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Chapter 1

Introduction

System development for digital signal processing (DSP) applications often in-

volves an initial application description in a design environment, which is then man-

ually transcoded and tuned to target the final design platform. Often separated by

languages, tools, and even different teams, going from an initial application de-

scription to a final implementation tends to be a manual, error-prone, and time-

consuming problem. To improve the quality and performance while reducing de-

velopment time, a cross platform design environment is needed that accommodates

both early design exploration and final implementation tuning.

The DSPCAD Integrative Command Line Environment (DICE) [1] [2] is a

realization of managing these enhancements to the design flow. It is a framework

for facilitating efficient management of design and test of cross-platform software

projects. DICE defines platform and language independent conventions for de-

scribing and organizing tests, facilitating high portability of tests for cross-platform

operation. Although DICE can be used for any type of software development, it

makes a natural fit with dataflow models due to the streaming nature of inputs and

outputs supported by DICE.

We use the Dataflow Interchange Format (DIF) [3] as our dataflow analysis

engine which can leverage the extracted dataflow models, and as our model-based
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development environment. Although DIF and DICE are orthogonal to each other

(one can exist without the other), our research explores novel synergies between

them, such as integrating testing with design to continuously identify and correct

errors; generating automatic testbenches for improving the ease with which cross-

platform tests are created; and using DICE as a framework to simulate systems

modeled in DIF, and explore design trade-offs, component interactions, and system-

level metrics. We have demonstrated the novel test framework of DICE for a cross-

platform project in [4].

In this work we present a case study which is a demonstration of the use

of dataflow modeling in early stage application exploration and the use of DICE

in the overall design flow. We do an exploration study into the internal precision

of computation for the Jacobi Eigenvalue Decomposition (EVD) [5]. Due to the

mathematically intensive nature of the computations in this algorithm, it becomes

important to comprehensively analyze the required precision at every step of the

algorithm. We do this analysis by modeling the Jacobi EVD as a mixed-grain

dataflow graph in DIF. We not only verify the functional correctness of the EVD

algorithm, but also further demonstrate the synergy between DIF and DICE when

analyzing the data dynamic range of the intrinsic computations by reusing the same

application graph. Based on this analysis, we are able to provide useful feedback to

the low-level designers about the formulation of some parts of this algorithm.
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Chapter 2

Background

To give context to our model based testing approach, this section covers the

dataflow models that we base our technique on, as well as the dataflow modeling

tool we utilize for application description.

2.1 Dataflow Modeling

Modeling DSP applications through coarse-grain dataflow graphs is widespread

in the DSP design community, and a variety of dataflow models have been devel-

oped for dataflow-based design. A growing set of DSP design tools support such

dataflow semantics. Designers are expected to be able to find a match between

their application and one of the well-studied models, including cyclo-static dataflow

(CSDF), synchronous dataflow (SDF) [6], single-rate dataflow, homogeneous syn-

chronous dataflow (HSDF), or a more complicated model such as boolean dataflow

(BDF) [7].

Common to each of these modeling paradigms is the representation of com-

putational behavior as a dataflow graph. A dataflow graph G is an ordered pair

(V, E) , where V is a set of vertices (or nodes), and E is a set of directed edges. A

directed edge e = (v1, v2) ∈ E is an ordered pair of a source vertex v1 ∈ V and a

sink vertex v2 ∈ V . Nodes or actors represent computations while edges represent
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a FIFO communication links between them.

2.2 Dataflow Interchange Format

To describe dataflow applications for this wide range of dataflow models, ap-

plication developers can use the Dataflow Interchange Format (DIF) [3], a stan-

dard language founded in dataflow semantics and tailored for DSP system design.

DIF is suitable as an interchange format for different dataflow-based DSP design

tools because it provides an integrated set of syntactic and semantic features that

can fully capture essential modeling information of DSP applications without over-

specification [8]. From a dataflow point of view, DIF is designed to describe mixed-

grain graph topologies and hierarchies as well as to specify dataflow-related and

actor-specific information.

The dataflow semantic specification is based on dataflow modeling theory and

independent of any design tool. Therefore, the dataflow semantics of a DSP ap-

plication is unique in DIF regardless of any design tool used to originally enter the

application specification. Moreover, DIF also provides syntax to specify design-tool-

specific information, which is captured within the data structures associated with

DIF intermediate representations.

2.2.1 The DIF Package (TDP)

To utilize the semantics captured by describing applications in the DIF lan-

guage, the DIF package was created. An overview is illustrated in Figure 2.1 (for a
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Figure 2.1: DIF-based design flow.[3]

full explanation of it, see [3]). Along with the ability to transform a DIF descrip-

tion into a manipulatable internal representation, the DIF package contains graph

utilities, optimization engines, and algorithms that can prove useful properties of

an application. These facilities make the DIF package an effective environment for

modeling dataflow applications, providing interoperability with other design envi-

ronments and developing new tools.

2.3 Functional DIF

To quickly arrive at quality prototypes, designers must be able to describe

their complex applications in a single environment. In the context of dataflow pro-

gramming, this involves describing not only the top level connectivity and hierarchy
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of the application graph, but also the functionality of the graph actors (the func-

tional modules that correspond to the non-hierarchical graph vertices), preferably

in a natural way that integrates with the semantics of the dataflow model they are

embedded in. Once the application is appropriately captured, designers need to be

able to evaluate static schedules (for high performance) alongside dynamic behav-

ior without losing semantic ground. With a properly-constructed schedule and a

fully-described application, designers should be able to verify the functionality of a

dataflow-based system. With such a feature set, designers should arrive at quality

prototypes faster.

The functional DIF [9] (DIF with functional designs) package enables fast

simulation and prototyping of scheduling strategies. Prototyping in functional DIF

is useful because it not only allows one to rapidly validate the overall functionality

and high level dataflow architecture of a design, but also allows for a much faster

simulation of complete system functionality.

In this work, we would like to not only model the application description but

also have functional simulation for which we utilize functional DIF. The semantic

foundation of functional DIF is core functional dataflow (CFDF) [9], which is capable

of expressing deterministic, dynamic dataflow applications. In this formalism, each

actor a ∈ V has a set of modes, Ma, in which it can execute. Each mode, when

executed, consumes and produces a fixed number of tokens. In the context of the

work presented in this thesis, we use only the SDF model of computation in which the

actors have only one mode. We use this structured representation of functionality

to derive the appropriate dataflow testbench for each actor.
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Chapter 3

DSPCAD Integrative Command Line Environment (DICE)

3.1 Introduction

DICE (the DSPCAD Integrative Command Line Environment) [1] is a package

of utilities that facilitates efficient management of software projects. The objective

of DICE is to provide a flexible, light-weight environment for the research, devel-

opment, testing, and integration of software projects, particularly those that em-

ploy heterogeneous programming languages or models of computation. DICE is not

meant to replace existing software development tools. Instead it is a command line

solution to utilize the existing tools more effectively, especially for cross-platform

design.

DICE is implemented as a collection of utilities that are in the form of bash

scripts, C programs, and python scripts. The package is intended for cross- plat-

form operation, and is currently being developed and used actively on the Windows

(equipped with Cygwin), Solaris, and Linux platforms.

DICE includes a variety of utilities to help improve productivity while working

in a command-line or shell-based project development environment. Since naviga-

tion and relocating files and directories inside or across complex project directory

structures can be tedious and prone to errors, DICE provides a set of utilities for

efficient navigation through directories and to easily move files and folders between
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different directories.

3.2 DICE Unit Testing Framework

DICE includes a framework for implementation and execution of tests for

software projects. Although the emphasis in this framework is on unit tests, and

therefore, it is often referred to as the DICE unit testing framework, the framework

can also be applied to testing at higher levels of abstraction, including subsystem-

and system-level testing.

A major goal of the testing capabilities in DICE is to provide a lightweight

and flexible unit testing environment. It is lightweight in that it requires minimal

learning of new syntax or specialized languages, and flexible in that it can be used

to test source code in any language, including C, Java, Verilog, and VHDL. This

is useful in heterogeneous development environments so that a common framework

can be used to test across all of the relevant platforms.

The basic component of the DICE unit testing framework is a directory referred

to as an Individual Test Subdirectory (ITS). The test suite consists of several ITSs

that test the different behaviors of the MUT. Every ITS name must start with the

prefix ”test” (e.g., test01, test02, test-square-matrix-1, test-square-matrix-2, etc.).

By doing so, changing the ITS prefix to any word other than ”test” will exclude it

from the test suite.

An ITS consists of the following required files:

• A readme.txt file that contains an explanation of what part of the MUT func-
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tionality this ITS tests. This is useful for the proper documentation of all the

tests.

• A makeme script that contains all compilation steps required before running

the test. It is important to note that makeme does not compile the source code

of the MUT, but it compiles any additional code required for the test (e.g., a

driver program that supplies the MUT with inputs and prints its outputs).

• A runme script that runs the test. The contents of runme may vary depending

on the type of the MUT. For example, when testing a C program, one may

need to just run an object file, but for a Verilog module, a hardware simulator

such as ModelSim may need to be run. Also the runme file may contain a

call to other executables that perform different post processing on the MUT

output before doing the comparison with correct-output and expected-error

files.

• A correct-output.txt file that contains the correct standard output that has to

be produced by the test (i.e, after running the runme file).

• An expected-errors.txt file that contains the error messages that the test is

expected to produce on the standard error. This file is useful when the ITS

checks for the errors that the MUT should be catching.

The basic DICE utility that makes use of the required files and exercises the

test suite is called dxtest. By running dxtest from a certain directory, it recursively

traverses all subdirectories that begin with the prefix ”test”. A subdirectory that

9



contains a runme file is considered as an ITS. When dxtest traverses an ITS, it first

executes the makeme, followed by the runme. It then compares the actual output

generated after running runme with the correct-output.txt and the actual standard

error output with the expected-errors.txt. After traversing all the subdirectories, a

summary of successful and failed tests is produced.

Through appropriate programming of the runme file, the standard output

of runme is in general highly configurable by the person who develops the test.

Creative design of runme files can help to make more powerful and convenient test

organizations within the DICE testing framework. We demonstrate this in Chapter

4.
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Chapter 4

Case Study - Precision Analysis of the Jacobi Eigenvalue

Decomposition

Eigenvalue decomposition (EVD) is used in a wide range of modern signal

processing and communication applications such as MIMO wireless communication,

image recognition technologies, direction of wave arrival estimation algorithms etc.

In the context of this work, the EVD algorithm is being implemented as part of a

beamforming application inherent to MIMO wireless technology.

4.1 EVD in MIMO wireless technology

With the wireless community engaged in the research and development of the

fourth generation (4G) of wireless cellular systems, various schemes are being ex-

plored to achieve the data rate requirements for 4G. Multiple-input multiple-output

(MIMO) wireless communication has been one of the most promising technologies for

improving the spectrum efficiency of wireless systems. MIMO schemes enable a va-

riety of functions including multi-stream transmission for high spectrum efficiency,

improved link quality through diversity mechanisms, and adaptation of radiation

patterns for signal gain and interference mitigation through adaptive beamform-

ing [10].

When a signal x is transmitted through a MIMO channel with channel gain
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matrix H, the received signal y can be modeled as,

y = Hx + n

where n is the noise experienced by the receivers.

When omni-directional antennas are used at the basestation, the transmis-

sion/reception of each user’s signal becomes a source of interference to other users

located in the same cell, making the overall system interference limited. Beamform-

ing is a technique where each user’s signal is multiplied with a beamforming vector

with complex weights that adjusts the magnitude and phase of the signal to and

from each antenna. This causes the output from the array of antennas to form a

transmit/receive beam in the desired direction and minimizes the output in other

directions. By transmitting in the direction of the eigenvector corresponding to

the largest eigenvalue of the positive semi-definite matrix H†H, the signal-to-noise

ratio (SNR) at the receiver is maximized [11]. More generally, vector information

could be sent along all of the eigenchannels of H†H as described in [12], resulting

in increased spectral efficiency. [13] proposes the methodology of eigenbeamforming

where the transmit beamforming vector is chosen as the eigenvector corresponding

to the largest eigenvalue of the matrix given by 1
K

K∑

k=1

H†(k)H(k), where K is the

number of sub-carriers. Eigenvalue decomposition is thus used in beamforming and

MIMO systems to compute the eigenvalues and corresponding eigenvectors of H†H.
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4.2 Eigenvalue Decomposition

A (non-zero) vector x of dimension N is an eigenvector of a square (N × N)

matrix A if and only if it satisfies the linear equation

Ax = λx

where λ is a scalar, termed the eigenvalue corresponding to x.

Let A be a square (N ×N) matrix with N linearly independent eigenvectors.

Then A can be factorized as:

A = VDV−1 (4.1)

V is the square (N × N) matrix whose i-th column is the eigenvector qi of

A and D is the diagonal matrix whose diagonal elements are the corresponding

eigenvalues, i.e., Dii = λi. This is known as the eigenvalue decomposition (EVD)

or eigendecomposition of the matrix A.

The matrix of interest in this case is a Hermitian matrix that characterizes

the channel between each pair of transmit and receive antennas. The matrix sizes

under consideration are 2×2, 4×4 and 8×8. In this method, we explore the Jacobi

method due to its efficiency with respect to small, dense matrices and its inherent

parallelism.
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4.3 The Jacobi idea

The Jacobi method diagonalizes the given matrix by systematically reducing

the norm of the off-diagonal elements of the matrix given by the quantity,

off(A) =

√√√√
n∑

i=0

n∑

j=1,j 6=i

a2
ij

This is achieved by performing a series of Jacobi Rotations (similar to the

Givens rotations) where each transformation (a Jacobi rotation) is just a plane

rotation designed to annihilate one of the off-diagonal matrix elements. Successive

transformations undo previously set zeros, but the off-diagonal elements nevertheless

get smaller and smaller, until the matrix is diagonal to machine precision. The

Jacobi rotation matrix is given by the following equation.

J(p, q, θ) =




p q

1 . . . 0 . . . 0 . . . 0

...
. . .

...
...

...

p 0 . . . v11 . . . v21 . . . 0

...
...

. . .
...

...

q 0 . . . v12 . . . v22 . . . 0

...
...

...
. . .

...

0 . . . 0 . . . 0 . . . 1




For a matrix




a b

b∗ c


 where a and c are positive real-valued, (v1, v2) can be

computed as shown in equation (4.2).
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Algorithm 1 Pseudocode for the Jacobi EVD

while offset(A) > ε do
for p = 1 to n− 1 do

for q = p + 1 to n do
Compute (v1, v2)
A = J(p, q, θ)T AJ(p, q, θ)
V = V J(p, q, θ)

end for
end for
Recalculate offset(A)

end while

v1 =




ejθq
1+ 1

|µ1|2

1√
1+|µ1|2


 v2 =




−ejθq
1+ 1

|µ2|2

1√
1+|µ2|2


 (4.2)

µ1 =
2√

δ2 + 4− δ
µ2 =

2√
δ2 + 4 + δ

(4.3)

δ =
a− c

|b| θ = tan−1

[
Im(b)

Re(b)

]
(4.4)

Every iteration results in off(A)2 = off(A)2 − 2a2
pq. In this sense, A moves

closer to the diagonal form with each Jacobi step. This algorithm overwrites A with

VTAV with V being orthogonal and A being increasingly diagonal.

4.4 Precision Analysis

4.4.1 Motivation for Precision Analysis

The goal is to conduct an initial exploration study of various bit precisions for

eigenvalue decomposition in order to provide a benchmark for system designers to

help decide on the internal precision of their system given signal and noise variances
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and required output SNR. The focus of the study is to obtain the minimum required

signal to noise ratio (SNR) in eigenvalue decomposition by reducing the internal

precision of the computation.

Due to the mathematically sensitive nature of the Jacobi EVD algorithm, the

need was identified for a more thorough analysis on the data precision at every step

of the algorithm. This naturally led to the representation of the algorithm as a fine-

grained data flow graph where each node represented a basic block of computation

(Sec. 4.5). We use DIF to model the dataflow of the Jacobi EVD and DICE as the

framework within which the precision analysis is carried out.

4.4.2 Functional Simulation in C

The Jacobi EVD was implemented in double precision, single precision and

pseudo floating point formats to analyze the performance of the algorithm as a

function of precision. Here the pseudo floating point format is a generalized float-

ing point format that we define, where any real number can be represented as

Mantissa× 2Exponent. The number of bits for the mantissa and exponent are given

by I and E respectively. By appropriately setting the values of I and E, the internal

bit precision of the numbers can be controlled. In this work, precisions of interest

are all combinations from within I = 16, 24, 31 and E = 6, 8, 10. Preliminary sim-

ulations test for the convergence of the Jacobi EVD for all precisions. The results

are documented in Table 4.1.

The double precision floating point implementation of the Jacobi EVD con-

verged for all required matrix sizes, and the implementations for all precisions con-
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Precision 2× 2 4× 4 8× 8

Double Converges Converges Converges

Single Converges Does not converge Does not converge

Pf (31,10) Converges Does not converge Does not converge

Pf (31,8) Converges Does not converge Does not converge

Pf (31,6) Converges Does not converge Does not converge

Pf (24,10) Converges Does not converge Does not converge

Pf (24,8) Converges Does not converge Does not converge

Pf (24,6) Converges Does not converge Does not converge

Pf (16,10) Converges Does not converge Does not converge

Pf (16,8) Converges Does not converge Does not converge

Pf (16,6) Converges Does not converge Does not converge

Table 4.1: Convergence of Jacobi EVD implementation for all precisions

verged for matrix size of 2×2. However, the overall results were well below expecta-

tions as the implementation did not converge for any precision configuration other

than double floating point for 4 × 4 and 8 × 8 matrices. This was indeed largely

unsatisfactory as some of the considered precisions offer large dynamic ranges and

fractional word lengths sufficient for most sensitive applications. This warranted a

much more detailed analysis of the required precision at every step of the algorithm.

4.5 Dataflow model of the Jacobi EVD

Following the convergence issues with the initial implementation, there arises

a need to identify the parts of the algorithm that leads to the non-convergence of

the implementation. An intuitive way to do this would be to cleverly partition the

algorithm into smaller computation nodes and represent the algorithm as a dataflow

graph. By doing appropriate analysis at every node on the data propagating through
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this graph, we can estimate the required precision at every node.

4.5.1 Related Work

Dataflow modeling has often been used in such precision analysis, most com-

monly in automatic floating to fixed point conversion of programs ([14], [15], [16]).

Some of these research works like [14], [17], [18] use fine-grained dataflow graphs

as an intermediate representation between the floating- and fixed-point programs.

In this intermediate representation, the dataflow graph has nodes representing the

operations and the variables as edges. Using this dataflow graph as the backbone,

several statistical and/or analytical methods are applied at every node to compute

and annotate the nodes with their respective dynamic ranges, binary point posi-

tions, and ultimately bit widths. We adopt some of these methods to analyze the

data set of the Jacobi EVD, and identify the computations in the algorithm that

require more precision.

4.5.2 Dataflow model

DIF has been used to model the dataflow graph for the Jacobi EVD. In con-

structing this graph, we identify the operations in the algorithm that are more

sensitive to precision and make them individual nodes in the graph. Such opera-

tions typically include square root, division etc. There are many such occurrences

in the Jacobi algorithm for eigenvalue computation. All the nodes are implemented

as actors within the functional DIF package.

An important point of consideration in constructing the dataflow graph is the
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presence of unbounded and bounded loops in the algorithm. Normally the graphs

can be unrolled for bounded loops. However, since the base graph structure remains

the same for all the iterations, we make use of functional DIF’s CFDF simulator

capabilities in simulating the graph behavior for the required number of iterations.

The dataflow graph for the Jacobi EVD for one iteration of the algorithm is shown

in Figure 4.1.

Only one iteration of the graph is required for a 2 × 2 matrix. Hence, the

graph in Figure 4.1 with (p, q) as (0, 1) is the dataflow graph for the 2 × 2 Jacobi

EVD. For 4× 4 and 8× 8 matrices, the graph in Figure 4.1 is iteratively simulated

24 and 140 times respectively, with each iteration having a different (p, q) index.

The output matrices of each iteration will be the input of the next iteration. DICE

is used to facilitate this configuration, by correspondingly programming the runme

file.

4.6 Dynamic Range Analysis

In our work, we concentrate on the analysis of the dynamic range of differ-

ent data variables. We extrapolate the information obtained from the computed

dynamic ranges to understand the precision required in both the integer and frac-

tional part of the data representation without directly calculating the wordlengths.

An analytical approach is employed where the dynamic range of a particular

output variable is expressed in terms of dynamic ranges of the inputs to that node.

In this method, dataflow modeling is useful for dynamic range analysis. This method

guarantees no overflow, but is a worst-case estimate thereby being more conservative.
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Figure 4.1: Dataflow graph for the 2x2 Jacobi EVD
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For our application, it is more suitable to adopt this approach so that all possible

cases are taken into account.

Interval Arithmetic theory [19] can be used to determine data dynamic range

in this method. Interval arithmetic is an arithmetic defined on sets of intervals,

rather than sets of real numbers. The dynamic range of each data is obtained

during the traversal of the application graph with the help of propagation rules

defined by interval arithmetic theory. Each operator or computation node has a

defined propagation rule. Table 4.2 enlists the interval computations for the basic

arithmetic operations most commonly used operations in the Jacobi EVD.

Operation Interval Computation

Addition [a, b] + [c, d] = [a + c, b + d]

Subtraction [a, b]− [c, d] = [a− d, b− c]

Multiplication [a, b]× [c, d] = [min(ac, ad, bc, bd),max(ac, ad, bc, bd)]

Division [a, b]÷ [c, d] = [min(a/c, a/d, b/c, b/d),max(a/c, a/d, b/c, b/d)],

0 /∈ [c, d]

Squaring [a, b]2 = [a2, b2], if a ≥ 0

[a, b]2 = [b2, a2], if b < 0

[a, b]2 = [0,max(a2, b2)] otherwise

Square root [a, b]1/2 = [
√

a,
√

b]

Table 4.2: Interval Arithmetic

4.6.1 Dynamic range simulation with functional DIF and DICE

A library of functional DIF actors are written corresponding to the nodes in

the application graph. All these actors have a single mode and are therefore SDF
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with constant production and consumption rates. They are tested through the

DICE unit testing framework. The application graph shown in Figure 4.1 is verified

for functional correctness using the CFDF simulator and sample test patterns with

appropriate correct-output.txt files.

For dynamic range analysis, the same application graph is used but a parallel

library of actors is created corresponding to each node. This time each actor calcu-

lates the dynamic range of the corresponding operation using interval arithmetic’s

propagation rules. All the actor properties remain the same in terms of their models

but the production and consumption rates double wherever applicable because for

each data variable, there are now two values - the minimum and maximum values

of the range.

The DICE unit testing framework is not restricted to unit testing or functional

verification alone, but is flexible to be used for any simulation-based application

exploration. For the dynamic range analysis, the range of values of the input matrix

is specified in a similar fashion as the input test patterns of a unit test by hooking

in File Readers and the final outputs from the V and D matrices are hooked into

File Writers. File Readers and File Writers are also functional DIF actors that

read and write input and output tokens respectively from text files.

The dynamic range is computed by each actor based on the dynamic ranges

of the inputs. For the functional verification of the whole application, outputs from

the sink nodes alone are required. For dynamic range analysis, outputs from all

intermediate nodes are required as well. To facilitate this, File Writers are hooked

into each computation node. Ultimately each node has an associated output file
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Data Format Number of bits Approx. Dynamic Range

Double precision I=53, E=11 −10308 to 10308

Single precision I=24, E=8 −1038 to 1038

Pseudo float I=31/24/16, E=10 −10154 to 10154

I=31/24/16, E=8 −1038 to 1038

I=31/24/16, E=6 −109 to 109

Table 4.3: Dynamic ranges for various data formats

consisting of the corresponding dynamic range from every iteration.

4.7 Results and Discussion

From the dynamic range simulation for input matrix of size 2×2, it is observed

that the results from the computations do not exceed 1010. From Table 4.3, it can

be inferred that the Jacobi EVD for a 2× 2 matrix should produce valid results for

all precisions under consideration except when E = 6 in the pseudo floating-point

representation. This is in agreement with the results obtained in Sec. 4.4.2.

However, for the 4× 4 matrix, Table 4.4 indicates multiple nodes with infinite

dynamic range. The first actors that correspond to the infinite range are recipmu1

and recipmu2 which calculate the dynamic range of a reciprocal operation on the

outputs from EVDmu12 and EVDmu22. Since the minimum possible value at

EVDmu12 and EVDmu22 is 0, the maximum value at recipmu1 and recipmu2 come

out to be ∞. EVDmu12 computes the dynamic range of the operation (
√

δ2 + 4−

δ)2. Mathematically speaking, this expression should always be greater than 0

because it a squaring operation and
√

δ2 + 4 6= δ. The fact that the minimum value
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Node Computation Dynamic Range

ComplexMag
√

a2 + b2 [1.49× 10−8, 4.78× 1014]

EVDdelta (a− b)/c [−4.65× 1022, 4.65× 1022]

EVDdelta2p4 a2 + 4 [4, 2.17× 1045]

sqrt
√

x [2, 4.65× 1022]

EVDmu12 (
√

δ2 + 4− δ)2 [0, 2.16× 1045]

EVDmu22 (
√

δ2 + 4 + δ)2 [0, 2.16× 1045]

Sqrtp1mu1
√

x + 1 [1, 4.65× 1022]

Sqrtp1mu2
√

x + 1 [1, 4.65× 1022]

ev-x1 1/x [2.15× 10−23, 1]

ev-x2 1/x [2.15× 10−23, 1]

recipmu1 1/x [0,∞]

recipmu2 1/x [0,∞]

recipy1
√

x + 1 [0,∞]

recipy2
√

x + 1 [0,∞]

ev-y1 1/x [0, 1]

ev-y2 1/x [0, 1]

negev-y2 −x [−1, 0]

mult1 a ∗ b [−1, 1]

mult2 a ∗ b [−1, 1]

mult3 a ∗ b [−1, 1]

mult4 a ∗ b [−1, 1]

Vupdate AB [−3.51× 106, 1.76× 106]

Dupdate1 AB [−1.04× 1015, 1.04× 1015]

Dupdate2 AB [−1.04× 1015, 1.04× 1015]

Table 4.4: Dynamic ranges for computations in 4× 4 Jacobi EVD
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at this node is 0, when it should not be so is the reason why further operations in

the application become ∞ thereby leading to many incorrect computations and the

loss of convergence. On closely observing the flow of the data in this part of the

graph and the respective dynamic ranges, it can be seen that this happens when δ

assumes very high values. These operations correspond to equations (4.3) and (4.4)

which are restated here for convenience. As the number of iterations increase in the

Jacobi EVD algorithm, the off-diagonal elements (parameter b in the equation for

δ) tend to 0. Therefore, as the number of iterations increases, δ →∞. As δ →∞,

√
δ2 + 4 ≈ δ and

√
δ2 + 4− δ → 0). In case of insufficient precision, this difference

becomes exactly 0 leading to incorrect computations further on. The same happens

when δ < 0 with EVDmu22 which computes (
√

δ2 + 4 + δ)2

µ1 =
2√

δ2 + 4− δ
µ2 =

2√
δ2 + 4 + δ

(4.5)

δ =
a− c

|b| θ = tan−1

[
Im(b)

Re(b)

]
(4.6)

Using our application exploration framework and adopting basic principles of

precision analysis, we have identified the source of precision loss in the Jacobi eigen-

value decomposition. By identifying solutions to this problem, and verifying them,

we can provide useful feedback to the low-level designers regarding the implemen-

tation.

We aim to reformulate the equation for µ1 in (4.5) in such a way as to avoid

the difference operation. Note that when δ > 0, µ2 can be computed without

any precision loss due to the presence of the addition operation. Obviously, if

reformulating the expression for µ1,2 is feasible, it would be a more foolproof solution
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to confirm the convergence of the algorithm.

On close inspection of the equations in (4.5), it can be seen that µ1 can be

expressed in terms of µ2 thereby avoiding the difference operation.

µ1µ2 =

(
2√

δ2 + 4− δ

)(
2√

δ2 + 4 + δ

)
=

4

(
√

δ2 + 4)2 − δ2
= 1

µ1 =
1

µ2

=

√
δ2 + 4 + δ

2

This theoretically eliminates the root of the precision problem, and is useful

feedback to the algorithm developers. In order to verify this new formulation, the

actors for computing the dynamic range of µ1 and µ2 were accordingly rewritten and

the dynamic range simulation with functional DIF was repeated. The new ranges

obtained 4.5 are all within [−1046, 1046] and can thus be implemented with pseudo

floating point with at least E = 10. However, since this analysis is conservative,

it may be possible to implement this algorithm even with E = 8. We confirm this

with C simulation.

This analysis can also be verified with the C-based implementation by rewrit-

ing the code segment corresponding to µ1,2’s computation. The new implementation

converged for all the precisions under consideration and produced valid results for all

configurations with E ≥ 8. The SNRs were expectedly higher for higher precisions,

but in all cases were above the minimum required SNR of 50 dB. Thus the minimum

required internal precision for computation for the Jacobi eigenvalue decompositon

among the considered precisions is I = 16, E = 8.

By using DIF to model the eigenvalue decompositon and functional DIF to

prototype the dynamic range analysis of this application in the DICE framework, we
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Node Computation Dynamic Range

ComplexMag
√

a2 + b2 [1.49× 10−8, 4.78× 1014]

EVDdelta (a− b)/c [−4.65× 1022, 4.65× 1022]

EVDdelta2p4 a2 + 4 [4, 2.16× 1045]

sqrt
√

x [2, 4.65× 1022]

EVDmu12 (
√

δ2 + 4 + δ)2 [10−45, 2.16× 1045]

Sqrtp1mu1
√

x + 1 [1, 4.65× 1022]

ev-x1 1/x [2.15× 10−23, 1]

ev-x2 1/x [2.15× 10−23, 1]

recipmu1 1/x [4.6× 10−46, 10−45]

recipy1
√

x + 1 [1, 4.65× 1022]

ev-y1 1/x [2.15× 10−23, 1]

negev-y2 −x [−1,−2.15× 10−23]

ev-y2 1/x [2.15× 10−23, 1]

mult1 a ∗ b [−1, 1]

mult2 a ∗ b [−1, 1]

mult3 a ∗ b [−1, 1]

mult4 a ∗ b [−1, 1]

Vupdate AB [−3.51× 106, 1.76× 106]

Dupdate1 AB [−1.04× 1015, 1.04× 1015]

Dupdate2 AB [−1.04× 1015, 1.04× 1015]

Table 4.5: Dynamic ranges 4× 4 Jacobi EVD with reformulation

have demonstrated how dataflow modeling and DICE synergistically facilitate high

level application exploration. DICE’s highly flexible and reconfigurable framework

enables it to be used in various stages of application development and is especially

well-suited in model-based or dataflow based implementations.
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Chapter 5

Conclusion

In this work, we proposed enhancements to existing design flows that utilize

model-based design to extract dataflow behavior and to verify cross-platform cor-

rectness of individual actors. We introduced the DSPCAD Integrative Command

Line Environment (DICE) as a realization of managing these enhancements. DICE

enjoys a high level of synergy with Dataflow Interchange Format (DIF), our model-

based development environment, in high level application exploration and in the

seamless integration of testing with design.

We demonstrated this with an exploration study into the required precision

of computations in the Jacobi Eigenvalue Decomposition (EVD). We modeled the

application graph and the precision analysis with DIF and functional DIF and exe-

cuted the entire analysis by slightly reconfiguring the DICE unit testing framework.

We were able to analyze the required precisions at different nodes in the application

graph and hence identify the nodes that required higher precision than available. By

reformulating the mathematical expressions for these operations, we circumvented

this problem and provided feedback to the algorithm developers. This case study is a

demonstration of the use of dataflow modeling in early stage application exploration

and the use of DICE in the overall design flow.
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