

Ressourceneffizienz in Tritonsort
Optimierung der Ressourcenverwendung in verteiltem speicher-

externem Sortieren großer Datenmengen

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering/Internet Computing

eingereicht von

Alexander Pucher
Matrikelnummer 0525262

an der
Fakultät für Informatik der Technischen Universität Wien

(Durchführung am Department for Computer Science and Engineering, University of
California San Diego)

Betreuung
Betreuer: Prof. Dr. Stefan Biffl (TU Wien)
Betreuer: Prof. Dr. Amin E. Vahdat (UCSD)

Wien, 09.10.2010

 (Unterschrift Verfasser/in) (Unterschrift Betreuer/in)

Technische Universität Wien
A-1040 Wien ▪ Karlsplatz 13 ▪ Tel. +43-1-58801-0 ▪ www.tuwien.ac.at

Resource Efficiency in Tritonsort
Optimization of Resource Utilization in Large-Scale Distributed

External Sorting

MASTER THESIS

to obtain the academic degree

Master of Science

Curriculum

Software Engineering/Internet Computing

submitted by

Alexander Pucher
Matriculation Number 0525262

Vienna University of Technology, Department for Informatics

(Research at Department for Computer Science and Engineering, University of
California San Diego)

Scientific Supervision
Supervisor: Dr. Stefan Biffl (Vienna UT)
Supervisor: Dr. Amin E. Vahdat (UCSD)

Vienna, 10/09/2010

 (Signature Author) (Signature Supervisor)

Vienna University of Technology
A-1040 Vienna, Austria ▪ Karlsplatz 13 ▪ Phone +43-1-58801-0 ▪ www.tuwien.ac.at

 i

Erklärung zur Verfassung der Arbeit

„Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich

die verwendeten Quellen und Hilfsmittel vollständig angegeben habe und dass

ich die Stellen der Arbeit - einschließlich Tabellen, Karten und Abbildungen -,

die anderen Werken oder dem Internet im Wortlaut oder dem Sinn nach

entnommen sind, auf jeden Fall unter Angabe der Quelle als Entlehnung

kenntlich gemacht habe.“

Wien, 09.10.2010

Alexander Pucher

 iii

Kurzfassung

Internetanwendung in der Größenordnung von Yahoo’s Webportal oder

Google’s Such- und Cloud-Diensten arbeiten mit massive Datenmengen. Die

rechtzeitige Verarbeitung von Tera- und Perabytes an Daten macht die

Verwendung von DISC Systemen notwendig. Der jährliche Sort Benchmark

vergleicht die Performance aktueller Systeme und hat über die vergangenen

Jahre einen stetigen Leistungszuwachs beobachtet, der jedoch mit drastischen

Einschnitten in Hardwareeffizienz erkauft ist. Die „Tritonsort“ Fallstudie wurde

initiiert, ein leistungsstarkes und kosteneffizientes System für Sort Benchmark

zu entwickeln, dessen Design primär auf Ressourceneffizienz achtet. Diese

Arbeit beschreibt die Entwicklung zweier Systemkomponenten von Tritonsort

und bietet die systematische Evaluierung von Ressourceneffizienz in Tritonsort.

Ziel. Das Ziel der Arbeit ist die Entwicklung zweier Komponenten für

Zwischenspeicherung von Daten und speicher-internes Sortieren von Daten,

sowie die Evaluierung der Ressourceneffizienz im Vergleich zu state-of-the-art

Systemen. Die Lösung wird als erfolgreich angesehen wenn Tritonsort in den

Benchmarks 100TB „Gray Sort Indy“ und 60 Sekunden „Minute Sort Indy“

Höchstleistung liefert und verbesserte Hardware- und Kosteneffizienz bietet.

Methode. Literaturstudie über existierende Ansätze zu verteiltem parallelem

Sortieren, Design und Implementierung von Systemkomponenten für den

Tritonsort Prototypen und Evaluierung des Ergebnisses durch systematischen

Vergleich mit existierenden Systemen im Bezug auf Leistung und Effizienz.

Resultat. Tritonsort erreicht 2010 Bestleistung in den Kategorien „Gray Sort

Indy“ und „Minute Sort Indy“ mit viermal höherer Leistung pro Maschine als

andere Systeme. Zusätzlich wird die Durchschnittsleistung pro CPU und

Festplatte erhöht, wodurch bessere Kosteneffizienz erzielt wird.

Literatur. Anderson und Tucek begründen die Notwendigkeit von

ressourceneffizienten Systemen und liefern eine Effizienz-Systematik. Vitter

schafft die Grundlage für effizienten Festplattenzugriff in externem Sortieren,

während existierende Systeme Ansätze zu internem Sortieren inspirieren.

 v

Abstract

Internet scale services like Yahoo’s web portal and Google Search and Cloud

services operate on massive amounts of information. Timely processing of this

data at the scale of Tera- and Petabytes requires the use of DISC systems,

orchestrating large assets of hardware with frameworks such as Apache

Hadoop. Annually, DISC system performance is compared by Sort Benchmark

and benchmark results over the past years show gains in performance,

although a substantial loss in resource efficiency is found. The Tritonsort case

study is set up to create a top-performing and cost-effective system for large-

scale Sort Benchmarks by emphasizing resource efficiency in design primarily.

This paper describes design and implementation of two core components and

provides a systematic evaluation of resource efficiency in Tritonsort.

Objective. The objective is development of well-performing intermediate data

storage and internal sorting for Tritonsort and an in-depth evaluation of resource

efficiency compared to state-of-the-art systems. The solution is deemed

effective if Tritonsort outperforms in Sort Benchmark categories 100TB Gray

Sort Indy and 60 seconds Minute Sort Indy and provides competitive hardware

and cost efficiency.

Method. Survey in literature about existing approaches to distributed parallel

sort, design and implementation of internal sorting and disk I/O components,

and evaluation by systematic comparison to existing systems in terms of

performance and resource efficiency.

Result. Tritonsort uses both subsystems and outperforms state-of-the-art

systems in the 2010 “Gray Sort Indy” and “Minute Sort Indy” challenge by a

factor of four per cluster node. Also, it improves upon average throughput per

CPU core and disk which leads to higher cost efficiency.

Literature. Anderson and Tucek emphasize the potential of resource efficient

systems and provide a systematic listing of different aspects of efficiency. Vitter

creates the foundation for efficient disk I/O in external sorting while different

Sort Benchmark systems inspire design and optimization of internal sort.

 vii

Table of Contents

1 Introduction .. 1

2 Related work .. 7

2.1 Types of efficiency... 7

2.2 Benchmark and Metrics ... 9

2.3 Sorting Algorithms ... 11

2.3.1 Distribution Sort .. 11

2.3.2 Merge Sort .. 12

2.4 Architectural approaches ... 13

2.4.1 Shared memory and Data partitioning .. 13

2.4.2 Single- and Multi-pass sorting... 13

2.4.3 Synchronous and interlaced I/O.. 14

2.4.4 In-place and out-of-place on storage .. 14

2.4.5 Parallel sort algorithms ... 15

2.5 State-of-the-art systems .. 15

2.5.1 DEMSort ... 16

2.5.2 Hadoop ... 17

2.5.3 PSort ... 18

2.5.4 EcoSort ... 19

2.5.5 NOW-Sort ... 19

2.5.6 Summary and Comparison ... 20

3 Tritonsort Architecture.. 25

3.1 Pipeline architecture .. 25

3.2 Gray Sort Configuration ... 26

3.3 Minute Sort Configuration .. 27

viii

3.4 Test bed .. 28

4 Challenges and Approach .. 31

4.1 Motivation .. 31

4.2 Challenges .. 33

4.2.1 Map ... 33

4.2.2 Store ... 34

4.2.3 Reduce ... 34

4.3 Contributions of the paper ... 35

4.4 Evaluation ... 36

4.4.1 Measuring performance .. 36

4.4.2 Measuring Resource efficiency ... 36

4.5 Architecting for Efficiency .. 42

4.6 Design Constraints .. 43

4.7 Limitations ... 44

5 Contributions .. 47

5.1 Data persistence ... 48

5.1.1 Caching in external distribution sort .. 49

5.1.2 Caching Buckets ... 52

5.1.3 Writing Buckets ... 56

5.1.4 Conclusion .. 58

5.2 Internal sort ... 59

5.2.1 In-place permutation ... 61

5.2.2 Memory requirements ... 62

5.2.3 Conclusion .. 63

6 Evaluation and Discussion ... 65

6.1 Internal sort ... 65

6.1.1 Discussion .. 67

 ix

6.2 Disk access ... 69

6.2.1 Write performance .. 70

6.2.2 Read performance .. 72

6.2.3 Discussion .. 73

6.3 System performance ... 75

6.3.1 Efficiency .. 77

6.4 Benchmark-specific comparison ... 79

6.4.1 Gray Sort .. 79

6.4.2 Minute Sort ... 86

6.4.3 Discussion .. 91

7 Summary ... 95

7.1 Contribution Summary ... 95

7.1.1 Disk access... 96

7.1.2 Internal Sort .. 98

7.1.3 System Performance .. 100

8 Future Work ... 103

9 Acknowledgements .. 105

10 References .. 107

 xi

Index of Figures

Figure 1 - Large-scale benchmark cost-efficiency .. 3

Figure 2 - Distribution Sort.. 11

Figure 3 - Merge Sort ... 12

Figure 4 - Tritonsort Architecture .. 25

Figure 5 - Gray Sort Configuration ... 26

Figure 6 - Minute Sort Configuration .. 27

Figure 7 - Test bed hardware ... 29

Figure 8 - Challenges and Contributions .. 47

Figure 9 - Contributions to Data Persistence .. 48

Figure 10 - Processing input data ... 49

Figure 11 - Processing intermediate data ... 50

Figure 12 - Accessing intermediate data with random read 50

Figure 13 - Accessing intermediate data with random write 51

Figure 14 - Impact of caching on write performance .. 52

Figure 15 - Writer and Receiver stall .. 53

Figure 16 - Writer and Receiver decoupled .. 54

Figure 17 - Writer using fixed thresholds .. 57

Figure 18 - Writer using demand-based scheduling ... 58

Figure 19 - Contributions to Internal Sorting ... 59

Figure 20 - Internal Sort runtime ... 60

Figure 21 - Internal Sort throughput ... 60

Figure 22 - Radix Sort in-memory reordering ... 62

xii

Figure 23- Internal Sort throughput .. 66

Figure 24 - Internal sort time .. 67

Figure 25 - Intermediate data write performance.. 71

Figure 26 - Intermediate data read performance .. 72

Figure 27 - Large-scale Systems in Benchmark ... 75

Figure 28 - System throughput per component .. 77

Figure 29 - Gray Sort - DEMSort vs Tritonsort - hardware performance 81

Figure 30 - Gray Sort - DEMSort vs Tritonsort - Cost-Efficiency 81

Figure 31 - Gray Sort - Hadoop vs Tritonsort - hardware performance 84

Figure 32 - Gray Sort - Hadoop vs Tritonsort - Cost-Efficiency 84

Figure 33 - Minute Sort - DEMSort vs Tritonsort - hardware performance 87

Figure 34 - Minute Sort - DEMSort vs Tritonsort - Cost-Efficiency 87

Figure 35 - Minute Sort - Hadoop vs Tritonsort - hardware performance 89

Figure 36 - Minute Sort - Hadoop vs Tritonsort - Cost-Efficiency 90

Figure 37 - Contributions summary .. 96

Figure 38 - Performance Disk Access .. 97

Figure 39 - Performance Internal Sort .. 99

Figure 40 - Cluster hardware .. 101

Figure 41 - Gray Sort performance ... 101

Figure 42 - Minute Sort performance .. 102

 xiii

Index of Tables

Table 1 - DEMSort fact sheet ... 16

Table 2 - Hadoop fact sheet ... 17

Table 3 - PSort fact sheet ... 18

Table 4 - EcoSort fact sheet ... 19

Table 5 - Comparison of benchmark systems .. 22

Table 6 - Comparison of system throughput and cost-efficiency 23

Table 7 - Challenges overview ... 33

Table 8 - Internal Sort throughput ... 66

Table 9 - Internal Sort time ... 67

Table 10 - Intermediate data write performance ... 71

Table 11 - Intermediate data read performance ... 72

Table 12 - Large-scale Systems in Benchmark .. 76

Table 13 - Relative throughput per component .. 77

Table 14 - Relative resource efficiency .. 78

Table 15 - Gray Sort - Evaluation Tritonsort vs DEMSort 82

Table 16 - Gray Sort - Evaluation Tritonsort vs Hadoop 85

Table 17 - Minute Sort - Evaluation Tritonsort vs DEMSort 88

Table 18 - Minute Sort - Evaluation Tritonsort vs Hadoop 91

1

1 Introduction

Data warehouses of Internet companies store vast amounts of data. The ability

to process this data in a timely manner is vital to company revenues through

advertising and retailing. Accessing and mining these amounts of data is

therefore a major challenge, alongside failure-redundant storage, security and

others.

Such amounts of data are typically found in internet scale services and cloud

computing applications. (1) The need to deal with large data sets gave birth to a

series of new batch-processing frameworks such as Apache Hadoop (2),

Google MapReduce (3) or Microsoft Dryad.(4) The analysis of stored

information is typically distributed across hundreds of individual machines for

raw storage requirements and I/O bandwidth. This focus on parallel processing

of data instead of expensive arithmetic computation distinguishes “Data-

intensive Super computing” (DISC) from traditional “High-performance

Computing” (HPC). (5)

One example for the scale of data processing is provided by Jeffrey Dean in a

2009 talk about utilization of MapReduce in Google’s data centers. In

September 2009 Google’s data centers processed 540 Petabyte of input data,

using 25,500 machine years worth of processing time.(6)

At these scales it seems favorable to operate a cluster close to its hardware

limits - with high resource efficiency - to keep initial investments and running

costs as low as possible. (7) This motivates the design of “balanced systems”

(8) that optimize software and hardware for I/O bound workloads that are found

in DISC applications.

All major DISC frameworks are work in progress, and hence, developers

frequently compete in benchmarks and publish performance numbers (9),

although fine-grained comparability of the processing frameworks is a mostly

unsolved issue (8). This phenomenon is nothing new - in 1985 the Datamation

benchmark suite was proposed by (10) and has since been adapted multiple

2 1. Introduction

times to account for rapid changes in hardware performance and capacity

(11)(7). Part of this suite is the Sort Benchmark: it requires a set of unordered

records to be read from disk storage, sorted and written to a sequential output

file. Sort benchmarks have been used since to compare performance and

efficiency of parallel processing systems close to real workloads for a long time.

(12) The task of sorting is simple enough to be performed with any system, yet

it is an I/O bound task and touches most aspects of the system, including CPU,

memory, disk and potentially network I/O. Different metrics are used to evaluate

competing systems in terms of performance and efficiency. In general, systems

dealing with large amounts of data are compared in terms of performance only,

while small scale systems use metrics targeted at cost and energy efficiency.

There have been considerable advances to benchmark performance over the

past 20 years (12). This is mainly credited to increases in hardware

performance as well as the use of Beowulf-type clusters instead of mainframe

systems. (13) However, the growth in performance comes at increasingly high

costs due to the use of large amounts of cluster nodes. It was pointed out

recently that system hardware efficiency suffered heavily and the explosion in

scale may mislead future developments into a competition of pure economic

investment. In (8) E. Anderson and J. Tucek estimate an average throughput of

less than 12 MB/s per node for modern enterprise-class DISC clusters

competing in large scale sort benchmark. Compared to more than 100MB/s per

server on small systems built from consumer quality hardware for reasons of

cost-efficiency there seems to be a potential for improvement.

This motivates the “Tritonsort” project to approaches large-scale benchmarks

from a resource efficiency point of view. Tritonsort aims at improving upon

existing large-scale sort benchmark results while using significantly less

hardware resources. Hence, it is designed with efficiency considerations in the

first place and incorporates experience and lessons learned from state-of-the-

art systems.

3

Figure 1 - Large-scale benchmark cost-efficiency

The figure shows 2010 Sort Benchmark cost-efficiency for Hadoop, DEMSort

and Tritonsort. All three systems compete in the Sort Benchmark “Gray Sort”

category, handling large-scale datasets of 100TB or more. Benchmark

performance of these systems is almost identical, with Tritonsort being the top-

performing system with a slight advantage. From a cost-efficiency point of view

the differences become substantial, however. (Cost estimations for DEMSort

and Hadoop are based on (8))

This paper specifically focuses on two aspects in the development of Tritonsort.

First, two core components for intermediate data storage and internal sorting

are designed and implemented. Both affect disk I/O efficiency and

computational efficiency of Tritonsort substantially. Second, a systematic

evaluation of Tritonsort’s resulting resource-efficiency is provided, comparing

Tritonsort to state-of-the-art systems in large-scale Sort Benchmark.

The key contributions of the thesis are:

0,0

5000,0

10000,0

15000,0

20000,0

25000,0

30000,0

Hadoop DEMSort Tritonsort

2009 2009 2010

Cost Efficiency

cost efficiency

(bytes/s per USD)

4 1. Introduction

1. Overview of state-of-the-art systems

An overview of state-of-the-art systems competing in Sort Benchmark is given.

Architecture and algorithms of systems are described and specific strengths are

analyzed. Experience from small- and large-scale systems is collected and

discussed in the context of resource efficiency. This leads to a series of open

questions and challenges in creating resource-efficient data persistence and

sort implementation.

2. Data persistence for sustained rate parallel file writes

The Tritonsort prototype is supplemented with a disk I/O layer for writing to

large amounts of files that overcomes file-system weaknesses for sustained

rate transfers to multiple files co-located on a physical disk. An optimal

approach from literature is adapted to satisfy benchmark requirements and

hardware limitations and performance is compared to alternative approaches.

3. Memory-efficient linear-time sort

A memory-efficient linear-time internal sort component is designed and

implemented. Radix sort is adapted to the specific use case and memory

requirements are reduced to O(1.3n). Additionally, a performance evaluation is

performed to ensure sufficient throughput for on-the-fly processing of data.

4. Concept for evaluation of resource-efficiency at large-scale

A concept for evaluation of resource-efficiency of large-scale systems in Sort

Benchmark is provided. An approach suggested by (8) is adapted to quantify

aspects of computational, I/O and cost efficiency.

5. Systematic evaluation of performance and resource-efficiency

Performance and resource-efficiency of the integral Tritonsort prototype is

evaluated using the above approach. Large-scale benchmark results of state-of-

the-art systems are compared to Tritonsort and discussed in the light of

resource-efficiency. This is used to identify specific strengths and potential for

optimization in the future.

5

The document is structured as follows: Section 2 summarized relevant related

work and gives an overview of the state of the art in Sort Benchmark. In Section

3 design and architecture of Tritonsort are presented. Section 4 derives

research issues and summarizes challenges of architecting for resource

efficiency. Practical work of the thesis is described in Section 5, the evaluation

is performed in Section 6. Practical work and evaluation represent the main part

of the thesis; they describe the disk I/O layer and Radix Tag sort

implementation and quantify resource-efficiency of Tritonsort and state-of-the-

art systems. Section 7 summarizes and discusses results and provides

perspectives for further research.

7

2 Related work

This section provides an overview of related work and summarizes important

concepts. First, distinct aspects of efficiency in DISC systems are introduced

and a number of benchmarks and metrics quantifying them are presented. Then

fundamental algorithmic approaches to external memory sort are provided.

Finally, state-of-the-art systems in Sort Benchmark are presented and

compared in terms of architecture and efficiency.

2.1 Types of efficiency

In a 2010 paper E. Anderson and J. Tucek describe eight aspects of efficiency

in DISC systems. These are computational, I/O, storage, memory, programmer,

management, energy and cost efficiency. The following listing summarizes

definition and potential impacts.

1. Computational efficiency

There are two major variables affecting computational efficiency. At first, the

amount of CPU cycles required to generate the desired result and second, the

amount of cycles being wasted due to idling. The first aspect can be addressed

by the choice of algorithm (14) and programming tools (8). The second aspect

can be dealt with mainly by process scheduling. A side-effect of computational

efficiency is an impact on energy and cost efficiency.

2. Input/Output efficiency

The I/O efficiency of a device is determined by the average throughput achieved

divided by its theoretical maximum. The overall result is the average of all

relevant-system devices and is mainly impacted by replication redundancies

and idle times. The use of replication is an architectural decision while idle times

may be caused by inappropriate design or bottlenecks elsewhere.

8 2. Related work

3. Storage efficiency

Efficient storage minimizes the overhead of physical data storage relative to the

amount of logical data in the system. Overheads are mainly generated by

replication and additional metadata. For example, a system with 10 percent file-

system overheads using 2-way replication would provide a storage efficiency of

0.45.

E. Anderson and J. Tucek argue that compression can improve this kind of

efficiency by a multitude. While this is valid for production systems, rules of Sort

Benchmark do not allow any kind of data compression due to the emphasis on

I/O bandwidth dependent metrics.

4. Memory efficiency

Memory efficiency focuses at the overhead of data held in volatile storage. This

is impacted by data structures, heap requirements and memory fragmentation.

When performing memory-intensive tasks, such as write caching or internal

sorting, the choice of algorithm may have severe impact too.

5. Programmer efficiency

Programmer efficiency is directly related to productivity, and hence, it is difficult

to measure. It is argued the choice of tools, programming languages and

frameworks heavily influences this aspect. Generally, this is a factor related to

the broader topic of development processes and reusable software designs and

lies out of the scope of this work.

6. Management efficiency

Management efficiency describes the effort required to maintain the system

infrastructure relative to the minimum amount required. Any quantitative results

in this are specific to a site or technology. Qualitatively, it can be observed that

increased specialization of hardware leads to decreased management

efficiency.

9

7. Energy efficiency

The overall energy consumption of system infrastructure to complete a given

task is compared to previous systems in benchmarks to obtain a relative energy

efficiency measure. It is suggested that a considerable portion of the total

consumption may be caused by auxiliary devices such as cooling, therefore

emphasizing small hardware appliances.

8. Cost efficiency

There are multiple ways to measure cost efficiency, e.g. records/dollar (data

processed per investment) or records/second/dollar (data throughput per

investment). The preferred metric depends on specific application requirements

and may be biased towards certain benchmarks or configurations.

2.2 Benchmark and Metrics

Initially defined in “A Measure of Transaction Processing Power” by Anon et Al.

in 1985 the benchmark suite later named “Datamation” has continually been

refined and extended (11)(10)(7). It is designed to provide a minimal level

comparability of real-world performance of different systems and platforms.

Multiple aspects of a system are tested instead of relying on vendor

whitepapers and theoretical metrics such as maximum MIPS. For this purpose

each mini-benchmark includes a range of I/O operations testing the system’s

interface to its environment. The first generation of benchmarks included

“DebitCredit”, “Scan” and “Sort”. The initial metric used to rank systems was the

cost/performance ratio based on elapsed time and total throughput.

“DebitCredit” measures remote transaction performance and latency. It

simulates a banking scenario timing system and database transactions initiated

from remote ATM terminals. “Scan” tests throughput achievable through high-

level interfaces used by application developers. Finally, “Sort” benchmarks

maximum I/O performance by measuring elapsed time for reading and

processing a fixed set of input data and writing the sorted sequence back to

disk.

The original “Datamation” sort benchmark operated on a 100MB input data and

was replaced by a series of different categories to account for increased

10 2. Related work

hardware capacity and emerging topics such as energy efficiency. As of June

2010 there are four different metrics applied to two different types of datasets

and multiple input sizes. The dataset types are split into general purpose

“Daytona” tuples with variable length and key size and performance-focused

“Indy” fixed-length 100-bytes records with a 10-bytes key. Each of the metric

described below favors a different system setup and imposes certain

restrictions to ensure comparability.

1. Gray sort

The input size is restricted by a lower bound of 100TB and system performance

is measured by throughput (TB/min). The benchmark replaced the Terabyte sort

challenge and is named in honor of Jim Gray after his disappearance at sea in

2007. (9) Due to the emphasis on large datasets, systems need to rely on

distributed processing on clusters in general.

2. Minute sort

The amount of data processed in less than a minute is used as metric and

includes time for system startup and shutdown. (A maximum runtime of 60

seconds) Current results supersede 1TB which requires a substantial amount of

disks to provide the required bandwidth. Minute sort was introduced by (11).

3. Penny sort

The amount of data sorted for the equivalent of one penny system cost,

assuming the hardware has a lifetime of three years. This category was first

suggested by (11) too and favors cheap hardware setups. Competing systems

utilize hardware efficiently, but their absolute scale currently does not surpass

several hundred Gigabytes of total storage capacity.

4. Joule sort

The amount of data sorted for the equivalent of one Joule, including total energy

consumption of any hardware and auxiliary devices used. This was introduced

by (7) and further emphasized by (8) due to drastically decreasing resource

efficiency of systems competing in Gray- and Terasort benchmarks. The

benchmark is currently performed for multiple input sizes between 10GB and

11

100TB. The focus on energy consumption favors expensive flash-based storage

devices that are currently not suitable for large-scale deployments.

Benchmark rules do not restrict the scale of a hard- or software, however, they

require commodity components to be used. In addition, any kind of pre-caching

and compression is disallowed to support the focus on I/O efficiency. (9)

2.3 Sorting Algorithms

The following part gives an overview of memory external sort. Merge and

distribution based approaches are presented

Any kind of internal sort algorithm at least requires memory equal to the size of

a run being sorted. Given a memory starved environment external sorting is

required, i.e. a cluster providing 1TB of main memory while sorting 100TB of

data. External sort passes through data two times or more. It first partitions data

into smaller subsets and then iteratively aggregates them to a global result. (14)

Vitter (15) describes the two fundamental approaches to external sorting,

sorting by distribution and sorting by merging. Vitter also takes different

approaches for I/O into account and derives a duality in terms of I/O operations

for both approaches.

2.3.1 Distribution Sort

Distribution sort is a recursive process that partitions a set of items into multiple

disjoint buckets. Each bucket only contains items that are smaller than items in

subsequent buckets. Hence, when all buckets are sorted individually and

concatenated, the result is sorted globally.

Distribute

Distribution to buckets based on Prefix

Sort

Internal sort of buckets

Figure 2 - Distribution Sort

12 2. Related work

Before distribution-sort iterations can be performed the partitioning elements

have to be determined. Their values represent the boundaries of a bucket. All

items found to be in between the two partitioning elements are put into the

same bucket. When partitioning elements are selected optimally, items are

distributed across buckets evenly. There a multiple deterministic and

probabilistic methods to select partition boundaries with a general trade-off

between expense and accuracy. (16)(17)

When applying distribution sort in an environment with multiple parallel disks

many I/O-operations can be load-balanced to improve performance. Vitter (15)

shows that randomization-based approaches provide optimal I/O behavior.

2.3.2 Merge Sort

Merge sort is a two step process. First, a number of sorted runs are generated

by filling memory, performing internal sort and writing them back to disk

repeatedly. Then, these runs are merged into a single sequence by reading

each sequence from disk in small chunks and heap-sorting individual items.

Sort

Partitioning input and internal sort

Merge

Merging sorted runs

Figure 3 - Merge Sort

Merge sort does not require partitioning elements as partitioning is based on run

size only. Hence, Merge sort can be easily adapted to different amounts of main

memory by changing the size (and number) of runs. The merge operation is

based on comparison and cannot be run in linear time.

This approach allows for load-balancing across multiple disks too, optimal pre-

fetching of chunks requires relatively complex algorithms, however.(15)

13

2.4 Architectural approaches

Numerous architectural approaches to distributed sorting can be found in

literature. In the history of Sort Benchmark early systems were built on shared

memory mainframes (11) and were replaced by distributed systems built from

large amounts of similar commodity hardware components. (18)(13) Also, some

hybrid systems proved to be successful using heterogeneous (19) or

specialized hardware (20) and mainframes operating on external disk clusters.

(21)

2.4.1 Shared memory and Data partitioning

Access to main memory and secondary storage in parallel sort implementations

is popularly modeled either by a shared-memory or a data-partitioning

approach, as denoted by (11).

Shared-memory systems assume access to all data by any node in the system.

This model is used by frameworks that transparently handle the exchange of

data across the network or by mainframe systems that provide hardware

support for large amounts of main memory.

Data-partitioning approaches operate on node-local datasets only and explicitly

exchange messages and data between nodes.

The general advantage of shared-memory is simple implementation of

algorithms while data-partitioning does not require any additional hardware or

software support in order to function on networks of commodity workstations.

(18)

2.4.2 Single- and Multi-pass sorting

The number of I/O operations mainly depends on the amount of memory in the

system relative to the total amount of data being sorted (11) (18). A memory-

rich environment can rely on single I/O-pass design. In a memory-starved

environment two read/write passes have to be performed. Depending on the

design, additional passes may be introduced. (22) In general this leads to

longer runtimes and decreases I/O efficiency, but may be necessary to

overcome memory constraints.

14 2. Related work

The single-pass system reads input data from external storage once. Data is

stored in memory and sorted internally. The result is written back to disk in the

end.

The two-pass system reads input data until main memory is full, performs an

internal sort operation and stores the intermediate result on disk. This process

is repeated until all input data has been processed. In a second pass the

intermediate data is processed again to generate the final result.

A system may perform additional passes if required by architecture or for

memory considerations. For example, this could be necessary when using

merge sort in heavily memory starved environments. If main memory cannot

hold one tuple of each intermediate result, a separate series of runs needs to be

generated by partial merging. Then, the final result can be generated by another

merge pass.

2.4.3 Synchronous and interlaced I/O

Independent of the number of passes performed it is desirable to maximize I/O

throughput over run-time. As described by (11) computation and I/O can either

be performed serially (synchronously), in parallel (threaded) or interleaved

(relying on kernel level concurrency only). Parallel pipelining increases

throughput rates for external storage and network by eliminating most idle

times, but might increase memory requirements. Also, due to read and write

access occurring at the same time disk and controller setup have to be adapted

for a pipelined approach. Disks have to be partitioned into separate sets for

reading and writing to prevent a drop in throughput due to random instead of

sequential access patterns.

2.4.4 In-place and out-of-place on storage

Due to architectures considerations and rule restrictions in the Daytona

benchmark category most submissions to the sort benchmark use dedicated

disks for input and output. This out-of-place approach to processing imposes a

penalty to storage efficiency of a factor of two. By using main memory as buffer,

input data can be processed and overwritten in-place using minor additional

disk space. A recent submission using this approach is DEMSort. (22)

15

An in-place design has some drawbacks, though. It imposes an additional

amount of random disk access and is more complex in design and

implementation in order to deal with fluctuations in input data distribution. Also,

in real-world applications it is generally not desirable to lose the input data,

which is reflected by the Sort Benchmark Daytona rules. (9)

2.4.5 Parallel sort algorithms

The NOW-Sort paper (18) describes an approach for parallel sorting on a

network of nodes using data-partitioning. Processing is split into a distribution

and a merge phase.

The first phase distributes data in a single pass. It examines each tuple,

calculates a hash from the key value and distributes the tuple to the according

bucket. This task is performed in parallel on all cluster nodes and tuples are

sent to buckets over the network. At the receiver side tuples are buffered and,

when a bucket becomes full, it is sorted and written to disk. The second phase

locally reads and merges all sorted runs stored on a node and writes the

sequential output to disk.

2.5 State-of-the-art systems

The following section gives an overview over some existing systems in the

context of Sort Benchmark. This includes a description of architecture and the

techniques employed to achieve improve performance. In addition to recent

systems, NOW-Sort, an influential implementation of distributed sorting on

commodity hardware is presented. However, the listing merely provides an

exemplary overview about the broad variety of systems in Sort Benchmark and

cannot be regarded as complete reference.

In subsequence, advantages and disadvantages of these systems are

summarized and discussed, specifically regarding the applicability for large

scale deployments. Some systems are developed with high scalability in mind,

whereas others optimize for energy and cost-efficiency. As Tritonsort aims at

resource efficiency and large scale valuable approaches to optimization can be

derived from all these systems.

16 2. Related work

2.5.1 DEMSort

DEMSort (22) competes in Gray Sort Indy and Minute Sort Indy and uses a

three stage process. First, a global shared memory sort is used to generate

sorted runs and globally stripe them across disks. Then, the exact global

partitioning of tuples is determined and non-matching tuples are redistributed

across nodes. In the end, each node locally merges runs on disk, yielding a

globally sorted run. The system reads and writes most data twice and operates

near in-place, which comes at the cost of some additional disk and network load

due to re-distribution after determining the exact partitioning in the second step.

Configuration Gray Sort Indy Minute Sort Indy

����� 195 195

	�
�� 1560 1560

�
��� 780 780

���
����� 	��� 10�.� ��� 10�.� ���

Metrics

���
 2009 2009

��
��
���	� 0.565 � /�
� 0.955 �

���� 100 � 0.955 �

�
�� 10628 � 60 �

�ℎ
�#$ℎ�#� 9409.1 & /� 15916.7 & /�

Table 1 - DEMSort fact sheet

In terms of hardware DEMSort relies on a 200 node cluster. A node contains

two quad core Intel Xeon processors with a 2.66GHz clock, 16 GB main

memory and 4 disks providing 1TB of storage per node. The network

interconnection is provided by a single InfiniBand 4x DDR switch. It is noted by

the developer that only 60% of total disk storage is available for sorting,

however.

The operating system is Suse Linux Enerprise 10 SP 1 running on kernel

2.6.22. The file system XFS is used, backed by a RAID-0 configuration of disks

DEMSort is built on C++ using the GCC 4.3 tool chain and the MPI

implementation MVAPICH 1.1.

17

2.5.2 Hadoop

The Hadoop sort benchmark submission (23) is built on Apache Hadoop and

leverages from distribution sort inherent to the Map-Reduce programming

model. Hadoop competes in Gray Sort Daytona and Minute Sort Daytona, and

hence, includes an additional sampling stage to stochastically determine

partitioning elements before the actual sorting takes place. In the beginning,

input data is read, sampled and partitioning information distributed. In the Map

step input files are processed and tuples are sent to their designated target

nodes. The Reduction step sorts data locally at each node and saves the result

to the distributed file system HDFS. For Gray Sort a replication factor of 2 is

used, Minute Sort is executed without replication on a smaller subset of nodes.

Configuration Gray Sort Daytona Minute Sort Daytona

����� 3452 1406

	�
�� 27616 11248

�
��� 13808 5624

���
����� 	��� 10(.) ��� 10(.* ���

Metrics

���
 2009 2009

��
��
���	� 0.578 � /�
� 0.500 �

���� 100 � 0.500 �

�
�� 10380 � 59 �

�ℎ
�#$ℎ�#� 9633.9 & /� 8474.6 & /�

Table 2 - Hadoop fact sheet

The hardware is made up from a homogenous cluster of approximately 3800

machines each containing two quad core Intel Xeon processors with a 2.5GHz

clocking. A node also holds 4 disks for secondary storage and 8 GB of main

memory. Networking is enabled by a 1Gbit Ethernet interface per machine per

rack internally. Externally, each 40 machine rack is connected to a central hub

with an 8Gbit interface.

The operating environment is provided by Red Hat Enterprise Linux Server

Version 5.1 based on the 2.6.18 kernel. Hadoop relies on the Java 6

environment Sun JVM 1.6.0 32bit for small sort runs and 64bit for head nodes

18 2. Related work

during large sorts. The codebase for the submission is Hadoop 0.20 and

integrates a custom shuffle stage, a modified tracker and optimizations to the

map and reduce stage. Most notably, some superfluous disk I/O and hard-

coded wait-loops are removed and map outputs are compressed. (For the 2010

benchmark a rule change disallowed any kind of data compression)

2.5.3 PSort

Psort (24) leads the Penny sort category for Daytona as well as for Indy input

data categories. It employs multi-level merge sort and optimizes for cost-

efficiency on small scale, hence putting high emphasis on computational

efficiency and I/O efficiency by pipelining. External sort is performed by a two-

pass merge sort, reading and writing data at disk twice, processing each datum

in memory multiple times depending on the number of internal merge passes.

Internal sorting relies on merge-sort for Daytona and a hybrid bucket-sort

merge-sort for Indy datasets. Notable optimizations for computational efficiency

include the tag-based internal sort, cache-aware buffer sizes and reduction of

branching instructions. Application I/O is tuned by relying on parallel disk

access, the choice of file system and asynchronous direct I/O provided by

commodity Linux.

Configuration Penny Sort Daytona Penny Sort Indy

����� 1 1

	�
�� 1 1

�
��� 5 5

	��� 428 ��� 428 ���

Metrics

���
 2009 2009

��
��
���	� 225 + 248 +

���� 225 + 248 +

�
�� 2211 � 2211 �

�ℎ
�#$ℎ�#� 101.8 & /� 112.2 & /�

Table 3 - PSort fact sheet

Being a small-scale system psort’s hardware consists of a single machine that

does not require any networking. It contains a 2.6GHz AMD Athlon LE

19

processor, 5 disks and 4GB of memory. The XFS file system is applied to a

RAID-0 configuration and the operating system is Gentoo Linux, a concrete

version is not specified by the developers.

2.5.4 EcoSort

EcoSort (25) uses flash-based storage for JouleSort Indy and thus optimizes for

energy efficiency. It employs a two-pass external merge sort algorithm. Internal

sort utilizes a tag-based hybrid bucket-merge sort comparable to Psort. The

design relies on parallel sorting by two physical cores and leverages from low

latency provided by SSDs at random read access.

Configuration Joule Sort Indy (108) Joule Sort Indy (109)

����� 1 1

	�
�� 2 2

�
��� 4 4

	��� 3500 ��� 3500 ���

Metrics

���
 2010 2010

��
��
���	� 2.3 kJoules 25.1 kJoules

���� 10 + 100 +

�
�� 72 � 691 �

�ℎ
�#$ℎ�#� 138.9 & /� 144.7 & /�

Table 4 - EcoSort fact sheet

Also a small-scale system, EcoSort runs on a single physical machine. The

CPU is a two core Intel Atom 330 and is backed by 4 GB of main memory and 4

Super Talent 256GB MLC SSDs. The system relies on Debian Linux kernel

2.6.30 and uses RAID-0 XFS for file storage. EcoSort is built using the GCC

4.4. tool chain.

2.5.5 NOW-Sort

NOW-Sort (18) was developed over a decade ago, competed in the original

100MB Datamation benchmark and was re-used later in winning systems in the

Minute Sort Benchmark. (19) It represents the first sort implementation based

on a cluster of commodity hardware machines that competed successfully

against mainframe setups. The hardware provided multiple processors and

20 2. Related work

disks per machine, which has become a typical environment today. For

distributed external sorting the system relies on a two-pass algorithm, first

distributing data across nodes and generating sorted runs, then merging runs

locally to obtain the final result. Distribution is performed by separating input

tuples based on a key prefix and sending them to target nodes in batches. The

Receiver combines a series of batches up to its memory limit and generates a

run that is written to disk. Internal sorting is realized as hybrid bucket-sort radix-

sort that is optimized using cache-aligned bucket and buffer sizes and tag-

based sorting. Application I/O relies on disk striping and partial pipelining; read

and write operations on disk and network are interleaved while sorting is

performed synchronously before writing. Though, this prevents maximum

throughput in the first pass, it allows large runs to be generated which in turn

reduces disk and processing overheads in the second pass.

A look on the hardware employed by NOW-Sort is more of archival character as

the initial records were set in 1997 with respective hardware. The cluster uses

64 nodes, each equipped with two (fast-narrow SCSI) disks and 64MB of main

memory. Networking is realized by 160 MB/s Myrinet Cards connected by 26

switches in a 3-ary tree topology.

2.5.6 Summary and Comparison

Papers presenting these systems identify efficient sort implementations and

interleaved I/O as core challenges in design and development. Network

bandwidth is not perceived as limiting factor, for minor exceptions (19), as

network interconnections outperform disk I/O per cluster node for most systems.

Systems that rely on multiple nodes to run the benchmark need to distribute

data after it has been read off disks initially. This is approached by analyzing a

portion of each tuple’s key and storing the tuple in the according intermediate

buffer. At some point data is transmitted across the network in batches and

processed at the target node.

Most implementations presented above rely on run formation in the first pass

and merge sort in the second pass. On a large scale this resembles a hybrid

bucket-sort of data across nodes or disks, internal sorting of buckets at each

21

node and a final local merge sort. Data is being sorted trice: for distribution, for

run formation and for merging.

Internal sort implementations rely on merge-sort or bucket-sort based

approaches and hybridization. Though, merge-sort has a theoretical boundary

of O(n log n) operations compared to O(n) bucket-sort, most concrete merge-

based implementations show competitive benchmark performance. The use of

key-pointer tags instead of full size tuples shows superior performance for large

input size and can be improved further by introducing cache-aligned buffers.

In terms of secondary storage access these systems use a two pass merge sort

approach. In the first pass data is read off disk sequentially and generated runs

are persisted in the same way. The second pass performs merge sort, reading

blocks from existing runs in parallel and writing a sequential output file.

Sequential access provides maximum throughput for commodity disks, seek

times induced by random access during the second read phase lead to a drop

in performance. The number of seeks is minimized by balancing the number of

files with an appropriate input block size. Most systems report a specific number

of files they can sustain for merging before performance drops sharply. EcoSort

leverages heavily from SSDs and flash memory, as seeking does not apply to

solid state drives. DEMSort uses a slightly different approach to distribution of

data across nodes by using estimates for partitioning in a first pass and

incurring a re-distribution step before merge sorting local runs. Hadoop uses a

distributed file system to store input and output data, but do not provide data on

the number of actual read and write operations. The estimated throughput

values per disk may indicate that this number exceeds the two-pass minimum.

(See Section 1)

A comparison of systems in terms of performance was the initial motivation of

sort benchmark. Over time, different metrics were added as it became clear that

systems are designed with a different focus in mind. The first additions were

minute sort and penny sort, emphasizing low startup and shutdown overheads

and cost efficiency. Later, Joule sort was added tackling energy consumption of

benchmark systems.

22 2. Related work

In an economic sense, cost-efficiency is probably the most important metric

(ignoring aspects of programmer and management efficiency). Penny sort

addresses this directly, but enterprise class systems deal with a larger scale of

data than current penny sort systems. Large scale in turn is addressed by Gray

sort, but it is hard to compare system in terms of hardware and development

cost as relevant submissions do not provide information on hardware cost. In

(8) an attempt is made to estimate cost-efficiency for recent submissions to sort

benchmark.

The following comparison of system performance and cost-efficiency is inspired

by (8) and adds data from recent submissions to sort benchmark. The total

throughput of a system during its benchmark run (in MB/s) is divided up per

node, CPU core and disk. Although, systems are developed for different

benchmark categories performance and cost consideration are made in every

case.

Year Name Category Nodes Cores Disks Data
(MB)

Time
(s)

2009 DEMSort Gray Indy 195 1.560 780 100.003.000 10.628

2009 Hadoop Gray Daytona 3.452 27.616 13.808 100.000.000 10.380

2009 psort Penny Indy 1 1 5 248.000 2.211

2010 EcoSort Joule Indy 1 2 4 10.000 77

Table 5 - Comparison of benchmark systems

There is a large difference in scale for the amount of data, the run time and the

amount of hardware. Hence, any comparison of per node performance can only

be regarded as rough approximation. Still, throughput numbers and estimations

of cost-efficiency show a drastic advantage for smaller systems that cannot be

explained by sole costs of additional networking hardware.

23

Year Name Throughput
(MB/s)

TP/Node
(MB/s)

TP/Core
(MB/s)

TP/Disk
(MB/s)

Cost Eff.
(Bytes/s/$)

2009 DEMSort 9409,1 48,3 6,0 12,1 1e4,1

2009 Hadoop 9633,9 2,8 0,3 0,7 1e3,2

2009 psort 112,2 112,2 112,2 22,4 1e5,5

2010 EcoSort 129,9 129,9 64,9 32,5 1e4,6

Table 6 - Comparison of system throughput and cost-efficiency

Estimations show there is a factor of more than 100 in cost-efficiency when

comparing cost-efficiency of Hadoop, a large-scale application, with psort, the

best-performing penny sort system. Also, a significant difference in throughput

per hardware component can be found. The estimated gap in cost-efficiency is

reflected in throughput numbers per node, core and disk to some extent.

The numbers suggest that there is a potential for improvements to resource-

efficiency in large-scale applications. Throughput numbers per component are

smaller for large-scale systems DEMSort and Hadoop and indicate issues that

do not exist in psort or EcoSort. This might be due to the requirements of

networking hardware or low efficiency in algorithms and disk I/O.

25

3 Tritonsort Architecture

The architectural overview introduces the design of the Tritonsort prototype.

Individual steps of the processing pipeline are described and details of pipeline

configuration for the Gray Sort and Minute Sort benchmark are provided. In

addition hardware and operating system environment of the test bed are

presented.

3.1 Pipeline architecture

The Tritonsort prototype competes in large-scale sort benchmarks, hence it

performs memory-external sort distributed across a number of individual

machines. The processing pipeline is inspired by the Map-Reduce approach,

with additional emphasis put on the management of intermediate data. The

implementation of external sort is based on distribution sort. The mapping step

splits up input data in sufficiently small “buckets”, so each bucket fits into

memory for internal sorting by the reduce step.

Map

1a Read tuples from disk

1b Determine destination

1c Send to target node

Store

2a Receive incoming data

2b Cache in memory

2c Store on disk

Reduce

3a Read presorted data

3b Sort tuples

3c Store on disk

Figure 4 - Tritonsort Architecture

The system highly relies on concurrent computation and I/O and is designed as

pipeline with consecutive worker stages. Unlike the approach taken by pure

MapReduce, a pipeline may have an arbitrary worker (Mapper/Reducer) chain.

26 3. Tritonsort Architecture

This simplifies process optimization, e.g. by reconfiguration of an intermediate

writer stage. Also, this provides increased extensibility as additional stages, e.g.

continuous input sampling, can be added to an existing pipeline almost

transparently. A trade-off is tight coupling between components if the system is

not designed carefully.

The pipeline starts by mapping tuples to target nodes. Input data is read from

disk, the target location of each tuple is determined and it is sent to the target

location. The destination node collects incoming tuples in their according

buckets and stores them on a distinct set of disks. When all tuples have been

distributed, each node locally passes through the buckets, sorts the contents

and writes the final results back to the input disks.

There currently exist two pipeline configurations capable of performing the Sort

Benchmark challenges “Gray Sort Indy” and “Minute Sort Indy”. The Map stage

is identical, Store and Reduce stages are adapted to work efficiently for two-

pass and one-pass sorting respectively.

3.2 Gray Sort Configuration

The Gray Sort benchmark requires a dataset of at least 100TB, leading to multi-

pass sort algorithms and long benchmark runtimes. The system has to sustain

high disk and network throughput over multiple hours and guarantee stability.

Map

1a Read tuples from disk

1b Hash tuple key

1c Send to target node

Store

2a Receive incoming tuples

2b Cache in Buckets

2c Store on disk

Reduce

3a Read intermediate data

3b Sort tuples internally

3c Store on disk

Figure 5 - Gray Sort Configuration

27

For the Gray sort configuration a two-pass distribution sort - internal sort

approach is chosen. The map stage distributes data to a global set of buckets

across the network whereas the store stage continuously writes bucket contents

to the disk. The reduce pass reads individual buckets and sorts them internally.

Any I/O operations are interlaced; disks are divided into even partitions for input

and output. On the test bed hardware 8 readers and 8 writers are used for a

total of 16 disks per node.

The map stage utilizes a hash function to determine each tuple’s destination

bucket and transmits tuples to the according node in batches using a uniform

partitioning function. The receiver collects these into bucket buffers and the

writer repeatedly flushes buffers to disk. During the reduce stage bucket files

are read from disk, passed to a sorter stage and finally handed to the writer

again.

3.3 Minute Sort Configuration

Minute Sort focuses at performance within a timeframe of 60 seconds and

therefore favors systems with maximum amounts of parallelism and low startup

and shutdown overheads.

Map

1a Read tuples from disk

1b Hash tuple key

1c Send to target node

Store

2a Receive incoming tuples

2b Cache in Buckets

Reduce

3a Sort tuples internally

3b Store on disk

Figure 6 - Minute Sort Configuration

Minute sort is configured as distribution sort - internal sort without intermediate

file creation using a synchronous I/O pipeline. The pipeline layout is similar to

Gray sort, but the intermediate file writer and reader stages are removed and

28 3. Tritonsort Architecture

buckets are processed directly by the internal sort stage. Input data is read from

all disks on all nodes in parallel, distributed, sorted and written back to disk

concurrently.

There are several design decisions that show to have a major impact on the

efficiency of the prototype. Computational efficiency is achieved mainly by using

a single pass hash function and a linear-time sort algorithm and by keeping in-

memory copies to the minimum. Memory efficiency is owed mainly to buffer

pools and dynamic size tuning instead of plain double buffering between worker

stages. Certain trade-offs are made that impact memory usage, e.g. the tag-

based radix sort algorithm uses additional overhead memory compared to

Quicksort. In case of tag-based sorting this allows additional optimization,

however. Finally, I/O bandwidth is optimized by keeping network performance

steady by batch transmission of data and reducing disk seek times by writing

data to buckets in long sequences. While the number of seeks can be reduced

a fundamental relationship between intermediate and output data prevents

purely sequential access when using the distribution-based approach to

external sorting.

3.4 Test bed

The test bed consists of 52 HP ProLiant DL380 G6 machines interconnected by

10Gbps Ethernet via a 52-port Cisco Nexus 5020 switch. Every server is

equipped with two Intel Xeon E5520 processors for a total of 8 physical CPUs

(16 logical CPUs counting Hyper-threads) running at 2.26 GHz. An individual

machine holds 24GB of ECC RAM and two hard disk controllers with 8 500GB

SATA hard drives attached each. In total the test bed provides 1.248 TB of main

memory and 416 TB of secondary storage. Networking is enabled by 10Gbps

Myricom cards and secondary 1Gbps connections, both running unmodified

Ethernet.

Figure 7 - Test bed hardware

The test bed provides a Debian Linux

Kernel 2.6.32 environment. Tritonsort

is based on the GNU GCC 4.3 build

chain and facilities provided by the

C++ Boost library. File access is

handled by the Ext4 file system and

networking is realized using the built

in Sockets interface.

29

The test bed provides a Debian Linux

Kernel 2.6.32 environment. Tritonsort

is based on the GNU GCC 4.3 build

chain and facilities provided by the

C++ Boost library. File access is

handled by the Ext4 file system and

networking is realized using the built-

31

4 Challenges and Approach

The following section presents motivation for and challenges in creating a

resource-efficient system for Sort Benchmark. A concept for quantifying

efficiency of software components and the integral system is described in order

to provide an in-depth evaluation of the approach taken by Tritonsort.

4.1 Motivation

Sort benchmark at large-scale traditionally does not factor in the amount of

hardware used. In the struggle to surpass previous records, the scale of

computing clusters used in benchmarks grew into hundreds and thousands,

sacrificing efficiency for scalability at all costs. Recent systems in the Gray and

Minute Sort benchmarks do not utilize major quantities of hardware capacity.

The scale of hardware used leads to a series of issues in network bandwidth,

fault-tolerance and other areas that need to be dealt with. This leads to a further

decrease in efficiency and requires even larger hardware assets. The result is

an overhead in infrastructure and maintenance cost and added engineering

effort to address the high complexity that could be avoided altogether.

Assuming software could use existing hardware more efficiently in the first

place, excessive scaling was not necessary. Some systems (see Section 1)

waste more than 90 percent of available disk bandwidth and CPU time. If these

idle resources can be exploited by increasing system efficiency, the same task

could be performed on a way smaller set of hardware.

The “Tritonsort” case-study aims at building a resource-efficient system that

leverages form advantages of a compact set of commodity hardware. The

Tritonsort prototype performs superior in Gray Sort Indy and Minute Sort Indy

and runs on a significantly smaller set of commodity hardware than state-of-the-

art systems.

At the current state performance of Tritonsort is limited by two tasks within the

processing chain: intermediate data storage and internal sorting. In the two-

pass sorting approach taken by Tritonsort intermediate data storage slows

32 4. Challenges and Approach

down the primary pass while internal sorting limits throughput of the second

pass. Assuming both bottlenecks can be resolved without adding more

hardware resources, system efficiency could be increased.

Hence, this paper focuses on these two aspects of in Tritonsort’s subsystems

for disk I/O and internal sorting. Both elements require careful design, as they

have fundamental impact on overall system performance and efficiency. The

realization of resource efficient components is performed as a four step

process: first, metrics and ways to measure “performance” and “efficiency” are

defined. Second, existing systems are compared in terms of architecture and

efficiency using installed metrics. Third, suitable designs for disk I/O and

internal sort subsystems are created. Fourth, the design is implemented and

evaluated by comparison to state-of-the-art systems by benchmark results and

metrics.

The core contributions of this paper are development of software components

for intermediate data storage and internal sorting and an in-depth analysis of

resulting resource efficiency of Tritonsort and state-of-the-art systems in large-

scale Sort Benchmark.

33

4.2 Challenges

Tritonsort aims at achieving resource-efficiency. This requires balanced use of

available hardware capabilities in each stage of the pipeline. Also, interaction

and parallelism between stages need to be accounted for.

Map

1a Read tuples from disk

1b Determine destination

1c Send to target node

Store

2a Receive incoming data

2b Cache in memory

2c Store on disk

Reduce

3a Read presorted data

3b Sort tuples

3c Store on disk

Table 7 - Challenges overview

4.2.1 Map

The map stage reads input data from disk and distributes tuples to all

participating nodes. It is active in parallel with the Store stage. Main challenges

are computational and memory efficiency.

1a Access to the input data should be possible at maximum disk

performance. If there is backpressure from other pipeline stages,

performance must not be decreased further.

1b A tuple’s destination bucket (and node) is determined before sending.

This process must be faster than disk and network transfer to avoid

bottlenecking. Map and Store stage are active in parallel, so memory

consumption of the former may reduce cache (2b) and write performance

(2c) of the latter. Also, the distribution mechanism must ensure that the

contents of each bucket fit into memory for internal sorting (3b) in the

reduce stage.

34 4. Challenges and Approach

1c All tuples need to be transferred over the network. The small size of

tuples and the distribution of key values may reduce network throughput

when transmitted individually.

4.2.2 Store

The store stage receives tuples incoming from the network and stores them in

buckets on intermediate disks. It is active in parallel with the Map stage. Main

challenges are memory and disk I/O efficiency.

2a Data arriving from the network is stored in the according bucket. Data is

incoming from multiple sources concurrently, so consistency needs to be

ensured by synchronization. These measures should not affect network

and write performance negatively, however.

2b A caching layer is introduced as purely random access to different

locations on disk reduces throughput (3a). Tuples are expected to arrive

at uniform rate for all buckets co-located on a single node, but each

bucket should be accessible sequentially in the end. The cache needs to

use available memory efficiently, must support synchronization measures

(2a) and must be capable to deal with disk I/O underperforming network

I/O.

2c Data stored in the cache needs to be written to disk continuously. To

maximize write performance, random access to disk must be minimized.

Still, the contents of each bucket should be stored in a single continuous

file on disk to maximize read performance (3a) for the reduce stage.

4.2.3 Reduce

The reduce stage reads and sorts intermediate data. It becomes active on each

node locally when incoming data transfer is completed. Main challenges are

computational and memory efficiency.

3a Intermediate data should be accessed at maximum disk performance.

Depending on the layout of bucket data on disk this might involve

different access patterns.

35

3b Contents of each bucket are sorted in memory. Sorting a single bucket

need to be faster than reading and writing its contents to avoid

bottlenecking. Also, the implementation’s memory efficiency determines

the maximum bucket size. This indirectly affects mapping (1b), write

performance (2b) and read (3a) performance as it determines the overall

number of buckets needed in the system to store the total amount of

data.

3c Each bucket is written to disk again. Data is expected to be written

sequentially and well-performing. Efficient memory usage could improve

the maximum bucket size for sorting (3b).

4.3 Contributions of the paper

This paper specifically focuses on the aspects of computational and disk I/O

efficiency. Computational efficiency is relevant for internal sorting (3b) in the

reduce step. Memory efficiency of caching (2b) helps increasing I/O

performance (2c) and determines the number and maximum size of buckets for

internal sorting. (3b) Synchronization measures should neither block Receivers

(2a) nor Writers (2c) significantly. The efficiency of disk I/O is especially

important when storing intermediate data (2c) as it involves non-sequential

access patterns and might affect the read performance (3a) of the Reduce

stage. Hence, contributions to the Tritonsort prototype can be divided into two

parts, disk I/O and internal sorting.

In addition the paper provides a concept for evaluating resource efficiency of

large-scale systems in the context of Sort Benchmark and compares state-of-

the-art systems holistically with respect to efficiency in disk I/O and

computation.

36 4. Challenges and Approach

4.4 Evaluation

The prototype is evaluated in the 100TB Gray sort Indy and the Minute sort Indy

category. The results are analyzed further using different metrics, such as

average throughput per minute, and compared to state-of-the-art systems.

4.4.1 Measuring performance

Overall system performance is quantified by sort benchmark standards for Gray

sort Indy and Minute sort Indy. Gray sort compares systems based on data

sorted per minute metric (in TB/min). The number is obtained by dividing the

total amount of input data by the total time required for processing (first node

starting until last node completing). The metric uses fixed input data size and

measures a variable amount of time. Minute sort uses the amount of input data

sorted as metric (in TB). A system must be able to complete sorting a set of

input data in less than 60 seconds in average for 15 consecutive benchmark

runs.

For both benchmarks the amount of input data can be predetermined exactly by

generating a fixed number of records across nodes and disks. Time

measurements are performed on a single head node that sends a notification

message to all nodes on startup and waits until all nodes report their task

completed. The total time indicated by the head node is pessimistic as it

includes network delays in addition to the runtime. This overestimation is at

scale of milliseconds however, and suitable for timing benchmark runs at minute

or hour scale.

Subsystems are benchmarked using smaller single-node benchmark setups.

The performance of disk access and internal sorting is quantified using a fixed

input size and measuring time passed to complete the operation (in MB/s). Test

runs are repeated multiple times to obtain average values that factor out

random fluctuations.

4.4.2 Measuring Resource efficiency

The quantification of efficiency is more complex than performance measures. A

first look at sort benchmark provides two measures of efficiency: cost,

addressed by penny sort and energy, addressed by Joule sort.

37

The latter, Joule sort is suited to estimate energy efficiency of systems. The

number of records sorted per joule consumed power is indicative for a system’s

energy efficiency, ignoring consumption of additional infrastructure. For

industrial applications, energy consumption directly translates into costs for

power supply and cooling, but these costs are only one aspect of economic

consideration. For example, the use of SSDs saves power compared to disk

drives, but requires a significantly higher initial investment.

Penny sort directly focuses on hardware costs, but its definition inherently

results in systems of small scale. The comparison of large-scale systems in

terms of cost is hampered by the unavailability of accurate information. It is

possible to estimate costs as system hardware is known and they are built from

commodity hardware, but the resulting numbers are rough and valid for

comparison of orders of magnitude only.

Anderson and Tucek (8) indicate that there are additional aspects of system

efficiency. They include the former measures, cost and energy, and add

computational, memory, storage, I/O, programmer and management efficiency.

In the context of sort benchmarks some of them are suited for comparison,

while others are difficult to address or quantify. The authors use MB/s per node,

MB/s per core, MB/s per disk and byte/s per dollar metrics to compare system

efficiency. Their results show a gap in efficiency between small and large scale

applications, but underestimate the difference. For example, the average

read/write bandwidth per disk is not fully representative for I/O efficiency as a

system may saturate disk bandwidth but access data on disk more often than

necessary for external sort. For example, DEMSort employs another disk

access phase in addition to two pass sorting. (22)

The default metrics of Sort Benchmark, “amount of data sorted” (Minute sort

Indy) and “total throughput per minute” (Gray Sort Indy) are applied to attain

quantitative results for the integral system. Resource-efficiency in terms of

computational expense, memory and I/O throughput is evaluated by

comparison to existing systems with comparable hardware. Proposed efficiency

metrics from Anderson and Tucek, “throughput per node”, “throughput per

38 4. Challenges and Approach

core”, “throughput per disk” and cost-based “throughput per dollar” are used,

although the latter can be based on estimations only.

For evaluation of resource efficiency this paper suggests a relative measure of

system properties. This allows comparison of real-world resource efficiency of

two systems without relying on performance numbers under optimal conditions

from manufacturer whitepapers. At the same time an in-depth comparison at the

level of different hardware labels and product revisions is unsuitable until exact

and complete information about cluster hardware and cost is available for large-

scale systems in Sort Benchmark. Thus, the disadvantage of this approach is

an undifferentiated perspective on hardware and the impossibility of determining

resource efficiency on an absolute scale.

In this paper a quantitative comparison between systems is based on the

following variables and metrics. Also, the evaluation of subcomponents and

alternative implementations thereof makes use of these measures.

1. Hardware

Hardware metrics quantify basic properties of the hardware used by a system.

This includes the number physical machines, the total number of CPUs and the

total number of hard drives. Estimated costs focus on the initial investment for

cluster hardware without maintenance.

• Cluster nodes

�����: Number of physical machines in the cluster

• CPU cores

	�
��: Number of physical CPU cores in the cluster, not counting

HyperThreads.

• Hard drives

�
���: Number of physical hard drives in the cluster, independently of

operating system or file system view and RAID configuration. The

expression “disk” is used as a synonym when referring to Solid State

drives.

• Estimated hardware costs (in USD)

	���: Approximation in orders of magnitude of total costs of hardware

39

components derived from (8) by mapping “bytes/s/$” to
,-./01-20,

3/4,
. If a

paper provides exact information on hardware costs, this data is used

instead.

2. Benchmark

Benchmark metrics are derived from Sort Benchmark and provide information

about benchmark type and scale and a system’s specific benchmark runtime

and performance.

• Gray Sort performance (in TB/min)

��
��
���	�5.67: Gray Sort benchmark performance as used by Sort

Benchmark.

• Minute Sort performance (in GB)

��
��
���	�89:0,;: Minute Sort benchmark performance as used by

Sort Benchmark.

• Input data (in MB, GB or TB)

����: The total amount of input data processed during a benchmark run.

Sort Benchmark uses a ratio of 10% for key information and 90% for

payload in generated input data.

• Runtime (in seconds)

�
��: Total runtime of a system per benchmark.

• Throughput (in TB/min or MB/s)

�ℎ
�#$ℎ�#�: System performance independently of specific benchmark

metric.

�ℎ
�#$ℎ�#� =
����

�
��

3. Relative Throughput

Relative throughput is used to quantify system performance on component level

without relying on an absolute baseline. These metrics correlate benchmark

performance and hardware properties via throughput numbers.

40 4. Challenges and Approach

• Throughput per node (in MB/s)

�ℎ
�#$ℎ�#�:/=;: Benchmark throughput per physical machine.

�ℎ
�#$ℎ�#�:/=; =
�ℎ
�#$ℎ�#�

�����

• Throughput per core (in MB/s)

�ℎ
�#$ℎ�#�3/.;: Benchmark throughput per physical CPU core.

�ℎ
�#$ℎ�#�3/.; =
�ℎ
�#$ℎ�#�

	�
��

• Throughput per disk (in MB/s)

�ℎ
�#$ℎ�#�=94>: Benchmark throughput per physical hard drive. This

metric divides benchmark performance to hard drives, the actual amount

of data transferred from/to hard drive interfaces is a multitude of this

value in general.

�ℎ
�#$ℎ�#�=94> =
�ℎ
�#$ℎ�#�

�
���

• Throughput per cost (in bytes/s/$)

�ℎ
�#$ℎ�#�3/4,: Benchmark throughput per USD hardware costs. The

conversion of MB/s to bytes/s in throughput is performed for ease of

visualization and reference to literature.

�ℎ
�#$ℎ�#�3/4, =
�ℎ
�#$ℎ�#�

	���

4. Relative Hardware Scale

Relative hardware scale relates two systems in terms of hardware components.

These numbers are mainly used to normalize numbers for relative resource

efficiency. Estimated costs incorporate this information holistically, and hence,

the calculation of cost efficiency is not affected by these ratios.

• Relative cluster nodes

��
�:/=;4: Number of nodes in system A compared to B.

��
�:/=;4,@,A =
�����@

�����A

• Relative CPU cores

��
�3/.;4: Number of CPU cores in system A compared to B.

41

��
�3/.;4,@,A =
	�
��@

	�
��A

• Relative hard drives

��
�=94>4: Number of hard drives in System A compared to B.

��
�=94>4,@,A =
�
���@

�
���A

5. Relative Resource Efficiency

Relative resource efficiency is used to compare efficiency of two different

systems. Each metric is based on the ratio between systems’ throughput for a

specific component and is normalized by the relative amount of hardware. An

exception is Relative Cost Efficiency which relates cost efficiency numbers that

are already normalized by their dependence on holistic cost estimations.

• Computational Efficiency

���
	
��	�3/.;4: Normalized throughput per CPU core of system A

compared to B.

���
	
��	�3/.;4,@,A =
�ℎ
�#$ℎ�#�:/=;,@

�ℎ
�#$ℎ�#�:/=;,A

∗
1

��
�:/=;4,@,A

• Disk I/O Efficiency

���
	
��	�=94>4: Normalized throughput per hard drive of system A

compared to B.

���
	
��	�=94>4,@,A =
�ℎ
�#$ℎ�#�=94>,@

�ℎ
�#$ℎ�#�=94>,A

∗
1

��
�=94>4,@,A

• Cost Efficiency

���
	
��	�3/4,: Benchmark throughput relative to system cost of system

A compared to system B.

���
	
��	�3/4,,@,A =

�ℎ
�#$ℎ�#�@

	���@

�ℎ
�#$ℎ�#�A

	���A

=
�ℎ
�#$ℎ�#�@

	���@

∗
	���A

�ℎ
�#$ℎ�#�A

42 4. Challenges and Approach

6. Metrics used for evaluation

The evaluation of the Tritonsort prototype is performed using benchmark

performance, computational efficiency, disk I/O efficiency and cost efficiency.

Subcomponents for internal sorting and disk I/O are evaluated using the

throughput metric.

• Benchmark performance (��
��
���	�)

• Computational Efficiency (���
	
��	�3/.;4)

• Disk I/O Efficiency (���
	
��	�=94>4)

• Cost Efficiency (���
	
��	�3/4,)

• Throughput (�ℎ
�#$ℎ�#�)

4.5 Architecting for Efficiency

Resource efficiency in computing is a broad topic, especially for benchmark

applications. With the target benchmarks “Gray Sort” and “Minute Sort” in mind

the thesis focuses on computational and I/O efficiency.

Computational efficiency is addressed mainly by the choice of internal sort

algorithm. Optimization of the actual implementation is based on the findings of

(11)(18)(26) and focuses at inexpensive CPU instructions and memory access.

Additionally, the interaction between operating system and the application is

taken into account to increase overall application efficiency, e.g. by avoiding

redundant memory allocation.

Efficiency at the disk I/O interface is achieved by using straight two-pass

algorithms for the “Gray” configuration and one-pass for “Minute”. This ensures

data on disk to be accessed the least amount possible (15) and is in line with

the findings of (18) regarding Minute sort. Also, disk access and manipulation of

data in memory are interleaved to avoid idle times at the I/O interface. Although,

Tritonsort relies on the operating system for disk access, it provides an

application specific implementation of write caching to circumvent issues

caused by sustained rate parallel file access.

Computational and I/O efficiency also depends on memory efficiency for

buffering and caching. In terms of memory efficiency two mayor issues are

43

tackled. First, sort algorithms performing in linear time are not capable of

operating in-place in general. That may effectively halve the potential size of

each data partition generated by the map stage and leads to an increased

number of partitions. This in turn impacts I/O performance as additional files are

co-located on each physical disk. To avoid this effect, the implementation

leverages from tag-based sorting and performs in-place permutation of the

actual input data. Secondly, the write cache is required to make optimal use of

available memory to achieve high I/O performance. This includes using light-

weight metadata structures and preventing memory fragmentation.

4.6 Design Constraints

The design of intermediate data storage and internal sorting components is

constrained by three factors. These are benchmark rules, operating

environment and Tritonsort’s pipeline architecture.

The most fundamental design constraint is imposed by the dataset size required

for the Gray Sort benchmark. 100TB of data do not fit into main memory of

state-of -the-art systems, and therefore, require memory external sort to be

performed. (With exceptions that come close with regard to main memory (23))

Also, this implies a runtime of multiple hours accompanied by high utilization of

I/O interfaces.

The benchmark categories “Gray Sort Indy” and “Minute Sort Indy” both use the

same format of input data. The data consists of a number of fixed-length binary

records with a fixed key and payload portion. The length restriction simplifies

implementation of buffers, iterators and sort algorithms. For example, offsets

can be calculated using simple indexing and records can be swapped in-place

by the sort implementation. Also, the distribution of key values can be assumed

uniform.

Additional rules require that data is never compressed when passing through

network or disk interfaces. Also, when using replication the number of replica for

input files has to match the number for output files. This has two implications for

component design. First, disk I/O performance can be optimized by minimizing

hardware and OS overheads, e.g. seeking or cache lookups. Secondly, internal

44 4. Challenges and Approach

sorting needs to move the full amount of data around memory, making the

memory bus a potential bottleneck.

The hardware environment consists of a homogenous series of rich nodes.

Hence, a distinction between specialized types of nodes is not necessary. Also,

the relatively small number of nodes allows a flat network topology with all

nodes connected to a central switch. A first estimation of I/O interface

bandwidth suggests that disk access should become the main bottleneck at a

maximum of 800 MB/s reading and writing per node. The 10Gbit Ethernet is

capable of transferring a maximum of 1250 MB/s full-duplex, and hence, should

not affect throughput negatively.

 Tritonsort’s pipeline architecture requires each stage to be designed as a

number of threaded “workers” that receive one unit of work at a time. A worker

may process or store that unit and pass a modified unit to the following stage of

the pipeline. Workers queue up work units before processing and queue

operations rely on locking for consistency. This design favors components to

operate on batches of data, in order to keep overheads to a minimum.

4.7 Limitations

The following section addresses the limitations of this paper. Resource-

efficiency is a major topic in, however, this is limited to technological aspects.

Economical aspects are approached from a hardware investment point of view,

ignoring issues longing from programmer and management efficiency. This also

extends to considerations about fault-tolerance and failure-redundancy that are

not required at prototype scale, but are obligatory in real-world deployments.

Programmer and Management efficiency is not addressed as it seems hard to

define and capture. Time requirements for preparing and running processing

tasks may be nullified by automated scripts, development times of pipeline

stages and optimization highly depend on task complexity and skill of the

programmer, and so on.

The paper mostly ignores bandwidth and latency changes in networking when

scaling the number of disks per node or the number of nodes in the cluster by

significant amounts. The current hardware test bed provides a 10Gbps

45

connection between nodes that can easily handle the throughput generated

from eight input disks - 8x100 MB/s disk input stream versus 1280 MB/s

network bandwidth. When additional disks are added network bandwidth for

individual links will become a bottleneck, while an increase in the number of

nodes will require additional switches or port multiplier hardware that limit

throughput between certain partitions of the cluster.

One of the main arguments supporting the use of pure MapReduce is trivial

tolerance in the presence of failures by replication. In case of Tritonsort failures

can manifest themselves as soft read errors and disks failures as well as nodes

and whole racks going down due to network or power issues. While disk

problems can be handled by RAID with moderate performance trade-offs any

failures at the scale of nodes, racks or switches can only be handled by

replication across multiple machines and locations. The aspect of fault-

tolerance is not covered by this paper and any solution based on redundancy

will likely lead to a decrease in efficiency numbers. However, (8) argue that the

low efficiency of existing systems is a major source of critical failures due to

comparably task runtimes and additional orders of magnitude in the number of

hardware components used.

47

5 Contributions

The following section describes work contributed to the code base of the

Tritonsort prototype. The structure focuses on two aspects of Tritonsort’s

distribution-sort based pipeline: storage of intermediate data on disk and

internal sorting.

Storage of intermediate data balances write and read performance of (2c) and

(3a) to achieve maximum average performance. This is achieved by caching

data pending for write efficiently (2b). The implementation of internal sort

addresses (3c) and balances memory overheads and computational cost.

Map

1a Read tuples from disk

1b Determine destination

1c Send to target node

Store

2a Receive incoming data

2b Cache in memory

2c Store on disk

Reduce

3a Read presorted data

3b Sort tuples

3c Store on disk

Figure 8 - Challenges and Contributions

The section first presents the disk I/O layer which represents a core component

of the Store stage. Interleaving of network and disk I/O, write caching and file

management are presented is this part. The second part takes a closer look on

the sort algorithm and the implementation of tag-based sorting and in-place

permutation of input data.

48 5. Contributions

5.1 Data persistence

The data persistence section addresses challenges in the Store stage (2b) and

(2c) by introducing a disk I/O layer with application specific write caching. This

also affects read performance in the Reduce stage of the pipeline (3a).

Map

1a Read tuples from disk

1b Determine destination

1c Send to target node

Store

2a Receive incoming data

2b Cache in memory

2c Store on disk

Reduce

3a Read presorted data

3b Sort tuples

3c Store on disk

Figure 9 - Contributions to Data Persistence

The dedicated Store stage of the pipeline collects incoming data from the

network via Receivers. These worker threads receive sets of tuples. Each batch

of tuples is preceded by metadata, determining the destination bucket and

batch size. The receiver mutually locks the indicated bucket, appends tuples to

the bucket buffer and releases access again. As multiple buckets are linked to

each physical disk, a Writer per disk continuously processes buckets and frees

up buffer memory again.

There are two main challenges when maximizing the throughput at the Store

stage of the pipeline: maximizing writer throughput and eliminating receiver

stalls. The writer has to deal with random disk access patterns as multiple

bucket files are co-located on each physical disk. In order keep seek-related

overheads low, the size of sequential writes has to be maximized. The write

size depends on the number of co-located files and the amount of bucket data

available in memory. Receiver stalls show up due to mutual exclusion, either

due to exclusion between multiple receivers or due to exclusion between writers

49

and receivers. In general, mutual exclusion is necessary to prevent data

corruption during concurrent access.

In the first part of this section the approach to maximizing sequential write size

is developed. This leads to a solution that can be extended to address issues

related to pipeline stalls which are discussed in the second part.

5.1.1 Caching in external distribution sort

The system architecture builds on memory external distribution sort that

introduces a fundamental mismatch between access patterns to data during the

map stage and the reduce stage. The following section describes its cause and

two approaches to handle it.

For ease of representation, the example below focuses on the activity of a

single disk. The behavior is comparable for multiple disks and machines

performing parallel distribution sort. Although, portions of data are sent and

received over the network and multiple input files are read in parallel, the store

and reduce stage behave similarly. Data destined for the same bucket is always

stored on the same physical drive by Tritonsort.

Figure 10 - Processing input data

Assuming uniformly distributed key

values in the input data, any input

file contains a certain portion of

tuples for every single target

bucket. In the map stage input files

are processed serially, and hence,

produces data destined for every

single bucket within the system at

about an even rate.

50 5. Contributions

Figure 11 - Processing intermediate data

The reduce stage in contrast

processes buckets serially and

requires all data of a single bucket

to be present at once. The

concatenation of sorted buckets is

guaranteed to be sorted globally

only, if each tuple within the

bucket’s key range is taken into

account during internal sort.

The store stage of Tritonsort’s pipeline is in charge of collecting data from the

mapper for buckets in parallel and delivering complete buckets serially to the

reducer. This has two implications: first, map and store stage must process all

input data before the reduce stage can be started. Second, data persistence

involves random disk access at some point as the total amount of data does not

fit into main memory. The first issue is addressed by the pipeline controller and

is not of further interest. The second poses the question whether random

access should be performed during writing or reading.

Figure 12 - Accessing intermediate data with random read

In case of random read access, data from the mapper is stored in intermediate

files that represent partially sorted runs. This resembles the behavior of merge

sort approaches, with the tuples being sorted by a portion of their key value only

51

(depending on mapper configuration). When the reducer accesses data of a

single bucket, the according chunk in each file has to be accessed.

Figure 13 - Accessing intermediate data with random write

The alternate approach is random write access. Each bucket is represented by

an intermediate file and incoming data is appended to the according file. The

reducer accesses a single logical file at a time when processing buckets.

Compared to the random read approach this allows additional control over

physical placement of data through file-system options, e.g. by pre-allocating

file space. Also, implementation of a custom read-ahead policy is difficult and

requires modification of kernel and file-system while application-specific write

caching can be implemented with relative ease.

In either way however, non-sequential data access is required what causes

disks to introduce seeks in order to access required locations. In terms of

throughput the time spent seeking is lost as it is neither used for writing or

reading data. The common way to work around this issue is buffering, which is

inherently limited by the amount of memory and disk cache.

Tritonsort employs random write access to re-order intermediate data. Caching

is mainly performed in main memory as disk controllers and disks typically hold

less than a second worth of data incoming from the network. Write-caching is

usually handled by the operating system and file system, but did not perform

well in an a-priori experiment. This did not come unexpectedly due to the

52 5. Contributions

developers of NOW-Sort reporting similar issues for comparable workloads

years ago.

Hence, tuning the efficiency of write buffering in Tritonsort is the central task

when optimizing the Store stage. Data received by a node is almost uniformly

distributed across all buckets while individual buckets are processed serially by

writers repeatedly appending data to its corresponding file on disk. While a

bucket is being processed by a writer, additional data might be received which

leads to a potential mutual exclusion issue. So, in order to achieve optimal

throughput the size of each sequential write has to be maximized while blocking

times for receivers and writers have to be minimal.

5.1.2 Caching Buckets

The first question that arises when dealing with disk access is whether to rely

on default file system behavior or to handle caching oneself. The figure below

shows disk write performance for typical workload generated by Tritonsort’s

processing pipeline. Three implementations of the writer stage are compared - a

primitive writer relying on buffered I/O, a writer using unbuffered I/O and manual

double buffering and the final design using unbuffered I/O and dynamic buffer

sizes.

Figure 14 - Impact of caching on write performance

The file system still handles file-space allocation, but most operating system

and file system caches are circumvented using Linux’ Direct I/O interface.

50,0

60,0

70,0

80,0

90,0

100,0

110,0

1 2 4 8 16 32 64 128 256 512

w
ri

te
 t

h
ro

u
g

h
p

u
t

(M
B

/s
)

Number of files

buffered

dynamic direct

double direct

Buffered I/O and double buffering show comparab

characteristics, with unbuffered I/O hav

dynamic buffer sizes for buckets is s

significant advantage as the number

input data. Hence, manual caching brings a notable boost in write p

A first approach to manual caching is the use of a single buffer per bucket for

collecting incoming data. Whenever a receiver

appended to a buckets buffer. When the buffer is full it is handed to the writer

and the receiver waits until space is available.

a file, clears the buffer and returns it for reuse.

This solution is simple, but

processes a bucket, any receiver accessing that bu

stall is induced into the pipeline

may become blocked too any slow down the rest of the system. With a single

buffer concurrent modification of

thus requiring mutal exclusion among receivers as well as between receivers

and writer. Receivers write small amounts of data to

rapid succession while writers block a relatively long time on a single bucket

when writing its contents to disk

behavior between receivers and writers with reduced performance.

The figure below shows part of a visual representation of worker activity for

receivers and writers for a benchmark run

represents the time line for a single worker thread. Colored areas indicate

activity while blank areas show inactivity.

Figure 15 - Writer and Receiver stall

Buffered I/O and double buffering show comparable performance

characteristics, with unbuffered I/O having the advantage. The writer using

dynamic buffer sizes for buckets is slower for small numbers

significant advantage as the number of files increases with growing amounts of

Hence, manual caching brings a notable boost in write p

manual caching is the use of a single buffer per bucket for

collecting incoming data. Whenever a receiver gets data from the network

buffer. When the buffer is full it is handed to the writer

the receiver waits until space is available. The writer appends the buffer to

a file, clears the buffer and returns it for reuse.

This solution is simple, but has a major disadvantage. Every time a writer

, any receiver accessing that bucket blocks and

into the pipeline. If receivers block long enough, sending nodes

may become blocked too any slow down the rest of the system. With a single

oncurrent modification of data in a bucket could lead to data c

thus requiring mutal exclusion among receivers as well as between receivers

Receivers write small amounts of data to many different buckets in

rapid succession while writers block a relatively long time on a single bucket

g its contents to disk. This leads to an almost synchronous

between receivers and writers with reduced performance.

The figure below shows part of a visual representation of worker activity for

receivers and writers for a benchmark run using the above approach. Each row

represents the time line for a single worker thread. Colored areas indicate

activity while blank areas show inactivity.

Writer and Receiver stall

53

le performance

advantage. The writer using

lower for small numbers, but gains a

growing amounts of

Hence, manual caching brings a notable boost in write performance.

manual caching is the use of a single buffer per bucket for

data from the network, it is

buffer. When the buffer is full it is handed to the writer

The writer appends the buffer to

. Every time a writer

cket blocks and a potential

If receivers block long enough, sending nodes

may become blocked too any slow down the rest of the system. With a single

could lead to data corruption,

thus requiring mutal exclusion among receivers as well as between receivers

many different buckets in

rapid succession while writers block a relatively long time on a single bucket

ds to an almost synchronous pipeline

between receivers and writers with reduced performance.

The figure below shows part of a visual representation of worker activity for

using the above approach. Each row

represents the time line for a single worker thread. Colored areas indicate

54

A receiver fills up a buffer and han

and exclusively locks the buffer. During that period of time almost all receivers

will encounter data destined for that bucket and block too. When the writer

finishes, receivers start filling in data again

However, the writer cannot be active during this period of time either, as it’s

work queue is empty. The consequence is a drop in receiver and writer

performance.

The impact of mutual exclusion

buffer that can be swapped

processed. This interleaves disk and network I/O by allowing receivers to

continue collect data even though the buffer

became full during the process.

Taking a closer look on the behavior of receivers and writers at runtime shows

that buckets fill up at almost the same rate. Even though a receiver can now

continue writing to a bucket when it has been passed to the writer, it may block

on another bucket while the writer is still busy processing the first one

buckets fill up at the same rate t

repeated pipeline stalls

blocking to a certain extent

A possible solution to eliminate receiver blocking is the introduction of a spare

buffer per bucket. Though, a receiver might still block on a bucket when both

buffers are filled up and pending a write, the pipeline

of the writer stage. The figure below represents worker activity over time again,

with the notable difference of interleaved receiver and writer activity.

Figure 16 - Writer and Receiver decoupled

 5

A receiver fills up a buffer and hands it to the writer. The writer starts processing

and exclusively locks the buffer. During that period of time almost all receivers

will encounter data destined for that bucket and block too. When the writer

finishes, receivers start filling in data again until another buffer gets full.

However, the writer cannot be active during this period of time either, as it’s

work queue is empty. The consequence is a drop in receiver and writer

exclusion can be reduced by adding a ded

be swapped in by the writer when a buffer

This interleaves disk and network I/O by allowing receivers to

data even though the buffer originally underlying

he process.

Taking a closer look on the behavior of receivers and writers at runtime shows

that buckets fill up at almost the same rate. Even though a receiver can now

continue writing to a bucket when it has been passed to the writer, it may block

r bucket while the writer is still busy processing the first one

buckets fill up at the same rate that pattern repeats for every b

 on the receiver side. Thus, the spare buffer reduces

to a certain extent, but does not prevent it entirely.

solution to eliminate receiver blocking is the introduction of a spare

buffer per bucket. Though, a receiver might still block on a bucket when both

buffers are filled up and pending a write, the pipeline basically runs at the speed

The figure below represents worker activity over time again,

with the notable difference of interleaved receiver and writer activity.

Writer and Receiver decoupled

5. Contributions

ds it to the writer. The writer starts processing

and exclusively locks the buffer. During that period of time almost all receivers

will encounter data destined for that bucket and block too. When the writer

until another buffer gets full.

However, the writer cannot be active during this period of time either, as it’s

work queue is empty. The consequence is a drop in receiver and writer

be reduced by adding a dedicated spare

buffer starts being

This interleaves disk and network I/O by allowing receivers to

originally underlying the bucket

Taking a closer look on the behavior of receivers and writers at runtime shows

that buckets fill up at almost the same rate. Even though a receiver can now

continue writing to a bucket when it has been passed to the writer, it may block

r bucket while the writer is still busy processing the first one. As

hat pattern repeats for every bucket causing

Thus, the spare buffer reduces

solution to eliminate receiver blocking is the introduction of a spare

buffer per bucket. Though, a receiver might still block on a bucket when both

runs at the speed

The figure below represents worker activity over time again,

with the notable difference of interleaved receiver and writer activity.

55

The use of double-buffering conflicts with the initial motivation of maximizing

write size, however, as it halves the amount of data available per sequential

write.

When investigating the fill and drain rates of buffers associated to a single

bucket it shows that half the available memory is not actually occupied by tuple

data during runtime. All buffers held by the receivers fill continuously over the

period of time that is required by the writer to transfer the contents of an equally

large set of buffers to disk. Buffers are freed up by the writer and returned to

their according buckets. In the Gray sort configuration, the newly freed memory

is sufficient to collect a large portion of incoming data for a single bucket. Even

though, most parts of the memory region are unused for a period of time, they

cannot be reused for a different bucket that requires additional storage space to

prevent stalling.

Sequential write size can be increased by a factor of two in this context using

more fine-grained buffer management. Instead of allocating fixed amounts of

memory per bucket, memory could be shared across all buckets related to a

single writer. A single memory pool allocates a series of small buffers up to a

given limit and provides these on demand. A bucket can request additional

buffer space when a receiver fills in data, and analogously, the bucket returns

buffer space to the pool when it has been processed by a writer. Although, the

bucket internally encapsulates any interaction with the buffer pool it still

increases complexity at the writer side. The transfer of a single bucket may

involve data being collected from multiple different locations in memory, but

data can be written to disk sequentially.

Resizing bucket buffers dynamically helps memory efficiency too. When a writer

processes a single bucket it frees up multiple smaller chunks of memory. As the

total amount of memory available to buckets is shared throughout the pool,

heavily populated buckets can expand using one of these chunks while empty

buckets do not drain the pool unnecessarily. This allows different buckets to

effectively use different amounts of memory and dynamically adapt to changes

in demand.

56 5. Contributions

The use of a memory pool allows tight control of memory allocated and

prevents losses due to memory fragmentation. Also, multiple writer stages are

able of increasing concurrency of pool operations by using a separate pool for

their corresponding set of buckets. Loss due to memory fragmentation is

prevented by using a fixed buffer chunk size.

There is a trade-off for increased management activity, however, that mainly

affects computational efficiency. Firstly, mutual exclusion is required at the level

of memory pool operations. Multiple buckets are written to and consumed from

at the same time by receivers and writers, potentially causing different resize

operations to overlap. Secondly, the number of pool operations is inversely

related to the buffer chunk size. When the buffer size is halved, the number of

acquisition and return operations doubles. Also, the number of operations

required by receivers and writers goes up with decreasing buffer size. Tritonsort

typically uses a chunk size between 1MB and 4MB for bucket buffers, which

represents a well-performing trade-off between flexibility and overheads.

5.1.3 Writing Buckets

Another substantial change in the pipeline architecture becomes necessary

when transitioning from a single, continuous buffer to dynamic re-allocation

model. Activity of the writer stage can no longer be triggered by receivers

passing buffers to process as there is not any fixed limit to bucket size that

indicates necessity of a write. The question arises, how to determine the

necessity of a write and, in case multiple buckets require processing, how to

determine the order they are handled in.

One solution addressing the missing size limit of buckets is the introduction of a

user-define threshold value. When a receiver surpasses the limit while

collecting data the according writer is notified and buckets are written to disk in

the order they are enqueued. A receiver may continue writing data to the bucket

even while it is pending a write as long as there is sufficient memory provided

by the memory pool.

The fixed threshold has two main drawbacks, though. First, the threshold has to

be tuned manually and determining the optimum involves several difficulties. If

the threshold is too small, the average write size goes down, degrading overall

throughput. If the threshold is too large,

buckets are enqueued to writers either degrading performance by blocking

several receivers or in worst case causing a deadlock due to buckets not

reaching the threshold at all. Second, the use of a fixed threshold value

prevents dynamic changes in writer behavior when fluctuations occur in the

amount of incoming data.

enqueued eventually bringing writers to a stop even. When this is followed by a

proportional increase the queue size at writer grows to higher than average

levels. This in turn may cause receivers to block due to the memory

running out of buffer chunks resulting in an over

data transfer rate. The resulting behavior is unstable at runtime and repeatedly

causes pipeline stalls at receiver and writer side.

Figure 17 - Writer using fixed thresholds

Decoupling receiver and writer activity gets rid of the necessity for a threshold

that triggers writer activity. Receivers read data off the network and store it into

buckets as before, but do not longer care for notifying

become pro-active in terms of selecting buckets and writing contents to disk.

This removes the push

eliminating direct communication. Writers become active in the system a

same time with receivers and

writer stage is shut down when receivers finished work and there is not any

pending data left in buckets.

policy used for bucket selection. T

as the ability of the writer stage to adapt to dynamically changing loads.

A simple policy selects buckets

ensures fairness of write

constant, as is throughput.

throughput. If the threshold is too large, buffer chunks may be used up before

buckets are enqueued to writers either degrading performance by blocking

al receivers or in worst case causing a deadlock due to buckets not

reaching the threshold at all. Second, the use of a fixed threshold value

prevents dynamic changes in writer behavior when fluctuations occur in the

amount of incoming data. A temporary decrease might delay buckets being

enqueued eventually bringing writers to a stop even. When this is followed by a

proportional increase the queue size at writer grows to higher than average

levels. This in turn may cause receivers to block due to the memory

running out of buffer chunks resulting in an over-proportional drop in inbound

. The resulting behavior is unstable at runtime and repeatedly

causes pipeline stalls at receiver and writer side.

Writer using fixed thresholds

Decoupling receiver and writer activity gets rid of the necessity for a threshold

that triggers writer activity. Receivers read data off the network and store it into

buckets as before, but do not longer care for notifying writers. Writers in turn

active in terms of selecting buckets and writing contents to disk.

This removes the push-based connection between both pipeline stages,

eliminating direct communication. Writers become active in the system a

me with receivers and continuously choose and process buckets. The

writer stage is shut down when receivers finished work and there is not any

pending data left in buckets. A new aspect introduced by this approach is the

for bucket selection. The policy impacts sequential write size as well

as the ability of the writer stage to adapt to dynamically changing loads.

policy selects buckets in a pre-determined order for processing. This

write scheduling and the size of sequential writes

throughput. This can be realized using a pre-permuted ordering

57

buffer chunks may be used up before

buckets are enqueued to writers either degrading performance by blocking

al receivers or in worst case causing a deadlock due to buckets not

reaching the threshold at all. Second, the use of a fixed threshold value

prevents dynamic changes in writer behavior when fluctuations occur in the

crease might delay buckets being

enqueued eventually bringing writers to a stop even. When this is followed by a

proportional increase the queue size at writer grows to higher than average

levels. This in turn may cause receivers to block due to the memory pool

proportional drop in inbound

. The resulting behavior is unstable at runtime and repeatedly

Decoupling receiver and writer activity gets rid of the necessity for a threshold

that triggers writer activity. Receivers read data off the network and store it into

writers. Writers in turn

active in terms of selecting buckets and writing contents to disk.

based connection between both pipeline stages,

eliminating direct communication. Writers become active in the system at the

and process buckets. The

writer stage is shut down when receivers finished work and there is not any

A new aspect introduced by this approach is the

he policy impacts sequential write size as well

as the ability of the writer stage to adapt to dynamically changing loads.

for processing. This

equential writes is

permuted ordering,

58

e.g. round-robin. Alternatively, buckets can be selected on

writer gets ready for processing. By selecting the bucket containi

amount of data, the policy may optimize dire

Figure 18 - Writer using demand

The implementation used by Tritonsort employs a deman

pattern. Write performance b

comparing round-robin and on

the demand-based approach. However, for large amounts of data as found in a

100TB Gray Sort run a significant difference couldn’t be de

5.1.4 Conclusion

Disk access is a core factor of system performance and efficiency as the overall

pipeline is mostly I/O bound.

physical file layout and write order, a number of optimization

available.

First, inference between network I/O and disk I/O can be avoided by decoupling

activity in the Writer stage from the Receiver stage. This allows both types of

I/O to be overlapped. Secondly, write performance for high numbers of c

located files can be improved by implementing an application

cache-layer. This adds complexity to the design, but gains stable and

predictable disk throughput.

 5

. Alternatively, buckets can be selected on-demand every time a

ready for processing. By selecting the bucket containi

policy may optimize directly for sequential write size.

Writer using demand-based scheduling

The implementation used by Tritonsort employs a demand-based selection

pattern. Write performance benchmarks based on the dynamic buffer approach

robin and on-demand selection show a slight advantage for

based approach. However, for large amounts of data as found in a

100TB Gray Sort run a significant difference couldn’t be determined.

Disk access is a core factor of system performance and efficiency as the overall

pipeline is mostly I/O bound. Although, commodity file systems limit control over

physical file layout and write order, a number of optimization techniques are

First, inference between network I/O and disk I/O can be avoided by decoupling

activity in the Writer stage from the Receiver stage. This allows both types of

I/O to be overlapped. Secondly, write performance for high numbers of c

located files can be improved by implementing an application

. This adds complexity to the design, but gains stable and

predictable disk throughput.

5. Contributions

demand every time a

ready for processing. By selecting the bucket containing the highest

ctly for sequential write size.

based selection

enchmarks based on the dynamic buffer approach

demand selection show a slight advantage for

based approach. However, for large amounts of data as found in a

termined.

Disk access is a core factor of system performance and efficiency as the overall

Although, commodity file systems limit control over

techniques are

First, inference between network I/O and disk I/O can be avoided by decoupling

activity in the Writer stage from the Receiver stage. This allows both types of

I/O to be overlapped. Secondly, write performance for high numbers of co-

located files can be improved by implementing an application-specific write

. This adds complexity to the design, but gains stable and

59

5.2 Internal sort

The internal sort implementation addresses the main challenge of the Reduce

stage (3b) by providing a well-performing algorithm. The maximum buffer size

supported by the reduce stage significantly affects I/O in (2c) too, as it implicitly

determines the number of intermediate files.

Map

1a Read tuples from disk

1b Determine destination

1c Send to target node

Store

2a Receive incoming data

2b Cache in memory

2c Store on disk

Reduce

3a Read presorted data

3b Sort tuples

3c Store on disk

Figure 19 - Contributions to Internal Sorting

Internal sort is performed in the Reduce stage of the processing pipeline. The

Gray Sort configuration reads stored buckets from disk in and sorts them. The

Minute sort configuration applies internal sort directly to buckets stored in

memory. In both cases internal sort is required to be faster than disk I/O to

avoid bottlenecking.

Tritonsort uses a linear time Radix sort that operates on key tags instead of full

tuples. The use of 16-bytes key & pointer tags reduces runtime compared to

algorithms moving full 100-bytes tuples. Also, Radix sort is modified to permute

input buffers in-place in order to spare memory. The tag sort approach was first

implemented by (11) and applied to radix sort by (18). In contrast to NOW-sort

the implementation used by Tritonsort does not limit the algorithm’s internal

buffer size. This allows sorting large buffers without introducing a merge step,

but trades this for decreased cache efficiency.

The introduction of the specialized sort algorithm is necessary in the first place

as the Quicksort implementation does not provide sufficient performance. The

60 5. Contributions

figure below shows sort performance on the test bed hardware for a single

physical processor operating on different buffer sizes.

Figure 20 - Internal Sort runtime

Figure 21 - Internal Sort throughput

In the Gray configuration, the test bed’s 8 physical processors need to deliver

output for 8 disks in parallel. Each bucket holds about 800 MB of data, what

translates to 66,1 MB/s per core using Quicksort. Assuming an average

throughput of 80 MB/s per disk, the system would lose 15-20 percent of

potential I/O throughput. Using the Minute configuration the drop becomes

significantly higher as all 16 disks are used for output in parallel. Even though,

0

10

20

30

0 500 1000 1500

T
im

e
 (

s)

buffer size (MB)

Quicksort

Radix Tag Sort

0

100

200

300

400

0 500 1000 1500

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

buffer size (MB)

Quicksort

Radix Tag Sort

61

Quicksort performance goes up as buffer size decreases to 100 MB, sorting

would provide 700 MB/s and underutilize the potential I/O throughput of 1280

MB/s. Radix Tag Sort provides 4 times higher throughput per core than

Quicksort, and hence, is capable of saturating available I/O bandwidth.

On a high level, the sort stage operates in three phases: tag extraction, radix

sort and permutation. The first step performs a linear scan through the input

data and constructs tags containing each tuples’ keys and memory offsets. The

tag buffer is then handed over to a conventional radix sort using an 8-bit radix or

256 buckets, respectively. Each round in radix sort consists of a counting step

for building a histogram of key values, a step reallocating buffer space to

buckets and the actual distribution step of tags to buckets. After 10 rounds each

key-bit has been taken into account and the concatenation of buckets yields the

final ordering of tags. The memory offsets stored within the tags are then used

to create the lookup table required for permuting the input buffer in-place.

5.2.1 In-place permutation

In-place permutation is performed using a lookup table and an additional buffer

capable of holding a single tuple. A lookup table maps destination offsets to

source offsets with “get from” semantics. The algorithm uses the table to re-

order items and solve dependency cycles.

The figure below illustrates in-place reordering of an input buffer of size 3,

containing tuples “C”, “B” and “A”. In the example field 0 requires contents of

field 2 to be in order. The numbers 0 to 2 represent indices in the input array

and “buffer” denotes the external space used for moving and swapping

elements. Finally, the “from” row represents the contents of the lookup table,

mapping its value as source offset and its index as destination for move

operations.

1.

The process starts by checking the first

entry in the lookup table at offset 0.

This returns “2”, indicating that the

contents of field 2 need to be moved to

field 0.

62 5. Contributions

2.

The algorithm then moves the contents

of field 0 to the external buffer.

3.

Contents from field 2 are moved to

field 0 and the table entry is marked

done by setting source index equal

destination index.

4.

Steps 1 to 3 repeat for field 2 and

consecutive entries until the cycle is

resolved. At completion of each cycle

the contents of the external buffer are

moved to the free region.

5.

In order to correctly reorder buffers that

contain multiple cycles any remaining

table entries are scanned and

processed analogously until all entries

are marked done.

Figure 22 - Radix Sort in-memory reordering

The algorithm has linear run-time as each field is moved once at maximum.

Also, the detection of multiple cycles can be performed by linearly scanning

elements in the lookup table once from front to back and resolving cycles as

they are encountered.

5.2.2 Memory requirements

The demand for memory is dominated by the input buffer size, followed by

space requirements for tags, buckets and lookup table. Meta data of buckets

and histogram information do not depend on the input size. The following

analysis of memory requirements is described using the big-O notation.

The input buffer requires O(n) space holding full tuples. Tag extraction occupies

another O(m) with m >= 0.1n supposing the use of “Indy” binary records with

10-byte key and 90-byte payload. Also, tags need to hold an additional

reference to their source tuple and platform specific padding increases memory

usage. The test environment used for benchmark runs showed an overhead of

63

m = 0.16n for tags. The re-distribution step of radix sort requires two distinct

sets of buffers, one to read from and another one to write to. Each set of

buckets must be capable of holding the entire number of tags, resulting in a

total overhead for tags and buckets of O(2m). The lookup table for in-place

permutation does not introduce additional memory requirements due to reuse of

space allocated to the unused set of buckets. In total the implementation of tag-

based radix sort requires O(n + 2m) memory.

The size of the input buffer cannot be reduced beyond O(n) without introducing

another I/O pass, and hence, tag-based radix sort is able to generate a run

roughly at size of available main memory. The memory required by tag buffers

could be reduced further by using tags that hold a portion of the actual tuple

key, e.g. 4 instead of 10 bytes. This is sufficient to perform 4 rounds of radix

sort before the input buffer needs to be re-scanned in order to update tag keys

for a set of consecutive rounds. Assuming a 4-byte key portion and a 4-byte

tuple reference, tag buckets could be transformed to use m’ = 0.08n and

effectively halve the overhead to O(m’ = m/2). This approach trades and

additional pass of random access to data in the input for reduced amounts of

memory being copied during individual radix rounds. Another option is in-place

reordering of tags, in analogy to tuple reordering. Though, this requires an

additional buffer to hold the lookup table the overhead is reduced to O(m + m’).

Memory overheads can be reduced in practice by amortizing them across

multiple input buffers processed by a pipeline stage. Assuming that a single

sorter processes a buffer faster than a single reader can access disks then the

set of sorters can be smaller than the set of readers without degrading pipeline

performance over sufficiently long runtimes. In case of Tritonsort, micro-

benchmarks measure a maximum throughput of 100 MB/s per reader and 250

MB/s per sorter, so 4 sorters are sufficient to process data incoming from 8

readers.

5.2.3 Conclusion

The computationally most expensive task performed in the pipeline is internal

sorting. Hashing in the map stage and caching in the store stage do create

some overheads, but they are comparably small. As large amounts of data are

64 5. Contributions

sorted the use of a linear-time algorithm has an intrinsic advantage compared to

comparison-based approaches. Due to tag-based sorting performance and

memory efficiency can be improved, although, this adds the necessity for

separate permutation of input data.

65

6 Evaluation and Discussion

The Evaluation section is organized in four parts. First, internal sort and the disk

I/O layer are tested and compared quantitatively to alternative approaches.

Then, the integral system is compared to state-of-the-art systems in the context

of Sort Benchmarks regarding performance and resource-efficiency.

6.1 Internal sort

Internal sort is implemented as Radix sort and operates on tags instead of full

tuples. Radix sort guarantees linear run times, but increases memory

consumption compared to standard Quicksort. The memory usage in turn is

addressed by relying on tags while sorting and by reordering the input buffer in-

place. The use of tags also speeds up sorting as the amount of data moved

between (Radix-)buckets is decreased.

The benchmark is run on a single node in Tritonsort’s test bed. The setup used

for comparison looks as follows: input data is generated once for all test runs.

For each buffer size, 5 consecutive sort runs are performed in memory using

either sort algorithm. The run time is taken each time for a single buffer getting

sorted by a single-threaded implementation of the algorithm. After the process

completes average times are calculated and checksum and order of tuples are

verified.

Input data is stored in a single 1600 MB file. It contains 16.000.000 tuples with a

fixed length of 100 bytes. The first 10 bytes are considered the key value, the

key values are distributed uniformly between 0 and 280-1. Before each sort run,

a buffer in main memory is filled with a portion of these tuples from the

beginning of the file to an offset depending on the maximum buffer size.

The benchmark is performed for 100MB, 200MB, 400MB, 800MB, and 1600MB

buffer size. These values are chosen as they represent likely values for bucket

files produced by Tritonsort’s distribution sort pass depending on configuration.

The figures below present the sort time and throughput relative to buffer size.

66 6. Evaluation and Discussion

Figure 23- Internal Sort throughput

Input size

(tuples)

Input size

(MB)

Radix Sort

(MB/s)

Quicksort

(MB/s)

1.000.000 100 343,1 89,6

2.000.000 200 328,9 81,0

4.000.000 400 317,3 73,9

8.000.000 800 305,8 66,1

16.000.000 1600 296,2 60,8

Table 8 - Internal Sort throughput

The experiment shows an advantage for Radix Tag sort by a factor of 3.8 for

100MB buffers that continually increases up to 4.9 for 1600MB buffers. For a

typical benchmark run of “Gray Sort” Tritonsort uses buffers of about 800MB. In

this scenario, Radix Tag sort provides 4.6 times the performance delivered by

Quicksort.

0

100

200

300

400

0 200 400 600 800 1000 1200 1400 1600

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

buffer size (MB)

Quicksort

Radix Tag Sort

67

Figure 24 - Internal sort time

Input size

(tuples)

Input size

(MB)

Radix Sort

(s)

Quicksort

(s)

1.000.000 100 0,29 1,12

2.000.000 200 0,61 2,47

4.000.000 400 1,26 5,41

8.000.000 800 2,62 12,11

16.000.000 1600 5,40 26,33

Table 9 - Internal Sort time

From a runtime perspective Radix Tag Sort scales almost linearly with input

size. Quicksort shows non-linearity from 200 MB buffer size upward. Also, the

runtime graph directly reflects the observations made by throughput

measurements. Radix Tag Sort performs the same amount of work in one fourth

to one fifth of the time required by the Quicksort implementation.

6.1.1 Discussion

The relative speed increase of Radix Sort of a factor of four compared to

Quicksort is a necessary improvement to performance. Without this, the

processing pipeline is bottlenecked by internal sorting instead of disk I/O which

should be the limiting factor throughput the pipeline for the purpose of

scalability. The performance gain is bought by an increase in memory usage

per sorter instance however. For the Sort Benchmark scenario this is the central

0

10

20

30

0 200 400 600 800 1000 1200 1400 1600

T
im

e
 (

s)

buffer size (MB)

Quicksort

Radix Tag Sort

68 6. Evaluation and Discussion

disadvantage compared to Quicksort, and hence, most development effort was

put into reducing the overhead. Per sorter instance Radix Tag Sort uses about

30 percent additional memory over Quicksort. Applied to the context of parallel

processing the advantage in performance allows using less parallel instances at

the same time to process comparable amounts of data. In Tritonsort, typically 3-

4 Radix Sort instance are used compared to 8 Quicksort instances. For a

system’s perspective this lowers memory overhead for sorting again to 10-15

percent.

This brings up another point, namely synthetic benchmark results. The

presented sorter benchmark operates in a completely isolated environment.

When running in a pipeline configuration multiple sorters are operating in

parallel and share physical resources. In this case cache effects and

competition reduce performance. A direct comparison of Quicksort and Radix

Sort performance in a full pipeline run is difficult. Practically, sustained rate

throughput can only be approximated by varying the number of parallel sorter

instances and measuring system performance as runtime is usually constrained

by disk I/O. If the system slows down, internal sorting is certainly the bottleneck.

This approach leads to the numbers of 4 Radix Sort instances or 8 Quicksort

instances provided above, although the 8 parallel Quicksort instances still do

not outperform disk I/O sufficiently to deal with variations in bandwidth.

Taking a closer look on the implementation of Radix Tag Sort, there is a solid

base implementation of the general algorithm. Up to this point optimization

removed obvious slowdowns by timing individual passages of the

implementation during benchmarking. This includes unnecessary memory

reallocation and redundant arithmetic. However, typical aspects of cache-

awareness and Assembler-level optimization are ignored even though they

provide another perspective for improvement. Several cache-based

improvements to Radix sort implementations are available in literature, e.g. a

two stage bucket-radix sort as employed by NOW-Sort. This is left for further

work as bottlenecks in the processing pipeline are already shifted towards disk

and network I/O when using the current state of the Radix Tag Sort

implementation.

69

More some more into the area of further work, two potential changes to the

system can be identified that may pose a challenging task for re-architecting the

internal sort implementation. First, the current design relies on single threaded

processing per input buffer. If disk I/O relies on distributed file systems or RAID

in the future, buffer size may increase substantially and create a bottleneck.

Second, the introduction of variable-length keys could decrease performance

when realizing compatibility via zero-padding or comparable approaches.

Overall, the development of the Radix Tag Sort-based component successfully

resolves the bottleneck of internal sorting on the disk-heavy cluster nodes in

Tritonsort’s test bed. Also, the solution provides headroom in case further

increases in I/O bandwidth.

6.2 Disk access

The disk I/O layer depends on the file system to handle raw disk control and file

space allocation. Write Caching and buffering are handled manually by

Tritonsort in order to increase throughput while writing in the Store stage and

reading in the Reduce stage of the pipeline.

Tritonsort uses a distribution sort approach for memory external sort too and

creates a number of intermediate files; one file per bucket. Multiple files are co-

located on each physical disk and data is received for all buckets in parallel.

When continually storing incoming data on disk an overhead is introduced as

disks need to seek the appropriate physical positions before writing. The

overhead can be reduced when (file-)system buffers increase the size of each

sequential access.

To evaluate the performance of different approaches a benchmark is set up that

mimics distribution sort behavior by writing to files in parallel first and reading

sequentially afterwards. First, a fixed amount of random input data is generated

and stored in buckets in parallel at equal rate. Meanwhile the implementation of

bucket buffers and Writers stores data on disk autonomously. After input

generation completes, the benchmark waits for Writers to completely persist

any remaining data and flush file system caches via synching. In a second step

the files are read sequentially one by one, using a single fixed buffer.

70 6. Evaluation and Discussion

The benchmark is run on Tritonsort’s test bed hardware using a single disk.

Time is taken from the start of input generation to completion of synching and

from the start of reading to the end of access to the last file. The benchmark is

repeated for different numbers of buckets (and intermediate files) and the

resulting numbers are averaged from benchmark runs on 4 different nodes.

The disk I/O layer in Tritonsort uses buckets that dynamically share a common

memory pool on-demand. The design and implementation is complex compared

to “intuitive” solutions relying on manual double buffering or default the default

file system behavior.

The “buffered” implementation does not allocate memory for buckets manually.

Instead, each incoming chunk of data is handed to the file system. The files

system and operating system may freely dedicate a large portion of main

memory to file caches.

The “double direct” implementation manually allocates two fixed-size buffers to

each bucket. One buffer is used to receive data into, the other one is written to

disk. On completion, buffers are swapped out. Buckets are written to disk in

round-robin order and data is transferred invoking Linux direct I/O interface.

The “dynamic direct” implementation uses a shared memory pool for all buckets

co-located on a physical disk. (Hence, a single pool is used in the benchmark)

Buckets are written to disk based on demand - every time the Writer becomes

available, the contents of the largest bucket are written to disk. The

implementation relies on direct I/O too.

Although direct I/O circumvents some system caches, the file system still

handles disk space allocation. Also, buffers on hard drives and drives

controllers are active and perform own cache optimizations. The total amount of

input data per run is set to a multiple of the amount of main memory to avoid

additional cache effects when reading data in the second pass.

6.2.1 Write performance

The figure below illustrates benchmark performance during the write phase. The

number of buckets is plotted on the horizontal axis, write performance is shown

71

on the vertical axis. The performance axis is offset at 40 MB/s for improved

visibility.

Figure 25 - Intermediate data write performance

Number of files Buffered

(MB/s)

double direct

(MB/s)

dynamic direct

(MB/s)

1 57,0 100,0 100,0

2 62,3 98,1 98,0

4 92,4 95,7 95,7

8 90,4 92,8 92,5

16 89,5 91,7 91,7

32 87,4 86,3 86,7

64 84,8 81,6 83,2

128 80,9 65,8 79,8

256 76,0 67,5 76,3

512 62,3 63,8 72,2
Table 10 - Intermediate data write performance

For small numbers of files, double-buffering and dynamic buffers perform

equally, the file system-based approach surprisingly underperforms. In the

range from 4 to 64 co-located files, all three implementations provide almost

identical performance. The double buffering solution starts losing performance

for 128 and more files. Dynamic buffering and the file-system solution continue

at comparable rate for up to 256 files, when the dynamic buffer implementation

gains an advantage again.

When performing a full 100TB sort run as required by the large-scale Sort

Benchmark “Gray Sort” category, Tritonsort typically generates between 280

40,0

50,0

60,0

70,0

80,0

90,0

100,0

110,0

1 2 4 8 16 32 64 128 256 512

w
ri

te
 t

h
ro

u
g

h
p

u
t

(M
B

/s
)

Number of files

buffered

double direct

dynamic direct

72 6. Evaluation and Discussion

and 320 intermediate files depending on the number of participating nodes. For

this application and larger benchmark instances, the dynamic buffer approach

delivers optimal performance.

Overall, dynamic bucket buffers show constant results with predictable behavior

when scaling in the number of files. The approach performs well for both, small

and large numbers of files compared to the other two solutions.

6.2.2 Read performance

The figure below shows benchmark performance during the read phase. Again,

the number of buckets is plotted on the horizontal axis, write performance is

plotted on the vertical axis. The performance axis is offset at 40 MB/s.

Figure 26 - Intermediate data read performance

Number of files Buffered

(MB/s)

double direct

(MB/s)

dynamic direct

(MB/s)

1 65,2 68,7 54,9

2 49,1 67,9 52,8

4 47,6 66,0 46,4

8 48,5 67,6 39,9

16 47,0 64,3 43,0

32 45,9 62,7 80,8

64 45,3 61,8 76,6

128 43,5 59,5 71,3

256 45,6 58,4 67,7

512 48,4 55,9 63,9
Table 11 - Intermediate data read performance

40,0

50,0

60,0

70,0

80,0

90,0

1 2 4 8 16 32 64 128 256 512

re
a

d
 t

h
ro

u
g

h
p

u
t

(M
B

/s
)

Number of files

buffered

double direct

dynamic direct

73

The read performance shows a difference for small numbers of intermediate

files. With an increasing number of files, differences converge. Files generated

by the dynamic bucket implementation show slightly better performance, but

this likely depends on slight differences in physical file layout as there is not any

difference in the implementation of the benchmark reader.

6.2.3 Discussion

Especially in relation with disk I/O the setup of a fully deterministic benchmark

environment has shown to be difficult. Multiple benchmark runs deliver

somewhat similar results, but produce unexpected spikes too. These seem to

depend on many different variables such as system uptime, aging of the file

system, background processes, etc. It was tried to recreate the exact

environment for every benchmark run by reformatting disks, rebooting the

system and starting tests at similar uptime timestamps. Still, these fluctuations

could not be avoided completely, and hence, the numbers presented hereby are

average values obtained from multiple runs with spike values being corrected

manually.

Nevertheless, for the 100TB Gray Sort scenario the dynamic buffer approach

shows a factor of 1.15 better write performance than double buffering and

practically equal performance to the default buffered write behavior. For the

consecutive read phase dynamic buffering performs a factor of 1.15 better than

double buffering and 1.48 better than default file system behavior.

The close match in performance between dynamic buffering and default file

system behavior for most benchmark cases is remarkable. The file system does

an excellent job at maximizing write throughput for parallel disk access,

although this comes at a heavy toll during reading data back later. For the

default implementation the drop in performance during reading may arrive from

file fragmentation, file-cache lookups or configuration issues, but this has not

been investigated yet and is left for further investigation.

The I/O subsystem of Tritonsort currently still represents the bottleneck for

increased performance, so ongoing optimization in this area is necessary. Disk

I/O performs well when comparing Tritonsort to large-scale benchmark systems,

74 6. Evaluation and Discussion

but there is potential for improvement as shown by small-scale single systems

such as psort.

Also a potential drawback is the high complexity of the application-specific write

cache implementation. The evaluation experiment for intermediate data access

shows that a simple implementation based on default file system behavior

performs comparably well for a number of cases during writing. However,

corner cases exist for small and increasingly higher numbers of output files. If

these can be resolved and read performance be increased by an improved

configuration (or implementation) of the file system, this part of Tritonsort’s

pipeline could be re-architected and simplified.

Overall, the dynamic buffering approach represents the best alternative

available to Tritonsort at the current state. It provides an advantage of 15/15

percent for read- and write-performance compared to double buffering and 50/-

percent compared to default file system behavior. In comparison to state-of-the-

art systems of comparable scale, Tritonsort also achieves highest throughput

per disk using the presented approach.

75

6.3 System performance

In the following section Tritonsort’s performance is evaluated using the metrics

of Sort Benchmark, resource-efficiency is quantified and compared based on

hardware requirements and cost. Values obtained for state-of-the-art systems

are estimations derived from the respective publication and valid for purposes of

comparison only. Cost estimations are taken from (8).

For purposes of estimating efficiency, Gray sort results are more valuable than

Minute sort results. Minute sort measures burst performance and favors low

startup and shutdown times. The short runtime makes it difficult to derive useful

results by metric application.

Tritonsort competes in the Sort Benchmark Challenge, and hence, can be

compared directly to a number of systems. In case of large-scale benchmarking

(at or above 100TB of data), available results are relatively scarce. Also, a

number of benchmark results were published without being submitted to Sort

Benchmark officially. (27)(23)

The figure below gives a quantitative overview about hardware used in different

systems. For ease of representation a logarithmic scale is used.

Figure 27 - Large-scale Systems in Benchmark

4.000 3.658 3.452

195

47

32.000 29.264 27.616

1.560

376

48.000

14.632 13.808

780 752

10

100

1.000

10.000

100.000

MapReduce

(unofficial)

Hadoop

(unofficial)

Hadoop DEMSort Tritonsort

nodes

cores

disks

76 6. Evaluation and Discussion

The scale of hardware assets varies massively. This should not come

surprisingly as Hadoop and MapReduce are driven by industry companies,

whereas DEMSort and Tritonsort are developed in an academic environment.

All clusters are optimized to perform DISC tasks, except for DEMSort which

operates in a HPC cluster environment.

Year Name Category Nodes Cores Disks Data

(TB)

Time

(s)

2008 MapReduce (unofficial) 4.000 32.000
1
 48.000 1.000 21.720

2009 Hadoop (PB) (unofficial) 3.658 29.264 14.632 1.000 58.500

2009 Hadoop Gray Daytona 3.452 27.616 13.808 100 10.380

2009 DEMSort Gray Indy 195 1.560 780 100 10.628

2010 Tritonsort Gray Indy 47 376 752 100 10.318

Table 12 - Large-scale Systems in Benchmark

A selection of five systems is used for comparison. The table above gives an

overview of system name, hardware components and the amount of data and

time required for performing parallel external sort as used by sort benchmarks.

Performance

Performance is the central interest of sort benchmarks, and hence, is used for a

first comparison and as basis for considerations of efficiency.

The next figure presents relative system throughput per component. It is

obtained by dividing the total amount of input data sorted by the amount of time

required. A first look on resource-efficiency becomes possible by breaking down

throughput numbers to component level and comparing them to each other,

although these numbers do not factor in potential peak performance of a

component. Since the systems’ hardware relies on comparably potent

components, values can still be used as indication for hardware efficiency. For

ease of representation a logarithmic scale is used.

1
 Number of CPU cores estimated based on (8)

77

Figure 28 - System throughput per component

Name Throuhgput

(MB/s)

TP/Node

(MB/s)

TP/Core

(MB/s)

TP/Disk

(MB/s)

Cost Eff.

(Bytes/s/$)

MapReduce 46040,5 11,5 1,4 1,0 1e3,5

Hadoop (PB) 17094,0 4,7 0,6 1,2 1e3,2

Hadoop 9633,9 2,8 0,3 0,7 1e3,2

DEMSort 9409,1 48,3 6,0 12,1 1e4,1

Tritonsort 9691,8 206,2 25,8 12,9 1e4,4

Table 13 - Relative throughput per component

Performance-wise Tritonsort outperforms state-of-the-art systems in Sort

Benchmark “Gray Sort” rankings. Compared to industry scale clusters overall

throughput seems low, however, a substantial advantage in efficiency can be

found.

6.3.1 Efficiency

It is difficult to quantify efficiency in absolute numbers as system hardware is

different and hardware costs and performance change over time. The hardware

components used in clusters by DEMSort and Hadoop are comparable to

Tritonsort’s test bed as far as it can be determined from documentation.

Information about hardware used for Google’s MapReduce run is scarce.

11,5

4,7

2,8

48,3

206,2

1,4

0,6

0,3

6,0

25,8

1,0 1,2

0,7

12,1 12,9

0,1

1,0

10,0

100,0

1000,0

MapReduce

(unofficial)

Hadoop

(unofficial)

Hadoop DEMSort Tritonsort

TP/node

TP/core

TP/disk

78 6. Evaluation and Discussion

However, the clusters use commodity hardware and hence can be assumed of

roughly equal potency per disk and CPU core. Therefore, these numbers are

valid for comparing orders of magnitude only.

In order to provide a baseline for a holistic efficiency comparison, numbers for

throughput per component and cost efficiency are fixed to 100 percent for the

values of DEMSort, winner of the first Gray Sort Indy Challenge in 2009. A

higher percentage indicates higher throughput, whereas lower values indicate

less throughput in a specific aspect.

Name Throuhgput

(MB/s)

TP/Node

(%)

TP/Core

(%)

TP/Disk

(%)

Cost Eff.

(%)

MapReduce 46040,5 23,9 23,9 8,0 25,1

Hadoop (PB) 17094,0 9,7 9,7 9,7 12,6

Hadoop 9633,9 5,8 5,8 5,8 12,6

DEMSort 9409,1 100,0 100,0 100,0 100,0

Tritonsort 9691,8 427,4 427,4 106,8 199,5

Table 14 - Relative resource efficiency

The numbers suggest that Tritonsort performs well with respect to

computational and disk I/O efficiency. This seems reasonable as it is mirrored

by improved estimated cost efficiency too.

It can be observed that DEMSort shows comparable performance per disk, but

at the same time shows only a quarter of throughput per core. This divergence

could be explained by hardware coming from traditional HPC applications rather

than disk-heavy benchmarks.

The numbers found for Hadoop provide an interesting insight, as about the

same configuration was used in a 100TB and a 1PB benchmark run. Total

throughput and throughput per component increase when datasets get larger.

Even though, throughput for a 1PB run is about double the value of a 100TB

run, throughput per disk is down by a factor of ten compared to Tritonsort.

MapReduce’s total throughput on a 1PB data set outranges all other systems.

However, as noted before, larger datasets increase efficiency. Throughput per

component is comparable to Hadoop, although the disk-heavy hardware setup

79

improves results per core. Still, relative numbers per component are

significantly lower than Tritonsort.

6.4 Benchmark-specific comparison

The following section provides an in-depth comparison of Tritonsort’s

performance to Sort Benchmark’s top-performing systems Hadoop and

DEMSort in the Gray Sort and the Minute Sort benchmark. The analysis

addresses quantitative benchmark results and qualitative aspects of system

architecture.

6.4.1 Gray Sort

The Gray Sort benchmark evaluates sustained system performance for long-

running tasks. Also, the minimum requirement of 100TB input data indirectly

enforces distributed hardware architecture and scalability of the software

framework that coordinates individual nodes.

The benchmark uses the “average TB sorted per minute” (TB/min) metric to

quantify system performance taking into account the total amount of input data

and total runtime. As of 2010 the typical runtime for this benchmark lies

between two and three hours what makes high average performance of system

components the most important factor of success. Overheads caused by

administrative tasks such as startup and shutdown delays do not severely

impact overall performance as they even out over a long runtime.

80 6. Evaluation and Discussion

1. Comparison to DEMSort

DEMSort is a merge-based sort implementation and uses hybrid memory

architecture, shared-memory in the run formation stage and partitioned access

to data in the redistribution and merge stages. Hence, there are substantial

differences to Tritonsort’s distribution-based approach.

Sorting takes place in three steps: run formation, redistribution and local merge.

During run formation batches of input data are distributed transparently across

nodes and sorted internally. The redistribution stage determines exact

partitioning elements in the presorted runs and moves non-matching tuples

between nodes until data is distributed evenly. The final merge stage takes

place local to each node, reading and merging intermediate data to a final

result.

Distribution of input data to target nodes is separated into a speculative first and

an exact second pass during run formation and redistribution. Tritonsort uses a

single speculative approach in the map stage. For both systems speculative

distribution is based on the guarantee that key values in the input data are

distributed uniformly. For DEMSort processing of node local data is performed

during the run formation and merge stage, whereas Tritonsort performs node

local sort during the store and reduce stage.

The decision to use a redistribution stage in DEMSort seems necessary from an

architectural point of view ranging from the constraint of near in-place

permutation of input data imposed by the lack of sufficient storage space for

separate output files. This introduces an additional I/O pass at disk and network

interfaces however. Although, the overhead is relatively small, it surpasses the

minimum of 4 I/O passes for memory external sort. Another potential slowdown

is caused by non-interleaved operation of network I/O and sorting during the run

formation stage.

81

Figure 29 - Gray Sort - DEMSort vs Tritonsort - hardware performance

Figure 30 - Gray Sort - DEMSort vs Tritonsort - Cost-Efficiency

9.409 9.692

195

47

1.560

376

780 752

10

100

1.000

10.000

100.000

DEMSort Tritonsort

throughput (MB/s)

nodes

cores

disks

9.409 9.692

12.589

25.119

0

5.000

10.000

15.000

20.000

25.000

30.000

DEMSort Tritonsort

throughput (MB/s)

cost-efficiency

(bytes/s per USD)

82 6. Evaluation and Discussion

Hardware Tritonsort DEMSort

����� 47 195

	�
�� 376 1560

�
��� 752 780

	��� 10�.(��� 10�.� ���

Benchmark

��
��
���	�
+
��

 0.582 � /�
� 0.565 � /�
�

���� 100 � 100 �

�
�� 10318 � 10628 �

�ℎ
�#$ℎ�#� 9691.8 & /� 9409.1 & /�

Relative Throughput

�ℎ
�#$ℎ�#�:/=; 206.21 & /� 48.25 & /�

�ℎ
�#$ℎ�#�3/.; 25.78 & /� 6.03 & /�

�ℎ
�#$ℎ�#�=94> 12.89 & /� 12.06 & /�

�ℎ
�#$ℎ�#�3/4, 10*.* C����/�/$ 10*.E C����/�/$

Relative Scale

��
�:/=;4,F,G 0.241

��
�3/.;4,F,G 0.241

��
�=94>4,F,G 0.964

Resource Efficiency

���
	
��	�3/.;4,F,G 4.275

���
	
��	�=94>4,F,G 1.069

���
	
��	�3/4,,F,G 1.995

Table 15 - Gray Sort - Evaluation Tritonsort vs DEMSort

From a hardware point of view DEMSort’s cluster is about four times the size of

Tritonsort’s test bed, although the number of hard disks is almost equal. In

detail, the ratio of nodes is 4.15, ratio of CPU cores is 4.15 and the ratio of hard

drives is 1.04. DEMSort achieves 0.565 TB/min compared to Tritonsort’s 0.582,

a ratio of 0.971. Regarding cost-efficiency DEMSort reaches 104.1 bytes/s/$ in

contrast to Tritonsort providing 104.4 bytes/s/$. Therefore, Tritonsort achieves

about 4 times higher computational efficiency, comparable disk I/O efficiency

and 2 times estimated cost-efficiency of DEMSort in Gray Sort.

83

2. Comparison to Hadoop

Hadoop is based on the Map-Reduce paradigm and relies on HDFS, a

distributed file system for persistence of data. The overall sort process is very

similar to the approach taken by Tritonsort: the Map stage reads and distributes

input data to target nodes that store data locally. The reduce stage then reads

the intermediate data and sorts it internally before writing the result back to the

distributed file system.

Hadoop contributes to the Gray Sort Daytona benchmark ranking whereas

Tritonsort performs in Gray Sort Indy. Benchmark scale, input data and rules

are similar for the most part. There are two additional requirements for Daytona,

however. First, entries must have the ability to perform general purpose sorting

without assuming a predetermined uniform distribution of key values in the

input. Hadoop addresses this by sampling a portion of input data at startup and

distributing this information to the cluster before the actual sorting takes place.

Secondly, input data must not be destroyed during processing, and hence, an

out-of-place sort algorithm is enforced. This does not impact Hadoop in a

notable way as Hadoop tasks do not delete input data per default anyway.

In addition, there are two aspects which may impact efficiency. First, Hadoop

uses a replication factor of 2 for large datasets and employs a speculative

scheduler possibly executing number of subtasks multiple times. Secondly,

Hadoop runs in a Java Virtual Machine environment. Although, a number of

optimizations were made to file transfers in the VM environment there is some

additional overhead compared to Tritonsort which directly accesses operating

system functionality.

In terms of hardware the Hadoop cluster larger than Tritonsort’s test bed by a

factor of 70 in nodes in the Gray Sort configuration.

84 6. Evaluation and Discussion

Figure 31 - Gray Sort - Hadoop vs Tritonsort - hardware performance

Figure 32 - Gray Sort - Hadoop vs Tritonsort - Cost-Efficiency

9.634 9.692

3.452

47

27.616

376

13.808

752

10

100

1.000

10.000

100.000

Hadoop Tritonsort

throughput (MB/s)

nodes

cores

disks

9.634 9.692

1.585

25.119

0

5.000

10.000

15.000

20.000

25.000

30.000

Hadoop Tritonsort

throughput (MB/s)

cost-efficiency

(bytes/s per USD)

85

Hardware Tritonsort Hadoop

����� 47 3452

	�
�� 376 27616

�
��� 752 13808

	��� 10�.(��� 10(.) ���

Benchmark

��
��
���	�
+
��

 0.582 � /�
� 0.578 � /�
�

���� 100 � 100 �

�
�� 10318 � 10380 �

�ℎ
�#$ℎ�#� 9691.8 & /� 9633.9 & /�

Relative Throughput

�ℎ
�#$ℎ�#�:/=; 206.21 & /� 2.79 & /�

�ℎ
�#$ℎ�#�3/.; 25.78 & /� 0.35 & /�

�ℎ
�#$ℎ�#�=94> 12.89 & /� 0.70 & /�

�ℎ
�#$ℎ�#�3/4, 10*.* C����/�/$ 10H.I C����/�/$

Relative Scale

��
�:/=;4,F,J 0.0136

��
�3/.;4,F,J 0.0136

��
�=94>4,F,J 0.0545

Resource Efficiency

���
	
��	�3/.;4,F,J 73.66

���
	
��	�=94>4,F,J 18.41

���
	
��	�3/4,,F,J 15.85

Table 16 - Gray Sort - Evaluation Tritonsort vs Hadoop

For Gray Sort, the ratio of hardware components Hadoop versus Tritonsort is

73.34 for nodes, 73.34 for CPU cores and 18.36 for hard drives. The

benchmark performance for Hadoop equals 0,578 TB/min compared to 0.582

TB/min for Tritonsort, a ratio of 0.994 in performance. In terms of cost Hadoop

delivers 103.2 bytes/s/$ compared to Tritonsort’s 104.4 bytes/s/$. Hence,

Tritonsort provides about 73 times computational efficiency, 18 times disk I/O

efficiency and 16 times estimated cost efficiency of Hadoop in Gray Sort.

86 6. Evaluation and Discussion

6.4.2 Minute Sort

The Minute Sort Benchmark measures the amount of input data processed by a

system when running for 60 seconds or less total. The benchmark uses the “GB

sorted” metric to quantify system performance. Runtime is measured in “wall

time” at a singular head node from the moment the first node starts until the last

node completing its task. A system is required to perform 15 consecutive runs

for the same amount of input data and the average runtime of these runs is

considered for validity.

Compared to Gray Sort the amount of input data is relatively small and possibly

allows systems to perform memory internal sort. This reduces the theoretical

minimum number of I/O passes from 4 to 2, thus decreasing the amount of time

spent for disk access, but disallowing interleaved I/O and sorting at the same

time. The short runtime also increases the impact of startup and shutdown

procedures, as their overhead counts towards the overall timing.

1. Comparison to DEMSort

DEMSort operates within the Minute Sort Indy category and uses a comparable

approach as the Gray Sort configuration. Although not stated explicitly by the

developers, the increase in throughput suggests that intermediate file creation is

spared for Minute sort. This guarantees that data on disk is accessed exactly

twice, once for reading and once for writing. Assuming that the redistribution

stage is present in this configuration, network I/O still involves some overhead.

In contrast to Gray Sort synchronous pipelining of network transfer and sorting

does not affect Minute sort negatively.

The cluster configuration of DEMSort is the same as for Gray Sort. Tritonsort

uses a higher number of nodes for Minute Sort than in the Gray Sort

configuration, and hence, has a slight advantage over DEMSort in the total

number of hard drives. The number of nodes and CPU cores still is a multitude,

however.

87

Figure 33 - Minute Sort - DEMSort vs Tritonsort - hardware performance

Figure 34 - Minute Sort - DEMSort vs Tritonsort - Cost-Efficiency

955 1.014

195

52

1.560

416

780 832

10

100

1.000

10.000

100.000

DEMSort Tritonsort

input data (GB)

nodes

cores

disks

15.917
17.483

21.296

40.954

0

10.000

20.000

30.000

40.000

50.000

DEMSort Tritonsort

throughput (MB/s)

cost-efficiency

(bytes/s per USD)

88 6. Evaluation and Discussion

Hardware Tritonsort DEMSort

����� 52 195

	�
�� 416 1560

�
��� 832 780

	��� 10�.(��� 10�.� ���

Benchmark

��
��
���	�
&
�#��

 1014 + 955 +

���� 1014 + 955 +

�
�� 58 � 60 �

�ℎ
�#$ℎ�#� 17482.8 & /� 15916.7 & /�

Relative Throughput

�ℎ
�#$ℎ�#�:/=; 336.21 & /� 81.62 & /�

�ℎ
�#$ℎ�#�3/.; 42.03 & /� 10.20 & /�

�ℎ
�#$ℎ�#�=94> 21.01 & /� 20.41 & /�

�ℎ
�#$ℎ�#�3/4, 10*.(C����/�/$ 10*.H C����/�/$

Relative Scale

��
�:/=;4,F,J 0.267

��
�3/.;4,F,J 0.267

��
�=94>4,F,J 1.067

Resource Efficiency

���
	
��	�3/.;4,F,J 4.12

���
	
��	�=94>4,F,J 1.03

���
	
��	�3/4,,F,J 1.92

Table 17 - Minute Sort - Evaluation Tritonsort vs DEMSort

In Minute Sort, cluster hardware of DEMSort and Tritonsort show a ratio of 3.75

for nodes, 3.75 for CPU cores and 0.938 for hard drives. In benchmark ratings,

DEMSort achieves 0.955 TB compared to 1.01 TB for Tritonsort, a ratio of

0.942. Throughput is 15917 MB/s versus 18107 MB/s and in terms of cost-

efficiency results in 104.3 bytes/s/$ for DEMSort and 104.6 bytes/s/$ for

Tritonsort. In total Tritonsort reaches 4 times computational efficiency, equal

disk I/O efficiency and 2 times cost-efficiency.

89

2. Comparison to Hadoop

The architecture of the Hadoop Minute Sort submission is similar to Gray Sort,

although task scheduling is modified and additional disk I/O is avoided as the

output of mappers fits into memory completely for the reduce stage. Also,

replication is disabled to increase performance of HDFS and decrease network

load.

Again, Hadoop participates in the Minute Sort Daytona category and requires

an additional sampling stage that increases startup times compared to systems

in the Indy category. The process of sampling and distributing acquired

information across the cluster potentially takes a portion of time that systems of

the Indy category spend sorting instead.

For a hardware perspective the Hadoop Minute sort cluster is smaller than the

Gray Sort cluster in order to optimize startup and shutdown times. Compared to

Tritonsort’s hardware, its difference in scale still surpasses an order of

magnitude.

Figure 35 - Minute Sort - Hadoop vs Tritonsort - hardware performance

500

1.014
1.406

52

11.248

416

5.624

832

10

100

1.000

10.000

100.000

Hadoop Tritonsort

input data (GB)

nodes

cores

disks

90 6. Evaluation and Discussion

Figure 36 - Minute Sort - Hadoop vs Tritonsort - Cost-Efficiency

Hardware Tritonsort Hadoop

����� 52 1406

	�
�� 416 11248

�
��� 832 5624

	��� 10�.(��� 10(.* ���

Benchmark

��
��
���	�
&
�#��

 1014 + 500 +

���� 1014 + 500 +

�
�� 58 � 59 �

�ℎ
�#$ℎ�#� 17482.8 & /� 8474.6 & /�

Relative Throughput

�ℎ
�#$ℎ�#�:/=; 336.21 & /� 6.03 & /�

�ℎ
�#$ℎ�#�3/.; 42.03 & /� 0.75 & /�

�ℎ
�#$ℎ�#�=94> 21.01 & /� 1.51 & /�

�ℎ
�#$ℎ�#�3/4, 10*.(C����/�/$ 10H.� C����/�/$

8.475

17.483

3.423

40.954

0

10.000

20.000

30.000

40.000

50.000

Hadoop Tritonsort

throughput (MB/s)

cost-efficiency

(bytes/s per USD)

91

Relative Scale

��
�:/=;4,F,J 0.0370

��
�3/.;4,F,J 0.0370

��
�=94>4,F,J 0.1479

Resource Efficiency

���
	
��	�3/.;4,F,J 55.78

���
	
��	�=94>4,F,J 13.94

���
	
��	�3/4,,F,J 11.96

Table 18 - Minute Sort - Evaluation Tritonsort vs Hadoop

The ratio of hardware used by Hadoop compared to Tritonsort is 27.04 for

nodes, 27.04 for CPU cores and 6.76 for hard drives. Benchmark performance

is 0.500 TB for Hadoop and 1.01 TB for Tritonsort, a ratio of 0.493. In terms of

throughput, Hadoop achieves 8475 MB/s versus 18107 MB/s. Hence, Hadoop

provides cost-efficiency of 103.5 bytes/s/$ compared to 104.6 bytes/s/$ for

Tritonsort. Overall, Tritonsort shows 56 times computational, 14 times disk I/O

and 12 times cost-efficiency in Minute Sort.

6.4.3 Discussion

A broad variety of comparison results has been presented hereby with a focus

on benchmark performance, computational efficiency, disk I/O efficiency and

cost-efficiency. Tritonsort shows superior results in all four aspects, in every

comparison provided.

On the one hand, this is a remarkable result, one the other hand the question

about the correctness of values and the overall validity of the evaluation arises.

Performance numbers and hardware components are derived directly from

publications of Sort Benchmark results, and hence, can be regarded correct. In

case of cost-efficiency, this is vague already. Hardware costs of DEMSort and

Hadoop are estimated based on (8) by calculating system base-cost from the

provided cost-efficiency measure “bytes/s/$” and benchmark throughput. The

authors of the source paper provide numbers in powers of ten and note

explicitly that their numbers are useful for purposes of comparison only.

Therefore, the difference in cost efficiency between two systems in this paper

can only be regarded as a guideline. As this is insufficient as sole indicator,

92 6. Evaluation and Discussion

relative throughput per component and an overview of cluster component

counts is provided is this section as well. In case provided cost estimations do

not seem fitting other provided information allows a separate approximation.

Generally, it can be observed that Tritonsort uses a disk-heavy hardware setup.

Compared to Hadoop and DEMSort each node holds four times the amount of

hard drives. This configuration certainly helps decreasing hardware costs as the

number of physical encasings and network connections goes down, although

this requires computationally efficient software to process node-local data with

one fourth of CPU time.

A second aspect of evaluation validity is the emphasis on resource-efficiency

without comparing Tritonsort quantitatively to energy- or cost-efficient systems

such as EcoSort and PSort. A major point against the comparison is the lack of

scalability in these systems, although this should mainly affect networking and

computation. It can be observed from smaller systems that there certainly is a

factor of about 1.5 in disk I/O that should be achievable by Tritonsort in

benchmark runs. Systems relying on SSD storage expand this borderline even

further, but also point towards a substantial increase in hardware cost. From a

computational efficiency point of view it shows that Tritonsort is not saturating

its full CPU potential. Some smaller systems with slower processors and

memory achieve higher throughput physical core. A portion of this headroom

comes from the current bottleneck in disk I/O another portion potentially may

never actually come to use in benchmark runs as it is superfluous. A third

efficiency indicator, throughput per node, shows an advantage of up to a factor

of two for Tritonsort compared to PSort or EcoSort and suddenly inverts the

picture of resource efficiency. It can easily be explained by different hardware

setups, but also points at an important fact: the definition of resource efficiency

in this paper is based on the assumption of comparable hardware components

and comparable scale. A comparison to a small system can lead the way for

future improvements, but does not necessarily produce consistent results.

Hence, an extensive comparison to small systems is not provided.

Taking a look at combined comparison results of DEMSort it can be observed

that DEMSort provides comparable performance for benchmarks and disk I/O,

93

but stays behind in cost-efficiency by a factor of two and is improved upon

computational efficiency by a factor of four. The architecture is sort-specific

compared to Tritonsort’s pipelining, which seems induced by the HPC hardware

environment and the lack of additional storage space. Nevertheless, Tritonsort

outperforms DEMSort in Gray Sort Indy and Minute Sort Indy and serves higher

resource efficiency.

A look at the results for Hadoop shows a substantial advantage for Tritonsort

regarding resource efficiency. The numbers are to be regarded more a

guideline as they surpass an order of magnitude for Minute Sort as well as Gray

Sort. It has to be noted that Hadoop processes Daytona data sets in contrast to

Indy records. For the purpose of benchmark this does not affect the actual input

data, however, an additional sampling stage is required upfront to determine the

distribution of input keys. The sampling process adds little overhead for Gray

Sort, but might impact Minute Sort results significantly. The fact however,

Tritonsort delivers more than 50 times performance per core and 10 times per

disk indicates a significant bottleneck in Hadoop’s processing pipeline. This is

unlikely to be caused by architectural differences as Hadoop and Tritonsort are

both modeled after the Map-Reduce approach. It can be speculated that this is

caused by network bottlenecks, inefficient disk I/O due to access from within a

JVM or the broad spectrum of tasks Hadoop is designed for, although this

cannot be determined from the view of this paper. In sum, Tritonsort delivers

higher performance than Hadoop in Gray Sort and Minute Sort benchmarks and

shows better resource efficiency by an order of magnitude.

95

7 Summary

The following section summarizes contributions of the thesis in detail and

provides any overview over benchmark performance and evaluation results.

Tritonsort participated in the 2010 Sort Benchmark challenge for “Gray Sort”

and “Minute Sort” and currently represents the top-performing system in both

categories. In addition to performance Tritonsort also provides the highest level

of hardware resource efficiency of current large-scale systems.

The research of this thesis shows that optimization of resource-utilization can

yield substantial improvements to performance and cost-efficiency. This is true

especially in large-scale data processing. Although, optimization requires

additional engineering efforts it reduces cost and complexity at the same time

as it decreases the amount of required hardware and the overall scale of a

system.

The experience gained from the development of data persistence and internal

sort components shows that efficiency is owed mainly to architecture and

algorithms. Well-performing algorithms from literature are adapted to satisfy

constraints imposed by hardware and architecture. Though, some of these

modifications lower performance of theoretically optimal approaches, Tritonsort

achieves solid levels of throughput in disk I/O and sorting compared to state-of-

the-art systems.

7.1 Contribution Summary

The paper contributes the resource-efficient disk I/O layer and internal sort

implementation to Tritonsort. The disk access layer represents an application-

specific implementation of file-system buffering and improves upon the

performance at the current bottleneck of the processing pipeline. Internal Sort is

implemented to achieve performance necessary for processing data in the

Reduce stage on-the-fly, without slowing down disk access. In addition it

supports I/O performance by minimizing the number of intermediate files

generated during the memory external sort.

96 7. Summary

Map

1a Read tuples from disk

1b Determine destination

1c Send to target node

Store

2a Receive incoming data

(cheap synchronization)

2b Cache in memory

(memory-efficient buffering)

2c Store on disk

(sustained write throughput)

Reduce

3a Read presorted data

(increased input size)

3b Sort tuples

(increased performance

and memory-efficiency)

3c Store on disk

Figure 37 - Contributions summary

Presentation and discussion of results is organized in separate sections for disk

access in the Store stage and internal sorting in the Reduce stage.

7.1.1 Disk access

The I/O layer of Tritonsort optimizes throughput during the Store and Reduce

stages of the pipeline based on three concepts. First, activity between

Receivers and Writers is fully interleaved. Each bucket uses a segmented buffer

for storing temporary data. Receivers are able to collect incoming data in a

bucket while Writers may process the same bucket concurrently. This avoids

pipeline stalls due to mutual exclusion to a large extent. Secondly, Writers are

enabled to process buckets in a demand-based order. As Receiver and Writer

activity is decoupled by the write cache implementation, Writers are enabled to

continually perform at maximum disk performance. Thirdly, the buffers

underlying each bucket share a common pool of memory, so buffer size can be

adapted dynamically, based on demand. Buffer space freed up by a Writer can

be allocated to multiple different buckets, which helps overcoming the

systematic mismatch between input being scattered across buckets evenly in

small chunks and output being performed per bucket in long sequential writes.

97

Figure 38 - Performance Disk Access

The design and implementation of the I/O layer is compared to two alternative

approaches. Evaluation is based on a benchmark setup that mimics read and

write patterns performed by Tritonsort in an isolated environment. The dynamic

buffer implementation is compared to an implementation based on default file-

system cache behavior and another based on manual double-buffering. From a

qualitative point of view the dynamic buffer approach adds substantial

complexity to design and implementation compared to a straight-forward

implementation relying on file-system caching. Quantitatively, it is found that the

dynamic buffer approach delivers highest throughput for read and write access

under typical conditions as well as in corner cases, and hence, provides best

I/O efficiency for the given hardware.

40,0

60,0

80,0

100,0

120,0

1 2 4 8 16 32 64 128 256 512

w
ri

te
 t

h
ro

u
g

h
p

u
t

(M
B

/s
)

Number of files

buffered

double direct

dynamic direct

40,0

60,0

80,0

100,0

1 2 4 8 16 32 64 128 256 512

re
a

d
 t

h
ro

u
g

h
p

u
t

(M
B

/s
)

Number of files

buffered

double direct

dynamic direct

98 7. Summary

The optimization of intermediate data access also leverages from the increase

in maximum bucket size by the internal sort implementation. This allows the

Store stage of the pipeline to use a smaller number of intermediate files, and

hence, the write throughput can be increased without negatively affecting the

Reduce stage.

In the overall picture of comparison to state-of-the-art systems in large-scale

Sort Benchmark, Tritonsort reaches the highest level of disk performance and

I/O efficiency.

7.1.2 Internal Sort

Internal sort in the Reduce stage of Tritonsort’s pipeline is implemented using a

linear-time Radix sort. Combined with distribution sort performed in the first

stages this allows Tritonsort to fully rely on linear-time algorithms. The actual

implementation uses a number of optimizations to increase performance and

memory efficiency. The first mayor optimization, tag-based sorting, extracts key

values from tuples before sorting and significantly reduces the size of memory

operations during the process. Also, the size of temporary buffers can be

reduced and in-place reordering of the actual input data becomes possible. The

in-place permutation of tuples reduces the typical memory overhead of Radix

sort from 2.0 to 1.32 for this application, as a separate output buffer can be

avoided. This in turn increases buffer size available per internal sort run, and

therefore, decreases the number of individual bucket files required to split up

data in the Map and Store stages of the pipeline.

99

Figure 39 - Performance Internal Sort

The performance is evaluated using a simplistic internal sort benchmark. A

variably sized region of memory is filled with uniformly distributed input data and

sorted. The comparison is performed between a default C implementation of

Quicksort and Radix Tag Sort. The Radix approach shows increased complexity

in design and implementation compared to Quicksort. However, quantitative

results show a significant advantage of Radix by a factor of four for typical

buffer sizes between 100MB and 1600MB. From an efficiency point of view,

Quicksort is to be considered better in memory efficiency, Radix shows superior

computational efficiency. Given the test bed hardware, Radix sort is the

algorithm of choice as it is able to handle parallel disk input on the fly, without

bottlenecking.

0

10

20

30

0 200 400 600 800 1000 1200 1400 1600

T
im

e
 (

s)

buffer size (MB)

Quicksort

Radix Tag Sort

0

100

200

300

400

0 200 400 600 800 1000 1200 1400 1600

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

buffer size (MB)

Quicksort

Radix Tag Sort

100 7. Summary

The flexibility of the I/O subsystems allows improvements in sort memory

efficiency to be translated directly into improved disk throughput. With increased

buffer size for sorting the number of intermediate file decreases, lifting up I/O

performance. This makes memory optimization of the implementation

worthwhile and provides instant gains in I/O performance.

Throughput of internal sort is four times higher than the Quicksort alternative,

the increase in sort performance is relevant to overall performance to a limited

extend however. The implementation has to reach a level of throughput that

allows a node’s CPUs to handle parallel input provided by half its disks.

Potential throughput superseding this threshold may reduce the impact of

variations in input volume, but does not necessarily increase the performance of

the Reduce stage. In practice however, high performance helps decreasing the

number of sorter threads required in parallel which increases the relative

amount of memory available per sorter and sort run.

Overall, the implementation of internal sort performs well for sustained

throughput in the “Gray Sort” configuration as well as for peak performance in

the “Minute Sort” configuration.

7.1.3 System Performance

As a result of the joint effort of the Tritonsort work group, the Tritonsort

prototype participated in the 2010 Gray Sort Indy and Minute Sort Indy

benchmark and was awarded top-performing system in both categories. Also,

Tritonsort achieved the highest sort performance in Sort Benchmark’s records

for large-scale sorting and passed the barrier of 1 TB for Minute Sort.

The relatively small number of components in the cluster decreases complexity

and costs of Tritonsort’s test bed compared to systems such as Hadoop or

DEMSort. For the Gray Sort benchmark, Tritonsort’s 50 nodes 3 rack cluster

provides comparable performance to Yahoo’s 3800 nodes “Hammer” cluster.

101

Figure 40 - Cluster hardware

In addition to less hardware than comparable systems Tritonsort achieves top

performance in both large-scale benchmarks, Gray Sort and Minute Sort at the

same time.

Figure 41 - Gray Sort performance

3.452

195

47

27.616

1.560

376

13.808

780 752

10

100

1.000

10.000

100.000

Hadoop DEMSort Tritonsort

2009 2009 2010

nodes

cores

disks

0,565

0,578
0,582

0,500

0,520

0,540

0,560

0,580

0,600

DEMSort Hadoop Tritonsort

2009 2009 2010

TB/min sorted

102 7. Summary

Figure 42 - Minute Sort performance

Resource efficiency decreases scale and complexity and saves money in large-

scale DISC applications. Using Sort Benchmark as example it is shown there is

a worthwhile potential for improvements to resource efficiency that directly lead

to a smaller and more cost-effective system.

500

955
1014

0

200

400

600

800

1000

1200

Hadoop DEMSort Tritonsort

2009 2009 2010

GB sorted

103

8 Future Work

The Tritonsort prototype delivers top results in benchmarking and resource-

efficiency. However, as the project is work in progress there are still many

perspectives for improvements and extensions to suite additional use-cases.

The following section describes some of these.

In terms of hardware and cost efficiency there’s potential for improvement.

Optimally, Tritonsort’s distributed architecture may reach levels of throughput

per CPU core and disk comparable to optimized single node systems.

Especially platform specific optimizations could bring improvements to

computational and I/O efficiency. For example, the internal sort could be

optimized to make better use of CPU caches and the I/O layer could be adapted

to take disk and controller caches into account. The additional complexity

introduced by networking will limit the ability to reach single-node cost efficiency

at some point however.

Another spot for efficiency tweaking could be improved configuration of

hardware and operating system. Tritonsort relies on OS facilities to a large

extent for disk and network I/O. The development process showed that there

are different possibilities to realize various features. However, performance and

stability often depended on slight differences in configuration that are not

obvious from documentation at first. Linux’ I/O subsystem is the most notorious

candidate for this kind of investigation.

A potential extension of functionality is the implementation of autonomous

sampling and general purpose sorting as required by Sort Benchmark’s

Daytona category. A first step would be the adaption of sorting and I/O

components to support variable-length Daytona datasets. In a second step,

distributed input sampling could be implemented. Sampling might prove to be a

significant challenge as the efficiency of the overall distribution sort algorithm

highly depends on uniform load balancing.

104 8. Future Work

When approaching real-world application of Tritonsort’s pipelining system,

facilities for fault-tolerance and failure-resistance become necessary. These

should be capable of dealing with disk failures and, with growing scale, node

and network issues. Disk failures could be addressed using RAID

configurations, failures on larger scale require more sophisticated solutions

based on replication. The introduction of RAID configurations in turn may

substantially affect the disk I/O layer as read and write characteristics of RAIDs

differ from independently controlled disks.

Resource Efficiency in Tritonsort

9 Acknowledgements

Alexander Pucher was supported by a

Foundation during his work at the

Engineering at the University of California San Diego.

Resource Efficiency in Tritonsort

Acknowledgements

Alexander Pucher was supported by a scholarship of the Austrian Marshall Plan

Foundation during his work at the Department of Computer Science and

University of California San Diego.

The work with the Systems and Networking group at

UC San Diego has been challenging and educating. I

personally want to thank Professor Amin Vahdat and

the members of the Tritonsort team

Rasmussen, George Porter, Harsha V. Madhyastha,

Michael Conley and Radhika N. Mysore for this great

time and I want to thank Professor Stefan

Vienna University of Technology for his support

during the writing of the thesis.

Austrian Marshall Plan

of Computer Science and

The work with the Systems and Networking group at

challenging and educating. I

personally want to thank Professor Amin Vahdat and

the Tritonsort team Alexander

Rasmussen, George Porter, Harsha V. Madhyastha,

ley and Radhika N. Mysore for this great

I want to thank Professor Stefan Biffl of

Vienna University of Technology for his support

Resource Efficiency in Tritonsort

10 References

1. Armbrush, M., et al. Above the Clouds: A Berkeley View of Cloud

Computing. Reliable Adaptive Distributed Systems Laboratory. [Online] 2 10,

2009. [Cited: 7 1, 2010.] http://radlab.cs.berkeley.edu/.

2. Bialecki, A., et al. Hadoop: a framework for running applications on large

clusters built of commodity hardware. Hadoop Wiki. [Online] [Cited: 8 30, 2010.]

http://wiki.apache.org/hadoop/.

3. Mapreduce: simplified data processing on large clusters. Dean, J.,

Ghemawat, S. Berkeley, CA, USA : USENEX Association, 2004. OSDI’04:

Proceedings of the 6th conference on Symposium on Opearting Systems

Design & Implementation. p. 10.

4. Dryad: distributed data-parallel programs from sequential building blocks.

Isard, N., et al. Lisbon, Portugal : ACM SIGOPS, 2007. Proceedings of the 2nd

ACM SIGOPS/EuroSys European Conference on Computer Systems 2007. pp.

59-72.

5. Bryant, R. E. Data-intensive Supercomputing: The case for DISC. Pittsburgh,

PA : School of Computer Science, Carnegie Mellon University, 2007.

6. Dean, J. Designs, Lessons and Advice from Building Large Distributed

Systems. Big Sky, MT, United States : Google Inc., 2009.

7. JouleSort: A Balanced Energy-Efficiency Benchmark. Rivoire, S., et al.

Beijing, China : ACM SIGMOD, 2007. 978-1-59593-686-8/07/0006.

8. Efficiency Matters! Anderson, E. and Tucek, J. Boston, MA, United States :

Big Sky, MT, 2009. Proc of HotStorage.

9. Nyberg, C. and Shah, M. Sort Benchmark Website. [Online] June 01, 2010.

www.sortbenchmark.org.

108 10. References

10. Anon, et al. A Measure of Transaction Processing Power. available from

http://www.sortbenchmark.org : Datamation, 1985. pp. 112-118.

11. Nyberg, C., et al. Alphasort: A Cache-Sesitive Parallel External Sort. VLDB

Journal. 1995, Vol. 1995, 4, pp. 603-627.

12. Gray, J. "A Measure of Transaction Processing" 20 Years Later. Data

Engineering, IEEE. Special Issue on Databases for new Hardware, 2005, 28/2.

13. Distributed Computing Economics. Gray, J. 3, New York, NY, United

States : ACM, 2008, Queue, Vol. 6, pp. 63-68.

14. Knuth, D. External Sorting. The Art of Computer Programming. Second

Edition. Reading, MA : Addison-Wesley, 1998, Vol. 3, 5.4, pp. 248-379.

15. Vitter, J. S. Foundations and Trends in Theoretical Computer Science.

Hanover, MA : Now Publishers Inc., 2008. pp. 305-474. 1551-305X.

16. Parallel Sorting on a Shared-Nothing Architecture using Probabilistic

Splitting. DeWitt, D. J., Naughton, J. F. and Schneider, D. A. Miami, Florida,

United States : IEEE, 1991. 1st International Conference on Parallel and

Distributed Information Systems. 0-8186-2295419.

17. Parallel sorting by over partitioning. Li, H. and Sevcik, K. C. Cape May,

New Jersey, United States : ACM, 1994. Proceedings of the sixth annual ACM

symposium on Parallel algorithms and architectures. 0-89791-671-9.

18. High-Performance Sorting on Networks of Workstations. Arpaci-Dusseau,

A. C., et al. Arizona : ACM SIGMOD, 1997. 0-89791 -911 -419710005.

19. Zhang, X., Rivera, L. and Chien, A. A. HPVM Minute Sort. s.l. : available

at http://www.sortbenchmark.org, 2000.

20. Azuma, S., et al. DIAPRISM Hardware Sorter. s.l. : available at

http://www.sortbenchmark.org, 2000.

21. Wyllie, J. Sorting on a Cluster Attached to a Storage-Area Network. San

Jose, CA : available at http://www.sortbenchmark.org, 2005.

109

22. Rahm, M., et al. DEMSort - Distributed External Memory Sort. Karlsruhe,

Germany : available from http://www.sortbenchmark.org, 2009.

23. O'Malley, O. and Murthy, A. C. Winning a 60 Second Dash with a Yellow

Elephant. Santa Clara, CA : available from http://www.sortbenchmark.org, 2009.

24. Bertasi, P., Bressan, M. and Peserico, E. psort, yet another fast stable

sorting software. Padova, Italy : available from http://www.sortbenchmark.org,

2008.

25. Beckmann, A., et al. Energy-Efficient Sorting using Solid State Disks.

Karlsruhe, Germany : available from http://www.sortbenchmark.org, 2010.

26. Lee, S., et al. Partitioned Parallel Radix Sort. High Performance Computing.

1940/2000. Berlin, Heidelberg, Germany : Springer, 2000, Vol. Lecture Notes in

Computer Science, pp. 160-171.

27. Czajkowski, G. Sorting 1 PB with MapReduce. Google Blog. [Online]

Google, 11 21, 2008. [Cited: 05 30, 2010.]

http://googleblog.blogspot.com/2008/11/sorting-1pb-with-mapreduce.html.

28. Bertasi, P., Bressan, M. and Perserico, E. psort 2009. Padova, Italy :

available from http://www.sortbenchmark.org, 2009.

29. Rasmussen, A., et al. TritonSort. San Diego, CA : available from

http://www.sortbenchmark.org, 2010.

30. O'Mally, O. TeraByte Sort on Apache Hadoop. Santa Clara, CA : available

from http://www.sortbenchmark.org, 2008.

