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Abstract

We investigate heterotic string models with N = (0, 2) worldsheet supersymme-
try and GUT gauge group SO(10). In this context we discuss the generalization of
the heterotic (0,2) CFT/geometry correspondence [2,3] to the non-rational realm as
proposed in [4, 5]. On the conformal field theory (CFT) side we construct Gepner-
type (0, 2) models using the powerful simple current formalism developed in [6, 7]
and their relation to orbifolds with discrete torsion. [8] On the geometry side this
construction is conjectured to correspond to non-linear sigma models on Calabi-Yau
manifolds, known as Disterl-Kachru models [9]. In order to test the non-rational
extension of the heterotic (0, 2) CFT/geometry correspondence we develop tools
for computing the charged massless non-singlet matter spectrum that allow us to
count the number of generations, antigenerations and vectors for several rational
and non-rational models and compare our predictions with the results from elliptic
genera of Distler-Kachru models.
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1 Introduction

The particle content and gauge interactions of our observable four dimensional world
are quite accurately described by the Standard Model. However, it does not explain
the values of its many parameters, such as masses and charges of the particles and the
coupling constants of the forces governing their interactions. Why is it, for example,
that the electron and the proton appear to have exactly the same electric charge up to a
sign? It would be a remarkable coincidence if this was not due to some larger symmetry
group, in which strong and electroweak interactions are embedded, that predicts charge
quantization and the values of the charges of all elementary particles. This idea of unifying
strong, weak and electromagnetic interaction into one single gauge group goes under the
name of Grand Unified Theory (GUT). There are several models that implement this idea,
some of which build on a supersymmetric extension of the Standard Model. A natural
candidate of such a GUT is superstring theory, which is a ten dimensional supersymmetric
theory, that has six dimensions compactified on an internal manifold as they are not
directly observable. Superstring theory unifies strong and electroweak interactions but,
moreover, it also includes gravity and, hence, serves even as a framework for quantum
gravity. Despite its criticism, string theory is probably the most promising candidate for
a Grand Unified Theory as it provides a much simpler and more predictive framework
for a theory that underlies the known particle interactions. At the same time, it includes
gravity into the picture, not by hand but it naturally arises in the spectrum as a spin 2
excitation of the string.

In 10 dimensions there are 5 different types of consistent superstrings (type I, type
IIA, type IIB and two types of heterotic strings), which depend on whether they can break
(open strings), the orientability of the worldsheet, the chirality of fermions, and the precise
gauge group. Of particular interest are GUT gauge groups which, by construction, contain
as a subgroup the Standard Model gauge group SU(3) × SU(2) × U(1), where SU(3) is
the gauge group of strong interactions while the SU(2)×U(1) part describes electroweak
interactions. In the context of GUTs the heterotic string is especially attractive as it
already comes with a gauge group that contains the Standard Model quite naturally.

The heterotic string [1] is a closed string that is obtained by combining a superstring
(right-moving) and a bosonic string (left-moving). While the bosonic string lives in 26
dimensions, the superstring exits only in 10 dimensions, so that the remaining 16 dimen-
sions must be compactified on an internal space. Modular invariance of the partition
function requires this space to be an even self-dual lattice of which there exist only two in
16 dimensions, the two being generated by the roots of SO(32) and E8×E8, respectively.
For phenomenolocigal reasons it is more interesting to study heterotic strings with gauge
group E8 × E8 as the Standard Model is embedded quite naturally. By breaking one of
the E8 factors one can study heterotic string models with GUT gauge groups E6, or more
realistically, SO(10) ⊃ SU(5) and SU(5) ⊃ SU(3)× SU(2)× U(1).
Our focus is on heterotic string models with gauge group SO(10) and N = 2 world-
sheet supersymmetry and compute the spectrum of the charged massless matter in the
theory using sophisticated conformal field theory (CFT) techniques. In this context the
mechanism that breaks the gauge group of a N = (2, 2) compactification from E6 to
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E5
∼= SO(10) is closely related to the breaking of supersymmetry in the left-moving sec-

tor, hence, leaving an unbroken N = (0, 2) supersymmetric model. The tools we develop
for the computation of the spectrum for this class of models can, in further work, be ap-
plied to models with smaller gauge groups like E4

∼= SU(5) or E3
∼= SU(3)×SU(2). The

motivation for this work lies in the conjectured heterotic (0, 2) CFT/geometry connec-
tion [2] and its extension to models with non-rational internal conformal field theories [4,5]
which can be tested by comparing our results on the CFT side to the computation of the
spectrum carried out by geometrical techniques.

In the search for viable string vacua, constructions that lead to N = 1 spacetime
supersymmetric models of elementary particle physics are of particular interest. These
necessarily have their non-flat spacetime directions compactified on a Calabi-Yau man-
ifold or, equivalently, the internal conformal field theory must have N = 2 worldsheet
supersymmetry.1 During the past decades there has been particular focus on N = (2, 2)
theories, which, in the non-linear sigma model formulation, have the spin connection iden-
tified with the gauge connection breaking one of the E8 factors down to E6. This is still
quite far from the Standard Model gauge group SU(3)× SU(2)× U(1) but nevertheless
they have been intensively studied since they give rise to three-generation models with
small gauge group at the Planck scale. [2] In particular, after E.Witten’s work [13] on the
correspondence between non-linear sigma models on Calabi-Yau manifolds and orbifolds
of Landau-Ginzburg models, the field of (2, 2) theories has undertaken a revival.

However, from the phenomenolocigal point of view, (0, 2) superconformal invariance is
sufficient to realize observed particle physics features in the low-energy regime of heterotic
string compactifications. These models are much less restrictive and, furthermore, lead
to more realistic GUT gauge groups, like SO(10) or SU(5).
While a huge class of (0,2) models can be obtained by deformations of (2,2) theories, it
has been pointed out in [9] that these models may only lie in a small subspace of the full
moduli space. Instead, it seems that (0,2) models that are not merely deformations of
their (2,2) counterparts make sense generically. Such vacua not only admit new quantum
symmetries but also allow for a new kind of topology change. [9]

In [3] R. Blumenhagen and A. Wisskirchen have constructed a class of (0,2) models
by generating new modular invariants from the class of Gepner models through a slight
modification of the simple current method developped in [6, 7]. In [2] they conjecture,
together with R. Schimmrigk, that this class of exactly solvable models is related to the
linear sigma models considered in [9], which are known as Disterl-Kachru models, hence,
extending the (2, 2) triality of exactly solvable models, Landau-Ginzburg (orbifold) models
and (non-) linear sigma models on Calabi-Yau manifolds to the (0, 2) case. In the present
work we investigate the generalization of this conjecture to the non-rational realm as
proposed in [4, 5] by computing the spectrum of charged massless matter of a class of
heterotic (0, 2) models with GUT gauge group SO(10). Some of the results presented in
this work will be published in [14].

1See, e.g. [3] and references therein.
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2 Heterotic String Models

From a phenomenolocigal point of view, heterotic string models are very attractive since
they already come with a gauge group that contains the Standard Model gauge group in
a natural way. At first sight, there seems to be an obstacle arising from the assymetric
nature of the heterotic sting because modular invariance, which is crucial in string theory,
is only garanteed for left-right symmetric theories. However, there is an an elegant way
around this obstacle, called Gepner map [15], which takes a consistent superstring theory
to a consistent heterotic string theory. The inverse Gepner map can be used to map a
bosonic string theory to a heterotic string theory. Both, the superstring and the bosonic
string, are left-right symmetric and, hence, we can carry out all intermediate computations
consistently in one of these framewokrs and, at the end of the day, use the (inverse) Gepner
map to obtain a heterotic string compactification.

Rational Conformal Field Theory, Simple Currents and Minimal Models

Since we are interested in heterotic string compactifications that yield N = 1 spacetime
supersymmetry we have to start from a N = 2 supersymmetric internal conformal field
theory on the worldsheet of the string. In particular, we are interested in conformal
field theories that have a finite number of primary fields and which are called rational
conformal field theories (RCFT). Simple currents, which can be regarded as generalized
free fields in rational conformal field theories, are primary fields that have a unique fusion
product with all other primary fields. The universal center of N = 2 superconformal
field theories (SCFT) of this type is constructed from two simple currents. Already for
N = 1 superconformal symmetry the supercurrent is a simple current, which we denote
by Jv. For N = 2 there exists an additional simple current, namely the spectral flow

operator Js = ei
√
c/12X , which interpolates between the Ramond and the NS sector of the

conformal theory. Under the spectral flow, U(1) charges q and conformal weights h get
shifted by

q = q0 +
c

6
and h = h0 +

q0
2

+
c

24
, (1)

where c denotes the central charge of theN = 2 SCFT. Since we want to construct Gepner-
type models we need to introduce the notion of minimal models, which are particularly
simple realizations of the N = 2 superconformal algebra (see appendix). Minimal models
are quantum field theories constructed from a discrete series of rational unitary models
with central charge c = 3k

K
, where k denotes the level of the minimal model and K = k+2

is the charge quantum in the NS sector. The primary fields of this theory, labeled by φlsm,
have conformal weights and U(1) charges with respect to J0 as

hlsm ≡
l(l + 2)−m2

4K
+
s2

8
mod 1 and qsm ≡

s

2
− m

K
mod 2. (2)
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Landau-Ginzburg description of Minimal Models

In [11] it has been conjectured that N = 2 minimal models in two dimensions are critical
points of a superrenormalizable Landau-Ginzburg (LG) model, which captures critical
phenomena in terms of effective Lagrangians. The Landau-Ginzburg superpotential for
a minimal model is a Fermat-type polynomial W (φ) = φK . Hence, the minimal model
factor in the tensor product is called Fermat factor F . In order to obtain a spacetime su-
persymmetric string vacuum the U(1) charges with respect to J0 in the Landau-Ginzburg
theory must be integral which can be achieved by modding out the symmetry g = e2πiJ0 .
This procedure projects the U(1) charges q to integral values and is called orbifolding.
The minimal model is, hence, described by an Landau-Ginzburg orbifold model.

2.1 Heterotic E6 Models

In [15] Gepner constructed heterotic string compactifications with gauge group E6 from
tensor products Cint =

⊗
i Cki of minimal models Cki at level ki and which are now called

Gepner models. For heterotic (0, 2) compactifications with gauge group SO(10) we can
use a similar construction. In these Gepner-type models we use a tensor product of an
arbitrary CFT, denoted by C ′, with a minimal model factor F at odd level k = K − 2
that comprise the internal SCFT Cint = C ′ ⊗F .
In order to be able to discuss heterotic (0, 2) models, let us review the structure of a generic
four-dimensional compactification of the heterotic string. The right-moving sector consists
of four spacetime coordinates and their superpartners (Xµ, ψ

µ
), a ghost plus superghost

system (b, c, β, γ), and an ”internal” N = 2 superconformal field theory Cint with central
charge c = 9, so that total central charge ctot = 4 · 3

2
− 26 + 11 + 9 = 0 is anomaly free.

The left-moving sector is a bosonic string with spacetime plus ghost part (Xµ, b, c) and
the same internal sector Cint so that a left-moving CFT with central charge 13 needs to be
added to for anomaly cancellation ctot = 4·1−26+9+13 = 0. Modular invariance requires
this CFT to be either an ŝo(10) × ê8 or ŝo(26) level 1 affine Lie algebra, where we will,
henceforth, ignore the phenomenologically less attractive ŝo(26). The representations of
ŝo(10)1 are the singlet 1, the vector v, the spinor s and conjugate spinor s and the fusion
rules are given by sv = s, s2 = s2 = v and v2 = 1. Instead of this covariant quantization
we can also use light-cone gauge, which amounts to ignoring the (super-) ghosts and
restricting the spacetime coordinates to transverse directions.

A viable superstring vacuum is then obtained by aligning spacetime spinors and ten-
sors with internal Ramond and Neveu-Schwarz sectors, respectively, by the means of the
alignement current JRNS = Jv ⊗ v and carrying out the (generalized) GSO projection by
the current JGSO = Js ⊗ s. The first factor denotes the internal N = 2 SCFT while the
second factor denotes the SO(10) representation. Both steps can be achieved by applying
simple current techniques [6], for which the theory has to be cast into a left-right symmet-
ric form. Therefore, we apply the Gepner map to the right-movers. The GSO projection,
then, promotes the gauge group SO(10) to E6 and amounts to keeping only states with
even U(1) charges in the bosonic sector.
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Starting from smaller building blocks and using simple current techniques we can
break the gauge group E6 of Gepner’s construction in the left-moving sector to SO(10)
by the means of a simple current Jb, which we call the Bonn twist. At the same time,
worldsheet supersymmetry is reduced from (2, 2) to (0, 2).

2.2 Heterotic SO(10) Models

While (2, 2) models with SO(10) gauge group can be constructed from a four dimensional
bosonic string with internal CFT given by Cint ⊗ ŝo(10) × ê8 after the Gepner map, the
internal CFT needs to be split into smaller building blocks for (0, 2) models in order
to be able to break supersymmetry only in the left-moving sector. We thus decompose
Cint = C ′ ⊗ F , where C ′ is a general CFT while F is the minimal model at odd level
k = K − 2 introduced above. In the gauge sector we start with an D4 = SO(8) gauge
group and extend it to D5 = SO(10) in the left-moving bosonic sector by adding an
D1 = SO(2) factor, and to E6 in the right-moving sector which amounts to spacetime
supersymmetry after the inverse Gepner map back to the heterotic string. Our (0, 2)
models with SO(10) gauge group, hence, are constructed from a four dimensional bosonic
string with an internal c = 22 CFT C ′⊗F ⊗D1⊗D4×E8 with current algebras ŝo(2n)1
and (ê8)1 and a certain simple current modular invariant that gives rise to alignment of
spin structures and the generalized GSO projection. States in a (0, 2) model have the
structure Φ(0,2) = φC′ ⊗φF ⊗χD1 ⊗χD4 , where the E8 part, that acts only as a spectator,
has been omitted.

2.2.1 Simple Current Construction

The simple current modular invariant that defines our resulting (0, 2) models is based on
the simple current group G generated by JGSO, JA, Jb, JC with

JGSO = Js ⊗ Js ⊗ s⊗ S, JA = 1⊗ 1⊗ v ⊗ V, JC = Jv ⊗ 1⊗ 1⊗ V (3)

and the Bonn twist
Jb = 1⊗ (Js)

K (Jv)
K−1

2 ⊗ s⊗ 1, (4)

where the decomposition is with respect to C ′⊗F ⊗D1⊗D4 with the E8 spectator being
omitted. The chiral algebra in the right-moving sector contains all possible alignment
currents that align the different factors in the tensor product

JC︷ ︸︸ ︷
C ′ ⊗F︸ ︷︷ ︸

J2
b

⊗D1 ⊗D4︸ ︷︷ ︸
JA

.

The chiral algebra in the left-moving sector lacks the alignment current JA and instead
contains the Bonn twist Jb. This is the reason why the gauge group in the left-moving
sector is SO(10) instead of E6 and supersymmetry is broken from (2, 2) to (0, 2). The
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alignment of D4 × D1 → D5 in the right-moving sector is achieved by JA while the
extension to D5 = SO(10) in the left-moving sector is carried out by JGSO. The GSO
current further extends D5 → E6 in the right-moving sector which, after the map to
the heterotic string, corresponds to odd integral U(1) charges and N = 1 spacetime
supersymmetry.

3 Computation of the Charged Massless Spectrum

In this section we present the basic steps in order to compute the charged massless matter
spectrum of our SO(10) model. We will use these results in section 4 in order to test
the (0, 2) CFT/geometry connection by comparing with spectra obtained by geometric
methods.

3.1 Quantum Numbers for Chiral and Vector Multiplet

After the alignment-extension of D4 × D1 to D5 we can perform the Gepner map on
the right-moving side D5 → D1 = SO(2)LC to obtain spacetime quantum numbers (in
light-cone gauge) from the representaions of D5. The SUSY multiplets yielding spacetime
matter and spacetime gauge symmetry generators are then assembled by JGSO. Admis-
sible states are selected by imposing the massless condition htot = hst + hint = 1

2
and the

GSO projection on the bosonized string. Table 1 shows how the Gepner map G acts on
the characters of D5 to get the associated spacetime representation. From left to right
we give the spacetime conformal weight and the internal quantum numbers which are
obtained by charge selection rules and the unitarity bound |qint| ≤ c

6
= 3

2
for states in the

Ramond sector and |qint| ≤ 2hint for states in the NS sector.

χD5

G→ χSO(2)LC hst hint qint state

1 → v 1
2

0 0 1

v → 1 0 1
2

±1 c, a

s → −s 1
8

3
8
−1

2
, 3

2
R0

s → −s 1
8

3
8

1
2

, −3
2

R0

Table 1: Right-moving states with internal and spacetime quantum numbers

Since on the right-moving side we have full RNS alignment the SO(2)LC representa-
tions are paired with internal states of the same sector. From the condition for massless
states and the unitarity bound it follows that the only admissible internal states are BPS
states. In the NS sector the internal states that fullfill the BPS condition hint = | qint

2
| are

chiral and antichiral states, denoted by c and a. In the Ramond sector the internal states
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that satisfy the analogous unitarity bound are Ramond ground states since hint = c
24

= 3
8

and are denoted by R0.

The quantum numbers (h̄int, q̄int) for the massless SUSY multiplets are:

• Chiral multiplets: fermions (3/8,−1/2), scalars (1/2, 1).

• Antichiral multiplets: fermions (3/8, 1/2), scalars (1/2,−1).

• Vector multiplets: gauge bosons (0, 0) and left/right-handed gauginos (3/8,±3/2).

3.2 Counting Massless States

In order to count massless states we need to specify a right-moving representative on the
orbit of which we determine admissible left-moving states. Furthermore, wen need to
choose a representation of the SO(10) gauge group under which the left-moving (bosonic)
states transform. In the language of Distler-Kachru [9] and of Blumenhagen-Wißkirchen
[2,3], the relevantD5 = SO(10) decompositions under the maximal subgroup SO(8)×U(1)
are identified as

1 = 10

10 = 1−2 ⊕ 8s
0 ⊕ 12

16 = 8v
−1 ⊕ 8s

1

16 = 8v
1 ⊕ 8s

−1

. (5)

The notation is Nχ
q̃ , where N is the dimension of the D4 representation, χ denotes the

SO(8) character and q̃ = qint + qD1 is the U(1) charge associated with the U(1) current
of the SO(10) ⊃ SO(8) × U(1) decomposition that is a linear combination of the U(1)
currents of the N = 2 algebra of Cint and of SO(2) = D1.

In the right-moving sector the structure of massless states is highly constrained due to
the RNS alignment following from supersymmetry while in the left-moving sector, where
this alignment is partially broken, a variety of states is admitted. We use the restricted
structure in the right-moving sector and construct admissible left-moving states on orbits
of admissible right-moving states, the pairings of which give the massless spectrum of the
heterotic (0, 2) string.
Admissible left-moving states are obtained by twisting admissible right-moving states by
J = JνGSOJ

α
AJ

β
b J

γ
C with α, γ = 0, 1, β = 0, 1, 2, 3 and ν = 0, ..., 2M ′ − 1 and imposing the

condition for massless states htot = h′ + hF + hD1 + hD4 = 1 in the bosonic sector. A
generic left-moving state is obtained by a generic right-moving state by

|C ′ ⊗F ⊗D1 ⊗D4 >l= JνGSO J
α
A J

β
b J

γ
C |C

′ ⊗F ⊗D1 ⊗D4 >r (6)

and the explicit form of the twist current is given by

J = Jνs J
γ
v ⊗ Jν+βKs J

K−1
2
β

v ⊗ sν+βvα ⊗ SνV α+γ. (7)

Besides organizing the contributions to the spectrum in twisted sectors the exponents
ν, α, β, γ determine whether a left-moving (twisted) sector yields the same field as the
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right-moving sector on the orbit of which it is computed or its superpartner. By choosing
a specific SUSY multiplet together with an SO(10) represenation for the gauge multiplet
we study the structure of the charged massless spectrum of non-singlet matter states. We
use the information obtained from the exact CFT calculations to determine the number of
generations, antigenerations and vectors by the means of the extended Poincaré polynomial
and the complementary Poincaré polynomial.

3.2.1 Extended Poincaré Polynomial

The extended Poincaré polynomial (EPP) of an N = 2 SCFT as given by [12]

P((c,c)t, t, x) =
∑
l≥0

∑
κ=0,1

xl (−1)κ Pl,κ(t, t), (8)

is the sum of J2l
s J

κ
v –twisted Poincaré Polynomials weighted by an additional sign, that

is related to the ambiguity of dealing with a field or its superpartner, i.e. a possible
application of the supercurrent Jv. The ordinary Poincaré Polynomial is given by

Pl,κ(t, t) =
∑

(a,a)∈R(c,c)

a=J2 l
s Jκv a

tq(a) t
q(a)

, (9)

where t and t can be regarded as independent variables and the sum is over states in the
(c, c) ring. In the case where the internal sector has aligned spin structures (corresponding
to a twist by an even exponent of Jb) the states contributing to the massless spectrum
are BPS states. We can determine the number of aligned generations, antigenerations
and vectors by looking for particular terms in the EPP that are determined by the U(1)
charges of the internal left- and right-moving sector.

3.2.2 Complementary Poincaré Polynomial

In the case where the internal sector has non-aligned spin structures (odd exponent of
Jb) also non-BPS states can contribute to the massless spectrum and we thus need in
addition to the information of the (left-moving) internal U(1) charge also the conformal
weight. We are thus interested in the complementary Poincaré polynomial (CPP) [14]

P(x, q, t) =
∑
l≥0

∑
κ=0,1

∑
a∈R0

a=J2l
s J

κ
v a

(−1)κ xl q(L0− c′
24

)(a)tJ0(a), (10)

where q and t are independent variables. This polynomial is complementary to the EPP.
It does not involve the right-mover’s charge, but instead keeps track of the conformal
dimension of excited left-moving states. We can determine the number of non-aligned
generations, antigenerations and vectors by looking for particular terms in the CPP de-
termined by the left-moving conformal weight and U(1) charge.
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3.2.3 Counting Generations

We have now assembled all tools to compute the charged massless spectrum. Unitar-
ity bounds and the condition for massless states restrict the possible states in the left-
moving sector. By choosing a right-moving representative we can determine the admissi-
ble left-moving states on its orbit. In a careful analysis with separate discussion of even
(“aligned“) and odd (“non-aligned“) exponent of the Bonn twist the structure of admis-
sible states and, hence, admissible terms in the EPP and CPP can be determined. All
admissible terms in P(c,c)(t, t, x) of C ′ for aligned generations are summarized in table 2.
All admissible terms in P(x, q, t) of C ′ for non-aligned generations are summarized in
table 3.

16 - aligned generations

σ′ ` l q′c q′c

+ ` ∈ 2Z, 0 ≤ ` ≤ k
l ∈ 2KZ

l ∈ 2KZ + 1

K+2+`
K

K+2+`
K

− ` /∈ 2Z, 0 ≤ ` ≤ k
l ∈ 2KZ + 1

l ∈ 2KZ
K+2+`
K

2K−`
K

Table 2: Aligned generations: Left- and right-moving C ′-sector charges q′c and q′c, right-
moving label `, exponent l of x and sign σ′ = (−1)γ in the EPP of C ′ where terms are

proportional to σ′xl tq
′
c t

q′c .

As the analysis for antigenerations and vectors goes along the same lines and yields
similar tables we will not go into details here.
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4 Testing the (0, 2) CFT/Geometry Connection

In the following we will illustrate our results from the previous section in two examples
and compare our predictions with that of Blumenhagen-Wißkirchen and Distler-Kachru.
As a prominent example of Fermat-type models we show that the number of generations,
antigenerations and vectors of the (0,2) cousin of the quintic as computed on the CFT side
by our counting algorithm agrees with those calculated in [3]. In a depicted example of
a non-Fermat-type LG model the numbers of generations and antigenerations we predict
on the CFT side agree with that computed by the χ-genus of Disterl-Kachru models [9].

4.1 Fermat-type Landau-Ginzburg models

We consider the (0,2) cousin of the quintic, which is a tensor product of five minimal
models with levels (k′1, k

′
2, k
′
3, k
′
4; k) = (3, 3, 3, 3; 3), where the first four entries comprise C ′

which, in this Fermat-type LG model, is a tensor product of minimal models, and the last
entry corresponds to the Fermat factor F . The results of the analysis carried out in [2,3]
is given below.

N16 = NA
16 +NNA

16 N16 = NA
16

+NNA
16

N10 = (NA2
10 +NA1

10 ) +NNA
10

80 = 60 + 20 0 74 = (41 + 1) + 32

Shown are the number of generations N16, antigenerations N16 and vectors N10 for the
model 34 ⊗ 3, with the superscripts A = aligned, AN = non-aligned; A1 = aligned with
qint = 1, A2 = aligned with qint = 2.

In order to derive the spectrum (N16 = 80, N16 = 0, N10 = 74) of the (0,2) cousin of
the quintic using our counting algorithm, we decompose the “quintic Gepner model” 35

into C ′ = 34 and an additional Fermat factor Φ5, i.e. a minimal model at level k = 3, on
which the Bonn-twist acts [5].
The relevant data as obtained from our counting algorithm can be summarized by the
following tables.

16 - aligned generations

σ′ ` l q′c q′c

+ 0 0 7
5

7
5

+ 2 0 9
5

9
5

16 - non-aligned generations

Fermat K mod 4 σ′ ` ν mod 4K h′R q′R

ϕ`,−1−(`+1)
1 + 2 10 3

10
3
5
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10 - aligned vectors

qint σ′ ` l q′c q′c

2 + 1 0 8
5

8
5

2 + 3 0 10
5

10
5

1 + 1 2 8
5

4
5

10 - non-aligned vectors

Fermat K mod 4 σ′ ` m ν mod 4K h′R q′R

ϕ`,−1−(`+1)
1 + 1 −2 2 19

10
14
5

ϕ`,1m 1 + 1 4 8 11
10 2

We encode the charge degeneracies of the GSO-twisted but unprojected N = 2 SCFT
C ′, with alignment between C ′ and the Fermat factor, in the extended Poicaré polynomial
[12] and the Complementary Poincaré polynomial. For the untwisted sector we obtain
the standard Poincaré polynomial (in the (c,c) ring)

P (t, t̄) = (1−T 4)4

(1−T )4 = (1 + T + T 2 + T 3)4 = 1 + 4T + 10T 2 + 20T 3 + 31T 4 +

+40T 5 + 44T 6 + 40T 7 + 31T 8 + 20T 9 + 10T 10 + 4T 11 + T 12 (11)

with T = (tt̄)1/5. In the twisted sectors only the ground states contribute since there are
no invariant fields. Hence the EPP continues with the terms

P (x, t5, t̄5) = P (t5, t̄5) + x t̄ 12 + x2 t4t̄ 8 + x3 t8t̄ 4 + x4 t12 + . . . (12)

and then “periodically” with x5P (t5, t̄5) + x6 t̄ 12 + . . .
In order to determine the number of algined generations, antigenerations and vectors for
the (0,2) cousin we read off the relevant data from the tables above to get NA

16 = 60 from
the T 7 and T 9 terms, NA

16
= 0 and NA

10 = 74 from the T 8 and T 10 terms in (11) and from

the x2t4t
8

term in (12).
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The Complementary Poincaré polynomial P(x, q, t) reads (up to O(q8/5) terms)

P(x, q, t5) =
1

t6
+

4

t5
+

10

t4
+

20

t3
+

31

t2
+

40

t
+ 44 + 40t+ 31t2 + 20t3 +

+ 10t4 + 4t5 + t6 +

+ x

[
t6 + q1/5

(
−4t2 + 4t7

)
+ q2/5

(
6

t2
− 16t3 + 10t8

)
+ q3/5 (

− 4

t6
+

24

t
− 40t4 + 20t9

)
+ q4/5

(
60 +

1

t10
− 16

t5
− 76t5+

+31t10
)

+ · · ·+ q8/5
(

4

t11
− 57

t6
+

168

t
− 150t4 + 4t9 + 31t14

)]
+ x2

[
t2 + q2/5

(
− 4

t2
+ 4t3

)
+ q3/5

(
4t− 4t6

)
+ q4/5

(
6

t6
− 16

t
+

+10t4
)

+ · · ·+ q8/5
(

1

t14
− 16

t9
+

20

t4
+ 28t− 57t6 + 24t11

)]
+ x3

[
1

t2
+ q2/5

(
4

t3
− 4t2

)
+ q3/5

(
− 4

t6
+

4

t

)
+ q4/5

(
10

t4
− 16t+

+6t6
)

+ · · ·+ q8/5
(

24

t11
− 57

t6
+

28

t
+ 20t4 − 16t9 + t14

)]
+ x4

[
1

t6
+ q1/5

(
4

t7
− 4

t2

)
+ q2/5

(
10

t8
− 16

t3
+ 6t2

)
+ q3/5

(
20

t9
−

−40

t4
+ 24t− 4t6

)
+ q4/5

(
60 +

31

t10
− 76

t5
− 16t5 + t10

)
+

· · ·+ q8/5
(

31

t14
+

4

t9
− 150

t4
+ 168t− 57t6 + 4t11

)]
+ · · · , (13)

with the next terms being “periodic” in x. The number of non-aligned generations,
antigenerations and vectors is read off from 13 using the information of the tables above.
We get NNA

16 = 20 from the q0t3 term and NNA
10 = 32 from the coefficients of xq8/5t14 and

x4q4/5t10. These numbers agree with those obtained in [3].

4.2 Non-Fermat-type Landau-Ginzburg models

We consider the model P1,2,2,3,2[10], which has K = 5 and can therefore be used for check-
ing the case where K ≡ 1 mod 4. The CFT/geometry conjecture predicts equivalence
with the Disterl-Kachru model

V1,2,2,3,2[10] −→ P1,2,2,3,4,4[8, 8]. (14)
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Its χ-genus can be computed to yield

α χα

0 −t4 − 55t3 + 55t+ 1
1 t4

2 −2t2

3 t2 + t
4 −t
5 5t− 5t3

6 t3

7 −t3 − t2
8 2t2

9 −1

(15)

Summing up the positive coefficients of monomials in t and t3, respectively, we get 61
generations and 1 antigeneration for the Disterl-Kachru model. By using our counting
method, we can compare this prediction with our results on the CFT side. The relevant
data for admissible terms in the EPP of C ′, counting aligned generations, is listed in the
table below. Using the extended Poincaré polynomial and the complementary Poincaré
polynomial (wich are quite lengthy and will, thus, not give here) we can determine the
number of generations, antigenerations and vectors as follows.

16 - aligned generations

σ′ ` l q′c q′c NA
16

+ 0 0 7
5

7
5 27

+ 2 0 9
5

9
5 14

+ 0 5 7
5

7
5 3

+ 2 5 9
5

9
5 1

Hence, the number of aligned generation is 27+14+3+1 = 45. The necessary information
in order to count non-aligned generation in the complementary Poincaré polynomial is
given by

16 - non-aligned generations

Fermat K mod 4 σ′ ` ν mod 4K h′R q′R NNA
16

ϕ`,−1−(`+1)
1 + 0 14 1

2 1 1

ϕ`,−1−(`+1)
1 + 2 10 3

10
3
5 1

ϕ`,−1−(`+1)
1 + 2 0 3

10
3
5 14
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There are 1 + 1 + 14 = 16 non-aligned vector which together with the 45 aligned vectors
give a total of 61 vectors which agrees with the prediction from the Disterl-Kachru model.
In order to count aligned antigenerations we need the following data.

16 - aligned antigenerations

σ′ ` l q′c q′c NA
16

+ 0 6 1 7
5 1

Since there are no non-aligned antigenerations there is only 1 antigeneration which is in
agreement with the predition of the Disterl-Kachru model.

5 Conclusion and Outlook

We have investigated Gepner-type models with internal N = (0, 2) superconformal sym-
metry and GUT gauge group SO(10) constructed by the means of the simple current
formalism. In this context we have derived a counting algorithm that enables us to cal-
culate the charged massless matter spectrum for a broad class of models. This algorithm
is based on the extended Poincaré polynomial and the complementary Poincaré polyno-
mial which encode the information of charge degeneracies and conformal weights of the
massless states. We have worked out the number of generations, antigenerations and vec-
tors for two depicted examples on the CFT side using our counting algorithm. On the
geometry side we can compute the spectrum by the means of the χ-genus of DK models.
Comparison of the spectra, in particular the number of generations and antigenerations,
as obtained on the CFT and the geometry side show perfect agreement for a number of
examples two of which have been depicted here. Since all examples we have considered
have passed the test, there is strong evidence that the conjectured relation between het-
erotic (0, 2) Gepner-type and Disterl-Kachru models stands on solid grounds.
As an outlook, the tools we developed for the computation of the spectrum for this class
of models can, in further work, be applied to models with smaller gauge groups like
E4
∼= SU(5) or E3

∼= SU(3) × SU(2). Furthermore, our construction might also lead to
interesting implications in (0, 2) mirror symmetry, which is an interesting topic in its own
right.
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6 Workshop -

“Strings at the LHC and in the Early Universe”

With my invitation to the KITP I was accepted to attend the workshop “Strings at the
LHC and in the Early Universe” that took place over the duration of my stay. In various
talks and discussions I had the great opportunity to learn more about the exciting and
complex task of finding suitable models constructed from string theory, that can reproduce
all the known features of particle physics observable at the energies that we can observe
today, without producing “exotics“. String theory is probably the most promising can-
didate for a theory that unifies the strong and electroweak forces of the Standard Model
and even incorporates gravity in the picture, hence providing a framework for quantum
gravity. Its exploration over the past decades has led to a much better understanding
about the structure of the theory and the mathematics behind. A lot of progress has
been made but given the complexity of the theory - after all, its aim is to describe all
fundamental forces, that are separated at low energies, within one single framework -
there is still a lot to learn.
In this workshop a lot of different approaches to viable string models have been pre-
sented. Most of them are based on one of the five ten dimensional superstring theories
(type I, type IIA, type IIB, heterotic E8 × E8 and heterotic SO(32)), all of which are
related by certain dualities and which are the constituents of an underlying theory eleven
dimensional theory, called M -theory. The other models represented were constructed in
the framework of F -theory, which is an auxiliary theory in twelve dimensions, that has
revealed striking novelties about the properites of string theory. Moreover, F -theory and
M -theory are, again, related by dualities, in particular F -theory is closely related to type
IIB and heterotic string theory.
Apart from new insights into the very structure of string theory itself, promising models
for particle physics as well as cosmology have been presented at the KITP. In the near
future, the Large Hadron Collider (LHC) at CERN will test the physics beyond the Stan-
dard Model, which means that energies that have so far not yet been reached by human
technologies will finally become accessible. In fact, the experiments currently running at
CERN are very successful and the prospects for finding signatures that reveal new physics
very soon is quite promising. In the workshop many propositions for testable models have
been made along with explicit suggestions for which signatures to search in experiments.
Besides particle physics, also cosmological challenges have been presented during the cos-
mology focus week. The most famous and widely accepted model of how the Universe
evolved is inflation, which claims to explain the flatness, homogeneity and isotropy of
the observed Universe. According to inflationary theory, shortly after the Big Bang the
Universe underwent a period of very rapid expansion, which allowed the quantum fluctua-
tions to grow to cosmic size and provide the basis of the structure and life in the Universe
we observe today. The inflationary epoch is the first part of the electroweak epoch that
followed the Grand Unification epoch, where strong and electroweak forces were unified
in a single framework of particle interaction. In recent decades critics on inflationary
models have been posed and alternative models are being constructed, one of which is the
Big Bounce, an oscillatory model where the first cosmological event in a Universe is not
the Big Bang but the collaps, or Big Crunch, of a previous Universe. A great amount of
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cosmological models is constructed within the framework of string theory and provides pa-
rameters that can be tested in cosmological experiments. Currently, the Planck satellite,
which has been launched in May 2009, is collecting data on the anisotropy in the cosmic
microwave background radiation. As has been discussed quite enthusiastically between
experimentalists and cosmologist during the workshop, the signatures Planck is going to
reveal will put stringent constraints on viable cosmological models and some will simply
be ruled out.

In particle physics and cosmology groups all over the world are currently carrying
out experiments that provide novel data and, hence, novel insights into physics. We are,
now, in the position to test, for the first time, theoretical models that go far beyond the
Standard Model of particle physics and put stringent bounds on the Standard Model of
cosmology. We are at the edge of confirming predictions of viable theories or, otherwise,
ruling out models that are not realized in nature. The opportunity to attend this work-
shop, in which these topics have been discussed enthusiastically, was a unique experience
for me and shaped my view about the current paradigms in theoretical physics.

7 Personal Experience

Personally, I have very much enjoyed my stay at the KITP in Santa Barbara. Never before,
I have experienced a more fruitful environment for carrying out research. The institute
provides a relaxed atmosphere for informal discussions on scientific topics, especially in
the joint coffee breaks, where mutual exchange is preassigned. The UCSB is employing a
considerable amount of very distinguished theoretical physicists which contributes to its
renown. Due to the relaxed and informal atmosphere it is much easier for students to
get to talk to the experts in their fields of interest. Moreover, since the KITP is host of
many different programs year round - sometimes several at a time - the flow of ideas from
different places all over the world to the lecture halls of the KITP is notable. I had the
opportunity to talk to many different people and create new friendships and connections to
students and postdocs all over the world. These connections not only enrich my personal
life but also contribute to my academic network.
Outside the academic sphere, the location of the KITP and Santa Barbara is also quite
advantageous. Situated at the pacific ocean just in front the Santa Barbara mountains,
the KITP also provides a very healthy atmosphere to work and live in. The institute
itself has its own shower rooms for visitors and staff and hence encourages a mens sana
in corpore sano.
To wrap up, I have benefited a lot from the stay, for my research as well as personally,
and I would recommend to anybody to take the great opportunity the Marshall Plan
Foundation offers and stay some time in some renown US institution.
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Appendix: N = 2 SCA

The N = 2 Superconformal Algebra is generated by the Laurent modes Ln, G±r , Jm of
the energy-momentum tensor T (z), its fermionic superpartners G±(z) that generate the
N = 2 supersymmetry, and a U(1) current J(z). In particular, states in the Hilbert space
carry two labels, the conformal weight h and the U(1) charge q, with respect to the zero
modes of the Laurent modes Ln=0 and Jm=0, according to L0|h, q〉 and J0|h, q〉 = q|h, q〉.
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