
Marshall Plan Foundation Scholarship Report: A

web based visualization technique for avalanche

risk mapping in Austria using mobile devices

Helbert Arenas

January 10, 2012

ii

Contents

1 What is this all about? 1

1.1 Introduction . 1

1.2 Problem Statement . 3

1.3 Research Questions . 3

1.4 Methodology . 3

1.5 Sections Overview . 3

2 Outdoor winter leisure activities 5

2.1 Introduction . 5

2.2 Avalanches . 6

2.2.1 Who gets involved in avalanche incidents? and how? 8

2.3 Summary . 11

3 Technology Overview 13

3.1 Introduction . 13

3.2 GeoLocation . 13

3.2.1 Global Navigation Satellite Systems (GNSS): 14

3.2.2 IP Address . 17

3.2.3 GSM/CDMA Cell IDs . 18

3.2.4 WiFi and Bluetooth MAC Address 19

3.3 Location Based Services . 20

3.4 Web mapping . 23

3.4.1 Web Map Server . 23

3.4.2 Web Feature Service . 24

iii

iv CONTENTS

3.4.3 Data formats . 25

3.4.4 Some Implementations . 31

3.5 Overview of Mobile devices . 38

3.6 Most common Operative Systems 40

3.6.1 Symbian OS . 41

3.6.2 iOS . 42

3.6.3 Android . 44

3.6.4 BlackBerry OS . 45

3.7 Comparison of current Operative Systems 46

3.8 Summary and conclusions . 49

4 Avalanche Application 53

4.1 Introduction . 53

4.2 Use Cases . 54

4.3 Implementation . 55

4.4 Model Specification: Software components 55

4.4.1 AvalancheUI . 56

4.4.2 RiskEvaluatorService . 60

4.4.3 RiskPolygon . 62

4.5 Conclusions . 64

5 Conclussions 67

5.1 Discussion . 67

5.2 Limitations . 69

5.3 Future research . 70

A Java Classes 81

A.1 AvalancheUI.java . 81

A.2 RiskEvaluatorService.java . 87

A.3 RiskPolygon.java . 98

B Visor module 105

B.1 HTML . 105

B.2 JavaScript . 109

CONTENTS v

B.3 Avalache Risk Information . 114

vi CONTENTS

List of Figures

2.1 U.S. Avalanche fatalities from 1955 to 2005(source: [UAC, 2011]) . 6

2.2 Who gets caught in avalanches? (source: [UAC, 2011]) 7

2.3 Avalanches by slope steepness (source: [UAC, 2011]) 8

2.4 Avalanche survival vs. burial time (source: [UAC, 2011]) 9

3.1 Triangulation, radial and directional (source: [Holdener III, 2011]) . 14

3.2 Global Navigation Satellite System location (source: [Holdener III, 2011]) 17

3.3 Wireless wide area network (source: [Steiniger et al., 2004]) 19

3.4 Global market share 2009 (source: [Gartner, 2011a]) 41

3.5 Global market share 2010 (source: [Gartner, 2011a]) 42

3.6 iOS Technology layers (source: [Liu et al., 2011]). 43

3.7 Global sales of smartphones in the second quarter of 2010 (source:

[Gartner, 2011a]) . 47

3.8 Global sales of smartphones in the second quarter of 2011 (source:

[Gartner, 2011a]) . 48

3.9 North America handset sales by quarter (source: [Butler, 2011]). . . 48

3.10 Number of Available Applications (source: [Distimo, 2011]) 49

4.1 User case scenarios . 54

4.2 UML Class diagram of the application 56

4.3 Application Interface . 58

4.4 Map of the test area using OpenLayers 59

4.5 Flow chart diagram of Service onCreate event 61

4.6 Instantiation of the class RiskPolygon 64

vii

viii LIST OF FIGURES

4.7 Point in polygon algorithm . 65

Chapter 1

What is this all about?

1.1 Introduction

The title of my Ph.D. research is An Agent-Based Simulation Model for the Busi-

ness Reopening in New Orleans Post Hurricane Katrina. My research basically

has three main components: the calibration of the model, the design and imple-

mentation of the simulation model, and the design of a visualization component

for the model results. Austria is a country with a very different landscape in

comparison with Louisiana where my current research is based on. However, the

visualization techniques that I use are generic enough to be successfully employed

in other spatio–temporal phenomena disregarding the specific location. The phe-

nomena that caught my attention when examining the Austrian landscape are the

large number of avalanches during the late fall, winter, and early spring seasons

occurring in the Alps. Austria, due to its topographic relief and weather condi-

tions faces this particular thread every year. When avalanches occur, fatalities

or injuries are unfortunately not unusual [Turner, 2010] [Reuters, 2009] .The to-

tal number of fatalities since 1950 has been more than 1600, which results on an

average of approximately 30 fatal victims per year [Holler, 2007].

An avalanche is a rapid flow of snow down a slope. There are mitigation mea-

sures designed to reduce the risk of a given area to avalanches. Among these

1

2 CHAPTER 1. WHAT IS THIS ALL ABOUT?

measures are the construction of deflecting dams, the redevelopment of mountain

forests, the development of hazard maps, or the use of explosives in order to pre-

vent larger avalanches by triggering smaller ones [AAA, 2010]. Current research

on the avalanche field is focused on the forecasting, avalanche hazard mapping,

and avalanche simulation models and information dissemination [Holler, 2007]

[Eckerstorfer, 2008]. One of the most common causes of fatalities due to avalanches

is the little knowledge that skiers and mountaineers have of avalanche hazards

[Eckerstorfer, 2008].

Current technology allows us to provide updated information on the field using

Mobile Geographic Information Systems (mobile GIS). Mobile GIS combines in

a mobile computing device, Internet and GIS. It has been applied to location

based services (LBS) [Shi et al., 2009]. LBS are services that provide relevant

information based on the location of the mobile device [Longley et al., 2005].

Mobile devices with access to internet can access maps similar to the ones I have

previously developed for my research, making the visualization approach previ-

ously described, very attractive. The small screen common in mobile devices,

demands special care in the interface design. Until now I had not had this type of

requirement in my previous projects. However I believe the techniques I have used

could be adapted with minor changes to display dynamic maps, using the position

(from the onboard GPS) of the mobile device as part of the spatial query.

Using Mobile GIS it is possible to deliver an updated avalanche risk map to users

while they are still outdoors. The purpose of this research will be the design and

implementation of the visualization component of a web based avalanche risk map

system for mobile devices. The application will contain a map that will show

the most updated avalanche risk information for the user position. The map will

dynamically represent the changing climatic conditions that affect the avalanche

occurrence probabilities.

1.2. PROBLEM STATEMENT 3

1.2 Problem Statement

1.3 Research Questions

1. What are the requirements for a web based avalanche risk map visualization

module for mobile devices?

2. What are the best tools available for the development of a web based avalanche

risk map visualization module?

3. What are the capabilities and limitations of the available tools in the market?

1.4 Methodology

First, through a literature review I identified the requirements for a web based

avalanche hazard map for mobile devices. Second, I evaluated the most common

tools employed to represent spatio-temporal dynamic phenomena on the internet.

Finally, I developed the web based map using the most suitable and available tools

fulfilling the requirements identified in the first step.

The result of this research is a set of guidelines for the development of an avalanche

risk application for mobile devices. As a second product, I developed a dynamic

web based map designed for mobile devices.

1.5 Sections Overview

In Chapter two we talk about avalanches and briefly describe how people get

caught on them, indicating the characteristics of a tool that might reduce the risk

of avalanche incidents. In Chapter three we describe current technology related

to geolocation, webmaps and mobile devices that could be used to deploy an

avalanche risk application. In Chapter four we describe the application developed

4 CHAPTER 1. WHAT IS THIS ALL ABOUT?

for this project. Chapter five contains the conclussions, discussion and future

research.

Chapter 2

Outdoor winter leisure

activities

2.1 Introduction

Outdoor leisure activities involving a certain amount of risk are becoming more

popular. Leisure activities considered in the past as “fringe” are becoming more

main stream. There are many possible reasons for this growth among others: the

media glorification of such activities, technological advancements, better equip-

ment, better access to terrain, and successful marketing campaigns oriented to

increase the custom base of these industries . A consequence of this growth is

an increase in numbers of people injured or even dead due to accidents in these

activities. We have reached the point that there is concern in a segment of society

about the costs of risk leisure activities to the society as a whole in the form of

financial burdens, personal injuries and emotional impact. There are voices raising

questions about the costs of rescue teams or the morals of putting a rescue team

in an “unnecessary” risk. Some voices argue that society should regulate these ac-

tivities or even prohibit some, while others argue that mature rational individuals

should have the right to pursue those activities while taking in consideration the

consequences of their actions on others [Olivier, 2006].

5

6 CHAPTER 2. OUTDOOR WINTER LEISURE ACTIVITIES

Back country winter recreation is a group of those outdoor leisure activities with

a growing popularity. A negative consequence of this growth is an increase in

the number of injuries and fatalities due to avalanches For instance, Figure 2.1

represents the number of fatalities due to avalanches in U.S. from 1955 to 2005.

Figure 2.2 shows a more detailed view of the avalanche fatalities. According to the

Utah Avalanche Center, most of the victims in United States from 1995 to 2001

were people involved in some back country recreational activity (94%).

Figure 2.1: U.S. Avalanche fatalities from 1955 to 2005(source: [UAC, 2011])

A well recognized approach to reduce the negative impact of avalanches is ed-

ucation. Previous studies conducted by Furman et al. (2001) indicate human

factors such overconfidence and inexperience regarding avalanche are fundamental

to understand these type of incidents [Furman et al., 2010].

2.2 Avalanches

An avalanche occurs when a massive amount of snow, ice and rock debris, skid

down a mountainside. Most of the recorded avalanches occur in mountainsides

with slopes between 30◦ and 45◦ [Fonseca et al., 2011]. Slopes lower than 30◦ do

not produce avalanches, and slopes steeper than 50◦ do not allow enough snow to

accumulate to produce one [UAC, 2011] (See Figure 2.3) .

There are two kinds of avalanches :

2.2. AVALANCHES 7

Figure 2.2: Who gets caught in avalanches? (source: [UAC, 2011])

• loose–snow avalanches: In this case the avalanche starts in one point and

grows by accumulating loose snow down hill.

• slab avalanche: In this case the avalanche occurs because there is a cohesive

snow layer on top of a less cohesive one. The avalanche occurs when the less

cohesive layer fractures allowing the upper cohesive layer to slide downhill.

In many cases the event is triggered by a sudden extra weight added too

quickly, in most of the cases the extra stress is the weight of the victim or a

member of the victim’s party [UAC, 2011].

According to McCammon (2004) in 93% of the cases the victims themselves trig-

gered the avalanche that caught them. Victims of avalanches are buried in a

mixture of snow ice and debris. The cause of death is carbon dioxide poison-

ing. In the case of a avalanche the first minutes are crucial. Most of the victims

(93%) can survive if rescued in the first 15 minutes. However if a victim is res-

cued after 45 minutes his/her survival chances decrease to between 20% – 30%

[McCammon, 2004] (See figure 2.4).

8 CHAPTER 2. OUTDOOR WINTER LEISURE ACTIVITIES

Figure 2.3: Avalanches by slope steepness (source: [UAC, 2011])

2.2.1 Who gets involved in avalanche incidents? and how?

Due to the growth of popularity of winter back country recreation activities nowa-

days most of the victims of avalanches are people involved in these kind of activities

[Brugger et al., 2001]. In the case of United States for the period between 1995

to 2001, 94% of the fatal victims were involved in some kind of winter recreation

activity (See Figure 2.2) [UAC, 2011].

Tase (2005) conducted an online survey among recreationists with the goal to

identify the segment of the population that is at most risk, and try to identify the

causes. The survey comprised 1463 people male and female, with various degrees

of knowledge regarding avalanches and from different group ages. The results of

the survey indicate that 31% of the sample had a previous experience with an

avalanche and 22% were actually hit by one. When divided by gender, the results

indicate that 33% of males had been involved in avalanche incidents against 16%

of females. The researcher’s hypothesis before the survey was that snowmobilers

were in more risk than telemarkers, however the results indicated the opposite

[Tase, 2005].

There is a significant amount of research on the physical qualities of avalanches,

the snow and weather dynamics. However it is not always the case that this

knowledge is available for the people that need it most. In many cases poor

2.2. AVALANCHES 9

Figure 2.4: Avalanche survival vs. burial time (source: [UAC, 2011])

avalanche education is the main cause of avalanche incidents. Some untrained

people might fail to recognize signs that might be obvious to the eyes of an expert,

triggering an avalanche that might injure themselves or other parties nearby. In

recent years a new approach to the study of these events reveals that the decision

making process might be a relevant variable in avalanche incidents [Adams, 2005]

[McCammon, 2004].

Adams (2005) conducted a survey among members of the Canadian Avalanche

Association. When asked about the cause of the events 97% of the respondents

considered that human factors had “great”(48%) or “very great” (39%) influence

in avalanche incidents. The majority (67%) of the respondents also considered

that education of the recreationists would improve their decision making process.

Most of the respondents (81%) also considered that the information provided in

the form of bulletins could be improved by increasing its frequency and detail,

for example by creating local bulletins instead of regional ones.Although it would

require some level of sophistication from the user, most of the surveyed experts

(74%) considered that the identification of hazardous areas on maps would ease

the decision making process for skiers.

10 CHAPTER 2. OUTDOOR WINTER LEISURE ACTIVITIES

A solid avalanche education would definitely improve the decision making in the

field. However in many cases even good trained skiers get involved in avalanche

incidents. McCammon (2004) studied 715 avalanche incidents in United States

from 1972 to 2003. The results indicate that only 34% of the incidents involved

parties with no training at all, 24% of the cases involved parties with a general

awareness of the avalanche hazard, in 28% of the cases the parties had basic

training and in 15% of the case they had advance formal training. In most of the

cases the victims with some degree of training seemed to ignore obvious signs or

risk [McCammon, 2004].

McCammon (2004) suggests that human psychology mechanisms that we apply to

daily life without serious consequences when wrongfully applied to avalanche sit-

uations might lead to catastrophic results. He called these mechanisms “heuristic

traps” . McCammon identified six heuristic traps that might lead a skier into peril

[McCammon, 2004]:

Familiarity Many skiers decide their actions based on past events. However

familiarity becomes a heuristic trap when skiers avoid a rigorous risk evalu-

ation, by disregarding new information and believing that past experiences

without incidents assure safety.

Consistency Consistency is the though mechanism that makes people stick to

their original decisions. However in back country skiing climatic events might

affect the field, making it riskier than at the moment when the original plan

was decided. This though mechanism becomes an heuristic trap when a

party that has decided a course of action refuses to reevaluate their decisions

based on new evidence.

Acceptance Is the propensity to perform acts that a person think would improve

their image in the eyes of people she/he respects or likes. In the case of

adolescent and young men this might mean to get involved in risky activities

that would make them get noticed to women. According to McCammon

(2004) mixed parties (men and women) are in more risk that only women or

only men parties.

2.3. SUMMARY 11

The expert halo It has been noted that in many ski parties there is a member

with an informal leadership role. This person could have attained that role

by being the one with more expertise on skiing, or being the older or the

more assertive. However this behaviour becomes an heuristic trap when the

rest of the members of the group cease to evaluate the risk by themselves

and totally rely on skills that the leader might or might not have.

Social facilitation In this case the presence of other people might affect the risks

a person is willing to take. In this heuristic trap the presence of other people

increases the perception of safety.

Scarcity Is the behaviour mechanism that lead people to take unnecessary risks

when trying to secure resources or opportunities in the face of potential

competitors. For instance when skiers try to be the first ones to access an

untracked slope after a storm.

2.3 Summary

A consequence of the growth of popularity of winter back country leisure activ-

ities in increase of avalanche incidents involving recreationists. Education is an

important tool to increase the safety of people enjoying winter outdoor activities,

however with the increasing numbers of people interested in these activities, it is

difficult to provide all of them with adequate instruction. Even more, according to

McCammon (2004) even expert skiers that might be capable of recognizing alert

signals on the field, in certain circumstances might get into trouble by falling into

what he calls “heuristic traps” [McCammon, 2004].

A survey conducted by Adams(2005) among experts in the field indicate that most

of them considered that in order to reduce the risk of avalanche incidents a good

tool would be more detailed and frequent bulletins that would include risk maps,

that would facilitate the decision making process of the skiers [Adams, 2005]

However as Adams (2005) points out in order to use an avalanche risk map the

user requires a certain degree of sophistication. The tool required to increase the

12 CHAPTER 2. OUTDOOR WINTER LEISURE ACTIVITIES

safety of skiers must consider both the experts and non experts users. It should

use maps to indicate the risk areas, but these maps should be easy to use, even by

non expert map users.

Chapter 3

Technology Overview

3.1 Introduction

In this chapter we are going to review the current state of technology in the

fields of the location of mobile users, the use of dynamic/custom–made maps,

location based services and telecomunication devices that users might use while

being involved in winter leisure outdoor activities.

3.2 GeoLocation

As mankind began exploring the world a couple of fundamental questions surged

where am I? and where is the place I want to go to?. The answer to the first

question is called Geolocation, the location of the navigator in real world terms.

Navigators in order to identify their location in the world have developed tools

with an increasing degree of accuracy along time, such as cross-staffs, astrolabes,

quadrants, chronometers and sextants. Current technology allows the geolocation

using different methods the most common ones are [Holdener III, 2011]:

• Global Navigation Satellite Systems

• IP Address

13

14 CHAPTER 3. TECHNOLOGY OVERVIEW

Figure 3.1: Triangulation, radial and directional (source: [Holdener III, 2011])

• GSM/CDMA Cell ID

• WiFi and Bluetooth MAC Address

3.2.1 Global Navigation Satellite Systems (GNSS):

This is one of the most widely used method nowadays. It has its origins in the

early 20th. century when radio transmissions began to be used as guiding systems

using a technique called Direction finding (DF). When two or more receivers are

combined the location of the transmitter can be determined in a process known as

triangulation (See Figure 3.1).

With the advent of space exploration new tools and techniques became available.

In 1957 the Soviet Union launched Sputnik, an artificial satellite that orbited

the earth broadcasting a radio signal. The analysis of Sputnik’s signal allowed

American scientists to discovered that they could locate the satellite position using

3.2. GEOLOCATION 15

its Doppler effect. This discovery lead to more research on the use of satellites as

global navigation systems with projects such as Transit, Timation, Project 621B

and SECOR. The increasing knowledge gained from these projects eventually lead

to the development of Navstar in 1973 by the American Government, which is the

basis of the GPS system widely used nowadays. However at the beginning GPS

and the technology related to it was restricted for military use [Pace et al., 1995]

[Holdener III, 2011].

The military status of GPS technology changed in 1983 when the Korean Air Lines

flight 007 was shot down by the Soviet Union. The civilian airplane lost course and

entered into Soviet airspace , the Soviet Union air defense misidentified it by a spy

plane and shot it down. After this incident the President Ronald Reagan ordered

the U.S. military to allow civilian use of the Global Positioning System in order to

avoid future tragedies like the Flight 007. After the release of GPS for civilian use

the U.S. military enforced what is known as Selective Availability (SA) a procedure

which downgraded the signals in order to reduce the precision of the geolocation

for non military use. In the year 2000 President Bill Clinton ordered the Selective

Availability to be turned off. Without Selective Availability the precision of the

GPS geolocation went from 100 to 20 meters [Holdener III, 2011].

The standard configuration of GPS includes 24 active satellites and 3 as backup.

They are distributed in 6 orbital planes, assuring 4 visible satellites at all times at

a global scale. GPS satellite orbits are ellipses with a small eccentricity (e=0.003)

with a flight altitude of proximately 20,180 km [Cojocaru et al., 2009].

GPS is the most widely used Global Navigation Satellite System nowadays, al-

though is not the only one. The Soviet Union developed its own system calling

it GLONASS. It is conceptually very similar to GPS. After the fall of the Soviet

Union and because of lack of funding the system became only partially available

with big gaps in coverage. GLONASS is a military project which Russia inherited

after the dissolve of the Soviet Union. Currently Russia is investing in the system

in order to restore it to its full operational capacity[Cojocaru et al., 2009]. At full

operational state, GLONASS has 24 satellites using 3 orbital planes. GLONASS

orbits are circles with a flight altitude of 19,100 km.

16 CHAPTER 3. TECHNOLOGY OVERVIEW

The European Union started implementing its own Global Navigation Satellite

System in 2003. The development of an independent GNSS that would provide to

the European users with more services and reliability than GPS or GLONASS. The

system is called GALILEO, an important difference between GALILEO and its two

predecessors is that the European system is civilian [Cojocaru et al., 2009].

GALILEO is designed to have 30 satellites, 27 active and 3 as backup. It will use 3

orbital circular planes with a radius of 29,600 km with an inclination of 56 degrees

with the equatorial plane. The satellites will have a flight altitude of approximately

23,222 km. With this design it will be possible to have at least 6 visible satellites

in any point of the planet at any time [Cojocaru et al., 2009].

The process used by a Global Navigation Satellite System to obtain the location is

called trilateration. The signal broadcasted by the satellites contains an ephemeris

and an almanac. The ephemeris contains information about the satellite orbit

and clock corrections for that specific satellite. The almanac provides information

regarding the orbits and clock corrections of the whole system. Figure 3.2 describes

the method used by a GNSS to calculate the location of a user. The first step is to

measure the distance from the user to satellite A, creating an sphere that contains

all the possible user locations. The distance is calculated using the speed of light

and the time difference between the satellite and the user. The second step is to

calculate the distance to satellite B, the result is another sphere, the intersection of

both spheres is a circle that limits the possible alternatives. When we calculate the

distance to satellite C, we create a third sphere that when intersected with the circle

resulting from the second step results in two possible points. When we calculate

the distance to satellite D, we create a fourth sphere that intersects only with one of

the possible points which is the geolocation of the user. [Holdener III, 2011].

GNSS can be used for geolocation purposes in mobile devices anywhere on the

planet. Currently GPS accuracy is between 5 to 10 meters. Currently most of

modern smartphones have an internal GNSS chipset. The disadvantages of using

GNSS are:

• The relatively high power consumption.

3.2. GEOLOCATION 17

Figure 3.2: Global Navigation Satellite System location (source:
[Holdener III, 2011])

• It can be used only in outdoors.

• Depending on the mobile device it might take a long time to lock on the

satellite signals.

3.2.2 IP Address

An IP (Internet Protocol) address is an unique identifier for computers connected

a computer network using Internet Protocol. The IP address is expressed by 32 bit

unsigned binary value. It is represented in a doted decimal format. The mapping

between the IP address and a human readable format is done by a Domain Name

System (DNS) [Parziale et al., 2006]. The decimal format of an IP address looks

like:

128.2.7.9

while its binary format would be:

10000000 00000010 00000111 00001001

18 CHAPTER 3. TECHNOLOGY OVERVIEW

The IP addresses are assigned to an Internet Service Provider (IPS) and registered

in a local institution. Thanks to data collected by IPSs it is possible to identify

the geographic location of a give IP address within a few meters of actual location.

However depending on the IPS the precision of the location might vary to even

kilometers from the actual location. There are companies specialized in collecting

IP addresses information worldwide, creating databases that could be used for

geolocation services [Holdener III, 2011].

3.2.3 GSM/CDMA Cell IDs

Mobile devices connected to a cell network have a unique identifier called Cell ID.

The most two common networks are:

Global System for Mobile Communications (GSM): Is the oldest of the two

and is more widely available than CDMA. It is a 2G technology and is used

by 75% of the mobile users worldwide. It is relatively simple to migrate from

GSM to 3G and 4G technologies.

Code Division Multiple Access (CDMA): Is a newer technology compared

to GSM. It has been implemented as a 2G and 3G technology. Its advantage

over GSM is that it allows many users to use the same frequency at the same

time.

Using triangulation it is possible to obtain the user location. The precision of the

geolocation is in direct relation to the number of towers used in the estimation of

the position. Because of this, it works better in urban environments than in rural

areas. In United States due to the Enhanced 911 services mandated by the Federal

Government all carriers must be able to determine the location of the users with

a 300 meters precision (see Figure 3.3).

There are four techniques to calculate the locations using the cell network [Shek, 2010]:

Cell of origin This was the first technique used by the mobile carriers to im-

plement the Enhanced 911 requirement. It is possible to stablish the user

location by identifying the cell that is at that moment providing service to

3.2. GEOLOCATION 19

Figure 3.3: Wireless wide area network (source: [Steiniger et al., 2004])

his/her device. Depending on the cell size its accuracy could be around 150

meters in urban environments or around 1 kilometer in rural areas.

Time of arrival This technique uses the distance to base stations based on the

time lag. All the calculations are done by the mobile network and not in the

device. It has an accuracy between 50 to 150 meters.

Angle of arrival This technique uses the angle of the signals as received in the

mobile device. It has an accuracy between 50 and 150 meters.

Enhanced observed time difference This technique is similar to Time of Ar-

rival, although in this case the calculations are made on the device rather

than on the network. It also has an accuracy between 50 and 150 meters.

3.2.4 WiFi and Bluetooth MAC Address

This geolocation method works similar to the IP address method. The MAC

address is a unique identifier assigned by the manufacturer to each device, however

there is a technique called MAC spoofing that allows the manipulation of MAC

addresses [Holdener III, 2011].

The identities and the signal strengths that corresponds to distance to public WiFi

20 CHAPTER 3. TECHNOLOGY OVERVIEW

points are recorded by the mobile device. Later using a triangulation procedure it

is possible to calculate the location with regard to these access points. It has an

accuracy between 10 and 20 meters. It is faster and more accurate than using the

mobile network techniques and uses less power than GPS, however because it relies

on WiFi access points it might not be available in certain places[Shek, 2010].

3.3 Location Based Services

According to the Open Geospatial Consortium a service of this kind uses a wireless

IP connection to access data that is used by a mobile terminal [Mabrouk, 2008].

Location based services deal with three basic questions:

• where am I?

• What is near by?

• How can I go to?

Location based services allow to [Shek, 2010]:

• access relevant information, filtering out vast amounts of information avail-

able that might not be relevant based on the user context.

• improve the decision making process by supplying the users with timely data.

• access relevant data more promptly, the location of the user is provided to the

service automatically and in this way it reduces the amount of information

that the user needs to submit to the service in order to obtain a suitable

response.

• track the movements of the users, allowing for example to create a visualiza-

tion of the footprint of the visitors to a park.

It is predicted that the market for location based services will exceed $12

billion by the year 2014. This figure includes the application sales and mobile

advertisement [Shek, 2010].

3.3. LOCATION BASED SERVICES 21

There are important differences between location based services and regu-

lar GIS applications. For instance most desktop GIS applications work in

systems with extensive computing resources, while location based services

operate in the restrictions of mobile computing environments, less process-

ing power, smaller displays and limited battery run time.

The components of location based services are [Steiniger et al., 2004]:

– Mobile devices

– Communication network

– Positioning component

– Service and application provider

– Data and content provider

There are different ways to classify location based services. Based on their

target market there are three types of services [Shek, 2010]:

Publically accessible: Mass market the target is general public, they

need to be highly scalable and able to handle large number of requests,

being performance a key requirement on their design.

Publically accessible: Niche market This type of applications are also

aimed to the public but to a target audience, for example the customers

of an specific food chain. In this case the priority of the design shifts

to privacy and security.

Internal enterprise applications These applications are designed for the

internal use of an organization. In the past it was common to use special

hardware as the mobile devices however with the advent of smart phones

there is an opportunity to use these devices in this type of applications,

however their use also raises concerns about security.

It is also possible to classify location based services based on their purpose

of use:

Navigation and routing They provide directions to the user.

22 CHAPTER 3. TECHNOLOGY OVERVIEW

Entertainment They include games and social networking services.

Information services Provide answers to questions like “find the closest

restaurants”.

Accident and emergency services They report emergency incidents to

authorities and request for help.

Supply chain management and tracking This is a typical internal ap-

plication for an organization, they allow the organization to keep track

of goods and mobile units (delivery trucks).

It is also possible to classify location based services based on their technical

characteristics:

Network vs device centric The location of the mobile device can be ob-

tained using the cell network or using the internal gps of the device.

Assisted GPS is also common, in this case the location is obtained by

combining information from the mobile network with the GPS, reducing

the geolocation time, although the location information is still calcu-

lated by the mobile device [Shek, 2010].

Reactive vs Proactive The reactive services are also know as (Pull Ser-

vices). This kind of services only receive information when directly re-

quested by the user. On the other hand we have the proactive services

(Push Services). This kind of services receive information independently

of a user action. The reception of information is triggered by an event

like entering into a specific area, or a timer [Steiniger et al., 2004].

Most of the location based services operate in a combination of the following

tasks:

– navigation: how to get to a certain point of interest.

– identification: obtain information about features located nearby.

– checking: look for events near the current location, this task also con-

siders the temporal dimension.

3.4. WEB MAPPING 23

Because location based services operate on mobile devices, their development

have to face certain constrains:

– Most of the devices have limited computer power and memory resources.

– The limited battery power.

– The small displays in the mobile devices require special interface design.

– Because the devices have to operate in outdoors environments the have

to face weather influences, like the sun reflection that might affect dis-

plays making them hard to use.

– Depending on the location it might be the case that there is a limited

access to broadband communication networks.

3.4 Web mapping

3.4.1 Web Map Server

A server of this kind implements a web Map Service Interface Standard

(WMS) providing a HTTP interface for requesting geo–registered map im-

ages. The WMS request contains information about the area of interest and

the required information layers. The response to the request is one or more

map images to be displayed in the client browser [de la Beaujardiere, 2006].

Most of the web mapping applications use a server–side tile generator ar-

chitecture. In this approach the server produces one version of the map

for each available scale. Later the map is tiled and stored in the server.

When the server receives a request from the client, it provides a selected

set of tiles according to the area of interest and scale level specified. This

approach is not flexible, the server does not generate new tiles on demand

and the user is limited to the fixed zoom levels pre–specified in the server

[Kamel et al., 2010].

24 CHAPTER 3. TECHNOLOGY OVERVIEW

3.4.2 Web Feature Service

A Web Feature Service differs from previous implementations in the field

of geographic data distribution. Previous implementations rely on the file

as the unit for information exchange. In the case of Web Feature Service,

the unit of exchange is the components of the file, the so called features.

Allowing the users to request or modify an specific feature or even only a

variable of it. The taxonomy of the services are defined in ISO 19119. The

main purpose of a Web Feature Service is accessing to the information at

the feature level, although it can also make coordinate transformation and

format conversion operations [Vretanos, 2011].

A Web Feature Service can be used in a client - server archicture system

providing rich content to a client side application. In many cases when a

browser is used in the client as the user interface, it might be necessary to

install a propietary plug in on top of the browser. HTML5 is being presented

as a solution to this limitation. As by September 2011 this standard is

still a work in progress [W3C, 2011]. However it promises very interesting

features, for instance using HTML5 it is possible to draw vector graphics

through scripting using the “canvas” element. Currently this component is

available in most of the browsers in the market that comply with the current

specification of HTML5. Using HTML5 it would be possible to display vector

information and dynamically manipulate it using Cascading Style Sheets.

Using scripting it would be possible to allow the user to interact with the

features through events triggers like “click” [Kamel et al., 2010]. In the next

section we are going to describe some of the data formats used by web feature

services to deploy data in the Internet.

3.4. WEB MAPPING 25

3.4.3 Data formats

XML

This is a markup language used to encode documents readable by both hu-

mans and computers. It is defined by W3C specification XML 1.0. It was

designed to be used on the Internet, to represent any data structure. Along

time many XML based languages have been created for specific purposes,

in the next sections we are going to describe two of the most popular XML

based languages designed to contain geographic information.

Geography Markup Language (GML) Is a XML based language de-

signed to transport and store geographic information in the internet.

It was developed by the OpenGIS Consortium (OGC), GML is an ISO

standard (ISO 19136:2007). Is designed to contain not only vector data,

but also coverages and sensor data [Lake, 2004] [Lake, 2000]. The pur-

pose of GML is to contain geographic data, independent of its visualiza-

tion. It is possible to use GML to make maps, by using a rendering tool

that would interpret the GML data and transform it into graphics. A

common approach is to use transform it into display formats like SVG,

VML or X3D using a map styler.

As in any other XML based format GML data is formatted as text

with tags. In the following listing we use GML to describe a polygon

with associated alphanumeric information. In lines 1 we declare we are

describing a polygon and assign a value as its identifier. In line 2 we

declare the value for the alphanumeric variable description. From line 3

to 7 we declare the coordinate values for an external boundary and from

lines 8 to 11 we declare the coordinate values for an internal island.

1 <gml : Polygon gml : id=”ExampleGML”>

2 <gml : d e s c r i p t i o n >”Example

01”</gml : d e s c r i p t i on>

3 <gml : e x t e r i o r >

4 <gml : LinearRing>

26 CHAPTER 3. TECHNOLOGY OVERVIEW

5 <gml : coord inate s >30.4093 ,−91.1846

30.4084 ,−91.1850 30.4079 ,−91.1832

30.4088 ,−91.1828</gml : coord inate s>

6 </gml : LinearRing>

7 </gml : e x t e r i o r >

8 <gml : i n t e r i o r >

9 <gml : LinearRing>

10 <gml : coord inate s >30.4089 ,−91.1846

30.4091 ,−91.1845 30.4087 ,−91.1830

30.4085 ,−91.1831</gml : coord inate s>

11 </gml : LinearRing>

12 </gml : i n t e r i o r >

13 </gml : Polygon>

Keyhole Markup Language (KML) This is an XML file format origi-

nally created by Google. Its structure is based on XML with nested

tagged elements and attributes [Google, 2011d]. It is designed to con-

tain geographic information that needs to be represented on Internet

based maps such as Google Maps and Google Earth. On December

2006 Google submitted KML to the OGC so that it could evolve within

OGC and become standard [OGC, 2011]. The goal was to armonize

KML version 3.0 with existing OGC standards such as GML, WFS and

WMS [Schutzberg, 2005]. Datasets using this file format have the ex-

tension .kml an alternative extension .kmz contains kml zipped data

[Holdener III, 2011].KML has a significant user base, however there are

critics to their use, specially in the field of compactness.

A simple point specification using KML looks like:

1 <?xml ve r s i on =”1.0” encoding=”UTF−8”?>

2 <kml xmlns=”http ://www. openg i s . net /kml/2.2”>

3 <Placemark>

4 <name>my home</name>

5 <d e s c r i p t i o n>My current r e s idence </d e s c r i p t i o n>

3.4. WEB MAPPING 27

6 <Point>

7 <coord inate s >30.4088 , −91.1840</ coord inate s>

8 </Point>

9 </Placemark>

10 </kml>

Java Script Object Notation (JSON)

Is a data-interchange format based on a subset of JavaScript Programming

Language. It is a text-based format, with conventions similar to the ones

used in C, Java, JavaScript, Pearl or Python languages, allowing its use with

these languages.

JSON data is composed by the following elements [Crockford, 2006]:

objects Unordered set of name/value pairs, each name is followed by a colon

(:) and the name/value pairs are separated by a comma (,).

array An ordered list of values. An array starts and ends with brackets ([

]), with value separated by commas (,).

A value can be a string (starts and ends with ”), a number, a boolean value

(true/false), an object or an array. The following example contains objects

with a nested configuration.

1 {
2 ” f i rstName ” : ” Helbert ” ,

3 ” lastName” : ”Arenas ” ,

4 ” address ” :

5 {
6 ” s t r e e tAddre s s ” : ”3650 Nicholson Dr . ” ,

7 ” c i t y ” : ”Baton Rouge ” ,

8 ” s t a t e ” : ”LA” ,

9 ” postalCode ” : ”70802”

10 } ,

28 CHAPTER 3. TECHNOLOGY OVERVIEW

11 ” student ” : f a l s e ,

12 ”phoneNumber ” :

13 [

14 {
15 ” type ” : ”home” ,

16 ”number ” : ”225 221−153”

17 } ,

18 {
19 ” type ” : ” fax ” ,

20 ”number ” : ”225 255−136”

21 }
22]

23 }

In the previous JSON example, in line 2 and 3 we assign string values to the

variables “firstName” and “lastName”. in line 11 we assign a boolean value

to the variable “student”, and in line 12 we assign an array to the variable

“phoneNumber” (from line 13 to 22).

When compared to XML based languages JSON has certain advantages.

XML based languages because of their tag nature require more characters

than JSON formated information, therefore JSON is lighter for data trans-

mission, while is still human readable. The next important advantage is

that JSON objects are typed (string, number, array, boolean) while XML is

typeless, all data is represented as string, which makes it easier to process

using JavaScript [Shin, 2010].

GeoJson Is a geospatial data interchange format based on JavaScript Ob-

ject Notation (JSON). It is designed to encode geometries, features

or collection of features. It supports the following geometries: Point,

LineString, Polygon, Multipoint, MultiLineString, MultiPolygon and

GeometryCollection. The default coordinate reference system is WGS84,

using latitude and longitude with units in decimal format [Andrews, 2007].

Support for GeoJSON has already been implemented in several projects

3.4. WEB MAPPING 29

like QGIS and PostGIS that can create GeoJSON files on the fly.

In the following example we define an object of the type “FeatureCol-

lection”. It contains two features, the first one is of type “Point” , it

has a location defined by its coordinates, and has one property called

“description” which value is a string “residence” (lines 3 to 7). The

second feature is of type “Polygon”, defined by an array of coordinates.

It also has a property “description” which has as value the string “ECE

Building” (lines 8 to 19).

1 { ” type ” : ” Fea tu r eCo l l e c t i on ” ,

2 ” f e a t u r e s ” : [

3 { ” type ” : ” Feature ” ,

4 ”geometry ” : {” type ” : ” Point ” , ” coo rd ina t e s ” :

5 [3 0 . 4 0 8 8 , −91.1840]} ,

6 ” p r o p e r t i e s ” : {” d e s c r i p t i o n ” : ” r e s i d e n c e ”}
7 } ,

8 { ” type ” : ” Feature ” ,

9 ”geometry ” : {
10 ” type ” : ”Polygon ” ,

11 ” coo rd ina t e s ” : [

12 [[30 .4089 , −91 .1846] ,

[30 .4091 , −91 .1845] ,

13 [30 . 4087 , −91 .1830] , [30 . 4085 , −91 .1831]]]

14 } ,

15 ” p r o p e r t i e s ” : {
16 ” d e s c r i p t i o n ” : ” Bui ld ing f o o t p r i n t ” ,

17 ”name ” : ”ECE bu i l d ing ”

18 }
19 }
20]

21 }

Using GeoJSON it is possible to describe the Coordinate Reference

30 CHAPTER 3. TECHNOLOGY OVERVIEW

System by defining a CRS object. The following example describes the

Geographic, Equidistant Cylindrical projection WGS84 (EPSG:4326).

1 ” c r s ” : {
2 ” type ” : ”name” ,

3 ” p r o p e r t i e s ” : {
4 ”name ” : ”urn : ogc : de f : c r s :OGC: 1 . 3 : CRS84”

5 }
6 }

OSM JSON This is an implementation of JSON following the OpenStreetMap

(OSM) data model. It consists on nodes, ways (arcs) and relations.

This design allows the definition of nodes, that are later used to define

arcs which are later used to define polygons. The advantage over Geo-

JSON in that in the case of shared borders between polygons, using

OSM-JSON there is no need of redundant node definitions.

In the following example we define four nodes (lines 3 to 6) and use them

to describe one polyline. From lines 12 to 18 we define its geometry

making reference to the previous defined nodes, and in lines 21 and 22

we assign values to two alphanumeric variables “name” and “type”.

1 {”osm ” :

2 {”node ” :

3 [{” id ” : ”001” ,” lon ” : ”−91.1846” ,” l a t ” :

”30 .4089”} ,

4 {” id ” : ”002” ,” lon ” : ”−91.1845” ,” l a t ” :

”30 .4091”} ,

5 {” id ” : ”003” ,” lon ” : ”−91.1830” ,” l a t ” :

”30 .4087”} ,

6 {” id ” : ”004” ,” lon ” : ”−91.1831” ,” l a t ” :

”30 .4085”}]

7 }
8 {”way ” :

9 [

3.4. WEB MAPPING 31

10 {
11 ” v i s i b l e ” : ” t rue ” ,

12 ”nd ” :

13 [

14 {” r e f ” : ”001”} ,

15 {” r e f ” : ”002”} ,

16 {” r e f ” : ”003”} ,

17 {” r e f ” : ”004”}
18] ,

19 ” tag ” :

20 [

21 {”v ” :” name” ,” k ” :” Nicholson Dr . ”} ,

22 {”v ” :” type ” ,” k ” :” road ”}
23]

24 }
25]

26 }
27 }

3.4.4 Some Implementations

GoogleMaps

This is one of the best known webmap applications available on the web.

It started as a standalone application written in C developed by Where 2

Technologies. Later this company was acquired by Google in October 2004.

From that point the development model changed and it was decided to be

implemented as a Web Application [LeMay, 2005]. This approach allowed a

wider user base and according to the designers it was easier to deal with the

particularities of multiple web browser than with multiple operative systems.

By the end of the fall of 2004 Paul Rademacher added map mashups to

Google maps, allowing the users to overlay their own information on top

32 CHAPTER 3. TECHNOLOGY OVERVIEW

of Google maps. In April of 2005 Google launched its own map mashups

called My Maps allowing users to customize the maps by adding their own

information[Ratliff, 2007].

Google Maps provides interactive, highly responsive maps using AJAX (Asyn-

chronous JavaScript ans XML). It provides street and aerial/satellite imagery

from Google’s Web Map Servers in the form of georeferenced tiles. It also

allows user to create customized maps using an open (initially free) API.

Google Maps interface allows the users to zoom in/out, pan, and use the

mouse to drag and navigate in the map. Using the Google Map API it is

possible to overlay on top of Google Maps any user’s data. For example,

a police department could map the location of crimes in the city, or a real

state agent could map the location of its properties [Pimpler, 2006]. On 2011

Google anounced plans to charge for the use of Google Maps API, however

the fees will apply only to users that whose pages have more than 25000

visits per day [Google, 2011c].

Currently Google offers the following APIs for Google Maps: 1)JavaScript

2)Flash, 3)Google Earth 4)Maps Image and 5)Web Services. The current

version for the JavaScript API is 3 which was designed taking in account

mobile devices. In order to work, a website using Google Maps should include

a Key provided by Google. Users customizing their own maps can overlay

their own information on top of Google Maps layers using as reference system

EPSG:3857 (Google Maps use Geographic Coordiantes using a Mercator

projection with the WGS84 ellipsoid)[Aitchison, 2011].

The source code for a basic example using Google Maps can be seen in the

following listing (Source: [Google, 2011b]):

1 <!DOCTYPE html>

2 <html>

3 <head>

4 <meta name=”viewport ” content=” i n i t i a l −s c a l e =1.0 ,

user−s c a l a b l e=no” />

5 <s t y l e type=”text / c s s”>

3.4. WEB MAPPING 33

6 html { he ight : 100% }
7 body { he ight : 100%; margin : 0 ; padding : 0 }
8 #map canvas { he ight : 100% }
9 </s ty l e>

10 <s c r i p t type=”text / j a v a s c r i p t ” s r c=

” http :// maps . g o o g l e a p i s . com/maps/ api / j s ?key=

USER KEY & senso r=TRUE”>

11 </s c r i p t >

12 <s c r i p t type=”text / j a v a s c r i p t”>

13 f unc t i on i n i t i a l i z e () {
14 var myOptions = {
15 c en te r : new goog le . maps . LatLng (30 .4088 ,

−91.1840) ,

16 zoom : 8 ,

17 mapTypeId : goog l e . maps . MapTypeId .ROADMAP

18 } ;

19 var map = new

goog l e . maps .Map(document . getElementById

(” map canvas ”) , myOptions) ;

20 }
21 </s c r i p t >

22 </head>

23 <body onload=” i n i t i a l i z e ()”>

24 <div id=”map canvas” s t y l e=”width :100%;

he ight :100%”></div>

25 </body>

26 </html>

In line 10 we include the map API JavaScript indicating the key we are

using for this map. In line 13 we create a function (initialize()) that contains

a set of commands that are required for the map. In line 14 we set some

variables for the map, we stablish the coordinates for the map center (line

15), we indicate the initial zoom level for the map (line 16) and the type of

34 CHAPTER 3. TECHNOLOGY OVERVIEW

view in this case the road map (line 17). In line 19 we create a JavaScript

variable that will store the map and indicate the html element where it

will be displayed. The funtion initialize() runs when the website is loaded

as indicated in line 23. It is possible to customize the maps by overlaying

user’s information. In Google Maps jargon those features are called overlays

and can be of any of the following kinds: GMarker (point), GPolyline or

GPolygon.

Google Earth

This is a virtual globe launched by Google in 2004. It was originated

as a product of Keyhole Inc. named Earth Viewer. The company was

later purchased by Google and the product was renamed as Google Earth

[Bailey and Chen, 2011].

It is designed as a standalone application, by 2007 it had been downloaded

more than 250 million times[Ratliff, 2007]. This application allows the user

to take a virtual tour to any place in the world. It includes satellite imagery as

well as information about cities, countries, roads and administrative bound-

aries of subnational units. The images are displayed in a 3D digital elevation

model. The satellite imagery is stored in Google servers and is updated reg-

ularly [Revuelto Luque, 2011]. It is possible to overlay the user’s data on top

of the Google data/imagery using KML files on the web or locally stored.

Bing Maps

This is a web mapping service provided by Microsoft. It offers 2Pbytes of pre

rendered tiles plus 2D and 3D data layers. The original Bing Maps was based

on Ajax. In December 2009, Microsoft released Silverlight a plug in similar

to Adobe Flash. Silverlight allows Bing to provide 3D experience, using a

technique called deep zoom on pre rendered images[Pendleton, 2010].

The street maps provided by Bing offer the following views [Pendleton, 2010]:

3.4. WEB MAPPING 35

Road view This is the default view, it shows a 2D cartographic represen-

tation of the roads and buildings.

Aerial view This view results of overlapping satellite imagery on top of the

road view.

Bird’s eye view This option shows oblique aerial photographs , in rural

areas it is generated by combining aerial photos with digital elevation

models, while in urban areas the process includes lidar, and GPS mea-

surements to create 3D models.

Bing Maps are designed as a canvas on top of which it is possible for the

user to add his/her own data, elements like tweets from tweeter, or informa-

tion regarding rental properties from oodle.com or links to social networks.

Using Photosynth a tool released by Microsoft it is possible for a user to

geo-register his/her photographs using Bing information and link his/her

images to images of other users creating an augmented reality environment

[Pendleton, 2010].

OpenLayers

There are already implementations for the visualization of geospatial infor-

mation using HTML5. One of those is OpenLayers, described as an open

source, pure object–oriented client side JavaScript library that allows the cre-

ation of dynamic interactive web maps viewable in almost any web browser

[Kulawiak et al., 2010]. Because it is a library it does not require the in-

stallation of any special software in the client computer. It was originally

developed by Metacarta in 2005, later it was released as open source, cur-

rently it is an Open Source Geospatial Foundation project.

Maps developed with OpenLayers require minimun programming skills, and

because is open source its users do not need to pay fees. Currently there is

a strong community of developers working in this project. It is also possible

to obtain plenty of documentation as well as to find plenty of examples on

the Internet. Much efford has been put in making OpenLayers compatible to

36 CHAPTER 3. TECHNOLOGY OVERVIEW

multiple web browsers. It does provide support for mobile devices supporting

touch screens even with multitouch gestures. Because is an open source

library it allows much more flexibility and customization than commercial

alternatives [Hazzard, 2011].

OpenLayers allows the client application to connect to map servers such as

Google Maps, Yahoo, Esri ArcGIS, WFS or OpenStreet Maps and display

their information. The information displayed in an application using Open-

Layers is structured as layers. The data source for a layer can be a traditional

Web Map Server or vector data from online remote servers or vector data

locally stored. There is more than one standard for the transmission of geo-

data through the internet, some of them are based on XML, for example,

GML, or KML, however there are alternatives like using Javascript Object

Notation (JSON).In the case of OpenLayers, it allows the use of KML and

GeoJSON files [Hazzard, 2011].

The following listing illustrates a webpage that contains a basic map using

OpenLayers. In line 5 we include the library OpenLayers.js that provides

the interface funcionality to the map, allows us to display vector and raster

information and access Web Map Servers. In line 7 we create a variable called

map and in line 8 we create a variable called layer. In line 10 we define the

variable map as an instance of the class OpenLayers.Map and indicate what

element of the html document will contain it. From line 11 to 14 we declare

layer as an instance of the class OpenLayers.Layer.WMS , we are going to

use it to contain data from a Web Map Service, we define the name of the

layer, then we indicate the URL of the WMS among other characteristics.

On line 20 the actual body of the html page starts, the map is included inside

a div section.

1 <html>

2 <head>

3 <meta http−equiv=”Content−Type”

4 content=”text /html ; cha r s e t=utf−8”>

5 <s c r i p t s r c =”. ./ OpenLayers . j s ”></s c r i p t >

3.4. WEB MAPPING 37

6 <s c r i p t type=”text / j a v a s c r i p t”>

7 var map ;

8 var l a y e r ;

9 f unc t i on i n i t () {
10 map = new OpenLayers .Map(’map’) ;

11 l a y e r = new OpenLayers . Layer .WMS(

12 ”OpenLayers WMS” ,

13 ” http :// vmap0 . t i l e s . osgeo . org /wms/vmap0” ,

14 { l a y e r s : ’ bas ic ’}) ;

15 map . addLayer (l a y e r) ;

16 map . zoomToMaxExtent () ;

17 }
18 </s c r i p t >

19 </head>

20 <body onload=” i n i t ()”>

21 <div id=”map” c l a s s=”smallmap”></div>

22 </body>

23 </html>

Maps using OpenLayers can access locally stored data, allowing them to

work using this data even in offline mode, with no Internet connection. In

the case of applications that can not rely on a constant Internet connection,

this represents an advantage, applications of this kind would use the Internet

connection periods to update the locally stored information allowing them

to operate in a suitable way while they can not access the Internet.

The default installation of OpenLayers only provides limited GIS capabil-

ities, however more advanced features can be added manually. There is a

great number of examples that allow the developer to gain understanding of

advanced components. A well documented example is described by Kulaw-

iak et al. (2010), in this document the authors describe the development of

a Web GIS client in the framework of the MARCOAST project. The goal

of the project is to visualize and map spreading scenarios of oil splills in the

38 CHAPTER 3. TECHNOLOGY OVERVIEW

Aegean Sea, Greece. The authors indicated that by the time they developed

their application OpenLayers had certain capabilities not found in ArcIMS,

however as both softwares evolved the difference in capabilities tended to

dissapear. As a general conclusion they indicated that it is becoming much

easier to develope advance Web GIS services using Open Source solutions

[Kulawiak et al., 2010].

Cartagen

Another interesting implementation is Cartagen, an open source vector map-

ping framework developed by the MIT Media Lab’s Design Ecology group.

It generates maps based on vector data in the client side using JavaScript.

Because the features are drawn in the client, it is able to produce a smooth

zooming, it does not depend on fixed scale levels on the server. Cartagen

reads vector map data in a JSON format that follows the OpenStreetMap

data model, similar in structure to the OpenStreetMap XML data format,

although with a JSON structure [Kamel et al., 2010]. This format eliminates

redundant node definition making it more efficient in terms of file size than

GeoJSON. However to our best knowledge there are no software implemen-

tations that can create OpenStreetMap JSON on the fly.

3.5 Overview of Mobile devices

Nowadays mobile devices known as smartphones and tablets are increasingly

gaining market share. What exactly are these devices?

Let’s start with the smartphones. Although there is not a canonical defi-

nition we can say that these are devices that have capabilities comparable

to miniature computers, while at the same time are able to receive phone

calls.The first smartphone were created by IBM in 1992, they call it Si-

mon [Fendelman, 2011]. Smartphones originated by combining features from

PDA’s, computers, and regular cell phones. There are certain characteristics

3.5. OVERVIEW OF MOBILE DEVICES 39

that most would consider a requirement for a cellphone to enter into the

smartphone category [Cassavoy, 2011]:

Operative System Smartphones do need to have an operative system that

allows them to install and run third party applications.

Applications Smartphones should be able to download and run customised

software programs.

Web Access A device of this kind should be able to access the internet

through 4G, 3G and Wi-Fi networks.

QWERTY keyboard It should include a keyboard that allows the user to

interact with the device. The keyboard can be hardware (with physical

keys) or software based (touch screen).

Messaging Most of cellphones can handle sms, however smartphones are

able to access email and instant message servers.

The second type of mobile devices that interest us are tablets. Microsoft

introduced the first windows tablet PC in 2000. It had many common char-

acteristics to a laptop, although it also included a touch screen capable of

hand writing recognition. Until the year 2010 other providers created similar

devices although with limited success [pcmag.com, 2010]. In the year 2010

Apple introduces the iPad which becomes an instant sales success. This

device is basically a portable touch screen that allows the users access to

applications and services provided by Apple.

It is worth to note that Apple has never called its creation a “tablet”. Ac-

cording to Bajarin(2011) this is a way to differentiate its product from Mi-

crosoft’s tablet PC [Bajarin, 2011] [Sutter, 2010]. However after the release

of iPad other providers began to offer products with similar characteristics.

The common characteristics of products of this kind are:

Operative system That allows the device to install third party applica-

tions.

40 CHAPTER 3. TECHNOLOGY OVERVIEW

Screen This is the main interface of the device, is a touch screen, currently

is more common to find multigesture touchscreens that have the ability

to detect two or more points of contact allowing more complex inter-

actions with the device. Most of the screens are designed to produce

less saturated colors, in an attempt to increase screen brightness while

preserving power efficiency and battery time, however these character-

istics also limit the use of the tablet in outdoors environments. The

larger the tablet screen the more difficult it is for the user to position

him/her self and the screen in order to avoid reflections. There is a

limited viewing angle in many of the tablets which becomes an issue if

there are multiple viewers [Bibby, 2010].

Processing capabilities Superior to smartphones.

Networks connectivity 3G, 4G or Wi-Fi The device is capable to con-

nect to the internet and access online information.

Media display The device is capable to display multimedia.

Gartner estimates that the sales of tablets are around 69.7 millions for the

year 2011, while the sales of this type of products might reach 108 million

in the year 2012 and will be around 3 hundred million for the year 2015

[Bibby, 2010]. It is expected that the number of users accessing the internet

from mobile devices will exceed the number of users using desktop devices

by the year 2014 [Davis and Rocchio, 2011].

3.6 Most common Operative Systems

The sales of smartphones and tablets have increased dramatically in the

last couple of years. In the first quarter of 2010 mobile phone vendors sold

worldwide 314.7 million of units, including smart and non smart phones.

By the first quarter of 2010 smartphones represented 17.3 percent of the

total mobile phone sales. However this figure represents an increase of 48.7

percent in comparison with the previous year (13.7%), indicating a strong

3.6. MOST COMMON OPERATIVE SYSTEMS 41

Figure 3.4: Global market share 2009 (source: [Gartner, 2011a])

growth in this segment of the market. The most common operative systems

deployed with these devices are Symbian, BlackBerry, iPhone OS, Android

and Windows Mobile (see figures 3.4 and 3.5).

In this section we are going to provide a brief description of each one of

the current most important operative systems deployed with smartphones or

tablets.

3.6.1 Symbian OS

This operative system started as EPOC a product developed by Psion for

portable devices in the 80s. In 1998 Psyon Software became Symbian Ltd. a

joint venture between Nokia, Ericksson, Motorola and Psion, and EPOC was

renamed as Symbian OS. In 2009 Symbian OS became open source under

Eclipse Public License (EPL) [Grossman, 2000].

Currently Symbian OS has the largest share of the smartphone market, how-

ever its consumer base is being eroded by the growth of Android and iPhone

OS [Gartner, 2011a] (see figures 3.4, 3.5 and 3.9). On February 2011 Nokia

the main contributor to Symbian OS code, announced that it would adopt

Windows Mobile for its smartphones. This event indicates that the number

42 CHAPTER 3. TECHNOLOGY OVERVIEW

Figure 3.5: Global market share 2010 (source: [Gartner, 2011a])

of devices using Symbian OS will diminish rapidly in the future.

Applications for Symbian are developed using C++, using many possible de-

velopment environments. Currently there are many commercial and free de-

velopment tools for Symbian OS. Applications for Symbian are compiled for

specific target devices. An application for Symbian OS is deployed through

a SIS file. Nokia launched in May 2009 its Ovi Store, designed to provide

Nokia customers with mobile games, applications, videos, images and ring-

ing tones. Currently is the third largest application store behind App Store

(Apple) and Android Market.

3.6.2 iOS

This is an operative system designed by Apple for its products:iPhone, iPod

Touch and iPad. It was released on June of 2007. originally it was called

iPhone OS, it was later renamed to iOS. It is derived from Mac OS X an

operative system used in laptop and desktop Apple computers, which is based

on Darwin, an Unix like operative system [Liu et al., 2011].

iOS has four technology layers as are depicted in figure 3.6:

– Cocoa Touch

3.6. MOST COMMON OPERATIVE SYSTEMS 43

Figure 3.6: iOS Technology layers (source: [Liu et al., 2011]).

– Media

– Core Services

– Core OS

Core OS and Core Services provide support for basic functions like access to

databases and networking. The Media layer provides support to 2D and 3D

visualization, audio and video. Cocoa Touch is the layer that provides the

infrastructure for developers. It was developed based on Cocoa the interface

used for OS X, however Cocoa Touch was specifically designed to deal with

touch screens. The development language for applications in iOS is Objective

C. The most common approach when developing applications for iOS is to

start with the top layers and use lower level libraries only when more precise

control of the device is necessary [Liu et al., 2011].

Applications for iOS can be developed using Objective C and Object Pascal.

There are free development tools, testing the application is free, however

installing it on the actual device requires a fee and a signing key. Applications

for iOS are only deployed through the App Store, and need to be reviewed

and approved by Apple Inc. [AppleInc., 2012]. Currently Apple’s App Store

has the largest share of the applications market in terms of sales and at the

44 CHAPTER 3. TECHNOLOGY OVERVIEW

same time it has the largest number of available applications, by October

2011, there were more than half million available applications in Apple App

Store [Wauters, 2011].

3.6.3 Android

Android is a creation of Google and the Open Handset Alliance. As its

main creator, Google has made agreements with different telephone handset

manufacturer and service providers to aggressively promote its use. Figure

3.9 depicts the evolution of the sales of smartphone handsets sales in North

America every quarter since the first quarter of 2009 until the third quarter of

2010 [Butler, 2011]. In the figure we can see that the only operative systems

showing sustained growth growth are Android and Apple iOS, while the rest

seem stagned.

Android has a Linux kernel based operative system. The inner components

of the system are developed in C or C++, however applications designed

for Android are written in Java language using the Dalvik virtual machine

[Ableson et al., 2011]. Although the applications developed for Android use

the Java language, they do not use a Java VM in runtime. Android uses

its own virtual machine called Dalvik. At this moment, Oracle the current

owner of Sun Microsystems the original creators of Java, alleges that there

has been a patent infringement and is currently challenging Google in the

USA legal system [Frankel, 2011].

The market share of Android is constantly increasing since its release. By

the second quarter of 2010 Android’s market share was 17.2% one year later

it was 43.4%, by the third quarter of 2011, 52.5% of the smartphones had

Android as their operative system [Gartner, 2011b](see figures 3.7 and 3.8).

An application in Android can have components of four different types, al-

though not necessarily all of them:

Activity: This component represents a graphic user interface. An applica-

tion can have more than one activity depending on the tasks the user

3.6. MOST COMMON OPERATIVE SYSTEMS 45

wants to perform with the application. To create a component of this

kind, it is necessary to instantiate the class Activity embedded in an-

droid.app.Activity Java package [Google, 2011a] [Ableson et al., 2011].

Elements of this kind implement two methods:

onCreate(Bundle)

onPause()

Service: If the application needs to perform tasks on the background while

the user interacts with other applications or even turns off the screen,

it is necessary to implement a service. A component of this kind is an in-

stace of the class android.app.Service [Google, 2011a] [Ableson et al., 2011].

The service is created when someone executes the order Context.startService()

at this moment the instantiated service runs its method onCreate().

The service continues working until the command Context.stopService()

is executed.

BroadcastReceiver: Components of this class are instances of

android.content.BroadcastReceiver. They are used to send messages be-

tween applications[Ableson et al., 2011].

ContentProvider: This type of components allow the application to share

information with other applications through read/writing files, SQLite

databases, or even memory–based hash map [Ableson et al., 2011].

Android is a powerful software platform and it is getting more popular among

users, developers and hardware providers

3.6.4 BlackBerry OS

This is a mobile operative system developed by the Canadian company Re-

search in Motion (RIM) for its Blackberry smartphones and mobile devices.

It supports multitasking and specialized input devices commonly found in

RIM devices (trackwheel, trackball). The first version of this operative sys-

46 CHAPTER 3. TECHNOLOGY OVERVIEW

tem was released in 1999 for the Pager BlackBerry 580. The current version

is BlackBerry OS 7.1.

This operative system supports regular cellphone functions plus functions

like “Direct connect”(walkie talkie mode) and “Group Connect” (conference

call). It also provides user with email and internet access. One of the most at-

tractive characteristics of Blackberry is its encrypted mailn [Straus et al., 2007].

Applications for BlackBerry OS are distributed through BlackBerry App

Store. This environment allows RIM users to browse download and up-

date third party developed applications. The service was launched on April

2009 although the number of available applications is still smaller com-

pared to Android Market or App Store for iPhone or iPad (See figure 3.10)

[Distimo, 2011].

3.7 Comparison of current Operative Systems

An analysis of the global sales of smartphones considering its operative sys-

tem show us that this market is dynamic. In the second quarter of 2010

Symbian market share was 40.9%, by the second quarter of 2011 it was

22.1% and by the third quarter of the same year it diminished to 16.9%. In

the case of iOS, its market share by the second quarter of 2010 was 14.1%,

one year later its market share was 18.2% but by the third quarter of 2011

it was 15.0%. RIM OS had 18.7% of the market by the second quarter of

2010, its share reduced to 11.7% one year later, and by the third quarter of

2011 it was 11.0%. In the case of Android its share by the second quarter of

2010 was 17.2%, it increased to 43.4% by the second quarter of 2011 and in-

creased again to 52.5% by the third quarter of the same year [Gartner, 2011a]

[Gartner, 2011b](see figures 3.7 and 3.8). An analysis of the sales in North

America [Butler, 2011] indicate that the sales of devices using Android and

Apple iOS have a strong growth, while the sales of devices using the rest of

most common operative systems remain stagned (See figure 3.9).

3.7. COMPARISON OF CURRENT OPERATIVE SYSTEMS 47

Figure 3.7: Global sales of smartphones in the second quarter of 2010 (source:
[Gartner, 2011a])

According to the analysis firm Distimo, a comparison of the application

stores by number of available applications indicates that the top three are

iPhone, then Android and in third place iPad. On the other hand, Nokia Ovi

store and BlackBerry App World remain much smaller compared to the first

three [Distimo, 2011]. The iPhone application store is the largest in terms

of available applications, however by March 2011 it was the one with the

slowest growth compared to the rest of application stores. An analysis of the

type of applications in the markets indicates that Google Android Market

has the largest number of free applications [Distimo, 2011] (see figure 3.10).

An important issue when developing an application is the availability of

documentation. For this research we compared the available programming

books in Amazon.com for the four most used operative systems. Our results

indicate that by January 2012 the platform with most available information

is iOS with 532 books, then Android with 477 books, then Symbian with 184

books and finally RIM OS with 75 books.

Based on the analysis of the market trends, available applications and refer-

ence books we believe that the most suitable platforms for the development

of the avalanche risk application prototype are Android and iOS. For the

purposes of an avalanche risk application, devices using these operative sys-

48 CHAPTER 3. TECHNOLOGY OVERVIEW

Figure 3.8: Global sales of smartphones in the second quarter of 2011 (source:
[Gartner, 2011a])

Figure 3.9: North America handset sales by quarter (source: [Butler, 2011]).

tems have in broad terms similar hardware characteristics (GPS, internet,

multimedia).

In terms of application development and deployment the main difference

between Android and iOS is is that in the case of the later a payment of

a fee and the approval of Apple Inc. is required. For commercial purposes

these barrier assures the quality of the product but also limits the number

of free applications in the Apple App Store. In the case of Android there are

no barriers for the application development.

3.8. SUMMARY AND CONCLUSIONS 49

Figure 3.10: Number of Available Applications (source: [Distimo, 2011])

3.8 Summary and conclusions

For the specific case of an avalanche risk application the network access

becomes a limitation. It is possible that users of an application of this

source might find themselves in locations with limited or unreliable network

connectivity. An avalanche risk application should consider this factor, and

take advantage of the moments when the device can connect to the Internet

to obtain updated data to use later when no connection is possible.

Because of the network limitations, an avalanche risk application would re-

quire to obtain the user location using a GNSS. Currently from the discussed

options GPS is the most viable alternative.

In section 3.3 we discussed Location Based Services. The application will be

deployed in areas where the access to a network is unreliable. Because of this,

an avalanche risk application would need to be device centric, in the sense

that all the processes must run on the device. The application also needs to

be proactive in the sense that it should request avalanche risk information

without the human user intervention when a Internet connection is available.

50 CHAPTER 3. TECHNOLOGY OVERVIEW

An avalanche risk application requires to perform analysis with spatial avalanche

risk information requested from a server. This type of analysis is easier to

perform using vector data, because of this, the system would use a Web

Feature Service. In section 3.4.3 we described the most used vector spatial

data formats for transmission on the web. Based on the characteristics of the

formats we consider that the most suitable is GeoJSON. It is more compact

than XML alternatives and because of its structure is easier to parse using

JavaScript or Java.

In section 3.4.4 we discussed some of the most common implementations

for web mapping. Because of the characteristics of the environment where

the application is going to operate, it is not possible to assure an internet

connection 100% of the time. Therefore is required an implementation able

to work offline. OpenLayers fulfill this requirement, it is open source, does

not require any payments and there is a good amount of documentation

available that would support any project using it.

An avalanche risk application for mobile devices should consider the trends

in the market. It would be better to choose a platform with an increasing

number of users in order to secure its future use and further development.

Another important requirement is the vailability of adequate documenta-

tion. Our book survey in Amazon.com as well as the analysis of the sales

of smartphones/tables indicates that both Android and iOS are currently

the operative systems showing the strongest growth. In terms of hardware

characteristics, devices using these operative systems are in broad terms,

similar (Multigesture touch screen, GPS, network connectivity, multimedia,

etc). However due to the restrictions imposed by Apple Inc. it is easier to

develop and deploy a prototype using Android.

Current mobile devices such as smartphones and tablets have capabilities

that allow their use as tools to reduce the risk of avalanche incidents for

users on the field. Such capabilities are Geolocation, Multimedia, access

to internet and the capability to display customized maps. However these

devices have certain limitations that have to be considered when develop-

3.8. SUMMARY AND CONCLUSIONS 51

ing applications for them. First, they have much more limited resources

compared to desktop computers, in terms of display, battery and process-

ing power. The smaller displays require special attention. It is necessary

to careful consider what information to show because of the limited space.

Another limitation is related to the display and the environment. These

devices operate on outdoors and under certain circumstances sun reflection

might make them difficult to operate.

52 CHAPTER 3. TECHNOLOGY OVERVIEW

Chapter 4

Avalanche Application

4.1 Introduction

In the last years there has been an increase on the number of avalanche

related accidents, this is due to the larger number of people involved in winter

outdoor recreation activities. The reasons why people get involved in this

type of accidents are not only related to lack of proper training/education.

There are psychological reasons that affect the sportsmen behaviour making

them take unnecessary risks or disregard obvious signs of danger (See section

2.2.1).

There is a need for an application designed to reduce the avalanche risk for

people involved in winter outdoor sports [Meng and Reichenbacher, 2005].

This application is designed for both experts and unskilled users involved in

winter outdoors recreation activities. In the case of non experts users the

application would provide an educated advice about how to proceed while in

the field. In the case of expert users the application would help the decision

process by providing an opinion that is unaffected by social/psychological

variables. An application deployed in mobile devices with access to the most

updated risk information would act as an expert adviser providing a reliable

opinion under all circumstances.

53

54 CHAPTER 4. AVALANCHE APPLICATION

4.2 Use Cases

We have defined two use case scenarios:

Figure 4.1: User case scenarios

Downloading the risk information: In this case the user is located in an

area with internet access. When the device detects that it can access

the internet, it automatically connects it self with an internet server

and requests the mos updated avalanche risk data. The information is

downloaded in the device and stored for future use (See figure 4.1).

Monitoring position in the field: When the user activates the applica-

tion in the field, the software proceeds to obtain the location of the user

from the onboard GPS and monitors that position by comparing it to

the avalanche risk data. When the user enters into an area described as

risky the application proceeds to warn the user by activating an alarm

(See figure 4.1).

The first part of the system has not been developed, currently an internet

server that provides updated high resolution avalanche risk information does

not exist. There are plans to implement it in the near future, however by

the time we developed this application it was not in place yet. For this

project we assumed a Web Feature Server providing vector avalanche risk

4.3. IMPLEMENTATION 55

data is in operation. The implementation of a server of this nature is not

technically complicated, but requires a certain amount of investment in order

to keep it working and providing updated information. For this application

we developed the second part of the system. Due to the lack of a server we

uploaded the information manually into the device before deploying it in the

field.

4.3 Implementation

The application was developed on Android, this is an open source software

platform designed for mobile devices such as smart phones and tablets. An-

droid is a creation of Google and the Open Handset Alliance. Android has a

Linux kernel based operative system. The inner components of the system

are developed in C or C++, however applications designed for Android are

written in Java language using the Dalvik virtual machine [Ableson et al., 2011].

It is important to remark that although the applications developed for An-

droid use the Java language, they do not use a Java VM in runtime. Android

uses its own virtual machine called Dalvik, which according to their creators

is not the same as the original Java VM [Frankel, 2011].

4.4 Model Specification: Software components

This application is composed by five main elements: (see figure 4.2)

– AvalancheUI

– RiskEvaluatorService

– RiskPolygon

– MyLocationListener

– Webview (visualization module)

56 CHAPTER 4. AVALANCHE APPLICATION

Figure 4.2: UML Class diagram of the application

4.4.1 AvalancheUI

This is an activity component and works as the main user interface of the

application. It is created when the user loads the application on the mobile

device. The interface is composed by a visualization module that contains

the map and a menu component.

Menu component

This component contains the buttons that allow the user to interact with the

application. It is only visible when the user selects the menu button of the

device, the rest of the time it remains hidden. It was designed in this form

because of the limited screen area of smart phones. The menu is encoded as

a XML file, the Application reads this information and transforms it into the

4.4. MODEL SPECIFICATION: SOFTWARE COMPONENTS 57

application menu (see Appendix A.1, lines 86 to 91). It contains 3 buttons.

It is associated with a listener event that performs certain task based on the

user input (see figure 4.3):

Start Service This menu button activates the service that monitors the

location and evaluates the risk (see Appendix A.1, lines 99 to 108).

Stop Service This menu button stops the location monitoring and risk

evaluation. Monitoring the position puts an extra demand on the bat-

tery of the device, this option is necessary in order to save battery power

(see Appendix A.1, lines 110 to 117).

Turn On/Off Risk Layer This button is used to communicate the java

application with the map interface. It executes a JavaScript command

on the webview that turns on or off the risk data layer (see Appendix

A.1, lines 119 to 125).

webview.loadUrl("javascript:layerTurnOffOn()");

The full code of the JavaScript function layerTurnOffOn() can be found

in the Appendix B.2 from lines 102 to 115.

Visualization module (map)

The map contains a cartographic representation of the area of interest. In the

application we create it as an instance of the class android.webkit.WebView.

This type of components are used to display web pages including JavaScript

code (see Appendix A.1, lines 33 to 37). The map was developed using

OpenLayers an open source JavaScript library and it is stored in the device.

The html page has links to the file that contains the core of OpenLayers

functionality, to the one that stores the risk polygons as well as to the file

that contains the customized JavaScript functions (Appendix B.1 lines 10, 13

and 15 respectively). Because the OpenLayers libraries are stored locally the

application does not need to access the internet in order to have functionality.

The user can interact with the map, turn on or off layers, zoom in/out or

58 CHAPTER 4. AVALANCHE APPLICATION

Figure 4.3: Application Interface

pan using locally stored data, with no need for an internet connection. This

fact is an advantage compared to alternatives like Google Maps or Bing.

The map has two data elements (See figure 4.4):

Risk layer: This is dynamic data in the sense that is updated periodically.

In the design we consider this as a fundamental requirement. The

avalanche risk information is stored in the device in vector format.For

this application we decided to use GeoJSON formatted data because

it is more compact than any XML based alternative like KML. This

format allows the representation of complex polygons. A short example

of the risk polygons can be seen in Appendix B.3. The visualization

4.4. MODEL SPECIFICATION: SOFTWARE COMPONENTS 59

Figure 4.4: Map of the test area using OpenLayers

module is constructed as a html webpage with JavaScript functions that

works with locally stored data. Appendix B.2 contains the code used by

the webpage. Because it is formated as regular JavaScript data, we can

include the risk data in the header of the html file (line 13 of Appendix

B.1).

<script src="geojson/risk.js"></script>

Appendix B.2 contains the JavaScript code we use to set the map. From

lines 32 to 34 we define how we want the polygons to look on the screen

(fill color, stroke line color, width etc) using CSS. From lines 37 to 44 we

define 3 information layers, one for each risk level polygons and finally

we use the information stored in variables to draw the risk polygons

(lines 75 to 82).

Background data: This type of information is static. It represents features

of the area of interest like roads, topography or places of interest. It

can be loaded in vector or raster format. For the final prototype we

loaded a scanned image of a cartographic map of the area. OpenLayers

allows the use of images and its georeferencing. For this purpose is only

60 CHAPTER 4. AVALANCHE APPLICATION

necessary to indicate where is the image located, its bounding box and

its size (See Appendix B.2 lines 27 to 29).

4.4.2 RiskEvaluatorService

An activity stops working when the user activates other application. An

application designed to monitor the position of the user and contrast it with

the avalanche risk information would require that the application is per-

manently operating. To solve this problem Android allows the creation of

Services. These are a series of commands that the application runs on the

background without user intervention even allowing the user to run other

applications. In this application the activity allows the user to start the ser-

vice that monitors the current position and evaluates the risk periodically.

This component of the application performs a set of tasks on the background

without requiring user input. The complete code for the service RiskEvalu-

atorService is in Appendix A.2.

When the service is initialized it executes the function onCreate() that in-

cludes the following set of processes: (see Figure 4.5).

myReader() When the service is created its first task is to get the risk infor-

mation. For this task the service executes a function called myReader()

(See Appendix A.2 from lines 155 to 201). This function has access

to the internal storage of the device. The function reads a GeoJSON

formatted file that contains the avalanche risk information in the form

of a set of polygons each one with a predetermined risk factor. The in-

formation is parsed and we create an instance of the class RiskPolygon

for each one of the polygos stored in the data file (See Appendix A.2

line 183 and Appendix A.3 from line 5 to 41) (See figure 4.2). Once

the instance is created it is stored in an array of objects of type Vector

called vRiskPolygons (See Appendix A.2 line 185). A vector is a Java

construction that has a flexible size, it can store any number of objects

of diverse nature.

4.4. MODEL SPECIFICATION: SOFTWARE COMPONENTS 61

Figure 4.5: Flow chart diagram of Service onCreate event

intent=new Intent() In the next step the service creates an Intent, which

is a component used as a communication link between the Service and

the Activity.

ll=new MyLocationListener() Then the service creates an instance of a

MyLocationListener class, called ll that is used to communicate with

the GPS hardware onboard the device. This component is used to

obtain the location of the device once the GPS is able to make a link

with the GPS satellites. MyLocationListener implements the methods

of the native class LocationListener.

mPlayer=new MediaPlayer() In the next step the service creates an in-

stance of the class MediaPlayer. This instance is used to control the

audio system of the device (Appendix A.2 from lines 54 to 57). The

application plays an specific sound according to the risk level.

62 CHAPTER 4. AVALANCHE APPLICATION

myRunnable=new Runnable() In this step the application creates a

Runnable() which is a list of tasks performed every 5 seconds (See Ap-

pendix A.2 from line 68 to 130). The specified tasks are:

myLocationListener.getCurrentPosition() With this function the

service obtains the current position of the device from the Location-

Listener

GetIntersection(myCurrentPosition) In this step the service de-

termines the risk factor for the current location. This process

involves the execution of the function GetIntersection,which com-

pares the current location with all the elements of the vector vRiskPoly-

gon (See Appendix A.2 from line 204 to 235). Each of the elements

contained in the vector vRiskPolygon is an instance of the class

RiskPolygon when loaded it executes the internal function DoesIn-

tersect() (See Appendix A.3 from line 82 to 136). The result of the

function is a boolean that indicates if the current location intersects

with the loaded polygon.

Evaluate risk and Sound Alarm Currently the information regard-

ing the avalanche risk is coded using three values 1,2,and 3. Poly-

gons with value 1 are considered safe, while value 2 represent a

medium risk and value 3 represents high avalanche risk. In this

step the service determines if execute or not an action based on the

current risk factor. If the risk factor is one, the user is located in

a safe area and therefore not further action is required. If the risk

factor is 2 or 3 the media player is activated and a pre-specified

sound (wav) is played (See Appendix A.2 from line 85 to 103).

4.4.3 RiskPolygon

Instances of this class are created when the function myReader() of the class

RiskEvaluatorService is executed. This function, reads a GeoJSON file stored

in the mobile device. The program creates an instance of the class RiskPoly-

4.4. MODEL SPECIFICATION: SOFTWARE COMPONENTS 63

gon for each one of the polygons contained in the GeoJSON file. The GeoJ-

SON file stores geometric and alphanumeric information for each polygon in

a text based format. The risk data file was created from a PostGIS database.

Using a DBMS like PostgreSQL and PostGIS allows easy maintenance and

retrieval of the information.

The source code for the class RiskPolygon is in Appendix A.3. The list

of internal processes required for the creation of an instance of the class

RiskPolygon are depicted in figure 4.6. In first place we need to input a

GeoJSON polygon with the associated risk value as a string (See Appendix

A.3 line 5). The software retrieves the risk value of the polygon, then it

retrieves its geometry, still in text format. By analysing the text the software

counts the number of vertices in the polygon, and creates two arrays to store

the longitudes and latitudes (See Appendix A.3 lines 33 to 38). Then the

software iterates along the arrays to detect the most extreme coordinates

that define the bounding box of the polygon (See Appendix A.3 lines 40 and

lines 43 to 79).

An important component of the class RiskPolygon is its function DoesInter-

sect(), used to evaluate if a given latitude and longitude are located within

the polygon or not. This function first evaluates if the point is located within

the bounding box of the polygon (See Appendix A.3 lines 86 to 90). If it

is outside no further analysis is required, the point is located outside the

boundaries of the polygon. If it is located within the bounding box the soft-

ware counts the intersections of a horizontal line originated in the current

location with the segments that compose the polygon. If the number of in-

tersections is odd the current location is within the polygon, if it is even or

zero the location is outside (See Appendix A.3 lines 93 to 134).The algorithm

is represented in figure 4.7, in this case we have three points p1, p2, and p3.

The point p1 is outside the boundaries of the polygon, when a horizontal line

is traced from it, it intersects the polygon in two points (even), on the other

hand when a horizontal line is traced from p2, it only crosses the segments

of the polygon once (odd). The algorithm can be used for complex polygons

even when they include islands.

64 CHAPTER 4. AVALANCHE APPLICATION

Figure 4.6: Instantiation of the class RiskPolygon

4.5 Conclusions

We conducted a field test in Mount Dobratsch, on October of 2011. We

tested the application using a tablet Acer Iconia tab a500 and a smartphone

Samsung Galaxy Europa i5500. The first device is a 10.1 inches tablet with a

multi touch screen, while the second device is smartphone with a 2.8 inches

screen, that does not support multi touch gestures. The application suc-

cessfully worked on both devices, being able to read the risk information in

vector format, obtain the user position and compare it with the set of poly-

gons that represent the avalanche risk in the area. The application in both

devices monitored the user position and warned the user in case he or she

entered into a risk area.

The map included in the application provides the user topographic, tracks

and avalanche risk information., relevant for the user decision making pro-

cess.

4.5. CONCLUSIONS 65

Figure 4.7: Point in polygon algorithm

In the case of the tablet device, the field test showed that the screen device

was extremely reflective making it difficult for the user to see the map in

certain circumstances. Also we discovered that larger devices are harder to

use in outdoors, they are more difficult to shade or put in the correct angle in

order to avoid sun reflection. However the multi touch screen proved to be a

significant advantage over the smartphone for navigation purposes. I believe

a screen size in between with a less reflective screen than the tablet would

be a significant improvement on the user experience using the application.

66 CHAPTER 4. AVALANCHE APPLICATION

Chapter 5

Conclussions

5.1 Discussion

The growing number of people interested in winter outdoor recreational ac-

tivities increases the risk of avalanche incidents. Educating people to identify

signs of avalanche peril would reduce the risk, however due to the larger num-

bers of sportsmen education is becoming a difficult task. Even more McCam-

mon (2004) suggest that even expert skiers under certain circunstances fail

to recognise inequivocal risks signs and get involved in avalanche incidents

[McCammon, 2004].

A survey conducted by Adams(2005) among experts in the field suggests that

more frequent bulletins with detailed maps indicating risk areas would in-

crease the safety of the recreationists. However, the cartographic information

should be deployed in a form usable by even non expert map users[Adams, 2005].

Currently smartphones and tablets are a suitable platform to deploy easy

to use customized/dynamic maps. Nowadays these devices allow the devel-

opment of third party applications, have onboard GPS which allow them

to obtain their location, they can access the internet and have multimedia

capabilities.

67

68 CHAPTER 5. CONCLUSSIONS

In the case of an avalanche risk application the network access should not be

consider reliable. It might be the case that users find themselves in locations

with limited or null network connectivity. An avalanche risk application

design should consider this. For the location of the user we use a GNSS

(GPS) that does not require the connection to a network. The application is

designed to be device centric, in the sense that most of the processes run on

the device. The application also is designed to be proactive in the sense that

it request avalanche risk information without the human user intervention

when a Internet connection is available.

The application requires to conduct a number of spatial operations that are

more efficient using vector data. Because of this reaseon we decided to use

GeoJSON, a format that is easy to process using JavaScript and Java, and

at the same time is more compact than any XML alternative.

The limited network connectivity forced us to look for map tools that would

work in offline mode. The selected tool is OpenLayers a solid JavaScript open

source library. OpenLayers allows the development of customized maps using

vector and raster data.

There are few operative systems that cover most of the smartphone/tablets

market they are: Android, iOS, Symbian and RIM OS, however only the

first two are strongly increasing in terms of users, available applications,

and reference books which made them the most attractive platforms for the

development of an avalanche risk application prototype. In terms of hardware

devices using Android or iOS have similar characteristics. We decided to use

Android because it is less constraining for application development in terms

of fees or deployment approval (Applications in iOS Store require approval

from Apple Inc.).

On October 2011, we conducted a field test in Mount Dobratsch using two

devices:

– Acer Iconia tab (10.1 inches multitouch screen)

– Samsung Galaxy Europa i5500 (2.8 inches screen)

5.2. LIMITATIONS 69

The application successfully worked in both devices. The map deployed with

the prototype application had two layers, the first one was a scanned image

of a topographic map and the second was a vector layer containing polygons

that represented the different risk levels in the study area. The GPS onboard

the devices worked properly and the application managed to determine the

risk level of the user position by comparing the GPS information with the

risk information in vector format stored on the device.

The field test showed us that glossy screens make it difficult for devices to

be used in outdoors. The problem is more serious with larger screens that

are more difficult to shade from the sun light. Our test also indicated us

that a device with a multi gesture screen capability provides a better user

experience than single gesture devices while navigating.

5.2 Limitations

Originally the system was conceptualized including a web feature server that

would provide updated risk information in the form of vector data. This part

was not implemented. An internet web feature server providing high resolu-

tion avalanche risk information does not exist. Although there are plans for

the implementation of a data server with those characteristics in the future.

For this project we assumed a Web Feature Server providing vector avalanche

risk data is in operation. The implementation of Web Feature Server pro-

viding avalanche risk information is not technically complicated, although it

requires a certain amount of investment in order to keep it operating. Due

to the lack of a server we uploaded the information manually into the device

before deploying it in the field.

Devices using android are provided by multiple manufacturers with multiple

hardware configurations. In our field test we only evaluated two devices.

The minimum characteristics the application requires are: onboard GPS and

internal sdcard. There is plenty of room for more field tests using devices

with different characteristics.

70 CHAPTER 5. CONCLUSSIONS

5.3 Future research

Currently smarthphones and tables based on Android have the capability to

display 3D data, Google maps already uses this type of spatial information

to represent buildings in 3D. A future venue of research might be the use

of 3D maps for avalanche risk warning. Google Maps does not use 3D for

topographic representation. To my best knowledge at this point there is not

an open source alternative equivalent to Google 3D for the 3D representation

of spatial data.

Nowadays available sensors in smartphones allow developers to create ap-

plications that to a certain degree can detect the user location and perform

accordingly. It is natural to expect that future smartphones and tablets will

contain more sensors that currently exists only in experimental not main

stream devices. Sensors like barometers, temperature, humidity sensors are

already being developed in projects like Intel/University of Washington Mo-

bile Sensing Platform (MSP), these sensors for instance allow the device to

detect if the user is climbing stairs and in which direction. It is not unrealis-

tic to expect in the future devices with sensors able to asses air quality and

pollution [Lane et al., 2010].

In the near future it might be possible to deploy in the mobile devices used

by skiers not only a risk data and a warning system, but also use the device

to obtain environmental and climatic information. Sensors deployed in the

devices would collect climatic data, turning the user into mobile environmen-

tal monitor units. When the user connects to the network he/she obtains an

updated report for avalanche risk, but also provide the system with clima-

tology measurements taken in the field, with a tag indicating the time and

location of the measure. The system would collect the data and use it to

improve the risk analysis.

Applications that are able to detect if the user has fall down are already im-

plemented [Dai et al., 2010]. The same approach with certain modifications

could be implemented in an application that using the accelerometer detects

5.3. FUTURE RESEARCH 71

when the user is hit by an avalanche. The application automatically executes

an acction, for example sends a text message with the last known coordi-

nates, enters into beacon mode producing a distinct sound/ring or activates

the bluetooth port and starts emitting a signal.

72 CHAPTER 5. CONCLUSSIONS

Bibliography

[AAA, 2010] AAA (2010). American Avalanche Association website.

http://www.americanavalancheassociation.org.

[Ableson et al., 2011] Ableson, W. F., Sen, R., and King, C. (2011). Android

in action. Manning.

[Adams, 2005] Adams, L. (2005). Supporting good decicions. The Avalanche

Review, 23(3):12–17.

[Aitchison, 2011] Aitchison, A. (2011). The Google Maps/Bing Maps Spheri-

cal Mercator Projection. http://alastaira.wordpress.com/2011/01/23/the-

google-maps-bing-maps-spherical-mercator-projection/.

[Andrews, 2007] Andrews, C. J. (2007). Emerging technology:AJAX and

GeoJSON. Directions Magazine.

[AppleInc., 2012] AppleInc. (2012). ios developer library.

http://developer.apple.com.

[Bailey and Chen, 2011] Bailey, J. E. and Chen, A. (2011). The role of vir-

tual globes in geoscience. Computers & Geosciences, 37:1–2.

[Bajarin, 2011] Bajarin, T. (2011). Is the Apple ipad a tablet?

http://www.pcmag.com/article2/0,2817,2392263,00.asp.

[Bibby, 2010] Bibby, A. (2010). The rapid development of Tablet computing.

www.tcodevelopment.se.

73

74 BIBLIOGRAPHY

[Brugger et al., 2001] Brugger, H., Durrer, B., Adler Kastner, L., Falk, M.,

and Tschirky, F. (2001). Field management of avalanche victims. Resus-

citation, 51(1):7–15.

[Butler, 2011] Butler, M. (2011). Android:Changing the Mobile Landscape.

Pervasive Computing, IEEE, 10(1):4–7.

[Cassavoy, 2011] Cassavoy, L. (2011). What makes a smartphone smart?

http://cellphones.about.com/od/smartphonebasics/a/what is smart.htm.

[Cojocaru et al., 2009] Cojocaru, S., Barsan, E., Bratinca, G., and Arsenie,

P. (2009). GPS-GLONASS-GALILEO: A dynamical comparison. Journal

of Navigation, 62(1):135–150.

[Crockford, 2006] Crockford, D. (2006). JSON: The fat-free alternative to

XML. www.json.org/fatfree.html.

[Dai et al., 2010] Dai, J., Xiaole, B., Yang, Z., Shen, Z., and Xuan, D.

(2010). Mobile phone–based pervasive fall detection. Personal and ubiq-

uitous computing, 14(7):633–643.

[Davis and Rocchio, 2011] Davis, J. and Rocchio, R. A. (2011). Mobile: Let-

ting go of the device and building for innovation. Educause Review Mag-

azine, 46(2).

[de la Beaujardiere, 2006] de la Beaujardiere, J. (2006). OpenGIS Web Map

Server Implementation Specification. Technical report, Open Geospatial

Consortium Inc.

[Distimo, 2011] Distimo (2011). The battle for the most content and the

emerging tablet market. www.distimo.com.

[Eckerstorfer, 2008] Eckerstorfer, M. (2008). Cartographic analysis of

avalanche hazard maps. In 6th ICA Mountain Cartography Workshop

Mountain Mapping and Visualisation.

BIBLIOGRAPHY 75

[Fendelman, 2011] Fendelman, A. (2011). How are cell phones different from

smartphones? http://cellphones.about.com/od/coveringthebasics/ - qt/-

cellphonesvssmartphones.htm.

[Fonseca et al., 2011] Fonseca, P., Colls, M., and Casanovas, J. (2011). A

novel model to predict a slab avalanche configuration using m : n − cak

cellular automata. Computers, Environment and Urban Systems, 35:12–

24.

[Frankel, 2011] Frankel, A. (2011). In Oracle v. Google, jury

will hear from court-appointed expert. Thomson Reuters.

http://newsandinsight.thomsonreuters.com/Legal/News/ViewNews.aspx.

[Furman et al., 2010] Furman, N., Shooter, W., and Schumann, S. (2010).

The Roles of Heuristics, Avalanche Forecast, and Risk Propensity in the

Decision Making of Backcountry Skyers. Leisure Sciences, 32:453–469.

[Gartner, 2011a] Gartner (2011a). News room.

http://www.gartner.com/it/page.jsp?id=1764714.

[Gartner, 2011b] Gartner (2011b). News room.

http://www.gartner.com/it/page.jsp?id=1848514.

[Google, 2011a] Google (2011a). Android developers. website.

http://developer.android.com/index.html.

[Google, 2011b] Google (2011b). Google Maps JavaScript API V3.

http://code.google.com/apis/maps/documentation/javascript/tutorial.html.

[Google, 2011c] Google (2011c). Introduction of usage limits to the Maps

API. http://googlegeodevelopers.blogspot.com/2011/10/introduction–of–

usage–limits–to–maps.html.

[Google, 2011d] Google (2011d). KML tutorial.

http://code.google.com/apis/kml/.

[Grossman, 2000] Grossman, W. M. (2000). Wireless warrior.

http://www.salon.com/2000/05/15/collymyers/.

76 BIBLIOGRAPHY

[Hazzard, 2011] Hazzard, E. (2011). Open Layers 2.10. Packt Publishing.

[Holdener III, 2011] Holdener III, A. T. (2011). HTML5 Geolocation.

O’Reilly.

[Holler, 2007] Holler, P. (2007). Avalanche hazards and mitigation in Aus-

tria. Natural Hazards, 43:81–101.

[Kamel et al., 2010] Kamel, M. N., Warren, J., Gong, J., and Yue, P. (2010).

Web GIS in practice VIII: HTML5 and the canvas element for interactive

online mapping. International Journal of Health Geographics, 9:14.

[Kulawiak et al., 2010] Kulawiak, M., Prospathopoulos, A., Perivoliotis, L.,

Luba, M., Kioroglou, S., and Stepnowski, A. (2010). Interactive visualiza-

tion of marine pollution monitoring and forecasting data via a Web-based

GIS. Computers & Geosciences, 36(8):1069–1080.

[Lake, 2000] Lake, R. (2000). Making Maps

with Geography Markup Language (GML).

http://spatialnews.geocomm.com/whitepapers/MakingMapsInGML2.pdf.

[Lake, 2004] Lake, R. (2004). Introduction to GML.

http://www.w3.org/Mobile/posdep/GMLIntroduction.html.

[Lane et al., 2010] Lane, N. D., Miluzzo, E., Lu, H., Peebles, D., Choudhury,

T., and Campbell, A. T. (2010). A survey of mobile phone sensing. IEEE

Communications Magazine, 48(9):140–150.

[LeMay, 2005] LeMay, R. (2005). Google mapper:Take browsers to the limit.

cnet.

[Liu et al., 2011] Liu, C., Zhu, Q., Holroyd, K. A., and Seng, E. K. (2011).

Status and trends of mobile health applications for iOS devices: A devel-

oper’s perspective. The Journal of Systems and Software, 84(11):2022–

2033.

[Longley et al., 2005] Longley, P., Goodchild, M., Maguire, D., and Rhind,

D. (2005). Geographic Information Systems and Science. Wiley.

BIBLIOGRAPHY 77

[Mabrouk, 2008] Mabrouk, M. (2008). OpenGIS Location Services

(OpenLS): Core Services. Technical report, Open Geospatial Consortium

Inc.

[McCammon, 2004] McCammon, I. (2004). Heuristic traps in recreational

avalanche accidents: Evidence and implications. The Avalanche Review,

22(3):11–13.

[Meng and Reichenbacher, 2005] Meng, L. and Reichenbacher, T. (2005).

Map-based mobile services. In Meng, L., Zipf, A., and Reichenbacher,

T., editors, Map–based Mobile Service:Theories, Methods and Implemen-

tations, chapter 1. Springer.

[OGC, 2011] OGC (2011). OGC KML. website.

http://www.opengeospatial.org/standards/kml.

[Olivier, 2006] Olivier, S. (2006). Moral dilemmas of participation in dan-

gerous leisure activities. Leisure Studies, 25(1):95–109.

[Pace et al., 1995] Pace, S., Frost, G., Lachow, I., Frelinger, D., Fossum, D.,

Wassem, D. K., and Pinto, M. (1995). The Global Positioning System

Assessing National Policies. Rand.

[Parziale et al., 2006] Parziale, L., Britt, D. T., Davis, C., Forrester, J., Liu,

W., Matthews, C., and Rosselot, N. (2006). TCP/IP Tutorial an Technical

Overview. IBM.

[pcmag.com, 2010] pcmag.com (2010). Tablet computer.

http://www.pcmag.com/encyclopedia term.

[Pendleton, 2010] Pendleton, C. (2010). The world according to Bing. Com-

puter Graphics and Applications,IEEE, 30(4):15–17.

[Pimpler, 2006] Pimpler, E. (2006). Introduction to Developing with

Google Maps. http://www.directionsmag.com/articles/introduction–to–

developing–with–google–maps/123188.

78 BIBLIOGRAPHY

[Ratliff, 2007] Ratliff, E. (2007). Google maps is changing the way we see

the world. Wired Magazine, (15).

[Reuters, 2009] Reuters (2009). Six killed in Aus-

trian Alps avalanche. The Independent 5/3/2009.

http://www.independent.co.uk/news/world/europe/six-killed-in-

austrian-alps-avalanche-1678308.html.

[Revuelto Luque, 2011] Revuelto Luque, R. M. (2011). The Use of digital

image mapping and resource training as secondary. Some details about

Google Earth. Boletin de la Asociacion de Geografos Espa noles, (55):417–

422.

[Schutzberg, 2005] Schutzberg, A. (2005). KML gets two thumbs up from

file format experts. Directions Magazine.

[Shek, 2010] Shek, S. (2010). Next-generation

location-based services for mobile devices.

CSC Grant 2010 Next Generation Location Based Services for Mobile Devices.pdf.

[Shi et al., 2009] Shi, W., Kwan, K., Shea, G., and Cao, J. (2009). A dy-

namic data model for mobile GIS. Computers & Geosciences, 35:2210–

2221.

[Shin, 2010] Shin, S. (2010). Introduction to JSON (java script object nota-

tion. Presentation www.javapassion.com.

[Steiniger et al., 2004] Steiniger, S., Neun, M., and Edwards,

A. (2004). Foundations of Location Based Services.

http://www.spatial.cs.umn.edu/Courses/Fall07/8715/papers/IM7 steiniger.pdf.

[Straus et al., 2007] Straus, S. G., Bikson, T. K., Balkovich, E., and Pane,

J. F. (2007). Mobile Technology and Action Teams: Assessing BlackBerry

Use in Law Enforcement Units, RAND Corporation. Rand Corporation

Working paper.

BIBLIOGRAPHY 79

[Sutter, 2010] Sutter, J. D. (2010). What is a tablet, anyway?

http://articles.cnn.com/2010-01-09/tech/ces.tablet.computers 1 tablet-

touch-screen-keyboard? s=PM:TECH.

[Tase, 2005] Tase, J. (2005). Backcountry recreationists risk of exposure to

avalanche hazards. The Avalanche Review, 24(2):7.

[Turner, 2010] Turner, R. (2010). Avalanches in the Alps kill sev-

eral people. DW-World.de Deutsche Welle. http://www.dw-

world.de/dw/article/0,,5217280,00.htm.

[UAC, 2011] UAC (2011). Utah avalanche center education website. web-

page. http://utahavalanchecenter.org/education/.

[Vretanos, 2011] Vretanos, P. A. (2011). OpenGIS Web Geature Service 2.0

Interface Standard. Technical report, Open Geospatial Consortium Inc.

[W3C, 2011] W3C (2011). HTML5 website.

http://www.w3.org/TR/html5/.

[Wauters, 2011] Wauters, R. (2011). Apple:100 Million Downloads from Mac

App Store in Less than one year. http://techcrunch.com/2011/12/12.

80 BIBLIOGRAPHY

Appendix A

Java Classes

A.1 AvalancheUI.java

1 package com . avalanche5 ;

2

3 import java . t ex t . DecimalFormat ;

4 import android . app . Act i v i ty ;

5 import android . content . BroadcastRece iver ;

6 import android . content . Context ;

7 import android . content . In tent ;

8 import android . content . I n t e n t F i l t e r ;

9 import android . os . Bundle ;

10 import android . u t i l . Log ;

11 import android . view . Menu ;

12 import android . view . MenuInf later ;

13 import android . view . MenuItem ;

14 import android . webkit . WebView ;

15 import android . widget . TextView ;

16

17 pub l i c c l a s s AvalancheUI extends Act i v i t y {
18 p r i v a t e s t a t i c f i n a l S t r ing TAG = ” BroadcastTest ” ;

19 p r i v a t e Intent i n t e n t ; // f o r communication purposes

81

82 APPENDIX A. JAVA CLASSES

between the Act i v i t y and the Se r v i c e

20 p r i v a t e St r ing st myLocation ;

21 p r i v a t e WebView webview ;// This item w i l l be used to

d i sp l ay the map

22 p r i v a t e TextView myCurrLoc ;

23 p r i v a t e DecimalFormat df = new

DecimalFormat(”#.#####”) ;

24

25 @Override

26 pub l i c void onCreate (Bundle savedIns tanceState)

27 {
28 super . onCreate (savedIns tanceSta te) ;

29 setContentView (R. layout . main) ;

30 //we d e f i n e the new Intent as a l i n k between t h i s

Ac t i v i t y and the Se r v i c e c a l l e d

Ri skEva luatorServ i ce . c l a s s

31 i n t e n t = new Intent (th i s ,

R i skEva luatorServ i ce . c l a s s) ;

32 //we d e f i n e a new WebView

33 webview= (WebView)

findViewById (R. id . webview compontent) ;

34 //we change the s e t t i n g s o f the WebView in order to

make i t capable o f running JavaScr ipt

35 webview . g e t S e t t i n g s () . se tJavaScr iptEnabled (t rue) ;

36 //we i n d i c a t e the URL of the webpage that d i s p l a y s

the map, that i s l o c a l l y s to r ed on the dev i ce

37 webview . loadUr l (

” f i l e : //mnt/ sdcard /avalanche map/ v i s o r . html ”) ;

38 myCurrLoc=(TextView) findViewById (R. id . c u r r l o c) ;

39 myCurrLoc . setText (” Longitud , Lat i tude ”) ;

40 }
41

42 p r i v a t e BroadcastRece iver broadcas tRece ive r =

43 new BroadcastRece iver () {

A.1. AVALANCHEUI.JAVA 83

44 @Override

45 // used f o r communicate with the s e r v i c e , us ing

the p r e v i o u s l y c r ea ted Intent

46 pub l i c void onReceive (Context context , In tent

i n t e n t)

47 {
48 updateUI (i n t e n t) ;

49 }
50 } ;

51

52 @Override

53 pub l i c void onResume ()

54 {
55 super . onResume () ;

56 }
57

58 @Override

59 pub l i c void onPause ()

60 {
61 super . onPause () ;

62 }
63

64 p r i v a t e void updateUI (Intent i n t e n t)

65 {
66 // s e t o f commands , in fo rmat ion that are r e c e i v e d

from the Se r v i c e

67 St r ing counter = i n t e n t . ge tSt r ingExtra (” counter ”) ;

68 St r ing time = i n t e n t . ge tSt r ingExtra (” time ”) ;

69 double coo rd lng=i n t e n t . getDoubleExtra (” coo rd lng ” ,

−9) ;

70 double c o o r d l a t=i n t e n t . getDoubleExtra (” c o o r d l a t ” ,

−9) ;

71 //We use t h i s comand to put a marker on the map in

the user cur r ent l o c a t i o n

84 APPENDIX A. JAVA CLASSES

72 webview . loadUr l (” j a v a s c r i p t : addLocMarker

(”+ coord lng +”,”+ c o o r d l a t +”)”) ;

73 // f o r t e s t i n g purposes to t e s t the communication

between the s e r v i c e and the a c t i v i t y

74 TextView txtDateTime = (TextView)

findViewById (R. id . txtDateTime) ;

75 TextView txtCounter = (TextView)

findViewById (R. id . txtCounter) ;

76 TextView txtCurrLoc=(TextView)

findViewById (R. id . c u r r l o c) ;

77 txtDateTime . setText (time) ;

78 txtCounter . setText (counter) ;

79 txtCurrLoc . setText (” Current Locat ion : ” +

df . format (coo rd lng) + ” ,” +

df . format (c o o r d l a t)) ;

80 }
81

82 // the menu i s s to r ed in a XML f i l e on the dev i c e

83 // these l i n e s o f code are used to read the XML and

trans form

84 // i t i n to the menus

85 @Override

86 pub l i c boolean onCreateOptionsMenu (Menu menu)

87 {
88 MenuInf later i n f l a t e r = getMenuIn f la te r () ;

89 i n f l a t e r . i n f l a t e (R. menu . avalanche menu , menu) ;

90 r e turn true ;

91 }
92

93 @Override

94 pub l i c boolean onOptionsItemSelected (MenuItem item)

95 {
96 // Handle item s e l e c t i o n

97 switch (item . getItemId ())

A.1. AVALANCHEUI.JAVA 85

98 {
99 case R. id . s t a r t s e r v i c e :

100 {
101 // to s t a r t the s e r v i c e

102 st myLocation=”s t a r t s e r v i c e ” ;

103 //we s t a r t the s e r v i c e a s s o c i a t e d with the

i n t e n t

104 s t a r t S e r v i c e (i n t e n t) ;

105 //we r e g i s t e r the l i n k in order to be ab le to

l i s t e n in fo rmat ion broadcasted by the

s e r v i c e Ri skEva luatorServ i ce

106 r e g i s t e r R e c e i v e r (broadcastRece iver , new

I n t e n t F i l t e r

(R i skEva luatorServ i ce .BROADCAST ACTION)) ;

107 r e turn true ;

108 }
109

110 case R. id . s t o p s e r v i c e :

111 {
112 st myLocation=”stop s e r v i c e ” ;

113 u n r e g i s t e r R e c e i v e r (broadcas tRece ive r) ;

114 //we stop the s e r v i c e a s s o c i a t e d to the

Intent (Ri skEva luatorServ i ce)

115 s t o p Se r v i c e (i n t e n t) ;

116 r e turn true ;

117 }
118

119 case R. id . c lear map :

120 {
121 st myLocation=”c l e a r map” ;

122 // to turn on or o f f the r i s k data on the map

123 webview . loadUr l (” j a v a s c r i p t : layerTurnOffOn () ”) ;

124 r e turn true ;

125 }

86 APPENDIX A. JAVA CLASSES

126 d e f a u l t :

127 r e turn super . onOptionsItemSelected (item) ;

128 }
129 }
130 }

A.2. RISKEVALUATORSERVICE.JAVA 87

A.2 RiskEvaluatorService.java

1 package com . avalanche5 ;

2

3 import java . i o . F i l e ;

4 import java . i o . Fi le InputStream ;

5 import java . i o . IOException ;

6 import java . u t i l . Date ;

7 import java . u t i l . Scanner ;

8 import java . u t i l . Vector ;

9 import android . app . S e r v i c e ;

10 import android . content . Context ;

11 import android . content . In tent ;

12 import android . content . r e s . A s s e t F i l e D e s c r i p t o r ;

13 import android . l o c a t i o n . Locat ion ;

14 import android . l o c a t i o n . Loca t i onL i s t ene r ;

15 import android . l o c a t i o n . LocationManager ;

16 import android . media . MediaPlayer ;

17 import android . os . Bundle ;

18 import android . os . Handler ;

19 import android . os . IBinder ;

20 import android . u t i l . Log ;

21

22 pub l i c c l a s s Ri skEva luatorServ i ce extends S e r v i c e {
23 p r i v a t e s t a t i c f i n a l S t r ing TAG = ” Broadcas tServ i ce ” ;

24 pub l i c s t a t i c f i n a l S t r ing BROADCAST ACTION =

”com . websmithing . b ro a d ca s t t e s t . d i sp l ayevent ” ;

25 p r i v a t e f i n a l Handler handler = new Handler () ;

26 p r i v a t e LocationManager lm ;

27 p r i v a t e MyLocationListener l l ;

28 pub l i c double [] myCurrentPosit ion=new double [2] ;

29 p r i v a t e Vector vRiskPolygons ;

30 p r i v a t e double [] in foCurrentPolygon=new double [2] ;

31 p r i v a t e MediaPlayer mPlayer ;

88 APPENDIX A. JAVA CLASSES

32 p r i v a t e A s s e t F i l e D e s c r i p t o r soundRiskLevel2 ;

33 p r i v a t e A s s e t F i l e D e s c r i p t o r soundRiskLevel3 ;

34

35 In tent i n t e n t ;

36 i n t counter = 0 ;

37

38 @Override

39 pub l i c void onCreate ()

40 {
41 super . onCreate () ;

42 //we c r e a t e a new vec to r vRiskPolygons that w i l l

s t o r e the r i s k polygons

43 vRiskPolygons=new Vector () ;

44 // to execute the func t i on that reads the r i s k

polygon data

45 myReader () ;

46 // to c r e a t e the l i n k between the S e r v i c e (background

p r o c e s s e s) and the Act i v i t y (user i n t e r f a c e)

47 i n t e n t = new Intent (BROADCAST ACTION) ;

48 //lm and l l to communicate with the onboard GPS

hardware

49 lm = (LocationManager)

getSystemServ ice (Context .LOCATION SERVICE) ;

50 l l = new MyLocationListener () ;

51 //we reque s t updates from the GPS hardware every

5000 mi l i s e conds

52 lm . requestLocat ionUpdates (LocationManager .GPS PROVIDER,

5000 , 5 , l l) ;

53 //we c r e a t e two r i n g t on e s f o r r i s k l e v e l s 2 and 3

54 soundRiskLevel2 =

getResources () . openRawResourceFd (R. raw . ding) ;

55 soundRiskLevel3 =

getResources () . openRawResourceFd (R. raw . d i n g l i n g) ;

56 to a c c e s s the media p laye r c a p a b i l i t i e s o f the

A.2. RISKEVALUATORSERVICE.JAVA 89

dev i ce

57 mPlayer=new MediaPlayer () ;

58 }
59

60 @Override

61 pub l i c void onStart (In tent intent , i n t s t a r t I d)

62 {
63 handler . removeCal lbacks (myRunnable) ;

64 handler . postDelayed (myRunnable , 5000) ; // we repeat

myRunnable every 5000 mi l i s e conds

65 }
66

67 // the s e t o f commnands that repeat every 5 seconds

68 p r i v a t e Runnable myRunnable = new Runnable ()

69 {
70 pub l i c void run ()

71 {
72 // obta in cur rent l o c a t i o n

73 myCurrentPosit ion =((MyLocationListener)

l l) . g e tCur rentPos i t i on () ;

74 Disp layLogg ingIn fo () ;

75

76 t ry

77 {
78 // the i n i t i a l va lue o f both l a t i t u d e and

long i tude i s 0

79 // d i f f e r e n t va lue s would i n d i c a t e a p o s i t i o n

obtained from the GPS hardware

80 i f ((myCurrentPosit ion [0] ! = 0)

&&(myCurrentPosit ion [1] ! = 0))

81 {
82 // we proceed to t e s t the cur r ent l o c a t i o n

us ing the func t i on G e t I n t e r s e c t i o n () the

r e s u l t o f the t e s t i s s to r ed in the array

90 APPENDIX A. JAVA CLASSES

in foCurrentPolygon , the value [1] o f the

array conta in the r i s k l e v e l o f the

polygon that i n t e r s e c t s with the cur r ent

l o ca t i on , in case the re i s any .

83 in foCurrentPolygon=G e t I n t e r s e c t i o n

(myCurrentPosit ion [0] ,

myCurrentPosit ion [1]) ;

84 // i f the r i s k l e v e l i s 1 means no r i s k we

stop any sound

85 i f (in foCurrentPolygon [1]==1)

86 {
87 mPlayer . r e s e t () ;

88 }
89 // i f the r i s k l e v e l i s 2 or 3 we play the

approp iate alarm

90 i f (in foCurrentPolygon [1]==2)

91 {
92 mPlayer . r e s e t () ;

93 mPlayer . setDataSource

(soundRiskLevel2 . g e t F i l e D e s c r i p t o r () ,

soundRiskLevel2 . g e t S t a r t O f f s e t () ,

soundRiskLevel2 . getLength ()) ;

94 mPlayer . prepare () ;

95 mPlayer . s t a r t () ;

96 }
97 i f (in foCurrentPolygon [1]==3)

98 {
99 mPlayer . r e s e t () ;

100 mPlayer . setDataSource

(soundRiskLevel3 . g e t F i l e D e s c r i p t o r () ,

soundRiskLevel3 . g e t S t a r t O f f s e t () ,

soundRiskLevel3 . getLength ()) ;

101 mPlayer . prepare () ;

102 mPlayer . s t a r t () ;

A.2. RISKEVALUATORSERVICE.JAVA 91

103 }
104 }
105 e l s e

106 {
107 Log . d(”SERVICE RUNNABLE” , ” with fake coords

”) ;

108 }
109 }
110

111 catch (I l l ega lArgumentExcept ion e)

112 {
113 // TODO Auto−generated catch block

114 e . pr intStackTrace () ;

115 }
116 catch (I l l e g a l S t a t e E x c e p t i o n e)

117 {
118 // TODO Auto−generated catch block

119 e . pr intStackTrace () ;

120 }
121 catch (IOException e)

122 {
123 // TODO Auto−generated catch block

124 e . pr intStackTrace () ;

125 }
126 handler . postDelayed (th i s , 5000) ; // 5 seconds

127 }
128 } ;

129

130 // the in fo rmat ion that i s sent to the user

s e r v i c e (user i n t e r f a c e)

131 p r i v a t e void Disp layLogg ingIn fo ()

132 {
133 Log . d(TAG, ” entered Disp layLogg ingIn fo ”) ;

134 i n t e n t . putExtra (” time ” , new

92 APPENDIX A. JAVA CLASSES

Date () . t oLoca l eS t r i ng ()) ;

135 i n t e n t . putExtra (” counter ” ,

S t r ing . valueOf(++counter)) ;

136 i n t e n t . putExtra (” coo rd lng ” , myCurrentPosit ion [0]) ;

137 i n t e n t . putExtra (” c o o r d l a t ” , myCurrentPosit ion [1]) ;

138 sendBroadcast (i n t e n t) ;

139 }
140

141 @Override

142 pub l i c IBinder onBind (Intent i n t e n t)

143 {
144 r e turn n u l l ;

145 }
146

147 @Override

148 pub l i c void onDestroy ()

149 {
150 handler . removeCal lbacks (myRunnable) ;

151 super . onDestroy () ;

152 }
153

154 //To a c c e s s a f i l e s to r ed onboard that conta in s the

r i s k polygons in vec to r format

155 p r i v a t e void myReader ()

156 {
157 St r ing r i s k p o l y s =””;

158 St r ing sFileName =””;

159 St r ing sLine =””;

160

161 // we c r e a t e a f i l e i n d i c a t i n g the path where the

f i l e i s l o ca t ed

162 F i l e r F i l e=new

F i l e (”/ sdcard /avalanche map/ geo j son / r i s k . j s ”) ;

163 //we t e s t i f the f i l e e x i s t s and i s a c c e s s i b l e

A.2. RISKEVALUATORSERVICE.JAVA 93

164 i f (r F i l e . e x i s t s () && r F i l e . canRead ())

165 {
166 //we c r e a t e a f i l e input stream to conta in the

i n f o s to r ed in the f i l e

167 Fi leInputStream f i s=n u l l ;

168 t ry

169 {
170 // now f i s conta in s the i n f o o f s to r ed in

r F i l e

171 f i s=new Fi leInputStream (r F i l e) ;

172 // we c r e a t e a scanner in order to be ab le to

read one l i n e at the time

173 Scanner scanner = new Scanner (new

Fi leInputStream (r F i l e) , ”UTF−8”) ;

174 // we i t e r a t e along the scanner one l i n e at

the time u n t i l no more l i n e s e x i s t

175 whi le (scanner . hasNextLine ())

176 {
177 // sLine has the value o f the cur r ent l i n e

178 sLine=scanner . nextLine () ;

179 // the f i l e conta in s one f eau tu r e per

l i n e , we t e s t i f t h i s l i n e has the word

[geometry] , i n d i c a t i n g that the l i n e

has a s p a t i a l f e a t u r e

180 i f (sL ine . conta in s (”\” geometry \” : ”))

181 {
182 // i f the l i n e conta in s a s p a t i a l

f e a t u r e we c r e a t e an in s t ance o f the

c l a s s RiskPolygon with t h i s

in fo rmat ion . We send the s t r i n g with

the f e a t u r e in fo rmat ion to the c l a s s

RiskPolygon () .

183 RiskPolygon myPolygon=new

RiskPolygon (sLine) ;

94 APPENDIX A. JAVA CLASSES

184 //we s t o r e the in s t ance in to the vec to r

vRiskPolygons

185 vRiskPolygons . add (myPolygon) ;

186 }
187 }
188 // Message to be d i sp layed when a l l the

polygons have been parsed

189 Log . d(”PARSING POLYGONS: ” , ”done ” +

vRiskPolygons . s i z e ()) ;

190 scanner . c l o s e () ;

191 }
192

193 // to catch Input /Output e r r o r s

194 catch (IOException e)

195 {
196 // TODO Auto−generated catch block

197 Log . d(”READER” , ” IOException ”) ;

198 e . pr intStackTrace () ;

199 }
200 }
201 }
202

203 // t h i s func t i on uses as input a pos i t i on , testLng ,

t e s tLat and compares i t with a l l the r i s k

polygons .

204 p r i v a t e double [] G e t I n t e r s e c t i o n (double testLng ,

double t e s tLat)

205 {
206 RiskPolygon tempoRiskPolygon ;

207 double [] in foPolygon=new double [2] ;

208 i n t iCountVector =0;

209 i n t c o u n t I n t e r s e c t i o n s =0;

210 // we i t e r a t e along a l l the polygons s to r ed in

vec to r vRiskPolygons

A.2. RISKEVALUATORSERVICE.JAVA 95

211 f o r (iCountVector =0;

iCountVector<vRiskPolygons . s i z e () ;

iCountVector++)

212 {
213 // tempoRiskPolygon i s the cur rent polygon to

t e s t

214 tempoRiskPolygon=(RiskPolygon) vRiskPolygons . get (iCountVector) ;

215 // tempoRiskPolygon i s an in s t ance o f the c l a s s

RiskPolygon

216 // the c l a s s RiskPolygon has a func t i on c a l l e d

Doe s In t e r s e c t ()

217 // i t t e s t s any given p o s i t i o n and responds i f

i t i s ou t s id e or i n s i d e

218 i f (tempoRiskPolygon . Doe s In t e r s e c t (testLng ,

t e s tLat))

219 {
220 c o u n t I n t e r s e c t i o n s ++;

221 in foPolygon [0]= tempoRiskPolygon . dID ;

222 in foPolygon [1]= tempoRiskPolygon . dRisk ;

223 }
224 }
225 // c o u n t I n t e r s e c t i o n s must be 1 or 0

226 // i t could be more than 1 i f the re are ove r l ap ing

polygons

227 // i f i t i s 0 the po int does not i n t e r s e c t any

polygon in the datase t

228 i f (c o u n t I n t e r s e c t i o n s ==0)

229 {
230 Log . d(”INTERSECTION RESULT” , ”No i n t e r s e c t i o n

found ”) ;

231 in foPolygon [0] = 0 ;

232 in foPolygon [1] = 0 ;

233 }
234 r e turn in foPolygon ;

96 APPENDIX A. JAVA CLASSES

235 }
236

237 c l a s s MyLocationListener implements Loca t i onL i s t ene r

238 {
239 p r i v a t e Locat ion x l o c a t i o n ;

240 p r i v a t e boolean s t a t u s l o c a t i o n=f a l s e ;

241 p r i v a t e St r ing msgLocat ionListener =””;

242

243 @Override

244 pub l i c void onLocationChanged (Locat ion l o c a t i o n)

245 {
246 i f (l o c a t i o n != n u l l)

247 {
248 Log . d(”LOCATION CHANGED” ,

l o c a t i o n . ge tLat i tude ()+ ””) ;

249 Log . d(”LOCATION CHANGED” ,

l o c a t i o n . getLongitude ()+ ””) ;

250 s t a t u s l o c a t i o n=true ;

251 x l o c a t i o n=l o c a t i o n ;

252 }
253 }
254

255 @Override

256 pub l i c void onProviderDisabled (S t r ing prov ide r)

257 {
258 msgLocat ionListener=”prov ide r d i s ab l ed ” ;

259 Log . d(”LOCATION CHANGED” , msgLocat ionListener) ;

260 }
261

262 @Override

263 pub l i c void onProviderEnabled (S t r ing prov ide r)

264 {
265 msgLocat ionListener=”Provider Enabled ” ;

266 Log . d(”LOCATION CHANGED” , msgLocat ionListener) ;

A.2. RISKEVALUATORSERVICE.JAVA 97

267 }
268

269 @Override

270 pub l i c void onStatusChanged (St r ing provider ,

271 i n t s tatus , Bundle ex t ra s)

272 {
273 msgLocat ionListener=”Status changed : ” + s ta t u s ;

274 Log . d(”LOCATION CHANGED” , msgLocat ionListener) ;

275 }
276

277 pub l i c double [] g e tCurrentPos i t i on ()

278 {
279 double [] myPosition = new double [2] ;

280 i f (s t a t u s l o c a t i o n==true)

281 {
282 myPosition [0]= x l o c a t i o n . getLongitude () ;

283 myPosition [1]= x l o c a t i o n . ge tLat i tude () ;

284 }
285 e l s e

286 {
287 msgLocat ionListener=”not a v a i l a b l e ” ;

288 myPosition [0] = 0 ;

289 myPosition [1] = 0 ;

290 }
291 Log . d(”LOCATION GET

POSITION” , msgLocat ionListener) ;

292 r e turn myPosition ;

293 }
294 }
295 }

98 APPENDIX A. JAVA CLASSES

A.3 RiskPolygon.java

1 package com . avalanche5 ;

2

3 pub l i c c l a s s RiskPolygon

4 {
5 pub l i c RiskPolygon (St r ing p o l y g o n a s s t r i n g)

6 {
7 // p o l y g o n a s s t r i n g conta in s the i n f o r e l a t e d to

one polygon in JSON format ,

8 // t h i s c l a s s p roce s s the i n f o and c r e a t e s a Java

r e p r e s e n t a t i o n o f the polygon that can be

used by the avalanche a p p l i c a t i o n

9 s t Po lygon=p o l y g o n a s s t r i n g ;

10 //we know the JSON s t r u c t u r e o f the in fo , so we

i d e n t i f y the p o s i t i o n o f c e r t a i n key e lements

in the s t r i n g

11 i n t

i P r o pe r t i e s B eg i n=st Polygon . indexOf (”\” p r o p e r t i e s \” : ”) ;

12 s P r o p e r t i e s=st Polygon . sub s t r i ng

(iPrope r t i e sBeg in , s t Po lygon . indexOf (”}” ,

i P r o pe r t i e s B eg i n)) ;

13 dID=0;

14 // g r id code i s the name o f the column that

conta in s the r i s k l e v e l in our datase t

15 //we i d e n t i f y the p o s i t i o n o f ” g r i d code ” and

then get the va lue f o r t h i s element

16 i n t

iRiskBeg in=s P r o p e r t i e s . indexOf (”\” g r i d code \” : ”) ;

17 St r ing sRisk=s P r o p e r t i e s . s ub s t r i ng

(iRiskBeg in +12) ;

18 dRisk=Double . parseDouble (sRisk) ;

19 // the ver tex va lue s o f the polygon are

a s s o c i a t e d to the element ” coo rd ina t e s ”

A.3. RISKPOLYGON.JAVA 99

20 //we i d e n t i f y the p o s i t i o n o f the s t r i n g

” coo rd ina t e s ” and get the va lue o f the

v e r t i c e s

21 i n t iCoord inatesBeg in= st Polygon . indexOf

(”\” coo rd ina t e s \” : ”) ;

22 sCoord inates=st Polygon . sub s t r i ng

(iCoord inatesBeg in +14,

s t Po lygon . indexOf (”}” , iCoord inatesBeg in)) ;

23 sCoord inates=sCoord inates . r e p l a c e (’ [’ , ’ ’) ;

24 sCoord inates=sCoord inates . r e p l a c e (’] ’ , ’ ’) ;

25 sVertex=sCoord inates . s p l i t (” , ”) ;

26 i count =0;

27 // f i r s t we d e f i n e the l enght o f the ar rays by

count ing the number o f v e r t i c e s

28 iVertexCount=(sVertex . l ength +1) /2 ;

29 l i s t L n g s=new double [iVertexCount] ;

30 l i s t L a t s=new double [iVertexCount] ;

31 // then we s t o r e the value o f the v e r t i c e s in two

ar rays one f o r

32 // l a t i t u d e and one f o r l ong i tude

33 f o r (i c =0; i c<sVertex . l ength ; i c=i c +2)

34 {
35 l i s t L n g s [i count]=Double . parseDouble

(sVertex [i c]) ;

36 l i s t L a t s [i count]=Double . parseDouble

(sVertex [i c +1]) ;

37 i count++;

38 }
39 //getBB () i n t e r n a l func t i on to obta in the

bounding box f o r t h i s polygon

40 getBB () ;

41 }
42

43 p r i v a t e void getBB ()

100 APPENDIX A. JAVA CLASSES

44 {
45 double xMinLng ;

46 double xMinLat ;

47 double xMaxLng ;

48 double xMaxLat ;

49

50 xMinLng=l i s t L n g s [0] ;

51 xMaxLng=l i s t L n g s [0] ;

52

53 xMinLat=l i s t L a t s [0] ;

54 xMaxLat=l i s t L a t s [0] ;

55 //we i t e r a t e along the ar rays l i s t L n g s and

l i s t L a t s and f i n d extreme va lue s

56 f o r (i count =0; icount<l i s t L n g s . l ength ; i count++)

57 {
58 i f (l i s t L n g s [i count]<xMinLng)

59 {
60 xMinLng=l i s t L n g s [i count] ;

61 }
62 i f (l i s t L n g s [i count]>xMaxLng)

63 {
64 xMaxLng=l i s t L n g s [i count] ;

65 }
66 i f (l i s t L a t s [i count]<xMinLat)

67 {
68 xMinLat=l i s t L a t s [i count] ;

69 }
70 i f (l i s t L a t s [i count]>xMaxLat)

71 {
72 xMaxLat=l i s t L a t s [i count] ;

73 }
74 }
75 minLng=xMinLng ;

76 maxLng=xMaxLng ;

A.3. RISKPOLYGON.JAVA 101

77 minLat=xMinLat ;

78 maxLat=xMaxLat ;

79 }
80

81 // to t e s t i f the any given coo rd ina t e s (double

CoordLng , double CoordLat) are with in or out s id e

t h i s polygon

82 pub l i c boolean Does In t e r s e c t (double CoordLng , double

CoordLat)

83 {
84 boolean b I n t e r s e c t i o n=f a l s e ;

85 // f i r s t we t e s t i f the t e s t i n g p o s i t i o n are i n s i d e

the bounding box , i f the p o s i t i o n i s ou t s id e the

bounding box , no f u r t h e r t e s t i s performed

86 i f ((CoordLng<minLng) | | (CoordLng>maxLng) | |
(CoordLat<minLat) | | (CoordLat>maxLat))

87 {
88 b I n t e r s e c t i o n=f a l s e ;

89 r e turn b I n t e r s e c t i o n ;

90 }
91 // i f the po int to t e s t i s l o ca t ed i n s i d e the

bounding box we proceed to count the

i n t e r s e c t i o n s between a h o r i z o n t a l l i n e from the

po int to the Y a x i s . I f the r e are an odd number

o f i n t e r s e c t i o n s the po int i s i n s i d e otherwi s e

the po int i s ou t s i d e .

92 e l s e

93 {
94 double lng1=l i s t L n g s [0] ;

95 double l a t 1=l i s t L a t s [0] ;

96 double lng2 =0;

97 double l a t 2 =0;

98 double dXinters =0;

99 double counter =0;

102 APPENDIX A. JAVA CLASSES

100 f o r (i n t i =1; i<iVertexCount ; i++)

101 {
102 lng2=l i s t L n g s [i] ;

103 l a t 2=l i s t L a t s [i] ;

104 i f (CoordLat>Math . min (lat1 , l a t 2))

105 {
106 i f (CoordLat<=Math . max(lat1 , l a t 2))

107 {
108 i f (CoordLng<=Math . max(lng1 , lng2))

109 {
110 i f (l a t 1 != l a t 2)

111 {
112 dXinters=(CoordLat−l a t 1)∗
113 (lng2−lng1) /(la t2−l a t 1)+lng1 ;

114 i f (lng1 == lng2 | | CoordLng <=

dXinters)

115 {
116 counter++;

117 }
118 }
119 }
120 }
121 }
122 lng1=lng2 ;

123 l a t 1=l a t 2 ;

124 }
125

126 i f (counter % 2 == 0)

127 {
128 b I n t e r s e c t i o n=f a l s e ;

129 }
130 e l s e

131 {
132 b I n t e r s e c t i o n= true ;

A.3. RISKPOLYGON.JAVA 103

133 }
134 }
135 r e turn b I n t e r s e c t i o n ;

136 }
137

138 pub l i c double minLng ;

139 pub l i c double minLat ;

140 pub l i c double maxLng ;

141 pub l i c double maxLat ;

142 pub l i c double [] l i s t L a t s ;

143 pub l i c double [] l i s t L n g s ;

144 pub l i c i n t iVertexCount ;

145 p r i v a t e St r ing st Polygon ;

146 p r i v a t e St r ing [] sVertex ;

147 p r i v a t e i n t i c =0;

148 p r i v a t e i n t i count =0;

149 p r i v a t e St r ing s P r o p e r t i e s =””;

150 p r i v a t e St r ing sCoord inates =””;

151 p r i v a t e St r ing sID=””;

152 pub l i c double dRisk =0;

153 pub l i c double dID=0;

154 }

104 APPENDIX A. JAVA CLASSES

Appendix B

Visor module

B.1 HTML

1 <!DOCTYPE html>

2 <html>

3 <head>

4 <t i t l e >Visor Y</ t i t l e >

5 <meta http−equiv=”Content−Type”

content=”text /html ; cha r s e t=utf−8” />

6 <meta name=”viewport ” content=”

width=device−width , i n i t i a l −s c a l e =1.0 ,

7 maximum−s c a l e =1.0 , user−s c a l a b l e=0”>

8 <meta name=”apple−mobile−web−app−capable ”

content=”yes”>

9 < l i n k r e l =”s t y l e s h e e t ” h r e f=”s t y l e . mobile . c s s ”

type=”text / c s s”>

10 <s c r i p t

s r c=”OpenLayers−2.11/ l i b /OpenLayers . j s ? mobile”>

</s c r i p t >

11 <s c r i p t

s r c=”OpenLayers−2.11/ l i b / Firebug / f i r e b u g . j s ”>

</s c r i p t >

105

106 APPENDIX B. VISOR MODULE

12

13 <s c r i p t s r c=”geo j son / r i s k . j s ”></s c r i p t >

14

15 <s c r i p t s r c=”v i s o r z . j s ”></s c r i p t >

16

17 <s ty l e>

18 html , body {
19 margin : 0 ;

20 padding : 0 ;

21 he ight : 100%;

22 width : 100%;

23 }
24 @media only s c r e en and (max−width : 600px) {
25 html , body {
26 he ight : 117%;

27 }
28 }
29 #map {
30 width : 100%;

31 p o s i t i o n : r e l a t i v e ;

32 he ight : 100%;

33 }
34 . o lCont ro lAt t r i bu t i on {
35 p o s i t i o n : abso lu t e ;

36 font−s i z e : 10px ;

37 bottom : 0 ! important ;

38 r i g h t : 0 ! important ;

39 background : rgba (0 , 0 , 0 , 0 . 1) ;

40 font−f ami ly : Ar i a l ;

41 padding : 2px 4px ;

42 border−rad iu s : 5px 0 0 0 ;

43 }
44 div . olControlZoomPanel

. o lControlZoomInItemInact ive ,

B.1. HTML 107

45 div . olControlZoomPanel

. olControlZoomOutItemInactive {
46 background : rgba (0 , 0 , 0 , 0 . 2) ;

47 p o s i t i o n : abso lu t e ;

48 }
49 div . olControlZoomPanel

. o lContro lZoomInItemInact ive {
50 border−rad iu s : 5px 5px 0 0 ;

51 }
52 div . olControlZoomPanel

. olControlZoomOutItemInactive {
53 border−rad iu s : 0 0 5px 5px ;

54 top : 37px ;

55 }
56 div . olControlZoomPanel

. olControlZoomOutItemInactive : a f t e r ,

57 div . olControlZoomPanel

. o lContro lZoomInItemInact ive : a f t e r {
58 font−weight : bold ;

59 content : ’+ ’ ;

60 font−s i z e : 36px ;

61 padding : 7px ;

62 z−index : 2000 ;

63 c o l o r : #f f f ;

64 l i n e−he ight : 1em;

65 }
66 div . olControlZoomPanel

. olControlZoomOutItemInactive : a f t e r {
67 content : ’ ’ ;

68 l i n e−he ight : 0 . 9em;

69 padding : 0 8px ;

70 }
71 div . olControlZoomPanel

. olControlZoomToMaxExtentItemInactive {

108 APPENDIX B. VISOR MODULE

72 d i sp l ay : none ;

73 }
74 #t i t l e , #shor tde s c {
75 d i sp l ay : none ;

76 }
77 </s ty l e>

78 </head>

79 <body>

80 <div id=”map”></div>

81

82 <h1 id=” t i t l e ”>Visor Y</h1>

83 <div id=”tags”>

84

85 </div>

86

87 <s c r i p t >

88 i n i t () ;

89 </s c r i p t >

90 </body>

91 </html>

B.2. JAVASCRIPT 109

B.2 JavaScript

1 // i n i t i a l i z e map when page ready

2 var map ;

3 var markers = new OpenLayers . Layer . Markers (”Markers”

) ;

4

5 var s i z e = new OpenLayers . S i z e (21 ,25) ;

6 var o f f s e t = new OpenLayers . P ixe l (−(s i z e .w/2) ,

−s i z e . h) ;

7 var i con = new

OpenLayers . Icon (’ img/mobile−l o c . png ’ , s i z e , o f f s e t) ;

8 var marker ;

9

10 // Get r i d o f address bar on iphone / ipod

11 var f i x S i z e = func t i on () {
12 window . s c r o l l T o (0 , 0) ;

13 document . body . s t y l e . he ight = ’100% ’;

14 i f

(! (/ (iphone | ipod) / . t e s t (nav igator . userAgent . toLowerCase ())))

15 {
16 i f (document . body . parentNode)

17 {
18 document . body . parentNode . s t y l e . he ight =

’100% ’;

19 }
20 }
21 } ;

22 setTimeout (f i x S i z e , 700) ;

23 setTimeout (f i x S i z e , 1500) ;

24

25 var opt ions = {numZoomLevels : 32} ;

26

27 var graph ic = new OpenLayers . Layer . Image (’ sat1 ’ ,

110 APPENDIX B. VISOR MODULE

’ dobratsch / sat img1 . png ’ ,

28 new OpenLayers . Bounds (13 .17867378 , 46 .3829557766 ,

13 .9900207874 , 46 .9191297766) ,

29 new OpenLayers . S i z e (687 , 454) , opt ions) ;

30

31 // to s e t the s t y l e o f the l a y e r s that conta in the

r i s k polygons

32 var s t r i s k 1=new

OpenLayers . S ty l e ({ ’ s t rokeColor ’ : ’#000000 ’ ,

’ f i l l C o l o r ’ : ’#3 c f f 3 c ’ , ’ f i l l O p a c i t y ’ : 0 . 7 5 , ’

strokeWidth ’ : 0 . 2 5 }) ;

33 var s t r i s k 2=new

OpenLayers . S ty l e ({ ’ s t rokeColor ’ : ’#000000 ’ ,

’ f i l l C o l o r ’ : ’# f f f f 3 c ’ , ’ f i l l O p a c i t y ’ : 0 . 7 5 , ’

strokeWidth ’ : 0 . 2 5 }) ;

34 var s t r i s k 3=new

OpenLayers . S ty l e ({ ’ s t rokeColor ’ : ’#000000 ’ ,

’ f i l l C o l o r ’ : ’# f f 3 c3 c ’ , ’ f i l l O p a c i t y ’ : 0 . 7 5 , ’

strokeWidth ’ : 0 . 2 5 }) ;

35

36 // we c r e a t e a s i n g l e l a y e r f o r each o f the r i s k l e v e l s

37 var g e o j s o n r i s k 1=new OpenLayers . Format . GeoJSON() ;

38 var v e c t o r l a y e r r i s k 1=new

OpenLayers . Layer . Vector (” Risk 1” ,

{ styleMap : s t r i s k 1 }) ;

39

40 var g e o j s o n r i s k 2=new OpenLayers . Format . GeoJSON() ;

41 var v e c t o r l a y e r r i s k 2=new

OpenLayers . Layer . Vector (” Risk 2” ,

{ styleMap : s t r i s k 2 }) ;

42

43 var g e o j s o n r i s k 3=new OpenLayers . Format . GeoJSON() ;

44 var v e c t o r l a y e r r i s k 3=new

OpenLayers . Layer . Vector (” Risk 3” ,

B.2. JAVASCRIPT 111

{ styleMap : s t r i s k 3 }) ;

45

46 var i n i t = func t i on ()

47 {
48 // c r e a t e map

49 map = new OpenLayers .Map({
50 div : ”map” ,

51 theme : nu l l ,

52 c o n t r o l s : [

53 new OpenLayers . Control . At t r ibut i on () ,

54 new OpenLayers . Control . TouchNavigation ({
55 dragPanOptions : {
56 enab l eK ine t i c : t rue

57 }
58 }) ,

59 new OpenLayers . Control . ZoomPanel ()

60] ,

61 l a y e r s : [graphic , v e c t o r l a y e r r i s k 1 ,

v e c t o r l a y e r r i s k 2 ,

62 v e c t o r l a y e r r i s k 3 , markers] ,

63 c en te r : new OpenLayers . LonLat (13 .70422884 ,

46 .60030561) ,

64 zoom : 1 ,

65 maxExtent : new OpenLayers . Bounds (13 .6227 ,

46 .5215 ,

66 14 .0373 , 46 .7537) ,

67 s c a l e s : [1 0 0 , 150 , 225 , 338 ,506 ,

759 ,1139 ,1709 ,2563 ,

68 3844 ,5767 ,8650 ,12975 ,19462 ,29193 ,43789 , 65684 ,

69 98526 ,147789 ,221684 ,332526 ,498789]

70 }) ;

71

72 // we i n d i c a t e the source o f the data f o r each

layer , the in fo rmat ion i s s to r ed in v a r i a b l e s

112 APPENDIX B. VISOR MODULE

in the f i l e ” geo j son / r i s k . j s ”

73 // the v a r i a b l e r i s k 1 conta in s a l l the polygons

with r i s k l e v e l 1 , v a r i a b l e r i s k 2 conta in s the

polygons with r i s k l e v e l 2

74 // we a l s o i n d i c a t e that we want the l a y e r s to be

v i s i b l e

75 v e c t o r l a y e r r i s k 1 . addFeatures (g e o j s o n r i s k 1 . read

(r i s k 1)) ;

76 v e c t o r l a y e r r i s k 1 . s e t V i s i b i l i t y (t rue) ;

77

78 v e c t o r l a y e r r i s k 2 . addFeatures (g e o j s o n r i s k 2 . read

(r i s k 2)) ;

79 v e c t o r l a y e r r i s k 2 . s e t V i s i b i l i t y (t rue) ;

80

81 v e c t o r l a y e r r i s k 3 . addFeatures (g e o j s o n r i s k 3 . read

(r i s k 3)) ;

82 v e c t o r l a y e r r i s k 3 . s e t V i s i b i l i t y (t rue) ;

83

84 map . zoomToMaxExtent () ;

85

86 } ;

87

88 // func t i on to add a new marker , we use i t to i n s e r t a

new marker on the user l o c a t i o n

89 var addLocMarker=func t i on (cLng , cLat)

90 {
91 OpenLayers . Console . l og (” addLocMarker ”) ;

92 var markerLocation=new OpenLayers . LonLat (cLng ,

cLat) ;

93 markers . addMarker (new OpenLayers . Marker

(markerLocation , i con)) ;

94 }
95

96 var setMapZoom=func t i on (myZoom)

B.2. JAVASCRIPT 113

97 {
98 map . zoom=myZoom;

99 } ;

100

101 // to turn or or o f f the r i s k l aye r s , i t i s executed

from the menu o f the avalanche r i s k a p p l i c a t i o n

102 var layerTurnOffOn=func t i on ()

103 {
104 i f (v e c t o r l a y e r r i s k 1 . v i s i b i l i t y==true)

105 {
106 v e c t o r l a y e r r i s k 1 . s e t V i s i b i l i t y (f a l s e) ;

107 v e c t o r l a y e r r i s k 2 . s e t V i s i b i l i t y (f a l s e) ;

108 v e c t o r l a y e r r i s k 3 . s e t V i s i b i l i t y (f a l s e) ;

109 }
110 e l s e

111 {
112 v e c t o r l a y e r r i s k 1 . s e t V i s i b i l i t y (t rue) ;

113 v e c t o r l a y e r r i s k 2 . s e t V i s i b i l i t y (t rue) ;

114 v e c t o r l a y e r r i s k 3 . s e t V i s i b i l i t y (t rue) ;

115 }
116 } ;

117 var moveCenter=func t i on (cLng , cLat)

118 {
119 map . cent e r=new OpenLayers . LonLat (cLng , cLat) ;

120 } ;

114 APPENDIX B. VISOR MODULE

B.3 Avalache Risk Information

1 var r i s k 1={
2 ” type ” : ” Fea tu r eCo l l e c t i on ” ,

3 ” f e a t u r e s ” : [

4 { ” type ” : ” Feature ” , ” id ” : 10 , ” p r o p e r t i e s ” : {
” g r i d code ” : 1 } , ” geometry ” : { ” type ” : ”Polygon ” ,

” coo rd ina t e s ” : [[[13 .690312 , 46.596046] , [

13 .690363 , 46 . 595841] , [1 3 . 690194 , 46.595892] , [

13 .690312 , 46.596046]]] } } ,

5

6 { ” type ” : ” Feature ” , ” id ” : 13 , ” p r o p e r t i e s ” : {
” g r i d code ” : 1 } , ” geometry ” : { ” type ” : ”Polygon ” ,

” coo rd ina t e s ” : [[[13 .695323 , 46.595916] , [

13 .695323 , 46.595826] , [13 .695192 , 46.595826] , [

13 .694931 , 46.595827] , [13 .694932 , 46.596007] , [

13 .695063 , 46.596006] , [13 .695062 , 46.595916] , [

13 .695323 , 46.595916]]] } }
7 ,

8 { ” type ” : ” Feature ” , ” id ” : 18 , ” p r o p e r t i e s ” : {
” g r i d code ” : 1 } , ” geometry ” : { ” type ” : ”Polygon ” ,

” coo rd ina t e s ” : [[[13 .691145 , 46.595749] , [

13 .690964 , 46.595839] , [13 .691147 , 46.595929] , [

13 .691145 , 46.595749]]] } }
9]

10 } ;

	What is this all about?
	Introduction
	Problem Statement
	Research Questions
	Methodology
	Sections Overview

	Outdoor winter leisure activities
	Introduction
	Avalanches
	Who gets involved in avalanche incidents? and how?

	Summary

	Technology Overview
	Introduction
	GeoLocation
	Global Navigation Satellite Systems (GNSS):
	IP Address
	GSM/CDMA Cell IDs
	WiFi and Bluetooth MAC Address

	Location Based Services
	Web mapping
	Web Map Server
	Web Feature Service
	Data formats
	Some Implementations

	Overview of Mobile devices
	Most common Operative Systems
	Symbian OS
	iOS
	Android
	BlackBerry OS

	Comparison of current Operative Systems
	Summary and conclusions

	Avalanche Application
	Introduction
	Use Cases
	Implementation
	Model Specification: Software components
	AvalancheUI
	RiskEvaluatorService
	RiskPolygon

	Conclusions

	Conclussions
	Discussion
	Limitations
	Future research

	Java Classes
	AvalancheUI.java
	RiskEvaluatorService.java
	RiskPolygon.java

	Visor module
	HTML
	JavaScript
	Avalache Risk Information

