 = 1.23,52 = 087)
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Fig. 6: Negative correlation and distributions with contrary shape
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2.4 Correlation Compensation

Especially for the same shape and the positively correlated case we worked
on a perfection of the proposed correlation method. Negative correlation as
well as shapes with parameters where @ > (3 are not so important for the
application to wind farms. We measured the bias and developed an algorithm
for compensation.

In Fig. 7, a biased and the corresponding desired characteristics are
shown. With this compensation diagram we are able to generate almost
perfectly positively correlated §-distributed random variables with a specific
correlation between 0% and 100% for the same shape of the distributions.
We also ran the simulation and the result can be seen in Fig. 8. The corre-

100 T T T T T T T T T

90 | =

60 - =

50 + =

Desired Correlation [%]

30 =

20 | .

10 b .

O | | | | | | | | |
0 10 20 30 40 50 60 70 80 90 100

Compensated Correlation [%)]

Fig. 7: Correlation characteristic of generated -distributed random variables
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lation values are rounded at the first decimal place.

pdfl (Oél = 087,51 = 123), pdf2 (0&2 = 087,52 = 123)
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Power [100%]

Fig. 8: Perfect positive correlation and distributions with same shape

2.5 Model

For our wind power output simulations, we defined an effective model con-
sisting of three busses and three branches as can be seen in Fig. 9. W; and
Wy are wind power injections, S is the slack and L the load.

With this model we are able to answer the correlation questions as shown
above. All the injected wind power flows through branch 1 and 2 to bus
A. The slack compensates the imbalance between generation and load. On
branch 1 and 2 we see the additive combination of both of the wind power
injections and on branch 3 the flows are oppositely orientated.

13
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o 1o
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Fig. 9: 3 bus/3 branch test system with two wind power injections

2.6 Load Flow for Correlated Wind Power

For our power flow simulations we used the model shown in Fig. 9 and the
wind power injections shown in Fig. 10. The distributions for the wind
power injection are generated with real parameters from [8]. The load profile
is from [15] from the year 2010 and is shown in Fig. 11. The best fit for this

o = 0.46 a=0.76

B =0.99

B=1.25

Density
Density

0 60 120 180 240 300 360 420 0 60 120 180 240 300

Power [MW] Power [MW]
(a) Wind power injection W; on bus B (b) Wind power injection Wa on bus C

Fig. 10: Probability density functions of wind power injections

profile is a Weibull distribution with scale parameter A = 1.75 and shape
parameter k = 2.60 for our time series generation. With this setup and
our compensated generation of correlated random variables we are able to
simulate the power flow with DC' Load Flow method.

In the figures 12-14 we see the results for all three branches of our model.
Fig. 12 shows branch 1 connecting bus A and bus C. This is one of the two
transmission lines between generation and load side. The values are negative
because the flow direction is defined from the lower bus number (A) to the

14
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Density

A=1.75
k =2.60
423 609 795 981

Power [MW]
Fig. 11: Load profile

higher one (B). The physical flow is from bus B (generation) to bus A (load).
With the S-distributions for wind power injection only a correlation less than
70 % can be obtained. On the next three images we see how the PDF changes
for specific correlation levels. It can clearly be seen that the values of flow
between 260 MW and 360 MW occur more often the higher the correlation
level is. This means that the transmission line should have a higher capacity
as in the case of no correlation. The same is valid for branch 2 (Fig. 13) but
here the range is between 220 MW and 350 MW.

0% corr

10% corr
20% corr
30% corr
40% corr
50% corr
60% corr

Density

convoluted

—400 -350 —-300 —250 —200 —150 —100 —50 0

Power [MW]

Fig. 12: Simulation result for branch 1
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Fig. 13: Simulation result for branch 2
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Fig. 14: Simulation result for branch 3
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Branch 3 (Fig. 14) is completely different. Here we have flows in both
directions. These flows partly compensate each other so we have a maximum
at zero. The higher the correlation is the higher the maximum and rarer the
larger power flow values are. This means the higher the correlation is the
lower the capacity of line 3 can be.

2.7 Line Limit with Storage Usage

As additional feature of our simulations we can take line limits of the trans-
mission lines into account. We considered a line limit of 320 MW for both
transmission lines for the following simulations. At the injection side of each
line a storage device is located. These storage devices are being charged with
the surplus of energy of each line.

The PDFs of the lines are shown in Fig. 15 and Fig. 16. We can see that
there is a peak at the limit. All absolute values above are cut off at the
limit and so each larger value is mapped to this value. The curve for the
convolution method is shown as reference.

In Fig. 17a and Fig. 17b the PDF's of the storage devices are shown. The
peak at zero is not displayed. The presented curves are exactly the part that
is cut off from the lines. With this method we can simulate the PDFs of
charging the storage but not of the state of charge (SoC), therefore we need
real data instead of generated time series.

convoluted
0% corr

10% corr
20% corr
30% corr
40% corr
50% corr
60% corr

Density

i Il
—400 —350 —300 —250 —200 —150 —100 —50 0
Power [MW]

Fig. 15: Simulation result for branch 1 with line limit at 320 MW
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Fig. 16: Simulation result for branch 2 with line limit at 320 MW
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g 60% corr g 60% corr
a a
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Power [MW]
(a) Pdf of charging storage at branch 1

Power [MW]
(b) Pdf of charging storage at branch 2

Fig. 17: Probability density functions of storage devices at the injection side
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3 Real Data with Storage Usage

We also simulated storage use with real data so we were able to look at the
SoC. We used the real wind data sets from BPA [15] with resolution of five
minutes for a year. After error detection and removal we used the data set
of 2008 for power injection at bus A, 2009 for bus B and 2010 for bus C. For
bus E we used the load data set from 2008.

3.1 Model

For our simulations, we used the lower part of the IEEE 14 bus test sys-
tem [16] with 5 buses and 7 branches. We adapted the test system for our
needs and specified the generators as wind turbines. We added a third one
at bus C and placed a storage device to each wind turbine. We canceled the
loads at bus B and C and changed the load at bus E to the slack.

O ® \

A E D
2 7
5
1 4 6
3
B C

Fig. 18: Adapted lower part of IEEE 14 bus test system [16]

3.2 Simulations

In the real data simulations, we looked at the SoC of the storage devices
at the wind power injection busses. We varied the time intervals from five
minutes up to one year. With these simulations we figured out how the size
of the storage must be in each case and what amount of energy has to be
charged at the beginning. We can simulate two different storage usage modes.
One is to use the storage as a buffer to achieve a net constant wind output
and the other one for a constant slack usage over a specified time frame. In
Fig. 19 we see the storage curves for a theoretical one year time frame for a
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constant wind output. The amount of energy is of course enormously high.
A similar result is shown in Fig. 20 for a constant slack output. The amount

1 T T T T T
0.5 i
=
£ 0 /\ N\
>y ~ N N
=10}
: W
=i
Sa
—0.5F Z€ro 7
SoC of storage at bus A
SoC of storage at bus B
——— SoC of storage at bus C
—1 I I I 1 1
0 2 4 6 8 10

time sample [in ten thousands]

Fig. 19: SoC of storage units for a 1 year time frame for constant wind output
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5L i
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=,
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20
25 .
5|
7ero
—10F SoC of storage at bus A |
SoC of storage at bus B
SoC of storage at bus C
—15 1 1 1 1 1
0 2 4 6 8 10

time sample [in ten thousands]

Fig. 20: SoC of storage units for a 1 year time frame for constant slack output
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of energy needed is more than one decimal power higher than for a constant
wind power output. For constant wind power output the bandwidth is only
as wide as the maximum of power output is and the slack follows the load
profile with an offset of the wind output. When trying to keep the slack
constant the storage has to deal with the offset load profile.

The shorter the time frame is the lower is the needed amount of energy for
the storage. For a 10 minutes time frame the needed storage size is around
50 MWh with some peaks up to 100 MWh and a couple of outliers up to
340 MWh for the constant slack case. For constant wind the average needed
storage size is about 5 MWh with some peaks up to 15 MWh and a couple of
outliers up to 25 MWh.

In Fig. 21 the PDFs of the storage devices are shown for the 1 year
case. Fig. 21 a shows the PDFs for the constant wind case. The shapes are
very similar to S-distributions and they are typically for wind power outputs.
Due to the frequent occurrence of low values a high amount of negative power
(power from the storage) is needed to achieve the constant value. In Fig. 21b
we see that the storage does not have to deal very often with large absolute
values of power to balance wind. The PDF is relatively symmetrically.

PDF of storage at bus A
PDF of storage at bus B
PDF of storage at bus C

PDF of storage at bus A
PDF of storage at bus B
PDF of storage at bus C

Density
Density

—1000 0 1000 2000 —3000-2000-1000 0 1000 2000 3000
Power [MW] Power [MW]

(a) PDFs for constant wind output (b) PDFs for constant slack output
Fig. 21: Probability density functions of storage devices
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4 Conclusion

Based on [14], a modified method for generating correlated S-distributed ran-
dom variables with bias compensation is proposed. Our achieved correlation
is very close to the desired one. We applied a set of random variables spread
from 0% to 100 % correlation to our PLF simulations as input and derived a
set of corresponding PDFs of each line flow as output. We showed how the
PDF transforms from none to total correlation for each line. We also took
line limits into account and used storage to avoid overload. Finally we used
real data to simulate the storage size and initial charge level as well as the
state of charge for storage devices located at the injection buses.
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