
Research Collaboration Report
A three month visit to Princeton University supported by

Marshallplan Scholarship

Thomas Buchgraber1

November 2, 2010

Abstract

In this document, the outcome of the research collaboration of Thomas Buchgraber at

the University of Princeton, Department of Electrical Engineering is presented. He was

working in the group of Prof. H. Vincent Poor from May 11, 2010 until August 12,

2010. The work was focused on sparse variational inference planned for the use in online

distributed learning algorithms for applications in wireless sensor networks.

1 Introduction

To motivate the research on sparse signal representation in the field of distributed learning al-

gorithms, we start this section with a general introduction on wireless sensor networks (WSNs).

In the following we will focus on sparse representation and in particular on sparse Bayesian

learning (SBL), where we point out why such methods are essentially usefull for WSNs. We

discuss an approximate inference method called variational inference at the end of this section

to lay the basis for further discussions. Variational inference provides a method to update un-

known model parameters in a space alternating way and makes SBL inference even possible,

since the joint posterior of all unknown model parameters is not tractable in closed form.

The rest of the report is organized as follows. In Section 2 we introduce variational SBL,

a rather slow method that we wish to accelerate. We do so in Section 3, where we describe

the work that has been done during the collaboration at Princeton which was focused on fast

variational SBL. Section 4 finally presents the publications that have been made based on the

research collaboration and also points out the ongoing and future directions of this research.

1.1 Wireless Sensor Networks

WSNs have gained tremendous attention during the last years [1] and consist of sensor devices

capable to communicate with each other. They are usually deployed randomly in a region under

1The author wants to thank the Austrian Marshall Plan Foundation for supporting this research. Also the
author would like to thank Prof. Vincent Poor for providing the facilities and for making this collaboration
happen. Special thanks goes to Dr. Dmitriy Shutin for many insightfull comments, discussions and the close
collaboration in general.

1

scrutiny and have tight energy and bandwith constraints such that the amount of data that

can be transmitted and local computations that can be carried out is limited. Designed to

make inferences about the environment which they are sensing, a major goal is to distribute the

computational effort of the used algorithms among the nodes to save energy and reduce the com-

municational load of the individual sensors. This is opposed to a centralized approach, where

the measurements have to be transmitted to a fusion-center (powerful central base station)

that then carries out the computations. Since many real world spatial-temporal phenomena

(e.g. air pressure- or temperature-fields) tend to be very complex, transmission of the sensor

information to a fusion-center is impractical in terms of the whole networks lifetime. This is

due to the limited transmission range of each sensing-device, such that many nodes need to

relay information from distant parts of the network to the fusion center.

1.2 Sparse Representation and Sparse Bayesian Learning

In the previous section we discussed the energy and computational limitations of sensor nodes

in a WSN. To further reduce the communication load of a distributed algorithm we only need

to communicate the essential information needed for processing, i.e. we should find a sparse

representation. One sparsification method based on probabilistic models is SBL, where we

can automatically learn both, which of the parameters are important and which values they

should have. But before we discuss the details of SBL we start with a general introduction on

supervised learning, a concept in machine learning.

In supervised learning, one is given a set of input-output pairs {xi, ti}N
i=1, where the input

usually is a d-dimensional real vector x ∈ R
d and the desired model output or target is a

real valued scalar t ∈ R. Learning in this sense means to find the function that links the

inputs to the targets bases on the training examples. To do this we need a model for the

targets. Because of mathematical convenience it is very common to use a linear combination

of potentially non-linear basis functions to model the targets, i.e.

t = Φw + ǫ , (1)

where Φ = [ϕ1, . . . ,ϕL] is a design matrix consisting of L basis vectors ϕl = [ψl(x1), . . . , ψl(xN)]T

with basis functions ψl(·), t = [t1, . . . , tN]T is a vector of targets, w ∈ R
L a weight vector and

ǫ a zero mean additive white Gaussian perturbation vector with covariance matrix τ−1I. In

sparse signal representation, the aim is to find a small number of non-zero weights in w to

represent the targets t, that means we are not only interessted in the values but also which of

the weight parameters are relevant for the model.

In SBL [3], [10], a probabilistic model for obtaining sparsity is used. We define the proba-

bility density functions (pdfs) in the following. An observation likelihood function p(t|w, τ) =

2

a b

c

d

e observed/visible O

unobserved/hidden/latent U

Figure 1: A BN in form of a DAG

N (t|Φw, τ−1I) is given from (1) and additionally we define a hierarchical weight prior p(w|α) =
∏L

l=1 N (wl|0, α−1
l) which lays the foundation of SBL. Using a common definition of the Gamma

distribution Ga(x|a, b) = ba

Γ(a)
xa−1 exp(−bx), the remaining prior pdfs are given by p(αl) =

Ga(αl|al, bl) and p(τ) = Ga(τ |c, d). By setting the prior parameters al = bl = 0, ∀l, which ren-

ders the prior as non-informative, automatic relevance determination (ARD) is achieved. Using

Bayes’ rule we are interessted in the posterior pdf of all unknown variables given the data

p(w,α, τ |t) =
p(t|w, τ)p(w|α)p(α)p(τ)

p(t)
, (2)

where we have used α = [α1, . . . , αL]T . Unfortunately the marginal p(t) in the denominator of

(2) can not be computed in closed form and thus the posterior p(w,α, τ |t) is intractable [10]. To

find a solution for the SBL problem we thus must seek an approximation to the true posterior.

This can be done by using variational inference which will be introduced in the next section.

1.3 Variational Inference

Consider an example Bayesian network (BN) depicted in Figure 1. Random variables are

represented by nodes, where shaded ones are considered as observed and unshaded as hidden2

random variables. For this section we denote the set of all hidden variables as U and the

set of observed variables as O. A BN is a graphical representation of the joint probability of

random variables by showing the conditions between them. The tails of the arrows heading to

a node depict the variables which the headed node is conditioned on. The example in Figure 1

represents a joint probability of

p(a, b, c, d, e) = p(e|d, c) p(d|a, b) p(a) p(b) p(c),

where nodes with no incomming arrows depict priors. Because there are no loops in the pre-

sented graph, the example illustrates a special case of a BN called directed acyclic graph (DAG).

2The synonym unobserved or latent is often also used for the hidden random variables and similarly the term
visible refers to the observed variables.

3

For further information on BNs we refer the reader to [2].

With any approximating distribution q(U) we can write the log-marginal distribution of the

set of observed variables as

ln p(O) =

∫

q(U) dU ln p(O), (3)

with
∫
q(U) dU = 1, because we assume that q(U) is a valid normalized probaility distribution

function (pdf)3 and thus should always integrate to one. We can now plug the log-marginal

inside the integral

ln p(O) =

∫

q(U) ln p(O) dU

since it is not a function of U. By multiplying the inside term of the logarithm with terms

that give one, thus we do not change the result of the equation, we bring in the posterior of

the hidden variables given the observations p(U|O) and the proxy distribution q(U) over the

latent variables, i.e.

ln p(O) =

∫

q(U) ln

{
p(O)p(U|O)q(U)

p(U|O)q(U)

}

dU

=

∫

q(U) ln

{
p(O,U) · q(U)

q(U) · p(U|O)

}

dU.

Using the rule that the log of a product is the sum of the logs separates the terms as

ln p(O) =

∫

q(U) ln

{
p(O,U)

q(U)

}

dU

︸ ︷︷ ︸

L(q)

+

∫

q(U) ln

{
q(U)

p(U|O)

}

dU

︸ ︷︷ ︸

KL(q||p)

(4)

and results in a sum of L(q), the variational lower bound and KL(q||p), a Kullback-Leibler

divergence. The aim of variational inference is to find an approximation q(U) of the posterior

p(U|O). Since the log-marginal on the left hand side of (4) is not a functional4 of q(U), it stays

unchanged with respect to changes of the proxy q(U). Because by definition a Kullback-Leibler

divergence is always positive, KL(q||p) is only zero for the case q(U) = p(U|O). We thus see

that L(q) must be a lower bound of the log-marginal ln p(O), where the bound is only achieved

if the proxy pdf perfectly reaches the posterior pdf. Thus, maximizing the variational lower

bound is equivalent to minimizing the Kullback-Leibler divergence KL(q||p) as a functional of

q(U) that uses the joint pdf instead of the usually intractable posterior pdf.

The proxy pdf q(U) is usually assumed to be of a factorized structure, which is refered to

3Not that we talk about continuous random variables here. All the derivations are also valid for discrete
random variables, where in this case we must change the integral in (3) to a summation.

4A functional is a function of a function. Like e.g. the variational lower bound L(q) is a function of the
proxy pdf q(U), which itself is a function.

4

as mean field approximation [2] and is given by

q(U) =
M∏

i=1

qi(Ui) =
∏

i

qi, (5)

where we have introduced the short form notation qi for the term qi(Ui) for all M factors. The

variational lower bound can now be analysed as a functional of just one factor qj in (5)

L(qj) =

∫
{

ln p(O,U) − ln qj −
∑

i6=j

ln qi

}

qj dUj

∏

i6=j

qi dUi

=

∫

qj

{
∫

ln p(O,U)
∏

i6=j

qi dUi

︸ ︷︷ ︸

Ei6=j [ln p(O,U)]

− ln qj

}

dUj + const. (6)

and we use the notation “const.” to denote all the terms that are not depending on qj. The

term Ei6=j[·] means an expectation with respect to all M − 1 proxy factors qi for all i 6= j. We

can now introduce

ln p̃j = Ei6=j [ln p(O,U)] + const. → p̃j ∝ exp
{

Ei6=j [ln p(O,U)]
}

, (7)

a normalized distribution p̃j with “const.” equal to the normalization of the pdf. It is easy to

see from (6) that by using definition (7) we obtain

L(qj) = −KL (qj ||p̃j) + const., (8)

a Kullback-Leibler divergence between the proxy qj and the newly defined p̃j . With this result

and the knowlege that the Kullback-Leibler divergence is at its minimum if qj = p̃j we can find

the maximum of the variational lower bound with respect to one of the factors in (5) as q∗j = p̃j .

If the proxy factor qj is constraint to be from a class of density functions Qj , then the optimal

density is generally defined as

q∗j = argmin
qj∈Qj

{

KL (qj ||p̃j)
}

. (9)

For instance, if Qj is the space of Gaussian densities, then we can use the Laplace approximation

method to find the mean and covariance of q∗j (Zj). Thus, we just compute the sufficient statistics

of the Gaussian.

5

2 Variational Sparse Bayesian Learning

t

l = 1, . . . , L

αlwl

τ

Figure 2: A DAG representing the SBL problem. Gray nodes represent observed variables.

In variational sparse Bayesian learning, exemplified by the variational relevance vector machine

[3], a directed acyclic graph (DAG) presented in Figure 2 is considered. This graph represents

the general SBL problem. The joint pdf given by the graph factorizes as

p(w, t,α, τ) = p(t|w, τ)p(w|α)p(α)p(τ). (10)

Like has been discussed in Section 1.2, the derivation of the posterior p(w,α, τ |t) is intractable

and variational inference tries to approximate it by using a proxy pdf q(w,α, τ) that maximizes

the variational lower bound L(q(w,α, τ))

ln p(t) ≥
∫

q(w,α, τ) ln
p(w, t,α, τ)

q(w,α, τ)
dwdαdτ

= L(q(w,α, τ)),

(11)

which is a lower bound for the log-evidence ln p(t). Applying mean field approximation, in [3]

it is assumed that q(w,α, τ) is factored as

q(w,α, τ) = q(w)q(τ)
L∏

l=1

q(αl) (12)

and the individual pdfs are defined as follows: q(w) = N (w|µ̂, Σ̂), q(αl) = Ga(αl|âl, b̂l) and

q(τ) = Ga(τ |ĉ, d̂). Maximization of the lower bound (11) with respect to the individual factors

in (12) gives the following update equations [3]:

Σ̂ =
(

τ̂ΦTΦ + diag(α̂)
)−1

(13)

µ̂ = τ̂Σ̂ΦT t (14)

âl = al + 1/2, b̂l = bl + (µ̂l
2 + Σ̂ll)/2 (15)

ĉ = c+
N

2
, d̂ = d+

||t − Φŵ||2 + tr(Σ̂ΦTΦ)

2
, (16)

where τ̂ = Eq(τ){τ} = ĉ/d̂, α̂ = [α̂1, . . . , α̂L]T , α̂l = Eq(αl){αl} = âl/b̂l, µ̂l is the lth element of

6

the vector µ̂ and Σ̂ll is the lth main diagonal element of the matrix Σ̂. Note that by Eq(z){·} we

mean the expectation with respect to the distribution q(z) here. To find the sufficient statistics

of the proxy pdf q(w,α, τ), one has to iterate through the terms given in (13)-(16) until the

variational lower bound (11) converges to a maximum. Because the bound is convex [2] with

respect to each of the factors given in (12) we can update them in any arbitrary order.

3 Research at Princeton University

In this section we present the results achieved during the research collaboration at Princeton

University, Department of Electrical Engineering. The work was performed in close collabo-

ration with Dr. Dmitriy Shutin. In Section 3.1 we show how the rather slow variational SBL

method presented in Section 2 can be performed much faster using a fixed point method. Then

in Section 3.2 we start a discussion of how the fast method can be implemented efficiently by

only using rank-1 updates. Finally, in Section 3.3 we show how the new proposed method per-

forms for different simulation settings and how the derived pruning condition can be modified

to achieve better results for some situations.

3.1 Fast Variational Sparse Bayesian Learning

Essentially, the variational update expressions (13)-(16) provide the estimates of the moments

of the corresponding approximating pdfs. Although these expressions reduce to those obtained

in [10] when the approximating factors q(τ), and q(αl) are chosen as Dirac measures on the

corresponding domains5, they do not reveal the structure of the marginal likelihood function

that leads to the fast implementation of SBL.

Consider now the variational update expression (13)-(15). Due to the convexity of the

variational lower bound functional in the approximating factors q(w), q(τ), q(αl), l = 1, . . . , L

[2], we can update these factors in any order; furthermore, a group of factors can be updated

successively while keeping the other factors fixed. In [11] the authors investigate the dependence

of the marginal likelihood on a single sparsity parameter α̂l; it is this dependence that leads

to an efficient implementation of SBL. Thus it makes sense to inquire into a fixed point of the

variational update expression for a single factor q(αl).

Let us now select the ARD case al = bl = 0 for all the hyperpriors p(αl) and consider the

expression for the mean α̂l of q(αl) for some fixed l.6 From (15) and the properties of a Gamma

5In [10] the posterior pdf of the weights w is Gaussian; its parameters coincide with the variational parameters
of q(w) in (13) and (14).

6Notice that since al = bl = 0, the parameters of q(αl) in (15) are given by âl = 1/2 and b̂l = 1/(2α̂l). Thus
it makes sense to study the fixed point of the variational update expression in terms of α̂l, rather than in terms
of âl and b̂l.

7

distribution it follows that

α̂−1
l = eT

l (µ̂µ̂T + Σ̂)el, (17)

where el = [0, . . . , 0, 1, 0, . . . , 0]T is a vector of all zeros with 1 at the lth position. The variational

parameters µ̂ and Σ̂ of q(w) both implicitly depend on α̂l. Let us now assume that q(w)

and q(αl) are successively updated while keeping q(τ) fixed. This will generate a sequence of

estimates {α̂[m]
l }M

m=1, with each element in the sequence computed according to (17). Our goal

is to compute the fixed point α̂
[∞]
l of this sequence as M → ∞.

First, we define B = τ̂ 2ΦT ttT Φ it is easy to see that

µ̂µ̂T = Σ̂BΣ̂T . (18)

Now consider the influence of a single sparsity parameter α̂l on the matrix Σ̂ in (13). By noting

that diag(α̂) =
∑

j α̂jeje
T
j we rewrite Σ̂ as

Σ̂ =

(

τ̂ΦTΦ +
∑

j 6=l

α̂jeje
T
j + α̂lele

T
l

)−1

=Σ̄l −
Σ̄lele

T
l Σ̄l

α̂−1
l + eT

l Σ̄lel

,

(19)

where the latter expression was obtained using the matrix inversion lemma [5] and defining

Σ̄l =

(

τ̂ΦTΦ +
∑

j 6=l

α̂jeje
T
j

)−1

. (20)

Finally we define

ςl = eT
l Σ̄lel and ρ2

l = eT
l Σ̄lBΣ̄lel. (21)

Now, by plugging (19) in (18) and (17) and using the definitions (21) we obtain

α̂−1
l = ρ2

l + ςl −
ς2l + 2ςlρ

2
l

α̂−1
l + ςl

+
ς2l ρ

2
l

(α̂−1
l + ςl)2

. (22)

Expression (22) is a modified version of (17) that is now an implicit function of α̂l. Solving for

α̂l naturally leads to the desired fixed point α̂
[∞]
l . Observe that (22) can be seen as a nonlinear

map α̂
[m+1]
l = F (α̂

[m]
l) that at iteration m maps α̂

[m]
l to α̂

[m+1]
l . Naturally, the fixed points of

this map are equivalent to the desired (possibly multiple) fixed points α̂
[∞]
l .

The following theorem provides analytical expressions for the fixed points of the map

α̂
[m+1]
l = F (α̂

[m]
l).

8

Theorem 1. Assuming an initial condition α
[0]
l ≥ 0, the iterations of the nonlinear map

α̂
[m+1]
l = F (α̂

[m]
l)

=



ρ2
l + ςl −

ς2l + 2ςlρ
2
l

1

α̂
[m]
l

+ ςl
+

ς2l ρ
2
l

(
1

α̂
[m]
l

+ ςl
)2





−1

,
(23)

where ρ2
l and ςl are given by (21), converge as m→ ∞ to one of the following fixed points α̂

[∞]
l :

α̂
[∞]
l =

{

(ρ2 − ς)−1 ρ2 > ς

∞ ρ2 ≤ ς
(24)

Proof. We begin the proof by first computing the fixed points of the map α̂
[m+1]
l = F (α̂

[m]
l). By

inspecting (22) we observe that α̂
[∞]
l = ∞ is a fixed point of the map. The other solution is

found by solving α̂∗
l − F (α̂∗

l) = 0 with respect to α̂∗
l . After rather tedious but straightforward

algebraic manipulations we obtain the second fixed point at

α̂
[∞]
l = α̂∗

l = (ρ2
l − ςl)

−1 (25)

We now investigate the stability of the fixed point (25) by analyzing the asymptotic stability

of the map (23) in the vicinity of α̂
[∞]
l = (ρ2

l − ςl)
−1. It is known that a fixed point of a map is

asymptotically stable if the eigenvalues of the Jacobian of the map evaluated at this fixed point

are all within the unit circle. The Jacobian of F (α̂
[m]
l) evaluated at (25) is given by

dF (α̂
[m]
l)

dα̂
[m]
l

∣
∣
∣
∣
∣
α̂

[m]
l

=(ρ2
l
−ςl)−1

= −ςl(ςl − 2ρ2
l)

ρ4
l

. (26)

Now it is straightforward to show that

∣
∣
∣
∣

ςl(ςl − 2ρ2
l)

ρ4
l

∣
∣
∣
∣
< 1,

i.e., that (25) is a stable fixed point of the map, when ρ2
l and ςl satisfy the following inequality

constraints

ρ2
l > ςl, (27)

ρ2
l < ςl < (1 +

√
2)ρ2

l . (28)

Observe that the condition (28) suggests that the fixed point (25) might become negative.

However, the negative value of α
[m]
l cannot be reached for α

[0]
l ≥ 0 since the map (23) can be

9

shown to be positive for ςl and ρ2
l satisfying (28).7 Thus, α̂

[∞]
l = (ρ2

l − ςl)
−1 is a stable positive

fixed point only when ρ2
l > ςl; if ςl > ρ2

l , then (25) looses its stability and the iterations of

the map converge to the other positive fixed point at α̂
[∞]
l = ∞, i.e., the iterations simply

diverge.

Expression (25) together with the pruning condition (27) is a variational counterpart of the

marginal likelihood analysis performed in [11]. It allows one to assess the impact of the lth

basis vector ϕl in the matrix Φ on the variational lower bound by computing (24): finite value

of α̂
[∞]
l instructs us to keep the lth component since it should maximize the variational lower

bound, while the infinite value of α̂
[∞]
l indicates that the basis vector l is superfluous. In this

way all L basis vectors can be processed sequentially in a round-robin fashion. It is also evident

that the decision to prune or to keep a basis function is determined entirely based on the target

vector t and the weight covariance matrix Σ̂.

3.2 Efficient Implementation of Fast Variational SBL

Let us assume that at some iteration j of the algorithm we have L basis functions and an

estimate of Σ̂. Our goal is to test whether the lth basis function ψl(·) should be kept in the

model.

The matrix Σ̂ can be efficiently computed using rank one updates. Indeed, noting that

Σ̂−1 = τ̂ΦTΦ +
∑L

l=1 α̂keke
T
k we compute Σ̄l as (see [6])

Σ̄l =
(

Σ̂−1 − α̂lele
T
l

)−1

= Σ̂ +
Σ̂ele

T
l Σ̂

α̂−1
l − eT

l Σ̂el

. (29)

Then, if the test indicates that the basis function ψ(·) should be removed form the model, we

can immediately update Σ̂ = Σ̂l̄ with

Σ̂l̄ =

[

Σ̂ − Σ̂ele
T
l Σ̂

eT
l Σ̂el

]

l̄,l̄

, (30)

which is equivalent to computing Σ̂ using (13) with the basis ϕl removed from the model. We

have used the notation [·]l̄,l̄ in (30) to denote the matrix obtained by removing the lth row and

column. Alternatively, if the test indicates that the basis ϕl should be retained in the model,

the covariance matrix Σ̂ is updated using (19).

We now summarize the main steps of the proposed fast variational SBL method in Algo-

rithm 1 and introduce the vector notation [·]l̄ to denote a vector obtained by removing the lth

element.

7Naturally, the map (23) is also positive for ςl and ρ2

l
satisfying (27)

10

Algorithm 1

Initialize q(w), q(α), q(τ)
while Continue if not converged do

for l ∈ {1, . . . , L} do

Compute: Σ̄l from (29) and ςl and ρ2
l from (21)

if ρ2
l > ςl then

α̂l = 1/(ρ2
l − ςl)

Update Σ̂ from (19)
else

Update Σ̂ = Σ̂l̄ from (30), α̂ = [α̂]l̄, L = L− 1
end if

end for

Compute µ̂ from (14) and update q(τ) from (16)
Check for convergence

end while

3.3 Simulations

In this section, we compare the simulation results of our proposed algorithm with other existing

SBL methods, namely the standard RVM [10], the variational RVM [3] and the fast marginal

likelihood maximization method [11]. Two experiments are presented. Section 3.3.1 shows

a common sinc regression problem and in Section 3.3.2 and 3.3.3 we test the algorithms on

a random basis with only a few active components. Note that for better comparison of the

algorithms, we have also implemented the fast methods in a “just pruning” manner which is

different from the proposed method in [11], where basis functions can also be added to the

model. Thus, all methods start with the full design matrix Φ and delete columns according

to their individual sparsification criteria. For the methods [3] and [10] one needs to specify a

threshold on the hyperparmeters α̂l, l = 1, . . . , L, to numerically detect if they have diverged,

where for this case when one α̂l exceeds the threshold, the appropriate basis function is pruned

from the model. Usually this threshold it set to a very large number, e.g. 1012, but for slower

methods like the variational RVM [3] we have observed that this would need an prohibitive

long amount of simulation time and thus have restricted the threshold to 104 for this particular

method although fully aware of the influence on the simulation results. To show the effect of

the threshold level onto the results, we have used two versions of the faster standard RVM [10]

with two different thresholds. To circumvent the influence of the individual noise estimation

procedures on the output, we assume that we know the true underlying noise variance τ̂−1 = σ2

used for the simulations. The hyperparameter-mean α̂ is initialized to ᾰl = 1/(µ̆2
l + s̆l), ∀l,

where the weights µ̆l are computed using a matching pursuit algorithm and the variance is given

by s̆l = σ2/(ϕT
l ϕl). Furthermore, since the fast methods need to have a sequence in which they

update the elements of the vector α̂, the inverse ordering of the matching pursuit ranking is used,

11

i.e. the worst aligned basis will be updated first. Note that for the standard RVM [10] and the

variational RVM [3] no such ordering is needed. We have used the same convergence criteria for

all methods, where the algorithm stops if the ℓ2-norm of the hyperparameter-difference between

two consecutive iteration steps ||α̂new − α̂old|| is smaller than 10−3.

3.3.1 Sinc regression

The function sinc(x) = sin(x)/x is a very common nonlinear evaluation function used for

regression. We also would like to focus our attention on this function for one-dimensional

inputs x. To generate the training data we drew N = 100 samples xn, n = 1, . . . , N , from a

uniform distribution over the interval [−10, 10]. The targets tn are then generated by adding

white gaussian noise to the function, i.e. tn = sinc(xn) + ǫn, where ǫn ∼ N (ǫn|0, σ2). We used

a constant bias b(x) = 1 and N Gaussian kernels κ(x, xn) = exp{−(x− xn)2/2ν2} centered on

each sample xn as the basis functions. The kernel variance ν2 was set to 2.3 for all algorithms.

The initial size of the design matrix Φ thus is N × (N + 1), where the n-th row of Φ is defined

as [1, κ(xn, x1), κ(xn, x2), . . . , κ(xn, xN)].

From the plots (a) and (b) of Figure 3 we see that our proposed algorithm achieves com-

parable results to the existing SBL methods in terms of model error and sparsity but has a

convergence speed at the level of the fast marginal likelihood maximization method [11] as

depicted in (c).

3.3.2 Random basis

In this experiment we generate L = 100 basis vectors randomly for N = 100 samples drawn

from a normal distribution ϕl ∼ N (ϕl|0, IN), l = 1, . . . , L. The targets are generated using a

noisy version of the superposition of five randomly picked basis vectors, where t =
∑

j∈R5
ϕj+ξ,

R5 is a set of five randomly picked basis indices and ξ ∼ N (ǫ|0, σ2IN) is a vector containing

the additive white Gaussian noise samples.

The simulation results are presented in Figure 4. We observe that methods using a lower

threshold perform better for higher SNR values than those with a higher threshold. Considering

a threshold of 104 it is interesting to mention that the standard RVM [10] and the variational

RVM [3] actually reach the true number of basis vectors above a certain level of SNR. Note that

the fast methods indirectly incorporate a threshold that is infinite with their specific pruning

criteria.

In the following section we show how our method can be improved by slightly modifying

the pruning criteria, i.e. not fullfilling the inequality (27).

12

−10 0 10 20 30
−40

−35

−30

−25

−20

−15

−10

−5

0
N

M
S

E
 (

dB
)

SNR (dB)

Std RVM, Th: 104

Std RVM, Th: 1012

Variational RVM, Th: 104

Fast Marginal RVM
Fast Variational RVM

(a)

−10 0 10 20 30
2

4

6

8

10

12

N
um

be
r

of
 B

as
is

 F
un

ct
io

ns

SNR (dB)

Std RVM, Th: 104

Std RVM, Th: 1012

Variational RVM, Th: 104

Fast Marginal RVM
Fast Variational RVM

(b)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

0

20

40

60

80

100

120

Iterations

N
um

be
r

of
 B

as
is

 F
un

ct
io

ns

SNR: 10 dB Std RVM, Th: 104

Std RVM, Th: 1012

Variational RVM, Th: 104

Fast Marginal RVM
Fast Variational RVM

(c)

Figure 3: Sinc regression performance for different sparse Bayesian learning (SBL) methods.
All results are averaged over 500 realizations. Plot (a) gives the normalized mean squared error
(NMSE) over the signal to noise ratio (SNR) and plot (b) the number of basis functions over
the SNR. Plot (c) shows the progress of the number of basis functions over iteration-steps for
an SNR of 10dB. The markers depict the average number of iterations.

3.3.3 Random basis with adjusted pruning criteria

Since the pruning condition (27) is a key to the model sparsity, let us study it in more details.

Assume for the moment that Φ = [ϕ1], i.e., that we only have a single basis function ψ1(·).
In this case Σ̂ = (τ̂ϕT

1 ϕ1 + α̂1)
−1 and Σ̄1 = (τ̂ϕT

1 ϕ1)
−1. It then follows from (21) that ρ2

1 =

|τ̂ Σ̄1ϕ
T
1 t|2 and ς1 = Σ̄1. These quantities correspond respectively to a squared weight mean

µ̄2
1 ≡ ρ2

1 of the basis ϕ1 and the estimated variance of this weight s̄1 ≡ ς1 obtained when

α̂1 ≡ 0. Obviously, evaluating (27) is equivalent to comparing the squared weight mean µ̄2
1 to

its estimated variance s̄1; also, the ratio µ̄2
1/s̄1 = µ̄2

1τ̂ϕ
T
1 ϕ1 can be recognized as an estimate

of the signal-to-noise ratio (SNR) for the basis vector ϕ1. Furthermore, according to (27) the

basis ϕ1 is retained in the model provided SNR1 = ω2
1/ς1 > 1, i.e., when the component’s SNR

13

0 10 20 30 40 50
−70

−60

−50

−40

−30

−20

−10

0
N

M
S

E
 (

dB
)

SNR (dB)

Std RVM, Th: 104

Std RVM, Th: 1012

Var. RVM, Th: 104

Fast Marginal RVM
Fast Variational RVM

(a)

0 10 20 30 40 50
5

10

15

20

25

N
um

be
r

of
 B

as
is

 F
un

ct
io

ns

SNR (dB)

Std RVM, Th: 104

Std RVM, Th: 1012

Var. RVM, Th: 104

Fast Marginal RVM
Fast Variational RVM

(b)

10
0

10
1

10
2

10
3

10
4

10
5

20

40

60

80

100

Iterations

N
um

be
r

of
 B

as
is

 F
un

ct
io

ns

SNR: 10 dB

Std RVM, Th: 104

Std RVM, Th: 1012

Variational RVM, Th: 104

Fast Marginal RVM
Fast Variational RVM

(c)

Figure 4: Random basis performance, where only 5 of 100 basis vectors are active. All results
are averaged over 50 realizations. Plot (a) gives the normalized mean squared error (NMSE)
over the signal to noise ratio (SNR) and plot (b) the number of basis functions over the SNR.
Plot (c) shows the progress of the no. of basis functions over iteration-steps for an SNR of
10dB. The markers depict the average number of iterations.

is above 0dB.

This interpretation of the pruning condition (27) remains valid also for a general design

matrix Φ with more than one basis vector. For a particular basis ϕl the parameters ρ2
l and

ςl can be seen respectively as the estimated squared weight of ϕl and the weight’s variance

computed when α̂l = 0 and α̂k, k 6= l, are fixed. As a consequence, SNRl = ρ2
l /ςl defines the

SNR of the basis ϕl when the corresponding sparsity parameter α̂l = 0.

This simple interpretation of the pruning test can be used to generalize (27) to any desired

SNRl > 1. More specifically, given a certain desired SNR′ ≥ 1, the pruning (27) can be

empirically adjusted as

ρ2
l > ςl × SNR′. (31)

14

The modified condition (31) allows to remove all components with SNRl satisfying 1 < SNRl ≤
SNR′. Note, however, that this adjustment might potentially “harm” the variational lower

bound (11), since it will remove basis functions with finite sparsity parameters. Nonetheless,

this strategy might be of practical interest in scenarios where the true SNR is known and the

goal is to delete spurious components introduced by SBL due to the “imperfectness” of the

Gaussian sparsity prior.

Figure 5 compares the adjusted sparsification criteria with the other methods, where we

have set SNR′ of condition (31) to the true SNR. For comparison, we also have plotted the

original condition which corresponds to a setting of SNR′ = 0dB. As could be seen in plot (a)

and (b), the modified version achieves a lower NMSE and correctly detects the real number of

basis functions for SNR values larger than about 10dB. The outcome is a tremendous speedup

since the algorithm converges to the optimum in not more than three iterations on average as

could be seen from (c) for the case of SNR = 10dB.

4 Publications and Ongoing Research

We have already submitted 3 papers that were built on the work described in Section 3:

• D. Shutin, T. Buchgraber, S. R. Kulkarni, and H. V. Poor, “Fast variational sparse

Bayesian learning with automatic relevance determination,” submitted to IEEE Trans-

actions on Signal Processing, 2010

• D. Shutin, T. Buchgraber, S. R. Kulkarni and H. V. Poor,“Fast adaptive variational sparse

Bayesian learning with automatic relevance determination,” submitted to ICASSP’11,

2010

• T. Buchgraber, D. Shutin and H. Vincent Poor, “A sliding-window online fast variational

sparse Bayesian learning algorithm,” submitted to ICASSP’11, 2010,

which is one journal and two conference papers.

In the journal paper “Fast variational sparse Bayesian learning with automatic relevance

determination” we generally descibe the results obtained during the collaboration at Princeton

University mentioned in Section 3.

The publication about “Fast adaptive variational sparse Bayesian learning with automatic

relevance determination” is about a dynamically adding and pruning concept for basis functions

which is related to the work in [11], a similar method that maximizes a marginal-likelihood

function instead of a variational lower bound. The case of testing the basis functions currently

included in the model has already been discussed in Section 3.2 and used in Algorithm 1. We

can rewrite the elementary decision rule for keeping or pruning the lth basis function as given in

15

0 10 20 30 40 50
−70

−60

−50

−40

−30

−20

−10

0
N

M
S

E
 (

dB
)

SNR (dB)

Std RVM, Th: 104

Var. RVM, Th: 104

Fast Var. RVM

Fast Var. RVM with SNRI

(a)

0 10 20 30 40 50
5

10

15

20

25

N
um

be
r

of
 B

as
is

 F
un

ct
io

ns

SNR (dB)

Std RVM, Th: 104

Var. RVM, Th: 104

Fast Var. RVM

Fast Var. RVM with SNRI

(b)

10
0

10
1

10
2

10
3

10
4

10
5

0

20

40

60

80

100

Iterations

N
um

be
r

of
 B

as
is

 F
un

ct
io

ns

SNR: 10 dB

Std RVM, Th: 104

Variational RVM, Th: 104

Fast Variational RVM

Fast Variational RVM with SNRI

(c)

Figure 5: Random basis performance, where only 5 of 100 basis vectors are active. Comparison
of SBL methods with the proposed adjusted pruning criterion according to condition (31) using
SNR′ = SNR, the true signal to noise ratio. All results are averaged over 50 realizations. Plot
(a) gives the normalized mean squared error (NMSE) over the SNR and plot (b) the number of
basis functions over the SNR. Plot (c) shows the progress of the number of basis functions over
the iteration-steps for an SNR of 10dB. The markers depict the average number of iterations.

Algorithm 2. We use the notation α̂old
l to denote the previous value of α̂l. When a basis function

is kept, we use the matrix inversion lemma [5] to efficiently add the term (α̂l − α̂old
l)ele

T
l to the

inverse of the weight covariance matrix Σ̂, which is a rank-one update of the lth hyperparameter.

To test a new candidate basis function for an existing model containing L basis vectors in the

columns of the design matrix Φ we compute

Σ̄L+1 =

(

τ̂ΦTΦ + diag(α̂) τ̂ΦT ϕL+1

τ̂ϕT
L+1Φ τ̂ϕT

L+1ϕL+1

)−1

, (32)

16

Algorithm 2 Testing the lth basis ϕl

Compute ςl and ρ2
l from (21)

if ρ2
l > ςl then

% keep basis

α̂l = (ρ2
l − ςl)

−1, Σ̂ = Σ̂ − Σ̂ele
T
l
Σ̂

(α̂l−α̂old
l

)−1+eT
l
Σ̂el

else

% prune basis
Compute Σ̂ = Σ̂l̄ from (30)
α̂ = [α̂]l̄, Φ = [Φ]:,l̄, L = L− 1

end if

which is equivalent to (20) if Φ would have been extended by the basis vector ϕL+1 in an

additional column at the end. By using the inversion rule for structured matrices [9], (32) is

equivalent to

Σ̄L+1 =

(

V −γτ̂Σ̂ΦT ϕL+1

−γτ̂ϕT
L+1ΦΣ̂ γ

)

(33)

where V = Σ̂ + γτ̂ 2Σ̂ΦT ϕL+1ϕ
T
L+1ΦΣ̂ and

γ = (τ̂ϕT
L+1ϕL+1 − τ̂ 2ϕT

L+1ΦΣ̂ΦT ϕL+1)
−1. (34)

Similarly we can efficiently compute Σ̂L+1 by using λ = (γ−1 + α̂L+1)
−1, and W = Σ̂ +

λτ̂ 2Σ̂ΦT ϕL+1ϕ
T
L+1ΦΣ̂ or by updating Σ̄L+1 with

Σ̂L+1 =

(

W −λτ̂Σ̂ΦT ϕL+1

−λτ̂ϕT
L+1ΦΣ̂ λ

)

= Σ̄L+1 −
Σ̄L+1eL+1e

T
L+1Σ̄L+1

α̂−1
L+1 + eT

L+1Σ̄L+1eL+1

. (35)

The Algorithm 3 summarizes the main steps for adding or rejecting a new candidate basis

function. By starting with one arbitrary basis function ψ∗(·), the design matrix is defined as

Algorithm 3 Testing a new basis ϕL+1

Compute ςL+1 and ρ2
L+1 from (21) using Σ̄L+1 from (33)

if ρ2
L+1 > ςL+1 then

% add new basis
α̂L+1 = (ρ2

L+1 − ςL+1)
−1

Compute Σ̂ = Σ̂L+1 using (35)
Φ = [Φ,ϕL+1], α̂ = [α̂T , α̂L+1]

T , L = L+ 1
else

% reject new basis - no action needed
end if

17

100 200 300

20

40

60

80

SW−FV−SBL

Final Window Length K

N
o.

 o
f K

er
ne

ls

100 200 300
10

−3

10
−2

10
−1

Final Window Length K

M
S

E
 T

es
t

0.2 0.4 0.6 0.8

20

40

60

80

Kernel RLS

ALD Treshold

N
o.

 o
f K

er
ne

ls

0.2 0.4 0.6 0.8
10

−3

10
−2

10
−1

ALD Treshold

M
S

E
 T

es
t

Figure 6: Comparison of the sliding window fast variational SBL algorithm with an ALD
Kernel-RLS for one-step ahead prediction of Mackey-Glass data. Results are averaged over 200
independent realizations for 500 samples. For the MSE, a test set of 200 samples was used.

Φ = [ϕ∗]. We can add basis functions accoring to Algorithm 3 and test the functions in the

model with Algorithm 2. This gives a very efficient method because the inversion in (13) only

has to be performed on a small number of basis functions at each iteration. This is opposed to

the method presented in Section 3, where we start with all basisfunctions and then sparsify the

model according to the pruning condition.

An online version of the proposed sparsification method is presented in the paper “A sliding-

window online fast variational sparse Bayesian learning algorithm”, where we use a sliding-

window to evaluate the design matrix Φn and the target vector tn, which now depend on a time

index n. This method also uses the previous mentioned concept of dynamically adding and

pruning basis functions. Figures 6 and 7 show the performance of the online method compared

to a state of the art kernel recursive least squares (Kernel RLS) algorithm with approximate

linear dependency (ALD) as a sparsification criteria [4]. To make both methods comparable we

have also used Gaussian kernels as basis functions for our method. The algorithms are tested

on the one-step ahead prediction ability of Mackey Glass chaotic time series data produced

according to [7, Section 2.11.1]. The free design parameters of both methods are the sliding

window length K for the fast variational method and a threshold parameter for the Kernel

RLS. Figure 6 shows the influence on the setting of both parameters, where we can see that

the Kernel RLS is more sensitive to changes. We can also see that for same values of test mean

square error (MSE), our method achieves much sparser representations.

Based on the work at Princeton University we plan to lead the research into the following

directions, i.e. to get closer to the main aim of distributed SBL. First we would like to focus on

18

0 50 100 150 200 250 300 350 400
10

−3

10
−2

10
−1

Iterations

M
S

E
 T

es
t

SW−FV−SBL
Kernel RLS

Figure 7: Example learning curves of the sliding window fast variational SBL algorithm using
a window length of 300 samples and the Kernel-RLS using an ALD threshold of 0.3. Both
methods result in the same number of 14 kernels at the last iteration. For the MSE, a test set
of 200 samples was used.

Online fast variational SBL, where we try to modify the sliding window online version of the

algorithm. We have shown that by using Gaussian kernels we achieve sparser representations

than a Kernel-RLS using ALD for equivalent SNR levels or on the other hand achieve a lower

SNR for the same number of used kernels. We would like to replace the sliding-window by

evaluations directly on the kernel centers, thus constucting a quatratic design matrix similar

to a Gram matrix. This should lead to a method containing no free design parameters, like in

our case the sliding-window length. Thus, the outcoming method should get more flexible for

different learning tasks and no compromisses concerning the sliding window length are needed.

The second topic of future research is Distributed sparse Bayesian learning. As mentioned

in Section 1 the general aim of all the described methods is to exploit SBL for distributed data

processing in WSNs. Here we would like to investigate if our efficient sparsification criteria can

be incorporated in distributed sensor environments. We seek a way to implement our criteria in

distributed algorithms like consensus propagation [8] or average consensus [12]. Such consensus

schemes have no need for routing and the nodes just have to know their direct neighbours with

which they have to communicate. It can also be thought of merging relevant basis functions

using only local communications in a sensor network. Also the previously mentioned online

kernel version should be tested on a sequential spatial sensor chain instead of a time sequence.

References

[1] Akyildiz, I., Su, W., Sankarasubramaniam, Y., and Cayirci, E. A survey on

sensor networks. Communications Magazine, IEEE 40, 8 (Aug 2002), 102 – 114.

[2] Bishop, C. M. Pattern Recognition and Machine Learning (Information Science and

19

Statistics), 1st ed. 2006. corr. 2nd printing ed. Springer, October 2007.

[3] Bishop, C. M., and Tipping, M. E. Variational relevance vector machines. In UAI ’00:

Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence (San Francisco,

CA, USA, 2000), Morgan Kaufmann Publishers Inc., pp. 46–53.

[4] Engel, Y., Mannor, S., and Meir, R. The kernel recursive least-squares algorithm.

IEEE Transactions on Signal Processing 52, 8 (Aug. 2004), 2275 – 2285.

[5] Golub, G. H., and Van Loan, C. F. Matrix Computations (Johns Hopkins Studies

in Mathematical Sciences - 3rd Edition), 3rd ed. The Johns Hopkins University Press,

October 1996.

[6] Hager, W. W. Updating the inverse of a matrix. SIAM Review 31, 2 (1989), pp. 221–239.

[7] Liu, W., Principe, J. C., and Haykin, S. Kernel Adaptive Filtering: A Comprehensive

Introduction. Wiley Publishing, 2010.

[8] Moallemi, C. C., and Roy, B. V. Consensus propagation. IEEE Transactions on

Information Theory 52 (2006), 4753–4766.

[9] Petersen, K. B., and Pedersen, M. S. The matrix cookbook, October 2008. Version

20081110.

[10] Tipping, M. E. Sparse Bayesian learning and the relevance vector machine. Journal of

Machine Learning Research 1 (June 2001), 211–244.

[11] Tipping, M. E., and Faul, A. C. Fast marginal likelihood maximisation for sparse

bayesian models. In roceedings of the Ninth International Workshop on Artificial Intelli-

gence and Statistics (Key West, FL
”

January 2003).

[12] Xiao, L. A scheme for robust distributed sensor fusion based on average consensus. In

Proceedings of the International Conference on Information Processing in Sensor Networks

(IPSN (2005), pp. 63–70.

20

