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Kurzfassung 

Internetanwendung in der Größenordnung von Yahoo’s Webportal oder 

Google’s Such- und Cloud-Diensten arbeiten mit massive Datenmengen. Die 

rechtzeitige Verarbeitung von Tera- und Perabytes an Daten macht die 

Verwendung von DISC Systemen notwendig. Der jährliche Sort Benchmark 

vergleicht die Performance aktueller Systeme und hat über die vergangenen 

Jahre einen stetigen Leistungszuwachs beobachtet, der jedoch mit drastischen 

Einschnitten in Hardwareeffizienz erkauft ist. Die „Tritonsort“ Fallstudie wurde 

initiiert, ein leistungsstarkes und kosteneffizientes System für Sort Benchmark 

zu entwickeln, dessen Design primär auf Ressourceneffizienz achtet. Diese 

Arbeit beschreibt die Entwicklung zweier Systemkomponenten von Tritonsort 

und bietet die systematische Evaluierung von Ressourceneffizienz in Tritonsort. 

Ziel. Das Ziel der Arbeit ist die Entwicklung zweier Komponenten für 

Zwischenspeicherung von Daten und speicher-internes Sortieren von Daten, 

sowie die Evaluierung der Ressourceneffizienz im Vergleich zu state-of-the-art 

Systemen. Die Lösung wird als erfolgreich angesehen wenn Tritonsort in den 

Benchmarks 100TB „Gray Sort Indy“ und 60 Sekunden „Minute Sort Indy“ 

Höchstleistung liefert und verbesserte Hardware- und Kosteneffizienz bietet. 

Methode. Literaturstudie über existierende Ansätze zu verteiltem parallelem 

Sortieren, Design und Implementierung von Systemkomponenten für den 

Tritonsort Prototypen und Evaluierung des Ergebnisses durch systematischen 

Vergleich mit existierenden Systemen im Bezug auf Leistung und Effizienz. 

Resultat. Tritonsort erreicht 2010 Bestleistung in den Kategorien „Gray Sort 

Indy“ und „Minute Sort Indy“ mit viermal höherer Leistung pro Maschine als 

andere Systeme. Zusätzlich wird die Durchschnittsleistung pro CPU und 

Festplatte erhöht, wodurch bessere Kosteneffizienz erzielt wird. 

Literatur. Anderson und Tucek begründen die Notwendigkeit von 

ressourceneffizienten Systemen und liefern eine Effizienz-Systematik. Vitter 

schafft die Grundlage für effizienten Festplattenzugriff in externem Sortieren, 

während existierende Systeme Ansätze zu internem Sortieren inspirieren. 
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Abstract 

Internet scale services like Yahoo’s web portal and Google Search and Cloud 

services operate on massive amounts of information. Timely processing of this 

data at the scale of Tera- and Petabytes requires the use of DISC systems, 

orchestrating large assets of hardware with frameworks such as Apache 

Hadoop. Annually, DISC system performance is compared by Sort Benchmark 

and benchmark results over the past years show gains in performance, 

although a substantial loss in resource efficiency is found. The Tritonsort case 

study is set up to create a top-performing and cost-effective system for large-

scale Sort Benchmarks by emphasizing resource efficiency in design primarily. 

This paper describes design and implementation of two core components and 

provides a systematic evaluation of resource efficiency in Tritonsort. 

Objective. The objective is development of well-performing intermediate data 

storage and internal sorting for Tritonsort and an in-depth evaluation of resource 

efficiency compared to state-of-the-art systems. The solution is deemed 

effective if Tritonsort outperforms in Sort Benchmark categories 100TB Gray 

Sort Indy and 60 seconds Minute Sort Indy and provides competitive hardware 

and cost efficiency. 

Method. Survey in literature about existing approaches to distributed parallel 

sort, design and implementation of internal sorting and disk I/O components, 

and evaluation by systematic comparison to existing systems in terms of 

performance and resource efficiency. 

Result. Tritonsort uses both subsystems and outperforms state-of-the-art 

systems in the 2010 “Gray Sort Indy” and “Minute Sort Indy” challenge by a 

factor of four per cluster node. Also, it improves upon average throughput per 

CPU core and disk which leads to higher cost efficiency. 

Literature.  Anderson and Tucek emphasize the potential of resource efficient 

systems and provide a systematic listing of different aspects of efficiency. Vitter 

creates the foundation for efficient disk I/O in external sorting while different 

Sort Benchmark systems inspire design and optimization of internal sort. 





  vii 

 

Table of Contents 

1 Introduction .................................................................................................. 1 

2 Related work ................................................................................................ 7 

2.1 Types of efficiency................................................................................. 7 

2.2 Benchmark and Metrics ......................................................................... 9 

2.3 Sorting Algorithms ............................................................................... 11 

2.3.1 Distribution Sort ............................................................................ 11 

2.3.2 Merge Sort .................................................................................... 12 

2.4 Architectural approaches ..................................................................... 13 

2.4.1 Shared memory and Data partitioning .......................................... 13 

2.4.2 Single- and Multi-pass sorting....................................................... 13 

2.4.3 Synchronous and interlaced I/O.................................................... 14 

2.4.4 In-place and out-of-place on storage ............................................ 14 

2.4.5 Parallel sort algorithms ................................................................. 15 

2.5 State-of-the-art systems ...................................................................... 15 

2.5.1 DEMSort ....................................................................................... 16 

2.5.2 Hadoop ......................................................................................... 17 

2.5.3 PSort ............................................................................................. 18 

2.5.4 EcoSort ......................................................................................... 19 

2.5.5 NOW-Sort ..................................................................................... 19 

2.5.6 Summary and Comparison ........................................................... 20 

3 Tritonsort Architecture................................................................................ 25 

3.1 Pipeline architecture ............................................................................ 25 

3.2 Gray Sort Configuration ....................................................................... 26 

3.3 Minute Sort Configuration .................................................................... 27 



viii   

 

3.4 Test bed .............................................................................................. 28 

4 Challenges and Approach .......................................................................... 31 

4.1 Motivation ............................................................................................ 31 

4.2 Challenges .......................................................................................... 33 

4.2.1 Map ............................................................................................... 33 

4.2.2 Store ............................................................................................. 34 

4.2.3 Reduce ......................................................................................... 34 

4.3 Contributions of the paper ................................................................... 35 

4.4 Evaluation ........................................................................................... 36 

4.4.1 Measuring performance ................................................................ 36 

4.4.2 Measuring Resource efficiency ..................................................... 36 

4.5 Architecting for Efficiency .................................................................... 42 

4.6 Design Constraints .............................................................................. 43 

4.7 Limitations ........................................................................................... 44 

5 Contributions .............................................................................................. 47 

5.1 Data persistence ................................................................................. 48 

5.1.1 Caching in external distribution sort .............................................. 49 

5.1.2 Caching Buckets ........................................................................... 52 

5.1.3 Writing Buckets ............................................................................. 56 

5.1.4 Conclusion .................................................................................... 58 

5.2 Internal sort ......................................................................................... 59 

5.2.1 In-place permutation ..................................................................... 61 

5.2.2 Memory requirements ................................................................... 62 

5.2.3 Conclusion .................................................................................... 63 

6 Evaluation and Discussion ......................................................................... 65 

6.1 Internal sort ......................................................................................... 65 

6.1.1 Discussion .................................................................................... 67 



  ix 

   

6.2 Disk access ......................................................................................... 69 

6.2.1 Write performance ........................................................................ 70 

6.2.2 Read performance ........................................................................ 72 

6.2.3 Discussion .................................................................................... 73 

6.3 System performance ........................................................................... 75 

6.3.1 Efficiency ...................................................................................... 77 

6.4 Benchmark-specific comparison ......................................................... 79 

6.4.1 Gray Sort ...................................................................................... 79 

6.4.2 Minute Sort ................................................................................... 86 

6.4.3 Discussion .................................................................................... 91 

7 Summary ................................................................................................... 95 

7.1 Contribution Summary ......................................................................... 95 

7.1.1 Disk access................................................................................... 96 

7.1.2 Internal Sort .................................................................................. 98 

7.1.3 System Performance .................................................................. 100 

8 Future Work ............................................................................................. 103 

9 Acknowledgements .................................................................................. 105 

10 References .............................................................................................. 107 

 





  xi 

 

Index of Figures 

Figure 1 - Large-scale benchmark cost-efficiency .............................................. 3 

Figure 2 - Distribution Sort................................................................................ 11 

Figure 3 - Merge Sort ....................................................................................... 12 

Figure 4 - Tritonsort Architecture ...................................................................... 25 

Figure 5 - Gray Sort Configuration ................................................................... 26 

Figure 6 - Minute Sort Configuration ................................................................ 27 

Figure 7 - Test bed hardware ........................................................................... 29 

Figure 8 - Challenges and Contributions .......................................................... 47 

Figure 9 - Contributions to Data Persistence .................................................... 48 

Figure 10 - Processing input data ..................................................................... 49 

Figure 11 - Processing intermediate data ......................................................... 50 

Figure 12 - Accessing intermediate data with random read ............................. 50 

Figure 13 - Accessing intermediate data with random write ............................. 51 

Figure 14 - Impact of caching on write performance ........................................ 52 

Figure 15 - Writer and Receiver stall ................................................................ 53 

Figure 16 - Writer and Receiver decoupled ...................................................... 54 

Figure 17 - Writer using fixed thresholds .......................................................... 57 

Figure 18 - Writer using demand-based scheduling ......................................... 58 

Figure 19 - Contributions to Internal Sorting ..................................................... 59 

Figure 20 - Internal Sort runtime ....................................................................... 60 

Figure 21 - Internal Sort throughput ................................................................. 60 

Figure 22 - Radix Sort in-memory reordering ................................................... 62 



xii   

 

Figure 23- Internal Sort throughput .................................................................. 66 

Figure 24 - Internal sort time ............................................................................ 67 

Figure 25 - Intermediate data write performance.............................................. 71 

Figure 26 - Intermediate data read performance .............................................. 72 

Figure 27 - Large-scale Systems in Benchmark ............................................... 75 

Figure 28 - System throughput per component ................................................ 77 

Figure 29 - Gray Sort - DEMSort vs Tritonsort - hardware performance .......... 81 

Figure 30 - Gray Sort - DEMSort vs Tritonsort - Cost-Efficiency ...................... 81 

Figure 31 - Gray Sort - Hadoop vs Tritonsort - hardware performance ............ 84 

Figure 32 - Gray Sort - Hadoop vs Tritonsort - Cost-Efficiency ........................ 84 

Figure 33 - Minute Sort - DEMSort vs Tritonsort - hardware performance ....... 87 

Figure 34 - Minute Sort - DEMSort vs Tritonsort - Cost-Efficiency ................... 87 

Figure 35 - Minute Sort - Hadoop vs Tritonsort - hardware performance ......... 89 

Figure 36 - Minute Sort - Hadoop vs Tritonsort - Cost-Efficiency ..................... 90 

Figure 37 - Contributions summary .................................................................. 96 

Figure 38 - Performance Disk Access .............................................................. 97 

Figure 39 - Performance Internal Sort .............................................................. 99 

Figure 40 - Cluster hardware .......................................................................... 101 

Figure 41 - Gray Sort performance ................................................................. 101 

Figure 42 - Minute Sort performance .............................................................. 102 

 

 



  xiii 

 

Index of Tables 

Table 1 - DEMSort fact sheet ........................................................................... 16 

Table 2 - Hadoop fact sheet ............................................................................. 17 

Table 3 - PSort fact sheet ................................................................................. 18 

Table 4 - EcoSort fact sheet ............................................................................. 19 

Table 5 - Comparison of benchmark systems .................................................. 22 

Table 6 - Comparison of system throughput and cost-efficiency ...................... 23 

Table 7 - Challenges overview ......................................................................... 33 

Table 8 - Internal Sort throughput ..................................................................... 66 

Table 9 - Internal Sort time ............................................................................... 67 

Table 10 - Intermediate data write performance ............................................... 71 

Table 11 - Intermediate data read performance ............................................... 72 

Table 12 - Large-scale Systems in Benchmark ................................................ 76 

Table 13 - Relative throughput per component ................................................ 77 

Table 14 - Relative resource efficiency ............................................................ 78 

Table 15 - Gray Sort - Evaluation Tritonsort vs DEMSort ................................. 82 

Table 16 - Gray Sort - Evaluation Tritonsort vs Hadoop ................................... 85 

Table 17 - Minute Sort - Evaluation Tritonsort vs DEMSort .............................. 88 

Table 18 - Minute Sort - Evaluation Tritonsort vs Hadoop ................................ 91 

 

 

 





1 

 

1 Introduction 

Data warehouses of Internet companies store vast amounts of data. The ability 

to process this data in a timely manner is vital to company revenues through 

advertising and retailing. Accessing and mining these amounts of data is 

therefore a major challenge, alongside failure-redundant storage, security and 

others. 

Such amounts of data are typically found in internet scale services and cloud 

computing applications. (1) The need to deal with large data sets gave birth to a 

series of new batch-processing frameworks such as Apache Hadoop (2), 

Google MapReduce (3) or Microsoft Dryad.(4) The analysis of stored 

information is typically distributed across hundreds of individual machines for 

raw storage requirements and I/O bandwidth. This focus on parallel processing 

of data instead of expensive arithmetic computation distinguishes “Data-

intensive Super computing” (DISC) from traditional “High-performance 

Computing” (HPC). (5) 

One example for the scale of data processing is provided by Jeffrey Dean in a 

2009 talk about utilization of MapReduce in Google’s data centers. In 

September 2009 Google’s data centers processed 540 Petabyte of input data, 

using 25,500 machine years worth of processing time.(6) 

At these scales it seems favorable to operate a cluster close to its hardware 

limits - with high resource efficiency - to keep initial investments and running 

costs as low as possible. (7) This motivates the design of “balanced systems” 

(8) that optimize software and hardware for I/O bound workloads that are found 

in DISC applications. 

All major DISC frameworks are work in progress, and hence, developers 

frequently compete in benchmarks and publish performance numbers (9), 

although fine-grained comparability of the processing frameworks is a mostly 

unsolved issue (8). This phenomenon is nothing new - in 1985 the Datamation 

benchmark suite was proposed by (10) and has since been adapted multiple 
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times to account for rapid changes in hardware performance and capacity 

(11)(7). Part of this suite is the Sort Benchmark: it requires a set of unordered 

records to be read from disk storage, sorted and written to a sequential output 

file. Sort benchmarks have been used since to compare performance and 

efficiency of parallel processing systems close to real workloads for a long time. 

(12) The task of sorting is simple enough to be performed with any system, yet 

it is an I/O bound task and touches most aspects of the system, including CPU, 

memory, disk and potentially network I/O. Different metrics are used to evaluate 

competing systems in terms of performance and efficiency. In general, systems 

dealing with large amounts of data are compared in terms of performance only, 

while small scale systems use metrics targeted at cost and energy efficiency. 

There have been considerable advances to benchmark performance over the 

past 20 years (12). This is mainly credited to increases in hardware 

performance as well as the use of Beowulf-type clusters instead of mainframe 

systems. (13) However, the growth in performance comes at increasingly high 

costs due to the use of large amounts of cluster nodes. It was pointed out 

recently that system hardware efficiency suffered heavily and the explosion in 

scale may mislead future developments into a competition of pure economic 

investment. In (8) E. Anderson and J. Tucek estimate an average throughput of 

less than 12 MB/s per node for modern enterprise-class DISC clusters 

competing in large scale sort benchmark. Compared to more than 100MB/s per 

server on small systems built from consumer quality hardware for reasons of 

cost-efficiency there seems to be a potential for improvement. 

This motivates the “Tritonsort” project to approaches large-scale benchmarks 

from a resource efficiency point of view. Tritonsort aims at improving upon 

existing large-scale sort benchmark results while using significantly less 

hardware resources. Hence, it is designed with efficiency considerations in the 

first place and incorporates experience and lessons learned from state-of-the-

art systems. 
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Figure 1 - Large-scale benchmark cost-efficiency 

The figure shows 2010 Sort Benchmark cost-efficiency for Hadoop, DEMSort 

and Tritonsort. All three systems compete in the Sort Benchmark “Gray Sort” 

category, handling large-scale datasets of 100TB or more. Benchmark 

performance of these systems is almost identical, with Tritonsort being the top-

performing system with a slight advantage. From a cost-efficiency point of view 

the differences become substantial, however. (Cost estimations for DEMSort 

and Hadoop are based on (8)) 

This paper specifically focuses on two aspects in the development of Tritonsort. 

First, two core components for intermediate data storage and internal sorting 

are designed and implemented. Both affect disk I/O efficiency and 

computational efficiency of Tritonsort substantially. Second, a systematic 

evaluation of Tritonsort’s resulting resource-efficiency is provided, comparing 

Tritonsort to state-of-the-art systems in large-scale Sort Benchmark. 

The key contributions of the thesis are: 
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1. Overview of state-of-the-art systems 

An overview of state-of-the-art systems competing in Sort Benchmark is given. 

Architecture and algorithms of systems are described and specific strengths are 

analyzed. Experience from small- and large-scale systems is collected and 

discussed in the context of resource efficiency. This leads to a series of open 

questions and challenges in creating resource-efficient data persistence and 

sort implementation. 

2. Data persistence for sustained rate parallel file writes 

The Tritonsort prototype is supplemented with a disk I/O layer for writing to 

large amounts of files that overcomes file-system weaknesses for sustained 

rate transfers to multiple files co-located on a physical disk. An optimal 

approach from literature is adapted to satisfy benchmark requirements and 

hardware limitations and performance is compared to alternative approaches. 

3. Memory-efficient linear-time sort 

A memory-efficient linear-time internal sort component is designed and 

implemented. Radix sort is adapted to the specific use case and memory 

requirements are reduced to O(1.3n). Additionally, a performance evaluation is 

performed to ensure sufficient throughput for on-the-fly processing of data. 

4. Concept for evaluation of resource-efficiency at large-scale 

A concept for evaluation of resource-efficiency of large-scale systems in Sort 

Benchmark is provided. An approach suggested by (8) is adapted to quantify 

aspects of computational, I/O and cost efficiency. 

5. Systematic evaluation of performance and resource-efficiency 

Performance and resource-efficiency of the integral Tritonsort prototype is 

evaluated using the above approach. Large-scale benchmark results of state-of-

the-art systems are compared to Tritonsort and discussed in the light of 

resource-efficiency. This is used to identify specific strengths and potential for 

optimization in the future. 
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The document is structured as follows: Section 2 summarized relevant related 

work and gives an overview of the state of the art in Sort Benchmark. In Section 

3 design and architecture of Tritonsort are presented. Section 4 derives 

research issues and summarizes challenges of architecting for resource 

efficiency. Practical work of the thesis is described in Section 5, the evaluation 

is performed in Section 6. Practical work and evaluation represent the main part 

of the thesis; they describe the disk I/O layer and Radix Tag sort 

implementation and quantify resource-efficiency of Tritonsort and state-of-the-

art systems. Section 7 summarizes and discusses results and provides 

perspectives for further research. 
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2 Related work 

This section provides an overview of related work and summarizes important 

concepts. First, distinct aspects of efficiency in DISC systems are introduced 

and a number of benchmarks and metrics quantifying them are presented. Then 

fundamental algorithmic approaches to external memory sort are provided. 

Finally, state-of-the-art systems in Sort Benchmark are presented and 

compared in terms of architecture and efficiency. 

2.1 Types of efficiency 

In a 2010 paper E. Anderson and J. Tucek describe eight aspects of efficiency 

in DISC systems. These are computational, I/O, storage, memory, programmer, 

management, energy and cost efficiency. The following listing summarizes 

definition and potential impacts. 

1. Computational efficiency 

There are two major variables affecting computational efficiency. At first, the 

amount of CPU cycles required to generate the desired result and second, the 

amount of cycles being wasted due to idling. The first aspect can be addressed 

by the choice of algorithm (14) and programming tools (8). The second aspect 

can be dealt with mainly by process scheduling. A side-effect of computational 

efficiency is an impact on energy and cost efficiency. 

2. Input/Output efficiency 

The I/O efficiency of a device is determined by the average throughput achieved 

divided by its theoretical maximum. The overall result is the average of all 

relevant-system devices and is mainly impacted by replication redundancies 

and idle times. The use of replication is an architectural decision while idle times 

may be caused by inappropriate design or bottlenecks elsewhere. 
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3. Storage efficiency 

Efficient storage minimizes the overhead of physical data storage relative to the 

amount of logical data in the system. Overheads are mainly generated by 

replication and additional metadata. For example, a system with 10 percent file-

system overheads using 2-way replication would provide a storage efficiency of 

0.45. 

E. Anderson and J. Tucek argue that compression can improve this kind of 

efficiency by a multitude. While this is valid for production systems, rules of Sort 

Benchmark do not allow any kind of data compression due to the emphasis on 

I/O bandwidth dependent metrics. 

4. Memory efficiency 

Memory efficiency focuses at the overhead of data held in volatile storage. This 

is impacted by data structures, heap requirements and memory fragmentation. 

When performing memory-intensive tasks, such as write caching or internal 

sorting, the choice of algorithm may have severe impact too. 

5. Programmer efficiency 

Programmer efficiency is directly related to productivity, and hence, it is difficult 

to measure. It is argued the choice of tools, programming languages and 

frameworks heavily influences this aspect. Generally, this is a factor related to 

the broader topic of development processes and reusable software designs and 

lies out of the scope of this work. 

6. Management efficiency 

Management efficiency describes the effort required to maintain the system 

infrastructure relative to the minimum amount required. Any quantitative results 

in this are specific to a site or technology. Qualitatively, it can be observed that 

increased specialization of hardware leads to decreased management 

efficiency. 
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7. Energy efficiency 

The overall energy consumption of system infrastructure to complete a given 

task is compared to previous systems in benchmarks to obtain a relative energy 

efficiency measure. It is suggested that a considerable portion of the total 

consumption may be caused by auxiliary devices such as cooling, therefore 

emphasizing small hardware appliances.  

8. Cost efficiency 

There are multiple ways to measure cost efficiency, e.g. records/dollar (data 

processed per investment) or records/second/dollar (data throughput per 

investment). The preferred metric depends on specific application requirements 

and may be biased towards certain benchmarks or configurations. 

2.2 Benchmark and Metrics 

Initially defined in “A Measure of Transaction Processing Power” by Anon et Al. 

in 1985 the benchmark suite later named “Datamation” has continually been 

refined and extended (11)(10)(7). It is designed to provide a minimal level 

comparability of real-world performance of different systems and platforms. 

Multiple aspects of a system are tested instead of relying on vendor 

whitepapers and theoretical metrics such as maximum MIPS. For this purpose 

each mini-benchmark includes a range of I/O operations testing the system’s 

interface to its environment.  The first generation of benchmarks included 

“DebitCredit”, “Scan” and “Sort”. The initial metric used to rank systems was the 

cost/performance ratio based on elapsed time and total throughput.  

“DebitCredit” measures remote transaction performance and latency. It 

simulates a banking scenario timing system and database transactions initiated 

from remote ATM terminals. “Scan” tests throughput achievable through high-

level interfaces used by application developers. Finally, “Sort” benchmarks 

maximum I/O performance by measuring elapsed time for reading and 

processing a fixed set of input data and writing the sorted sequence back to 

disk. 

The original “Datamation” sort benchmark operated on a 100MB input data and 

was replaced by a series of different categories to account for increased 
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hardware capacity and emerging topics such as energy efficiency. As of June 

2010 there are four different metrics applied to two different types of datasets 

and multiple input sizes. The dataset types are split into general purpose 

“Daytona” tuples with variable length and key size and performance-focused 

“Indy” fixed-length 100-bytes records with a 10-bytes key. Each of the metric 

described below favors a different system setup and imposes certain 

restrictions to ensure comparability. 

1. Gray sort 

The input size is restricted by a lower bound of 100TB and system performance 

is measured by throughput (TB/min). The benchmark replaced the Terabyte sort 

challenge and is named in honor of Jim Gray after his disappearance at sea in 

2007. (9) Due to the emphasis on large datasets, systems need to rely on 

distributed processing on clusters in general. 

2. Minute sort 

The amount of data processed in less than a minute is used as metric and 

includes time for system startup and shutdown. (A maximum runtime of 60 

seconds) Current results supersede 1TB which requires a substantial amount of 

disks to provide the required bandwidth. Minute sort was introduced by (11). 

3. Penny sort 

The amount of data sorted for the equivalent of one penny system cost, 

assuming the hardware has a lifetime of three years. This category was first 

suggested by (11) too and favors cheap hardware setups. Competing systems 

utilize hardware efficiently, but their absolute scale currently does not surpass 

several hundred Gigabytes of total storage capacity. 

4. Joule sort 

The amount of data sorted for the equivalent of one Joule, including total energy 

consumption of any hardware and auxiliary devices used. This was introduced 

by (7) and further emphasized by (8) due to drastically decreasing resource 

efficiency of systems competing in Gray- and Terasort benchmarks. The 

benchmark is currently performed for multiple input sizes between 10GB and 
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100TB. The focus on energy consumption favors expensive flash-based storage 

devices that are currently not suitable for large-scale deployments. 

Benchmark rules do not restrict the scale of a hard- or software, however, they 

require commodity components to be used. In addition, any kind of pre-caching 

and compression is disallowed to support the focus on I/O efficiency. (9) 

2.3 Sorting Algorithms 

The following part gives an overview of memory external sort. Merge and 

distribution based approaches are presented 

Any kind of internal sort algorithm at least requires memory equal to the size of 

a run being sorted. Given a memory starved environment external sorting is 

required, i.e. a cluster providing 1TB of main memory while sorting 100TB of 

data. External sort passes through data two times or more. It first partitions data 

into smaller subsets and then iteratively aggregates them to a global result. (14) 

Vitter (15) describes the two fundamental approaches to external sorting, 

sorting by distribution and sorting by merging. Vitter also takes different 

approaches for I/O into account and derives a duality in terms of I/O operations 

for both approaches. 

2.3.1 Distribution Sort 

Distribution sort is a recursive process that partitions a set of items into multiple 

disjoint buckets. Each bucket only contains items that are smaller than items in 

subsequent buckets. Hence, when all buckets are sorted individually and 

concatenated, the result is sorted globally. 

  

Distribute 

Distribution to buckets based on Prefix 

Sort 

Internal sort of buckets 

Figure 2 - Distribution Sort 
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Before distribution-sort iterations can be performed the partitioning elements 

have to be determined. Their values represent the boundaries of a bucket. All 

items found to be in between the two partitioning elements are put into the 

same bucket.  When partitioning elements are selected optimally, items are 

distributed across buckets evenly. There a multiple deterministic and 

probabilistic methods to select partition boundaries with a general trade-off 

between expense and accuracy. (16)(17) 

When applying distribution sort in an environment with multiple parallel disks 

many I/O-operations can be load-balanced to improve performance. Vitter (15) 

shows that randomization-based approaches provide optimal I/O behavior. 

2.3.2 Merge Sort 

Merge sort is a two step process. First, a number of sorted runs are generated 

by filling memory, performing internal sort and writing them back to disk 

repeatedly. Then, these runs are merged into a single sequence by reading 

each sequence from disk in small chunks and heap-sorting individual items. 

Sort 

Partitioning input and internal sort 

Merge 

Merging sorted runs 

Figure 3 - Merge Sort 

Merge sort does not require partitioning elements as partitioning is based on run 

size only. Hence, Merge sort can be easily adapted to different amounts of main 

memory by changing the size (and number) of runs. The merge operation is 

based on comparison and cannot be run in linear time. 

This approach allows for load-balancing across multiple disks too, optimal pre-

fetching of chunks requires relatively complex algorithms, however.(15) 
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2.4 Architectural approaches 

Numerous architectural approaches to distributed sorting can be found in 

literature. In the history of Sort Benchmark early systems were built on shared 

memory mainframes (11) and were replaced by distributed systems built from 

large amounts of similar commodity hardware components. (18)(13) Also, some 

hybrid systems proved to be successful using heterogeneous (19) or 

specialized hardware (20) and mainframes operating on external disk clusters. 

(21) 

2.4.1 Shared memory and Data partitioning 

Access to main memory and secondary storage in parallel sort implementations 

is popularly modeled either by a shared-memory or a data-partitioning 

approach, as denoted by (11). 

Shared-memory systems assume access to all data by any node in the system. 

This model is used by frameworks that transparently handle the exchange of 

data across the network or by mainframe systems that provide hardware 

support for large amounts of main memory. 

Data-partitioning approaches operate on node-local datasets only and explicitly 

exchange messages and data between nodes. 

The general advantage of shared-memory is simple implementation of 

algorithms while data-partitioning does not require any additional hardware or 

software support in order to function on networks of commodity workstations. 

(18) 

2.4.2 Single- and Multi-pass sorting 

The number of I/O operations mainly depends on the amount of memory in the 

system relative to the total amount of data being sorted (11) (18). A memory-

rich environment can rely on single I/O-pass design. In a memory-starved 

environment two read/write passes have to be performed. Depending on the 

design, additional passes may be introduced. (22) In general this leads to 

longer runtimes and decreases I/O efficiency, but may be necessary to 

overcome memory constraints. 
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The single-pass system reads input data from external storage once. Data is 

stored in memory and sorted internally. The result is written back to disk in the 

end. 

The two-pass system reads input data until main memory is full, performs an 

internal sort operation and stores the intermediate result on disk. This process 

is repeated until all input data has been processed. In a second pass the 

intermediate data is processed again to generate the final result. 

A system may perform additional passes if required by architecture or for 

memory considerations. For example, this could be necessary when using 

merge sort in heavily memory starved environments. If main memory cannot 

hold one tuple of each intermediate result, a separate series of runs needs to be 

generated by partial merging. Then, the final result can be generated by another 

merge pass. 

2.4.3 Synchronous and interlaced I/O 

Independent of the number of passes performed it is desirable to maximize I/O 

throughput over run-time. As described by (11) computation and I/O can either 

be performed serially (synchronously), in parallel (threaded) or interleaved 

(relying on kernel level concurrency only). Parallel pipelining increases 

throughput rates for external storage and network by eliminating most idle 

times, but might increase memory requirements. Also, due to read and write 

access occurring at the same time disk and controller setup have to be adapted 

for a pipelined approach. Disks have to be partitioned into separate sets for 

reading and writing to prevent a drop in throughput due to random instead of 

sequential access patterns. 

2.4.4 In-place and out-of-place on storage 

Due to architectures considerations and rule restrictions in the Daytona 

benchmark category most submissions to the sort benchmark use dedicated 

disks for input and output. This out-of-place approach to processing imposes a 

penalty to storage efficiency of a factor of two. By using main memory as buffer, 

input data can be processed and overwritten in-place using minor additional 

disk space. A recent submission using this approach is DEMSort. (22) 
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An in-place design has some drawbacks, though. It imposes an additional 

amount of random disk access and is more complex in design and 

implementation in order to deal with fluctuations in input data distribution. Also, 

in real-world applications it is generally not desirable to lose the input data, 

which is reflected by the Sort Benchmark Daytona rules. (9) 

2.4.5 Parallel sort algorithms 

The NOW-Sort paper (18) describes an approach for parallel sorting on a 

network of nodes using data-partitioning. Processing is split into a distribution 

and a merge phase. 

The first phase distributes data in a single pass. It examines each tuple, 

calculates a hash from the key value and distributes the tuple to the according 

bucket. This task is performed in parallel on all cluster nodes and tuples are 

sent to buckets over the network. At the receiver side tuples are buffered and, 

when a bucket becomes full, it is sorted and written to disk. The second phase 

locally reads and merges all sorted runs stored on a node and writes the 

sequential output to disk. 

2.5 State-of-the-art systems 

The following section gives an overview over some existing systems in the 

context of Sort Benchmark. This includes a description of architecture and the 

techniques employed to achieve improve performance. In addition to recent 

systems, NOW-Sort, an influential implementation of distributed sorting on 

commodity hardware is presented. However, the listing merely provides an 

exemplary overview about the broad variety of systems in Sort Benchmark and 

cannot be regarded as complete reference. 

In subsequence, advantages and disadvantages of these systems are 

summarized and discussed, specifically regarding the applicability for large 

scale deployments. Some systems are developed with high scalability in mind, 

whereas others optimize for energy and cost-efficiency. As Tritonsort aims at 

resource efficiency and large scale valuable approaches to optimization can be 

derived from all these systems. 
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2.5.1 DEMSort 

DEMSort (22) competes in Gray Sort Indy and Minute Sort Indy and uses a 

three stage process. First, a global shared memory sort is used to generate 

sorted runs and globally stripe them across disks. Then, the exact global 

partitioning of tuples is determined and non-matching tuples are redistributed 

across nodes. In the end, each node locally merges runs on disk, yielding a 

globally sorted run. The system reads and writes most data twice and operates 

near in-place, which comes at the cost of some additional disk and network load 

due to re-distribution after determining the exact partitioning in the second step. 

Configuration Gray Sort Indy Minute Sort Indy 

����� 195 195 

	�
�� 1560 1560 

�
��� 780 780 

���
����� 	��� 10�.� ��� 10�.� ��� 

Metrics   

���
 2009 2009 

��
��
���	� 0.565 � /�
� 0.955 �  

���� 100 �  0.955 �  

�
�� 10628 � 60 � 

�ℎ
�#$ℎ�#� 9409.1 & /� 15916.7 & /� 

Table 1 - DEMSort fact sheet 

In terms of hardware DEMSort relies on a 200 node cluster. A node contains 

two quad core Intel Xeon processors with a 2.66GHz clock, 16 GB main 

memory and 4 disks providing 1TB of storage per node. The network 

interconnection is provided by a single InfiniBand 4x DDR switch. It is noted by 

the developer that only 60% of total disk storage is available for sorting, 

however. 

The operating system is Suse Linux Enerprise 10 SP 1 running on kernel 

2.6.22. The file system XFS is used, backed by a RAID-0 configuration of disks 

DEMSort is built on C++ using the GCC 4.3 tool chain and the MPI 

implementation MVAPICH 1.1. 
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2.5.2 Hadoop 

The Hadoop sort benchmark submission (23) is built on Apache Hadoop and 

leverages from distribution sort inherent to the Map-Reduce programming 

model. Hadoop competes in Gray Sort Daytona and Minute Sort Daytona, and 

hence, includes an additional sampling stage to stochastically determine 

partitioning elements before the actual sorting takes place. In the beginning, 

input data is read, sampled and partitioning information distributed. In the Map 

step input files are processed and tuples are sent to their designated target 

nodes. The Reduction step sorts data locally at each node and saves the result 

to the distributed file system HDFS. For Gray Sort a replication factor of 2 is 

used, Minute Sort is executed without replication on a smaller subset of nodes. 

Configuration Gray Sort Daytona Minute Sort Daytona 

����� 3452 1406 

	�
�� 27616 11248 

�
��� 13808 5624 

���
����� 	��� 10(.) ��� 10(.* ��� 

Metrics   

���
 2009 2009 

��
��
���	� 0.578 � /�
� 0.500 �  

���� 100 �  0.500 �  

�
�� 10380 � 59 � 

�ℎ
�#$ℎ�#� 9633.9 & /� 8474.6 & /� 

Table 2 - Hadoop fact sheet 

The hardware is made up from a homogenous cluster of approximately 3800 

machines each containing two quad core Intel Xeon processors with a 2.5GHz 

clocking. A node also holds 4 disks for secondary storage and 8 GB of main 

memory. Networking is enabled by a 1Gbit Ethernet interface per machine per 

rack internally. Externally, each 40 machine rack is connected to a central hub 

with an 8Gbit interface. 

The operating environment is provided by Red Hat Enterprise Linux Server 

Version 5.1 based on the 2.6.18 kernel. Hadoop relies on the Java 6 

environment Sun JVM 1.6.0 32bit for small sort runs and 64bit for head nodes 
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during large sorts. The codebase for the submission is Hadoop 0.20 and 

integrates a custom shuffle stage, a modified tracker and optimizations to the 

map and reduce stage. Most notably, some superfluous disk I/O and hard-

coded wait-loops are removed and map outputs are compressed. (For the 2010 

benchmark a rule change disallowed any kind of data compression) 

2.5.3 PSort 

Psort (24) leads the Penny sort category for Daytona as well as for Indy input 

data categories. It employs multi-level merge sort and optimizes for cost-

efficiency on small scale, hence putting high emphasis on computational 

efficiency and I/O efficiency by pipelining. External sort is performed by a two-

pass merge sort, reading and writing data at disk twice, processing each datum 

in memory multiple times depending on the number of internal merge passes. 

Internal sorting relies on merge-sort for Daytona and a hybrid bucket-sort 

merge-sort for Indy datasets. Notable optimizations for computational efficiency 

include the tag-based internal sort, cache-aware buffer sizes and reduction of 

branching instructions. Application I/O is tuned by relying on parallel disk 

access, the choice of file system and asynchronous direct I/O provided by 

commodity Linux. 

Configuration Penny Sort Daytona Penny Sort Indy 

����� 1 1 

	�
�� 1 1 

�
��� 5 5 

	��� 428 ��� 428  ��� 

Metrics   

���
 2009 2009 

��
��
���	� 225 +  248 +  

���� 225 +  248 +  

�
�� 2211 � 2211 � 

�ℎ
�#$ℎ�#� 101.8 & /� 112.2 & /� 

Table 3 - PSort fact sheet 

Being a small-scale system psort’s hardware consists of a single machine that 

does not require any networking. It contains a 2.6GHz AMD Athlon LE 
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processor, 5 disks and 4GB of memory. The XFS file system is applied to a 

RAID-0 configuration and the operating system is Gentoo Linux, a concrete 

version is not specified by the developers. 

2.5.4 EcoSort 

EcoSort (25) uses flash-based storage for JouleSort Indy and thus optimizes for 

energy efficiency. It employs a two-pass external merge sort algorithm. Internal 

sort utilizes a tag-based hybrid bucket-merge sort comparable to Psort. The 

design relies on parallel sorting by two physical cores and leverages from low 

latency provided by SSDs at random read access. 

Configuration Joule Sort Indy (108) Joule Sort Indy (109) 

����� 1 1 

	�
�� 2 2 

�
��� 4 4 

	��� 3500 ��� 3500 ��� 

Metrics   

���
 2010 2010 

��
��
���	� 2.3 kJoules 25.1 kJoules 

���� 10 +  100 +  

�
�� 72 � 691 � 

�ℎ
�#$ℎ�#� 138.9 & /� 144.7 & /� 

Table 4 - EcoSort fact sheet 

Also a small-scale system, EcoSort runs on a single physical machine. The 

CPU is a two core Intel Atom 330 and is backed by 4 GB of main memory and 4 

Super Talent 256GB MLC SSDs. The system relies on Debian Linux kernel 

2.6.30 and uses RAID-0 XFS for file storage. EcoSort is built using the GCC 

4.4. tool chain. 

2.5.5 NOW-Sort 

NOW-Sort (18) was developed over a decade ago, competed in the original 

100MB Datamation benchmark and was re-used later in winning systems in the 

Minute Sort Benchmark. (19)  It represents the first sort implementation based 

on a cluster of commodity hardware machines that competed successfully 

against mainframe setups. The hardware provided multiple processors and 
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disks per machine, which has become a typical environment today. For 

distributed external sorting the system relies on a two-pass algorithm, first 

distributing data across nodes and generating sorted runs, then merging runs 

locally to obtain the final result. Distribution is performed by separating input 

tuples based on a key prefix and sending them to target nodes in batches. The 

Receiver combines a series of batches up to its memory limit and generates a 

run that is written to disk. Internal sorting is realized as hybrid bucket-sort radix-

sort that is optimized using cache-aligned bucket and buffer sizes and tag-

based sorting. Application I/O relies on disk striping and partial pipelining; read 

and write operations on disk and network are interleaved while sorting is 

performed synchronously before writing. Though, this prevents maximum 

throughput in the first pass, it allows large runs to be generated which in turn 

reduces disk and processing overheads in the second pass. 

A look on the hardware employed by NOW-Sort is more of archival character as 

the initial records were set in 1997 with respective hardware. The cluster uses 

64 nodes, each equipped with two (fast-narrow SCSI) disks and 64MB of main 

memory. Networking is realized by 160 MB/s Myrinet Cards connected by 26 

switches in a 3-ary tree topology. 

2.5.6 Summary and Comparison 

Papers presenting these systems identify efficient sort implementations and 

interleaved I/O as core challenges in design and development. Network 

bandwidth is not perceived as limiting factor, for minor exceptions (19), as 

network interconnections outperform disk I/O per cluster node for most systems. 

Systems that rely on multiple nodes to run the benchmark need to distribute 

data after it has been read off disks initially. This is approached by analyzing a 

portion of each tuple’s key and storing the tuple in the according intermediate 

buffer. At some point data is transmitted across the network in batches and 

processed at the target node. 

Most implementations presented above rely on run formation in the first pass 

and merge sort in the second pass. On a large scale this resembles a hybrid 

bucket-sort of data across nodes or disks, internal sorting of buckets at each 
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node and a final local merge sort. Data is being sorted trice: for distribution, for 

run formation and for merging. 

Internal sort implementations rely on merge-sort or bucket-sort based 

approaches and hybridization. Though, merge-sort has a theoretical boundary 

of O(n log n) operations compared to O(n) bucket-sort, most concrete merge-

based implementations show competitive benchmark performance. The use of 

key-pointer tags instead of full size tuples shows superior performance for large 

input size and can be improved further by introducing cache-aligned buffers. 

In terms of secondary storage access these systems use a two pass merge sort 

approach. In the first pass data is read off disk sequentially and generated runs 

are persisted in the same way. The second pass performs merge sort, reading 

blocks from existing runs in parallel and writing a sequential output file. 

Sequential access provides maximum throughput for commodity disks, seek 

times induced by random access during the second read phase lead to a drop 

in performance. The number of seeks is minimized by balancing the number of 

files with an appropriate input block size. Most systems report a specific number 

of files they can sustain for merging before performance drops sharply. EcoSort 

leverages heavily from SSDs and flash memory, as seeking does not apply to 

solid state drives. DEMSort uses a slightly different approach to distribution of 

data across nodes by using estimates for partitioning in a first pass and 

incurring a re-distribution step before merge sorting local runs. Hadoop uses a 

distributed file system to store input and output data, but do not provide data on 

the number of actual read and write operations. The estimated throughput 

values per disk may indicate that this number exceeds the two-pass minimum. 

(See Section 1) 

A comparison of systems in terms of performance was the initial motivation of 

sort benchmark. Over time, different metrics were added as it became clear that 

systems are designed with a different focus in mind. The first additions were 

minute sort and penny sort, emphasizing low startup and shutdown overheads 

and cost efficiency. Later, Joule sort was added tackling energy consumption of 

benchmark systems. 
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In an economic sense, cost-efficiency is probably the most important metric 

(ignoring aspects of programmer and management efficiency). Penny sort 

addresses this directly, but enterprise class systems deal with a larger scale of 

data than current penny sort systems. Large scale in turn is addressed by Gray 

sort, but it is hard to compare system in terms of hardware and development 

cost as relevant submissions do not provide information on hardware cost. In 

(8) an attempt is made to estimate cost-efficiency for recent submissions to sort 

benchmark.  

The following comparison of system performance and cost-efficiency is inspired 

by (8) and adds data from recent submissions to sort benchmark. The total 

throughput of a system during its benchmark run (in MB/s) is divided up per 

node, CPU core and disk. Although, systems are developed for different 

benchmark categories performance and cost consideration are made in every 

case. 

Year Name Category Nodes Cores Disks Data 
(MB) 

Time 
(s) 

2009 DEMSort Gray Indy 195 1.560 780 100.003.000 10.628 

2009 Hadoop Gray Daytona  3.452 27.616 13.808 100.000.000 10.380 

2009 psort Penny Indy 1 1 5 248.000 2.211 

2010 EcoSort Joule Indy 1 2 4 10.000 77 

Table 5 - Comparison of benchmark systems 

There is a large difference in scale for the amount of data, the run time and the 

amount of hardware. Hence, any comparison of per node performance can only 

be regarded as rough approximation. Still, throughput numbers and estimations 

of cost-efficiency show a drastic advantage for smaller systems that cannot be 

explained by sole costs of additional networking hardware. 
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Year Name Throughput 
(MB/s) 

TP/Node 
(MB/s) 

TP/Core 
(MB/s) 

TP/Disk 
(MB/s) 

Cost Eff. 
(Bytes/s/$) 

2009 DEMSort 9409,1 48,3 6,0 12,1 1e4,1 

2009 Hadoop 9633,9 2,8 0,3 0,7 1e3,2 

2009 psort 112,2 112,2 112,2 22,4 1e5,5 

2010 EcoSort 129,9 129,9 64,9 32,5 1e4,6 

Table 6 - Comparison of system throughput and cost-efficiency 

Estimations show there is a factor of more than 100 in cost-efficiency when 

comparing cost-efficiency of Hadoop, a large-scale application, with psort, the 

best-performing penny sort system. Also, a significant difference in throughput 

per hardware component can be found. The estimated gap in cost-efficiency is 

reflected in throughput numbers per node, core and disk to some extent. 

The numbers suggest that there is a potential for improvements to resource-

efficiency in large-scale applications. Throughput numbers per component are 

smaller for large-scale systems DEMSort and Hadoop and indicate issues that 

do not exist in psort or EcoSort. This might be due to the requirements of 

networking hardware or low efficiency in algorithms and disk I/O. 
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3 Tritonsort Architecture 

The architectural overview introduces the design of the Tritonsort prototype. 

Individual steps of the processing pipeline are described and details of pipeline 

configuration for the Gray Sort and Minute Sort benchmark are provided. In 

addition hardware and operating system environment of the test bed are 

presented. 

3.1 Pipeline architecture 

The Tritonsort prototype competes in large-scale sort benchmarks, hence it 

performs memory-external sort distributed across a number of individual 

machines. The processing pipeline is inspired by the Map-Reduce approach, 

with additional emphasis put on the management of intermediate data. The 

implementation of external sort is based on distribution sort. The mapping step 

splits up input data in sufficiently small “buckets”, so each bucket fits into 

memory for internal sorting by the reduce step. 

 
 

 

Map 

1a Read tuples from disk 

1b Determine destination 

1c Send to target node 

Store 

2a Receive incoming data 

2b Cache in memory 

2c Store on disk 

Reduce 

3a Read presorted data 

3b Sort tuples 

3c Store on disk 

Figure 4 - Tritonsort Architecture 

The system highly relies on concurrent computation and I/O and is designed as 

pipeline with consecutive worker stages. Unlike the approach taken by pure 

MapReduce, a pipeline may have an arbitrary worker (Mapper/Reducer) chain. 
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This simplifies process optimization, e.g. by reconfiguration of an intermediate 

writer stage. Also, this provides increased extensibility as additional stages, e.g. 

continuous input sampling, can be added to an existing pipeline almost 

transparently. A trade-off is tight coupling between components if the system is 

not designed carefully. 

The pipeline starts by mapping tuples to target nodes. Input data is read from 

disk, the target location of each tuple is determined and it is sent to the target 

location. The destination node collects incoming tuples in their according 

buckets and stores them on a distinct set of disks. When all tuples have been 

distributed, each node locally passes through the buckets, sorts the contents 

and writes the final results back to the input disks. 

There currently exist two pipeline configurations capable of performing the Sort 

Benchmark challenges “Gray Sort Indy” and “Minute Sort Indy”. The Map stage 

is identical, Store and Reduce stages are adapted to work efficiently for two-

pass and one-pass sorting respectively. 

3.2 Gray Sort Configuration 

The Gray Sort benchmark requires a dataset of at least 100TB, leading to multi-

pass sort algorithms and long benchmark runtimes. The system has to sustain 

high disk and network throughput over multiple hours and guarantee stability.  

   

Map 

1a Read tuples from disk 

1b Hash tuple key 

1c Send to target node 

Store 

2a Receive incoming tuples 

2b Cache in Buckets 

2c Store on disk 

Reduce 

3a Read intermediate data 

3b Sort tuples internally 

3c Store on disk 

Figure 5 - Gray Sort Configuration 
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For the Gray sort configuration a two-pass distribution sort - internal sort 

approach is chosen. The map stage distributes data to a global set of buckets 

across the network whereas the store stage continuously writes bucket contents 

to the disk. The reduce pass reads individual buckets and sorts them internally. 

Any I/O operations are interlaced; disks are divided into even partitions for input 

and output. On the test bed hardware 8 readers and 8 writers are used for a 

total of 16 disks per node. 

The map stage utilizes a hash function to determine each tuple’s destination 

bucket and transmits tuples to the according node in batches using a uniform 

partitioning function. The receiver collects these into bucket buffers and the 

writer repeatedly flushes buffers to disk. During the reduce stage bucket files 

are read from disk, passed to a sorter stage and finally handed to the writer 

again. 

3.3 Minute Sort Configuration 

Minute Sort focuses at performance within a timeframe of 60 seconds and 

therefore favors systems with maximum amounts of parallelism and low startup 

and shutdown overheads.  

   

Map 

1a Read tuples from disk 

1b Hash tuple key 

1c Send to target node 

Store 

2a Receive incoming tuples 

2b Cache in Buckets 

 

Reduce 

3a Sort tuples internally 

3b Store on disk 

 

Figure 6 - Minute Sort Configuration 

Minute sort is configured as distribution sort - internal sort without intermediate 

file creation using a synchronous I/O pipeline. The pipeline layout is similar to 

Gray sort, but the intermediate file writer and reader stages are removed and 
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buckets are processed directly by the internal sort stage. Input data is read from 

all disks on all nodes in parallel, distributed, sorted and written back to disk 

concurrently. 

There are several design decisions that show to have a major impact on the 

efficiency of the prototype. Computational efficiency is achieved mainly by using 

a single pass hash function and a linear-time sort algorithm and by keeping in-

memory copies to the minimum. Memory efficiency is owed mainly to buffer 

pools and dynamic size tuning instead of plain double buffering between worker 

stages. Certain trade-offs are made that impact memory usage, e.g. the tag-

based radix sort algorithm uses additional overhead memory compared to 

Quicksort. In case of tag-based sorting this allows additional optimization, 

however. Finally, I/O bandwidth is optimized by keeping network performance 

steady by batch transmission of data and reducing disk seek times by writing 

data to buckets in long sequences. While the number of seeks can be reduced 

a fundamental relationship between intermediate and output data prevents 

purely sequential access when using the distribution-based approach to 

external sorting. 

3.4 Test bed 

The test bed consists of 52 HP ProLiant DL380 G6 machines interconnected by 

10Gbps Ethernet via a 52-port Cisco Nexus 5020 switch. Every server is 

equipped with two Intel Xeon E5520 processors for a total of 8 physical CPUs 

(16 logical CPUs counting Hyper-threads) running at 2.26 GHz. An individual 

machine holds 24GB of ECC RAM and two hard disk controllers with 8 500GB 

SATA hard drives attached each. In total the test bed provides 1.248 TB of main 

memory and 416 TB of secondary storage. Networking is enabled by 10Gbps 

Myricom cards and secondary 1Gbps connections, both running unmodified 

Ethernet. 



 

Figure 7 - Test bed hardware 

 

 

 

 

The test bed provides a Debian Linux 

Kernel 2.6.32 environment. Tritonsort 

is based on the GNU GCC 4.3 build 

chain and facilities provided by the 

C++ Boost library. File access is 

handled by the Ext4 file system and 

networking is realized using the built

in Sockets interface. 
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4 Challenges and Approach 

The following section presents motivation for and challenges in creating a 

resource-efficient system for Sort Benchmark. A concept for quantifying 

efficiency of software components and the integral system is described in order 

to provide an in-depth evaluation of the approach taken by Tritonsort. 

4.1 Motivation 

Sort benchmark at large-scale traditionally does not factor in the amount of 

hardware used. In the struggle to surpass previous records, the scale of 

computing clusters used in benchmarks grew into hundreds and thousands, 

sacrificing efficiency for scalability at all costs. Recent systems in the Gray and 

Minute Sort benchmarks do not utilize major quantities of hardware capacity. 

The scale of hardware used leads to a series of issues in network bandwidth, 

fault-tolerance and other areas that need to be dealt with. This leads to a further 

decrease in efficiency and requires even larger hardware assets. The result is 

an overhead in infrastructure and maintenance cost and added engineering 

effort to address the high complexity that could be avoided altogether. 

Assuming software could use existing hardware more efficiently in the first 

place, excessive scaling was not necessary. Some systems (see Section 1) 

waste more than 90 percent of available disk bandwidth and CPU time. If these 

idle resources can be exploited by increasing system efficiency, the same task 

could be performed on a way smaller set of hardware. 

The “Tritonsort” case-study aims at building a resource-efficient system that 

leverages form advantages of a compact set of commodity hardware. The 

Tritonsort prototype performs superior in Gray Sort Indy and Minute Sort Indy 

and runs on a significantly smaller set of commodity hardware than state-of-the-

art systems. 

At the current state performance of Tritonsort is limited by two tasks within the 

processing chain: intermediate data storage and internal sorting. In the two-

pass sorting approach taken by Tritonsort intermediate data storage slows 
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down the primary pass while internal sorting limits throughput of the second 

pass. Assuming both bottlenecks can be resolved without adding more 

hardware resources, system efficiency could be increased. 

Hence, this paper focuses on these two aspects of in Tritonsort’s subsystems 

for disk I/O and internal sorting. Both elements require careful design, as they 

have fundamental impact on overall system performance and efficiency. The 

realization of resource efficient components is performed as a four step 

process: first, metrics and ways to measure “performance” and “efficiency” are 

defined. Second, existing systems are compared in terms of architecture and 

efficiency using installed metrics. Third, suitable designs for disk I/O and 

internal sort subsystems are created. Fourth, the design is implemented and 

evaluated by comparison to state-of-the-art systems by benchmark results and 

metrics. 

The core contributions of this paper are development of software components 

for intermediate data storage and internal sorting and an in-depth analysis of 

resulting resource efficiency of Tritonsort and state-of-the-art systems in large-

scale Sort Benchmark. 
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4.2 Challenges 

Tritonsort aims at achieving resource-efficiency. This requires balanced use of 

available hardware capabilities in each stage of the pipeline. Also, interaction 

and parallelism between stages need to be accounted for. 

 
 

 

Map 

1a Read tuples from disk 

1b Determine destination 

1c Send to target node 

Store 

2a Receive incoming data 

2b Cache in memory 

2c Store on disk 

Reduce 

3a Read presorted data 

3b Sort tuples 

3c Store on disk 

Table 7 - Challenges overview 

4.2.1 Map 

The map stage reads input data from disk and distributes tuples to all 

participating nodes. It is active in parallel with the Store stage. Main challenges 

are computational and memory efficiency. 

1a Access to the input data should be possible at maximum disk 

performance. If there is backpressure from other pipeline stages, 

performance must not be decreased further. 

1b A tuple’s destination bucket (and node) is determined before sending. 

This process must be faster than disk and network transfer to avoid 

bottlenecking. Map and Store stage are active in parallel, so memory 

consumption of the former may reduce cache (2b) and write performance 

(2c) of the latter. Also, the distribution mechanism must ensure that the 

contents of each bucket fit into memory for internal sorting (3b) in the 

reduce stage. 



34  4. Challenges and Approach 

 

1c All tuples need to be transferred over the network. The small size of 

tuples and the distribution of key values may reduce network throughput 

when transmitted individually. 

4.2.2 Store 

The store stage receives tuples incoming from the network and stores them in 

buckets on intermediate disks. It is active in parallel with the Map stage. Main 

challenges are memory and disk I/O efficiency. 

2a Data arriving from the network is stored in the according bucket. Data is 

incoming from multiple sources concurrently, so consistency needs to be 

ensured by synchronization. These measures should not affect network 

and write performance negatively, however. 

2b A caching layer is introduced as purely random access to different 

locations on disk reduces throughput (3a). Tuples are expected to arrive 

at uniform rate for all buckets co-located on a single node, but each 

bucket should be accessible sequentially in the end. The cache needs to 

use available memory efficiently, must support synchronization measures 

(2a) and must be capable to deal with disk I/O underperforming network 

I/O. 

2c Data stored in the cache needs to be written to disk continuously. To 

maximize write performance, random access to disk must be minimized. 

Still, the contents of each bucket should be stored in a single continuous 

file on disk to maximize read performance (3a) for the reduce stage. 

4.2.3 Reduce 

The reduce stage reads and sorts intermediate data. It becomes active on each 

node locally when incoming data transfer is completed. Main challenges are 

computational and memory efficiency. 

3a Intermediate data should be accessed at maximum disk performance. 

Depending on the layout of bucket data on disk this might involve 

different access patterns. 
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3b Contents of each bucket are sorted in memory. Sorting a single bucket 

need to be faster than reading and writing its contents to avoid 

bottlenecking. Also, the implementation’s memory efficiency determines 

the maximum bucket size. This indirectly affects mapping (1b), write 

performance (2b) and read (3a) performance as it determines the overall 

number of buckets needed in the system to store the total amount of 

data. 

3c Each bucket is written to disk again. Data is expected to be written 

sequentially and well-performing. Efficient memory usage could improve 

the maximum bucket size for sorting (3b). 

4.3 Contributions of the paper 

This paper specifically focuses on the aspects of computational and disk I/O 

efficiency. Computational efficiency is relevant for internal sorting (3b) in the 

reduce step. Memory efficiency of caching (2b) helps increasing I/O 

performance (2c) and determines the number and maximum size of buckets for 

internal sorting. (3b) Synchronization measures should neither block Receivers 

(2a) nor Writers (2c) significantly. The efficiency of disk I/O is especially 

important when storing intermediate data (2c) as it involves non-sequential 

access patterns and might affect the read performance (3a) of the Reduce 

stage. Hence, contributions to the Tritonsort prototype can be divided into two 

parts, disk I/O and internal sorting. 

In addition the paper provides a concept for evaluating resource efficiency of 

large-scale systems in the context of Sort Benchmark and compares state-of-

the-art systems holistically with respect to efficiency in disk I/O and 

computation. 
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4.4 Evaluation 

The prototype is evaluated in the 100TB Gray sort Indy and the Minute sort Indy 

category. The results are analyzed further using different metrics, such as 

average throughput per minute, and compared to state-of-the-art systems. 

4.4.1 Measuring performance 

Overall system performance is quantified by sort benchmark standards for Gray 

sort Indy and Minute sort Indy. Gray sort compares systems based on data 

sorted per minute metric (in TB/min). The number is obtained by dividing the 

total amount of input data by the total time required for processing (first node 

starting until last node completing). The metric uses fixed input data size and 

measures a variable amount of time. Minute sort uses the amount of input data 

sorted as metric (in TB). A system must be able to complete sorting a set of 

input data in less than 60 seconds in average for 15 consecutive benchmark 

runs. 

For both benchmarks the amount of input data can be predetermined exactly by 

generating a fixed number of records across nodes and disks. Time 

measurements are performed on a single head node that sends a notification 

message to all nodes on startup and waits until all nodes report their task 

completed. The total time indicated by the head node is pessimistic as it 

includes network delays in addition to the runtime. This overestimation is at 

scale of milliseconds however, and suitable for timing benchmark runs at minute 

or hour scale. 

Subsystems are benchmarked using smaller single-node benchmark setups. 

The performance of disk access and internal sorting is quantified using a fixed 

input size and measuring time passed to complete the operation (in MB/s). Test 

runs are repeated multiple times to obtain average values that factor out 

random fluctuations. 

4.4.2 Measuring Resource efficiency 

The quantification of efficiency is more complex than performance measures. A 

first look at sort benchmark provides two measures of efficiency: cost, 

addressed by penny sort and energy, addressed by Joule sort. 
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The latter, Joule sort is suited to estimate energy efficiency of systems. The 

number of records sorted per joule consumed power is indicative for a system’s 

energy efficiency, ignoring consumption of additional infrastructure. For 

industrial applications, energy consumption directly translates into costs for 

power supply and cooling, but these costs are only one aspect of economic 

consideration. For example, the use of SSDs saves power compared to disk 

drives, but requires a significantly higher initial investment. 

Penny sort directly focuses on hardware costs, but its definition inherently 

results in systems of small scale. The comparison of large-scale systems in 

terms of cost is hampered by the unavailability of accurate information. It is 

possible to estimate costs as system hardware is known and they are built from 

commodity hardware, but the resulting numbers are rough and valid for 

comparison of orders of magnitude only. 

Anderson and Tucek (8) indicate that there are additional aspects of system 

efficiency. They include the former measures, cost and energy, and add 

computational, memory, storage, I/O, programmer and management efficiency. 

In the context of sort benchmarks some of them are suited for comparison, 

while others are difficult to address or quantify. The authors use MB/s per node, 

MB/s per core, MB/s per disk and byte/s per dollar metrics to compare system 

efficiency. Their results show a gap in efficiency between small and large scale 

applications, but underestimate the difference. For example, the average 

read/write bandwidth per disk is not fully representative for I/O efficiency as a 

system may saturate disk bandwidth but access data on disk more often than 

necessary for external sort. For example, DEMSort employs another disk 

access phase in addition to two pass sorting. (22) 

The default metrics of Sort Benchmark, “amount of data sorted” (Minute sort 

Indy) and “total throughput per minute” (Gray Sort Indy) are applied to attain 

quantitative results for the integral system. Resource-efficiency in terms of 

computational expense, memory and I/O throughput is evaluated by 

comparison to existing systems with comparable hardware. Proposed efficiency 

metrics from Anderson and Tucek, “throughput per node”, “throughput per 
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core”, “throughput per disk” and cost-based “throughput per dollar” are used, 

although the latter can be based on estimations only. 

For evaluation of resource efficiency this paper suggests a relative measure of 

system properties. This allows comparison of real-world resource efficiency of 

two systems without relying on performance numbers under optimal conditions 

from manufacturer whitepapers. At the same time an in-depth comparison at the 

level of different hardware labels and product revisions is unsuitable until exact 

and complete information about cluster hardware and cost is available for large-

scale systems in Sort Benchmark. Thus, the disadvantage of this approach is 

an undifferentiated perspective on hardware and the impossibility of determining 

resource efficiency on an absolute scale. 

In this paper a quantitative comparison between systems is based on the 

following variables and metrics. Also, the evaluation of subcomponents and 

alternative implementations thereof makes use of these measures. 

1. Hardware 

Hardware metrics quantify basic properties of the hardware used by a system. 

This includes the number physical machines, the total number of CPUs and the 

total number of hard drives. Estimated costs focus on the initial investment for 

cluster hardware without maintenance. 

• Cluster nodes 

�����: Number of physical machines in the cluster 

• CPU cores 

	�
��: Number of physical CPU cores in the cluster, not counting 

HyperThreads. 

• Hard drives 

�
���: Number of physical hard drives in the cluster, independently of 

operating system or file system view and RAID configuration. The 

expression “disk” is used as a synonym when referring to Solid State 

drives. 

• Estimated hardware costs (in USD) 

	���: Approximation in orders of magnitude of total costs of hardware 
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components derived from (8) by mapping “bytes/s/$” to
,-./01-20,

3/4,
. If a 

paper provides exact information on hardware costs, this data is used 

instead. 

 

2. Benchmark 

Benchmark metrics are derived from Sort Benchmark and provide information 

about benchmark type and scale and a system’s specific benchmark runtime 

and performance. 

• Gray Sort performance (in TB/min) 

��
��
���	�5.67: Gray Sort benchmark performance as used by Sort 

Benchmark. 

• Minute Sort performance (in GB) 

��
��
���	�89:0,;: Minute Sort benchmark performance as used by 

Sort Benchmark. 

• Input data (in MB, GB or TB) 

����: The total amount of input data processed during a benchmark run. 

Sort Benchmark uses a ratio of 10% for key information and 90% for 

payload in generated input data. 

• Runtime (in seconds) 

�
��: Total runtime of a system per benchmark. 

• Throughput (in TB/min or MB/s) 

�ℎ
�#$ℎ�#�: System performance independently of specific benchmark 

metric. 

�ℎ
�#$ℎ�#� =  
����

�
��
 

 

3. Relative Throughput 

Relative throughput is used to quantify system performance on component level 

without relying on an absolute baseline. These metrics correlate benchmark 

performance and hardware properties via throughput numbers. 
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• Throughput per node (in MB/s) 

�ℎ
�#$ℎ�#�:/=;: Benchmark throughput per physical machine. 

�ℎ
�#$ℎ�#�:/=; =
�ℎ
�#$ℎ�#�

�����
 

• Throughput per core (in MB/s) 

�ℎ
�#$ℎ�#�3/.;: Benchmark throughput per physical CPU core. 

�ℎ
�#$ℎ�#�3/.; =
�ℎ
�#$ℎ�#�

	�
��
 

• Throughput per disk (in MB/s) 

�ℎ
�#$ℎ�#�=94>: Benchmark throughput per physical hard drive. This 

metric divides benchmark performance to hard drives, the actual amount 

of data transferred from/to hard drive interfaces is a multitude of this 

value in general. 

�ℎ
�#$ℎ�#�=94> =
�ℎ
�#$ℎ�#�

�
���
 

• Throughput per cost (in bytes/s/$) 

�ℎ
�#$ℎ�#�3/4,: Benchmark throughput per USD hardware costs. The 

conversion of MB/s to bytes/s in throughput is performed for ease of 

visualization and reference to literature. 

�ℎ
�#$ℎ�#�3/4, =
�ℎ
�#$ℎ�#�

	���
 

 

4. Relative Hardware Scale 

Relative hardware scale relates two systems in terms of hardware components. 

These numbers are mainly used to normalize numbers for relative resource 

efficiency. Estimated costs incorporate this information holistically, and hence, 

the calculation of cost efficiency is not affected by these ratios. 

• Relative cluster nodes 


��
�:/=;4: Number of nodes in system A compared to B. 


��
�:/=;4,@,A =
�����@

�����A

 

• Relative CPU cores 


��
�3/.;4: Number of CPU cores in system A compared to B. 
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��
�3/.;4,@,A =
	�
��@

	�
��A

 

• Relative hard drives 


��
�=94>4: Number of hard drives in System A compared to B. 


��
�=94>4,@,A =
�
���@

�
���A

 

 

5. Relative Resource Efficiency 

Relative resource efficiency is used to compare efficiency of two different 

systems. Each metric is based on the ratio between systems’ throughput for a 

specific component and is normalized by the relative amount of hardware. An 

exception is Relative Cost Efficiency which relates cost efficiency numbers that 

are already normalized by their dependence on holistic cost estimations. 

• Computational Efficiency 

���
	
��	�3/.;4: Normalized throughput per CPU core of system A 

compared to B.  

���
	
��	�3/.;4,@,A =
�ℎ
�#$ℎ�#�:/=;,@

�ℎ
�#$ℎ�#�:/=;,A

∗
1


��
�:/=;4,@,A

 

• Disk I/O Efficiency 

���
	
��	�=94>4: Normalized throughput per hard drive of system A 

compared to B. 

���
	
��	�=94>4,@,A =
�ℎ
�#$ℎ�#�=94>,@

�ℎ
�#$ℎ�#�=94>,A

∗
1


��
�=94>4,@,A

 

• Cost Efficiency 

���
	
��	�3/4,: Benchmark throughput relative to system cost of system 

A compared to system B. 

���
	
��	�3/4,,@,A =

�ℎ
�#$ℎ�#�@

	���@

�ℎ
�#$ℎ�#�A

	���A

=
�ℎ
�#$ℎ�#�@

	���@

∗
	���A

�ℎ
�#$ℎ�#�A
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6. Metrics used for evaluation 

The evaluation of the Tritonsort prototype is performed using benchmark 

performance, computational efficiency, disk I/O efficiency and cost efficiency. 

Subcomponents for internal sorting and disk I/O are evaluated using the 

throughput metric. 

• Benchmark performance (��
��
���	�) 

• Computational Efficiency (���
	
��	�3/.;4) 

• Disk I/O Efficiency (���
	
��	�=94>4) 

• Cost Efficiency (���
	
��	�3/4,) 

• Throughput (�ℎ
�#$ℎ�#�) 

4.5 Architecting for Efficiency 

Resource efficiency in computing is a broad topic, especially for benchmark 

applications. With the target benchmarks “Gray Sort” and “Minute Sort” in mind 

the thesis focuses on computational and I/O efficiency. 

Computational efficiency is addressed mainly by the choice of internal sort 

algorithm. Optimization of the actual implementation is based on the findings of 

(11)(18)(26) and focuses at inexpensive CPU instructions and memory access. 

Additionally, the interaction between operating system and the application is 

taken into account to increase overall application efficiency, e.g. by avoiding 

redundant memory allocation. 

Efficiency at the disk I/O interface is achieved by using straight two-pass 

algorithms for the “Gray” configuration and one-pass for “Minute”. This ensures 

data on disk to be accessed the least amount possible (15) and is in line with 

the findings of (18) regarding Minute sort. Also, disk access and manipulation of 

data in memory are interleaved to avoid idle times at the I/O interface. Although, 

Tritonsort relies on the operating system for disk access, it provides an 

application specific implementation of write caching to circumvent issues 

caused by sustained rate parallel file access. 

Computational and I/O efficiency also depends on memory efficiency for 

buffering and caching. In terms of memory efficiency two mayor issues are 
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tackled. First, sort algorithms performing in linear time are not capable of 

operating in-place in general. That may effectively halve the potential size of 

each data partition generated by the map stage and leads to an increased 

number of partitions. This in turn impacts I/O performance as additional files are 

co-located on each physical disk. To avoid this effect, the implementation 

leverages from tag-based sorting and performs in-place permutation of the 

actual input data. Secondly, the write cache is required to make optimal use of 

available memory to achieve high I/O performance. This includes using light-

weight metadata structures and preventing memory fragmentation. 

4.6 Design Constraints 

The design of intermediate data storage and internal sorting components is 

constrained by three factors. These are benchmark rules, operating 

environment and Tritonsort’s pipeline architecture. 

The most fundamental design constraint is imposed by the dataset size required 

for the Gray Sort benchmark. 100TB of data do not fit into main memory of 

state-of -the-art systems, and therefore, require memory external sort to be 

performed. (With exceptions that come close with regard to main memory (23)) 

Also, this implies a runtime of multiple hours accompanied by high utilization of 

I/O interfaces. 

The benchmark categories “Gray Sort Indy” and “Minute Sort Indy” both use the 

same format of input data. The data consists of a number of fixed-length binary 

records with a fixed key and payload portion. The length restriction simplifies 

implementation of buffers, iterators and sort algorithms. For example, offsets 

can be calculated using simple indexing and records can be swapped in-place 

by the sort implementation. Also, the distribution of key values can be assumed 

uniform. 

Additional rules require that data is never compressed when passing through 

network or disk interfaces. Also, when using replication the number of replica for 

input files has to match the number for output files. This has two implications for 

component design. First, disk I/O performance can be optimized by minimizing 

hardware and OS overheads, e.g. seeking or cache lookups. Secondly, internal 
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sorting needs to move the full amount of data around memory, making the 

memory bus a potential bottleneck. 

The hardware environment consists of a homogenous series of rich nodes. 

Hence, a distinction between specialized types of nodes is not necessary. Also, 

the relatively small number of nodes allows a flat network topology with all 

nodes connected to a central switch. A first estimation of I/O interface 

bandwidth suggests that disk access should become the main bottleneck at a 

maximum of 800 MB/s reading and writing per node. The 10Gbit Ethernet is 

capable of transferring a maximum of 1250 MB/s full-duplex, and hence, should 

not affect throughput negatively. 

 Tritonsort’s pipeline architecture requires each stage to be designed as a 

number of threaded “workers” that receive one unit of work at a time. A worker 

may process or store that unit and pass a modified unit to the following stage of 

the pipeline. Workers queue up work units before processing and queue 

operations rely on locking for consistency. This design favors components to 

operate on batches of data, in order to keep overheads to a minimum. 

4.7 Limitations 

The following section addresses the limitations of this paper. Resource-

efficiency is a major topic in, however, this is limited to technological aspects. 

Economical aspects are approached from a hardware investment point of view, 

ignoring issues longing from programmer and management efficiency. This also 

extends to considerations about fault-tolerance and failure-redundancy that are 

not required at prototype scale, but are obligatory in real-world deployments. 

Programmer and Management efficiency is not addressed as it seems hard to 

define and capture. Time requirements for preparing and running processing 

tasks may be nullified by automated scripts, development times of pipeline 

stages and optimization highly depend on task complexity and skill of the 

programmer, and so on. 

The paper mostly ignores bandwidth and latency changes in networking when 

scaling the number of disks per node or the number of nodes in the cluster by 

significant amounts. The current hardware test bed provides a 10Gbps 
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connection between nodes that can easily handle the throughput generated 

from eight input disks - 8x100 MB/s disk input stream versus 1280 MB/s 

network bandwidth. When additional disks are added network bandwidth for 

individual links will become a bottleneck, while an increase in the number of 

nodes will require additional switches or port multiplier hardware that limit 

throughput between certain partitions of the cluster. 

One of the main arguments supporting the use of pure MapReduce is trivial 

tolerance in the presence of failures by replication. In case of Tritonsort failures 

can manifest themselves as soft read errors and disks failures as well as nodes 

and whole racks going down due to network or power issues. While disk 

problems can be handled by RAID with moderate performance trade-offs any 

failures at the scale of nodes, racks or switches can only be handled by 

replication across multiple machines and locations. The aspect of fault-

tolerance is not covered by this paper and any solution based on redundancy 

will likely lead to a decrease in efficiency numbers. However, (8) argue that the 

low efficiency of existing systems is a major source of critical failures due to 

comparably task runtimes and additional orders of magnitude in the number of 

hardware components used. 
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5 Contributions 

The following section describes work contributed to the code base of the 

Tritonsort prototype. The structure focuses on two aspects of Tritonsort’s 

distribution-sort based pipeline: storage of intermediate data on disk and 

internal sorting. 

Storage of intermediate data balances write and read performance of (2c) and 

(3a) to achieve maximum average performance. This is achieved by caching 

data pending for write efficiently (2b). The implementation of internal sort 

addresses (3c) and balances memory overheads and computational cost. 

 
 

 

Map 

1a Read tuples from disk 

1b Determine destination 

1c Send to target node 

Store 

2a Receive incoming data 

2b Cache in memory 

2c Store on disk 

Reduce 

3a Read presorted data 

3b Sort tuples 

3c Store on disk 

Figure 8 - Challenges and Contributions 

The section first presents the disk I/O layer which represents a core component 

of the Store stage. Interleaving of network and disk I/O, write caching and file 

management are presented is this part. The second part takes a closer look on 

the sort algorithm and the implementation of tag-based sorting and in-place 

permutation of input data. 
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5.1 Data persistence 

The data persistence section addresses challenges in the Store stage (2b) and 

(2c) by introducing a disk I/O layer with application specific write caching. This 

also affects read performance in the Reduce stage of the pipeline (3a). 

 
 

 

Map 

1a Read tuples from disk 

1b Determine destination 

1c Send to target node 

Store 

2a Receive incoming data 

2b Cache in memory 

2c Store on disk 

Reduce 

3a Read presorted data 

3b Sort tuples 

3c Store on disk 

Figure 9 - Contributions to Data Persistence 

The dedicated Store stage of the pipeline collects incoming data from the 

network via Receivers. These worker threads receive sets of tuples. Each batch 

of tuples is preceded by metadata, determining the destination bucket and 

batch size. The receiver mutually locks the indicated bucket, appends tuples to 

the bucket buffer and releases access again. As multiple buckets are linked to 

each physical disk, a Writer per disk continuously processes buckets and frees 

up buffer memory again. 

There are two main challenges when maximizing the throughput at the Store 

stage of the pipeline: maximizing writer throughput and eliminating receiver 

stalls. The writer has to deal with random disk access patterns as multiple 

bucket files are co-located on each physical disk. In order keep seek-related 

overheads low, the size of sequential writes has to be maximized. The write 

size depends on the number of co-located files and the amount of bucket data 

available in memory. Receiver stalls show up due to mutual exclusion, either 

due to exclusion between multiple receivers or due to exclusion between writers 
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and receivers. In general, mutual exclusion is necessary to prevent data 

corruption during concurrent access. 

In the first part of this section the approach to maximizing sequential write size 

is developed. This leads to a solution that can be extended to address issues 

related to pipeline stalls which are discussed in the second part. 

5.1.1 Caching in external distribution sort 

The system architecture builds on memory external distribution sort that 

introduces a fundamental mismatch between access patterns to data during the 

map stage and the reduce stage. The following section describes its cause and 

two approaches to handle it. 

For ease of representation, the example below focuses on the activity of a 

single disk. The behavior is comparable for multiple disks and machines 

performing parallel distribution sort. Although, portions of data are sent and 

received over the network and multiple input files are read in parallel, the store 

and reduce stage behave similarly. Data destined for the same bucket is always 

stored on the same physical drive by Tritonsort. 

 

Figure 10 - Processing input data 

 

Assuming uniformly distributed key 

values in the input data, any input 

file contains a certain portion of 

tuples for every single target 

bucket. In the map stage input files 

are processed serially, and hence, 

produces data destined for every 

single bucket within the system at 

about an even rate. 
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Figure 11 - Processing intermediate data 

 

The reduce stage in contrast 

processes buckets serially and 

requires all data of a single bucket 

to be present at once. The 

concatenation of sorted buckets is 

guaranteed to be sorted globally 

only, if each tuple within the 

bucket’s key range is taken into 

account during internal sort. 

 

The store stage of Tritonsort’s pipeline is in charge of collecting data from the 

mapper for buckets in parallel and delivering complete buckets serially to the 

reducer. This has two implications: first, map and store stage must process all 

input data before the reduce stage can be started. Second, data persistence 

involves random disk access at some point as the total amount of data does not 

fit into main memory. The first issue is addressed by the pipeline controller and 

is not of further interest. The second poses the question whether random 

access should be performed during writing or reading. 

 

Figure 12 - Accessing intermediate data with random read 

In case of random read access, data from the mapper is stored in intermediate 

files that represent partially sorted runs. This resembles the behavior of merge 

sort approaches, with the tuples being sorted by a portion of their key value only 
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(depending on mapper configuration). When the reducer accesses data of a 

single bucket, the according chunk in each file has to be accessed. 

 

Figure 13 - Accessing intermediate data with random write 

The alternate approach is random write access. Each bucket is represented by 

an intermediate file and incoming data is appended to the according file. The 

reducer accesses a single logical file at a time when processing buckets. 

Compared to the random read approach this allows additional control over 

physical placement of data through file-system options, e.g. by pre-allocating 

file space. Also, implementation of a custom read-ahead policy is difficult and 

requires modification of kernel and file-system while application-specific write 

caching can be implemented with relative ease. 

In either way however, non-sequential data access is required what causes 

disks to introduce seeks in order to access required locations. In terms of 

throughput the time spent seeking is lost as it is neither used for writing or 

reading data. The common way to work around this issue is buffering, which is 

inherently limited by the amount of memory and disk cache. 

Tritonsort employs random write access to re-order intermediate data. Caching 

is mainly performed in main memory as disk controllers and disks typically hold 

less than a second worth of data incoming from the network. Write-caching is 

usually handled by the operating system and file system, but did not perform 

well in an a-priori experiment. This did not come unexpectedly due to the 



52  5. Contributions 

 

developers of NOW-Sort reporting similar issues for comparable workloads 

years ago. 

Hence, tuning the efficiency of write buffering in Tritonsort is the central task 

when optimizing the Store stage. Data received by a node is almost uniformly 

distributed across all buckets while individual buckets are processed serially by 

writers repeatedly appending data to its corresponding file on disk. While a 

bucket is being processed by a writer, additional data might be received which 

leads to a potential mutual exclusion issue. So, in order to achieve optimal 

throughput the size of each sequential write has to be maximized while blocking 

times for receivers and writers have to be minimal. 

5.1.2 Caching Buckets 

The first question that arises when dealing with disk access is whether to rely 

on default file system behavior or to handle caching oneself. The figure below 

shows disk write performance for typical workload generated by Tritonsort’s 

processing pipeline. Three implementations of the writer stage are compared - a 

primitive writer relying on buffered I/O, a writer using unbuffered I/O and manual 

double buffering and the final design using unbuffered I/O and dynamic buffer 

sizes.  

 

Figure 14 - Impact of caching on write performance 

The file system still handles file-space allocation, but most operating system 

and file system caches are circumvented using Linux’ Direct I/O interface. 
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Buffered I/O and double buffering show comparab

characteristics, with unbuffered I/O hav

dynamic buffer sizes for buckets is s

significant advantage as the number 

input data. Hence, manual caching brings a notable boost in write p

A first approach to manual caching is the use of a single buffer per bucket for 

collecting incoming data. Whenever a receiver

appended to a buckets buffer. When the buffer is full it is handed to the writer 

and the receiver waits until space is available. 

a file, clears the buffer and returns it for reuse.

This solution is simple, but 

processes a bucket, any receiver accessing that bu

stall is induced into the pipeline

may become blocked too any slow down the rest of the system. With a single 

buffer concurrent modification of 

thus requiring mutal exclusion among receivers as well as between receivers 

and writer. Receivers write small amounts of data to 

rapid succession while writers block a relatively long time on a single bucket 

when writing its contents to disk

behavior between receivers and writers with reduced performance.

The figure below shows part of a visual representation of worker activity for 

receivers and writers for a benchmark run 

represents the time line for a single worker thread. Colored areas indicate 

activity while blank areas show inactivity.

Figure 15 - Writer and Receiver stall

 

Buffered I/O and double buffering show comparable performance 

characteristics, with unbuffered I/O having the advantage. The writer using 

dynamic buffer sizes for buckets is slower for small numbers

significant advantage as the number of files increases with growing amounts of 

Hence, manual caching brings a notable boost in write p

manual caching is the use of a single buffer per bucket for 

collecting incoming data. Whenever a receiver gets data from the network

buffer. When the buffer is full it is handed to the writer 

the receiver waits until space is available. The writer appends the buffer to 

a file, clears the buffer and returns it for reuse. 

This solution is simple, but has a major disadvantage. Every time a writer 
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Receivers write small amounts of data to many different buckets in 
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between receivers and writers with reduced performance.
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receivers and writers for a benchmark run using the above approach. Each row 

represents the time line for a single worker thread. Colored areas indicate 

activity while blank areas show inactivity. 

Writer and Receiver stall 

53 

 

le performance 

advantage. The writer using 

lower for small numbers, but gains a 

growing amounts of 

Hence, manual caching brings a notable boost in write performance. 

manual caching is the use of a single buffer per bucket for 

data from the network, it is 

buffer. When the buffer is full it is handed to the writer 

The writer appends the buffer to 

. Every time a writer 

cket blocks and a potential 

If receivers block long enough, sending nodes 

may become blocked too any slow down the rest of the system. With a single 

could lead to data corruption, 

thus requiring mutal exclusion among receivers as well as between receivers 

many different buckets in 

rapid succession while writers block a relatively long time on a single bucket 

ds to an almost synchronous pipeline 

between receivers and writers with reduced performance.  

The figure below shows part of a visual representation of worker activity for 

using the above approach. Each row 

represents the time line for a single worker thread. Colored areas indicate 

 



54 

 

A receiver fills up a buffer and han

and exclusively locks the buffer. During that period of time almost all receivers 

will encounter data destined for that bucket and block too. When the writer 

finishes, receivers start filling in data again 

However, the writer cannot be active during this period of time either, as it’s 

work queue is empty. The consequence is a drop in receiver and writer 

performance. 

The impact of mutual exclusion 

buffer that can be swapped

processed. This interleaves disk and network I/O by allowing receivers to 

continue collect data even though the buffer

became full during the process.

Taking a closer look on the behavior of receivers and writers at runtime shows 

that buckets fill up at almost the same rate. Even though a receiver can now 

continue writing to a bucket when it has been passed to the writer, it may block 

on another bucket while the writer is still busy processing the first one

buckets fill up at the same rate t

repeated pipeline stalls 

blocking to a certain extent

A possible solution to eliminate receiver blocking is the introduction of a spare 

buffer per bucket. Though, a receiver might still block on a bucket when both 

buffers are filled up and pending a write, the pipeline 

of the writer stage. The figure below represents worker activity over time again, 

with the notable difference of interleaved receiver and writer activity.

Figure 16 - Writer and Receiver decoupled
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and exclusively locks the buffer. During that period of time almost all receivers 

will encounter data destined for that bucket and block too. When the writer 

finishes, receivers start filling in data again until another buffer gets full. 
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 on the receiver side. Thus, the spare buffer reduces 

to a certain extent, but does not prevent it entirely. 

solution to eliminate receiver blocking is the introduction of a spare 

buffer per bucket. Though, a receiver might still block on a bucket when both 

buffers are filled up and pending a write, the pipeline basically runs at the speed 

The figure below represents worker activity over time again, 

with the notable difference of interleaved receiver and writer activity.
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The use of double-buffering conflicts with the initial motivation of maximizing 

write size, however, as it halves the amount of data available per sequential 

write. 

When investigating the fill and drain rates of buffers associated to a single 

bucket it shows that half the available memory is not actually occupied by tuple 

data during runtime. All buffers held by the receivers fill continuously over the 

period of time that is required by the writer to transfer the contents of an equally 

large set of buffers to disk. Buffers are freed up by the writer and returned to 

their according buckets. In the Gray sort configuration, the newly freed memory 

is sufficient to collect a large portion of incoming data for a single bucket. Even 

though, most parts of the memory region are unused for a period of time, they 

cannot be reused for a different bucket that requires additional storage space to 

prevent stalling. 

Sequential write size can be increased by a factor of two in this context using 

more fine-grained buffer management. Instead of allocating fixed amounts of 

memory per bucket, memory could be shared across all buckets related to a 

single writer. A single memory pool allocates a series of small buffers up to a 

given limit and provides these on demand. A bucket can request additional 

buffer space when a receiver fills in data, and analogously, the bucket returns 

buffer space to the pool when it has been processed by a writer. Although, the 

bucket internally encapsulates any interaction with the buffer pool it still 

increases complexity at the writer side. The transfer of a single bucket may 

involve data being collected from multiple different locations in memory, but 

data can be written to disk sequentially. 

Resizing bucket buffers dynamically helps memory efficiency too. When a writer 

processes a single bucket it frees up multiple smaller chunks of memory. As the 

total amount of memory available to buckets is shared throughout the pool, 

heavily populated buckets can expand using one of these chunks while empty 

buckets do not drain the pool unnecessarily. This allows different buckets to 

effectively use different amounts of memory and dynamically adapt to changes 

in demand. 
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The use of a memory pool allows tight control of memory allocated and 

prevents losses due to memory fragmentation. Also, multiple writer stages are 

able of increasing concurrency of pool operations by using a separate pool for 

their corresponding set of buckets. Loss due to memory fragmentation is 

prevented by using a fixed buffer chunk size.  

There is a trade-off for increased management activity, however, that mainly 

affects computational efficiency. Firstly, mutual exclusion is required at the level 

of memory pool operations. Multiple buckets are written to and consumed from 

at the same time by receivers and writers, potentially causing different resize 

operations to overlap. Secondly, the number of pool operations is inversely 

related to the buffer chunk size. When the buffer size is halved, the number of 

acquisition and return operations doubles. Also, the number of operations 

required by receivers and writers goes up with decreasing buffer size. Tritonsort 

typically uses a chunk size between 1MB and 4MB for bucket buffers, which 

represents a well-performing trade-off between flexibility and overheads. 

5.1.3 Writing Buckets 

Another substantial change in the pipeline architecture becomes necessary 

when transitioning from a single, continuous buffer to dynamic re-allocation 

model. Activity of the writer stage can no longer be triggered by receivers 

passing buffers to process as there is not any fixed limit to bucket size that 

indicates necessity of a write. The question arises, how to determine the 

necessity of a write and, in case multiple buckets require processing, how to 

determine the order they are handled in. 

One solution addressing the missing size limit of buckets is the introduction of a 

user-define threshold value. When a receiver surpasses the limit while 

collecting data the according writer is notified and buckets are written to disk in 

the order they are enqueued. A receiver may continue writing data to the bucket 

even while it is pending a write as long as there is sufficient memory provided 

by the memory pool. 

The fixed threshold has two main drawbacks, though. First, the threshold has to 

be tuned manually and determining the optimum involves several difficulties. If 

the threshold is too small, the average write size goes down, degrading overall 



 

throughput. If the threshold is too large, 

buckets are enqueued to writers either degrading performance by blocking 

several receivers or in worst case causing a deadlock due to buckets not 

reaching the threshold at all. Second, the use of a fixed threshold value 

prevents dynamic changes in writer behavior when fluctuations occur in the 

amount of incoming data.

enqueued eventually bringing writers to a stop even. When this is followed by a 

proportional increase the queue size at writer grows to higher than average 

levels. This in turn may cause receivers to block due to the memory

running out of buffer chunks resulting in an over

data transfer rate. The resulting behavior is unstable at runtime and repeatedly 

causes pipeline stalls at receiver and writer side.

Figure 17 - Writer using fixed thresholds

Decoupling receiver and writer activity gets rid of the necessity for a threshold 

that triggers writer activity. Receivers read data off the network and store it into 

buckets as before, but do not longer care for notifying 

become pro-active in terms of selecting buckets and writing contents to disk. 

This removes the push

eliminating direct communication. Writers become active in the system a

same time with receivers and 

writer stage is shut down when receivers finished work and there is not any 

pending data left in buckets.

policy used for bucket selection. T

as the ability of the writer stage to adapt to dynamically changing loads.

A simple policy selects buckets 

ensures fairness of write 

constant, as is throughput. 
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writer stage is shut down when receivers finished work and there is not any 
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e.g. round-robin. Alternatively, buckets can be selected on

writer gets ready for processing. By selecting the bucket containi

amount of data, the policy may optimize dire

Figure 18 - Writer using demand

The implementation used by Tritonsort employs a deman

pattern. Write performance b
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the demand-based approach. However, for large amounts of data as found in a 

100TB Gray Sort run a significant difference couldn’t be de

5.1.4 Conclusion 

Disk access is a core factor of system performance and efficiency as the overall 

pipeline is mostly I/O bound. 

physical file layout and write order, a number of optimization 

available. 

First, inference between network I/O and disk I/O can be avoided by decoupling 

activity in the Writer stage from the Receiver stage. This allows both types of 

I/O to be overlapped. Secondly, write performance for high numbers of c

located files can be improved by implementing an application

cache-layer. This adds complexity to the design, but gains stable and 

predictable disk throughput.
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5.2 Internal sort 

The internal sort implementation addresses the main challenge of the Reduce 

stage (3b) by providing a well-performing algorithm. The maximum buffer size 

supported by the reduce stage significantly affects I/O in (2c) too, as it implicitly 

determines the number of intermediate files. 

 
 

 

Map 

1a Read tuples from disk 

1b Determine destination 

1c Send to target node 

Store 

2a Receive incoming data 

2b Cache in memory 

2c Store on disk 

Reduce 

3a Read presorted data 

3b Sort tuples 

3c Store on disk 

Figure 19 - Contributions to Internal Sorting 

Internal sort is performed in the Reduce stage of the processing pipeline. The 

Gray Sort configuration reads stored buckets from disk in and sorts them. The 

Minute sort configuration applies internal sort directly to buckets stored in 

memory. In both cases internal sort is required to be faster than disk I/O to 

avoid bottlenecking.  

Tritonsort uses a linear time Radix sort that operates on key tags instead of full 

tuples. The use of 16-bytes key & pointer tags reduces runtime compared to 

algorithms moving full 100-bytes tuples. Also, Radix sort is modified to permute 

input buffers in-place in order to spare memory. The tag sort approach was first 

implemented by (11) and applied to radix sort by (18). In contrast to NOW-sort 

the implementation used by Tritonsort does not limit the algorithm’s internal 

buffer size. This allows sorting large buffers without introducing a merge step, 

but trades this for decreased cache efficiency. 

The introduction of the specialized sort algorithm is necessary in the first place 

as the Quicksort implementation does not provide sufficient performance. The 
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figure below shows sort performance on the test bed hardware for a single 

physical processor operating on different buffer sizes. 

 

Figure 20 - Internal Sort runtime 

 

Figure 21 - Internal Sort throughput 

In the Gray configuration, the test bed’s 8 physical processors need to deliver 

output for 8 disks in parallel. Each bucket holds about 800 MB of data, what 

translates to 66,1 MB/s per core using Quicksort. Assuming an average 

throughput of 80 MB/s per disk, the system would lose 15-20 percent of 

potential I/O throughput. Using the Minute configuration the drop becomes 

significantly higher as all 16 disks are used for output in parallel. Even though, 
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Quicksort performance goes up as buffer size decreases to 100 MB, sorting 

would provide 700 MB/s and underutilize the potential I/O throughput of 1280 

MB/s. Radix Tag Sort provides 4 times higher throughput per core than 

Quicksort, and hence, is capable of saturating available I/O bandwidth. 

On a high level, the sort stage operates in three phases: tag extraction, radix 

sort and permutation. The first step performs a linear scan through the input 

data and constructs tags containing each tuples’ keys and memory offsets. The 

tag buffer is then handed over to a conventional radix sort using an 8-bit radix or 

256 buckets, respectively. Each round in radix sort consists of a counting step 

for building a histogram of key values, a step reallocating buffer space to 

buckets and the actual distribution step of tags to buckets. After 10 rounds each 

key-bit has been taken into account and the concatenation of buckets yields the 

final ordering of tags. The memory offsets stored within the tags are then used 

to create the lookup table required for permuting the input buffer in-place. 

5.2.1 In-place permutation 

In-place permutation is performed using a lookup table and an additional buffer 

capable of holding a single tuple. A lookup table maps destination offsets to 

source offsets with “get from” semantics. The algorithm uses the table to re-

order items and solve dependency cycles. 

The figure below illustrates in-place reordering of an input buffer of size 3, 

containing tuples “C”, “B” and “A”. In the example field 0 requires contents of 

field 2 to be in order. The numbers 0 to 2 represent indices in the input array 

and “buffer” denotes the external space used for moving and swapping 

elements. Finally, the “from” row represents the contents of the lookup table, 

mapping its value as source offset and its index as destination for move 

operations. 

1. 

 

The process starts by checking the first 

entry in the lookup table at offset 0. 

This returns “2”, indicating that the 

contents of field 2 need to be moved to 

field 0. 
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2. 

 

The algorithm then moves the contents 

of field 0 to the external buffer. 

3. 

 

Contents from field 2 are moved to 

field 0 and the table entry is marked 

done by setting source index equal 

destination index. 

4. 

 

Steps 1 to 3 repeat for field 2 and 

consecutive entries until the cycle is 

resolved. At completion of each cycle 

the contents of the external buffer are 

moved to the free region. 

5. 

 

In order to correctly reorder buffers that 

contain multiple cycles any remaining 

table entries are scanned and 

processed analogously until all entries 

are marked done. 

Figure 22 - Radix Sort in-memory reordering 

The algorithm has linear run-time as each field is moved once at maximum. 

Also, the detection of multiple cycles can be performed by linearly scanning 

elements in the lookup table once from front to back and resolving cycles as 

they are encountered. 

5.2.2 Memory requirements 

The demand for memory is dominated by the input buffer size, followed by 

space requirements for tags, buckets and lookup table. Meta data of buckets 

and histogram information do not depend on the input size. The following 

analysis of memory requirements is described using the big-O notation. 

The input buffer requires O(n) space holding full tuples. Tag extraction occupies 

another O(m) with m >= 0.1n supposing the use of “Indy”  binary records with 

10-byte key and 90-byte payload. Also, tags need to hold an additional 

reference to their source tuple and platform specific padding increases memory 

usage. The test environment used for benchmark runs showed an overhead of 
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m = 0.16n for tags. The re-distribution step of radix sort requires two distinct 

sets of buffers, one to read from and another one to write to. Each set of 

buckets must be capable of holding the entire number of tags, resulting in a 

total overhead for tags and buckets of O(2m). The lookup table for in-place 

permutation does not introduce additional memory requirements due to reuse of 

space allocated to the unused set of buckets. In total the implementation of tag-

based radix sort requires O(n + 2m) memory. 

The size of the input buffer cannot be reduced beyond O(n) without introducing 

another I/O pass, and hence, tag-based radix sort is able to generate a run 

roughly at size of available main memory. The memory required by tag buffers 

could be reduced further by using tags that hold a portion of the actual tuple 

key, e.g. 4 instead of 10 bytes. This is sufficient to perform 4 rounds of radix 

sort before the input buffer needs to be re-scanned in order to update tag keys 

for a set of consecutive rounds. Assuming a 4-byte key portion and a 4-byte 

tuple reference, tag buckets could be transformed to use m’ = 0.08n and 

effectively halve the overhead to O(m’ = m/2). This approach trades and 

additional pass of random access to data in the input for reduced amounts of 

memory being copied during individual radix rounds. Another option is in-place 

reordering of tags, in analogy to tuple reordering. Though, this requires an 

additional buffer to hold the lookup table the overhead is reduced to O(m + m’). 

Memory overheads can be reduced in practice by amortizing them across 

multiple input buffers processed by a pipeline stage. Assuming that a single 

sorter processes a buffer faster than a single reader can access disks then the 

set of sorters can be smaller than the set of readers without degrading pipeline 

performance over sufficiently long runtimes. In case of Tritonsort, micro-

benchmarks measure a maximum throughput of 100 MB/s per reader and 250 

MB/s per sorter, so 4 sorters are sufficient to process data incoming from 8 

readers. 

5.2.3 Conclusion 

The computationally most expensive task performed in the pipeline is internal 

sorting. Hashing in the map stage and caching in the store stage do create 

some overheads, but they are comparably small. As large amounts of data are 
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sorted the use of a linear-time algorithm has an intrinsic advantage compared to 

comparison-based approaches. Due to tag-based sorting performance and 

memory efficiency can be improved, although, this adds the necessity for 

separate permutation of input data. 
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6 Evaluation and Discussion 

The Evaluation section is organized in four parts. First, internal sort and the disk 

I/O layer are tested and compared quantitatively to alternative approaches. 

Then, the integral system is compared to state-of-the-art systems in the context 

of Sort Benchmarks regarding performance and resource-efficiency. 

6.1 Internal sort 

Internal sort is implemented as Radix sort and operates on tags instead of full 

tuples. Radix sort guarantees linear run times, but increases memory 

consumption compared to standard Quicksort. The memory usage in turn is 

addressed by relying on tags while sorting and by reordering the input buffer in-

place. The use of tags also speeds up sorting as the amount of data moved 

between (Radix-)buckets is decreased. 

The benchmark is run on a single node in Tritonsort’s test bed. The setup used 

for comparison looks as follows: input data is generated once for all test runs. 

For each buffer size, 5 consecutive sort runs are performed in memory using 

either sort algorithm. The run time is taken each time for a single buffer getting 

sorted by a single-threaded implementation of the algorithm. After the process 

completes average times are calculated and checksum and order of tuples are 

verified. 

Input data is stored in a single 1600 MB file. It contains 16.000.000 tuples with a 

fixed length of 100 bytes. The first 10 bytes are considered the key value, the 

key values are distributed uniformly between 0 and 280-1. Before each sort run, 

a buffer in main memory is filled with a portion of these tuples from the 

beginning of the file to an offset depending on the maximum buffer size. 

The benchmark is performed for 100MB, 200MB, 400MB, 800MB, and 1600MB 

buffer size. These values are chosen as they represent likely values for bucket 

files produced by Tritonsort’s distribution sort pass depending on configuration. 

The figures below present the sort time and throughput relative to buffer size.  
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Figure 23- Internal Sort throughput 

Input size 

(tuples) 

Input size 

(MB) 

Radix Sort 

(MB/s) 

Quicksort 

(MB/s) 

1.000.000 100 343,1 89,6 

2.000.000 200 328,9 81,0 

4.000.000 400 317,3 73,9 

8.000.000 800 305,8 66,1 

16.000.000 1600 296,2 60,8 

Table 8 - Internal Sort throughput 

The experiment shows an advantage for Radix Tag sort by a factor of 3.8 for 

100MB buffers that continually increases up to 4.9 for 1600MB buffers. For a 

typical benchmark run of “Gray Sort” Tritonsort uses buffers of about 800MB. In 

this scenario, Radix Tag sort provides 4.6 times the performance delivered by 

Quicksort. 
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Figure 24 - Internal sort time 

Input size 

(tuples) 

Input size 

(MB) 

Radix Sort 

(s) 

Quicksort 

(s) 

1.000.000 100 0,29 1,12 

2.000.000 200 0,61 2,47 

4.000.000 400 1,26 5,41 

8.000.000 800 2,62 12,11 

16.000.000 1600 5,40 26,33 

Table 9 - Internal Sort time 

From a runtime perspective Radix Tag Sort scales almost linearly with input 

size. Quicksort shows non-linearity from 200 MB buffer size upward. Also, the 

runtime graph directly reflects the observations made by throughput 

measurements. Radix Tag Sort performs the same amount of work in one fourth 

to one fifth of the time required by the Quicksort implementation. 

6.1.1 Discussion 

The relative speed increase of Radix Sort of a factor of four compared to 

Quicksort is a necessary improvement to performance. Without this, the 

processing pipeline is bottlenecked by internal sorting instead of disk I/O which 

should be the limiting factor throughput the pipeline for the purpose of 

scalability. The performance gain is bought by an increase in memory usage 

per sorter instance however. For the Sort Benchmark scenario this is the central 
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disadvantage compared to Quicksort, and hence, most development effort was 

put into reducing the overhead. Per sorter instance Radix Tag Sort uses about 

30 percent additional memory over Quicksort. Applied to the context of parallel 

processing the advantage in performance allows using less parallel instances at 

the same time to process comparable amounts of data. In Tritonsort, typically 3-

4 Radix Sort instance are used compared to 8 Quicksort instances. For a 

system’s perspective this lowers memory overhead for sorting again to 10-15 

percent. 

This brings up another point, namely synthetic benchmark results. The 

presented sorter benchmark operates in a completely isolated environment. 

When running in a pipeline configuration multiple sorters are operating in 

parallel and share physical resources. In this case cache effects and 

competition reduce performance. A direct comparison of Quicksort and Radix 

Sort performance in a full pipeline run is difficult. Practically, sustained rate 

throughput can only be approximated by varying the number of parallel sorter 

instances and measuring system performance as runtime is usually constrained 

by disk I/O. If the system slows down, internal sorting is certainly the bottleneck. 

This approach leads to the numbers of 4 Radix Sort instances or 8 Quicksort 

instances provided above, although the 8 parallel Quicksort instances still do 

not outperform disk I/O sufficiently to deal with variations in bandwidth. 

Taking a closer look on the implementation of Radix Tag Sort, there is a solid 

base implementation of the general algorithm. Up to this point optimization 

removed obvious slowdowns by timing individual passages of the 

implementation during benchmarking. This includes unnecessary memory 

reallocation and redundant arithmetic. However, typical aspects of cache-

awareness and Assembler-level optimization are ignored even though they 

provide another perspective for improvement. Several cache-based 

improvements to Radix sort implementations are available in literature, e.g. a 

two stage bucket-radix sort as employed by NOW-Sort. This is left for further 

work as bottlenecks in the processing pipeline are already shifted towards disk 

and network I/O when using the current state of the Radix Tag Sort 

implementation. 
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More some more into the area of further work, two potential changes to the 

system can be identified that may pose a challenging task for re-architecting the 

internal sort implementation. First, the current design relies on single threaded 

processing per input buffer. If disk I/O relies on distributed file systems or RAID 

in the future, buffer size may increase substantially and create a bottleneck. 

Second, the introduction of variable-length keys could decrease performance 

when realizing compatibility via zero-padding or comparable approaches. 

Overall, the development of the Radix Tag Sort-based component successfully 

resolves the bottleneck of internal sorting on the disk-heavy cluster nodes in 

Tritonsort’s test bed. Also, the solution provides headroom in case further 

increases in I/O bandwidth. 

6.2 Disk access 

The disk I/O layer depends on the file system to handle raw disk control and file 

space allocation. Write Caching and buffering are handled manually by 

Tritonsort in order to increase throughput while writing in the Store stage and 

reading in the Reduce stage of the pipeline. 

Tritonsort uses a distribution sort approach for memory external sort too and 

creates a number of intermediate files; one file per bucket. Multiple files are co-

located on each physical disk and data is received for all buckets in parallel. 

When continually storing incoming data on disk an overhead is introduced as 

disks need to seek the appropriate physical positions before writing. The 

overhead can be reduced when (file-)system buffers increase the size of each 

sequential access. 

To evaluate the performance of different approaches a benchmark is set up that 

mimics distribution sort behavior by writing to files in parallel first and reading 

sequentially afterwards. First, a fixed amount of random input data is generated 

and stored in buckets in parallel at equal rate. Meanwhile the implementation of 

bucket buffers and Writers stores data on disk autonomously. After input 

generation completes, the benchmark waits for Writers to completely persist 

any remaining data and flush file system caches via synching. In a second step 

the files are read sequentially one by one, using a single fixed buffer. 
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The benchmark is run on Tritonsort’s test bed hardware using a single disk. 

Time is taken from the start of input generation to completion of synching and 

from the start of reading to the end of access to the last file. The benchmark is 

repeated for different numbers of buckets (and intermediate files) and the 

resulting numbers are averaged from benchmark runs on 4 different nodes. 

The disk I/O layer in Tritonsort uses buckets that dynamically share a common 

memory pool on-demand. The design and implementation is complex compared 

to “intuitive” solutions relying on manual double buffering or default the default 

file system behavior. 

The “buffered” implementation does not allocate memory for buckets manually. 

Instead, each incoming chunk of data is handed to the file system. The files 

system and operating system may freely dedicate a large portion of main 

memory to file caches.  

The “double direct” implementation manually allocates two fixed-size buffers to 

each bucket. One buffer is used to receive data into, the other one is written to 

disk. On completion, buffers are swapped out. Buckets are written to disk in 

round-robin order and data is transferred invoking Linux direct I/O interface. 

The “dynamic direct” implementation uses a shared memory pool for all buckets 

co-located on a physical disk. (Hence, a single pool is used in the benchmark) 

Buckets are written to disk based on demand - every time the Writer becomes 

available, the contents of the largest bucket are written to disk. The 

implementation relies on direct I/O too. 

Although direct I/O circumvents some system caches, the file system still 

handles disk space allocation. Also, buffers on hard drives and drives 

controllers are active and perform own cache optimizations. The total amount of 

input data per run is set to a multiple of the amount of main memory to avoid 

additional cache effects when reading data in the second pass. 

6.2.1 Write performance 

The figure below illustrates benchmark performance during the write phase. The 

number of buckets is plotted on the horizontal axis, write performance is shown 
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on the vertical axis. The performance axis is offset at 40 MB/s for improved 

visibility. 

 

Figure 25 - Intermediate data write performance 

Number of files Buffered 

(MB/s) 

double direct 

(MB/s) 

dynamic direct 

(MB/s) 

1 57,0 100,0 100,0 

2 62,3 98,1 98,0 

4 92,4 95,7 95,7 

8 90,4 92,8 92,5 

16 89,5 91,7 91,7 

32 87,4 86,3 86,7 

64 84,8 81,6 83,2 

128 80,9 65,8 79,8 

256 76,0 67,5 76,3 

512 62,3 63,8 72,2 
Table 10 - Intermediate data write performance 

For small numbers of files, double-buffering and dynamic buffers perform 

equally, the file system-based approach surprisingly underperforms. In the 

range from 4 to 64 co-located files, all three implementations provide almost 

identical performance. The double buffering solution starts losing performance 

for 128 and more files. Dynamic buffering and the file-system solution continue 

at comparable rate for up to 256 files, when the dynamic buffer implementation 

gains an advantage again. 

When performing a full 100TB sort run as required by the large-scale Sort 

Benchmark “Gray Sort” category, Tritonsort typically generates between 280 
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and 320 intermediate files depending on the number of participating nodes. For 

this application and larger benchmark instances, the dynamic buffer approach 

delivers optimal performance. 

Overall, dynamic bucket buffers show constant results with predictable behavior 

when scaling in the number of files. The approach performs well for both, small 

and large numbers of files compared to the other two solutions.  

6.2.2 Read performance 

The figure below shows benchmark performance during the read phase. Again, 

the number of buckets is plotted on the horizontal axis, write performance is 

plotted on the vertical axis. The performance axis is offset at 40 MB/s. 

 

Figure 26 - Intermediate data read performance 

Number of files Buffered 

(MB/s) 

double direct 

(MB/s) 

dynamic direct 

(MB/s) 

1 65,2 68,7 54,9 

2 49,1 67,9 52,8 

4 47,6 66,0 46,4 

8 48,5 67,6 39,9 

16 47,0 64,3 43,0 

32 45,9 62,7 80,8 

64 45,3 61,8 76,6 

128 43,5 59,5 71,3 

256 45,6 58,4 67,7 

512 48,4 55,9 63,9 
Table 11 - Intermediate data read performance 
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The read performance shows a difference for small numbers of intermediate 

files. With an increasing number of files, differences converge. Files generated 

by the dynamic bucket implementation show slightly better performance, but 

this likely depends on slight differences in physical file layout as there is not any 

difference in the implementation of the benchmark reader. 

6.2.3 Discussion 

Especially in relation with disk I/O the setup of a fully deterministic benchmark 

environment has shown to be difficult. Multiple benchmark runs deliver 

somewhat similar results, but produce unexpected spikes too. These seem to 

depend on many different variables such as system uptime, aging of the file 

system, background processes, etc. It was tried to recreate the exact 

environment for every benchmark run by reformatting disks, rebooting the 

system and starting tests at similar uptime timestamps. Still, these fluctuations 

could not be avoided completely, and hence, the numbers presented hereby are 

average values obtained from multiple runs with spike values being corrected 

manually. 

Nevertheless, for the 100TB Gray Sort scenario the dynamic buffer approach 

shows a factor of 1.15 better write performance than double buffering and 

practically equal performance to the default buffered write behavior. For the 

consecutive read phase dynamic buffering performs a factor of 1.15 better than 

double buffering and 1.48 better than default file system behavior. 

The close match in performance between dynamic buffering and default file 

system behavior for most benchmark cases is remarkable. The file system does 

an excellent job at maximizing write throughput for parallel disk access, 

although this comes at a heavy toll during reading data back later. For the 

default implementation the drop in performance during reading may arrive from 

file fragmentation, file-cache lookups or configuration issues, but this has not 

been investigated yet and is left for further investigation. 

The I/O subsystem of Tritonsort currently still represents the bottleneck for 

increased performance, so ongoing optimization in this area is necessary. Disk 

I/O performs well when comparing Tritonsort to large-scale benchmark systems, 
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but there is potential for improvement as shown by small-scale single systems 

such as psort.  

Also a potential drawback is the high complexity of the application-specific write 

cache implementation. The evaluation experiment for intermediate data access 

shows that a simple implementation based on default file system behavior 

performs comparably well for a number of cases during writing. However, 

corner cases exist for small and increasingly higher numbers of output files. If 

these can be resolved and read performance be increased by an improved 

configuration (or implementation) of the file system, this part of Tritonsort’s 

pipeline could be re-architected and simplified. 

Overall, the dynamic buffering approach represents the best alternative 

available to Tritonsort at the current state. It provides an advantage of 15/15 

percent for read- and write-performance compared to double buffering and 50/- 

percent compared to default file system behavior. In comparison to state-of-the-

art systems of comparable scale, Tritonsort also achieves highest throughput 

per disk using the presented approach. 
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6.3 System performance 

In the following section Tritonsort’s performance is evaluated using the metrics 

of Sort Benchmark, resource-efficiency is quantified and compared based on 

hardware requirements and cost. Values obtained for state-of-the-art systems 

are estimations derived from the respective publication and valid for purposes of 

comparison only. Cost estimations are taken from (8).  

For purposes of estimating efficiency, Gray sort results are more valuable than 

Minute sort results. Minute sort measures burst performance and favors low 

startup and shutdown times. The short runtime makes it difficult to derive useful 

results by metric application. 

Tritonsort competes in the Sort Benchmark Challenge, and hence, can be 

compared directly to a number of systems. In case of large-scale benchmarking 

(at or above 100TB of data), available results are relatively scarce. Also, a 

number of benchmark results were published without being submitted to Sort 

Benchmark officially. (27)(23) 

The figure below gives a quantitative overview about hardware used in different 

systems. For ease of representation a logarithmic scale is used. 

 

Figure 27 - Large-scale Systems in Benchmark 
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The scale of hardware assets varies massively. This should not come 

surprisingly as Hadoop and MapReduce are driven by industry companies, 

whereas DEMSort and Tritonsort are developed in an academic environment. 

All clusters are optimized to perform DISC tasks, except for DEMSort which 

operates in a HPC cluster environment. 

Year Name Category Nodes  Cores Disks Data 

(TB) 

Time 

(s) 

2008 MapReduce (unofficial) 4.000 32.000
1
 48.000 1.000 21.720 

2009 Hadoop (PB) (unofficial)  3.658 29.264 14.632 1.000 58.500 

2009 Hadoop Gray Daytona 3.452 27.616 13.808 100 10.380 

2009 DEMSort Gray Indy 195 1.560 780 100 10.628 

2010 Tritonsort Gray Indy 47 376 752 100 10.318 

Table 12 - Large-scale Systems in Benchmark 

A selection of five systems is used for comparison. The table above gives an 

overview of system name, hardware components and the amount of data and 

time required for performing parallel external sort as used by sort benchmarks. 

Performance 

Performance is the central interest of sort benchmarks, and hence, is used for a 

first comparison and as basis for considerations of efficiency. 

The next figure presents relative system throughput per component. It is 

obtained by dividing the total amount of input data sorted by the amount of time 

required. A first look on resource-efficiency becomes possible by breaking down 

throughput numbers to component level and comparing them to each other, 

although these numbers do not factor in potential peak performance of a 

component. Since the systems’ hardware relies on comparably potent 

components, values can still be used as indication for hardware efficiency. For 

ease of representation a logarithmic scale is used. 

                                            
1
 Number of CPU cores estimated based on (8) 
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Figure 28 - System throughput per component 

Name Throuhgput 

(MB/s) 

TP/Node 

(MB/s) 

TP/Core 

(MB/s) 

TP/Disk 

(MB/s) 

Cost Eff. 

(Bytes/s/$) 

MapReduce 46040,5 11,5 1,4 1,0 1e3,5 

Hadoop (PB) 17094,0 4,7 0,6 1,2 1e3,2 

Hadoop 9633,9 2,8 0,3 0,7 1e3,2 

DEMSort 9409,1 48,3 6,0 12,1 1e4,1 

Tritonsort 9691,8 206,2 25,8 12,9 1e4,4 

Table 13 - Relative throughput per component 

Performance-wise Tritonsort outperforms state-of-the-art systems in Sort 

Benchmark “Gray Sort” rankings. Compared to industry scale clusters overall 

throughput seems low, however, a substantial advantage in efficiency can be 

found. 

6.3.1 Efficiency 

It is difficult to quantify efficiency in absolute numbers as system hardware is 

different and hardware costs and performance change over time. The hardware 

components used in clusters by DEMSort and Hadoop are comparable to 

Tritonsort’s test bed as far as it can be determined from documentation. 

Information about hardware used for Google’s MapReduce run is scarce. 
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However, the clusters use commodity hardware and hence can be assumed of 

roughly equal potency per disk and CPU core. Therefore, these numbers are 

valid for comparing orders of magnitude only. 

In order to provide a baseline for a holistic efficiency comparison, numbers for 

throughput per component and cost efficiency are fixed to 100 percent for the 

values of DEMSort, winner of the first Gray Sort Indy Challenge in 2009. A 

higher percentage indicates higher throughput, whereas lower values indicate 

less throughput in a specific aspect. 

Name Throuhgput 

(MB/s) 

TP/Node 

(%) 

TP/Core 

(%) 

TP/Disk 

(%) 

Cost Eff. 

(%) 

MapReduce 46040,5 23,9 23,9 8,0 25,1 

Hadoop (PB) 17094,0 9,7 9,7 9,7 12,6 

Hadoop 9633,9 5,8 5,8 5,8 12,6 

DEMSort 9409,1 100,0 100,0 100,0 100,0 

Tritonsort 9691,8 427,4 427,4 106,8 199,5 

Table 14 - Relative resource efficiency 

The numbers suggest that Tritonsort performs well with respect to 

computational and disk I/O efficiency. This seems reasonable as it is mirrored 

by improved estimated cost efficiency too. 

It can be observed that DEMSort shows comparable performance per disk, but 

at the same time shows only a quarter of throughput per core. This divergence 

could be explained by hardware coming from traditional HPC applications rather 

than disk-heavy benchmarks. 

The numbers found for Hadoop provide an interesting insight, as about the 

same configuration was used in a 100TB and a 1PB benchmark run. Total 

throughput and throughput per component increase when datasets get larger. 

Even though, throughput for a 1PB run is about double the value of a 100TB 

run, throughput per disk is down by a factor of ten compared to Tritonsort. 

MapReduce’s total throughput on a 1PB data set outranges all other systems. 

However, as noted before, larger datasets increase efficiency. Throughput per 

component is comparable to Hadoop, although the disk-heavy hardware setup 



79 

   

improves results per core. Still, relative numbers per component are 

significantly lower than Tritonsort. 

6.4 Benchmark-specific comparison 

The following section provides an in-depth comparison of Tritonsort’s 

performance to Sort Benchmark’s top-performing systems Hadoop and 

DEMSort in the Gray Sort and the Minute Sort benchmark. The analysis 

addresses quantitative benchmark results and qualitative aspects of system 

architecture. 

6.4.1 Gray Sort 

The Gray Sort benchmark evaluates sustained system performance for long-

running tasks. Also, the minimum requirement of 100TB input data indirectly 

enforces distributed hardware architecture and scalability of the software 

framework that coordinates individual nodes. 

The benchmark uses the “average TB sorted per minute” (TB/min) metric to 

quantify system performance taking into account the total amount of input data 

and total runtime. As of 2010 the typical runtime for this benchmark lies 

between two and three hours what makes high average performance of system 

components the most important factor of success. Overheads caused by 

administrative tasks such as startup and shutdown delays do not severely 

impact overall performance as they even out over a long runtime. 
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1. Comparison to DEMSort 

DEMSort is a merge-based sort implementation and uses hybrid memory 

architecture, shared-memory in the run formation stage and partitioned access 

to data in the redistribution and merge stages. Hence, there are substantial 

differences to Tritonsort’s distribution-based approach. 

Sorting takes place in three steps: run formation, redistribution and local merge. 

During run formation batches of input data are distributed transparently across 

nodes and sorted internally. The redistribution stage determines exact 

partitioning elements in the presorted runs and moves non-matching tuples 

between nodes until data is distributed evenly. The final merge stage takes 

place local to each node, reading and merging intermediate data to a final 

result. 

Distribution of input data to target nodes is separated into a speculative first and 

an exact second pass during run formation and redistribution. Tritonsort uses a 

single speculative approach in the map stage. For both systems speculative 

distribution is based on the guarantee that key values in the input data are 

distributed uniformly. For DEMSort processing of node local data is performed 

during the run formation and merge stage, whereas Tritonsort performs node 

local sort during the store and reduce stage. 

The decision to use a redistribution stage in DEMSort seems necessary from an 

architectural point of view ranging from the constraint of near in-place 

permutation of input data imposed by the lack of sufficient storage space for 

separate output files. This introduces an additional I/O pass at disk and network 

interfaces however. Although, the overhead is relatively small, it surpasses the 

minimum of 4 I/O passes for memory external sort. Another potential slowdown 

is caused by non-interleaved operation of network I/O and sorting during the run 

formation stage. 
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Figure 29 - Gray Sort - DEMSort vs Tritonsort - hardware performance 

 

Figure 30 - Gray Sort - DEMSort vs Tritonsort - Cost-Efficiency 
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Hardware Tritonsort DEMSort 

����� 47 195 

	�
�� 376 1560 

�
��� 752 780 

	��� 10�.( ��� 10�.� ��� 

Benchmark   

��
��
���	�
+
��

 0.582 � /�
� 0.565 � /�
� 

���� 100 �  100 �  

�
�� 10318 � 10628 � 

�ℎ
�#$ℎ�#� 9691.8 & /� 9409.1 & /� 

Relative Throughput   

�ℎ
�#$ℎ�#�:/=; 206.21 & /� 48.25 & /� 

�ℎ
�#$ℎ�#�3/.; 25.78 & /� 6.03 & /� 

�ℎ
�#$ℎ�#�=94> 12.89 & /� 12.06 & /� 

�ℎ
�#$ℎ�#�3/4, 10*.* C����/�/$ 10*.E C����/�/$ 

Relative Scale   


��
�:/=;4,F,G 0.241 


��
�3/.;4,F,G 0.241 


��
�=94>4,F,G 0.964 

Resource Efficiency  

���
	
��	�3/.;4,F,G 4.275 

���
	
��	�=94>4,F,G 1.069 

���
	
��	�3/4,,F,G 1.995 

Table 15 - Gray Sort - Evaluation Tritonsort vs DEMSort 

From a hardware point of view DEMSort’s cluster is about four times the size of 

Tritonsort’s test bed, although the number of hard disks is almost equal. In 

detail, the ratio of nodes is 4.15, ratio of CPU cores is 4.15 and the ratio of hard 

drives is 1.04. DEMSort achieves 0.565 TB/min compared to Tritonsort’s 0.582, 

a ratio of 0.971. Regarding cost-efficiency DEMSort reaches 104.1 bytes/s/$ in 

contrast to Tritonsort providing 104.4 bytes/s/$. Therefore, Tritonsort achieves 

about 4 times higher computational efficiency, comparable disk I/O efficiency 

and 2 times estimated cost-efficiency of DEMSort in Gray Sort. 
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2. Comparison to Hadoop 

Hadoop is based on the Map-Reduce paradigm and relies on HDFS, a 

distributed file system for persistence of data. The overall sort process is very 

similar to the approach taken by Tritonsort: the Map stage reads and distributes 

input data to target nodes that store data locally. The reduce stage then reads 

the intermediate data and sorts it internally before writing the result back to the 

distributed file system. 

Hadoop contributes to the Gray Sort Daytona benchmark ranking whereas 

Tritonsort performs in Gray Sort Indy. Benchmark scale, input data and rules 

are similar for the most part. There are two additional requirements for Daytona, 

however. First, entries must have the ability to perform general purpose sorting 

without assuming a predetermined uniform distribution of key values in the 

input. Hadoop addresses this by sampling a portion of input data at startup and 

distributing this information to the cluster before the actual sorting takes place. 

Secondly, input data must not be destroyed during processing, and hence, an 

out-of-place sort algorithm is enforced. This does not impact Hadoop in a 

notable way as Hadoop tasks do not delete input data per default anyway. 

In addition, there are two aspects which may impact efficiency. First, Hadoop 

uses a replication factor of 2 for large datasets and employs a speculative 

scheduler possibly executing number of subtasks multiple times. Secondly, 

Hadoop runs in a Java Virtual Machine environment. Although, a number of 

optimizations were made to file transfers in the VM environment there is some 

additional overhead compared to Tritonsort which directly accesses operating 

system functionality. 

In terms of hardware the Hadoop cluster larger than Tritonsort’s test bed by a 

factor of 70 in nodes in the Gray Sort configuration. 
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Figure 31 - Gray Sort - Hadoop vs Tritonsort - hardware performance 

 

Figure 32 - Gray Sort - Hadoop vs Tritonsort - Cost-Efficiency 
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Hardware Tritonsort Hadoop 

����� 47 3452 

	�
�� 376 27616 

�
��� 752 13808 

	��� 10�.( ��� 10(.) ��� 

Benchmark   

��
��
���	�
+
��

 0.582 � /�
� 0.578 � /�
� 

���� 100 �  100 �  

�
�� 10318 � 10380 � 

�ℎ
�#$ℎ�#� 9691.8 & /� 9633.9 & /� 

Relative Throughput   

�ℎ
�#$ℎ�#�:/=; 206.21 & /� 2.79 & /� 

�ℎ
�#$ℎ�#�3/.; 25.78 & /� 0.35 & /� 

�ℎ
�#$ℎ�#�=94> 12.89 & /� 0.70 & /� 

�ℎ
�#$ℎ�#�3/4, 10*.* C����/�/$ 10H.I C����/�/$ 

Relative Scale   


��
�:/=;4,F,J 0.0136 


��
�3/.;4,F,J 0.0136 


��
�=94>4,F,J 0.0545 

Resource Efficiency  

���
	
��	�3/.;4,F,J 73.66 

���
	
��	�=94>4,F,J 18.41 

���
	
��	�3/4,,F,J 15.85 

Table 16 - Gray Sort - Evaluation Tritonsort vs Hadoop 

For Gray Sort, the ratio of hardware components Hadoop versus Tritonsort is 

73.34 for nodes, 73.34 for CPU cores and 18.36 for hard drives. The 

benchmark performance for Hadoop equals 0,578 TB/min compared to 0.582 

TB/min for Tritonsort, a ratio of 0.994 in performance. In terms of cost Hadoop 

delivers 103.2 bytes/s/$ compared to Tritonsort’s 104.4 bytes/s/$. Hence, 

Tritonsort provides about 73 times computational efficiency, 18 times disk I/O 

efficiency and 16 times estimated cost efficiency of Hadoop in Gray Sort. 
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6.4.2 Minute Sort 

The Minute Sort Benchmark measures the amount of input data processed by a 

system when running for 60 seconds or less total. The benchmark uses the “GB 

sorted” metric to quantify system performance. Runtime is measured in “wall 

time” at a singular head node from the moment the first node starts until the last 

node completing its task. A system is required to perform 15 consecutive runs 

for the same amount of input data and the average runtime of these runs is 

considered for validity. 

Compared to Gray Sort the amount of input data is relatively small and possibly 

allows systems to perform memory internal sort. This reduces the theoretical 

minimum number of I/O passes from 4 to 2, thus decreasing the amount of time 

spent for disk access, but disallowing interleaved I/O and sorting at the same 

time. The short runtime also increases the impact of startup and shutdown 

procedures, as their overhead counts towards the overall timing. 

1. Comparison to DEMSort 

DEMSort operates within the Minute Sort Indy category and uses a comparable 

approach as the Gray Sort configuration. Although not stated explicitly by the 

developers, the increase in throughput suggests that intermediate file creation is 

spared for Minute sort. This guarantees that data on disk is accessed exactly 

twice, once for reading and once for writing. Assuming that the redistribution 

stage is present in this configuration, network I/O still involves some overhead. 

In contrast to Gray Sort synchronous pipelining of network transfer and sorting 

does not affect Minute sort negatively. 

The cluster configuration of DEMSort is the same as for Gray Sort. Tritonsort 

uses a higher number of nodes for Minute Sort than in the Gray Sort 

configuration, and hence, has a slight advantage over DEMSort in the total 

number of hard drives. The number of nodes and CPU cores still is a multitude, 

however. 
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Figure 33 - Minute Sort - DEMSort vs Tritonsort - hardware performance 

 

Figure 34 - Minute Sort - DEMSort vs Tritonsort - Cost-Efficiency 
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Table 17 - Minute Sort - Evaluation Tritonsort vs DEMSort 

In Minute Sort, cluster hardware of DEMSort and Tritonsort show a ratio of 3.75 

for nodes, 3.75 for CPU cores and 0.938 for hard drives. In benchmark ratings, 

DEMSort achieves 0.955 TB compared to 1.01 TB for Tritonsort, a ratio of 

0.942. Throughput is 15917 MB/s versus 18107 MB/s and in terms of cost-

efficiency results in 104.3 bytes/s/$ for DEMSort and 104.6 bytes/s/$ for 

Tritonsort. In total Tritonsort reaches 4 times computational efficiency, equal 

disk I/O efficiency and 2 times cost-efficiency. 
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2. Comparison to Hadoop 

The architecture of the Hadoop Minute Sort submission is similar to Gray Sort, 

although task scheduling is modified and additional disk I/O is avoided as the 

output of mappers fits into memory completely for the reduce stage. Also, 

replication is disabled to increase performance of HDFS and decrease network 

load. 

Again, Hadoop participates in the Minute Sort Daytona category and requires 

an additional sampling stage that increases startup times compared to systems 

in the Indy category. The process of sampling and distributing acquired 

information across the cluster potentially takes a portion of time that systems of 

the Indy category spend sorting instead. 

For a hardware perspective the Hadoop Minute sort cluster is smaller than the 

Gray Sort cluster in order to optimize startup and shutdown times. Compared to 

Tritonsort’s hardware, its difference in scale still surpasses an order of 

magnitude. 

 

Figure 35 - Minute Sort - Hadoop vs Tritonsort - hardware performance 
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Figure 36 - Minute Sort - Hadoop vs Tritonsort - Cost-Efficiency 
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Relative Scale   
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Table 18 - Minute Sort - Evaluation Tritonsort vs Hadoop 

The ratio of hardware used by Hadoop compared to Tritonsort is 27.04 for 

nodes, 27.04 for CPU cores and 6.76 for hard drives. Benchmark performance 

is 0.500 TB for Hadoop and 1.01 TB for Tritonsort, a ratio of 0.493. In terms of 

throughput, Hadoop achieves 8475 MB/s versus 18107 MB/s. Hence, Hadoop 

provides cost-efficiency of 103.5 bytes/s/$ compared to 104.6 bytes/s/$ for 

Tritonsort. Overall, Tritonsort shows 56 times computational, 14 times disk I/O 

and 12 times cost-efficiency in Minute Sort. 

6.4.3 Discussion 

A broad variety of comparison results has been presented hereby with a focus 

on benchmark performance, computational efficiency, disk I/O efficiency and 

cost-efficiency. Tritonsort shows superior results in all four aspects, in every 

comparison provided. 

On the one hand, this is a remarkable result, one the other hand the question 

about the correctness of values and the overall validity of the evaluation arises. 

Performance numbers and hardware components are derived directly from 

publications of Sort Benchmark results, and hence, can be regarded correct. In 

case of cost-efficiency, this is vague already. Hardware costs of DEMSort and 

Hadoop are estimated based on (8) by calculating system base-cost from the 

provided cost-efficiency measure “bytes/s/$” and benchmark throughput. The 

authors of the source paper provide numbers in powers of ten and note 

explicitly that their numbers are useful for purposes of comparison only. 

Therefore, the difference in cost efficiency between two systems in this paper 

can only be regarded as a guideline. As this is insufficient as sole indicator, 
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relative throughput per component and an overview of cluster component 

counts is provided is this section as well. In case provided cost estimations do 

not seem fitting other provided information allows a separate approximation. 

Generally, it can be observed that Tritonsort uses a disk-heavy hardware setup. 

Compared to Hadoop and DEMSort each node holds four times the amount of 

hard drives. This configuration certainly helps decreasing hardware costs as the 

number of physical encasings and network connections goes down, although 

this requires computationally efficient software to process node-local data with 

one fourth of CPU time. 

A second aspect of evaluation validity is the emphasis on resource-efficiency 

without comparing Tritonsort quantitatively to energy- or cost-efficient systems 

such as EcoSort and PSort. A major point against the comparison is the lack of 

scalability in these systems, although this should mainly affect networking and 

computation. It can be observed from smaller systems that there certainly is a 

factor of about 1.5 in disk I/O that should be achievable by Tritonsort in 

benchmark runs. Systems relying on SSD storage expand this borderline even 

further, but also point towards a substantial increase in hardware cost. From a 

computational efficiency point of view it shows that Tritonsort is not saturating 

its full CPU potential. Some smaller systems with slower processors and 

memory achieve higher throughput physical core. A portion of this headroom 

comes from the current bottleneck in disk I/O another portion potentially may 

never actually come to use in benchmark runs as it is superfluous. A third 

efficiency indicator, throughput per node, shows an advantage of up to a factor 

of two for Tritonsort compared to PSort or EcoSort and suddenly inverts the 

picture of resource efficiency. It can easily be explained by different hardware 

setups, but also points at an important fact: the definition of resource efficiency 

in this paper is based on the assumption of comparable hardware components 

and comparable scale. A comparison to a small system can lead the way for 

future improvements, but does not necessarily produce consistent results. 

Hence, an extensive comparison to small systems is not provided. 

Taking a look at combined comparison results of DEMSort it can be observed 

that DEMSort provides comparable performance for benchmarks and disk I/O, 
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but stays behind in cost-efficiency by a factor of two and is improved upon 

computational efficiency by a factor of four. The architecture is sort-specific 

compared to Tritonsort’s pipelining, which seems induced by the HPC hardware 

environment and the lack of additional storage space. Nevertheless, Tritonsort 

outperforms DEMSort in Gray Sort Indy and Minute Sort Indy and serves higher 

resource efficiency. 

A look at the results for Hadoop shows a substantial advantage for Tritonsort 

regarding resource efficiency. The numbers are to be regarded more a 

guideline as they surpass an order of magnitude for Minute Sort as well as Gray 

Sort. It has to be noted that Hadoop processes Daytona data sets in contrast to 

Indy records. For the purpose of benchmark this does not affect the actual input 

data, however, an additional sampling stage is required upfront to determine the 

distribution of input keys. The sampling process adds little overhead for Gray 

Sort, but might impact Minute Sort results significantly. The fact however, 

Tritonsort delivers more than 50 times performance per core and 10 times per 

disk indicates a significant bottleneck in Hadoop’s processing pipeline. This is 

unlikely to be caused by architectural differences as Hadoop and Tritonsort are 

both modeled after the Map-Reduce approach. It can be speculated that this is 

caused by network bottlenecks, inefficient disk I/O due to access from within a 

JVM or the broad spectrum of tasks Hadoop is designed for, although this 

cannot be determined from the view of this paper. In sum, Tritonsort delivers 

higher performance than Hadoop in Gray Sort and Minute Sort benchmarks and 

shows better resource efficiency by an order of magnitude. 
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7 Summary 

The following section summarizes contributions of the thesis in detail and 

provides any overview over benchmark performance and evaluation results. 

Tritonsort participated in the 2010 Sort Benchmark challenge for “Gray Sort” 

and “Minute Sort” and currently represents the top-performing system in both 

categories. In addition to performance Tritonsort also provides the highest level 

of hardware resource efficiency of current large-scale systems. 

The research of this thesis shows that optimization of resource-utilization can 

yield substantial improvements to performance and cost-efficiency. This is true 

especially in large-scale data processing. Although, optimization requires 

additional engineering efforts it reduces cost and complexity at the same time 

as it decreases the amount of required hardware and the overall scale of a 

system. 

The experience gained from the development of data persistence and internal 

sort components shows that efficiency is owed mainly to architecture and 

algorithms. Well-performing algorithms from literature are adapted to satisfy 

constraints imposed by hardware and architecture. Though, some of these 

modifications lower performance of theoretically optimal approaches, Tritonsort 

achieves solid levels of throughput in disk I/O and sorting compared to state-of-

the-art systems. 

7.1 Contribution Summary 

The paper contributes the resource-efficient disk I/O layer and internal sort 

implementation to Tritonsort. The disk access layer represents an application-

specific implementation of file-system buffering and improves upon the 

performance at the current bottleneck of the processing pipeline. Internal Sort is 

implemented to achieve performance necessary for processing data in the 

Reduce stage on-the-fly, without slowing down disk access. In addition it 

supports I/O performance by minimizing the number of intermediate files 

generated during the memory external sort. 
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Figure 37 - Contributions summary 

Presentation and discussion of results is organized in separate sections for disk 

access in the Store stage and internal sorting in the Reduce stage. 

7.1.1 Disk access 

The I/O layer of Tritonsort optimizes throughput during the Store and Reduce 

stages of the pipeline based on three concepts. First, activity between 

Receivers and Writers is fully interleaved. Each bucket uses a segmented buffer 

for storing temporary data. Receivers are able to collect incoming data in a 

bucket while Writers may process the same bucket concurrently. This avoids 

pipeline stalls due to mutual exclusion to a large extent. Secondly, Writers are 

enabled to process buckets in a demand-based order. As Receiver and Writer 

activity is decoupled by the write cache implementation, Writers are enabled to 

continually perform at maximum disk performance. Thirdly, the buffers 

underlying each bucket share a common pool of memory, so buffer size can be 

adapted dynamically, based on demand. Buffer space freed up by a Writer can 

be allocated to multiple different buckets, which helps overcoming the 

systematic mismatch between input being scattered across buckets evenly in 

small chunks and output being performed per bucket in long sequential writes. 
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Figure 38 - Performance Disk Access 

The design and implementation of the I/O layer is compared to two alternative 

approaches. Evaluation is based on a benchmark setup that mimics read and 

write patterns performed by Tritonsort in an isolated environment. The dynamic 

buffer implementation is compared to an implementation based on default file-

system cache behavior and another based on manual double-buffering. From a 

qualitative point of view the dynamic buffer approach adds substantial 

complexity to design and implementation compared to a straight-forward 

implementation relying on file-system caching. Quantitatively, it is found that the 

dynamic buffer approach delivers highest throughput for read and write access 

under typical conditions as well as in corner cases, and hence, provides best 

I/O efficiency for the given hardware. 
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The optimization of intermediate data access also leverages from the increase 

in maximum bucket size by the internal sort implementation. This allows the 

Store stage of the pipeline to use a smaller number of intermediate files, and 

hence, the write throughput can be increased without negatively affecting the 

Reduce stage. 

In the overall picture of comparison to state-of-the-art systems in large-scale 

Sort Benchmark, Tritonsort reaches the highest level of disk performance and 

I/O efficiency. 

7.1.2 Internal Sort 

Internal sort in the Reduce stage of Tritonsort’s pipeline is implemented using a 

linear-time Radix sort. Combined with distribution sort performed in the first 

stages this allows Tritonsort to fully rely on linear-time algorithms. The actual 

implementation uses a number of optimizations to increase performance and 

memory efficiency. The first mayor optimization, tag-based sorting, extracts key 

values from tuples before sorting and significantly reduces the size of memory 

operations during the process. Also, the size of temporary buffers can be 

reduced and in-place reordering of the actual input data becomes possible. The 

in-place permutation of tuples reduces the typical memory overhead of Radix 

sort from 2.0 to 1.32 for this application, as a separate output buffer can be 

avoided. This in turn increases buffer size available per internal sort run, and 

therefore, decreases the number of individual bucket files required to split up 

data in the Map and Store stages of the pipeline.  
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Figure 39 - Performance Internal Sort 

The performance is evaluated using a simplistic internal sort benchmark. A 

variably sized region of memory is filled with uniformly distributed input data and 

sorted. The comparison is performed between a default C implementation of 

Quicksort and Radix Tag Sort. The Radix approach shows increased complexity 

in design and implementation compared to Quicksort. However, quantitative 

results show a significant advantage of Radix by a factor of four for typical 

buffer sizes between 100MB and 1600MB. From an efficiency point of view, 

Quicksort is to be considered better in memory efficiency, Radix shows superior 

computational efficiency. Given the test bed hardware, Radix sort is the 

algorithm of choice as it is able to handle parallel disk input on the fly, without 

bottlenecking. 
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The flexibility of the I/O subsystems allows improvements in sort memory 

efficiency to be translated directly into improved disk throughput. With increased 

buffer size for sorting the number of intermediate file decreases, lifting up I/O 

performance. This makes memory optimization of the implementation 

worthwhile and provides instant gains in I/O performance. 

Throughput of internal sort is four times higher than the Quicksort alternative, 

the increase in sort performance is relevant to overall performance to a limited 

extend however. The implementation has to reach a level of throughput that 

allows a node’s CPUs to handle parallel input provided by half its disks. 

Potential throughput superseding this threshold may reduce the impact of 

variations in input volume, but does not necessarily increase the performance of 

the Reduce stage. In practice however, high performance helps decreasing the 

number of sorter threads required in parallel which increases the relative 

amount of memory available per sorter and sort run. 

Overall, the implementation of internal sort performs well for sustained 

throughput in the “Gray Sort” configuration as well as for peak performance in 

the “Minute Sort” configuration. 

7.1.3 System Performance 

As a result of the joint effort of the Tritonsort work group, the Tritonsort 

prototype participated in the 2010 Gray Sort Indy and Minute Sort Indy 

benchmark and was awarded top-performing system in both categories. Also, 

Tritonsort achieved the highest sort performance in Sort Benchmark’s records 

for large-scale sorting and passed the barrier of 1 TB for Minute Sort. 

The relatively small number of components in the cluster decreases complexity 

and costs of Tritonsort’s test bed compared to systems such as Hadoop or 

DEMSort. For the Gray Sort benchmark, Tritonsort’s 50 nodes 3 rack cluster 

provides comparable performance to Yahoo’s 3800 nodes “Hammer” cluster. 
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Figure 40 - Cluster hardware 

In addition to less hardware than comparable systems Tritonsort achieves top 

performance in both large-scale benchmarks, Gray Sort and Minute Sort at the 

same time. 

 

Figure 41 - Gray Sort performance 
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Figure 42 - Minute Sort performance 

Resource efficiency decreases scale and complexity and saves money in large-
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8 Future Work 

The Tritonsort prototype delivers top results in benchmarking and resource-

efficiency. However, as the project is work in progress there are still many 

perspectives for improvements and extensions to suite additional use-cases. 

The following section describes some of these. 

In terms of hardware and cost efficiency there’s potential for improvement. 

Optimally, Tritonsort’s distributed architecture may reach levels of throughput 

per CPU core and disk comparable to optimized single node systems. 

Especially platform specific optimizations could bring improvements to 

computational and I/O efficiency. For example, the internal sort could be 

optimized to make better use of CPU caches and the I/O layer could be adapted 

to take disk and controller caches into account. The additional complexity 

introduced by networking will limit the ability to reach single-node cost efficiency 

at some point however. 

Another spot for efficiency tweaking could be improved configuration of 

hardware and operating system. Tritonsort relies on OS facilities to a large 

extent for disk and network I/O. The development process showed that there 

are different possibilities to realize various features. However, performance and 

stability often depended on slight differences in configuration that are not 

obvious from documentation at first. Linux’ I/O subsystem is the most notorious 

candidate for this kind of investigation. 

A potential extension of functionality is the implementation of autonomous 

sampling and general purpose sorting as required by Sort Benchmark’s 

Daytona category. A first step would be the adaption of sorting and I/O 

components to support variable-length Daytona datasets. In a second step, 

distributed input sampling could be implemented. Sampling might prove to be a 

significant challenge as the efficiency of the overall distribution sort algorithm 

highly depends on uniform load balancing. 
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When approaching real-world application of Tritonsort’s pipelining system, 

facilities for fault-tolerance and failure-resistance become necessary. These 

should be capable of dealing with disk failures and, with growing scale, node 

and network issues. Disk failures could be addressed using RAID 

configurations, failures on larger scale require more sophisticated solutions 

based on replication. The introduction of RAID configurations in turn may 

substantially affect the disk I/O layer as read and write characteristics of RAIDs 

differ from independently controlled disks. 
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