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Abstract

We present methods for checking the partial correctness of, respectively to optimize, imperative
programs, using polynomial algebra methods, namely resultant computation and quantifier elimina-
tion by cylindrical algebraic decomposition. The results are very promising but also show that there
is room for improvement of algebraic algorithms.

1 Introduction

Using symbolic computation in program verification is a laudable goal, because the symbolic compu-
tation algorithms, although very powerful, have a high complexity which makes them difficult to solve
program verification problems of significant size.

The mostly widely used static program analysis technique transforms a given program into a set of
logical formulae (verification conditions) and attempts to prove them (see e.g. [9]). When the program
involves numeric values (rationals, integers, reals), one way of proving the conditions is logical reason-
ing. This is usually inefficient because such proofs would need to start from the “bare” axioms of the
underlying numerical domains. One way to alleviate the difficulty is to combine logical reasoning with
algebraic techniques (algorithms based on deep knowledge about the numerical domains). This approach
turns out to be more successful than the pure logical approach. Unfortunately one cannot yet verify even
moderate sized programs, mainly because the quantifier elimination methods are in general very expen-
sive (doubly exponential in the number of variables) [6]. Fortunately, our previous experience with the
approach provided us with the following observations:

• The verification conditions can be often simplified before applying the quantifier elimination meth-
ods on them.

• The verification conditions often have certain interesting structures, which may be exploited by
using special versions of the algebraic algorithms.

These observations also hold for the research presented in this paper, namely proving partial correct-
ness of imperative loops and algorithm optimization.

Therefore was necessary to:

1. develop a systematic method to simplify the verification conditions into the forms that makes the
quantifier elimination methods more efficient (Section 3).

2. use algebraic algorithms suitable to the specific structure of the verification conditions which often
occur in program verification (Section 2).

In the following, we present a motivating example for the problems addressed in this paper.
Consider the algorithm for computing the square root of a real number (Algorithm 1).
Given the loop invariant I(a,b,x) ⇐⇒ 0 < a ≤

√
x ≤ b and the termination term d(a,b) := b− a,

we are interested in:
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Algorithm 1 Computing the square root of a real number
in: x: x > 1;

ε: ε > 0
out: a,b: a≥ 0∧b≥ 0∧a≤

√
x≤ b∧b−a≤ ε

a := 1;b := x;
while (b−a > ε) do

a := ab+x
a+b ; b := b2+x

2b ;
return a,b

1. proving the correctness of the algorithm;

2. synthesizing an algorithm which terminates faster than the given one and fulfils the same specifi-
cation (provided that such an algorithm exists).

The following verification conditions are generated using a calculus based on forward symbolic
execution and functional semantics [9]:

1. partial correctness

(a)
∀
x,ε

x > 1∧ ε > 0 =⇒ x > 0∧0 < 1≤ x≤ x2

(b)

∀
a,b,x,ε

0 < a2 ≤ x≤ b2∧b−a > ε =⇒ 0 < (
ab+ x
a+b

)2 ≤ x≤ (
b2 + x

2b
)2 (1)

(c)
∀

a,b,x,ε
0 < a2 ≤ x≤ b2∧b−a≤ ε =⇒ 0 < a2 ≤ x≤ b2∧b−a≤ ε

2. termination

∃
c∈(0,1)

∀
a,b,x

I(a,b,c) =⇒ d ◦ f (a,b,x)≤ c ·d(a,b,x)

In order to optimize the algorithm, we have to find the smallest constant c such that:

∀
a,b,x

I(a,b,x) =⇒ d ◦ f (a,b,x)≤ c ·d(a,b,x).

We used Reduce command of Mathematica [22] computer algebra system to solve the quantifier
elimination problems above, obtaining that the algorithm is indeed correct and the smallest c is 1

2 .

Can we find a faster algorithm having the same specification and b has the form pa2+qab+rb2

a+b ? To
answer this question one has to find the parameters p,q,r such that the new algorithm is optimal. To
achieve this, firstly, we have to find the necessary and sufficient conditions such that (2) holds. In other
words, we have to solve the following quantifier elimination problem:

∀
a,b,x

0 < a2 ≤ x≤ b2 =⇒ 0 < (
ab+ x
a+b

)2 ≤ x≤ (
pa2 +qab+ rb2x

a+b
)2. (2)

The problem can be solved theoretically by quantifier elimination by cylindrical algebraic decompo-
sition. The original algorithm is due to G. Collins [4]. Many improvements of the algorithm exists [11, 3]
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but the algorithm is intrinsically doubly exponential [6] which makes impossible to handle yet moderate
size problems, like (2). To solve the problem: i) we carried out manually quantifier elimination for (2)
by choosing different values for the parameter q, ii) we obtained formulas in p and r from which we
could deduce a common pattern, iii) finally, we combined the steps above obtaining a formula in p,q,r
equivalent to (2), i. e.:

r− 1
4
≥ 0∧



[
q− 1

2 ≤ 0∧ p−2q+ r+ 1
2 ≥ 0

]
∨

q− 1
2 > 0∧ p−q+ 1

4 ≤ 0∧ p−2q+ r+ 1
2 ≥ 0

∨
p−q+ 1

4 > 0∧ (p− 1
4) · (r−

1
4)≥ (q− 1

2)
2




 (3)

¿From here, we obtain p = 1
4 , q = 1

2 , r = 1
4 as the values for the optimized loop.

Indeed, the new synthesized algorithm converges faster, namely the smallest c is 1
4 .

The above example gives us the motivation to study more general problems, namely:

1. Problem 1. Can we prove/disprove efficiently the inductiveness of the invariant (formulas of type
(1)) in case of arbitrary polynomials standing for the loop invariant and variable assignments?

2. Problem 2. Can we synthesize the fastest terminating algorithm for Algorithm 1 in case of general
assignments, i. e. a := pa2+qab+rb2

sa+tb and b := αa2+βab+γb2

µa+νb ?

Our way to approach these problems is presented in Section 2 and 3.

1.1 Research Time Frame

The research presented in this activity report was realized as follows:

• January, 2011: literature survey and familiarization with the software for quantifier elimination
(QEPCAD-B [1], Redlog [8] and Mathematica [22]).

• February, 2011: work on proving the partial correctness of imperative loops (Section 2).

• March - May, 2011: work on the optimization of algorithms (Section 3, including the motivating
example presented in the Introduction).

1.2 Related Work

Applying symbolic computation methods to program verification is a relatively new research area.
Existing work is on the following directions:

• invariant generation, by combining methods like Gröbner bases, Cylindrical Algebraic Decompo-
sition, symbolic summation, recurrence solving and generating functions [12, 13, 19, 20].

• proving the correctness of imperative programs, by using Gröbner bases, Cylindrical Algebraic
Decomposition [7, 17].
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However, we are not aware of related work applying the symbolic computation methods from our
research agenda to program analysis.

In the area of symbolic computation, efficient resultant computation of composed polynomials was
studied in [16]. Efficient resultant computation by polynomial interpolation was used to find the implicit
equation of rational curves and surfaces [15]. We are not aware of methods for proving verification
conditions using the method proposed by us, namely taking into consideration the special structure of
some verification conditions, namely those proving the inductiveness of the invariant. They have the
special structure: ∀

x
I(x) = 0 =⇒ I( f (x)) = 0. There exists work exploiting the polynomial formulas in

the pure ∀ fragment by combining Gröbner Bases computation with semidefinite programming for the
real Nullstellensatz [18] or by using sum of squares technique [10]. Contrary to these, our method is
currently applied to univariate polynomials.

Regarding the second problem, we are aware of program synthesis methods based on logical rea-
soning, e.g. induction [2]. Unlike these, our method is based on algebraic reasoning and the particular
problem we want to solve (approximating the square root of a real number) is interesting for the interval
analysis community and gives new challenging problems to state-of-the-art software [1, 22] for quantifier
elimination by cylindrical algebraic decomposition.

2 Proving Partial Correctness of Imperative Loops

Let K[x] be a polynomial ring in one variable. Consider the following loop, where the loop condition is
ignored, annotated with a polynomial invariant g(x) = 0, g ∈ K[x].

Algorithm 2 Simple loop
while (?) do

x := f (x);

We are interested in solving the following problem. Given an imperative loop annotated with a
formula that it is claimed to be its invariant, decide whether the claim is correct. This problem can
be viewed also as a polynomial algebra problem and consequently powerful techniques and algorithms
belonging to this area of mathematics can be applied to solve it.

Denoting by g(x) = 0 the polynomial standing for the loop invariant and by f (x) the polynomial
standing for the assignment of the loop variable1, the problem specification in the algebraic setting is as
follows. Given the polynomials f ,g ∈ K[x], check efficiently whether g and g◦ f have common solutions.

In the following, we introduce the notion of resultant and establish the relationship between the
resultant of two polynomials and their common solutions. We follow [5].

Definition 1. Given polynomials f ,g ∈ K[x] of positive degree, write them in the form

f = alxl + ...+a0, al 6= 0,
g = bmxm + ...+b0, bm 6= 0.

Then the Sylvester matrix of f and g with respect to x, denoted Syl( f ,g,x), is the following (l+m)×
(l +m) matrix of coefficients of f and g:

1As a starting point and preliminary study, the univariate case is considered; an univariate polynomial standing for the loop
invariant and for variable assignment is considered
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Syl( f ,g,x) =



al · · · a0 0 0 0
0 al · · · a0 0 0

0 0
. . . . . . 0

0 0 0 al · · · a0
bm · · · b0 0 0 0
0 bm · · · b0 0 0

0 0
. . . . . . 0

0 0 0 bm · · · b0


The resultant of f and g with respect to x, denoted by Res( f ,g,x), is the determinant of the Sylvester

matrix, i.e. Res( f ,g,x) = det(Syl( f ,g,x)).

Theorem 1. Given f ,g ∈ K[x] of positive degree, the resultant Res( f ,g,x) ∈ K is an integer polynomial
in the coefficients of f and g. Furthermore, f and g have a common factor in K[x] iff Res( f ,g,x) = 0.

Given the results in Theorem 1, we approached our problem as follows:

1. Compute the resultant of g(x) and g( f (x)), by expanding g( f (x)).

2. Compute the resultant of g(x) and g(y), where y = f (x).

However, one can observe the large dimension of Syl( f ,g,x), namely (l+m)× (l+m), whose deter-
minant has to be computed, as well as the similar structure of g(x) and g( f (x)). The following questions
naturally occur. Is there another type of matrix, with lower dimension, from which we can determine the
common factors of two polynomials? Can we exploit the structure of g( f (x))? The answer is yes, the
Bézout matrix can be used at this aim.

In the following, we define the Bézout matrix and establish the relationship between the Bézoutian
of two polynomials and their common solutions. We follow [14].

Given two polynomials f ,g, assume, without loss of generality, that they have the degree l.

Definition 2. The expression h(x,y) =

∣∣∣∣∣∣ f (x) f (y)
g(x) g(y)

∣∣∣∣∣∣
x−y = f (x)g(y)−g(x) f (y)

x−y =
l
∑

i, j=0
ci jxiy j is a polynomial in

K[x,y]. Then the matrix B( f ,g) =
[
ci, j
]l

i, j=0 is called the Bézout matrix associated to the polynomials f
and g.

Theorem 2. The polynomials f and g have common a common factor iff the associated Bézout matrix
B( f ,g) is singular.

Given the above facts, we propose a third method for verifying whether two polynomials g and g◦ f
have a common solution. It is based on Bézoutian matrix and polynomial interpolation.

Definition 3. Suppose that we are given n points (xk,yk), k = 1, ...,n, with pairwise distinct xk. Then,
there is a unique polynomial, pn−1, of degree n− 1, which interpolates this data. The Lagrange form
of pn−1 may be explicitly given by means of the fundamental polynomials or cardinality functions, Li,
defined by:

Li(x) =
n

∏
k=1
k 6=i

x− xk

xi− xk
.
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Remark 1. For the simplicity of the presentation we exemplify the approach for the polynomials f and
g. The fact that we have g◦ f matters only at the step when we evaluate the polynomial at a point. This
is done in the case of g◦ f by evaluating f at x and then g at f (x). Both g and g◦ f have the degree of
g◦ f .

Let h(x,y)=

∣∣∣∣∣∣ f (x) f (y)
g(x) g(y)

∣∣∣∣∣∣
x−y = f (x)g(y)−g(x) f (y)

x−y =
l
∑

i, j=0
ci jxiy j =

(
1 x · · · xl

)


c0,0 c0,1 · · · c0,l
c1,0 c1,1 · · · c1,l

...
...

. . .
...

cl,0 cl,1 · · · cl,l




1
y
...
yl

 .

Another way of expressing h(x,y) is by means of Lagrange bivariate interpolation.
We consider the interpolation points (xi,y j), (i, j = 0, ..., l) and the interpolation space Sl,l(x,y).
The interpolation problem is stated as follows. Given l · l values hi j ∈ K (interpolation data), find a

polynomial h(x,y) =
l
∑

i, j=0
ci jxiy j ∈Sl,l(x,y) such that h(xi,y j) = hi j, for all (i, j)∈ I. We consider for the

interpolation space Sl,l(x,y) the basis {1,y, · · · ,yl,x,xy, · · · ,xyl, · · · ,xl,xly, · · · ,xlyl}, and the interpola-
tion points in the order: (x0,y0),(x0,y1), · · · ,(x0,yl), · · · ,(xl,y0), · · · ,(xl,yl). Then the l · l interpolation
conditions h(xi,y j) = hi j can be written as

H =Vx CVy, (4)

where H = (hi j)
l
i, j=0, C = (ci j)

l
i, j=0, Vx and Vy are Vandermonde matrices defined as:

Vx =


1 x0 · · · xl

0
1 x1 · · · xl

1
...

...
. . .

...
1 xl · · · xl

l

 Vy =


1 1 · · · 1
y0 y1 · · · yl
...

...
. . .

...
yl

0 yl
1 · · · yl

l



Remark 2. One could also compute the entries of the matrix C, C =V T
x H V T

y . However, for our purpose
this is not necessary.

One can take Det(H) = Det(Vx CVy) = Det(Vx)Det(C)Det(Vy). C is singular iff H is singular, pro-
vided that Vx and Vy are nonsingular. Moreover, for simplifying the entries of the matrix H, the denom-
inator of h(x,y) can be omitted because it does not influences the fact that the determinant of H is zero
or not. However, when choosing the interpolation points (xi,y j) we have to ensure simultaneously the
following:

1. the entries of Vx and Vy, respectively, must be pairwise distinct, in order Vx and Vy to be nonsingular.

2. the denominators of h(xi,yi) do not vanish. The values of h(xi,yi) (i, j = 1, ..., l) fill the matrix H.

3. the polynomials f and g have high degree and have to be evaluated at these points.

The following experiments have shown that the way the interpolation points xi and y j are chosen is
crucial for the speed of the method.

1. Methods for computing xi and y j using additional operations are costly (e.g. division, square root).

2. Numerical approximations of the operations above lead to probabilistic algorithms, which are not
completely accurate.
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Table 1: Experimental Results

Method 1 Method 2 Method 3 (n, p,d,minC,maxC)

0.00125 0.00188 0.00016 (100,6,5,−9,9)
0.00266 0.00281 8.60314∗10−18 (100,8,7,−9,9)
0.01093 0.00562 2.40671∗10−17 (100,11,10,−9,9)
0.02516 0.0078 2.55416∗10−17 (100,13,12,−9,9)
0.07328 0.01376 2.50051∗10−16 (100,18,17,−9,9)
0.1414 0.01812 2.72715∗10−16 (100,21,20,−9,9)

0.32719 0.02627 2.17603∗10−16 (100,23,22,−9,9)
0.51047 0.03452 0.00015 (100,25,24,−9,9)

3. Evaluating arbitrary polynomials at a large number is computationally expensive.

With these in mind, we generated randomly real values in the interval [0,1] for xi and y j, i, j = 0, · · · , l.

Therefore, checking whether f and g have common solution reduces to the following:

1. compute the entries of the matrix H.

2. check whether H is singular. H is singular iff f and g have common solutions.

We implemented in Mathematica computer algebra system [22] and compared the average computing
time of the three methods. The performance of the methods was tested on sets of 100 dense univariate
polynomials, with degree up to 25 and coefficients in the interval [−9, 9]. The results of the experiments
are presented in Table 2. Methods 1, 2 and 3 represent, in this order: the computation of the resultant by
expansion, the computation of the resultant by denoting y= f (x), and the computation of the determinant
of the Bézout matrix using polynomial interpolation. n represents the number of test polynomials, p
represents the number of power products of a polynomial, d its degree, minC and maxC the minimum
and, respectively, its maximum coefficient. The numbers in the first three columns represent seconds.

We observe that the method proposed by us (Method 3) outperforms the others.

3 Algorithm Optimization

We are interested in solving the following problem.
Given Algorithm 3, find the parameters p,q,r,s, t,α,β ,γ,µ,ν such that the difference

U(α)−L(p), where U(α) = αa2+βab+γb2+x
µa+νb and L(p) = pa2+qab+rb2+x

sa+tb , is minimal.

Algorithm 3 Computing
√

x (general polynomial assignments)
in: x: x > 1;

ε: ε > 0
out: a,b: a≤

√
x≤ b∧b−a≤ ε

a := 1;b := x;
while (b−a > ε) do

a := pa2+qab+rb2

sa+tb ; b := αa2+βab+γb2

µa+νb ;
return a,b
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Denoting by I(a,b) ⇐⇒ 0 < a ≤
√

x ≤ b the loop invariant, d(a,b) := b−a the termination term,
f (p,α) = ( pa2+qab+rb2

sa+tb , αa2+βab+γb2

µa+νb ) the loop assignments, the above problem is an optimization prob-
lem, which and can be formulated in two ways:

1. Find p,q,r,s, t,α,β ,γ,µ,ν such that ∀
p′,...,t′

α ′,...,ν ′
∀

a,b,x
I(a,b) =⇒ (d ◦ f (p′,α ′)≥ d ◦ f (p,α)).

2. Find the smallest c such that ∀
a,b,x

I(a,b) =⇒ (d ◦ f (p,α)≤ c ·d(a,b)).

Note that the first formulation is stronger than the second one and it could be possible that witnesses
for the parameters can not be found.

A preliminary task in the optimization problem is to find the necessary and sufficient conditions such
that the invariant is inductive, i.e. find the conditions on the parameters p,q,r,s, t,α,β ,γ,µ,ν such that
the following formula holds:

∀
a,b,x

0 < a≤
√

x≤ b =⇒ 0 <
pa2 +qab+ rb2 + x

sa+ tb
≤
√

x≤ αa2 +βab+ γb2 + x
µa+νb

. (5)

which is equivalent to:[
∀

a,b,x
0 < a≤

√
x≤ b⇒ pa2+qab+rb2+x

sa+tb > 0
]
∧
[
∀

a,b,x
0 < a≤

√
x≤ b⇒ pa2+qab+rb2+x

sa+tb ≤
√

x
]
∧[

∀
a,b,x

0 < a≤
√

x≤ b⇒ αa2+βab+γb2+x
µa+νb ≥

√
x
]
.

We found the necessary and sufficient conditions by carrying out equivalent transformation of the
three formulas following the next steps.

1. We considered all possible sign combinations on the parameters occurring in the denominators (s,
t, µ , and ν).

2. We found the quantifier-free formula equivalent to the given one.

The step 2 above can be solved, in principle, automatically by using a software specialized in quan-
tifier elimination. We have used QEPCAD-B [1], Reduce command of Mathematica [22] and Redlog
[8]. The first two are state-of-the-art software for quantifier elimination by cylindrical algebraic decom-
position. Redlog implements virtual substitution method [21]. QEPCAD-B and Mathematica could not
handle our formulas involving non-linear inequalities with 8 variable (of which 5 were free). Redlog,
which is actually specialized in handling formulas with degree at most 2 of the quantified variables,
output a quantifier-free formula equivalent to the given one, but the formula is very long and hard to be
interpreted and used further in the optimization. Therefore:

• we have eliminated manually an universally quantified variable,

• we have found automatically, using QEPCAD-B, the quantifier-free formula equivalent to the new
one, which was possible in most of the cases. However, for the formula 0 < a ≤ µa+νb

2 ≤ b⇒
−( µa+νb

2 )2 +αa2 + βab+ γb2 ≥ 0 with µ > 0 and ν > 0 (Lemma 3, Case 3.1) two equivalent
quantifier-free formula were found. One was found semi-automatically, namely we divided the
formula into simpler ones which could be handled by QEPCAD-B and then combine the results.
The other was found automatically using Redlog.

In the following, we present the derivation of the necessary and sufficient conditions for (5). We do
not give all the details of the proofs of the lemmas to avoid repetition. However, we plan to include them
in a technical report which will be available at http://www.risc.jku.at/publications/.
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Lemma 1. Prove that: ∀
a,b,x

0 < a≤
√

x≤ b⇒ pa2+qab+rb2+x
sa+tb > 0⇐⇒ [ r ≥ 0 ∧ t ≥ 0∧ s+ t > 0∧ (p+1)+q+ r > 0∧ [q≥ 0∨2(p+1)+q < 0∨4(p+1)r−q2 > 0

]∨[
r+1≤ 0∧ t ≤ 0∧ s+ t < 0∧ p+q+(r+1)< 0∧ [q≤ 0∨2p+q > 0 ∨4p(r+1)−q2 > 0]

]
 .

Proof. ∀
a,b,x

0 < a≤
√

x≤ b⇒ pa2+qab+rb2+x
sa+tb > 0⇐⇒

∀
a,b,x

0 < a≤
√

x≤ b⇒ (pa2 +qab+ rb2 + x)(sa+ tb)> 0.

In the following we proceed by equivalent transformations by considering all possible cases for s and t.

1.1 Case s > 0∧ t > 0.

∀
a,b,x

0 < a≤
√

x≤ b⇒ (pa2 +qab+ rb2 + x)(sa+ tb)> 0⇐⇒

∀
a,b,x

0 < a≤
√

x≤ b⇒ pa2 +qab+ rb2 + x > 0
(4)⇐⇒

∀
a,b

0 < a≤ b ⇒ (p+1)a2 +qab+ rb2 > 0.

The last formula is handled by a quantifier elimination software, namely QEPCAD-B, obtaining
the quantifier-free formula:

r ≥ 0∧ (p+1)+q+ r > 0∧
[
q≥ 0∨2(p+1)+q < 0∨4(p+1)r−q2 > 0

]
.

1.2 Case s < 0∧ t < 0.

∀
a,b,x

0 < a≤
√

x≤ b⇒ (pa2 +qab+ rb2 + x)(sa+ tb)> 0⇐⇒

∀
a,b,x

0 < a≤
√

x≤ b⇒ pa2 +qab+ rb2 + x < 0
(5)⇐⇒

∀
a,b

0 < a≤ b ⇒ (r+1)b2 +qab+ pa2 < 0.

The last formula is handled by a quantifier elimination software, namely QEPCAD-B, obtaining
the quantifier-free formula:

r+1≤ 0∧ p+q+(r+1)< 0∧
[
q≤ 0∨2p+q > 0∨4p(r+1)−q2 > 0

]
.

1.3 Case s > 0∧ t < 0∧ s+ t = 0.

∀
a,b,x

0 < a≤
√

x≤ b⇒ (pa2 +qab+ rb2 + x)(sa+ tb)> 0
(6)⇐⇒

f alse.

1.4 Case s > 0∧ t < 0∧ s+ t > 0.

∀
a,b,x

0 < a≤
√

x≤ b⇒ (pa2 +qab+ rb2 + x)(sa+ tb)> 0⇐⇒
f alse.

1.5 Case s > 0∧ t < 0∧ s+ t < 0.

∀
a,b,x

0 < a≤
√

x≤ b⇒ (pa2 +qab+ rb2 + x)(sa+ tb)> 0
(7)⇐⇒

∀
a,b,x

0 < a≤
√

x≤ b⇒ pa2 +qab+ rb2 + x < 0⇐⇒

∀
a,b

0 < a≤ b ⇒ (r+1)b2 +qab+ pa2 < 0⇐⇒

r+1≤ 0∧ p+q+(r+1)< 0∧
[
q≤ 0∨2p+q > 0∨4p(r+1)−q2 > 0

]
.
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1.6 Case s < 0∧ t > 0∧ s+ t = 0.

∀
a,b,x

0 < a≤
√

x≤ b⇒ (pa2 +qab+ rb2 + x)(sa+ tb)> 0⇐⇒
f alse.

1.7 Case s < 0∧ t > 0∧ s+ t < 0.

∀
a,b,x

0 < a≤
√

x≤ b⇒ (pa2 +qab+ rb2 + x)(sa+ tb)> 0⇐⇒
f alse.

1.8 Case s < 0∧ t > 0∧ s+ t > 0.

∀
a,b,x

0 < a≤
√

x≤ b⇒ (pa2 +qab+ rb2 + x)(sa+ tb)> 0⇐⇒

∀
a,b,x

0 < a≤
√

x≤ b⇒ pa2 +qab+ rb2 + x > 0⇐⇒

∀
a,b

0 < a≤ b ⇒ (p+1)a2 +qab+ rb2 > 0⇐⇒

r ≥ 0∧ (p+1)+q+ r > 0∧
[
q≥ 0∨2(p+1)+q < 0∨4(p+1)r−q2 > 0

]
.

1.9 Case s > 0∧ t = 0.

∀
a,b,x

0 < a≤
√

x≤ b⇒ (pa2 +qab+ rb2 + x)(sa+ tb)> 0⇐⇒

∀
a,b,x

0 < a≤
√

x≤ b⇒ pa2 +qab+ rb2 + x > 0⇐⇒

∀
a,b

0 < a≤ b ⇒ (p+1)a2 +qab+ rb2 > 0⇐⇒

r ≥ 0∧ (p+1)+q+ r > 0∧
[
q≥ 0∨2(p+1)+q < 0∨4(p+1)r−q2 > 0

]
.

1.10 Case s = 0∧ t > 0.

∀
a,b,x

0 < a≤
√

x≤ b⇒ (pa2 +qab+ rb2 + x)(sa+ tb)> 0⇐⇒

∀
a,b,x

0 < a≤
√

x≤ b⇒ pa2 +qab+ rb2 + x > 0⇐⇒

∀
a,b

0 < a≤ b ⇒ (p+1)a2 +qab+ rb2 > 0⇐⇒

r ≥ 0∧ (p+1)+q+ r > 0∧
[
q≥ 0∨2(p+1)+q < 0∨4(p+1)r−q2 > 0

]
.

1.11 Case s = 0∧ t < 0.

∀
a,b,x

0 < a≤
√

x≤ b⇒ (pa2 +qab+ rb2 + x)(sa+ tb)> 0⇐⇒

∀
a,b,x

0 < a≤
√

x≤ b⇒ pa2 +qab+ rb2 + x < 0⇐⇒

∀
a,b

0 < a≤ b ⇒ (r+1)b2 +qab+ pa2 < 0⇐⇒

r+1≤ 0∧ p+q+(r+1)< 0∧
[
q≤ 0∨2p+q > 0∨4p(r+1)−q2 > 0

]
..

1.12 Case s < 0∧ t = 0.

∀
a,b,x

0 < a≤
√

x≤ b⇒ (pa2 +qab+ rb2 + x)(sa+ tb)> 0⇐⇒

∀
a,b,x

0 < a≤
√

x≤ b⇒ pa2 +qab+ rb2 + x < 0⇐⇒

∀
a,b

0 < a≤ b ⇒ (r+1)b2 +qab+ pa2 < 0⇐⇒

r+1≤ 0∧ p+q+(r+1)< 0∧
[
q≤ 0∨2p+q > 0∨4p(r+1)−q2 > 0

]
.

Summarizing we have:

10
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[
(s > 0∧ t > 0)∨ (s < 0∧ t > 0∧ s+ t > 0)∨ (s > 0∧ t = 0)∨ (s = 0∧ t > 0)

]
=⇒[

∀
a,b,x

0 < a≤
√

x≤ b⇒ pa2+qab+rb2+x
sa+tb > 0⇐⇒

r ≥ 0 ∧ (p+1)+q+ r > 0∧
[
q≥ 0∨2(p+1)+q < 0∨4r(p+1)−q2 > 0

]
] 

∧
[
(s < 0∧ t < 0)∨ (s > 0∧ t < 0∧ s+ t < 0)∨ (s = 0∧ t < 0)∨ (s < 0∧ t = 0)

]
=⇒[

∀
a,b,x

0 < a≤
√

x≤ b⇒ pa2+qab+rb2+x
sa+tb > 0⇐⇒

r+1≤ 0∧ p+q+(r+1)< 0∧
[
q≤ 0∨2p+q > 0 ∨4p(r+1)−q2 > 0

]
] 

⇐⇒
∀

a,b,x
0 < a≤

√
x≤ b⇒ pa2+qab+rb2+x

sa+tb > 0⇐⇒ [ r ≥ 0 ∧ t ≥ 0∧ s+ t > 0∧ (p+1)+q+ r > 0∧
[
q≥ 0∨2(p+1)+q < 0∨4(p+1)r−q2 > 0

] ]
∨[

r+1≤ 0∧ t ≤ 0∧ s+ t < 0∧ p+q+(r+1)< 0∧
[
q≤ 0∨2p+q > 0 ∨4p(r+1)−q2 > 0

] ]

 .

Lemma 2. Prove that: ∀
a,b,x

0 < a≤
√

x≤ b⇒ pa2+qab+rb2+x
sa+tb ≤

√
x⇐⇒

 r ≤ 0∧ t ≥ 0∧ s+ t > 0∧ t− r−1≥ 0∧ t + s− p−q−1≥ 0∧[
t−q > 0∨ r+(s− p−1)< 0∨4r(s− p−1)+(t−q)2 ≤ 0

]
∧[

s−q > 0∨ s−q−2p < 0 ∨4p(t− r−1)+(s−q)2 ≤ 0
]


∨ r ≥ 0∧ t ≤ 0∧ s+ t < 0∧ t− r−1≤ 0∧ t + s− p−q−1≤ 0∧[
t−q < 0∨ r+(s− p−1)> 0∨4r(s− p−1)+(t−q)2 ≤ 0

]
∧[

s−q < 0∨ s−q−2p > 0 ∨4p(t− r−1)+(s−q)2 ≤ 0
]



.

Proof.

2.1 Case s > 0∧ t > 0.

∀
a,b,x

0 < a≤
√

x≤ b⇒ pa2+qab+rb2+x
sa+tb ≤

√
x⇐⇒

∀
a,b,x

0 < a≤
√

x≤ b⇒ pa2 +qab+ rb2 + x≤
√

x(sa+ tb)⇐⇒

∀
a,b,x

0 < a≤
√

x≤ b⇒ x−
√

x(sa+ tb)+ pa2 +qab+ rb2 ≤ 0
(8)⇐⇒

∀
a,b

0 < a≤ b ⇒

 a2−a(sa+ tb)+ pa2 +qab+ rb2 ≤ 0
∧
b2−b(sa+ tb)+ pa2 +qab+ rb2 ≤ 0

⇐⇒
∀

a,b
0 < a≤ b ⇒ a2−a(sa+ tb)+ pa2 +qab+ rb2 ≤ 0

∧
∀

a,b
0 < a≤ b ⇒ b2−b(sa+ tb)+ pa2 +qab+ rb2 ≤ 0

.

The last formulas are handled by a quantifier elimination software, namely QEPCAD-B. After
simplification we obtain:

r ≤ 0∧ t− r−1≥ 0∧ t + s− p−q− r−1≥ 0∧[
t−q > 0∨ r+(s− p−1)< 0∨4r(s− p−1)+(t−q)2 ≤ 0

]
∧[

s−q > 0∨ s−q−2p < 0 ∨4p(t− r−1)+(s−q)2 ≤ 0
]
.

2.2 Case s < 0∧ t < 0.

11
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∀
a,b,x

0 < a≤
√

x≤ b⇒ pa2+qab+rb2+x
sa+tb ≤

√
x⇐⇒

∀
a,b,x

0 < a≤
√

x≤ b⇒ pa2 +qab+ rb2 + x≥
√

x(sa+ tb)⇐⇒

∀
a,b,x

0 < a≤
√

x≤ b⇒ x−
√

x(sa+ tb)+ pa2 +qab+ rb2 ≥ 0
(9)⇐⇒

∀
a,b

a≤ sa+tb
2 ≤ b⇒ [0 < a≤ b⇒−( sa+tb

2 )2 + pa2 +qab+ rb2 ≥ 0]

∧
∀

a,b
0 < a≤ b⇒ a2−a(sa+ tb)+ pa2 +qab+ rb2 ≥ 0

∧
∀

a,b
0 < a≤ b⇒ b2−b(sa+ tb)+ pa2 +qab+ rb2 ≥ 0


⇐⇒



∀
a,b

0 < a≤ sa+tb
2 ≤ b⇒−( sa+tb

2 )2 + pa2 +qab+ rb2 ≥ 0

∧
∀

a,b
0 < a≤ b⇒ a2−a(sa+ tb)+ pa2 +qab+ rb2 ≥ 0

∧
∀

a,b
0 < a≤ b⇒ b2−b(sa+ tb)+ pa2 +qab+ rb2 ≥ 0


(10)⇐⇒


∀

a,b
0 < a≤ b⇒ a2−a(sa+ tb)+ pa2 +qab+ rb2 ≤ 0

∧
∀

a,b
0 < a≤ b⇒ b2−b(sa+ tb)+ pa2 +qab+ rb2 ≤ 0

 .
The last formulas are handled by a quantifier elimination software, namely QEPCAD-B. After
simplification we obtain:

r ≥ 0∧ t− r−1≤ 0∧ t + s− p−q− r−1≤ 0∧[
t−q < 0∨ r+(s− p−1)> 0∨4r(s− p−1)+(t−q)2 ≤ 0

]
∧[

s−q < 0∨ s−q−2p > 0 ∨4p(t− r−1)+(s−q)2 ≤ 0
]
.

2.3 Case s > 0∧ t < 0∧ s+ t = 0.

∀
a,b,x

0 < a≤
√

x≤ b⇒ pa2+qab+rb2+x
sa+tb ≤

√
x

(11)⇐⇒
∀

a,b,x
0 < a≤

√
x≤ b∧ sa+ tb < 0⇒ pa2 +qab+ rb2 + x≥

√
x(sa+ tb)

∧
∀

a,b,x
¬(0 < a≤

√
x≤ b∧ sa+ tb = 0)

 (12)⇐⇒

 ∀
a,b,x

0 < a≤
√

x≤ b∧ sa+ tb < 0⇒ pa2 +qab+ rb2 + x≥
√

x(sa+ tb)

∧
f alse

⇐⇒
f alse.

2.4 Case s > 0∧ t < 0∧ s+ t > 0.

∀
a,b,x

0 < a≤
√

x≤ b⇒ pa2+qab+rb2+x
sa+tb ≤

√
x⇐⇒

f alse.

2.5 Case s > 0∧ t < 0∧ s+ t < 0.

∀
a,b,x

0 < a≤
√

x≤ b⇒ pa2+qab+rb2+x
sa+tb ≤

√
x⇐⇒

12
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 r ≥ 0∧ t− r−1≤ 0∧ t + s− p−q− r−1≤ 0∧[
t−q < 0∨ r+(s− p−1)> 0∨4r(s− p−1)+(t−q)2 ≤ 0

]
∧[

s−q < 0∨ s−q−2p > 0 ∨ 4p(t− r−1)+(s−q)2 ≤ 0
]

.

2.6 Case s < 0∧ t > 0∧ s+ t = 0.

∀
a,b,x

0 < a≤
√

x≤ b⇒ pa2+qab+rb2+x
sa+tb ≤

√
x⇐⇒

f alse.

2.7 Case s < 0∧ t > 0∧ s+ t < 0.

∀
a,b,x

0 < a≤
√

x≤ b⇒ pa2+qab+rb2+x
sa+tb ≤

√
x⇐⇒

f alse.

2.8 Case s < 0∧ t > 0∧ s+ t > 0.

∀
a,b,x

0 < a≤
√

x≤ b⇒ pa2+qab+rb2+x
sa+tb ≤

√
x⇐⇒ r ≤ 0∧ t− r−1≥ 0∧ t + s− p−q− r−1≥ 0∧[

t−q > 0∨ r+(s− p−1)< 0∨4r(s− p−1)+(t−q)2 ≤ 0
]
∧[

s−q > 0∨ s−q−2p < 0 ∨4p(t− r−1)+(s−q)2 ≤ 0
]
 .

2.9 Case s > 0∧ t = 0.

∀
a,b,x

0 < a≤
√

x≤ b⇒ pa2+qab+rb2+x
sa+tb ≤

√
x⇐⇒ r ≤ 0∧ t− r−1≥ 0∧ t + s− p−q− r−1≥ 0∧[

t−q > 0∨ r+(s− p−1)< 0∨4r(s− p−1)+(t−q)2 ≤ 0
]
∧[

s−q > 0∨ s−q−2p < 0 ∨4p(t− r−1)+(s−q)2 ≤ 0
]
 .

2.10 Case s = 0∧ t > 0.

∀
a,b,x

0 < a≤
√

x≤ b⇒ pa2+qab+rb2+x
sa+tb ≤

√
x⇐⇒ r ≤ 0∧ t− r−1≥ 0∧ t + s− p−q− r−1≥ 0∧[

t−q > 0∨ r+(s− p−1)< 0∨4r(s− p−1)+(t−q)2 ≤ 0
]
∧[

s−q > 0∨ s−q−2p < 0 ∨ 4p(t− r−1)+(s−q)2 ≤ 0
]
 .

2.11 Case s = 0∧ t < 0.

∀
a,b,x

0 < a≤
√

x≤ b⇒ pa2+qab+rb2+x
sa+tb ≤

√
x⇐⇒ r ≥ 0∧ t− r−1≤ 0∧ t + s− p−q− r−1≤ 0∧[

t−q < 0∨ r+(s− p−1)> 0∨4r(s− p−1)+(t−q)2 ≤ 0
]
∧[

s−q < 0∨ s−q−2p > 0 ∨ 4p(t− r−1)+(s−q)2 ≤ 0
]

 .
2.12 Case s < 0∧ t = 0. ∀

a,b,x
0 < a≤

√
x≤ b⇒ pa2+qab+rb2+x

sa+tb ≤
√

x⇐⇒ r ≥ 0∧ t− r−1≤ 0∧ t + s− p−q− r−1≤ 0∧[
t−q < 0∨ r+(s− p−1)> 0∨4r(s− p−1)+(t−q)2 ≤ 0

]
∧[

s−q < 0∨ s−q−2p > 0 ∨ 4p(t− r−1)+(s−q)2 ≤ 0
]

 .
Summarizing we have:
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∀
a,b,x

0 < a≤
√

x≤ b⇒ pa2+qab+rb2+x
sa+tb ≤

√
x⇐⇒

 r ≤ 0∧ t ≥ 0∧ s+ t > 0∧ t− r−1≥ 0∧ t + s− p−q− r−1≥ 0∧[
t−q > 0∨ r+(s− p−1)< 0∨4r(s− p−1)+(t−q)2 ≤ 0

]
∧[

s−q > 0∨ s−q−2p < 0 ∨4p(t− r−1)+(s−q)2 ≤ 0
]


∨ r ≥ 0∧ t ≤ 0∧ s+ t < 0∧ t− r−1≤ 0∧ t + s− p−q− r−1≤ 0∧[

t−q < 0∨ r+(s− p−1)> 0∨4r(s− p−1)+(t−q)2 ≤ 0
]
∧[

s−q < 0∨ s−q−2p > 0 ∨4p(t− r−1)+(s−q)2 ≤ 0
]




.

Combining the two lemmas and simplifying, we obtain:
∀

a,b,x
0 < a≤

√
x≤ b⇒ 0 < pa2+qab+rb2+x

sa+tb ≤
√

x⇐⇒[
r = 0∧q≥ 0∧ t−1≥ 0∧ t−q≥ 0∧ s+ t > 0∧ p+q+1 > 0∧ t + s− p−q−1≥ 0∧[
s−q > 0∨ s−q−2p < 0∨4p(t−1)+(s−q)2 ≤ 0

] ]
.

Lemma 3. Prove that: ∀
a,b,x

0 < a≤
√

x≤ b⇒ αa2+βab+γb2+x
µa+νb ≥

√
x⇐⇒





[
ν ≥ 0∧µ +ν > 0∧µ ≥ 0∧µ−2≤ 0∧µ +ν−2 = 0∧4γ−µ2 +4µ−4≥ 0∧α +β + γ−1≥ 0∧[
β +2α−µ < 0∨2β +µ2−2µ > 0∨4αγ−µ2γ−β 2−µ2β +2µβ −µ2α +4µα−4α ≥ 0

]
∨

ν ≥ 0∧µ +ν > 0∧µ ≥ 0∧µ−2≤ 0∧µ +ν−2≤ 0∧4γ−ν2 ≥ 0∧
µ2γ−4µγ +4γ−µνβ +2νβ +ν2α−ν2 ≥ 0∧[
[µ−1≤ 0∧ν−1≤ 0]∨4µ−1≤ 0∨4ν−1≤ 0

]
∧[

[2β −µν > 0∨µβ −2β −2να +µν > 0∨4αγ−µ2γ−β 2 +µνβ −ν2α ≥ 0
]

∨[
ν ≥ 0∧µ +ν > 0∧µ ≥ 0∧µ−2≤ 0∧µ +ν−2≤ 0∧4µ−1≤ 0∧ γ ≥ 0∧α +β + γ−1≥ 0∧[
β +2α−2 < 0∨β > 0∨4αγ−4γ−β 2 ≥ 0

]
∧
γ ≥ 0∧α +β + γ−µ−ν +1≥ 0∧

[
β −ν +2(α−µ +1)< 0∨β −ν > 0∨4γ(α−µ +1)− (β −ν)2 ≥ 0

]
∧
γ−ν +1≥ 0∧

[
β +2α−µ < 0∨β −µ > 0∨4α(γ−ν +1)− (β −µ)2 ≥ 0

]∨ ν ≤ 0∧µ +ν < 0∧ γ ≤ 0∧ γ−ν +1≤ 0∧α +β + γ−µ−ν +1≤ 0∧[
β −ν < 0∨β −ν +2(α−µ +1)> 0∨4γ(α−µ +1)+(β −ν)2 ≥ 0

]
∧[

β −µ < 0∨β −2α−µ > 0 ∨4α(γ−ν +1)+(β −µ)2 ≥ 0
]

Proof.

3.1 Case µ > 0∧ν > 0.

∀
a,b,x

0 < a≤
√

x≤ b⇒ αa2+βab+γb2+x
µa+νb ≥

√
x⇐⇒

∀
a,b,x

0 < a≤
√

x≤ b⇒ x−
√

x(µa+νb)+αa2 +βab+ γb2 ≥ 0⇐⇒

∀
a,b

0 < a≤ µa+νb
2 ≤ b⇒−( sa+tb

2 )2 +αa2 +βab+ γb2 ≥ 0]

∧
∀

a,b
0 < a≤ b⇒ a2−a(µa+νb)+αa2 +βab+ γb2 ≥ 0

∧
∀

a,b
0 < a≤ b⇒ b2−b(µa+νb)+αa2 +βab+ γb2 ≥ 0


14



Symbolic Computation and Program Verification Mădălina Eraşcu

We obtained automatically the following quantifier-free formulas for the second and third formu-
las, respectively, using QEPCAD-B.[

γ ≥ 0∧α +β + γ−µ−ν +1≥ 0∧[
β −ν +2(α−µ +1)< 0∨β −ν > 0∨4γ(α−µ +1)− (β −ν)2 ≥ 0

] ] (6)

[
γ−ν +1≥ 0∧α +β + γ−µ−ν +1≥ 0∧[
β +2α−µ < 0 ∨β −µ > 0∨4α(γ−ν +1)− (β −µ)2 ≥ 0

] ] (7)

Neither Mathematica, nor QEPCAD-B, were able to provide a quantifier-free formula equivalent
to the first one in the conjunct above. Redlog outputs, for the same formula, the quantifier-free
formula (9). However, we decided, for now, not to use it because it is very long and it is very hard
to interpret.

Therefore we proceeded as follows.

Let C(a,b,µ,ν) = 0 < a≤ µa+νb
2 ≤ b, D(a,b,µ,ν ,α,β ,γ) =−( sa+tb

2 )2 +αa2 +βab+ γb2 ≥ 0

1. We expressed C(a,b,µ,ν) as C1(a,b,µ,nu)∨...∨Ck(a,b,µ,ν), where Ci(a,b,µ,ν)=Pi(µ,ν)∧
Qi(a,b,µ,ν). Pi(µ,ν) were obtained manually, Qi(a,b,µ,ν) automatically using QEPCAD-
B.

2. We proved that:[
∀

a,b
C(a,b,µ,ν)⇒ D(a,b,µ,ν ,α,β ,γ)

]
⇐⇒

(
P1(µ,ν)∧ ∀

a,b
Q1(a,b,µ,ν)

)
⇒ D(a,b,µ,ν ,α,β ,γ)

∨
...
∨(
Pk(µ,ν)∧ ∀

a,b
Qk(a,b,µ,ν)

)
⇒ D(a,b,µ,ν ,α,β ,γ)

.

3. We carried out quantifier elimination for
∀

a,b
Q1(a,b,µ,ν)⇒ D(a,b,µ,ν ,α,β ,γ), ... ∀

a,b
Qk(a,b,µ,ν)⇒ D(a,b,µ,ν ,α,β ,γ),

using QEPCAD-B.
4. We combined the formulas obtained at 3. above with P1(µ,ν),..., Pk(µ,ν) and simplify the

results.

Finally, we obtained:



[
ν ≥ 0∧µ +ν > 0∧µ ≥ 0∧µ−2≤ 0∧µ +ν−2 = 0∧4γ−µ2 +4µ−4≥ 0∧α +β + γ−1≥ 0∧[
β +2α−µ < 0∨2β +µ2−2µ > 0∨4αγ−µ2γ−β 2−µ2β +2µβ −µ2α +4µα−4α ≥ 0

]
∨

ν ≥ 0∧µ +ν > 0∧µ ≥ 0∧µ−2≤ 0∧µ +ν−2≤ 0∧4γ−ν2 ≥ 0∧
µ2γ−4µγ +4γ−µνβ +2νβ +ν2α−ν2 ≥ 0∧[
[µ−1≤ 0∧ν−1≤ 0]∨4µ−1≤ 0∨4ν−1≤ 0

]
∧[

[2β −µν > 0∨µβ −2β −2να +µν > 0∨4αγ−µ2γ−β 2 +µνβ −ν2α ≥ 0
]

∨[
ν ≥ 0∧µ +ν > 0∧µ ≥ 0∧µ−2≤ 0∧µ +ν−2≤ 0∧4µ−1≤ 0∧ γ ≥ 0∧α +β + γ−1≥ 0∧[
β +2α−2 < 0∨β > 0∨4αγ−4γ−β 2 ≥ 0

]
(8)
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[
αν2−4αν +4α−β µν +2β µ + γµ2−µ2 ≥ 0∨ν−2 = 0∨ (µν−2µ +ν2−4ν +4≥ 0∧µ +ν−2 6= 0)

]
∧

32αβγ−8αβν2−16αγµν +4αµν3−16β 3 +24β 2µν−8βγµ2−10β µ2ν2 +4γµ3ν +µ3ν3 ≥ 0∨
8αβν−4αµν2−8β 2µ +16β 2 +6β µ2ν−16β µν−µ3ν2 +4µ2ν2 ≥ 0∨2β −µν = 0∨

4γ−ν2 6= 0∨
[

8αβν−16αβ −4αµν2 +8αµν−8β 2µ +6β µ2ν +4β µ2−µ3ν2−2µ3ν ≤ 0∧
(4αν−8α−4β µ +µ2ν +2µ2 6= 0∨ν−2 < 0)

]


∧[
ν−2≥ 0∨ (4γ−ν2 ≥ 0∧ (4γ−ν2 > 0∨ (2β −µν ≥ 0∧ (4α−µ2 ≥ 0∨2β −µν > 0))))

]
∧

4αγ−αν2−β 2 +β µν− γµ2 > 0∨4γ−ν2 = 0
∨



4αγ−αν2−β 2 +β µν− γµ2 < 0∨4γ−ν2 ≥ 0
∨[

4αγν2−αν4−4βγµν +8βγν +β µν3−2βν3 +4γ2µ2−16γ2µ +16γ2− γµ2ν2 +4γµν2−8γν2 +ν4 ≥ 0∧
4βγν−βν3−8γ2µ +16γ2 +2γµν2−8γν2 +ν4 ≥ 0

]
∨[

4αγν2−αν4−4βγµν +8βγν +β µν3−2βν3 +4γ2µ2−16γ2µ +16γ2− γµ2ν2 +4γµν2−8γν2 +ν4 ≤ 0∧
4γν−ν3 ≥ 0

]
∨

[
4αγν2−16αγν +16αγ−αν4 +4αν3−4αν2−4βγµν +8βγµ +β µν3−2β µν2 +4γ2µ2−

γµ2ν2−4γµ2 +µ2ν2 ≤ 0∨4βγν−8βγ−βν3 +2βν2−8γ2µ +2γµν2 +4γµν−µν3 ≤ 0

]
∧ 4γν−8γ−ν3 +2ν2 < 0∨[

4αγν2−16αγν +16αγ−αν4 +4αν3−4αν2−4βγµν +8βγµ +β µν3−2β µν2 +4γ2µ2−
γµ2ν2−4γµ2 +µ2ν2 ≥ 0∧4βγν−8βγ−βν3 +2βν2−8γ2µ +2γµν2 +4γµν−µν3 ≤ 0

] 
∧[

αν2−4αν +4α−β µν +2β µ + γµ2−µ2 6= 0∨ν−2 < 0∨
(βν2−4βν +4β −2γµν +4γµ +µν2−2µν ≥ 0∧βν−2β −2γµ +µν 6= 0∧ν−2 > 0)

]




∧

[
4αγν2−αν4−4βγµν +8βγν +β µν3−2βν3 +4γ2µ2−16γ2µ +16γ2− γµ2ν2 +4γµν2−8γν2 +ν4 ≥ 0∧
4βγν−βν3−8γ2µ +16γ2 +2γµν2−8γν2 +ν4 ≥ 0

]
∨[

4αγν2−αν4−4βγµν +8βγν +β µν3−2βν3 +4γ2µ2−16γ2µ +16γ2− γµ2ν2 +4γµν2−8γν2 +ν4 ≤ 0∧
4γν−ν3 ≥ 0

]
∨[

4αγ−αν2−β 2 +β µν− γµ2 = 0∧4γ−ν2 ≥ 0
]

∨

[
4αγν2−16αγν +16αγ−αν4 +4αν3−4αν2−4βγµν +8βγµ +β µν3−2β µν2 +4γ2µ2− γµ2ν2−

4γµ2 +µ2ν2 ≤ 0∨4βγν−8βγ−βν3 +2βν2−8γ2µ +2γµν2 +4γµν−µν3 ≤ 0

]
∧ 4γν−8γ−ν3 +2ν2 > 0∨[

4αγν2−16αγν +16αγ−αν4 +4αν3−4αν2−4βγµν +8βγµ +β µν3−2β µν2 +4γ2µ2− γµ2ν2−
4γµ2 +µ2ν2 ≥ 0∧4βγν−8βγ−βν3 +2βν2−8γ2µ +2γµν2 +4γµν−µν3 ≤ 0

] 
∧[

αν2−4αν +4α−β µν +2β µ + γµ2−µ2 6= 0∨ν−2 < 0∨
(βν2−4βν +4β −2γµν +4γµ +µν2−2µν ≤ 0∧βν−2β −2γµ +µν 6= 0∧ν−2 > 0)

]










(9)
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3.2 Case µ < 0∧ν < 0.

∀
a,b,x

0 < a≤
√

x≤ b⇒ αa2+βab+γb2+x
µa+νb ≤

√
x⇐⇒

∀
a,b,x

0 < a≤
√

x≤ b⇒ αa2 +βab+ γb2 + x≤
√

x(µa+νb)⇐⇒

∀
a,b,x

0 < a≤
√

x≤ b⇒ x−
√

x(µa+νb)+αa2 +βab+ γb2 ≤ 0⇐⇒

∀
a,b

0 < a≤ b ⇒

 a2−a(µa+νb)+αa2 +βab+ γb2 ≤ 0
∧
b2−b(µa+νb)+αa2 +βab+ γb2 ≤ 0

⇐⇒
∀

a,b
0 < a≤ b ⇒ a2−a(µa+νb)+αa2 +βab+ γb2 ≤ 0

∧
∀

a,b
0 < a≤ b ⇒ b2−b(µa+νb)+αa2 +βab+ γb2 ≤ 0

.

The last formulas are handled by a quantifier elimination software, namely QEPCAD-B. After
simplification we obtain:

γ ≤ 0∧ γ−ν +1≤ 0∧α +β + γ−µ−ν +1≤ 0∧[
β −ν < 0∨β −ν +2(α−µ +1)> 0∨4γ(α−µ +1)+(β −ν)2 ≥ 0

]
∧[

β −µ < 0∨β −2α−µ > 0 ∨4α(γ−ν +1)+(β −µ)2 ≥ 0
]
.

3.3 Case µ > 0∧ν < 0∧µ +ν = 0.

∀
a,b,x

0 < a≤
√

x≤ b⇒ αa2+βab+γb2+x
µa+νb ≥

√
x⇐⇒

f alse.

3.4 Case µ > 0∧ν < 0∧µ +ν > 0.

∀
a,b,x

0 < a≤
√

x≤ b⇒ αa2+βab+γb2+x
µa+νb ≥

√
x⇐⇒

f alse.

3.5 Case µ > 0∧ν < 0∧µ +ν < 0.

∀
a,b,x

0 < a≤
√

x≤ b⇒ αa2+βab+γb2+x
µa+νb ≥

√
x⇐⇒

γ ≤ 0∧ γ−ν +1≤ 0∧α +β + γ−µ−ν +1≤ 0∧[
β −ν < 0∨β −ν +2(α−µ +1)> 0∨4γ(α−µ +1)+(β −ν)2 ≥ 0

]
∧[

β −µ < 0∨β −2α−µ > 0 ∨4α(γ−ν +1)+(β −µ)2 ≥ 0
]
.

3.6 Case µ < 0∧ν > 0∧µ +ν = 0.

∀
a,b,x

0 < a≤
√

x≤ b⇒ αa2+βab+γb2+x
µa+νb ≥

√
x⇐⇒

f alse.

3.7 Case µ < 0∧ν > 0∧µ +ν < 0.

∀
a,b,x

0 < a≤
√

x≤ b⇒ αa2+βab+γb2+x
µa+νb ≥

√
x⇐⇒

f alse.

3.8 Case µ < 0∧ν > 0∧µ +ν > 0.

∀
a,b,x

0 < a≤
√

x≤ b⇒ αa2+βab+γb2+x
µa+νb ≥

√
x⇐⇒

(8)∧ (6)∧ (7)

17



Symbolic Computation and Program Verification Mădălina Eraşcu

3.9 Case µ > 0∧ν = 0.

∀
a,b,x

0 < a≤
√

x≤ b⇒ αa2+βab+γb2+x
µa+νb ≥

√
x⇐⇒

(8)∧ (6)∧ (7)

3.10 Case µ = 0∧ν > 0.

∀
a,b,x

0 < a≤
√

x≤ b⇒ αa2+βab+γb2+x
µa+νb ≥

√
x⇐⇒

(8)∧ (6)∧ (7)

3.11 Case µ = 0∧ν < 0.

∀
a,b,x

0 < a≤
√

x≤ b⇒ αa2+βab+γb2+x
µa+νb ≥

√
x⇐⇒

γ ≤ 0∧ γ−ν +1≤ 0∧α +β + γ−µ−ν +1≤ 0∧[
β −ν < 0∨β −ν +2(α−µ +1)> 0∨4γ(α−µ +1)+(β −ν)2 ≥ 0

]
∧[

β −µ < 0∨β −2α−µ > 0 ∨4α(γ−ν +1)+(β −µ)2 ≥ 0
]
.

3.12 Case µ < 0∧ν = 0. ∀
a,b,x

0 < a≤
√

x≤ b⇒ αa2+βab+γb2+x
µa+νb ≥

√
x⇐⇒

γ ≤ 0∧ γ−ν +1≤ 0∧α +β + γ−µ−ν +1≤ 0∧[
β −ν < 0∨β −ν +2(α−µ +1)> 0∨4γ(α−µ +1)+(β −ν)2 ≥ 0

]
∧[

β −µ < 0∨β −2α−µ > 0∨4α(γ−ν +1)+(β −µ)2 ≥ 0
]
.

Combining the three lemmas, we obtain the following theorem:

Theorem 3. ∀
a,b,x

0 < a≤
√

x≤ b⇒ 0 < pa2+qab+rb2+x
sa+tb ≤

√
x≤ αa2+βab+γb2+x

µa+νb ⇐⇒

[
r = 0∧q≥ 0∧ t−1≥ 0∧ t−q≥ 0∧ s+ t > 0∧ p+q+1 > 0∧ t + s− p−q−1≥ 0∧[
s−q > 0∨ s−q−2p < 0∨4p(t−1)+(s−q)2 ≤ 0

] ]
∧





[
ν ≥ 0∧µ +ν > 0∧µ ≥ 0∧µ−2≤ 0∧µ +ν−2 = 0∧4γ−µ2 +4µ−4≥ 0∧α +β + γ−1≥ 0∧[
β +2α−µ < 0∨2β +µ2−2µ > 0∨4αγ−µ2γ−β 2−µ2β +2µβ −µ2α +4µα−4α ≥ 0

]
∨

ν ≥ 0∧µ +ν > 0∧µ ≥ 0∧µ−2≤ 0∧µ +ν−2≤ 0∧4γ−ν2 ≥ 0∧
µ2γ−4µγ +4γ−µνβ +2νβ +ν2α−ν2 ≥ 0∧[
[µ−1≤ 0∧ν−1≤ 0]∨4µ−1≤ 0∨4ν−1≤ 0

]
∧[

[2β −µν > 0∨µβ −2β −2να +µν > 0∨4αγ−µ2γ−β 2 +µνβ −ν2α ≥ 0
]

∨[
ν ≥ 0∧µ +ν > 0∧µ ≥ 0∧µ−2≤ 0∧µ +ν−2≤ 0∧4µ−1≤ 0∧ γ ≥ 0∧α +β + γ−1≥ 0∧[
β +2α−2 < 0∨β > 0∨4αγ−4γ−β 2 ≥ 0

]
∧
γ ≥ 0∧α +β + γ−µ−ν +1≥ 0∧

[
β −ν +2(α−µ +1)< 0∨β −ν > 0∨4γ(α−µ +1)− (β −ν)2 ≥ 0

]
∧
γ−ν +1≥ 0∧

[
β +2α−µ < 0∨β −µ > 0∨4α(γ−ν +1)− (β −µ)2 ≥ 0

]∨ ν ≤ 0∧µ +ν < 0∧ γ ≤ 0∧ γ−ν +1≤ 0∧α +β + γ−µ−ν +1≤ 0∧[
β −ν < 0∨β −ν +2(α−µ +1)> 0∨4γ(α−µ +1)+(β −ν)2 ≥ 0

]
∧[

β −µ < 0∨β −2α−µ > 0 ∨4α(γ−ν +1)+(β −µ)2 ≥ 0
]
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4 Conclusion and Future Work

We have presented two challenging problems (algorithm correctness and optimization) that were ap-
proached using powerful polynomial algebra (resultant and Bézoutian computation, cylindrical algebraic
decomposition) and numerical (interpolation) methods.

Immediate goal of this research is to find the parameters of the loop assignments such that Algorithm
3 is optimal, given the necessary and sufficient conditions presented in this paper. Also, we plan to
automatize parts of the parameters synthesis, namely those parts which could not be handled by state-of-
the-art quantifier elimination software. Regarding the method presented in Section 2, we plan to extend
it to multivariate polynomials and multiple loop assignments.
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A Additional Proofs

A.1 Additional Proofs Lemma 1

Lemma 4. Prove that:

∀
p,q,r,s,t

s > 0∧ t > 0 =⇒

 ∀
a,b,x

0 < a≤
√

x≤ b⇒ pa2 +qab+ rb2 + x > 0⇐⇒

∀
a,b

0 < a≤ b ⇒ (p+1)a2 +qab+ rb2 > 0

.

Proof. Take p0,q0,r0,s0, t0 arbitrary. Assume s0 > 0∧ t0 > 0. Prove ∀
a,b,x

0 < a≤
√

x≤ b⇒ p0a2 +q0ab+ r0b2 + x > 0⇐⇒

∀
a,b

0 < a≤ b ⇒ (p0 +1)a2 +q0ab+ r0b2 > 0

.

We prove each direction.
” =⇒ ”. Take a0,b0 arbitrary. Assume 0 < a0 ≤ b0. Prove (p0 +1)a2

0 +q0a0b0 + r0b02 > 0.
Instantiate in assumptions a = a0, b = b0, x = a2

0, obtaining:

0 < a0 ≤
√

a2
0 ≤ b0⇒ p0a2

0 +q0a0b0 + r0b2
0 +a2

0 > 0.

Since 0 < a0 ≤ a0 ≤ b0 is true, p0a2
0+q0a0b0+ r0b2

0+a2
0 > 0 is true, which is equivalent to the goal.

”⇐= ”. Take a0,b0,x0 arbitrary. Assume 0 < a0 ≤
√

x0 ≤ b0. Prove p0a2
0 + q0a0b0 + r0b2

0 + x0 > 0.
Instantiate in assumptions a = a0, b = b0, obtaining:

0 < a0 ≤ b0⇒ (p0 +1)a2
0 +q0a0b0 + r0b2

0 > 0.
Since 0 < a0 ≤ b0 is true, (p0 +1)a2

0 +q0a0b0 + r0b2
0 > 0 = p0a2

0 +q0a0b0 + r0b2
0 +a2

0 > 0 is true.
But p0a2

0 +q0a0b0 + r0b2
0 + x = p0a2

0 +q0a0b0 + r0b2
0 +a2

0︸ ︷︷ ︸
>0

+x0−a2
0︸ ︷︷ ︸

≥0

> 0. Thus the goal is proved.

Lemma 5. Prove that:
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∀
p,q,r,s,t

s < 0∧ t < 0 =⇒

 ∀
a,b,x

0 < a≤
√

x≤ b⇒ pa2 +qab+ rb2 + x < 0⇐⇒

∀
a,b

0 < a≤ b ⇒ (r+1)b2 +qab+ pa2 < 0

.

Proof. Take p0,q0,r0,s0, t0 arbitrary. Assume s0 < 0∧ t0 < 0. Prove ∀
a,b,x

0 < a≤
√

x≤ b⇒ pa2 +qab+ rb2 + x < 0⇐⇒

∀
a,b

0 < a≤ b ⇒ (r+1)b2 +qab+ pa2 < 0

.

We prove each direction.
” =⇒ ”. Take a0,b0 arbitrary. Assume 0 < a0 ≤ b0. Prove (r0 +1)b2

0 +q0a0b0 + p0a2
0 < 0. Instantiate in

assumptions a = a0, b = b0, x = b2
0, obtaining:

0 < a0 ≤
√

b2
0 ≤ b0⇒ p0a2

0 +q0a0b0 + r0b2
0 +b2

0 < 0.

Since 0 < a0 ≤ b0 ≤ b0 is true, p0a2
0 + q0a0b0 + r0b2

0 + b2
0(r0 + 1)b2

0 + q0a0b0 + p0a2
0 < 0 is true,

which is equivalent to the goal.
”⇐= ”. Take a0,b0,x0 arbitrary. Assume 0 < a0 ≤

√
x0 ≤ b0. Prove p0a2

0 + q0a0b0 + r0b2
0 + x0 < 0.

Instantiate in assumptions a = a0, b = b0, obtaining:
0 < a0 ≤ b0⇒ p0a2

0 +q0a0b0 + r0b2
0 +b2

0 < 0.
Since 0 < a0 ≤ b0 is true, p0a2

0 +q0a0b0 + r0b2
0 +b2

0 < 0 is true.
But p0a2

0 +q0a0b0 + r0b2
0 + x = p0a2

0 +q0a0b0 + r0b2
0 +b2

0︸ ︷︷ ︸
<0

+x0−b2
0︸ ︷︷ ︸

≤0

< 0. Thus the goal is proved.

Lemma 6. Prove that:

∀
p,q,r,s,t

s > 0∧ t < 0∧ s+ t = 0 =⇒

[
∀

a,b,x
0 < a≤

√
x≤ b⇒ (pa2 +qab+ rb2 + x)(sa+ tb)> 0⇐⇒

f alse

]
.

Proof. Take p0,q0,r0,s0, t0 arbitrary. Assume s0 > 0∧ t0 < 0∧ s0 + t0 = 0. Prove[
∀

a,b,x
0 < a≤

√
x≤ b⇒ (p0a2 +q0ab+ r0b2 + x)(s0a+ t0b)> 0⇐⇒

f alse

]
.

We prove each direction.
” =⇒ ”. We prove the contrapositive, i. e.
∃

a,b,x
0 < a≤

√
x≤ b∧ (p0a2 +q0ab+ r0b2 + x)(s0a+ t0b)≤ 0.

Take a = b = x = 1. We obtain 0 < 1≤
√

1≤ 1∧ (p0 +q0 + r0 +1)(s0 + t0) = 0≤ 0. Thus the goal
is proved.
”⇐= ”. Evidently true.

Lemma 7. Prove that:

∀
p,q,r,s,t

s > 0∧ t < 0∧ s+ t < 0 =⇒

 ∀
a,b,x

0 < a≤
√

x≤ b⇒ (pa2 +qab+ rb2 + x)(sa+ tb)> 0⇐⇒

∀
a,b,x

0 < a≤
√

x≤ b⇒ pa2 +qab+ rb2 + x < 0

.

Proof. Take p0,q0,r0,s0, t0 arbitrary. Assume s0 > 0∧ t0 < 0∧ s0 + t0 < 0. Prove ∀
a,b,x

0 < a≤
√

x≤ b⇒ (p0a2 +q0ab+ r0b2 + x)(s0a+ t0b)> 0⇐⇒

∀
a,b,x

0 < a≤
√

x≤ b⇒ p0a2 +q0ab+ r0b2 + x < 0

.

We prove each direction.
” =⇒ ”. Take a0, b0, x0 arbitrary. Assume 0 < a0 ≤

√
x0 ≤ b0. Prove p0a2

0 +q0a0b0 + r0b2
0 + x0 < 0.

Instantiate in assumption a = a0, b = b0, x = x0, obtaining:
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0 < a0 ≤
√

x0 ≤ b0⇒ (p0a2
0 +q0a0b0 + r0b2

0 + x0)(s0a0 + t0b0)> 0.
Because 0 < a0 ≤

√
x0 ≤ b0 is true, (p0a2

0 +q0a0b0 + r0b2
0 + x0)(s0a0 + t0b0)> 0 is true.

But s0a0 + t0b0 = (s0 + t0)︸ ︷︷ ︸
<0

a0︸︷︷︸
>0

+b0−a0︸ ︷︷ ︸
≥0

t0︸︷︷︸
<0

< 0. Therefore p0a2
0 +q0a0b0 + r0b2

0 + x0 < 0, which

is actually the goal.
”⇐= ”. Take a0, b0, x0 arbitrary. Assume 0 < a0 ≤

√
x0 ≤ b0. Prove (p0a2

0+q0a0b0+ r0b2
0+x0)(s0a0+

t0b0)> 0.
Instantiate in assumption a = a0, b = b0, x = x0, obtaining:
0 < a0 ≤

√
x0 ≤ b0⇒ p0a2

0 +q0a0b0 + r0b2
0 + x0 < 0.

Because 0 < a0 ≤
√

x0 ≤ b0 is true, p0a2
0 +q0a0b0 + r0b2

0 + x0 < 0 is true.
But s0a0 + t0b0 < 0. Therefore (p0a2

0 + q0a0b0 + r0b2
0 + x0)(s0a0 + t0b0) > 0, which is actually the

goal.

A.2 Additional Proofs Lemma 2

Lemma 8. Prove that:

∀
p,q,r,s,t

s > 0∧ t > 0 =⇒


∀

a,b,x
0 < a≤

√
x≤ b⇒ x−

√
x(sa+ tb)+ pa2 +qab+ rb2 + x≤ 0⇐⇒

∀
a,b

0 < a≤ b ⇒

 a2−a(sa+ tb)+ pa2 +qab+ rb2 ≤ 0
∧
b2−b(sa+ tb)+ pa2 +qab+ rb2 ≤ 0




Proof. Take p0,q0,r0,s0, t0 arbitrary. Assume s0 > 0, t0 > 0. Prove
∀

a,b,x
0 < a≤

√
x≤ b⇒ x−

√
x(s0a+ t0b)+ p0a2 +q0ab+ r0b2 + x≤ 0⇐⇒

∀
a,b

0 < a≤ b ⇒

 a2−a(s0a+ t0b)+ p0a2 +q0ab+ r0b2 ≤ 0
∧
b2−b(s0a+ t0b)+ p0a2 +q0ab+ r0b2 ≤ 0


 .

We prove each direction.
”=⇒ ”. Take a0,b0 arbitrary. Assume 0< a0≤ b0. Prove a2

0−a0(s0a0+t0b0)+ p0a2
0+q0a0b0+r0b2

0≤ 0
and b2

0−b0(s0a0 + t0b0)+ p0a2
0 +q0a0b0 + r0b2

0 ≤ 0.
Instantiate in assumption: a = a0, b = b0, x = a2

0, x = a2
0, obtaining:

0 < a0 ≤
√

a2
0 ≤ b⇒ a2

0−a0(s0a+ t0b0)+ p0a2
0 +q0a0b0 + r0b2

0 ≤ 0 and

0 < a0 ≤
√

b2
0 ≤ b⇒ b2

0−b0(s0a0 + t0b0)+ p0a2
0 +q0a0b0 + r0b2

0 ≤ 0.

Because 0 < a0 ≤
√

a2
0 ≤ b and 0 < a0 ≤

√
b2

0 ≤ b are true, a2
0−a0(s0a0 + t0b0)+ p0a2

0 +q0a0b0 +

r0b2
0 ≤ 0 and b2

0−b0(s0a0 + t0b0)+ p0a2
0 +q0a0b0 + r0b2

0 ≤ 0 are true, which are actually the goal.
”⇐= ”. Take a0,b0,x0 arbitrary. Assume 0 < a0 ≤

√
x0 ≤ b0. Prove x0−

√
x0(s0a0 + t0b0)+ p0a2

0 +
q0a0b0 + r0b2

0 ≤ 0.
Instantiate in assumption: a = a0, b = b0, obtaining:

0 < a0 ≤ b0⇒

 a2
0−a0(s0a0 + t0b0)+ p0a2

0 +q0a0b0 + r0b2
0 ≤ 0

∧
b2

0−b0(s0a0 + t0b0)+ p0a2
0 +q0a0b0 + r0b2

0 ≤ 0

 .
Because 0 < a0 ≤ b0 is true, a2

0−a0(s0a0 + t0b0)+ p0a2
0 +q0a0b0 + r0b2

0 ≤ 0 and
b2

0−b0(s0a0 + t0b0)+ p0a2
0 +q0a0b0 + r0b2

0 ≤ 0 are true.
Let f (

√
x0) = x0−

√
x0(s0a0 + t0b0)+ p0a2

0 +q0a0b0 + r0b2
0. f is convex.

Consider the cases in Figure A.2.
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Figure 1: Shape of f (
√

x0) = x0−
√

x(s0a0 + t0b0)+ p0a2
0 +q0a0b0 + r0b2

0 on [a0,b0] (Lemma 8).

1. Prove b0 < a0⇒ [0 < a0 ≤ b0⇒ f (
√

x)≤ 0].

But
[
b0 < a0 ⇒ [0 < a0 ≤ b0 ⇒ f (

√
x) ≤ 0]

]
⇐⇒

[
b0 < a0 ∧ 0 < a0 ≤ b0 ⇒ f (

√
x) ≤ 0

]
⇐⇒[

f alse⇒ f (
√

x)≤ 0
]
⇐⇒ true.

2. Prove 0 < a0 ≤ b0⇒ f (
√

x)≤ 0.

Let f (a0) and f (b0) be two values of the function. Assume w.l.o.g. that f (b0) is the maximum of
the function.

But f (b0) = b2
0−b0(s0a0+ t0b0)+ p0a2

0+q0a0b0+ r0b2
0 ≤ 0. Therefore f (

√
x0)≤ 0, for 0 < a0 ≤√

x0 ≤ b0.

Lemma 9. Prove that:

∀
p,q,r,s,t

s< 0∧t < 0=⇒



∀
a,b,x

0 < a≤
√

x≤ b⇒ x−
√

x(sa+ tb)+ pa2 +qab+ rb2 ≥ 0⇐⇒

∀
a,b

a≤ sa+tb
2 ≤ b⇒ [0 < a≤ b⇒−( sa+tb

2 )2 + pa2 +qab+ rb2 ≥ 0

∧
∀

a,b
0 < a≤ b⇒ a2−a(sa+ tb)+ pa2 +qab+ rb2 ≥ 0

∧
∀

a,b
0 < a≤ b⇒ b2−b(sa+ tb)+ pa2 +qab+ rb2 ≥ 0




Proof. Take p0,q0,r0,s0, t0 arbitrary. Prove

∀
a,b,x

0 < a≤
√

x≤ b⇒ x−
√

x(s0a+ t0b)+ p0a2 +q0ab+ r0b2 ≥ 0⇐⇒

∀
a,b

a≤ s0a+t0b
2 ≤ b⇒ [0 < a≤ b⇒−( s0a+t0b

2 )2 + p0a2 +q0ab+ r0b2 ≥ 0]

∧
∀

a,b
0 < a≤ b⇒ a2−a(s0a+ t0b)+ p0a2 +q0ab+ r0b2 ≥ 0

∧
∀

a,b
0 < a≤ b⇒ b2−b(s0a+ t0b)+ p0a2 +q0ab+ r0b2 ≥ 0


.


.

Denote U = s0a+ t0b and V = p0a2
0 +q0a0b0 + r0b2

0.
Take f (

√
x) = x−U

√
x+V .

The goal can be rewritten as:
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Figure 2: Shape of f (
√

x) = x−U
√

x+V on [a0,b0] (Lemma 9).


[
∀

a,b,x
0 < a≤

√
x≤ b⇒ f (

√
x)≥ 0

]
⇐⇒[[

∀
a,b

0 < a≤ U
2 ≤ b⇒ f (U

2 )≥ 0
]
∧
[
∀

a,b
0 < a≤ b⇒ f (a)≥ 0

]
∧
[
∀

a,b
0 < a≤ b⇒ f (b)≥ 0

]]
 .

We prove each direction.
” =⇒ ”. We prove each conjunct individually.

1. Take a0,b0 arbitrary. Assume 0 < a0 ≤ U
2 ≤ b0. Prove f (U

2 )≥ 0.

Instantiate in assumption a = a0, b = b0, x = (U
2 )

2, obtaining: 0 < a0 ≤
√
(U

2 )
2 ≤ b0⇒ f (U

2 )≥ 0.

Because 0 < a0 ≤ U
2 ≤ b0 is true, f (U

2 )≥ 0 is true, which is actually the goal.

2. Take a0,b0 arbitrary. Assume 0 < a0 ≤ b0. Prove f (a0)≥ 0.

Instantiate in assumption a = a0, b = b0, x = a2
0, obtaining: a0 ≤

√
a2

0 ≤ b0 ⇒ f (
√

a2
0) ≥ 0.

Because 0 < a0 ≤ a0 ≤ b0 is true, f (a0)≥ 0 is true, which is actually the goal.

3. Take a0,b0 arbitrary. Assume 0 < a0 ≤ b0. Prove f (b0)≥ 0.

Instantiate in assumption a = a0, b = b0, x = b2
0, obtaining: a0 ≤

√
b2

0 ≤ b0 ⇒ f (
√

b2
0) ≥ 0.

Because a0 ≤ b0 ≤ b0 is true, f (b0)≥ 0 is true, which is actually the goal.

”⇐= ”. Take a0,b0,x0 arbitrary. Assume a0 ≤
√

x0 ≤ b0. Prove f (
√

x0)≥ 0.
Instantiate in assumptions a = a0, b = b0, obtaining:
0 < a0 ≤

√
x0 ≤ b0⇒ f (U

2 )≥ 0, 0 < a0 ≤ b0⇒ f (a0)≥ 0 and 0 < a0 ≤ b0⇒ f (b0)≥ 0.
Consider the cases in Figure A.2.
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1. Case b0 < a0. We have to prove that: b0 < a0⇒ [0 < a0 ≤
√

x0 ≤ b0⇒ f (
√

x0)≥ 0].

But
[
b0 < a0⇒ [0 < a0 ≤

√
x0 ≤ b0⇒ f (

√
x0)≥ 0]

]
⇐⇒[

b0 < a0∧0 < a0 ≤
√

x0 ≤ b0⇒ f (
√

x0)≥ 0
]
⇐⇒

[
f alse⇒ f (

√
x0)≥ 0

]
⇐⇒ true.

2. Case U
2 < a0 ≤ b0. We have to prove that: U

2 < a0 ≤ b0⇒ [0 < a0 ≤
√

x0 ≤ b0⇒ f (
√

x0)≥ 0].

But f is monotonic on [a0,b0], f (a0)≥ 0 and f (b0)≥ 0. Therefore f (
√

x0)≥ 0 on [a0,b0].

3. Case a0 ≤ b0 <
U
2 . We have to prove that: a0 ≤ b0 <

U
2 ⇒ [0 < a0 ≤

√
x0 ≤ b0⇒ f (

√
x0)≥ 0].

But f is monotonic on [a0,b0], f (a0)≥ 0 and f (b0)≥ 0. Therefore f (
√

x0)≥ 0 on [a0,b0].

4. Case a0 ≤ U
2 ≤ b0. We have to prove that: a0 ≤ U

2 ≤ b0⇒ [0 < a0 ≤
√

x0 ≤ b0⇒ f (
√

x0)≥ 0].

But f is convex and f ′(√x0) =
U
2 . Therefore U

2 is a minimum and further f (U
2 )≥ 0. We conclude

that f (
√

x0)≥ 0 on [a0,b0].

Lemma 10. Prove that:

∀
p,q,r,s,t

s < 0∧ t < 0 =⇒

[
∀

a,b
0 < a≤ sa+tb

2 ≤ b⇒−( sa+tb
2 )2 + pa2 +qab+ rb2 ≥ 0⇐⇒

true

]
Proof. Take p0,q0,r0,s0, t0 arbitrary. Assume s0 < 0 and t0 < 0.

Prove ∀
a,b

0 < a≤ s0a+t0b
2 ≤ b⇒−( s0a+t0b

2 )2 + p0a2 +q0ab+ r0b2 ≥ 0⇐⇒ true.

But true⇐⇒
[
∀

a,b
0< a≤ s0a+t0b

2 ≤ b⇒−( s0a+t0b
2 )2+ p0a2+q0ab+r0b2≥ 0

]s0<0∧t0<0∧a>0∧b>0⇒s0a+t0b<0⇐⇒[
f alse⇒−( s0a+t0b

2 )2 + p0a2 +q0ab+ r0b2 ≥ 0
]
⇐⇒ true.

Lemma 11. Prove that:

∀
p,q,r,s,t

s> 0∧t < 0∧s+t = 0=⇒


∀

a,b,x
0 < a≤

√
x≤ b⇒ pa2+qab+rb2+x

sa+tb ≤
√

x⇐⇒
∀

a,b,x
0 < a≤

√
x≤ b∧ sa+ tb < 0⇒ pa2 +qab+ rb2 + x≥

√
x(sa+ tb)

∧
∀

a,b,x
¬(0 < a≤

√
x≤ b∧ sa+ tb = 0)



.

Proof. Take p0,q0,r0,s0, t0 arbitrary. Assume s0 > 0, t0 < 0, s0 + t0 = 0. Prove
∀

a,b,x
0 < a≤

√
x≤ b∧ s0a+ t0b < 0⇒ p0a2 +q0ab+ r0b2 + x≥

√
x(s0a+ t0b)

∧
∀

a,b,x
¬(0 < a≤

√
x≤ b∧ s0a+ t0b = 0)

 .
” =⇒ ”. We prove each conjunct individually.

1. Proof of ∀
a,b,x

0 < a≤
√

x≤ b∧ s0a+ t0b < 0⇒ p0a2 +q0ab+ r0b2 + x≥
√

x(s0a+ t0b).

Take a0, b0, x0 arbitrary. Assume 0 < a0 ≤
√

x≤ b0, s0a0+t0b0 < 0. Prove p0a2
0+q0a0b0+r0b2

0+
x≥√x0(s0a0 + t0b0).

Instantiate in assumption a= a0, b= b0, x= x0, obtaining 0< a0≤
√

x0≤ b0⇒
p0a2

0+q0a0b0+r0b2
0+x0

s0a0+t0b0
≤√

x.

Because 0 < a0 ≤
√

x0 ≤ b0 is true, p0a2
0+q0a0b0+r0b2

0+x0
s0a0+t0b0

≤
√

x is true.
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But s0a0 + t0b0 = (s0 + t0)︸ ︷︷ ︸
=0

a0︸︷︷︸
>0

+ t0︸︷︷︸
<0

(b0−a0)︸ ︷︷ ︸
≥0

≤ 0.

Because s0a0 + t0b0 ≤ 0 is true, p0a2
0 +q0a0b0 + r0b2

0 + x0 ≥
√

x0(s0a0 + t0b0) is true.

2. Proof of ∀
a,b,x
¬(0 < a≤

√
x≤ b∧ s0a+ t0b = 0).

We prove the contrapositive ∃
a,b,x

0 < a ≤
√

x ≤ b∧ s0a+ t0b = 0. Take a = −t0, b = s0, x = s0,

|t0| ≤ |s0|. We obtain 0 <−t0 ≤ s0 ≤ s0∧−s0t0 + s0t0 = 0, which is true.

”⇐= ”. Take a0,b0,x0 arbitrary. Assume 0 < a0 ≤
√

x0 ≤ b0. Prove p0a2
0+q0a0b0+r0b2

0+x0
s0a0+t0b0

≤√x0.
Instantiate in assumptions a = a0, b = b0, x = x0, obtaining:
0 < a0 ≤

√
x0 ≤ b0 ∧ s0a0 + t0b0 < 0⇒ p0a2

0 + q0a0b0 + r0b2
0 + x0 ≥

√
x0(s0a0 + t0b0) and ¬(0 <

a0 ≤
√

x0 ≤ b0∧ s0a0 + t0b0 = 0).

Because 0 < a0 ≤
√

x0 ≤ b0 and s0a0 + t0b0 < 0 are true, p0a2
0+q0a0b0+r0b2

0+x0
s0a0+t0b0

≤√x0.

Lemma 12. Prove that:

∀
p,q,r,s,t

s > 0∧ t < 0∧ s+ t = 0 =⇒

[
∀

a,b,x
¬(0 < a≤

√
x≤ b∧ sa+ tb = 0)⇐⇒

f alse

]
Proof. Take p0,q0,r0,s0, t0 arbitrary. Assume s0 > 0, t0 < 0, s0 + t0 = 0. Prove[

∀
a,b,x
¬(0 < a≤

√
x≤ b∧ s0a+ t0b = 0)⇐⇒

f alse

]
.

” =⇒ ”. We prove the contrapositive ∃
a,b,x

0 < a≤
√

x≤ b∧s0a+ t0b = 0. We take a =−t0, b = s0, x = s0,

|t0| ≤ |s0|. We obtain 0 <−t0 ≤ s0 ≤ s0∧−s0t0 + s0t0 = 0 = 0, which is true.
”⇐= ”. Evidently true.
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