MASTER THESIS

COMPARISON OF U.S. AND AUSTRIAN BUILDING STANDARDS FOR A MULTI-STORY TIMBER CONSTRUCTION BUILDING

FH JOANNEUM Gesellschaft mbH University of Applied Sciences Construction Management and Engineering

Submission:

CHRISTIAN KASPER, BSc Feldanger 8 A-4523 Neuzeug

Supervision:

Dipl. Ing. Dr. techn. Pius Wörle FH Joanneum Graz, Austria

Prof. Barry Jones PhD, FASCE, FCIOB California Polytechnics State University, San Luis Obispo, California

Graz, 28th February 2011

Christian Kasper, BSc

DECLARATION

I declare that this paper is my own work and was written without literature other than the sources indicated in the bibliography. Information used from the published or unpublished work of others has been acknowledged in the text and has been explicitly referred to in the given list of references. This paper has not been submitted in any form for another degree or diploma at any university or other institute of tertiary education.

Christian Kasper

Graz, 28th February 2011

ACKNOWLEDGEMENT

This text would not have been possible without the help of many people. First of all I would like to thank my supervisor DI Dr. Pius Wörle who provided me with the topic of the present Master Thesis and guided me towards the right direction in terms of finding the most interesting spheres to focus on. Furthermore I would like to thank my external supervisor Professor Barry Jones, who made it possible for me to do my research in California by offering a position as a Visiting Scholar at the California Polytechnics State University. He also initiated for me to have my own office on Campus with all the important facilities needed for writing such a paper. Of course I also want to thank Mr. Sämi Behnam for letting me be so flexible about taking classes in advance of my time abroad, which was decisive to become accepted at CalPoly. Furthermore I would like to thank Mike Montoya for providing information about the LEED system, Michael Parolini who helped finding a reference project in San Luis Obispo and Steve Puglisi who agreed on sending me architectural data of his project 'Campus Point'.

I also owe very special thanks to my parents, who guided me through life, let me decide about my future plans and provided the best education to fulfill my career aspiration. My thanks also go to my sister Eva, who with her great amount of diligence to reach her goals, has been a role model for me from back when we were kids until today.

Lastly, I wish to express my gratitude towards my girlfriend Michi, who was always on my side as my partner and best friend and chose to spend more than four months in a foreign country to support me in good and bad times. I am looking forward to building every step of our future together.

Thank you very much!

ABSTRACT

The trend of "green building" is present in industrialized countries throughout the world. Yet, the standards which define a building to be "green" are quite different from country to country and even from state to state. This Master Thesis compares the standards of a multi-story, wooden constructed building in California with those of Austria focusing on building physics and statics.

For comparative reasons the chosen reference project in San Luis Obispo / California was fictitiously built in Austrian climate and calculated according to the Energy Certificate. The part of building physics includes the creation of an energy pass based on thermo technical calculations. The difficulty lies in the comparison of the holistic systems of the mandatory Austrian Energy Certificate and the Title 24 of the California Building Code. Further steps also include a comparison with the LEED for Homes rating system and an outlook about the quality of the Energy Certificate as a prerequisite for a LEED ranking.

The chapter of statics describes the differences within the static calculations by using the relevant building codes and standards in both regions. The selected house in California is being calculated by reference to the "Eurocode" which is applicable in Austria to reveal major distinctions. This contains preliminary structural analysis of the overall concept as well as detailed calculations concerning wind and earthquake forces.

Keywords: structural analysis, wind, seismic, energy efficiency, Eurocode, ASCE

KURZFASSUNG

Der Trend des "grünen Bauens" ist derzeit in der gesamten westlichen Welt präsent und befindet sich gerade in den letzten Jahren auf der Überholspur am Highway der Bautrends. Jedoch unterscheiden sich die definierenden Richtlinien, die ein Gebäude als "grün" einstufen sehr stark von Land zu Land und sogar von Bundesland zu Bundesland. Diese Master Thesis präsentiert einen Normenvergleich bezogen auf einen mehrgeschossigen Holzbau in der typischen platform frame Bauweise in Kalifornien verglichen mit dem Normenwerk in Österreich, wobei die Themen Bauphysik und Statik in Betracht gezogen wurden.

Aus Gründen der Vergleichbarkeit wurde für das in San Luis Obispo / Kalifornien ausgewählte Referenzprojekt fiktiv ein österreichischer Standort angenommen und danach der Energieausweis erstellt. Der bauphysikalische Teil dieser Master Thesis enthält die Erstellung eines Energieausweises laut OIB Richtlinie 6 sowie einen Vergleich mit den kalifornischen Standards. Die Schwierigkeit dabei lag an der Vergleichbarkeit des in Österreich obligatorischen Energieausweises mit der Normenuntergruppe Title 24 des California Building Codes (CBC). Eine weitere Vertiefung dieses Themas im Zuge der vorliegenden Arbeit illustriert auch eine Gegenüberstellung mit dem international immer mehr an Bedeutung gewinnenden LEED Zertifizierungssystem sowie die Möglichkeit den ohnedies vorgeschriebenen Energieausweis als Voraussetzung dafür zu verwenden.

Das Kapitel der Statik schildert die Unterschiede in den statischen Berechnungen anhand der jeweils relevanten Normenwerke in den beiden Vergleichsregionen. So wurde das ausgewählte Referenzprojekt in Kalifornien nach dem in Österreich zur Anwendung kommendem Normenwerk der Eurocodes berechnet um grundlegende Unterschiede darzulegen. Diese Berechnungen beinhalten neben einer allgemeinen Vorstatik des Gesamtkonzeptes auch Detailkalkulationen wie einer Windkraft- sowie Erdbebenberechnung.

Stichworte: Statische Berechnung, Wind, Erdbeben, Energieeffizienz, Eurocode, ASCE

CONTENT

D	DECLARATIONI								
A	ACKNOWLEDGEMENT II								
AI	BSTI	RACT		III					
K	JRZI	FASSUN	IG	IV					
С	ONT	ENT		V					
1	ΙΝΤ	BODUC	TION	1					
•	1.1		y of timber construction						
	1.2		ruction methods						
		1.2.1	Balloon frame construction						
		1.2.2	Platform frame construction						
	1.3	Buildi	ng codes						
		1.3.1	Development						
2	PRE	ELIMINA	RY DECLARATIONS	6					
3	DES	SCRIPTI	ON OF THE REFERENCE PROJECT	7					
4	STF	RUCTUR	AL ANALYSIS	8					
	4.1	Basis	of Design	9					
		4.1.1	Total Loads	9					
		4.1.2	Floor weights	10					
		4.1.3	Project Specific Load Combinations	11					
			4.1.3.1 Basic Load Combinations	.11					
	4.2	Prelin	ninary structural analysis	12					
		4.2.1	Seismic Analysis according to ASCE 7-05; Section 6.5.3	12					
			4.2.1.1 Calculation procedure	.13					
		4.2.2	Seismic analysis according to EC-8	14					
		4.2.3	Wind Analysis according to ASCE 7-05	.15					
		4.2.4	Wind Analysis according to EC1	.17					
	4.3	Detail	calculation	18					
		4.3.1	Vibration behavior of residential ceiling (ÖNORM EN 1995-1-1)	18					
5	DIS	CUSSIO	N – STRUCTURAL ANALYSIS	20					
6	BUI	ILDING I	PHYSICS	21					
	6.1	Decis	ive U.S. Energy Data	21					
	6.2	Decis	ive Austrian Energy Data	23					
	6.3 Conclusion24								

	6.4	LEED)	24
		6.4.1	LEED Committees	25
		6.4.2	Contents of the LEED certification	25
		6.4.3	USGBC – U.S. Green Building Council	26
			6.4.3.1 USGBC guiding principles	27
		6.4.4	Advantages of the LEED certification	28
		6.4.5	Weaknesses and Problems of LEED	28
	6.5	CalGr	reen	30
	6.6	Title 2	24 (California Energy Code 2010)	30
		6.6.1	Low-rise residential buildings	31
			6.6.1.1 Mandatory Requirements for Fenestration Products and Doors (Section 116)	
			6.6.1.2 Mandatory Requirements for Joints and Other Openings117) 32	(Section
			6.6.1.3 Mandatory Requirements for Insulations and Roofing Pro (Section 118)	
			6.6.1.4 Mandatory Features and Devices (Section 150)	32
			6.6.1.5 Performance and Prescriptive Compliance Approaches (151) 33	Section
		6.6.2	High-rise residential buildings	34
	6.7	OIB G	Guideline 6 – Energy saving and thermal insulation	35
		6.7.1	Terminology	35
		6.7.2	Objective and composition	
		6.7.3	Residential Classification	37
			6.7.3.1 Requirements for the heating demand	38
			6.7.3.2 Controlled ventilation with heat recovery	38
			6.7.3.3 Requirements for the thermal quality of the building enve	lope38
			6.7.3.4 Requirements for the final energy demand of new reside buildings	
			6.7.3.5 Requirements for heat transferring components	39
			6.7.3.6 Special requirements for heat transferring components	39
	6.8	Energ	gy certificate	40
7	DIS	CUSSIO	DN – ENERGY EFFICIENCY	41
	7.1	Comp	parison with CEC – Title 24	41
	7.2	Comp	parison with LEED	43
		7.2.1	HERS calculation	46
8	Cor	nclusion	۱	49
9	AP	PENDIX		50
	9.1	Apper	ndix A	50
		9.1.1	Occupancy Groups	51

9.2	Apper	ndix B	.52
	9.2.1	LEED rating system	.52
	9.2.2	Slab insulation requirements for heated slab-on-grade	.55
	9.2.3	Prescriptive envelope criteria for high-rise residential buildings	.55
	9.2.4	Numerical HERS – LEED conversion table	.56
	9.2.5	U.S. Climate zones	.57
	9.2.6	Energy Certificate (Reference object: Campus Point)	.58
	9.2.7	Project Documentation – "CAMPUS POINT"	.61
	9.2.8	Determination of the building's geometry (Units 1-4)	.64
	9.2.9	Window types	.65
	9.2.10	Facade area	.66
	9.2.11	Determination of building physics	.67
	9.2.12	Transmission conductance (LT)	.67
	9.2.13	Conductance addition due to 2-dimensional thermal bridges $(L_{\psi})\ldots\ldots\ldots$.68
	9.2.14	Calculation of the ventilation conductance (Lv)	.68
	9.2.15	Calculation of the total heat loss Table A.1; ÖN B 8110-5	.69
	9.2.16	Calculation of the monthly total heat loss (Q _i):	.69
	9.2.17	Calculation of interior heat gain (Q _i)	.71
	9.2.18	Calculation of solar heat gain (Qs)	.71
	9.2.19	Determination of monthly total heat gain (Qg,h)	.77
	9.2.20	Balancing and Calculation of the heating requirement	.78
	9.2.21	Balancing: Calculation of the monthly and annual heating requirement:	.80
	9.2.22	Determination of building-physical energy indexes	.81
9.3	Modifi	cation of fenestration products according to OIB-6	.81
9.4	HERS	calculation (performed with EnergyGauge Software)	.82
10 DIR	ECTORI	ES	.89
		figures	
		tables	
		viations	
		ences	
		e resources	
10.0	6 Used s	software	.98

1 INTRODUCTION

To illustrate the most widely used construction methods in the Californian residential timber construction sector, this chapter gives a short overview about the history of timber construction and the two most prevalent framing methods called platform- and balloon framing. To understand the in the following chapters immersed context of building codes and regulations within the United States of America and consequently California also a description of that topic is given.

1.1 History of timber construction

Early wood frame construction in the colonies of the United States was realized by creating a heavy timber frame in combination with non load-bearing infill walls. The connections of the main structural posts and beams were executed as mortise and tenon joints which required a lot of manpower to be accomplished. The precursor of the in California nowadays prevalent building system for residential construction was developed in the early 19th century. The first balloon-frame buildings were completed in 1832 and 1833. The first building ever to be erected using this construction method was a storehouse in Chicaco, built by George Washington Snow. One year later Saint Mary's Catholic Church constructed by Augustine Taylor was finished.¹ The term balloon frame can be traced back to a sarcastic expression of the carpenters participating in the construction process of the Church who were certain, that this new building technology would not be more steady than a balloon and that it would be blown away with the first moderate breeze. Both the building, which withstood all stresses and strains, as well as the notation of the framing method persisted over time. Although lumber was sufficiently available in those times it was hard to find skilled labor to erect heavy timber structures. Due to lower costs for the erection of a balloon frame building compared to a heavy timber structure and the simplicity of this construction method, it was soon the predominant building technique in the United States of America. Balloon-frame constructed three-story apartment buildings, so called triple-deckers, were typical apartment buildings in working – class districts during the 19th and early 20th century. Only when in the 1950s the even lighter platform frame method was developed the balloon frame was replaced and resurrected years later within the modern steel construction.²

¹ Spence, William P. / Kultermann, Eva: Construction Materials, Methods and Techniques – Building for a sustainable Future. New York/ USA: Delmar Cengage Learning, 3rd Edition, 2006

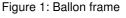
² Vogt, Floyd: Carpentry. New York/ USA: Thomson Delmar Learning, 4th Edition, 2006

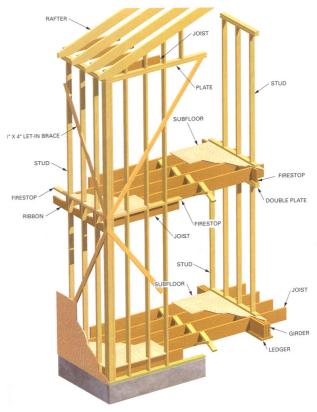
1.2 Construction methods

1.2.1 Balloon frame construction

The balloon frame method utilizes long vertical framing members running uninterrupted from the sill of the first floor all the way to the top plate of the uppermost floor with additional floor constructions nailed to them in between. Due to the low shrinkage of wood in the longitudinal direction and the decoupling of horizontal load-bearing elements, the settling can be reduced to a minimum thanks to a more direct load path in to the foundation. To avoid unequal settlements throughout the building, the load transfer takes place directly between the vertical studs and the girders.

The disadvantages of balloon framing are:


- Due to the continuous studs a path for fire is created to travel from floor to floor. This danger can be eliminated by the installation of so called firestops.


- Due to a lack of working platforms in comparison to a platform frame structure there is a need of scaffolding during the construction process.
- Variable shrinkage values within the overall structure can lead to a down-slope of floor units in large buildings caused by differential settlements of perimeter- and center walls.
- The demand for long framing components

This type of construction has been replaced by the platform frame in the last 60 years but a remarkable number of objects still exist.³

³ Cf. Vogt, Floyd (2006)

The platform frame is the most commonly used method within the North American residential construction. This type of construction uses the different sections when proceeding during a project as a new base for the next one. For example, the walls of the first floor are raised on top of the floor frame. On top of those walls the second floor level is built and the cycle begins again. This way, each floor can be used as a flat working plane and therefore is easier to erect than a balloon frame. A widely used practice is to assemble the wall sections on the floor and tilt them into the right position where they will be fixed.⁴

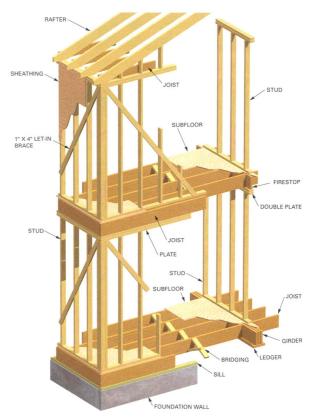


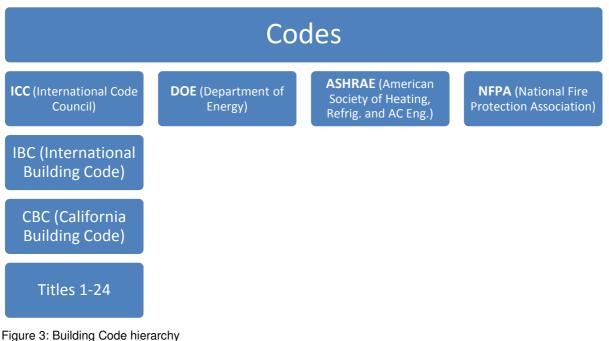
Figure 2: Platform frame

A considerable disadvantage of the platform frame is the unfavorable direction of lumber shrinkage. Since the shrinkage values of wood are most decisive in width and thickness, the horizontal load-bearing frame parts are a crucial component for a relatively large amount of settling. However, due to the equal amount of load-bearing horizontal members the settlement is almost the same throughout a building and can be reduced by only using conditioned lumber with the adequate moisture content.⁵

⁴ Cf. Vogt, Floyd (2006)

⁵ Cf. Spence, William P.: Construction Materials, Methods and Techniques. New York / USA: Thomson Delmar Learning, 2nd Edition, 2006

1.3 **Building codes**


"Cities and counties across the United States typically adopt a building code to ensure public welfare and safety. Until recently, most local governments used one of the three regional model codes as the basic framework for their local building code. The three major model codes are the

- 1. Uniform Building Code [...]
- 2. The BOCA National Building Code [...]
- 3. Standard Building Code [...]"⁶

1.3.1 Development

In general, the distribution of those Codes was divided into three parts. The Uniform Building Code was used in the western part of the United States while the BOCA National Building Code was prevalent in the north and the Standard Building Code was the one to refer to in the south. These Codes were revised and updated on a 3-year cycle.

In the 1990s the code development transcended beyond the regional boundaries and a code model that encompassed all regions and states in the United States was created by the International Code Council (ICC). The ICC itself was originated in 1994 to develop a single set of comprehensive and coordinated national model construction codes without regional limitations.

⁶ Breyer, Donald E. et al.: Design of Wood Structures – ASD. 5th Edition, New York et al.: MacGraw-Hill 2003

Within the International Code Council, three representing organizations exist. First of all, the the Building Officials and Code Administrators International, Inc. (BOCA) which is responsible for maintaining the National Building Code. Secondly, the International Conference of Building Officials (ICBO) which monitors the Uniform Building Code. And finally, the Southern Building Code Congress International, Inc. (SBCCI) which administers the Standard Building Code.

The first edition of the International Building Code (IBC) was published in 2000. Since then, most states have adopted all or part of the IBC at either the state or local level.

The standard Minimum Design Loads for Buildings and Other Structures [...] is commonly referred to as ASCE 7-02 or simply ASCE 7. It serves as the basics for some of the loading criteria in the IBC and the regional model codes. The IBC directly references ASCE 7 [...].⁷

⁷ Breyer, Donald E. et al (2003)

2 PRELIMINARY DECLARATIONS

A sensitive subject of the present Master Thesis deals with notations of values with decimal places. While in the United States of America the decimal point is actually written as a dot, a comma is used in this particular paper which is based on the versions of computer programs used for performed calculations. It should be noted, that both European and American software was used to compute decisive data in order to compare the criteria for building envelopes in those two regions. As a basic rule the reader may note, that only commas are used for indicating a decimal point. (Exception: Chapter 7.2)

Secondly, the conversion of imperial to SI units was a tender subject of this Master Thesis. To facilitate traceability of calculations performed in this paper, a conversion table is show below.

Unit	Size	Dimension FPS		Size	Dimension SI
Length	1	inch	=	2,54	cm
	1	foot	=	30,48	cm
Area	1	in²	=	6,45	cm²
	1	ft²	=	0,0929	m²
Volume	1	in³	=	16,387	cm³
	1	ft³	=	28,317	dm³
Force	1	lbf = lb(force)	=	4,448	Ν
	1	kip (=kilo pound)	=	444,8	Ν
Mass	1	lb/ft³	=	16,019	kg/m³
Pressure	1	lbf/in² (=psi)	=	6894,76	N/m² (=Pa)
	1	ksi (=kip/in²)	=	6894,76	kN/m² (kPa)
	1	lbf/ft ² (=psf)	=	47,88	N/m² (=Pa)
Energy	1	BTU	=	1,05506	kJ
Power	1	BTU/h	=	0,2931	W
Enthalpy	1	BTU/ft ³	=	37,26	kJ/m³
Heat	1	BTU/ft ²	=	11,357	kJ/m³
Temperature		5/9°F + 255,38	=		°К
		5/9°F - 17,77	=		°C

Table 1: Conversion table

3 DESCRIPTION OF THE REFERENCE PROJECT

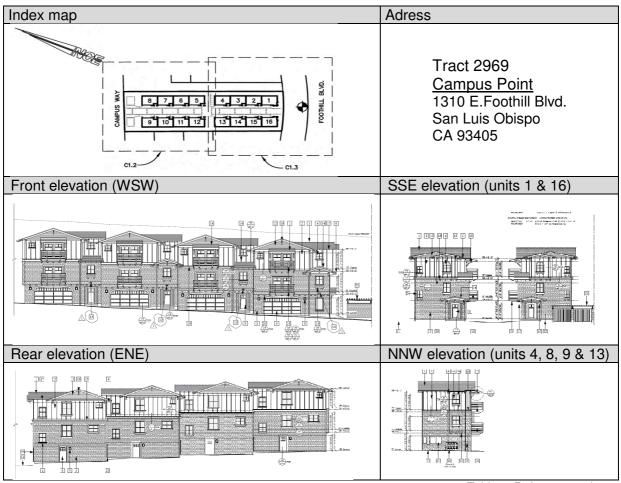


Table 2: Reference project

At the time this Master Thesis was being written, the reference project "Campus Point" was submitted and approved by the local building authorities in San Luis Obispo, California. The responsible architect agreed to share sets of plans and thermal calculations with the author for the sole use of the research topic the present paper deals with. For the two chapters dealing with structural analysis and building physics, analyses and calculations were conducted on one single unit only, which was established due to the similarity of the units within the whole complex.

4 STRUCTURAL ANALYSIS

The following structural analysis is provided to the author's best knowledge and awareness, using professional approaches with diligence and is subject to error and amendment. The table below shows the relevant codes which were used for all structural analyses conducted within this Master Thesis:

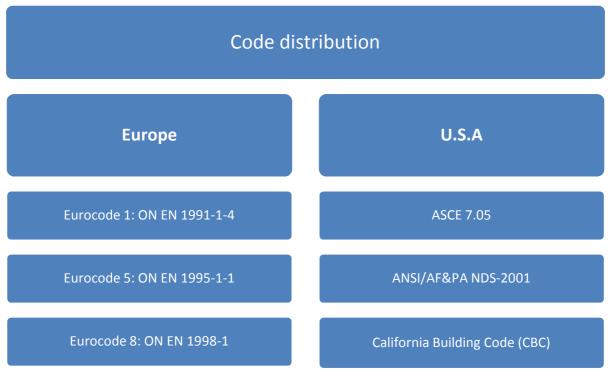


Table 3: Code distribution

The tables revealed on the next two pages show the total loads that have an effect on the building.

4.1 Basis of Design

4.1.1 Total Loads

IMPERIAL UNITS	Roof	2nd/3rd floor	ext. Wall	int. Wall	deck/balcony	cantilevered
Item / Dead Loads	[psf]	[psf]	[psf]	[psf]	[psf]	[psf]
Roofing	6	0	0	0	0	0
Trusses/Rafters	3	0	0	0	0	0
Plywood/Decking	2	3	2	0	3	3
Gypsum board	3	3	2	4	0	0
Insulation	1	1	1	1	0	0
Mechanical/Electrical	1	1	1	1	0	0
Fire sprinklers	1	1	0	0	0	0
Flooring	0	4	0	0	0	0
Floor & ceiling joists	0	3	0	0	6	6
Studs	0	0	2	2	0	0
Decking surface	0	0	0	0	6	6
Exterior surface	0	0	6	0	0	0
Miscallaneous	1	2	0	1	1	1
Total Dead Load	17	15	12	7	15	15
Roof Slope	18	0	0	0	0	0
Live load (red. R2=1)	20	40	0	0	40	60
Total Load	38	55	12	7	55	75

Table 4: Dead Loads - Imperial units

<u>SI UNITS</u>	Roof	2nd/3rd floor	ext. Wall	int. Wall	deck/balcony	cantilevered
Item / Dead Loads	[kN/m²]	[kN/m²]	[kN/m²]	[kN/m²]	[kN/m²]	[kN/m²]
Roofing	0,29					
Trusses/Rafters	0,14					
Plywood/Decking	0,10	0,12	0,07		0,12	0,12
Gypsum board	0,12	0,12	0,10	0,19		
Insulation	0,02	0,02	0,02	0,02		
Mechanical/Electrical	0,05	0,02	0,02	0,02		
Fire sprinklers	0,05	0,05				
Flooring		0,19				
Floor & ceiling joists		0,12			0,26	0,26
Studs			0,07	0,07		
Decking surface					0,29	0,29
Exterior surface			0,29			
Miscallaneous	0,05	0,07		0,02	0,05	0,05
Total Dead Load	0,81	0,72	0,57	0,34	0,72	0,72
Roof Slope	0,86					
Live load (red. R2=1)	0,96	1,92			1,92	2,87
Total Load	1,82	2,63	0,57	0,34	2,63	3,59

Table 5: Dead Loads

4.1.2 Floor weights

Lower F	loor Diaphragm W	eight		
Area	Load [psf]	length [ft]	width [ft]	Weight [kip]
А	15,00	23,50	22,50	7931,25
	15,00	10,50	6,50	1023,75
	12,00	8,25	47,00	4653,00
	7,00	4,25	15,00	446,25
				14,05 kN
В	15,00	8,50	15,00	1912,50
	12,00	8,25	25,00	2475,00
	7,00	8,25	8,00	462,00
				4,85 kN
			Sum _{A,B} =	18,90 kN
			7,5	84,12 kN
Middle	Floor Diaphragm V	Veight		,
Area	Load [psf]	length [ft]	width [ft]	Weight [kip]
С	15,00	23,50	22,50	7931,25
	15,00	10,50	5,00	787,50
	12,00	8,25	47,00	4653,00
	7,00	8,25	22,00	1270,50
	·	·	·	14,64
D	15,00	8,50	12,00	1530,00
	18,00	11,50	6,50	1345,50
	12,00	8,25	16,00	1584,00
	7,00	8,25	8,00	462,00
				4,92 kN
			Sum _{c,D} =	19,56 kN
				87,06 kN
Upper F	loor Diaphragm W	/eight		
Area	Load [psf]	length [ft]	width [ft]	Weight [kip]
E	18,00	24,00	25,50	11016,00
	12,00	4,00	47,00	2256,00
	7,00	4,00	30,00	840,00
				14,11 kN
F	18,00	9,00	23,50	3807,00
	12,00	4,00	16,00	768,00
	7,00	4,00	8,00	224,00
				4,80 kN
			Sum _{E,F} =	18,91 kN
				84,15 kN
				Table 6: Floor weights

Table 6: Floor weights

For a description of the areas A to F, see table 28.

4.1.3 **Project Specific Load Combinations**

4.1.3.1 Basic Load Combinations

- a) D + F
- b) D + H + F + L + T
- c) $D + H + F + (L_r \text{ or } S \text{ or } R)$
- d) $D + H + F + 0.75^{*}(L+T) + 0.75^{*}(L_{r} \text{ or } S \text{ or } R)$
- e) 1,13*D + H + F +0,7*E
- f) D + H + F + W
- g) $1,13^{*}D + H + F + 0,75^{*}(0,7^{*}E) + 0,75^{*}L + 0,75^{*}(L_{r} \text{ or } S \text{ or } R)$
- h) $D + H + F + 0.75*W + 0.75*L + 0.75*(L_r \text{ or } S \text{ or } R)$
- i) 0,6*D + W + H
- j) 0,47*D + 0,7*E + H

Where:

- D dead load
- E earthquake load
- F load due to fluids with well-defined pressures and maximum heights
- H load due to lateral earth pressure, ground water pressure, or pressure of bulk materials
- L live load
- L_r roof live Load
- R rain load
- S snow load
- T self-straining force
- W wind load

Because of the geographical location of the reference project, and eliminating factors referring to the building category, not all of the above mentioned load combinations will be taken into consideration but are still shown due to reasons of completeness.

4.2 Preliminary structural analysis

4.2.1 Seismic Analysis according to ASCE 7-05; Section 6.5.3

Site Location: 1310-1318 Foothill Blvd., Sar CA	n Luis Obispo,	Source
Longitude	120,66° E	http://google.maps.com
Latitude	35,3° N	http://google.maps.com
Spectral Response Acceleration:	a _g	Source
SS [Short period (0,2 sec)]:	1,276 m/s²	http://earthquake.usgs.gov/research/hazm
S1 [1 sec Period]:	0,477 m/s²	aps/design/
Site Soil Classification: SD - Stiff soil profile D	[-]	Source
Design Spectral Response Acceleration (5% Damped):		
Short Period: SDS = (2/3)*(Fa)*(SS)		
Fa	1,00	CBC Table 1613.5.3(1)
SDS	0,85	
1 Sec. Period: SD1 = (2/3)*(Fv)*(S1)		
Fv	1,32	CBC Table 1613.5.3(2)
SD1	0,42	
Occupancy Category: II		Source
Seismic Design Category (SDC):		CBC Table 1604.5
- Based on Short Period Response	_	
Acceleration:	D	CBC Table 1613.5.6(1)
- Based on 1 Sec. Period Response Acceleration:	D	CBC Table 1613.5.6(2)
Structural System:		Source
North - South		
- Bearing Wall Systems		
- Light-framed walls with structural panels	: 13	
- R =	6,5	
- Ωο =	2,5	
- Cd =	4	
East - West		ASCE 7-05 Table 12.2-1
- Bearing Wall Systems		
- Light-framed walls with structural panels	: 13	
- R =	6,5	
- Ωο =	2,5	
- Cd =		
Diaphragms :	Flexible	Source
Importance Factor (I):	1	ASCE 7-05 Table 11.5-1
Building height (h _n):	35 ft	

Building Period:		
All other structural systems		ASCE 7-05 Table 12.8-2
$T_a = Ct^* h_n^x$		
Ct	0,02	ASCE 7-05 Table 12.8-2
x	0,75	ASCE 7-05 Table 12.8-2
Ta	0,29 sec.	
Redundancy Factor:		Source
ρ =	1,3	ASCE 7-05; 12.3.4.2
Response Spectra:		Source
$T_s = SD_1/SDS =$	0,493	ASCE 7-05; 11.4.5
$T_0 = 0,2*TS =$	0,099	
$T_a > T_0 = 0,29 > 0,099$	o.k.	
T _a < T _S = 0,29 < 0,493	o.k.	
> therefore only ASCE Eq. 12.8-2 applies		
Seismic Response Coefficient:		Source
Maximum Considered Earthquake (MCE)		
used:		ASCE 7-05; 11.4.6
$V = C_s^* \omega_d$		ASCE 7-05; Eq. 12.8-1
$C_s = (SDS^*\rho)/(R/I)$		ASCE 7-05; Eq. 12.8-2
V _{north-south} =	0,179 *ω _d	
V _{east-west} =	0,179 *ω _d	
$\omega_d =$	10,25 kip	
$\omega_{d,DL}$ =	45,61 kN	
$\omega_{d,tot}$ =	75,92 kN	T +

Table 7: Seismic analysis ASCE 7-05

4.2.1.1 Calculation procedure

- a) Definition of site location according to geographical data.
- b) Determination of spectral response acceleration in defined area.
- c) Determination of the site soil classification depending on an expertise.
- d) Calculation of site specific values SDS and SD1 according to CBC tables.
- e) Determination of seismic design categories according to CBC tables.
- f) Determination of the structural coefficients for both building axes:
 - R..... Response modification coefficient
 - Ω_{o} System overstrength factor
 - C_d Deflection amplification factor
- g) Determination of the importance factor (I) in coordination with ASCE 7-05.
- h) Building height according to set of plans provided by the responsible architect.
- i) Determination of values of approximate period parameters C_t and x.
- j) Determination of the redundancy factor in coordination with ASCE 7-05.
- k) Calculation of the response spectra and synchronization with the applicable equation.
- Calculation of the seismic response coefficient and maximum considered earthquake force.

4.2.2 Seismic analysis according to EC-8

Roof	Weight [kN]	m²	kN/m²	Weight [kN]	Area [m ²]	Total weight [kN]
Construction	55,85	64,94	0,96	62,34	64,94	
		psi2:	0,30			
added up:	55,85	psiE:	1,00	18,70 kN		74,55 kN
3rd floor		m²	kN/m²	Weight [kN]	Area [m²]	Total weight [kN]
Construction	84,15	64,94	1,92	124,68	64,94	
		psi2:	0,30			
added up:	140,00	psiE:	1,00	37,41 kN		177,40 kN
2nd floor		m²	kN/m²	Weight [kN]	Area [m ²]	Total weight [kN]
Construction	87,06	67,66	1,92	129,91	67,66	
		psi2:	0,30			
added up:	227,06	psiE:	1,00	38,97 kN		303,44 kN
1st floor		m²	kN/m²	Weight [kN]	Area [m²]	Total weight [kN]
Construction	84,12	64,94	1,92	124,68	64,94	
		psi2:	0,30			
added up:	311,18	psiE:	1,00	37,41 kN		424,96 kN

Table 8: Seismic analysis EC-8 – No. 1

Value:	Formula	Result	
T ₁ =	$T_1 = C_t * H^{(3/4)}$	0,295	m
ct =		0,05	[-]
Bracing frame:	Formula	Result	
I _{wi} =	lwi_max = 0,9*H	9,603	m
A _i =		2,881	m²
A _c =	$A_c = \Sigma[A_i * (0,2 + (0,9))^2]$	3,486	m²
Site Soil Classification: C (equivalent to "D" in ASCE 7-05)	Formula	Result	
T _c =	for: T1<4*T _c	0,6	
m=		424,96	kN
λ =	for: $T_1 < 2^*T_c$	0,85	
S _{d(T)} =	$S_{d(T)} = a_g * S* (2,5/q)$	2,13	m/s²
F _b =	S _{d (T1)} * m *λ	76,82	kN
S =		1,00	
q =		1,50	
a _{gR} =	acc. ASCE 7-05	1,276	m/s²
γ _i =	Category II	1,00	
a _g =	$a_g = \gamma_i * a_{gr}$	1,28	m/s²
E _d =F _b /m=	Table 9: Seismic analy	18,08%	

Table 9: Seismic analysis EC-8 – No. 2

4.2.3 Wind Analysis according to ASCE 7-05

Design Procedure:

- a) Determination of wind speed "V" and wind directionality factor "Kd"
- b) Determination of an importance factor "I"
- c) Determination of exposure category and velocity pressure coefficient " K_z " or " K_h "
- d) Determination of a topographic factor "K_{zt}"
- e) Determination of a gust effect factor "G"
- f) Determination of an enclosure classification
- g) Determination of an internal pressure coefficient "GCpi"
- h) Determination of an external pressure coefficient " $C_{p^{*}}$
- i) Determinatino of the velocity pressure " q_{z} " or " q_{h} "
- j) Determination of the design wind load "p" or "F"

V =	85,00) mph (= 38 i	m/s)
Kd =	0,85	5	
l =	1,00)	
В			
В			
			l
Heigi	nt [m]	Kz	
0 -	4,6	0,7	
	Kd = I = B B Heigl	Kd = 0,85 I = 1,00 B	Kd = 0,85 I = 1,00 B Height [m] K _z

Height [m]	Kz
0 - 4,6	0,7
6,1	0,7
7,6	0,7
9,1	0,7
12,2	0,7
13,75	0,73

Table 10: Wind analysis - Kz

K_{zt} = 1,00

G= 0,85

Enclosed building

$$GC_{pi} = +0,18 / -0,18$$

Wall:Cpwindward wall0,8leeward wall-0,5side wall-0,7

Table 11: Wind analysis - C_{p}

qz = 11,01 psf qh = 11,48 psf

Velocity pressure (q_z) and (q_h) :

Topographic Factor (K_{zt}):

Enclosure classification:

Internal pressure coefficient (GC_{pi}): External pressure coefficient (C_p):

Gust effect factor (G):

Design wind load (p):

Windward	
vvinuwaru	•

Leeward:

Side wall:

p(z) =	9,46 psf
p(h) =	9,87 psf
p(z) =	-2,70 psf
p(h) =	-2,81 psf
p(z) =	-4,57 psf
p(h) =	-4,76 psf

height [m]	p windward [psf]	p leeward [psf]	p side wall [psf]
0-4,6	9,46	-2,70	-4,57
6,1	9,46	-2,70	-4,57
7,6	9,46	-2,70	-4,57
9,1	9,46	-2,70	-4,57
10,7	9,87	-2,81	-4,76

Table 12: Wind analysis - wind load

height [m]	p windward [psf]	p leeward [psf]	p side wall [psf]
0 - 4,6	0,45	-0,13	-0,22
6,1	0,45	-0,13	-0,22
7,6	0,45	-0,13	-0,22
9,1	0,45	-0,13	-0,22
12,2	0,45	-0,13	-0,22
13,75	0,47	-0,13	-0,23

Table 13: Wind analysis - wind load 2

Wind building load (F):

F = 6600,20 lb F = 29,37 kN

4.2.4 Wind Analysis according to EC1

Data	Value	Unit	Source
Location:	San Luis Obispo / California		
Geometry			
Length:	10,00	m	
Width:	6,86	m	
Height:	9,74	m	
Roof:	gable roof		
Surface category:	Ш		
Basic Windspeed (vb,0):	38	m/s	
Basic Windspeed pressure (qb,0):	0,78	kN/m²	ÖNORM EN 1991-1-4:2006,
Reference height (h):	9,74	m	Section 7.2.2 (interpolated)
Gust velocity pressure (qb,0):	1,63	kN/m²	

Table 14: Wind analysis - basic data

Total Wind Force - longitudinal direction:

Data	Value	Unit	Source
h/b =	1,42	[-]	
l/b =	1,46	[-]	
C _f =	1,15	[-]	ÖNORM B 1991-1-4; Table 4
z _{e1} =	9,74	m	
z _{e2} =	6,86	m	
$c_s * c_d =$	1	[-]	ÖNORM EN 1991-1-4:2006, Section 6.2(1)a
$q_{p(z)} = q_{p(h)} =$	1,63	kN/m²	
$q_{p(z)} = q_{p(b)} =$	1,50	kN/m²	
$F_{w_long,1} = c_s c_d * c_f * q_{p(zo)} * A_{ref}$	125,07	kN	
F _{w_long,2}	114,98	kN	ÖNORM EN 1991-1-4, Formula 5.3

Table 15: Wind analysis - longitudinal

Total Wind Force - lateral direction:

Data	Value	Unit
h/l =	0,974	[-]
h/l = w/l =	0,686	[-]
C _f =	1,15	[-]
F _{w_lat} =	182,32	kN
F _{w_lat} =	1,87	kN/m²

Table 16: Wind analysis - lateral

4.3 Detail calculation

4.3.1 Vibration behavior of residential ceiling (ÖNORM EN 1995-1-1)

According to EC5 a residential ceiling, with an Eigenfrequency of $f_1 > 8$ Hz, has to fulfill the following criteria:

$$\frac{\omega}{F} \le a \left[\frac{mm}{kN}\right]$$

and:

$$\nu \leq b^{(f1*\,\zeta-1)} \Big[\frac{mm}{kN}\Big]$$

where:

 ωmaximum initial vertical deflection

v.....characteristic impulse response

 ζ modal damping ratio

$$f_1 = \frac{\pi}{2 * l^2} * \sqrt{\frac{(EI)_l}{m}}$$

where:

m mass per unit of area [kg/m²]

I ceiling span [m]

(EI)1 equivalent bending stiffness of the ceiling perpendicular to the trusses [Nm²/m]

$$\nu = \frac{4*(0,4+0,6*n_{40})}{m*b*l+200}$$

where:

 n_{40} Number of vibrations of 1st order with a maximum resonance frequency of 40 Hz

b Width of ceiling [m]

$$n_{40} = \left\{ \left[\left(\frac{40}{f_1}\right)^2 \right] - 1 * \left(\frac{b}{l}\right)^4 * \frac{(\text{EI})_l}{(\text{EI})_b} \right\}^{0,25}$$

Where:

(EI)_b equivalent bending stiffness of the ceiling in longitudinal direction of trusses [Nm²/m]

Name	Symbol	Value	Unit
Eigenfrequency	f1	16,44	Hz
Characteristic impulse response	v	0,003334	m/(Ns²)
Number of vibrations of 1st order	n ₄₀	1,47	[-]
Ceiling span	I	6,86	m
Ceiling width	b	7,16	m
Equivalent bending stiffness_longitudinal	El	6.609.756	Nmm ²
Equivalent bending stiffness_perpendicular	Elb	6.287.417	Nm²/m
Mass per unit of area	m	27,24	kg/m²
Inertial deflection	W_inst	11	mm
Inertial Force	F	3,6	kN
Deflection -Force Ratio	w/F	3,06	mm/kN
Modal Damping ratio	ζ	0,01	[-]

Table 17: Vibration behaviour - input values

Name	Value	Unit
E-Modul (parallel to fibre)	11000	N/mm²
Plywood	0,019	m
lumber S10:		
e	0,41	m [o.c.]
n_trusses	17	[-]
TJI560 14":		
Weight	6,25	kg/m
Trusses per meter	2,44	[-]
Total Mass:	15,24	kg/m²
EI(I)	6.609.756	Nm²/m
EI(b)	6.287.417	Nm²/m

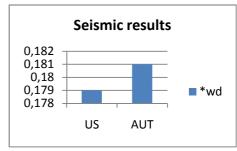
Table 18: Vibration behaviour - calculation values

Synchronizing the requirements of ÖNORM EN 1995-1-1 with the above performed calculations for the reference project, all demands are covered:

 $3,06 \le 4 \left[\frac{mm}{kN}\right]$ and: $0,003 \le 0,19 \left[\frac{mm}{kN}\right]$

5 DISCUSSION – STRUCTURAL ANALYSIS

Due to reasons of comparability the structural part of this thesis was computed by using the input data of the actual location of the reference project in San Luis Obispo, California. Using this procedure, the seismic and wind calculations were first computed by using the applicable California Building Code. Secondly, the values were converted into SI units and used for the calculation according to the relevant Eurocodes.


Comparing the two computation models based on the ASCE 7-05 and EC-8 for the seismic analyses it is striking that both final results are only minimally different, but basically the outcome is mutually the same. The maximum earthquake force is $0,179^*\omega_d$ (ASCE)

compared to $0,181*\omega_d$ (EC) and therefore only differs by a percentage of approximately 0,2% which is almost neglectable. Hence, although the approaches are not equal to each other, the calculative static effect is the same. It shall be noted, that this result only refers to a very specific building method and no similarities to other projects or methods can be guaranteed.

Secondly, the ASCE 7-05 method of calculating the total wind force within the static calculations differs fundamentally from those computed using the EC-1 to be applied to the same building, at the same location. The American calculation model is therefore six times

less stringent than the European which is alarmingly low considering the high wind speeds at the west coast of the United States of America. Again, this calculation is only valid for this specific reference project at the actual project location but considering the wide distribution and common trend of building methods, this accounts for numerous buildings throughout California.

Due to the not given necessity on the part of the building permit in California to analyze the vibration behavior of a residential ceiling, this detail calculation was only performed according to the Austrian standard ÖNORM EN 1995-1-1 and covered all necessary demands. In principle, it should be noted, that the building method is very light-weighted in general, with a maximum floor load of 2,63 kN/m² and a maximum cantilevered load of 3,59 kN/m². This fact can only be reached by a tremendous economization in terms of weight of the construction, especially the ceiling/floor construction.

Wind results

200

100

0

US

Table 19: Seismic results

AUT

kN

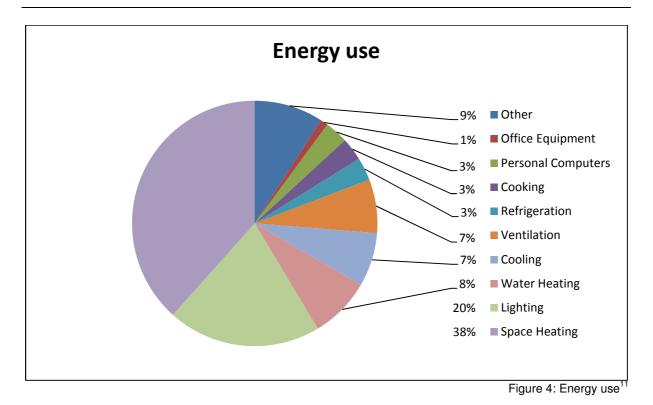
6 BUILDING PHYSICS

6.1 Decisive U.S. Energy Data

In this chapter an overview about the prevalent mandatory regulations and additional voluntary measures concerning building physics and green building in general is given. General data about energy consumption, resource use and waste generation is provided to give an overview of the current situation in the United States.

The building sector in the United States accounts for a high proportion of resource use and waste generation:

- 14% of potable water consumption;
- 30% of waste output;
- 38% of carbon dioxide emissions;
- 40% of raw material use;
- 24% to 50% of energy use⁸


The U.S. construction market accounts for 13.4% of the \$13.2 trillion U.S. GDP^{θ} (gross domestic product) and therefore provides sufficient projects to assess green building concepts on a wide range and with enough influence to obtain a noticeable change.

Green building definitely is a growing theme as rating systems, tax incentives and growing social responsibility are increasing more and more. *The overall green building market (both non-residential and residential) is likely to more than double from today's \$36-49 billion to \$96-140 billion by 2013.*¹⁰

⁸ Energy Information Administration: EIA Annual Energy Review and Energy Information Administration – Emissions of Greenhouse Gases in the United States. Washington: 2005

⁹Department of Commerce: Annual Value of Construction Put in Place. New York: 2008

¹⁰ McGraw Hill Construction: Green Outlook 2009 – Trends Driving Change. New York, 2009

Energy consumption:

Buildings represent 38.9% of U.S. primary energy use (includes fuel input for production)¹² and are one of the heaviest consumers of natural resources and account for a significant portion of the greenhouse gas emissions that affect climate change. In the U.S., buildings account for 38% of all CO2 emissions.¹³

Water use:

Buildings use 13.6% of all potable water, or 15 trillion gallons per year.¹⁴

Materials use:

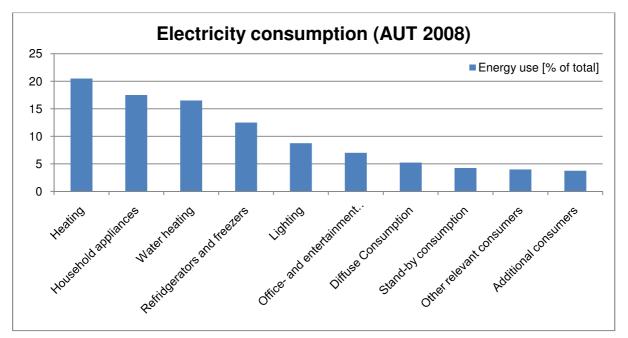
Buildings use 40% of raw materials globally (3 billion tons annually).¹⁵

Waste:

The EPA estimates that 136 million tons of building-related construction and demolition (C&D) debris was generated in the U.S. in a single year.¹⁶

Compare that to 209.7 million tons of municipal solid waste generated in the same year.¹⁷

¹¹ U.S. Green Building Council: Green Building and LEED Core Concepts Guide. 1st Edition, Washington, 2010


¹² Environmental Information Administration: EIA Annual Energy Outlook. New York, 2008

¹³ Energy Information Administration: Assumptions to the Annual Energy Outlook. Washington, 2008

¹⁴ U.S. Department of Interior: U.S. Geological Survey (2000). USA, 2000

¹⁵ Lenssen and Roodman (1995): A Building Revolution – How Ecology and Health Concerns are Transforming Construction. Worldwatch Institute. Worldwatch Paper 124, 1995 ¹⁶ U.S. Environmental Protection Agency: U.S. EPA Characterization of Building-Related Construction and

Demolition Debris in the United States. San Francisco, 1997

6.2 **Decisive Austrian Energy Data**

Figure 5: Annual electricity consumption of households in Austria (2008)¹⁸

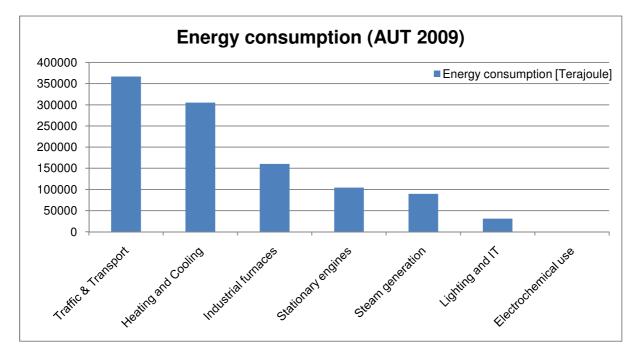


Figure 6: Total energy consumption in Austria (2009)¹⁹

¹⁷ U.S. Environmental Protection Agency: Characterization of Municipal Solid Waste in the United States. Report No. EPA 530/R-98-007. San Francisco, 1997 ¹⁸ URL: http://www.statistik.at/web_de/energie_und_umwelt/energie/energieeinsatz_der_haushalte/[10.02.2011]

¹⁹ URL: http://www.statistik.at/web_de/energie_und_umwelt/energie/nutzenergieanalyse/ [10.02.2011]

6.3 Conclusion

Comparing the local values of the U.S. and Austria it is noticeable that the overall distribution of energy used within a building differs in a great extent (see table below).

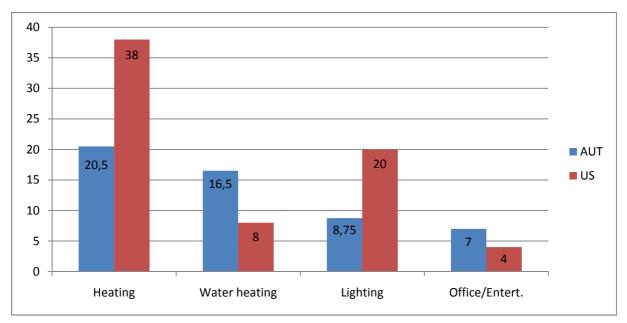


Figure 7: Energy use within a building in %

6.4 LEED

LEED was designed to encourage and accelerate global adoption of sustainable green building and development practices through the creation and implementation of universally understood and accepted standards, tools, and performance criteria.²⁰

"LEED (Leadership in Energy and Environmental Design) is a green building certification and rating program in the US and has shown a substantial growth in the last 10 years. This is due to governmental leadership and great efforts from built environment professionals to change the building industry and practice towards sustainable design."²¹

After years of research and development, LEED version 1 was launched in 1998 with only a handful of projects achieving certification. After repeated review and adjustment, LEED NC (new construction) version 2.2 was released in 2006. Continued development and the incorporation of regional concerns have led to the current standard, LEED version 3, launched in 2009.²²

²⁰ URL: http://www.usgbc.org/DisplayPage.aspx?CMSPageID=1750 [30.9.2010]

²¹ Lee, Young S. / Guerin, Denise A.: Indoor environmental differences between office types in LEED-certified buildings in the US. Michigan/ USA: Elsevier Ltd, 2009

²² Cf. Spence, William P. / Kultermann, Eva (2006)

When LEED was first established, most of the projects that applied for the certification were public and governmental building projects that had a different financial structure from private and commercial projects.²³ The importance of LEED for private building owners is caused by savings from operating costs and the increased employer satisfaction, in case of private commercial buildings.²⁴

6.4.1 LEED Committees

LEED committees are responsible for the improvement and implementation of LEED rating systems either in development or undergoing revisions. They remain in existence until their rating system is fully implemented.

In an effort to harmonize and align credits across LEED, the LEED committee structure has transitioned to include three core committees to oversee the project implementation process, market responsiveness, and technical rigor of LEED.

All LEED core committees have associated corresponding committees made up of USGBC members. Any interested member may join the corresponding committee to receive regular updates and minutes from the core committee and may submit questions or comments to the core committee. Core committee and working group members may be elected or appointed from the corresponding committee member body. Only corresponding committee members are eligible to vote in core committee elections.²⁵

6.4.2 Contents of the LEED certification

The measurements a project is undergoing during a LEED certification process are:²⁶

- Innovation in Design
- Locations & Linkages
- Sustainable sites
- Water efficiency
- Energy & Atmosphere
- Materials & Resources
- Indoor Environmental Quality
- Awareness & Education
- Regional Priority (extra points)

²³ Lee, Young S./ Guerin, Denise A.: Indoor environmental quality related to occupant satisfaction and performance in LEED-certified buildings, in: Journal of Indoor & Built Environment 2009, Vol. 18 (4), USA, 2009

²⁴ Kats, G. a.o.: The costs and financial benefits of green buildings, in: Report to California's Sustainable Building Task Force, USA, 2003

²⁵ URL: http://www.usgbc.org/DisplayPage.aspx?CMSPageID=1750 [30.9.2010]

²⁶ URL: http://www.usgbc.org/DisplayPage.aspx?CMSPageID=1989 [29.9.2010]

To achieve LEED certification for a project, the prerequisites in each category have to be met. Optionally, credits can be earned in addition to the prerequisites to reach an overall LEED rating according to the stated levels:

- Certified (40 49 points)
- Silver (50 59 points)
- Gold (60 79 points)
- Platinum (80+ points)

The USGBC Council decided to make it relatively easy for project applicants to reach the first 20 points of the LEED certification by throwing in some easily earnable categories and subchapters. The background of this system is the motivation for project owners to make their buildings more energy efficient by showing them to be very close to a certification, which might still take major modifications to actually reach a certification of having a green building.

6.4.3 USGBC – U.S. Green Building Council

The USGBC (United States Green Building Council) was founded in 1998 and is committed to change the way buildings and communities are designed, built and operated. This goal shall be achieved by promoting environmental and social responsibility to improve the quality of life.²⁷

²⁷ Montoya, Michael: Green Building Fundamentals – Practical Guide to Understanding and Applying Fundamental Sustainable Construction Practices and the LEED System. New Jersey/ USA: Pearson, 2nd Edition, 2009

6.4.3.1 USGBC guiding principles

• Promote the Triple Bottom Line

USGBC will pursue robust triple bottom line solutions that clarify and strengthen a healthy and dynamic balance between environmental, social and economic prosperity.

• Establish Leadership

USGBC will take responsibility for both revolutionary and evolutionary leadership by championing societal models that achieve a more robust triple bottom line.

• Reconcile Humanity with Nature

USGBS will endeavor to create and restore harmony between human activities and natural systems.

• Maintain Integrity

USGBC will be guided by the precautionary principle in utilizing technical and scientific data to protect, preserve and restore the health of the global environment, ecosystems and species.

• Ensure Inclusiveness

USGBC will ensure inclusive, interdisciplinary, democratic decision-making with the objective of building understanding and shared commitments toward a greater common good.

• Exhibit Transparency

USGBC will strive for honesty, openness, and transparency.

• Foster Social Security

USGBC will respect all communities and cultures and aspire to an equal opportunity for all.²⁸

²⁸ URL: http://communicate.usgbc.org/usgbc/2006/08.15.06_guiding_principles/guidingPrinciples [30.9.2010]

6.4.4 Advantages of the LEED certification

LEED certified buildings are designed to have:

 Lower operating costs and increased asset value
 The LEED certification does not only involve lower operating costs due to increased energy efficiency but also outperform conventional buildings in sale value, rental

rates, and occupancy rates.

"A recent report by the CoStar Group indicates that LEED-certified buildings average square foot higher rent generation and a 3.8% higher occupancy rate when compared to conventional buildings. This study also indicates that LEED-certified buildings are selling for an average of \$171 more per square foot than their peers."²⁹

- Less waste sent to landfills
- Better conservation of energy and water
- Healthier and safer environment for occupants
- Reduced amount of harmful greenhouse gas emissions
- Qualification for tax rebates, zoning allowances and other incentives in hundreds of cities
- Demonstration of an owner's commitment to environmental stewardship and social responsibility.

6.4.5 Weaknesses and Problems of LEED

With the creation of the LEED system the United States Green Building Council wanted to give a definition to what defines a building to be green. Yet, some certified projects show features that were only installed to reach a better certification, but are not utilized by the building operators. One example for that phenomenon is the North Boulder Recreation Center in Colorado, which is silver-certified because the project team decided to install six 110-Volt electric car charging stations, with which one single car was charged one time within the first 12 months.

Incidents like this may lead to an increased loss of plausibility of LEED projects to actually be green buildings. On the other hand a project team which certifies a building according to the LEED standards should not be made responsible for an underutilization of features by the building operators and occupants.

Another major weakness of the LEED certification is the rating system, which is based on a checklist and the awarding of points for categories and single features. The difficulty lies in a

²⁹ Montoya, Michael (2009)

fair, logical and traceable distribution of points, so a project is not built based on the checklist but will rather be qualitatively constructed to be as green as possible.

Another weakness of the system which should be existent in order to be fulfilling a holistic green building rating is the absence of a post construction follow-up examination, which allows the designer to use legal loopholes for the purpose of summing up more points and possibly collecting incentives for a project.

Furthermore, the cost of registration and the additional expenses for architects and engineers which make up the larger part of cost expenditures for a LEED certification might discourage building owners to take the step of certification. The costs for LEED certification might also use funds which could actually be of better use if put into the improvement of a buildings energy efficiency.

Critical voices also excoriate the minimum standards necessary for reaching a certification and the associated remote efforts to actually make a building energy efficient, but much rather putting a green stamp on a building. This way for an average building the certification can be the primary goal instead of the environmental responsibility, the LEED system generally stands for.

"Some critics also argue that basic certification is too low a hurdle to merit the green stamp of approval. They say developers can rack up the minimum number of needed points without going much beyond the requirements of local building codes and the efficiency standards of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers."³⁰

To sum up the LEED system in general, it is important to state that the Green Building Council tries to implement a valuable idea but has not been able to generate the perfect execution system to fully realize its goals yet. Despite all the above mentioned problems of the LEED certification the system is spreading fast around the world, and the USGBC as well as local authorities are constantly striving to improve the holistic system, expand and adopt it to more and more sectors of the construction industry to make the LEED system applicable to standards in countries and regions around the world.

³⁰ URL: http://www.grist.org/article/leed1/ [26.11.2010]

6.5 CalGreen

Besides the topics planning and design, water efficiency, material conservation and resource efficiency as well as environmental quality, it includes a short chapter about mandatory measures concerning energy efficiency. However, the CalGreen itself does not contain more stringent regulations than Title 24 of the California Energy Code.

"The department of Housing and Community Development does not regulate mandatory energy efficiency standards in residential buildings. For the purposes of mandatory energy efficiency standards in this code, the California Energy Commission will continue to adopt mandatory building standards."³¹

6.6 Title 24 (California Energy Code 2010)

Title 24 is part of the California Code of Regulations and regulates the mandatory and voluntary measures that have to be implemented for construction projects. Table 21 shows the application of Standards. The highlighted areas are the crucial chapters for the analysis and comparison of energy efficiency standards. Although the chosen reference object is a low-rise residential building, the following analysis and assessment are taking the high-rise residential into consideration. This can mainly be attributed to the lack of mandatory energy efficiency standards for conditioned building envelopes of low-rise residential buildings.

Occupancies	Application	Mandatory	Prescriptive	Performance	Additions/ Alterations
General Provisions		100, 101, 102, 110, 111			
	General	140	142		
	Envelope (conditioned)	116, 117, 118	143		
	Envelope (unconditioned, process spaces)		143(c)		
Nonresidential, High-rise	HVAC (conditioned)	112, 115, 120- 125	144	141	
Residential, And	Water Heating (conditioned)	113, 123	145		149
Hotels/Motels	Indoor Lighting (conditioned, process spaces)	119, 130, 131, 134	143(c), 146		
	Indoor Lighting (unconditioned)	119, 130, 131, 134	143(c), 146	N.A.	
	Outdoor Lighting	119, 130, 132, 134	147	N.A.	
	General	150			
Low-rise Residential	Envelope (conditioned)	116, 117, 118, 150(a-g, 1)			
	HVAC (conditioned)	112, 115, 150(h, i, m, o)	151(o.f)	151(0.0)	152
	Water heating (conditioned)	113, 150(j, n)	151(a,f)	151(a-e)	152
	Indoor lighting (conditioned, unconditioned and parking garages)	119, 150(k)			
	Outdoor Lighting	119, 150(k)			
	Pool and Spa systems	114, 150(p)	N.A.	N.A.	N.A.

Table 21: Application of Standards³²

³¹ California Building Standards Commission: 2010 California Green Building Standards Code – California Code of Regulations, Title 24, Part 11, Sacramento: 2010

³² California Building Standards Commission: 2010 Building Energy Efficiency Standards, Title 24, Part 6, Sacramento: 2010

The key to Table 21 reads as follows:

Section	Description	Section	Description
100	Scope	118	Mandatory Requirements for Insulations and Roofing Products
101	Definitions and Rules of Construction	140	Choice of Performance and Prescriptive Approaches
102	Calculation of Time Dependent Valuation (TDV) Energy	141	Performance Approach: Energy Budgets
110	Systems and Equipment – General	142	Prescriptive Approach
111	Mandatory Requirements for Appliances Regulated by the Appliance Efficiency Regulations	143	Prescriptive Requirements for Building Envelopes
116	Mandatory Requirements for Fenestration Products and Exterior Doors	150	Mandatory Features and Devices
117	Mandatory Requirements for Joints and Other Openings	151	Performance and Prescriptive Compliance Approaches
			Table 22: Key for Table 18

6.6.1 Low-rise residential buildings

"Low-rise residential building is a building, other than a hotel/motel that is of Occupancy Group R*, Division 1, and is multifamily with three stories or less, or a single family residence of Occupancy R, division 3 or an Occupancy Group U building located on a residential site" ³³

6.6.1.1 Mandatory Requirements for Fenestration Products and Exterior Doors (Section 116)

The mandatory measures for low-rise residential buildings of the above mentioned occupancy groups for the topic Mandatory Requirements for Fenestration Products and Exterior Doors (Section 116) are:

- Air leakage: Manufactured fenestration products and exterior doors shall have air infiltration rates not exceeding 0.3 cfm/ft² of window area, door area for residential doors and nonresidential single doors and 1.0 cfm/ft² for nonresidential double doors.
- **U-factor:** A fenestration product's U-factor shall be rated in accordance with NFRC 100**, or the applicable default U-factor [...].
- Solar Heat Gain Coefficient (SHGC): A fenestration product's SHGC shall be rated in accordance with NFRC 200 for site-built fenestration, or use the applicable default SHGC [...].
- Labeling: Fenestration product shall have a temporary label (or label certificate for site-built fenestration) [...] listing the certified U-factor and SHGC, and

³³ Cf. California Building Standards Commission (2010)

^{*} Definition of Occupancy Groups see Appendix A

^{**} Abbreviation for a uniform rating system issued by the National Fenestration Rating Council (NFRC)

certifying that the air leakage requirements [...] are met for each product line; and have a permanent label (or label certificate for site-built fenestration) [...].

 Fenestration acceptance requirements: Not necessary for low-rise residential buildings.³⁴

6.6.1.2 Mandatory Requirements for Joints and Other Openings (Section 117)

For the chapter of Mandatory Requirements for Joints and Other Openings (Section 117) the major criteria to fulfill are:

"Joints and other openings in the building envelope that are potential sources of air leakage shall be caulked, gasketed, weather-stripped or otherwise sealed to limit infiltration and exfiltration."³⁵

6.6.1.3 Mandatory Requirements for Insulations and Roofing Products (Section 118)

Buildings of this occupancy category also have to comply with the regulations of Mandatory Requirements for Insulations and Roofing Products (Section 118), which are: (only for the energy efficiency relevant paragraphs were chosen)

- Demising walls in nonresidential building shall be insulation with an installed R-value of no less than R-13 between framing members.
- Insulation requirements for heated slab floors shall be insulated according to the requirements [...] in table 32 of Appendix B in chapter 9.2.2.

6.6.1.4 Mandatory Features and Devices (Section 150)

- Ceiling insulation: Ceilings shall be insulated between wood-framing members with insulation resulting in an installed thermal resistance of R-19 or greater for the insulation alone or with a weighted average U-factor of ceilings that shall not exceed the U-factor that would result from installing R-19 insulation between wood-framing members in the entire ceiling and accounting the effects of framing members.
- **Loose-fill insulation:** When loose-filled insulation is installed, the minimum installed weight per square foot shall conform with the insulation manufacturer's installed design weight per square foot at the manufacturer's labeled U-factor.

³⁴ Cf. California Building Standards Commission (2010)

³⁵ Cf. California Building Standards Commission (2010)

- **Wall insulation:** Wood framed walls shall be insulated between framing members with insulation having an installed thermal resistance of R-13 or greater, or have an average weighted U-factor of an installed R-13 insulation between framing members and accounting for the thermal effects of the holistic wall-system.
- **Raised-floor insulation:** Same R-value as for wall insulation.
- **Air retarding wrap:** Has to be labeled and tested by the manufacturer to comply with ASTM E1677-95, Standard Specification for an Air Retarder (AR) Material or system for Low-rise framed building walls, and have a minimum perm rating of 10.
- Vapor barrier: If a building has a control ventilation crawl space, a vapor barrier shall be placed over the earth floor of the crawl space to reduce moisture entry and protect insulation from condensation [...].³⁶

6.6.1.5 Performance and Prescriptive Compliance Approaches (Section 151)

A building complies with the performance standard if the combined depletable TDV* energy use for water heating [...] and space conditioning [...] is less than or equal to the combined maximum allowable TDV energy use for both water heating and space conditioning.

"The water heating budget for each climate zone shall be the calculated consumption of energy from depletable sources required for water heating in building in which the requirements [...] for systems serving individual dwelling units or [...] for systems serving multiple dwelling units are met [...]. The space-conditioning budgets for each climate zone shall be the calculated consumption of energy from depletable sources required for space conditioning in buildings in which the basic requirements [...] are met."³⁷

"To demonstrate compliance, the applicant's documentation shall [...] calculate the TDV energy consumption total of the proposed building, using the proposed building's actual glazing area, orientation and distribution, and its actual energy conservation and other features, including the actual water-heating, space-conditioning equipment and duct conditions and locations." ³⁸

A calculation of the required energy for cooling of the building is required even if the building plans do not indicate the installation of air conditioning.

³⁶ Cf. California Building Standards Commission (2010)

³⁷ Cf. California Building Standards Commission (2010)

³⁸ Cf. California Building Standards Commission (2010)

The required calculation assumptions in determining the water-heating and spaceconditioning budgets and calculating the energy use of the proposed building design, the applicant shall use only these assumptions and calculation methods:

- The operating conditions regarding indoor temperature; occupancy loads and schedules; including lighting, HVAC and miscellaneous electrical; and outdoor weather conditions.
- The physical characteristics of building pressurization, interior heat transfer, film coefficients, solar heat gain coefficient and operation of installed shading devices, ground temperatures and the method of determining slab heat loss.
- The applicable modeling procedures for the assumptions, design conditions and physical characteristics.
- Water heating use schedules, cold water inlet temperatures and average outdoor temperatures for calculating water heating loads and losses.

Furthermore, the calculation of the total annual energy consumption has to include all energy used for comfort heating, comfort cooling, ventilation for the health and comfort of occupants, and service water heating. The solar heat gain coefficients for fenestration products shall be 0.68 for vertical and 1.00 for nonvertical.³⁹

6.6.2 High-rise residential buildings

High-rise residential building is a building, other than a hotel/motel, of occupancy Group R, Division 1 with four or more habitable stories. 40

While low-rise residential buildings comply with the applicable Sections 150 and 151, which are responsible for achieving energy efficiency, those sections do apply for high-rise residential buildings. The applicable Sections for high-rise residential buildings are 140, 141 and 142 of the 2010 Building Efficiency Standards. The approach can be chosen by the applicant and can either be accomplished by using the performance approach, which gives limits for the performance of the building envelope or the prescriptive approach. While the performance approach focuses on and states the ultimate result of a building's energy efficiency the prescriptive approach describes the way the ultimate result can be reached. For comparative reasons, the prescriptive approach was chosen for the comparison with the Austrian Energy certificate.

³⁹ Cf. California Building Standards Commission (2010)

⁴⁰ Cf. California Building Standards Commission (2010)

6.7 OIB Guideline 6 – Energy saving and thermal insulation

On April 25th 2007 the OIB Guideline 6 – Energy saving and thermal insulation was agreed on being the prevailing document for energy saving and thermal insulation during the general meeting of the Austrian Institute for Building Technology where all of the nine liable province representatives were present. With this step also the harmonization of legislation, which at this point is very goal-oriented, was realized. The OIB-Guideline 6 defines the requirements concerning thermal-energy quality of buildings and puts the EU building regulation 2002/91/EG into legislation.⁴¹

6.7.1 Terminology

At this point only the Energy Pass for Residential buildings is taken into consideration. This includes the heat requirement, hot water heat requirement, energy demand of the heating facility, final energy demand and further recommendations where appropriate. Possible cooling- and lighting energy demands are not included in these criteria, since they are only determined for commercial buildings.

To simplify matters, the abbreviations of the original version of the OIB Guideline 6 are adopted in this paper and therefore do not match with the initials of the English denotations.

Specific heating requirement (HWB)

The specific heating requirement represents the actual energy index and therefore is the most common comparative value to describe the thermal quality of a building envelope. This energy index is expressed in kWh/m²a and states how much energy a building would consume per square meter in one year if it would be located at the reference location. It is therefore not a reference of the actual climate zone but refers to the reference climate instead. Consequently this value is applicable for a comparison of the thermal quality of a building.⁴²

The heating requirement states the calculated heat quantity that has to be added to a building over a long-term average during a heating season to meet a predefined indoor temperature.⁴³

⁴¹ Landgraf, Adolf: Leitfaden für die Umsetzung der EU-Gebäuderichtlinie bei Bestandsobjekten. [Master Thesis, Graz 2007]: 2007

^{*} TDV: Time-Dependent Valuation

⁴² URL: http://www.energiesparhaus.at/energieausweis/energieausweis.htm [05.10.2010]

⁴³ OIB Richtlinie 6. Energieeinsparung und Wärmeschutz. Österreichisches Institut für Bautechnik, 2007

Hot water heating demand (WWWB)

The hot water heating demand states the amount of energy needed for heating a certain quantity of potable water.44

Specific energy demand of a heating facility (HTEB)

The HTEB value states the amount of energy used for generation, storage, distribution and delivery as well as the energy losses within the system.

Value of Heating degree days (HGT)

The value of heating degree days is the sum of the daily determined difference between the indoor air temperature (T_i) and the average daily outside temperature (T_a).⁴⁵

Final energy demand (EEB)

Is the externally added amount of energy for space heating and hot water in buildings, for instance the electricity used to operate the heat pump or the energy content of wood pellets.⁴⁶ Hence, this value does not only indicate the demand of energy, but also all of the energy losses within the holistic system.

Coefficient of heat transmission (U-Factor)

The U-Factor is the measurement of heat transmission through a building material and is indicated in W/(m²K). The U-Factor is the reciprocal of the thermal resistant coefficient and states the amount of heat quantity [Wh] that passes through one square meter of a material or component within one hour.47

Characteristic length (I_c)

In Austria a reference to the geometric ratios of a building has been common for over a decade. The associated value, the characteristic length is determined by the heated gross volume (V_B) over the heated gross surface area (A_B). Alternatively, also the reciprocal value which states the compactness is a usable indicator.⁴⁸

 $I_c = V_B / A_B$

 ⁴⁴ URL: http://www.gequo-home.de/glossar/char/W/id/1035.html [05.10.2010]
 ⁴⁵ URL: http://www.energiesparhaus.at/fachbegriffe/hgt.htm [05.10.2010]

⁴⁶ URL: http://www.energiesparhaus.at/energieausweis/energieausweis.htm [06.10.2010]

⁴⁷ Cf. Landgraf, Adolf (2007)

⁴⁸ Pech, Anton a.o.: Bauphysik – Energieeinsparung und Wärmeschutz, Energieausweis – Gesamtenergieeffizienz. Vienna: Springer, 1st extension, 2007

LEK – Value

The LEK – Value characterizes the protection against heat loss of the building envelope under consideration of the geometry of the building and is determined as follows:

 $LEK = 300 * (U_m / (2 + I_c))$

Where: Um ... average U-Factor of the building envelope

Ic characteristic length

Gross plot area (BGF)

The gross plot area is the sum of plot areas of all floors of a building and comprises the net plot area and the construction plot area. $^{\!\!\!\!\!^{49}}$

6.7.2 Objective and composition

The guideline contains the following chapters:

- Terminology
- Requirements for heating- and cooling demand
- Requirements for the thermal quality of the building envelope
- Requirements for the final energy demand
- Requirements for heat-transferring components
- Requirements for parts of the power engineering system
- Other Requirements
- Energy Pass
- Exceptions
- Annex A: Sample Energy Passes

6.7.3 Residential Classification

The allocation of a building to the category of residential buildings takes place by means of the utilization, provided that other uses do not feature more than 50m² net surface area or a proportion not larger than 10% of the gross plot area. In case of exceedance of these factors, the building area has to be split and the proportions are assigned to the appropriate category of residential and commercial buildings. The examinations of the requirements are subsequently done for each category.

⁴⁹ Österreichisches Normungsinstitut: ÖNorm B 1800 – Determination of areas and volumes of buildings. Vienna: ON, Edition: 2002-01-01

6.7.3.1 Requirements for the heating demand

The following maximum permissible annual heating demand ($HWB_{BGF,WG,max,Ref}$) per m² gross plot area in reliance to the geometry (characteristic length I_c) and the reference climate according to the OIB – Guideline:

$HWB_{BGF,WG,max,Ref} = 19 * (1+2,5/lc) [kWh/m^{2}a]$	Maximum of 66,5 [kWh/m²a]
---	---------------------------

6.7.3.2 Controlled ventilation with heat recovery

In buildings with controlled ventilation and heat recovery the value of the heating demand $HWB_{BGF,WG,max,Ref}$ according to item 6.7.3.1 is reduced by 8 kWh/m²a.⁵⁰

6.7.3.3 Requirements for the thermal quality of the building envelope

For residential buildings additional requirements apply for the heating energy demand:

New buildings have to be in compliance with the maximum allowable LEK-Value:

LEK _{max} = 27 [-]	$L_{c,min} = 1 [m]$
Where: I _{c.min} is the smallest possible characteris	tic length l _c

New buildings with a controlled ventilation and heat recovery have to be in compliance with the maximum allowable LEK-Value:

Depending on the heating degree days (HGT) of the building location the maximum allowable LEK-Value is:

LEK _{Standort} = LEK _{max} * 3	3400 / HGT _{Standort}
Where:	
LEK _{Standort}	maximum allowable LEK – Value at the building location [-]
LEK _{max}	maximum allowable LEK – Value with a value of heating degree
	days of 3400 Kd []
HGT _{Standort}	value of heating degree days (HGT12/20) at the building location
	[Kd], with a maximum of 4000 Kd.

6.7.3.4 Requirements for the final energy demand of new residential buildings

New buildings within the residential sector have to be in compliance with the following requirements:

$EEB_{BGF,WG} \leq HWB_{BGF}$;WG,max,Standort + WWWB _{BGF} + f_{HT} * HTEB _{BGF,WG,Ref}	
$EEB_{BGF,WG} \leq HVVB_{BGF}$	WG,max,Standort + WWWWBBGF + THT "HIEBBGF,WG,Ref	

Where:

EEB_{BGF,WG} specific final energy demand for new residential buildings

⁵⁰ Cf. OIB Richtlinie 6 (2007)

$HWB_{BGF,WG,max,Standort}$	maximum allowable annual heating demand per m ² of gross plot area at the building location
HWB _{BGF,WG,r}	nax,Standort = HWB _{BGF,WG,max,Ref} * HGT _{Standort} / 3400
HWB _{BGF,WG,r}	nax,Ref maximum allowable annual heating demand at the reference climate
HGT _{Standort}	value of heating degree days (HGT _{12/20}) at the actual building location
	hot water heating demand referring to the gross plot area
$HTEB_{BGF,WG,Ref}$	specific energy demand of the heating facility of a reference facility According to the OIB – Guideline referring to the gross plot area
f _{нт}	Increase factor of the specific energy demand of the heating facility of a reference facility: $f_{HT} = 1,05$.

6.7.3.5 Requirements for heat transferring components

The following U-Factors must not be exceeded:

Component	U-Factor [W/m²K]
Exterior walls	0,35
Small-sized exterior walls, which do not exceed 2% of the total surface area of exterior walls. []	0,70
Partition walls between residential and commercial units	0,90
Walls against unheated building parts that are frost free (exception: attics)	0,60
Walls against unheated or not developed attics	0,35
Walls against other buildings at property lines	0,50
Ground-contact walls and floors	0,40
Windows, French doors, glazed or unglazed doors and other vertical transparent components against unheated building parts	2,50
Windows and French doors in residential buildings against outside air	1,40
Other Windows, French doors and vertical transparent components against outside air, glazed or unglazed exterior doors	1,70
Roof windows against outside air	1,70
Ceilings against outside air, against attics (aerated or uninsulated) and over passageways as well as sloping roofs against outside air	0,20

Table 23: Required U-Factors⁵¹

6.7.3.6 Special requirements for heat transferring components

In presence of wall-, floor- and ceiling heating systems the maximum heat transfer resistance between the heated surface and the outside air must reach a minimum value of 4,0 m²K/W and between the heated surface and the soil or the unheated building part it must reach a minimum value of $3,5 \text{ m}^2$ K/W.

⁵¹ Cf. OIB Richtlinie 6 (2007)

6.8 Energy certificate

The Energy certificate for residential building must include the following minimum content:

- heating requirement of the building and a comparison to reference values
- Energy demand of the heating technology
- Final energy demand
- Recommendation of measures to reduce the final energy demand of the building, excluding new buildings.⁵²

In May 2006 the Austrian National Council issued the federal law stating the obligation to provide an Energy certificate in case of sale and handover of buildings, both residential and designed for business activity. The provincial laws govern the regulations for new buildings, renovations and additions as well as complete rules about calculation, content, form and issuance competences. On the 1st of January 2008 the Energy Certificate for new buildings became obligatory and one year later it was compulsory for renovations and additions.

As a result of the federalist legal situation in Austria where building- and energy laws are subject to the provincial legislation, the basic idea of a uniform legislation will not be implemented. However, eight of the nine provinces agreed on standardized calculations methods. The energy pass is being regulated in the ÖNORM H 5055 – Energy certificate for buildings. Competences of issuance are controlled by the provincial legislators.

According to the implemented EU-Guideline all new buildings, extensive renovations, extensions and additions already require the issuance of an Energy Pass in the submission phase at the certification authorities. Since 2009 there is an obligation to provide an Energy Pass when residential buildings, apartments, offices or commercial buildings are for sale, lease or rent. The validity of an Energy Pass is ten years and the responsibility of

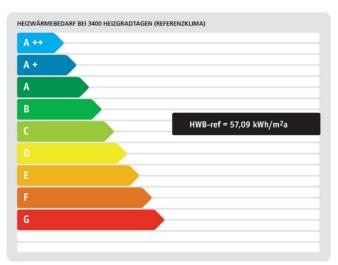


Figure 8: Energy Groups within the Energy Certificate

submittal lies with the owner, landlord or seller of an object. ⁵³ The classification is conducted by using Energy Groups (see Fig. 8)

⁵² Cf. OIB Richtlinie 6 (2007)

7 DISCUSSION – ENERGY EFFICIENCY

7.1 Comparison with CEC – Title 24

In order to avoid confusion concerning the conversion of imperial and SI units, table 24 indicates the equivalent values for each system. Given R-Values stated by the California Energy Code or components of the reference project were converted according to this table and shown in SI units within all the following calculations.

	= 5,070 W /III K
1 W/m²K	= 0,176 Btu/h·ft²· °F

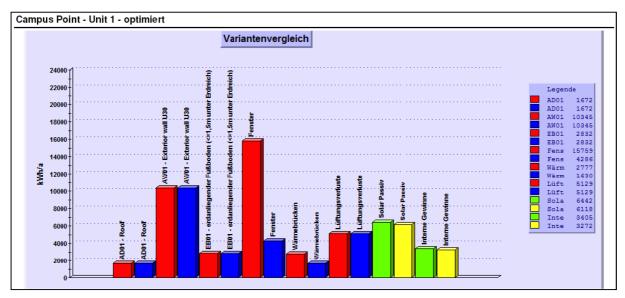
Table 24: Conversion of units

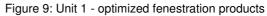
Component	U-factors [W/m²K] in OIB Guideline 6	U-factors [W/m ² K] in 2010 Building Energy Efficiency Standards
Exterior walls (wood framed)	0,35	0,34
Exterior walls (mass heavy)	0,35	1,04
Roofs/ ceilings	0,20	0,16
Windows (against outside air)	1,40	2,67
Doors (exterior – not swinging)	1,70	8,23
Doors (exterior – not swinging)	1,70	3,97
Skylights (no curb)	2,00	4,66 & 6,30 (curb)

Table 25: U-factor comparison

At this point a reference to table 33 in chapter 9.2.1 gives an exemplary statement about the quality of the building envelope of residential multi story buildings in California. The calculated total annual heating demands state as shown below:

 $HWB_{BGF} = 195,05 \text{ kWh/m}^2 \text{a for the actual location}$ $HWB_{BGF,Ref} = 147,19 \text{ kWh/m}^2 \text{a for the reference climate}$


This results in a classification of "Group F" which exceeds Austrian envelope criteria. The main responsibility of the poor outcome of this calculation obviously are the differing U-factors of fenestration products between the two used Codes OIB-6 and Title 24. A reduction to the maximum Austrian values would cause an improvement of the total annual heating value by 42%, resulting in a classification "Group D" by receiving the following values:


 $HWB_{BGF} = 107,16 \text{ kWh/m}^2 \text{a for the actual location}$

 $HWB_{BGF,Ref} = 81,88 \text{ kWh/m}^2 a$ for the reference climate

⁵³ URL: http://www.energieausweis.at/energieausweis-informationen.htm [30.9.2010]

According to chapter 6.5.3.1 the maximum HWB_{BGF,Ref} for this building in Austria is calculated by the formula 19 * $(1+2,5/lc) = 62,18 \text{ kWh/m}^2 a$ which is still not met after an improvement of the fenestration products. Further reduction could be achieved by revising the U-factors of fenestration products further downwards or focus on the wall framing structure.

Maximum OIB-6 values can be reached by reducing the U-factors of windows to 1,2 W/m²K, exterior walls to 0,20 W/m²K and the floor of the lowest level to 0,30 W/m²K (see Fig. 10). This way, an improvement of 56% compared to the original version (see Appendix B, chapter 9.2.6) and a classification in "Group C" could be achieved.

 $HWB_{BGF,Ref} = 62,10 \text{ kWh/m}^2 \text{ a for the reference climate}$

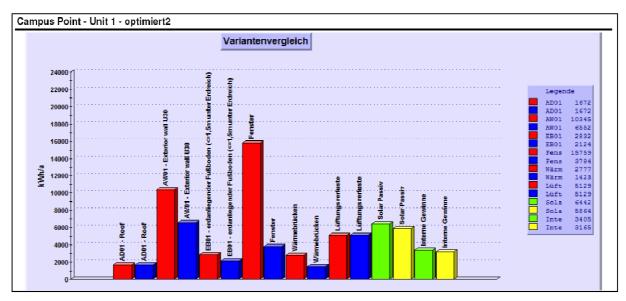


Figure 10: Unit 1 - optimized to reach OIB-6 goals

7.2 Comparison with LEED

Due to the major distinctions of the voluntary and holistic LEED system to the mandatory Austrian Energy certificate, which mainly focuses on energy efficiency, it is difficult to define significant comparative values. Further research about that topic involves solely the building physical calculation of the building envelope as well as annual heating and cooling demands of the LEED certification compared to the

or New Construction and Major Renovations		LEED [®] 2009 for Core and Shell Development	
Total Possible Points**	110*	Total Possible Points*	* 110*
🧐 Sustainable Sites	26	Sustainable Sites	28
Water Efficiency	10	Water Efficiency	10
😳 Energy & Atmosphere	35	😳 Energy & Atmosphere	37
🙆 Materials & Resources	14	Materials & Resources	13
🕝 Indoor Environmental Quality	15	🕝 Indoor Environmental Quality	12
lut of a possible 100 points + 10 bon lertified 40+ points, Silver 50+ points fold 60+ points, Platinum 80+ points		* Out of a possible 100 points + 10 i ** Certified 40+ points, Silver 50+ po Gold 60+ points, Platinum 80+ po	ints,
Innovation in Design	6	Innovation in Design	6
Regional Priority	4	(2) Regional Priority	4

Austrian energy certificate. For the present Master's Thesis the comparison of the two mandatory certification models 'Energy certificate' and 'Title 24' has been carried out primarily but also the suitability of the Energy certificate as a prerequisite for a LEED certification was taken into consideration. While the Austrian Energy certificate focuses on the performance of the building envelope and energy demands, this section only accounts for 34 out of 110 total possible points (31%) of the LEED for Homes Rating System (see Fig. 11) and the rater can choose between two calculation methods as shown in Figure 12:

Energy & Atmosph	ere	Optional pat	hways th	rough the	EA Category	
EA 1	Optimize Energy Pe	rformance (34 Pts.)			
EA 2					Insulation (2 Pt	s.)
EA 3					Air Infiltration (3	Pts.)
EA 4					Windows (3 Pt	s.)
EA 5					Duct tightness (3	Pts.)
EA 6					Space heating & Cooli	ng (4 pts.)
EA 7	Hot Water Distribu	tion System (2 Pts.)		Domestic Hot Water	(6 Pts.)
EA 8	Hot Water Pipe	Insulation (1 Pt.)			Lighting (3 Pts	.)
EA 9					Appliances (3 P	ts.)
EA 10					Renewable Energy (10 Pts.)
EA 11		Refr	idgerant I	Managem	ent (1 Pt.)	

Figure 12: Pathways through the EA Category in the LEED for Homes Rating System

The LEED for Homes Rating System follows the energy efficiency rating of the Energy Star

Home Energy Rating which yields a projected preconstruction HERS Index quite similar to the Austrian Energy Certificate. This rating also includes onsite inspections after completion of the project such as a blower door and duct test, to validate leakiness of the house and ducts, which together with the pre-construction HERS Index results in the generation of the HERS index score. Within this scoring system, a home which is built in accordance to the 2006 International Energy Conservation Code (IECC) scores a HERS Index of 100, while zero energy home score an Index of 0. That establishes a scale on which an improvement of percentage compared to a standard IECC home is shown. (See Fig. 13)⁵⁴

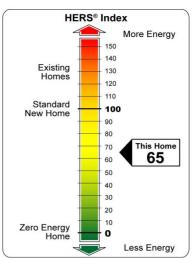
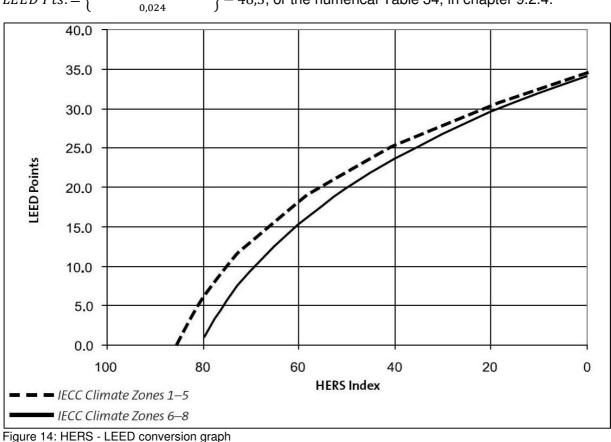



Figure 13: HERS Index

The obtained HERS Index is then indirectly transferred into the LEED for Homes Rating System by using the conversion graph⁵⁵ (Fig.14) based on the formula

LEED Pts. = $\left\{\frac{[Log(100-HERS Index)]}{0,024}\right\}$ - 48,3; or the numerical Table 34, in chapter 9.2.4:

⁵⁴ URL: http://www.resnet.us/home-energy-ratings [10.11.2010]

⁵⁵ U.S. Green Building Council: LEED for Homes Rating System, Version 2008. Washington, 2008

Choosing the performance option to receive an Energy Star for Homes certificate, the following mandatory requirements have to be met:

Envelope	Completed Thermal Bypass Inspection Checklist								
Ductwork	Leakage \leq 6 cfm to outdoors / 100 f ²								
Energy	At least one of the following Energy Star product category has to be included:								
Star	- Heating or cooling equipment								
Products	- Windows that meet the following eligibility requirements:								
	Energy Star window Zone Southern South Central North/Central Northern								
	Window U-factor $[W/m^2K]$ $\leq 3,70$ $\leq 2,27$ $\leq 2,27$ $\leq 1,99$								
	Window SHGC: $\leq 0,40$ $\leq 0,40$ $\leq 0,55$ Any								
	Table 26: Energy Star - window requirements								
	- Water heating equipment								
	- Five or more Energy Star qualified light fixtures, appliances, ceiling fans								
	equipped with lighting fixtures, and/or ventilation fans								

Table 27: Energy Star requirements

Fulfilling the windows section of the Energy Star product category of Table 26, applied to the reference project Campus Point, results in an improvement of 21% compared to the original version (see Fig. 15) by about cutting in half the window heat loss which goes hand in hand with a reduction by more than 50% of solar heat gains through the windows, since the solar heat gain coefficient is being improved. That definitely makes sense in the actual climate zone 3 (according to Fig. 18, chapter 9.2.5) in California, in which the main problem will certainly be overheating in summer and not heating during a cold winter season, such as prevalent in Austria.

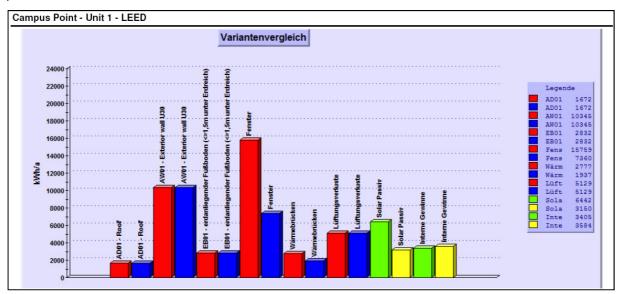


Figure 15: Windows providing Energy Star conformance

7.2.1 HERS calculation

While the submitted and approved plans of Campus Point in accordance with Title 24 of the California Building Code reach a HERS score of 91 and therefore do not qualify for LEED points according to table 34, a change of the building envelope criteria for this reference project in minimum accordance to OIB6 would result in 10,5 out of 34 possible points in the LEED for Homes Rating system by reaching a HERS Score of 74 in climate zone 3 - California. (Fig. 18 & 19, chapter 9.2.5)

For comparative reasons, the actual designated location of the building in San Luis Obispo in combination with the adequate Californian climate zone (zone 3) were used as the initial values for the HERS calculation of the building's efficiency. In order to obtain suitable values for an OIB6 compliant building, the calculations performed in chapter 9.2 were adjusted to reach the OIB conformance of 45 kWh/m²a within the reference climate. (See Fig. 16). This adjustment was carried out, by reducing the building envelope criteria in a step-by-step approach of applying lower U-Factors until conformance was obtained.

	Heizv	värmebe	edarf n	ach o	dem M	onats	bilanz	verf	ahr
				Г	Referenzk	lima —		7	
Transmissionsverluste	$Q_T =$	11.786 k	Wh/a		Q _T =	8.896	kWh/a		
Lüftungsverluste	Q <i>V</i> =	5.130 k	Wh/a		Q _V =	3.872	kWh/a		
Solare Gewinne passiv	Q , =	5.581 k	Wh/a		Q ₅ =	3.681	kWh/a		
Innere Gewinne passiv	Q _i =	3.047 k	Wh/a		Q _i =	2.503	kWh/a		
 Heizwärmebedarf	Q _k =	8.288 k	Wh/a		Q _k =	6.584	k₩h/a		
Standortklima HWB _{BGF}		56,39 k	Wh/m²a	Refer	enzklima	44,80	k₩h/m²a		
HWB _{BGF} max zul foerd		45 k	Wh/m²a	Н₩В	BGF foerd	45	k₩h/m²a	0	
			¥	HWB _{BC}	GF,max,Ref		kWh/m²a kWh/m²a	0	
Heizlast Energieauswei Gebäude Heizlast Flächenbez. Heizlast	P _{tot} =	4,65 kW 31,62 W/	m² BGF	Heizlast Gebäud Flächer	vereinfach le Heizlast nbez. Heizl	P,	$p_t = 3$	5,50 7,45	k₩ ₩/m²
Luftwechsel	=	0,40 1/h		Luftwee	chsel		=	0,50	1/h

Figure 16: Heating demand – 45 kWh/m²a minimum compliance to OIB6

to 78 points on the HERS scale.

In order to obtain comparable values the calculation had to be performed for an equivalent US climate zone, which was found in the city Minneapolis in the state of Minnesota by comparing the data of heating degree days. (See Fig. 19) Due to this change, and the fact, that the HERS rating depends strongly on the actually used energy instead of using a reference climate, the exact same calculation lead to a HERS rating of only 87, which does not result in any LEED points at all. Even a further reduction of building envelope U-Factors, which lead to a 33% reduction of the energy demand and a total of 30 kWh/m²a in accordance to the OIB6 guideline, the improvement on the HERS scale was only by 6,9% to

a total of 81 points. (see Fig. 17) Further reduction to an energy demand of 20 kWh/m²a lead

	He	eizw	arme	•De	edart i	nach	dem M	Ionats	bilanz	/en	lahrer
							Referenzi	klima —		R.	
Transmissionsverluste	Q _T	=	5.75	56 k	Wh/a		$Q_T =$	4.345	kWh/a		
Lüftungsverluste	Q _V	=	5.13	30 k	Wh/a		Q _V =	3.872	kWh/a		
Solare Gewinne passiv	Q,	=	4.78	34 k	Wh/a		Q s =	3.101	kWh/a		
Innere Gewinne passiv	Q _i	-	2.70)1 k	Wh/a		Q _i =	2.240	kWh/a		
Heizwärmebedarf	Q _h	=	3.40)1 k	:Wh/a		Q _k =	2.876	k₩h/a		
Standortklima HWB _{BGF}			23,1	4 k	Wh/m²a	Ref	erenzklima	19,57	k₩h/m²a		
HWB _{BGF} max zul foerd			4	5 k	Wh/m²a	HW	B _{BGF} foerd	20	k₩h/m²a	0	
					*		BGF,max,Re BGF,max	1 - 10 C C C C C C C C C C C C C C C C C C	k₩h/m²a kWh/m²a	0	
Heizlast Energieausweis	-					Heizla	st vereinfac	ht nach	ÖNORM EN	128	31 🧉
이 것은 것 같은 것 같은 것 같은 것 같은 것 같은 것 같아요. ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?	Ptot	=	2,99		Contract and the second second	Gebä	ude Heizlas	t P _t	ot = 3		11111111111111111111111111111111111111
	P1		20,35 0,40		m² BGF		enbez. Heiz echsel	last P			W/m² BG 1/h

Figure 17: Heating demand - 30 kWh/m²a compliance to OIB6

While the responsible authorities do not publish data to calculate the HERS value, above performed calculations show, that the annual energy demand with regard to the building envelope does not influence the HERS value in the same ratio the Energy certificate Scale is affected. The HERS index obviously rather takes the building as a holistic system into consideration. Some input examples within the EnergyGauge Software are the heating and cooling system, duct location and insulation, hot water supply system, appliances and lights as well as photovoltaics. As an example, in addition to the latest version of the above performed calculations with a resulting HERS index of 78 and no credits for the LEED system, a 30m² photovoltaics system was applied without modifying any other data. This adjustment lead to a HERS index of 58 and thus a LEED credit of 16,5 points.

An incomprehensible measure of the EnergyGauge's approach of calculating the building envelope's energy efficiency is the absence of a matrix for fenestration products, in which cardinal points can be entered, which is a decisive factor for solar heat gain. The only way to do so is by adding an extra sunspace, which can only be one room.

Further research on this topic could provide a detailed analysis of prerequisites for a LEED rating by complying to the OIB-6 guideline, and therefore help to introduce and distribute the LEED System in Austria.

8 CONCLUSION

This thesis displays the current situation of building standards in California by providing a comparison to the in Austria prevalent codes. The main goal was to show major differences in the field of structural calculations such as wind and seismic as well as the field of energy efficiency by comparing different methods of certification.

The results clearly state a considerable vulnerability of the U.S. wind calculation which is about 6 times less stringent than the Austrian one within the case study of the chosen reference project in San Luis Obispo, California. However, this phenomenon is not effective for both of the mainly investigated topics concerning structural calculations. It should therefore be mentioned that the results of the seismic analyses were almost identical when using the same input values for calculations according to the different codes.

On the otherhand, a verification of the residential ceiling's vibration behavior is not even necessary at allwhen submitting the structural data for approval at the responsible authorities in California. The part of building physics was a tender subject, since scheme of comparability had to be found. The final outcome provides an initial outlook concerning the usability of the Energy certificate as a prerequisite for a "LEED for Homes" certification. So, complying with the anyhow mandatory regulations of the OIB-6 guideline in Austria would already provide 10,5 out of 34 reachable points in the category of Energy and Atmosphere.

Finally, the fictitious rearrangement of the reference project to climate zone 6 which is very similar to the Austrian climate, even provides a basis of comparison with regard to heating

9 APPENDIX

9.1 Appendix A

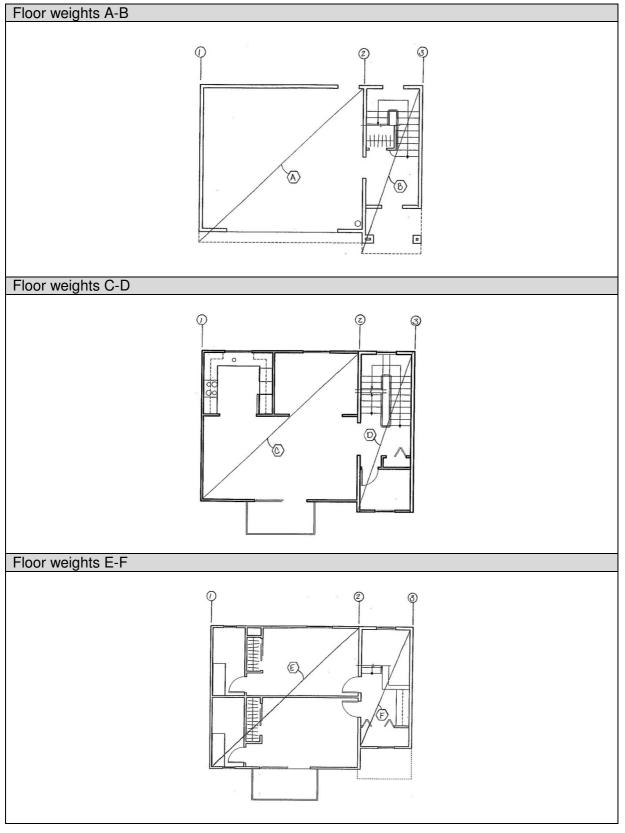


Table 28: Floor weights - Areas A-F

9.1.1 Occupancy Groups

Occupancy Group R – Division 1

Residential occupancies containing sleeping units where the occupants are primarily transient in nature, including:

Boarding houses (transient) Hotels (transient) Motels (transient)

Occupancy Group R – Division 3

Residential occupancies where the occupants are primarily permanent in nature and not classified as Group R-1, R-2, R-2.1, R-3.1, R-4 or I, including:

Buildings that do not contain more than two dwelling units.

Adult care facilities that provide accommodations for six or fewer clients of any age for less than 24 hours. Licensing categories that may use this classification include, but are not limited to: Adult Day Programs.

Child care facilities that provide accommodations for six or fewer clients of any age for less than 24 hours. [...]

Family Day-Care Homes that provide accommodations for 14 or fewer children, in the provider's own home for less than 24-hours.

Congregate living facilities or congregate residences with 16 or fewer persons. Adult care and child care facilities that are within a single-family home are permitted to comply with the Californian Residential Code.

Occupancy Group U

Such buildings shall be classified as Group U and shall include the following uses:

- 1. Livestock shelters or buildings, including shade structures and milking barns.
- 2. Poultry buildings or shelters.
- 3. Barns.
- 4. Storage of equipment and machinery used exclusively in agriculture.
- 5. Horticultural structures, including detached production greenhouses and crop protection shelters.
- 6. Sheds.
- 7. Grain silos.
- 8. Stables.⁵⁶

⁵⁶ California Building Standards Commission: 2010 California Building Code, Title 24, Part 2, Volume 2-2, p. 697, Sacramento: 2010

9.2 Appendix B

9.2.1 LEED rating system

CREDIT	TITLE	NC	SCHOOLS	CS
SS Prerequisite 1	Construction Activity Pollution Prevention	Required	Required	Required
SS Prerequisite 2	Environmental Site Assessment	NA	Required	NA
SS Credit 1	Site Selection	1 point	1 point	1 point
SS Credit 2	Development Density and Community Connectivity	5 points	4 points	5 points
SS Credit 3	Brownfield Redevelopment	1 point	1 point	1 point
SS Credit 4.1	Alternative Transportation—Public Transportation Access	6 points	4 points	6 points
SS Credit 4.2	Alternative Transportation—Bicycle Storage and Changing Rooms	1 point	1 point	2 points
SS Credit 4.3	Alternative Transportation—Low-Emitting and Fuel-Efficient Vehicles	3 points	2 points	3 points
SS Credit 4.4	Alternative Transportation—Parking Capacity	2 points	2 points	2 points
SS Credit 5.1	Site Development—Protect or Restore Habitat	1 point	1 point	1 point
SS Credit 5.2	Site Development—Maximize Open Space	1 point	1 point	1 point
SS Credit 6.1	Stormwater Design—Quantity Control	1 point	1 point	1 point
SS Credit 6.2	Stormwater Design—Quality Control	1 point	1 point	1 point
SS Credit 7.1	Heat Island Effect—Nonroof	1 point	1 point	1 point
SS Credit 7.2	Heat Island Effect—Roof	1 point	1 point	1 point
SS Credit 8	Light Pollution Reduction	1 point	1 point	1 point
SS Credit 9	Tenant Design and Construction Guidelines	NA	NA	1 point
SS Credit 9	Site Master Plan	NA	1 point	NA
SS Credit 10	Joint Use of Facilities	NA	1 point	NA
CREDIT	TITLE	NC	SCHOOLS	CS
WE Prerequisite 1	Water Use Reduction	Required	Required	Required
WE Credit 1	Water Efficient Landscaping	2-4 points	2-4 points	2-4 points
WE Credit 2	Innovative Wastewater Technologies	2 points	2 points	2 points
WE Credit 3	Water Use Reduction	2-4 points	2-4 points	2-4 points
WE Credit 4	Process Water Use Reduction	NA	1 point	NA

Table 29: LEED Rating No.1

CREDIT	TITLE		NC	S	CHOOLS	CS	
EA Prerequisite 1	Fundamental Commissioning of Building Energy Systems	Required		Required		Required	
EA Prerequisite 2	Minimum Energy Performance	Red	quired	Required		Required	
EA Prerequisite 3	Fundamental Refrigerant Management	Red	quired	R	equired	Required	
EA Credit 1	Optimize Energy Performance	1-19) points	1-1	19 points	3-21 points	
EA Credit 2	On-site Renewable Energy	1-7	points	1-	7 points	4 points	
EA Credit 3	Enhanced Commissioning	2 p	points	2	2 points	2 points	
EA Credit 4	Enhanced Refrigerant Management	2 p	points		1 point	2 points	
EA Credit 5	Measurement and Verification	З р	points	2	2 points	NA	
EA Credit 5.1	Measurement and Verification—Base Building		NA		NA	3 points	
EA Credit 5.2	Measurement and Verification—Tenant Submetering	NA		NA	3 points		
EA Credit 6	Green Power	2 p	points	2	2 points	2 points	
CREDIT	TITLE		NC		SCHOOLS	CS	
MR Prerequisite 1	Storage and Collection of Recyclables		Requir	ed	Required	Required	
MR Credit 1.1	Building Reuse—Maintain Existing Walls, Floors, and Roof		1-3 poi	nts	1-2 points	s NA	
MR Credit 1	Building Reuse—Maintain Existing Walls, Floors, and Roof		NA	NA		1-5 points	
MR Credit 1.2	Building Reuse—Maintain Interior Nonstructural Elements		1 poir	nt 1 point		NA	
MR Credit 2	Construction Waste Management		1-2 poi	nts	1-2 points	a 1-2 points	
	eenen aenen maaragement	1-2 poi		*			
MR Credit 3	Materials Reuse		1-2 poi	nts	1-2 points	1 point	
MR Credit 3 MR Credit 4					1-2 points 1-2 points	<u> </u>	
	Materials Reuse		1-2 poi	nts	· · · · · · · · · · · · · · · · · · ·	1-2 points	
MR Credit 4	Materials Reuse Recycled Content		1-2 poi 1-2 poi	nts nts	1-2 points	1-2 points	
MR Credit 4 MR Credit 5	Materials Reuse Recycled Content Regional Materials		1-2 poi 1-2 poi 1-2 poi	nts nts nt	1-2 points 1-2 points	i 1-2 pointsi 1-2 points	

Table 30: LEED Rating No.2

CREDIT	TITLE	NC	SCHOOLS	CS
IEQ Prerequisite 1	Minimum Indoor Air Quality Performance	Required	Required	Required
IEQ Prerequisite 2	Environmental Tobacco Smoke (ETS) Control	Required	Required	Required
IEQ Prerequisite 3	Minimum Acoustical Performance	NA	Required	NA
IEQ Credit 1	Outdoor Air Delivery Monitoring	1 point	1 point	1 point
IEQ Credit 2	Increased Ventilation	1 point	1 point	1 point
IEQ Credit 3.1	Construction Indoor Air Quality Management Plan During Construction	1 point	1 point	NA
IEQ Credit 3	Construction Indoor Air Quality Management Plan During Construction	NA	NA	1 point
IEQ Credit 3.2	Construction Indoor Air Quality Management Plan Before Occupancy	1 point	1 point	NA
IEQ Credit 4.1	Low-Emitting Materials—Adhesives and Sealants	1 point	1 point*	1 point
IEQ Credit 4.2	Low-Emitting Materials—Paints and Coatings	1 point	1 point*	1 point
IEQ Credit 4.3	Low-Emitting Materials—Flooring Systems	1 point	1 point*	1 point
IEQ Credit 4.4	Low-Emitting Materials—Composite Wood and Agrifiber Products	1 point	1 point*	1 point
IEQ Credit 4.5	Low-Emitting Materials—Furniture and Furnishings	NA	1 point*	NA
IEQ Credit 4.6	Low-Emitting Materials—Ceiling and Wall Systems	NA	1 point*	NA
IEQ Credit 5	Indoor Chemical and Pollutant Source Control	1 point	1 point	1 point
IEQ Credit 6.1	Controllability of Systems—Lighting	1 point	1 point	NA
IEQ Credit 6.2	Controllability of Systems—Thermal Comfort	1 point	1 point	NA
IEQ Credit 6	Controllability of Systems—Thermal Comfort	NA	NA	1 point
IEQ Credit 7.1	Thermal Comfort—Design	1 point	1 point	NA
IEQ Credit 7	Thermal Comfort—Design	NA	NA	1 point
IEQ Credit 7.2	Thermal Comfort—Verification	1 point	1 point	NA
IEQ Credit 8.1	Daylight and Views—Daylight	1 point	1-3 points	1 point
IEQ Credit 8.2	Daylight and Views—Views	1 point	1-3 points	1 point
IEQ Credit 9	Enhanced Acoustical Performance	NA	1 point	NA
IEQ Credit 10	Mold Prevention	NA	1 point	NA
note: Schools projects may o	- choose from IEQ Credits 4.1-4.6 for a maximum of 4 points.			
CREDIT	TITLE			
ID Credit 1	Innovation in Design			

CREDIT	TITLE
ID Credit 1	Innovation in Design
ID Credit 2	LEED® Accredited Professional
ID Credit 3	The School as a Teaching Tool
CREDIT	TITLE
RP Credit 1	Regional Priority

Table 31: LEED Rating No.3

9.2.2 Slab insulation requirements for heated slab-on-grade

Insulation Location	Insulation Orientation	Installation Requirements	Climate Zone	Insulation R- Factor
		From the level of the top of the slab, down 16 inches or to the frost	1 – 15	5
Outside edge of heated slab, either inside or outside the foundation wall	Vertical	line, whichever is greater. Insulation may stop at the top of the footing where this is less than the required depth. For below grade slabs, vertical insulation shall be extended from the top of the foundation wall to the bottom of the foundation (or the top of the footing) or to the frost line, whichever is greater.	16	10
		Vertical insulation from top of slab at inside edge of outside wall	1 – 15	5
Between heated slab and outside foundation wall	Vertical and Horizontal	down to the top of the horizontal insulation. Horizontal insulation from the outside edge of the vertical insulation extending 4 feet toward the center of the slab in a direction normal to the outside of the building in plan view.	16	10 vertical and 7 horizontal

Table 32: Slab-on-grade insulation R-Factors

9.2.3 Prescriptive envelope criteria for high-rise residential buildings

										Climat	e Zone							
			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Roofs/Ceilings	Metal Building		0.065	0.065	0.065	0.065	0.065	0.065	0.065	0.065	0.065	0.065	0.065	0.065	0.065	0.065	0.065	0.06
	Wood Framed a	und Other	0.034	0.028	0.039	0.028	0.039	0.039	0.039	0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.02
Roofing Products	Low-sloped	Aged Reflectance	NK	NK	NK	NK	NK	NK	NK	NK	NK	0.55	0.55	NK	0.55	0.55	0.55	NR
		Emittance	NR	NR.	NR	NR	NR	NR	NR	NR	NR	0.75	0.75	NR	0.75	0.75	0.75	NR
Walls	Metal Building	•	0.061	0.061	0.061	0.061	0.061	0.061	0.061	0.061	0.061	0.061	0.057	0.057	0.057	0.057	0.057	0.05
	Metal framed		0.105	0.105	0.105	0.105	0.105	0.105	0.105	0.105	0.105	0.105	0.105	0.105	0.105	0.105	0.105	0.10
	Mass Light		0.170	0.170	0.170	0.170	0.170	0.227	0.227	0.227	0.196	0.170	0.170	0.170	0.170	0.170	0.170	0.17
	Mass Heavy		0.160	0.160	0.160	0.184	0.211	0.690	0.690	0.690	0.690	0.690	0.184	0.253	0.211	0.184	0.184	0.16
	Wood-framed a	nd Other	0.059	0.059	0.059	0.059	0.059	0.059	0.059	0.059	0.059	0.059	0.042	0.059	0.059	0.042	0.042	0.04
Floors/Soffits	Mass		0.045	0.045	0.058	0.058	0.058	0.069	0.092	0.092	0.092	0.069	0.058	0.058	0.058	0.045	0.058	0.03
	Other		0.034	0.034	0.039	0.039	0.039	0.039	0.071	0.039	0.039	0.039	0.039	0.039	0.039	0.034	0.039	0.03
Windows	U-factor		0.47	0 4 7	0 47	0 47	0 47	0 47	0 47	0 47	0 47	0 47	0 47	0 4 7	0 47	0 47	0 47	0.4
	RSHG North	0-10% WWR	0.68	0.49	0.61	0.61	0.61	0.61	0.61	0.61	0.61	0.49	0.49	0.49	0.49	0.47	0.47	0.6
		10-20% WWR	0.68	0.49	0.61	0.61	0.61	0.61	0.61	0.61	0.61	0.49	0.49	0.49	0.49	0.43	0.43	0.6
		20-30% WWR	0.47	0.40	0.61	0.61	0.61	0.61	0.61	0.61	0.61	0.40	0.40	0.40	0.40	0.43	0.43	0.4
		30-40% WWR	0 47	0 4 0	0.55	0.55	0.55	0 61	0.61	0.61	0.61	0.40	0 40	0 40	0 40	0 41	0 41	0.43
	RSHG Non-	0-10% WWR	0.46	0.36	0.41	0.41	0.41	0.47	0.47	0.47	0.47	0.36	0.36	0.36	0.36	0.36	0.36	0.40
	North	10-20% WWR	0.46	0.36	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.36	0.36	0.36	0.36	0.31	0.31	0.40
		20-30% WWR	0.36	0.31	0.31	0.31	0.31	0.35	0.36	0.36	0.36	0.31	0.31	0.31	0.31	0.26	0.26	0.30
		30-40% WWR	0.30	0.26	0.26	0.26	0.26	0 31	031	0 31	0.31	0.26	0.26	0.26	0.26	0.26	0.26	0.30
Doors, U-	Non-Swinging		0.50	1.45	1.45	1.45	1.45	1.45	1.45	1.45	1.45	1.45	1.45	1.45	1.45	1.45	1.45	0.50
factor	Swinging		0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70
Skylight	U-factor	Glass, curb	1.11	1.11	1.11	1.11	1.11	1.11	1.11	1.11	1.11	1.11	1.11	1.11	1.11	1.11	1.11	1.11
		Glass, no curb Plastic	0.68	0.68	0.82	0.82 1.11	0.82	0.82	0.82	0.82	0.82	0.68	0.68 1.11	0.68	0.68	0.68	0.68	0.6
	SHGC				0.57	0.57	0.57	0.57		0.57	0.57		0.46			0.46	0.46	0.4
	SIGC	Glass, 0-2% Glass, 2.1-5%	0.46	0.46	0.37	0.37	0.37	0.37	0.57	0.37	0.37	0.46	0.40	0.46	0.46	0.40	0.40	0.4
		Plastic, 0 2%	0.50	0.52	0.52	0.52	0.52	0.40	0.40	0.40	0.40	0.52	0.52	0.52	0.52	0.51	0.51	0.5
		Plastic, 2.1-5%	0.55	0.34	0.37	0.37	0.37	0.57	0.57	0.57	0.57	0.37	0.37	0.37	0.37	0.37	0.37	0.5
	1	1 addite, 2.1 576	1 0.00	1 4.21	V.22	0.27	0.22	V.57	0.07	0.07	V.27	V.21	0.51	0.27	V.21	0.27	0.27	1 0.0

Table 33: Prescriptive envelope criteria

9.2.4 Numerical HERS – LEED conversion table

	IECC Climate Zones 1-	-5		IECC Climate Zones 6-	-8
	Percent			Percent	-
HERS Index	Above IECC 2004	LEED for Homes Points	HERS Index	Above IECC 2004	LEED for Home Points
100	0		100	0	
95	5		95	5	
90	10		90	10	
85	15		85	15	
84	16	2.0	84	16	
83	17	3.0	83	17	
82	18	4.0	82	18	
81	19	5.0	81	19	
80	20	6.0	80	20	
79	21	7.0	79	21	2.0
78	22	7.5	78	22	3.0
77	23	8.5	77	23	4.0
76	24	9.0	76	24	5.0
75	25	10.0	75	25	6.0
74	26	10.5	74	26	6.5
73	27	11.6	73	27	7.5
72	28	12.0	72	28	8.0
71	29	12.5	71	29	9.0
70	30	13.0	70	30	9.5
69	31	14.0	69	31	10.0
68	32	14.5	68	32	11.0
67	33	15.0	67	33	11.5
66	34	15.5	66	34	12.0
65	35	16.0	65	35	12.5
64	36	16.5	64	36	13.5
63	37	17.0	63	37	14.0
62	38	17.5	62	38	14.5
61	39	18.0	61	39	15.0
60	40	18.5	60	40	15.5
55	45	20.5	55	45	18.0
50	50	22.5	50	50	20.0
45	55	24.2	45	55	22.0
40	60	26.0	40	60	24.0
35	65	27.0	35	65	25.5
30	70	28.5	30	70	27.0
25	75	30.0	25	75	28.5
20	80	31.0	20	80	30.0
15	85	32.0	15	85	31.0
10	90	33.0	10	90	32.0
5	95	33.5	5	95	33.0
0	100	34.0	0	100	34.0

Table 34: Numerical HERS - LEED conversion table

9.2.5 U.S. Climate zones

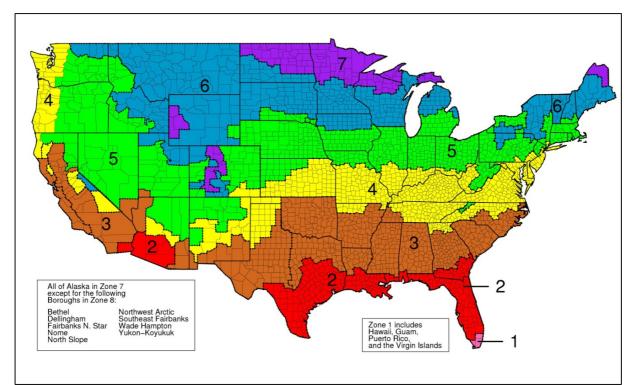


Figure 18: IECC Climate Zones⁵⁷

ZONE	тн	THERMAL CRITERIA						
NUMBER	IP Units	SI Units						
1	9000 < CDD50°F	5000 < CDD10°C						
2	6300 < CDD50°F ≤ 9000	3500 < CDD10°C ≤ 5000						
3A and 3B	4500 < CDD50°F ≤ 6300 AND HDD65°F ≤ 5400	2500 < CDD10°C ≤ 3500 AND HDD18°C ≤ 3000						
4A and 4B	CDD50°F ≤ 4500 AND HDD65°F ≤ 5400	CDD10°C ≤ 2500 AND HDD18°C ≤ 3000						
3C	HDD65°F ≤ 3600	HDD18°C ≤ 2000						
4C	3600 < HDD65°F ≤ 5400	2000 < HDD18°C ≤ 3000						
5	5400 < HDD65°F ≤ 7200	3000 < HDD18°C ≤ 4000						
6	7200 < HDD65°F ≤ 9000	4000 < HDD18°C ≤ 5000						
7	9000 < HDD65°F ≤ 12600	5000 < HDD18°C ≤ 7000						
8	12600 < HDD65°F	7000 < HDD18°C						

Figure 19: Heating Degree Days (HDD) in US climate zones⁵⁸

 ⁵⁷ URL: http://resourcecenter.pnl.gov/cocoon/morf/ResourceCenter/graphic/973 [10.11.2010]
 ⁵⁸ URL: http://blog.mapawatt.com/2010/11/19/climate-zones-and-degree-days/ [29.11.2010]

9.2.6 Energy Certificate (Reference object: Campus Point)

gemäß ÖNORM und Richtlinie 20		OIB Österreichisches	s Institut für Bautechni	k		
Gebäude	Campus	Point - Unit 1				
Gebäudeart	Einfamilie	nhaus	Erl	baut im Jahr	2010	
Gebäudezone			Ka	tastralgemeinde	Friedberg	
Straße			KG	• Nummer	64007	
PLZ/Ort	8240 Fried	dberg	Eir	nlagezahl		
			Gr	undstücksnr.		
EigentümerIn	Campus F	Point - Unit 1				
	8240 Fried	dbera				
			EI 3400 HEIZGRADT			
A ++						
A +						
A + A						
A + A B				HWB-ref = 147	',2 kWh/m²a	
A+ A B C				HWB-ref = 147	',2 kWh/m²a	
A + A B C D				HWB-ref = 147	',2 kWh/m²a	
A + A B C D E				HWB-ref = 147	',2 kWh/m²a	
A + A B C D E F				HWB-ref = 147	,2 kWh/m²a	

Figure 20: GEQ Sheet 1

Ausstellungsdatum 30.12.1899

Planung

Gültigkeitsdatum

Unterschrift

Dieser Energieausweis entspricht den Vorgaben der Richtlinie 6 "Energieeinsparung und Wärmeschutz" des Österreichischen Instituts für Bautechrik in Umsetzung der Richtlinie 2002/91/EG über die Gesamtenergieeffizienz von Gebäuden und des Energieausweis-Vorlage-Gesetzes (EAVG).

ErstellerIn-Nr.

Geschäftszahl

GWR-Zahl

EA-01-2007-SW-a EA-WG 25.01.2007

NSO

980 m 4601 Kd

365 d

-13,9 °C 20 °C

Energieausweis für Wohngebäude - Planung

gemäß ÖNORM H5055 und Richtlinie 2002/91/EG

OID Österreichisches Institut für Bautechnik

GEBÄUDEDATEN		KLIMADATEN
Brutto-Grundfläche	147 m²	Klimaregion
beheiztes Brutto-Volumen	492 m ³	Seehöhe
charakteristische Länge (Ic)	1,06 m	Heizgradtage
Kompaktheit (A/V)	0,95 1/m	Heiztage
mittlerer U-Wert (Um)	0,58 W/m²K	Norm - Außentemperatur
LEK - Wert	57	Soll - Innentemperatur

Referenzklima Standortklima Anforderungen zonenbezogen spezifisch zonenbezogen spezifisch ab 01.01.2010 [kWh/a] [kWh/m²a] [kWh/a] [kWh/m²a] [kWh/m²a] HWB 21.633 147,19 28.668 195,05 63,9 nicht erfüllt WWWB k.A. k.A. 40.934 HTEB-RH 278,51 HTEB-WW 85 0,58 HTEB 41.978 285,61 HEB 72.523 493,44 227,6 nicht erfüllt EEB 72.523 493.44 PEB CO2

* k.A. = keine Angabe, die Teile für die HEB Berechnung wurden nicht ausgeführt

"	
ERLAUTERUNG	EN
EIVERO LEIVOING	

Heizwärmebedarf (HWB):	Vom Heizsystem in die Räume abgegebene Wärmemenge die benötigt wird, um während der Heizsaison bei einer standardisierten Nutzung eine Temperatur von 20°C zu halten.
Heiztechnikenergiebedarf (HTEB):	Energiemenge die bei der Wärmeerzeugung und -verteilung verloren geht.
Endenergiebedarf (EEB):	Energiemenge die dem Energiesystem des Gebäudes für Heizung und Warmwasserversorgung inklusive notwendiger Energiemengen für die Hilfsbetriebe bei einer typischen Standardnutzung zugeführt werden muss.

Die Energiekennzahlen dieses Energieausweises dienen ausschließlich der Information. Aufgrund der idealsierten Eingangsparameter können bei tatsächlicher Nutzung erhebliche Alzweichungen auftreten. Insbesondere Nutzungseinheiten in besonderer Lage können aus Gründen der Geometrie und der Lage hinsichtlich ihrer Energiekennzahlen von den hier angegebenen abweichen. EA-01-2007-SW-a EA-WG 25.04.2007

Figure 21: GEQ Sheet 2

	_					
Datenblatt GE0 Campus Point						
Energiekennzahl	Förderung Steierma	ark				
HWB BGF, Förderu	ng	147 kWh/m²a	HWB BGF, Förderung max	45	kWh/m²a	
Gebäudedaten Brutto-Grundflä Konditioniertes Gebäudehüllfläd	Brutto-Volumen	147 m² 492 m³ 465 m²	charakteristische Länge I _с Kompaktheit А _Б / V _В	1,06 0,95		
Geometrische I Bauphysikalisch	Ermittlung der Eingabedaten Geometrische Daten: Christian Kasper, 07.11.2010 Bauphysikalische Daten: Christian Kasper, 07.11.2010 Haustechnik Daten:					
Ergebnisse am ta	tsächlichen Stando	ort: Friedberg				
Leitwert L_T				270,6		
	t (Wärmedurchgangs	skoeffizient) U _m			W/m²K	
Heizlast P _{tot}				10,6		
	värmeverluste Q _T	Luftura ha	alaabli 0.4	33.386	kWh/a kWh/a	
Lüftungswärme Solare Wärmen	lewinne passiv η x G	Luftwechs	eizani. 0,4		kWh/a	
-		-	uweise		kWh/a	
Innere Wärmegewinne passiv η x Q _i leichte Bauweise Heizwärmebedarf Q _h					kWh/a	
Flächenbezogener Heizwärmebedarf HWB _{BGF}					kWh/m²a	
Ergebnisse Refer	enzklima					
Transmissionsw	värmeverluste Q _T			25.201	kWh/a	
Lüftungswärme	verluste Q $_{ m V}$			3.872	kWh/a	
•	ewinne passiv η x C	•			kWh/a	
-	ewinne passiv η x C	Q _i			kWh/a	
Heizwärmebeda				21.633		
Flächenbezoge	ener Heizwärmebed	larf HWB _{BGF ref}		147,19	kWh/m²a	
Haustechniksyste Raumheizung:	em Kein Wärmebereitstellu	ungssystem erfasst				
Warmwasser: Kein Wärmebereitstellungssystem erfasst						
RLT Anlage:	natürliche Konditionier	ung; hygienisch erforderl	icher Luftwechsel = 0,4			
Berechnungsgrundlagen Der Energieausweis wurde mit folgenden ÖNORMen und Hilfsmitteln erstellt: GE0 von Zehentmayer Software GmbH www.geq.at Bauteile nach ON EN ISO 6946 / Fenster nach ON EN ISO 10077-1 / Erdberührte Bauteile vereinfacht nach ON B 8110-6 / Unkonditionierte Gebaudeteile vereinfacht nach ON B 8110-6 / Warmebrücken pauschal nach ON B 8110-6 / Verschattung vereinfacht nach ON B 8110-6						
Verwendete Normen und Richtlinien: B 8110-1 / ON B 8110-2 / ON B 8110-3 / ON B 8110-5 / ON B 8110-6 / ON H 5055 / ON H 5056 / ON EN ISO 13790 / ON EN ISO 13370 / ON EN ISO 6946 / ON EN ISO 10077-1 / ON EN 12831 / OIB Richtlinie 6						
Anmerkung: Der Energieausweis dient zur Information über den energetischen Standard des Gebäudes. Der Berechnung liegen durchschnittliche Klimadaten, standardisierte interne Wärmegewinne sowie ein standardisiertes Nutzerverhalten zugrunde. Die errechneten Bedarfswerte können daher von den tatsächlichen Verbrauchswerten abweichen. Bei Mehrfamilienwohnhäusern ergeben sich je nach Lage der Wohnung im Gebäude unterschiedliche Fnergiekennzahlen. Für die exakte Auslegung der Heizungsanlage muss eine Berechnung der Heizlast gemäß ÖNORM H 7500 erstellt werden					daher von den iterschiedliche	

Figure 22: GEQ Sheet 3

9.2.7 Project Documentation – "CAMPUS POINT"

Due to the most advantageous orientation of Unit 1, it was chosen for the calculation of the Energy Certificate.

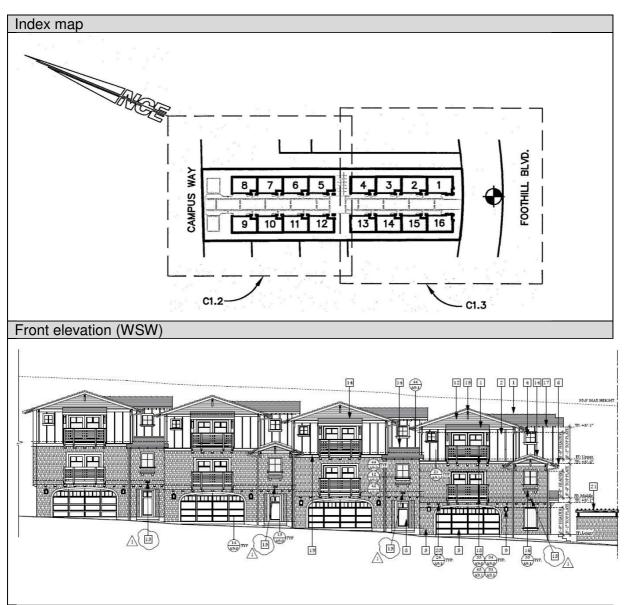
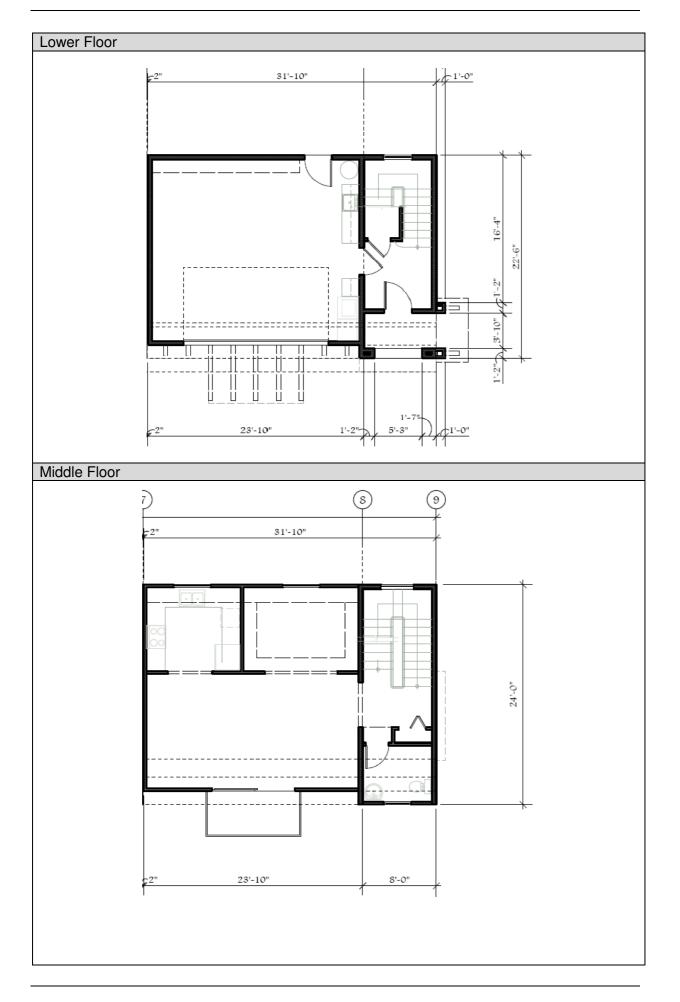


Table 35: Index and elevation


Reference Project relocated to:

Friedberg / Steiermark Elevation: 980m Climate zone: N/SE Reference elevation: 247,13m Orientation: Front – West-South-West

Layout:

in accordance to project documentation

Note: Due to the precise calculation procedure performed manually by using the program Microsoft Excel 2007 opposed to a calculation of the program GEQ using only the first two digits after the decimal point, final results may differ among the value of the digit or decimal places.

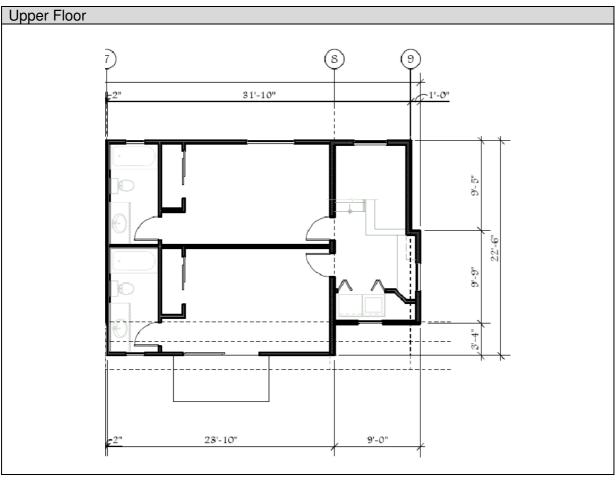


Table 36: Floor plans

9.2.8 Determination of the building's geometry (Units 1-4)

9.2.8.1 Gross plot area (BGF)

	Area 1		Area 2		Area 3		Gross plot
Floor	length [m]	width [m]	length [m]	width [m]	length [m]	width [m]	Area (BGF _{total}) [m²]
lower	2,44	5,33					13,01
middle	7,26	6,86	2,44	7,32			67,66
upper	7,26	6,86	2,87	2,44	2,97	2,74	64,94
						Σ =	145,61

Table 37: Gross plot area

9.2.8.2 Gross Volume (Vi)

Floor	Gross plot area (BGFtotal) [m ²]	Floor height (hi) [m]	Gross volume (Vi)
lower	13,01	2,84	36,93
middle	67,66	2,97	200,96
upper	64,94	2,84	184,44
basement floor	13,01	0,30	3,90
		Σ =	426,24

Table 38: Gross volume

9.2.9 Window types

Orientation	Floor	Туре	Width [m]	Height [m]	Quantit y	Area [m²]
North-North-West	lower	-				
	middl e	window (type 1 - 3040)	0,91	1,22		0,00
	upper	window (type 1 -3040)	0,91	1,22		0,00
				-		
East-North-East (rear)	lower	door (type 3 - 3068)	0,91	2,03	1	1,85
	middl e	window (Type C - 3040)	0,91	1,22	1	1,11
		window (Type D - 4050)	1,22	1,52	1	1,85
		window (Type E - 4030)	1,22	0,91	1	1,11
	upper	window (Type G - 4050)	1,22	1,52	1	1,85
		window (Type H - 2020)	0,61	0,61	1	0,37
South-South-East	lower	door (type 1 - 3068)	0,91	2,03	1	1,85
	middl e	window (Type K - 2030)	0,61	0,91	1	0,56
		window (Type M - 3040)	0,91	1,22	1	1,11
	upper	window (Type N - 3040)	0,91	1,22	1	1,11
West-South-West	lower	door (type 1 - 3068)	0,91	2,03	1	1,85
(front)	middl e	window (Type B - 3036)	0,91	1,07	1	0,97
		door (Type 8 - 8068)	2,44	2,03	1	4,95
	upper	window (Type I - 2020)	0,61	0,61	1	0,37
		door (Type 8 - 8068)	2,44	2,03	1	4,95

Σ = 25,87

Table 39: Fenestration products

Sum NNW:

Sum	ENE:

Windows [m ²]	Doors [m ²]
0,00	0

Sum SSE:

Sum WSW:

Windows [m²] 6,30

Windows [m ²]	Doors [m ²]	Windows [m ²]	Doors [m ²]	Doors (non	winging) [m ²]
2,78	1,85	11,25	1,85	9,91	

Doors [m²]

1,85

9.2.10 Facade area

Facade (NNW)			
Floor	Length [m]	Height [m]	Agross [m ²]
lower	6,4	2,84	18,18
middle	7,32	2,97	21,74
upper	6,86	2,84	19,48
		ΣAgross:	41,22
		- Σfenestration:	0,00
		= Anet:	41,22

Facade (EAST)			
Floor	Length [m]	Height [m]	Agross [m ²]
lower	2,44	2,84	6,93
middle	9,7	2,97	28,81
upper	10	2,84	28,40
		ΣAgross:	64,14
		- Σfenestration:	8,15

Zichestration:	0,10
= Anet:	55,99

Facade (SOUTH)			
Floor	Length [m]	Height [m]	Agross [m ²]
lower	6,86	2,84	19,48
middle	7,32	2,97	21,74
upper	6,86	2,84	19,48
		ΣAgross:	60,71
		- Σfenestration:	4,62
		= Anet:	56,08

Facade (WEST)			
Floor	Length [m]	Height [m]	Agross [m ²]
lower	2,44	2,84	6,93
middle	9,7	2,97	28,81
upper	10	2,84	28,40
		ΣAgross:	64,14
		- Σfenestration:	13,10

= Anet:	51,04
- Σfenestration:	13,10

Table 40: Facade dimensions

9.2.11 Determination of building physics

U-Factors of the Reference project were either given, or minimum values in accordance to Title 24 were inserted:

Component	U-Factor [W/m²K]
Exterior wall (2/4)	0,30
Basement ceiling	0,19
Floor lowest level	0,30
Roof	0,19
Windows	2,67
Exterior doors (swinging)	3,97
Exterior doors (not swinging)	8,23

Table 41: Components

9.2.12 Transmission conductance (LT)

$$L_T = L_e + L_u + L_g + L_\psi + L_\kappa \left[W/K\right]$$

Formula (2); ÖN B 8110-6

9.2.12.1 Simplified calculation: transmission conductance (L_T) for heating ($\Sigma f_{i,h} * A_i * U_i$)

$$L_{T} = \Sigma f_{i} * A_{i} * U_{i} + L_{\psi} + L_{\kappa} [W/K]$$

Formula (19); ÖN B 8110-6

				Li (fi,h*A*Ui)
Component	fi,h	Area [m²]	U-Factor [W/m ² K]	[W/K]
Roof	1	64,94	0,19	12,27
Overhang (2nd Floor)	1	4,46	0,19	0,84
Overhang (Entrance)	1	3,71	0,19	0,70
Basement floor	0,7	67,66	0,30	14,21
Exterior wall NNW	1	41,22	0,30	12,37
Exterior wall SSE	1	56,08	0,30	16,82
Exterior wall ENE	1	55,99	0,30	16,80
Exterior wall WSW	1	51,04	0,30	15,31
Windows NNW	1	0,00	2,67	0,00
Windows SSE	1	4,62	2,67	12,34
Windows ENE	1	8,15	2,67	21,76
Windows WSW	1	13,10	2,67	34,98
Doors - NNW	1	0,00	3,97	0,00
Doors - SSE	1	1,85	3,97	7,33
Doors - ENE	1	1,85	3,97	7,33
Doors - WSW	1	1,85	3,97	7,33
Doors - WSW (non swinging)	1	9,91	8,23	81,53
	ΣΑ =	386,43	Σfi,h * Ai * Ui =	261,93

Table 42: Component areas

9.2.13 Conductance addition due to 2-dimensional thermal bridges (L_{ψ})

9.2.13.1 Total transmission conductance for heating $(L_{\tau,h})$

Total transmission conductance for heating (LT,h)						
Σfi,h * Ai * Ui Lψ Lk LT,h [W/K]						
261,93 0 (neglected) 0 (neglected 261,93						

Table 43: Transmission conductance

9.2.14 Calculation of the ventilation conductance (Lv)

$$L_v = \rho_a * c_a * v_v [W/K]$$

Formula (24); ÖN B 8110-6

wherein:

- ρ_a air density; approx. 1,2 kg/m³
- c_a specific heat of air; approx. 1000 J/kgK (= 0,277 Wh/kgK)
- v_v air flow volume [m³/h]

$$v_v = n_{L,FL} * V_V [m^3/h]$$

Formula (25); ÖN B 8110-6

wherein:

 $n_{L,FL}$ energetically effective air exchange rate $[h^{-1}]$; $n_{L,FL}=0,4$ Table (2); ÖN B 8110-5 V_V energetically effective air volume (V_{net}); $[m^3]$

Ventilation conductance			
L	v = ρa * ca * vv		
ρa (air density) 1,20 kg/m ³			
Ca	0,277 Wh/kgK		
vv	=nL,FL *Vv		
	=0,4*Vv		
Vv	=0,8*BGF*h		
	337,87 m³		
vv 135,15 m³/h			
Lv =	44,92 m²		

Table 44: Ventilation conductance

9.2.15 Calculation of the total heat loss Table A.1; ÖN B 8110-5

$$\Theta_{\rm e} = a + b * H [W/K]$$

Formula (1); ÖN B 8110-5

wherein:

- Θ_e average outside temperature in given month [°C]
- a,b regression coefficient depending on climate zone H elevation in 100m

Table B.1-B.7; ÖN B 8110-5

	Calculation of the average monthly outside air temperature (Oe)							
					average reference outside	average interior		
Re	gion N/S) - Table	B.7 E	38110-5	temperature	temperature		
Μ	а	b	Н	Θe	Θe,Ref	Θi	Θi - Θe,Ref	Θi - Θe
1	-3,471	-0,010	9,8	-3,569	-1,53	20	21,53	23,569
2	-0,049	-0,229	9,8	-2,293	0,73	20	19,27	22,293
3	5,136	-0,412	9,8	1,098	4,81	20	15,19	18,902
4	10,483	-0,545	9,8	5,142	9,62	20	10,38	14,858
5	15,076	-0,545	9,8	9,735	14,2	20	5,8	10,265
6	18,013	-0,522	9,8	12,897	17,33	20	2,67	7,103
7	19,546	-0,468	9,8	14,960	19,12	20	0,88	5,040
8	18,653	-0,425	9,8	14,488	18,56	20	1,44	5,512
9	15,086	-0,342	9,8	11,734	15,03	20	4,97	8,266
10	8,876	-0,172	9,8	7,190	9,64	20	10,36	12,810
11	2,796	-0,139	9,8	1,434	4,16	20	15,84	18,566
12	-2,380	-0,010	9,8	-2,478	0,19	20	19,81	22,478

Table 45: Outside air temperature

9.2.16 Calculation of the monthly total heat loss (Q_i):

$Q_I = Q_T + Q_V [kWh/M]$
$Q_T = L_T \ ^* \ (\Theta_i \text{-} \Theta_e) \ ^* t \ ^* \ ^1\!/_{1000} \ [kWh/M]$
$Q_{T} = L_{V} * (\Theta_{i} \text{-} \Theta_{e}) * t * {}^{1}\!/_{1000} \text{ [kWh/M]}$

Formula (38); ÖN B 8110-6 Formula (38); ÖN B 8110-6 Formula (38); ÖN B 8110-6

wherein:

- $L_T \qquad total \ transmission \ conductance \ [W/K]$
- L_v Ventilation conductance [W/K]
- Θ_i average interior temperature (=20 °C)
- $\Theta_{e} \quad \text{ average outside temperature }$
- t monthly hours [h/M]

Calculation (actual location climate)					
Month	t (h/M)	QT [kWh/M]	Qv [kWh/M]	Qı [kWh/M]	
1	744	4593,12	787,75	5380,86	
2	672	3924,05	673,00	4597,05	
3	744	3683,54	631,75	4315,28	
4	720	2802,12	480,58	3282,70	
5	744	2000,44	343,09	2343,53	
6	720	1339,50	229,73	1569,23	
7	744	982,27	168,47	1150,74	
8	744	1074,18	184,23	1258,40	
9	720	1558,84	267,35	1826,18	
10	744	2496,33	428,14	2924,46	
11	720	3501,46	600,52	4101,98	
12	744	4380,50	751,28	5131,78	
Calculation	(reference o	limate)			
Month	t (h/M)	QT,Ref [kWh/M]	Qv,Ref [kWh/M]	QI,Ref [kWh/M]	
1	744	4195,76	719,60	4915,35	
2	672	3391,91	581,73	3973,64	
3	744	2960,22	507,70	3467,92	
4	720	1957,60	335,74	2293,34	
5	744	1130,30	193,85	1324,15	
6	720	503,54	86,36	589,90	
7	744	171,49	29,41	200,91	
8	744	280,63	48,13	328,76	
9	720	937,31	160,75	1098,06	
10	744	2018,95	346,26	2365,21	
11	720	2987,31	512,34	3499,66	
12	744	3860,56	662,11	4522,67	

Table 46: Climate calculations

Formula (39); ÖN B 8110-6

Table (2); ÖN B 8110-6

9.2.17 Calculation of interior heat gain (Q_i)

$$Q_i = q_{i,h,n} * BGF * 0.8 * t * 1/_{1000} [kWh/M]$$

wherein:

 $q_{i,h,n}$ interior net heat gain [W/m²]

BGF gross plot area [m²]

t monthly hours [h/M]

Month	t [h/M]	Qi [kWh/M]
1	744	325,01
2	672	293,56
3	744	325,01
4	720	314,53
5	744	325,01
6	720	314,53
7	744	325,01
8	744	325,01
9	720	314,53
10	744	325,01
11	720	314,53
12	744	325,01
		Table 47: Interior heat gain

9.2.18 Calculation of solar heat gain (Qs)

$$\begin{split} A_{trans,h} &= A_g * F_s * g_w \ [m^2] \\ A_g &= 0,7 * A_w \ [m^2] \\ F_s &= min \ (F_h, \ F_o, \ F_f) \\ g_w &= 0,9 * 0,98 * g \end{split}$$

wherein:

- A_g glazed area [m²]
- A_w total area of window

 F_s shading factor (=0,85)

- g solar energy transmittance
- g_w effective solar energy transmittance

Formula (54); ÖN B 8110-6 Formula (50); ÖN B 8110-6 Formula (51); ÖN B 8110-6 Formula (52); ÖN B 8110-6

Table 17-19; ÖN B 8110-6 Table 20; ÖN B 8110-6

Orientation North						
Window type	Aw [m²]	Ag [m²]	Fs	g	gw	Atrans,h
Glazing	0,00	0,00	0,85	0,87	0,77	0,00
Orientation South						
Window type	Aw [m²]	Ag [m²]	Fs	g	gw	Atrans,h
Glazing	2,78	1,94	0,85	0,87	0,77	1,27
Orientation East						
Window type	Aw [m²]	Ag [m²]	Fs	g	gw	Atrans,h
Glazing	6,30	4,41	0,85	0,87	0,77	2,88
Orientation West						
Window type	Aw [m²]	Ag [m²]	Fs	g	gw	Atrans,h
Glazing	11,25	7,88	0,85	0,87	0,77	5,14

9.2.18.1 Determination of solar effective window area (Atrans,h):

Table 48: Solar effective window area

9.2.18.2 Determination of the monthly average reference radiation values (Is,Ref):

			Table A	.1; ÖN B 8110-5
Orientation	SSE	NNW	ENE	WSW
Month	Is,Ref [kWh/m²M]	Is,Ref [kWh/m²M]	IS,Ref [kWh/m ² M]	Is,Ref [kWh/m²M]
1	37,06	13,11	15,72	25,66
2	56,49	21,08	26,16	40,81
3	74,95	30,23	42,43	60,88
4	78,96	43,71	59,22	73,61
5	89,71	61,53	79,55	91,63
6	81,69	65,39	82,66	89,06
7	87,32	66,64	85,31	94,34
8	89,33	50,03	71,33	87,43
9	79,92	37,86	51,09	68,16
10	66,04	23,81	32,66	50,27
11	38,90	13,21	16,01	26,63
12	31,97	9,60	11,36	20,66

Table 49: Reference radiation values

9.2.18.3 Determination of the monthly average location radiation values (Is) for horizontal areas

$$I_{S} = a_{2} * h^{2} * a_{1} * h + a_{0} [kWh/m^{2}M]$$

Formula (2); ÖN B 8110-5

wherein:

- Is average monthly sum of global radiation per month on horizontal areas [kWh/m²M]
- ai Coefficients of climate zones per month Table D.1 D.14; ÖN B 8110-5
- h elevation

Month	a2	a 1	a 0	Is [kWh/m²M]
1	-1,7582E-06	1,4255E-02	2,6423E+01	38,70
2	1,4429E-06	8,4006E-03	4,9796E+01	59,41
3	7,3326E-06	-1,2605E-03	8,4435E+01	90,24
4	1,3960E-05	-2,1482E-02	1,2313E+02	115,48
5	2,3025E-05	-5,6133E-02	1,7128E+02	138,38
6	2,7337E-05	-6,8771E-02	1,7704E+02	135,90
7	1,9636E-05	-5,0399E-02	1,7678E+02	146,25
8	1,5634E-05	-3,4042E-02	1,5037E+02	132,02
9	1,0394E-05	-9,7880E-03	1,0432E+02	104,71
10	4,8585E-06	-2,4663E-03	6,7617E+01	69,87
11	-8,1460E-07	1,4348E-02	2,9541E+01	42,82
12	1,1435E-06	8,3307E-03	1,9925E+01	29,19

Table 50: Actual radiation values

9.2.18.4 Determination of the monthly average location depending radiation values (ISOL)

$$I_{SOL} = I_S * T_F [kWh/m^2M]$$

Formula (2); B8110-5

wherein:

- I_{SOL} monthly average location depending radiation values for any slope and azimuth
- Is average monthly sum of global radiation per month on horizontal areas

 I_{S} average monthly su T_{F} transposition factor

Table E.1-E.7; ÖN B 8110-5

SSE (Azimut +/- 22.5°)	Region: N/SE, 980m, (750-1250m)		
Month	ls [kWh/m²M]	Tf	Isol [kWh/m²M]
1	38,70	1,72	66,57
2	59,41	1,31	77,83
3	90,24	0,94	84,83
4	115,48	0,70	80,84
5	138,38	0,55	76,11
6	135,90	0,52	70,67
7	146,25	0,53	77,51
8	132,02	0,63	83,17
9	104,71	0,80	83,77
10	69,87	1,16	81,04
11	42,82	1,59	68,08
12	29,19	1,81	52,83

NNW (Azimut +/- 157,5°)					
Month	ls [kWh/m²M]	TF	Isol [kWh/m²M]		
1	38,70	0,32	12,39		
2	59,41	0,29	17,23		
3	90,24	0,33	29,78		
4	115,48	0,38	43,88		
5	138,38	0,41	56,74		
6	135,90	0,42	57,08		
7	146,25	0,41	59,96		
8	132,02	0,40	52,81		
9	104,71	0,38	39,79		
10	69,87	0,31	21,66		
11	42,82	0,33	14,13		
12	29,19	0,36	10,51		

Table 51: Location depending radiation values

ENE (Azimut +/- 112,5°)					
Month	Is [kWh/m²M]	T⊧	Isol [kWh/m²M]		
1	38,70	0,45	17,42		
2	59,41	0,46	27,33		
3	90,24	0,50	45,12		
4	115,48	0,53	61,21		
5	138,38	0,54	74,73		
6	135,90	0,54	73,39		
7	146,25	0,53	77,51		
8	132,02	0,55	72,61		
9	104,71	0,53	55,50		
10	69,87	0,48	33,54		
11	42,82	0,47	20,13		
12	29,19	0,47	13,72		

WSW (Azimut +/- 67,5°)	WSW (Azimut +/- 67,5°)					
Month	Is [kWh/m²M]	TF	Isol [kWh/m²M]			
1	38,70	1,04	40,25			
2	59,41	0,88	52,28			
3	90,24	0,76	68,58			
4	115,48	0,66	76,22			
5	138,38	0,60	83,03			
6	135,90	0,58	78,82			
7	146,25	0,58	84,82			
8	132,02	0,64	84,50			
9	104,71	0,70	73,30			
10	69,87	0,84	58,69			
11	42,82	1,00	42,82			
12	29,19	1,08	31,52			

Table 52: Location depending radiation values 2

9.2.18.5 Calculation of the monthly solar heat gains $(\mathbf{Q}_{s,h})$ for the actual location

$$Qs, h = \sum j (ISOL, j * \Sigma Atrans, h, k, j) \left[\frac{kWh}{M}\right]$$

wherein:

- s radiation
- h situation of heating
- j orientation
- k type of transparent surface

Μ	Orientation												
0		SSE			NNW			ENE			WSW		5 (0, 1);
N T H	Isol	Atrans,h	Qs,h	Isol	Atrans,h	Qs,h	Isol	Atrans,h	Qs,h	Isol	Atrans,h	Qs,h	Σ (Qs,h)j
1	66,57	1,27	84,36	12,39	0,00	0,00	17,42	2,88	50,11	40,25	5,14	206,79	341,26
2	77,83	1,27	98,63	17,23	0,00	0,00	27,33	2,88	78,63	52,28	5,14	268,61	445,87
3	84,83	1,27	107,49	29,78	0,00	0,00	45,12	2,88	129,81	68,58	5,14	352,34	589,65
4	80,84	1,27	102,44	43,88	0,00	0,00	61,21	2,88	176,09	76,22	5,14	391,57	670,10
5	76,11	1,27	96,45	56,74	0,00	0,00	74,73	2,88	214,99	83,03	5,14	426,56	737,99
6	70,67	1,27	89,55	57,08	0,00	0,00	73,39	2,88	211,13	78,82	5,14	404,94	705,61
7	77,51	1,27	98,22	59 <i>,</i> 96	0,00	0,00	77,51	2,88	223,00	84,82	5,14	435,77	756,99
8	83,17	1,27	105,40	52,81	0,00	0,00	72,61	2,88	208,91	84,50	5,14	434,08	748,39
9	83,77	1,27	106,15	39,79	0,00	0,00	55,50	2,88	159,66	73,30	5,14	376,56	642,37
10	81,04	1,27	102,70	21,66	0,00	0,00	33,54	2,88	96,48	58,69	5,14	301,50	500,68
11	68,08	1,27	86,28	14,13	0,00	0,00	20,13	2,88	57,90	42,82	5,14	219,98	364,16
12	52,83	1,27	66,95	10,51	0,00	0,00	13,72	2,88	39,47	31,52	5,14	161,94	268,35

Table 53: Actual solar heat gains

9.2.18.6 Calculation of the monthly solar heat gains $(Q_{s,h})$ for the reference climate

Μ	Orientation												
0		SSE			NNW			ENE			WSW		$\Sigma (0, h)$
N T H	Isol	Atrans,h	Qs,h	Isol	Atrans,h	Qs,h	Isol	Atrans,h	Qs,h	Isol	Atrans,h	Qs,h	Σ (Qs,h)j
1	37,06	1,27	46,96	13,11	0,00	0,00	15,72	2,88	45,23	25,66	5,14	131,83	224,01
2	56,49	1,27	71,58	21,08	0,00	0,00	26,16	2,88	75,26	40,81	5,14	209,66	356,50
3	74,95	1,27	94,98	30,23	0,00	0,00	42,43	2,88	122,07	60,88	5,14	312,76	529,81
4	78,96	1,27	100,06	43,71	0,00	0,00	59,22	2,88	170,37	73,61	5,14	378,16	648,60
5	89,71	1,27	113,68	61,53	0,00	0,00	79,55	2,88	228,86	91,63	5,14	470,74	813,28
6	81,69	1,27	103,52	65,39	0,00	0,00	82,66	2,88	237,81	89,06	5,14	457,54	798,86
7	87,32	1,27	110,65	66,64	0,00	0,00	85,31	2,88	245,43	94,34	5,14	484,66	840,75
8	89,33	1,27	113,20	50,03	0,00	0,00	71,33	2,88	205,21	87,43	5,14	449,16	767,58
9	79,92	1,27	101,27	37,86	0,00	0,00	51,09	2,88	146,98	68,16	5,14	350,16	598,42
10	66,04	1,27	83,69	23,81	0,00	0,00	32,66	2,88	93,96	50,27	5,14	258,26	435,90
11	38,90	1,27	49,29	13,21	0,00	0,00	16,01	2,88	46,06	26,63	5,14	136,81	232,16
12	31,97	1,27	40,51	9,60	0,00	0,00	11,36	2,88	32,68	20,66	5,14	106,14	179,33

Table 54: Reference solar heat gains

9.2.19 Determination of monthly total heat gain (Qg,h)

 $Q_{g,h} = Q_i + Q_{s,h} [kWh/M]$

Formula (46); ÖN B 8110-6

	Climate of actual location						
Month	Qi [kWh/M]	Qs,h	Q _{g,h} [kWh[M]				
1	325,01	341,26	666,27				
2	293,56	445,87	739,42				
3	325,01	589,65	914,66				
4	314,53	670,10	984,63				
5	325,01	737,99	1063,00				
6	314,53	705,61	1020,14				
7	325,01	756,99	1082,00				
8	325,01	748,39	1073,40				
9	314,53	642,37	956,89				
10	325,01	500,68	825,69				
11	314,53	364,16	678,68				
12	325,01	268,35	593,36				

	Reference climate						
Month	Qi [kWh/M]	Qs,h	Q _{g,h} [kWh[M]				
1	325,01	224,01	549,02				
2	293,56	356,50	650,06				
3	325,01	529,81	854,82				
4	314,53	648,60	963,12				
5	325,01	813,28	1138,29				
6	314,53	798,86	1113,39				
7	325,01	840,75	1165,76				
8	325,01	767,58	1092,59				
9	314,53	598,42	912,95				
10	325,01	435,90	760,91				
11	314,53	232,16	546,69				
12	325,01	179,33	504,34				

Table 55: Monthly total heat gain

9.2.20 Balancing and Calculation of the heating requirement

	Building constant (τ):					
V =	426,24					
LT =	261,93					
LV=	44,92341474					
fBW=	10	Wh/m³K				

Table 56: Building constants

Formula	Calculation	Result
C = f _{BW} * V [Wh/K]	10*1734,45	4262,41
$\tau = C / (L_T + L_V) [h]$	17344,49/(925,57+45,59)	13,89
ľ	C = f _{BW} * V [Wh/K]	C = f _{BW} * V [Wh/K] 10*1734,45

Table 57: Results

Wherein:

- C effective heat storage capacity of the building
- L_T transmission conductance [W/K]
- L_v ventilation conductance [W/K]
- f_{BW} coefficient for construction method. Lightweight construction: $f_{BW} = 10 \text{ Wh/m}^3\text{K}$
- τ building constant

9.2.20.1 Calculation of monthly utilisation of heat gains when heating (n_h)

 $\begin{array}{l} \text{If: } \gamma \neq 1 \ \ \rightarrow \ n_h = (1 - \gamma_h^{a}) \ / \ (1 - \gamma_h^{a} + 1) \\ \text{If: } \gamma = 1 \ \ \rightarrow \ n_h = a \ / \ (1 + a) \end{array}$

	Climate of actual location						
Month	Qg,h	Qi	γh	Nh			
1	666,27	5380,86	0,12	0,98			
2	739,42	4597,05	0,16	0,97			
3	914,66	4315,28	0,21	0,96			
4	984,63	3282,70	0,30	0,92			
5	1063,00	2343,53	0,45	0,86			
6	1020,14	1569,23	0,65	0,78			
7	1082,00	1150,74	0,94	0,67			
8	1073,40	1258,40	0,85	0,70			
9	956,89	1826,18	0,52	0,83			
10	825,69	2924,46	0,28	0,93			
11	678,68	4101,98	0,17	0,97			
12	593,36	5131,78	0,12	0,98			

	Reference climate						
Month	Qg,h	Qi	γh	Nh			
1	549,02	4915,35	0,11	0,99			
2	650,06	3973,64	0,16	0,97			
3	854,82	3467,92	0,25	0,94			
4	963,12	2293,34	0,42	0,87			
5	1138,29	1324,15	0,86	0,70			
6	1113,39	589,90	1,89	0,44			
7	1165,76	200,91	5,80	0,17			
8	1092,59	328,76	3,32	0,28			
9	912,95	1098,06	0,83	0,71			
10	760,91	2365,21	0,32	0,92			
11	546,69	3499,66	0,16	0,97			
12	504,34	4522,67	0,11	0,99			

Table 58: Utilisation of heat gains

7

8

9

10

11

12

1150,74

1258,40

1826,18

2924,46

4101,98

5131,78

424,48

505,15

1030,77

2156,10

3443,06

4547,76 28728,59

	Climate of actual location							
Month	Qı	Qg,h	Nh	Qh,a				
1	5380,86	666,27	0,98	4726,41				
2	4597,05	739,42	0,97	3878,17				
3	4315,28	914,66	0,96	3440,83				
4	3282,70	984,63	0,92	2373,13				
5	2343,53	1063,00	0,86	1428,48				
6	1569,23	1020,14	0,78	774,23				

1082,00

1073<u>,</u>40

956,89

825,69

678,68

593,36

0,67

0,70

0,83

0,93

0,97

0,98

Σ =

9.2.21 Balancing: Calculation of the monthly (Qh) and annual heating requirement (Qh,a):

		Reference climate		
Month	QI	Qg,h	nü h	Qh,a
1	4915,35	549,02	0,99	4374,47
2	3973,64	650,06	0,97	3342,16
3	3467,92	854,82	0,94	2661,03
4	2293,34	963,12	0,87	1450,69
5	1324,15	1138,29	0,70	528,09
6	589,90	1113,39	0,44	100,99
7	200,91	1165,76	0,17	6,27
8	328,76	1092,59	0,28	25,18
9	1098,06	912,95	0,71	450,27
10	2365,21	760,91	0,92	1668,83
11	3499,66	546,69	0,97	2967,42
12	4522,67	504,34	0,99	4025,79
			Σ =	21601,18

Σ=

Table 59: Monthly and annual heating requirements

9.2.22 Determination of building-physical energy indexes

9.2.22.1 Energy indexes independent of location

Kennzahl	Berechnung - Gebäudeteil	Ergebnis:
kond. Brutto-Grundfl. (BGF)		145,61 m²
kond. Brutto-Volumen (V)		426,24 m ³
Gebäudehülle (A)		386,43 m²
Mittl. U-Wert (Um)	Um = Lt / A	0,68 W/m²K
char. Länge (lc)	Ic = V / A	1,10 m
Kompaktheit (k0)	k0 = A / V	0,907 m ⁻¹
LEK-Wert	LEK = 300 * [Um / (2 + lc)]	65,53

Table 60: Energy index

9.2.22.2 Energy indexes dependent of location

HWBBGF = Qh,a / BGF =	197,29 kWh/m²a
HWBBGF,Ref	148,35 kWh/m²a
	Table 61: Energy index dependent of location

.

9.3 Modification of fenestration products according to OIB-6

Component	U-Factor [W/m ² K]
Exterior wall (2/4)	0,30
Basement ceiling	0,19
Floor lowest level	0,30
Roof	0,19
Windows	1,40
Exterior doors (swinging)	1,70
Exterior doors (not swinging)	1,70

Table 62: Modification 1

Kennzahl	Berechnung - Gebäudeteil	Ergebnis:
kond. Brutto-Grundfl. (BGF)		145,61 m²
kond. Brutto-Volumen (V)		426,24 m ³
Gebäudehülle (A)		386,43 m²
Mittl. U-Wert (Um)	Um = Lt / A	0,39 W/m²K
char. Länge (lc)	lc = V / A	1,10 m
Kompaktheit (k0)	k0 = A / V	0,907 m ⁻¹
LEK-Wert	LEK = 300 * [Um / (2 + lc)]	37,98

Table 63: Modification 2

HWBBGF = Qh,a / BGF =	107,16 kWh/m²a
HWBBGF,Ref	81,88 kWh/m²a

Table 64: Modification 3

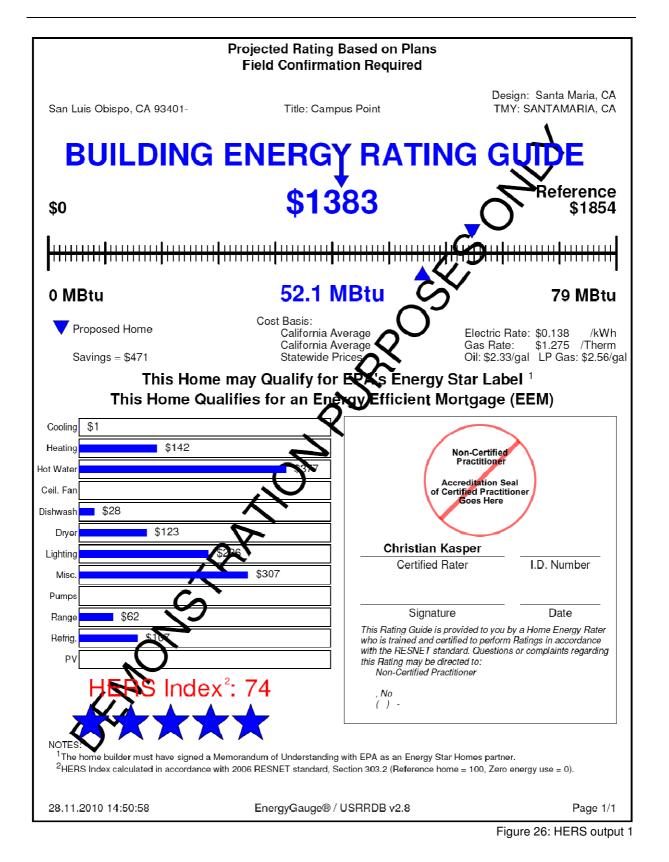
9.4 HERS calculation (performed with EnergyGauge Software)

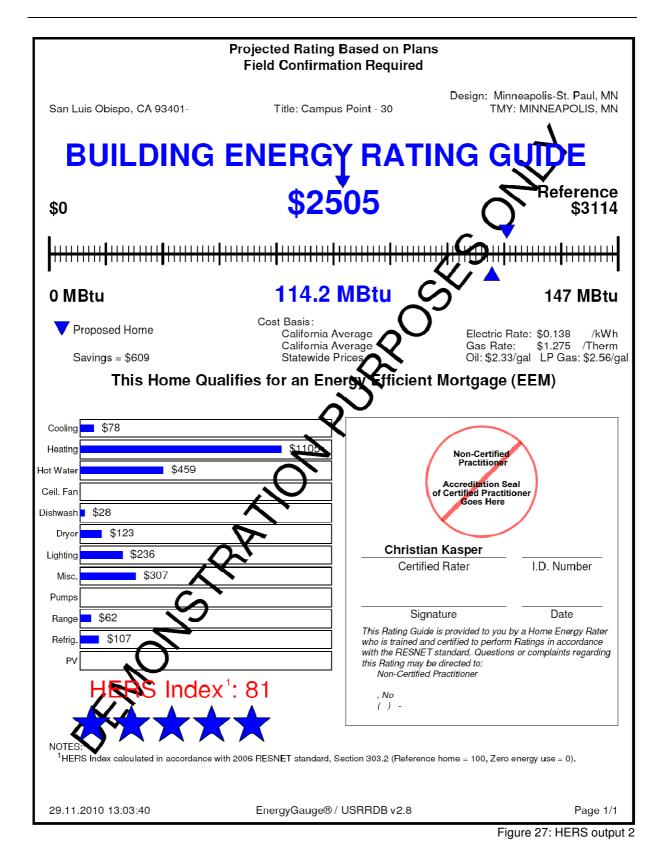
Building Input Summary Report

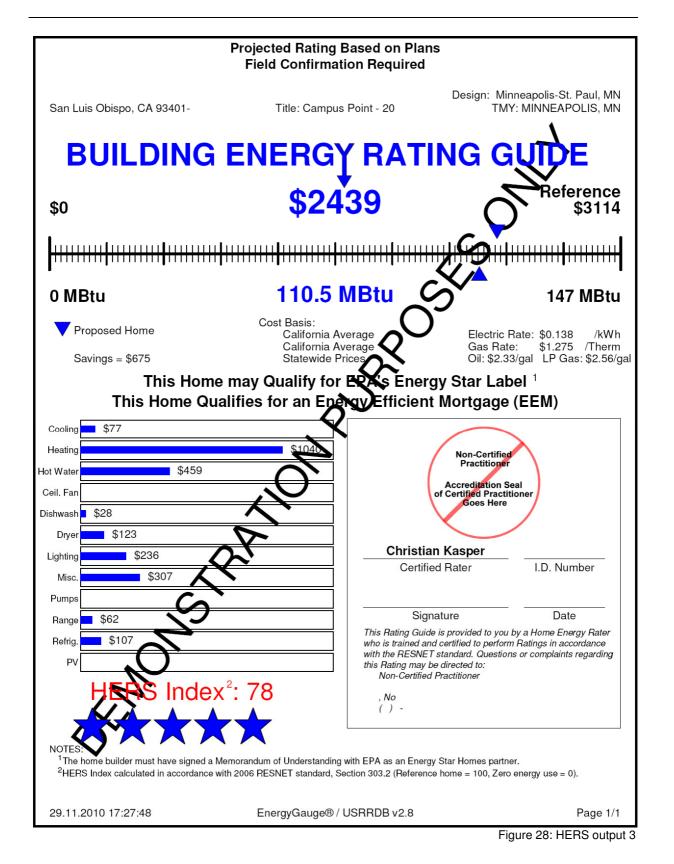
			PR	OJECT						
Title: Building Type: Owner: # of Units: Builder Name: Permit Office: Jurisdiction: Family Type: New/Existing: Comment:	: Name: Campus Point Office: tion: Type: Single-family kisting: New (From Plans)		Bedrooms: Bathrooms: Conditioned Are Total Stories: Worst Case: Rotate Angle: Cross Ventilation Whole House Fa	3 No 0 n:	2 1567 3 No 0		Adress Type: Lot # Block/SubDivision: PlatBook: Street: County: County: City, State, Zip:		Street Address San Luis Obispo , CA , 93401-	
			CL	IMATE.						
Design Locatio		Tmy Site	De 97.5	sign Temp % 2.5 %		ign Temp Summer	Heating Degree Day	Desi ys Moist	-	aily Temp Range
CA, Santa	Maria	CA_SANTAMA	RIA 33	76	70	75	3053	2	1	Medium
			UTILI	TY RATES	6					
Fuel	Unit	Utility Name				Month	nly Fixed Cos	t	\$/Unit	
Electricity Natural Gas Fuel Oil Propane	kWh Therm Gallon Gallon	California Average California Average California Default California Default					0 0 0 0		0.1381 1.275 2.33 2.56	
			SURR	DUNDING	s					
Ornt Type)	Shade He	Trees eight Width	Dist	ance I	Exist	Adjace Height	nt Buildings Width	[Distance
N Non NE Non E Non SE Non S Non SW Non W Non NW Non	9 9 9 9 9		Oft Oft Oft Oft Oft Oft	0 0 0 0 0 0	ft ft ft ft ft ft ft		O ft O ft O ft O ft O ft O ft O ft O ft	0 ft 0 ft 0 ft 0 ft 0 ft 0 ft 0 ft 0 ft		Oft Oft Oft Oft Oft Oft Oft Oft
			FL	.00RS						
# Floor	уре	Perime			Area	Joist R-V	alue	Tile	Wood	Carpet
1 Slab-C 2 Raised 3 Raised		Insulatio 1 ft			140.04 ft² 728.29 ft² 699 ft²			0 0 0	0 0 0	1 1 1
			Roof	Gable	Roof	Solar		Deck		
# Type		Materials	Area	Area	Color	Absor.	Tested	Insul.	Pitch	
1 Flat		Composition sh	ě.	0 ft ²	Medium	0.96	No	19	0 deg	
# Type		Ventil		t Ratio (1 in)	Area	RB	s id	СС		
1 No atti	<u> </u>	Venus		300	728.29 ft			N		
20.11.2010 14		Ven	EnergyGauge			IN	1	•	Fa	ge i of 4

Figure 23: HERS input 1

Building Input Summary Report


R Value 30 WALLS ared. Actual orientation is modified R-Value 43.68 60.27 43.68 60.36 43.68 44.36 43.68 54.94 DOORS Storr Non Non Non	T28.29 ft² ed by rotate angle shown in "I In Height Ft 10 602 10 603 10 549 10 549 10 549 10 0.26 9 0.26	Sheathing	Framing Fraction Solar Absor. 0.23 0.75 0.23 0.75 0.23 0.75 0.23 0.75 0.23 0.75 0.24 0.75 0.25 0.75 0.26 0.75 0.27 0.75 0.28 0.75 0.29 0.75 0.20 0.75 10 Area 20 ft ²		
WALLS ared. Actual orientation is modified Cavity Wir R-Value Ft 43.68 60.27 43.68 60.36 43.68 44.36 43.68 54.94 DOORS Storm Non Non	ed by rotate angle shown in " tth Height In A 10 602 10 603 10 443 10 549 ns U-Value a 0.26 a 0.26	Project" section above Sheathing Irea R-Value 2.7 ft² 43.68 3.6 ft² 43.68 3.7 ft² 43.68 9.4 ft² 43.68 Width Hei Ft In Ft 6 8 3 6 8 3	e. Framing Solar Fraction Absor. 0.23 0.75 0.23 0.75 0.23 0.75 0.23 0.75 0.23 0.75 0.23 0.75 0.23 0.75 0.20 0.75 0.20 0.75 0.20 0.75 0.21 0.75 0.22 0.75 0.23 0.75 0.20 ft ² 20 ft ²		
Actual orientation is modified. With R: Value With R: Value	Ith Height Height In A 10 602 10 603 10 443 10 549 10 549	Sheathing R-Value 2.7 ft² 43.68 3.6 ft² 43.68 3.7 ft² 43.68 9.4 ft² 43.68 9.4 ft² 43.68 Ft In Ft In 6 8 3 6 8 3	Framing Fraction Solar Absor. 0.23 0.75 0.23 0.75 0.23 0.75 0.23 0.75 0.23 0.75 0.24 0.75 0.25 0.75 0.26 0.75 0.27 0.75 0.28 0.75 0.29 0.75 0.20 0.75 10 Area 20 ft ²		
Cavity R. Value Wie Ft 43.68 60.27 43.68 60.36 43.68 44.36 43.68 54.94 DOORS Storr Non Non	Ith Height Height In A 10 602 10 603 10 443 10 549 10 549	Sheathing R-Value 2.7 ft² 43.68 3.6 ft² 43.68 3.7 ft² 43.68 9.4 ft² 43.68 9.4 ft² 43.68 Ft In Ft In 6 8 3 6 8 3	Framing Fraction Solar Absor. 0.23 0.75 0.23 0.75 0.23 0.75 0.23 0.75 0.23 0.75 0.24 0.75 0.25 0.75 0.26 0.75 0.27 0.75 0.28 0.75 0.29 0.75 0.20 0.75 10 Area 20 ft ²		
43.68 60.27 43.68 60.36 43.68 44.36 43.68 54.94 DOORS Storr Non Non	10 602 10 603 10 443 10 549 ns U-Value a 0.26 a 0.26	2.7 ft² 43.68 3.6 ft² 43.68 3.7 ft² 43.68 9.4 ft² 43.68 Width Hei Ft In Ft 6 8 3 6 8 3	0.23 0.75 0.23 0.75 0.23 0.75 0.23 0.75 0.23 0.75 0.23 0.75		
43.68 44.36 43.68 54.94 DOORS Storr Non Non Non	10 443 10 549 ns U-Value e 0.26 e 0.26	8.7 ft² 43.68 9.4 ft² 43.68 Width In Hei Ft In Ft 6 8 3 6 8 3	0.23 0.75 0.23 0.75		
43.68 54.94 DOORS Storr Non Non Non	10 549 ns U-Value e 0.26 e 0.26	9.4 lt² 43.68 Width Hei Ft In Ft 6 8 3 6 8 3	0.23 0.75		
DOORS Storr Non Non Non	ns U-Value e 0.26 e 0.26	Width Hei Ft In Ft 6 8 3 6 8 3	ight In Area 20 ft² 20 ft²		
Storr Non Non	e 0.26 e 0.26	Ft In Ft 6 8 3 6 8 3	<u>In Area</u> 20 ft ² 20 ft ²		
Non Non Non	e 0.26 e 0.26	Ft In Ft 6 8 3 6 8 3	<u>In Area</u> 20 ft ² 20 ft ²		
Non	e 0.26	6 8 3	20 ft ²		
Non					
	ə 0.26	6 8 3	00.64		
WINDOWS			20 ft ²		
	i				
C U-Factor SHGC Sto	Overh m Area Depth Se	nang eparation Interior Sh	nade Screening		
s 0.18 0.6 N) ft 0 in Drapes/bli	9		
s 0.18 0.6 M	87.7 ft² 0 ft0 in 0) ft 0 in Drapes/bli	inds None		
s 0.18 0.6 M	141 ft ² 0 ft 0 in 0) ft 0 in Drapes/bli	inds None		
INFILTRATION & \	ENTING				
LA EqLA ACH ACH			Terrain/Wind Shielding		
7.7 127.3 0.292 4.93	2 0 0	0 Si	uburban / Suburban		
MASS					
Area Thickness	Furniture Fraction				
0 ft ² 0 ft	0.3				
HEATING SYS	TEM				
Efficiency	Capacity Du	apacity Ductless			
		alse			
•		SetPnt Credits 120 deg None			
	s 0.18 0.6 N s 0.18 0.6 N INFILTRATION & V LA EqLA ACH ACH 3 7.7 127.3 0.292 4.92 MASS Area Thickness 0 ft ² 0 ft HEATING SYS ² Efficiency AFUE: 0.77 HOT WATER SY F Cap	s 0.18 0.6 N 87.7 ft² 0 ft 0 in 0 s 0.18 0.6 N 141 ft² 0 ft 0 in 0 INFILTRATION & VENTING LA EqLA ACH ACH 50 Supply Exhaus 7.7 127.3 0.292 4.92 0 0 MASS Area Thickness Fumiture Fraction 0 ft² 0 ft 0.3 0 HEATING SYSTEM Efficiency Capacity Date AFUE: 0.78 100 kBtu/hr 10 HOT WATER SYSTEM F Cap Use Set	s 0.18 0.6 N 87.7 ft ² 0 ft 0 in 0 ft 0 in Drapes/bl s 0.18 0.6 N 141 ft ² 0 ft 0 in 0 ft 0 in Drapes/bl INFILTRATION & VENTING LA EqLA ACH ACH 50 Supply Exhaust Run Time 7.7 127.3 0.292 4.92 0 0 0 0 S MASS Area Thickness Furniture Fraction 0 ft ² 0 ft 0.3 HEATING SYSTEM Efficiency Capacity Ductless AFUE: 0.78 100 kBtu/hr False HOT WATER SYSTEM F Cap Use SetPnt		


Figure 24: HERS input 2


Building Input Summary Report

	SOLAR HOT WATER												
Collector 7	Гуре		llector Tilt Azim	Surface uth Area	e Loss Co	Absorp ef. Prod.	o. Trans Corr.	Tank Volume	Tank U-Value	Tank Surf Ar		t PV Eff Pumped	Pump Energy
	DUCTS												
#	 Location	Supply R-Value	Area	 Location	Return Area	Number	Leakage ⁻	Гуре	Air Handler (Percent _eakage	QN	RLF
1	Attic	6 3	313.4 ft ²	Attic	78.35 ft²	(invalid)	Default Lea	akage	Interior (I	Default) (Default)		
					TE	MPERAT	URES						
Program	hable Therm	ostat: None			Ceiling F	ans: N							
Cooling Heating Venting	X] Jan X] Jan X] Jan	X Feb X Feb X Feb	[X] Mar [X] Mar [X] Mar	X Apr X Apr X Apr X Apr	X May X May X May	[X] Jun [X] Jun [X] Jun	n (X) Ju n (X) Ju n (X) Ju	I X A X A X A	ug (X) S ug (X) S ug (X) S	Sep X Sep X Sep X	Oct Oct Oct	X] Nov X] Nov X] Nov	X Dec X Dec X Dec
Thermosta	at Schedule:	HERS 20	06 Reference	9			ŀ	Hours					
Schedule	Туре		1	2	3 4	4 5	6	7	8	9	10	11	12
Cooling (V	VD)	AM PM	78 78	78 78	78 7 78 7	8 78 8 78	78 78	78 78	78 78	78 78	78 78	78 78	78 78
Cooling (V	VEH)	AM PM	78 78	78 78	78 7 78 7	8 78 8 78	78 78	78 78	78 78	78 78	78 78	78 78	78 78
Heating (V	VD)	AM PM	68 68	68 68	68 6 68 6	8 68 8 68	68 68	68 68	68 68	68 68	68 68	68 68	68 68
Heating (V	VEH)	AM PM	68 68	68 68	68 6 68 6	8 68 8 68	68 68	68 68	68 68	68 68	68 68	68 68	68 68

Figure 25: HERS input 3

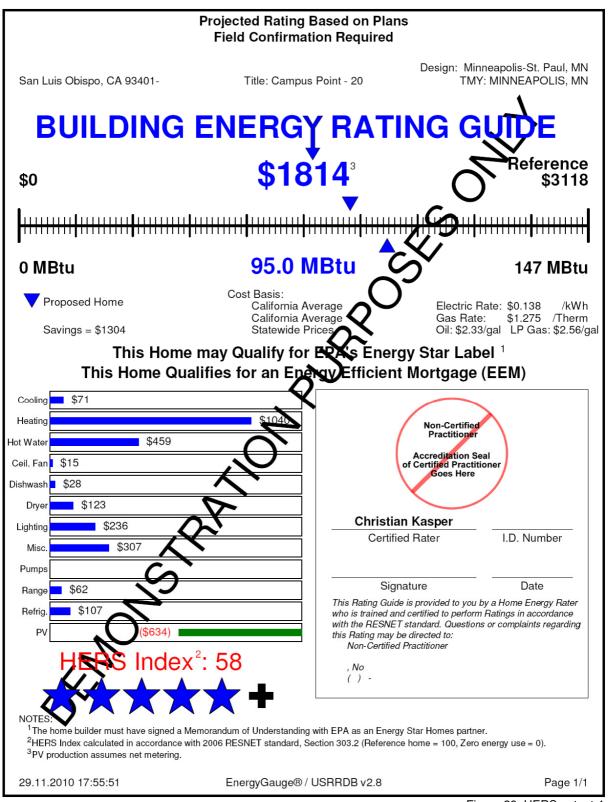


Figure 29: HERS output 4

10 DIRECTORIES

10.1 List of figures

Figure 1: Ballon frame	2
Figure 2: Platform frame	3
Figure 3: Building Code hierarchy	4
Figure 4: Energy use	22
Figure 5: Annual electricity consumption of households in Austria (2008)	23
Figure 6: Total energy consumption in Austria (2009)	23
Figure 7: Energy use within a building in %	24
Figure 8: Energy Groups within the Energy Certificate	40
Figure 9: Unit 1 - optimized fenestration products	42
Figure 10: Unit 1 - optimized to reach OIB-6 goals	42
Figure 12: Pathways through the EA Category in the LEED for Homes Rating System	43
Figure 11: Achievable LEED points per category	43
Figure 14: HERS - LEED conversion graph	44
Figure 13: HERS Index	44
Figure 15: Windows providing Energy Star conformance	45
Figure 16: Heating demand – 45 kWh/m ² a minimum compliance to OIB6	46
Figure 17: Heating demand - 30 kWh/m ² a compliance to OIB6	47
Figure 18: IECC Climate Zones	57
Figure 19: Heating Degree Days (HDD) in US climate zones	57
Figure 20: GEQ Sheet 1	58
Figure 21: GEQ Sheet 2	59
Figure 22: GEQ Sheet 3	60
Figure 23: HERS input 1	82
Figure 24: HERS input 2	83
Figure 25: HERS input 3	84
Figure 26: HERS output 1	85
Figure 27: HERS output 2	86
Figure 28: HERS output 3	87
Figure 29: HERS output 4	88

10.2 List of tables

Table 1: Conversion table	6
Table 2: Reference project	7
Table 3: Code distribution	8
Table 4: Dead Loads - Imperial units	9
Table 5: Dead Loads	9
Table 6: Floor weights	.10
Table 7: Seismic analysis ASCE 7-05	.13
Table 8: Seismic analysis EC-8 – No. 1	.14
Table 9: Seismic analysis EC-8 – No. 2	.14
Table 10: Wind analysis - Kz	.15
Table 11: Wind analysis - C_p	.15
Table 12: Wind analysis - wind load	.16
Table 13: Wind analysis - wind load 2	.16
Table 14: Wind analysis - basic data	.17
Table 15: Wind analysis - longitudinal	.17
Table 16: Wind analysis - lateral	.17
Table 17: Vibration behaviour - input values	.19
Table 18: Vibration behaviour - calculation values	.19
Table 19: Seismic results	.20
Table 20: Wind results	.20
Table 21: Application of Standards	.30
Table 22: Key for Table 18	.31
Table 23: Required U-Factors	.39
Table 24: Conversion of units	.41
Table 25: U-factor comparison	.41
Table 26: Energy Star - window requirements	.45
Table 27: Energy Star requirements	.45
Table 28: Floor weights - Areas A-F	.50
Table 29: LEED Rating No.1	.52
Table 30: LEED Rating No.2	.53
Table 31: LEED Rating No.3	.54
Table 32: Slab-on-grade insulation R-Factors	.55
Table 33: Prescriptive envelope criteria	.55
Table 34: Numerical HERS - LEED conversion table	.56
Table 35: Index and elevation	.61
Table 36: Floor plans	.63

Table 37: Gross plot area	64
Table 38: Gross volume	64
Table 39: Fenestration products	65
Table 40: Facade dimensions	66
Table 41: Components	67
Table 42: Component areas	67
Table 43: Transmission conductance	68
Table 44: Ventilation conductance	68
Table 45: Outside air temperature	69
Table 46: Climate calculations	70
Table 47: Interior heat gain	71
Table 48: Solar effective window area	72
Table 49: Reference radiation values	72
Table 50: Actual radiation values	73
Table 51: Location depending radiation values	74
Table 52: Location depending radiation values 2	75
Table 53: Actual solar heat gains	76
Table 54: Reference solar heat gains	76
Table 55: Monthly total heat gain	77
Table 56: Building constants	
Table 57: Results	78
Table 58: Utilisation of heat gains	79
Table 59: Monthly and annual heating requirements	80
Table 60: Energy index	81
Table 61: Energy index dependent of location	81
Table 62: Modification 1	81
Table 63: Modification 2	81
Table 64: Modification 3	81

10.3 Abbreviations

To avoid misunderstandings when referring to the referenced standards, the list of abbreviations is in alphabetical order, but only after being summarized into the subchapters they appear in the text.

Seismic Analysis according to ASCE 7-05

Width	
Deflection amplification factor	
SSeismic response coefficient	
Value of approximate period parameter	
Site coefficient	
Height	
Importance factor	
Length	
Stiff soil profile	
DCSeismic design category	
DSDesign spectral response acceleration for short period (0,2 sec.)	
D1Design spectral response acceleration for 1 sec. period	
SShort period (0,2 sec.) spectral response acceleration	
1 sec. Period spectral response acceleration	
Approximate fundamental period	
Seismic Base Shear	
Value of approximate period parameter	
dDesign value of effective seismic weight	
d _{DL} Effective seismic weight of Dead Load	
d _{tot} Total effective seismic weight	
System overstrength factor	
Redundancy factor	

Seismic Analysis according to EC-8

	-
A _c	Total effective cross section of shear walls
A _i	Effective cross section of the shear wall <i>i</i> in considered direction
a _g	Design value of soil acceleration
a _{gR}	Reference peak value of soil acceleration
C _t	Structure coefficient
E _d	Design value of endurance
F _b	Total seismic force
l _{wi}	Length of effective shear wall
m	Effective mass
q	Behavior coefficient
R	Response modification coefficient
$S_{d(T)}$	Design spectrum for linear Calculations
S	Displacement of the mass <i>m</i>
T _c	Parameter for elastic response spectrum
T ₁	Fundamental oscillation period of a building
λ	Slenderness ration
γ	Parameter of Significance

Wind Analysis according to ASCE 7-05

	-
C _p	.External pressure coefficient
F	.Building wind load
G	.Gust effect factor
GC _{pi}	.Internal pressure coefficient
1	.Importance factor
K _d	.Wind directionality factor
K _h	.Velocity pressure coefficient
K _z	.Exposure category
K _{zt}	.Topographic factor
p _(z,h)	.Design wind load
q _z	.Velocity pressure coefficient
q _h	.Velocity pressur coefficient
V	.Basic wind speed

Wind Analysis according to EC1

.Reference work surface
.Dynamic coefficient
Aerodynamic force coefficient
.Size coefficient
.Wind force (lateral)
.Wind force (longitudinal)
.Wind force (longitudinal)
.Reference height
.Top speed pressure
.Basic windspeed pressure
.Basic windspeed
.Reference height for exterior and interior pressure coefficients (long.)
.Reference height for exterior and interior pressure coefficients (lat.)

Vibration behavior of residential ceiling (ÖNORM EN 1995-1-1)

b	Width of ceiling [m]
El _b	Equivalent bending stiffness of the ceiling in longitudinal direction of
El ₁	Equivalent ceiling bending stiffness perpendicular to the trusses
F	Initial force
f ₁	Eigenfrequency
I	Ceiling span [m]

m	.Mass per unit of area [kg/m²]
n ₄₀	Number of vibrations of 1st order with a maximum resonance frequency of 40 Hz.
v	Unit impuls velocity reaction
W_inst	Initial deflection
ω	Maximum initial vertical deflection
v	Characteristic impulse response
ζ	Modal damping ratio

OIB Guideline 6 – Energy saving and thermal insulation

BGF	.Gross plot area ()
EEB	.Final energy demand ()
EEB _{BGF,WG}	.Specific final energy demand for new residential buildings
f _{HT}	.Increase factor of the specific energy demand of the heating facility
HGT	.Heating degree days
HGT _{Standort}	.Heating degree days (HGT $_{12/20}$) at the actual building location
HTEB	.Specific energy demand of a heating facility ()
HTEB _{BGF,WG,Ref}	.Specific energy demand of the heating facility of a reference facility reference climate
HWB	.Specific heating requirement
HWB _{BGF,WG,max,Ref}	.Maximum allowable annual heating demand per m ² of gross plot area in the reference climate
HWB _{BGF,WG,max} ,Standort	.maximum allowable annual heating demand per m ² of gross plot area at the building location
LEK	.LEK Value
LEK _{max}	.Maximum allowable LEK Value
LEK _{Standort}	LEK Value dependent on actual building location
l _c	.Characteristic length
I _{c,min}	.Characteristic length (required minimum)
SHGC	.Solar heat gain coefficient
U	.Coefficient of heat transmission
U _m	Average U-Factor of the building envelope
WWWB	.Hot water heating demand
WWWB _{BGF}	.Hot water heating demand referring to the gross plot area of a reference facility: $f_{HT} = 1,05$

10.4 References

Spence, William P. / Kultermann, Eva: Construction Materials, Methods and Techniques – Building for a

sustainable Future. New York/ USA: Delmar Cengage Learning, 3rd Edition, 2006

Vogt, Floyd: Carpentry. New York/ USA: Thomson Delmar Learning, 4th Edition, 2006

Spence, William P.: Construction Materials, Methods and Techniques. New York / USA: Thomson Delmar Learning, 2nd Edition, 2006

Breyer, Donald E. et al.: Design of Wood Structures – ASD. 5th Edition, New York et al.: MacGraw-Hill 2003

American Society of Structural Engineers: ASCE Standard 7-05 – Minimum Design Loads for Buildings and Other Structures, USA: 2006.

American Forest & Paper Association: ANSI/AF&PA NDS-2001 – National Design Specification for Wood Construction, 2001 Edition, USA: AF&PA 2001.

Österreichisches Normungsinstitut: ÖNorm EN 1991-1-4 – Eurocode 1: Actions on structures – Part 1-4: General actions – Wind actions. Vienna: ON, Edition: 2005-11-01

Österreichisches Normungsinstitut: ÖNorm B 1991-1-4 – Eurocode 1: Actions on structures – Part 1-4: General actions – Wind actions – National specifications concerning ÖNorm EN 1991-1-4 and national supplements. Vienna: ON, Edition: 2006-12-01

Österreichisches Normungsinstitut: ÖNorm EN 1995-1-1 – Eurocode 5: Design of timber structures – Part 1-1: General – Common rules and rules for buildings. Vienna: ON, Edition: 2006-01-01

Österreichisches Normungsinstitut: ÖNorm EN 1998-1 – Eurocode 8: Design of structures for earthquake resistance – Part 1: General rules, seismic actions and rules for buildings. Vienna: ON, Edition: 2005-06-01

Österreichisches Normungsinstitut: ÖNorm B 1998-1 – Eurocode 8: Design of structures for earthquake resistance – Part 1: General rules, seismic actions and rules for buildings – National specifications concerning ÖNorm EN 1998-1 and national comments. Vienna: ON, Edition: 2006-07-01

Lee, Young S. / Guerin, Denise A.: Indoor environmental differences between office types in LEED-certified buildings in the US. Michigan/ USA: Elsevier Ltd, 2009

Lee, Young S./ Guerin, Denise A.: Indoor environmental quality related to occupant satisfaction and performance in LEED-certified buildings, in: Journal of Indoor & Built Environment 2009, Vol. 18 (4), USA 2009

Kats, G. a.o.: The costs and financial benefits of green buildings, in: Report to California's Sustainable Building Task Force, USA, 2003

Montoya, Michael: Green Building Fundamentals – Practical Guide to Understanding and Applying Fundamental Sustainable Construction Practices and the LEED System. New Jersey/ USA: Pearson, 2nd Edition, 2009

California Building Standards Commission: 2010 California Green Building Standards Code – California Code of Regulations, Title 24, Part 11, Sacramento: 2010

Landgraf, Adolf: Leitfaden für die Umsetzung der EU-Gebäuderichtlinie bei Bestandsobjekten. [Master Thesis, Graz 2007]: 2007

OIB Richtlinie 6. Energieeinsparung und Wärmeschutz. Österreichisches Institut für Bautechnik, 2007

Pech, Anton a.o.: Bauphysik – Energieeinsparung und Wärmeschutz, Energieausweis – Gesamtenergie- effizienz. Vienna: Springer, 1st extension, 2007

Österreichisches Normungsinstitut: ÖNorm B 1800 – Determination of areas and volumes of buildings. Vienna: ON, Edition: 2002-01-01

California Building Standards Commission: 2010 Building Energy Efficiency Standards, Title 24, Part 6, Sacramento: 2010

California Building Standards Commission: 2010 California Building Code, Title 24, Part 2, Volume 2-2, p. 697, Sacramento: 2010

Energy Information Administration: EIA Annual Energy Review and Energy Information Administration – Emissions of Greenhouse Gases in the United States. Washington: 2005

McGraw Hill Construction: Green Outlook 2009 - Trends Driving Change. New York, 2009

Department of Commerce: Annual Value of Construction Put in Place. New York, 2008

Environmental Information Administration: EIA Annual Energy Outlook. Washington, 2008

Energy Information Administration: Assumptions to the Annual Energy Outlook. Washington, 2008

U.S. Department of Interior: U.S. Geological Survey (2000). USA, 2000

Lenssen and Roodman (1995): A Building Revolution – How Ecology and Health Concerns are Transforming Construction. Worldwatch Institute. Worldwatch Paper 124, 1995

U.S. Environmental Protection Agency: U.S. EPA Characterization of Building-Related Construction and Demolition Debris in the United States. San Francisco, 1997

U.S. Green Building Council: Green Building and LEED Core Concepts Guide. 1st Edition, Washington, 2010

U.S. Green Building Council: LEED for Homes Rating System, Version 2008. Washington, 2008

10.5 Online resources

- URL: http://www.statistik.at/web_de/statistiken/energie_und_umwelt/ energie/energieeinsatz_der_haushalte/ 035460.html [10.02.2011]
- URL: http://www.statistik.at/web_de/statistiken/energie_und_umwelt/energie/ nutzenergieanalyse/022719.html [10.02.2011]
- URL: http://www.usgbc.org/DisplayPage.aspx?CMSPageID=1750 [30.9.2010]
- URL: http://www.usgbc.org/DisplayPage.aspx?CMSPageID=1989 [29.9.2010]
- URL: http://communicate.usgbc.org/usgbc/2006/08.15.06_guiding_principles/ guidingPrinciples [30.9.2010]
- URL: http://www.energiesparhaus.at/energieausweis/energieausweis.htm [05.10.2010]
- URL: http://www.gequo-home.de/glossar/char/W/id/1035.html [05.10.2010]
- URL: http://www.energiesparhaus.at/fachbegriffe/hgt.htm [05.10.2010]
- URL: http://www.energiesparhaus.at/energieausweis/energieausweis.htm [06.10.2010]
- URL: http://www.energieausweis.at/energieausweis-informationen.htm [30.9.2010]
- URL: http://www.energy.ca.gov/maps/CLIMATE_ZONES_ZIPCODE.PDF [13.10.2010]
- URL: http://resourcecenter.pnl.gov/cocoon/morf/ResourceCenter/graphic/973 [10.11.2010]
- URL: http://www.resnet.us/home-energy-ratings [10.11.2010]
- URL: http://www.grist.org/article/leed1/ [26.11.2010]
- URL: http://blog.mapawatt.com/2010/11/19/climate-zones-and-degree-days/ [29.11.2010]

10.6 Used software

GEQ

Gebäude Energy Qualität, Version: 2010,060343, © 1994-2010. Provider: Zehentmayer Software GmbH, Minnesheimerstraße 8b, 5023 Salzburg, Austria. URL: http://www.geq.at

EnergyGauge

Energy and Economic Analysis Software, Version: USA2804. Provider: EnergyGauge, Florida Solar Energy Center, 1679 Clearlake Road, Cocoa, FL 32922-5703. URL: http://www.energygauge.com