
Virtual 3D World for Physics
Experiments in Higher

Education

Implementation of Physics Experiments in a Virtual World

Author:
Stefan Berger,

Graz University of Technology

January 10, 2011

c©Copyright by Stefan Berger

Supervisor:
Univ.-Ass. Dr. Christian Gütl,
Graz University of Technology

Co-Supervisor:
Associate Director V. Judson Harvard,
Massachusetts Institute of Technology

Abstract

E-learning software has the ability to enhance students performance signif-
icantly. The improvements in hard- and software over the last decade en-
ables developers to implement extendible real-time simulations to increase
the learning effect. Not only e-learning software does benefit from the ad-
vancement of technology but also virtual worlds. Especially high-speed in-
ternet which is broadly available nowadays helps to build virtual 3D worlds
with complex functionalities.

Over the last view years e-learning research has discovered the potential
of virtual worlds for its purpose. Within the teaching field it has several
advantages over conventional “real-world” teaching. Stundents can connect
to a teaching session from all over the world and use the provided virtual
world functionality over long time periods. Time slots for groups of students
can be used if a class with many students uses e-learning software within a
virtual world.

MIT’s TealSim physics simulation software aims to improve the students
performance of well-visited courses as well. It does so by providing a wide
range of simulations the students can study prior to the classes. Teachers
can adopt the software by defining simulations specifically for their courses
without sophisticated software development skills. To combine the advan-
tages of the TealSim software and virtual worlds this work focuses on putting
TealSim into such a 3D virtual world. This creates a collaborative learning
environment with the potential to improve the students performance and to
lower the teaching effort for teaching personal. During the implementation
process the TealSim software was also improved by the means of software
design to fit into the Open Wonderland virtual world.

Contents

1 Introduction 3

2 Frameworks 4
2.1 Open Wonderland . 4

2.1.1 Software Architecture of Open Wonderland 4
2.2 TealSim . 6

2.2.1 Software Design . 7

3 Implementation of the required Components 9
3.1 Porting TealSim’s 3D Output 9

3.1.1 Preparing TealSim for JMonkeyEngine/MTGame . . . 10
3.1.2 Keeping Java3D Output 11
3.1.3 Implementing JMonkeyEngine Primitives 12
3.1.4 Colors and Materials 21
3.1.5 Specifying Interface Data-Types 26
3.1.6 3D Models . 33
3.1.7 The Viewer . 34
3.1.8 Threading Issues . 38

3.2 Preparing TealSim for Client-Server Architecture 39
3.2.1 Synchronizing the 3D Objects 39
3.2.2 Splitting the Simulation Engine 45
3.2.3 Preparing TealSim for the Project Darkstar Server . . 60

3.3 Wonderland Module . 64
3.3.1 Preparing the Module’s Environment 64
3.3.2 The Artwork . 66
3.3.3 Simulation Selection Functionality 66
3.3.4 Creating a Simulation 68
3.3.5 The Control Panel . 74
3.3.6 Starting the Simulation and synchronizing Engine States 76
3.3.7 Synchronizing the Swing User Interface 80

3.4 Implementation of a Multi-player Simulation 84

4 Installation and Usage of the Module 87

5 Conclusion and Outlook 91
5.1 Future Work suggestions . 91

1

List of Figures

1 Client and Server Components of Open Wonderland 5
2 TealSim Screenshot . 6
3 Scene Factory Class Diagram 11
4 Java3D Scene Graph with Class hierarchy 13
5 Node Class hierarchy in JMonkeyEngine Part (incomplete) . . 14
6 Field Lines with Clones . 16
7 FieldLineNode Scene Graph in Java3D 18
8 FieldLineNode Scene Graph in JMonkeyEngine 19
9 Field Direction Grid . 20
10 Different Face Modes . 25
11 Capacitor Simulation with different Material Faces 26
12 Class diagram of Java3D’s Transforms 27
13 Class diagram of JMonkeyEngine’s Transforms 29
14 Class hierarchy of Bounding Volumes 30
15 Bounding Box Coordinates . 30
16 Object diagram of Viewer’s Root Entity 34
17 Relations of the Camera Entity 36
18 Sequence Diagram for creating 3D Objects and transferring

changes at TNode3D synchronizing Level 42
19 Previous Simulation Engine Class Diagram 48
20 Extending Desktop Version by Inheritance 50
21 Engine class hierarchy using Bridge Pattern 51
22 Communication Diagram for Engine execution step 59
23 Object relations of the Properties Dialog 68
24 Communication Diagram of the creation of a Simulation with

TealSim’s Desktop version (slightly simplified) 69
25 Frame parts of the Player (TFramework) 71
26 Sequence Diagram of Simulation instantiation and distribution 73
27 Simplified client side swing Components class hierarchy of the

Module . 75
28 Visualization Control in GUI 80
29 Display of electric potential in the “Charge by Induction” Sim-

ulation . 81
30 3-Player Video Game in Wonderland 85
31 Uploading a Module . 88
32 Cell after it is loaded . 89
33 Properties Window of the TealSim Cell 89
34 Simulation with 3D User Interface 92

2

1 Introduction

Virtual worlds have been evolving for about twenty years now. Within such
worlds many people represented by their in-world avatars can work together
or meet for other purposes. One of the first applications using this technol-
ogy were multi-player games as Doom (1993) or Quake (1996). When the
computational power as well as the connection speed between the peers in-
creased more complicated and realistic applications as Second Life1 (launched
in 2003) were feasible [9]. Due to this improvements in technology web-based
e-learning systems are becoming an interesting field in computer education
[16].

In [12] a prove of concept showed that MIT’s internet-accessible physics
experiments (iLabs) can be integrated within a virtual 3D world. In order
to visualize a 3D model of the chosen experiment in-world parts of MIT’s
TealSim physics e-learning software where used. With the proof of concept
the idea was born to enable students to use the TealSim software, yet a pure
desktop application, within a 3D virtual world. As target environment Open
Wonderland2 version 0.5 was chosen. When executed within a virtual 3D
world the e-learning software can be used as a multi-user online learning
environment. Such a collaborative online learning system can increase the
learning performance of students significantly compared to conventional col-
laborative learning [10]. It covers a wide field of application and can be used
for preparation to a lecture as well as in the lecture. In the long term an
online learning environment enables students to attend a course regardless
of the students location [7].

This work mainly describes the way the TealSim physics simulation soft-
ware and the Open Wonderland 3D virtual world are joined together in order
to create a collaborative learning environment. The next section explains the
two frameworks from the users and the programmers perspective. Section
3 describes the actual implementation in detail. Subsequently, section 4 ex-
plains the resulting software from a users point of view. This covers the
installation of the module as well as the usage. Finally, section 5 quickly re-
views the outcome of this work and points out some future work suggestions.

1http://secondlife.com/
2http://openwonderland.org/

3

http://secondlife.com/
http://openwonderland.org/

2 Frameworks

Two frameworks were used for this work. Both of them will be explained in
this sections from the user perspective and the developers perspective.

2.1 Open Wonderland

Open Wonderland is an open source virtual 3D world entirely written in Java
programming language [15]. It provides a set of functionalities for different
types of users:

• Content developers can build up a 3D world with a vast variety of tools.
3D models can be added by simply dragging them into the world[13].
Cells with many different functionalities can be added to the world.

• Users can explore a world and communicate to other users. Their
avatars can be customized to a high extend giving every user a unique
appearance. The user interface to the elements placed in-world are
intuitive and easy to use.

• Open Wonderland server administrators can enable applications which
are runnable on the server to be shown in-world. They can save snap-
shots of worlds to be restored later. A variety of extensions, so-called
“modules” to be found in the module warehouse3 can be added to
extend the functionality of the Open Wonderland server. The admin-
istrator can also enable security features to restrict access to the ad-
ministration page as well as user log ons.

• Software developers can add new functionality by implementing mod-
ules. Open Wonderland provides an API which makes it fairly easy to
develop a module. Extensions can be added almost arbitrarily in terms
of what parts of Wonderland should be extended. However, most mod-
ules will add visible models and/or functionality to such models.

Open Wonderland is designed as a client-server architecture. A user can log
into a server without installing any additional software. Servers can be set
up on many platforms.

2.1.1 Software Architecture of Open Wonderland

Open Wonderland consists of several components. In figure 1 an overview of
this components is given. On the server side a Glassfish application server4

3http://openwonderland.org/module-warehouse/module-warehouse
4http://glassfish.java.net/

4

http://openwonderland.org/module-warehouse/module-warehouse
http://glassfish.java.net/

is responsible for managing the other three server side services. The client
can start, stop or change parameters of the services using the web interface
provided by Glassfish. The shared application server enables Wonderland to

SharedApplication
Server

Darkstar
Server

Voice Bridge

Glassfish Application Web-Server

SoftPhoneOpen Wonderland ClientWeb Browser

Client side

Server side

Figure 1: Client and Server Components of Open Wonderland

show applications started on the server within the virtual 3D world. Such ap-
plications can then be rendered within the virtual world on a two-dimensional
pane. For the voice bridge is a jVoiceBridge5 audio mixer is used. It supports
high-fidelity stereo sound and is used for sharing the voice among the users.
It also supports connections to remote soft phones.

The Darkstar server represents the heart of Wonderland which runs on
top of that server. Project Darkstar is a high-performance game server with
high scalability. It provides a communication interface to exchange messages
to the clients as well as an API for the application running on a server. The
Wonderland application running on the Darkstar server makes use of the
shared application server and the voice bridge. The Open Wonderland client
is a Java application which establishes a connection to the server during a
log-in process. For the 3D graphics the JMonkeyEngine6 library is used. This
game engine lacks multi-threading support. For that reason MTGame runs
on top of it to add the required functionality.

5http://java.net/projects/jvoicebridge/
6http://www.jmonkeyengine.com/

5

http://java.net/projects/jvoicebridge/
http://www.jmonkeyengine.com/

One of the most powerful features of Open Wonderland is its extendibility.
To extend the functionality so-called “Modules” are used. They can be man-
aged using the Glassfish web interface. Many built-in features Wonderland
comes with are already implemented as modules[14]. In order to be noticed
by Open Wonderland a module has to fulfill requirements as implementing
Wonderland interfaces. It can contain server-side code, client-side code and
artwork which is mostly 3D models or texture images.

2.2 TealSim

TealSim is a part of MIT’s Technology-Enabled Active Learning (TEAL7)
project. This project was launched in 1994 [1] and defines a learning struc-
ture for courses with larger numbers of students. The project aims to improve
the students understanding by using simulation and visualization software[4].
TealSim is such a simulation software. It provides a simple interface for defin-
ing new simulations. This enables even unexperienced Java programmers to

Figure 2: TealSim Screenshot

implement simulations with extended features like the use of external 3D

7http://web.mit.edu/8.02t/www/802TEAL3D/

6

http://web.mit.edu/8.02t/www/802TEAL3D/

models. On the other hand TealSim is extendible for programmers if new
functionality of physical objects are needed. In figure 2 the user interface
is shown. A user can choose a simulation in the menu bar and change sim-
ulation parameters on the right-hand side. A simulation can be started by
pressing the “play” bottom at the bottom. Parameters can be changed dur-
ing the simulation. Within the frame on the left-hand side the 3D spatial
representation of the simulation is shown. With most simulations the user
can change the view with a drag on the shown 3D model. Such mouse in-
teraction behaviors can be defined when writing a simulation. TealSim also
provides analysis features as showing fields in different representations (e.g.
grass seeds). Some of those features as e.g. field lines are calculated in real-
time while the simulation is running. With showing such elements during
the whole simulation execution a better understanding of the physics behind
the simulation can be achieved.

2.2.1 Software Design

TealSim is implemented following the Model-View-Controller (MVC) de-
sign pattern. With this pattern the software is split logically into three
components[8] which are:

• The model representing the visual elements as descriptive data. It also
defines the behavior of the elements.

• The view is responsible for rendering the elements and is usually di-
rectly part of the user interface.

• The controller is the glue between the components. The user input
goes through the controller which then reacts properly by updating
model and view.

TealSim consists of several components. The simulation makes the model
within the MVC pattern. Whenever a simulation is implemented this element
is the only object to be defined. It creates all the simulation elements; e.g.
the 3D elements, the user interface and the type of the simulation engine
needed.

The simulation engine is responsible for all the physics calculations. It
knows about all the objects within the simulation and can retrieve their
physical parameters. Currently the basic simulation engine and an electro-
magnetic simulation engine is provided. However, new engines with addi-
tional capabilities can easily be added by TealSim developers. This can be
necessary when new simulations with new physical behaviors are used.

7

A simulation is loaded by the SimPlayer. It creates all the components
including the simulation engine and the simulation itself and also represents
the user interface. User interface elements defined within the simulation are
added to the Java swing GUI and the components are connected to each other
if necessary. Within the MVC pattern the simulation makes the controller.

The last element to mention is the viewer. It displays the 3D simulation
elements on a canvas using the Java3D8 graphics library. In the course of this
work and additional library support was added (see section 3.1). Another
responsibility of the viewer is to report user interactions on the 3D elements
of the currently loaded simulation.

8http://j3d.org/

8

http://j3d.org/

3 Implementation of the required Components

This section describes the implementation details of this work. In order
to understand this section properly some software programming knowledge
is required. Some basics in Java programming language and in software
architecture are recommended.

In order to have as many simulation running within Open Wonderland
the TealSim framework is ported run within Wonderland. When this goal
is achieved the resulting software can be used for a variety of fields within
physics. From the perspective of software development the requirements can
be defined as follows:

• As many TealSim simulations as possible should be ported to Open
Wonderland. This should be done with little special treatment for
single simulations. Most of the features of the simulations should be
supported.

• The changes in the TealSim software should not make the definition
of a new experiment more complicated. The way how a simulation is
defined should basically remain the same as before the changes.

• Neither the software design nor it’s performance should be influenced
in a negative way. Possible improvements to this measures should be
implemented.

• The software must be easily installable on every Open Wonderland
server. Thus the software should be packed into a Wonderland module
which can be uploaded by the web interface as shown in 4.

• TealSim should still be runnable as desktop version after the changes.

• The advantage of having TealSim run in a virtual world should be
pointed out by defining a new simulation.

To meet those requirements, several implementation steps were necessary.
Those are described in the next subsections.

3.1 Porting TealSim’s 3D Output

As described in 2.2.1, TealSim uses Java3D for the three dimensional graphics
output. Open Wonderland uses JMonkeyEngine with MTGame on top. The
latter was developed for Wonderland but can also be used by other software
outside of Wonderland. The concepts in Java3D are quite different from the

9

ones in a JMonkeyEngine/MTGame application. The scene graph is built
up with different objects. Because TealSim uses abstractions of scene graph
elements, those abstractions can be defined for JMonkeyEngine/MTGame in
the same way as they are defined for Java3D.

3.1.1 Preparing TealSim for JMonkeyEngine/MTGame

To be able to use JMonkeyEngine and MTGame with the desktop version of
TealSim those libraries have to be provided to the code. For that purpose
MTGame has to be compiled and packed into a jar file. The code can be
obtained via subversion9 from the MTGame repository10. There are several
libraries MTGame depends on:

• A slightly adopted version of JMonkeyEngine,

• the physics library JBullet11,

• the JOGL12 OpenGL front-end for Java,

• and the Java real-time library javolution13.

JMonkeyEngine does not only work with JOGL, but also with the lwjgl
OpenGL library. For the TealSim desktop version JOGL was used. In or-
der to avoid problems when TealSim is used in Open Wonderland the right
JMonkeyEngine jar libraries should be used. Those are exactly the same as
used in Open Wonderland. For compiling the MTGame jar file some tweak-
ing of the ant file build.xml was necessary. The resulting jar file mtgame.jar
has to be put into the classpath. Additional classpath directories can also be
specified with the -cp option on the javac and the java command. Alter-
natively when using a development software the classpath can often be set
up within the options.

Since JOGL uses OpenGL calls which are not possible in Java, it uses
Java’s native interface. This way native code can be called by Java code.
JOGL comes with four native libraries, namely libgluegen-rt, libjogl_awt,
libjogl_cg and libjogl. On Linux those libraries have the file extensions
.so (“shared object”). On Windows platforms .dll’s are used. To run the
Java virtual machine, the -Djava.library.path switch on the command
line has to be set to the directory where the native libraries can be found.

9http://subversion.tigris.org/
10http://openwonderland-mtgame.googlecode.com/svn/trunk
11http://jbullet.advel.cz/
12http://kenai.com/projects/jogl/
13http://javolution.org/

10

http://subversion.tigris.org/
http://openwonderland-mtgame.googlecode.com/svn/trunk
http://jbullet.advel.cz/
http://kenai.com/projects/jogl/
http://javolution.org/

Many development environments allow the user to specify that path in the
project properties as well.

3.1.2 Keeping Java3D Output

For the new desktop version of TealSim it would be nice if it worked with
both, Java3D and JMonkeyEngine/MTGame graphics system. This would
also help to reduce dirty code. All hard-coded Java3D specific code has to be
removed from outside the low-level Java3D package, which is teal .render.j3d.
All other packages have to use the abstractions in order to work with both
graphic engines.

SceneFactory

−theFactory:TSceneFactory

+setFactory(TSceneFactory factory):void
+makeNode(TRendered element):TNode3D
+makeNode(NodeType type):TNode3D
+makeViewer():AbstractViewer3D
+loadModel(String path):TNode3D
. . .

TSceneFactory

+makeNode(TRendered element):TNode3D
+makeNode(NodeType type):TNode3D
+makeViewer():AbstractViewer3D
+loadModel(String path):TNode3D
. . .

1

1

teal.render.scene

SceneFactoryJ3Dimplements

SceneFactoryJME

implements

Figure 3: Scene Factory Class Diagram

To instantiate the needed version of the primitive a factory following the
factory method design pattern as described in [5] was introduced. In figure
3 a simplified class diagram of the factory and its components is shown. The
general teal .render.scene.SceneFactory class is static and contains a refer-
ence to an object implementing the interface TSceneFactory. This forces the
referenced classes to override all the methods declared in this interface. For
every graphic output system one SceneFactory implementing TSceneFactory
has to be implemented.

11

The TNode3D interface is the generic type for an actual scene graph node.
An implementing class is a specific node that maps the calls of the TNode3D
interface to the actual scene graph node class of the specific library (in our
case JMonkeyEngine or Java3D). Previously a scene graph node was created
directly:

TNode3D boxNode = new t e a l . render . j3d . BoxNode () ;

Now the code is replaced by the one using the factory:

TNode3D boxNode = SceneFactory . makeNode(NodeType .BOX) ;

This way it is possible to make the code independent of a specific graphic
library. The makeNode method simply calls the same method on the concrete
Factory:

public stat ic TNode3D makeNode(NodeType type){
return theFactory . makeNode(type) ;

}

The concrete factory can contain all the code for creating a library-specific
scene graph object implementing the TNode3D interface.

According to previous TealSim developers interfaces as TNode3D were
introduced because more than one graphic output system was intended to
be used in the past. Therefore most of the code outside the specific pack-
ages (teal .render.j3d and teal .render.jme) already use TNode3D instead
of the Java3D-specific classes. However, many classes are using type-casts
to Java3D scene graph classes or created such classes by themselves. This
code had to be replaced by the factory-using code. This prevents from using
Java3D specific code anywhere else than in the specific packages and thus
cleans up the implementation.

As shown in figure 3, the factory defines a setFactory method. This
method can be used to pass an implementation of TSceneFactory. This
feature will be important when it comes to the implementation of an Open
Wonderland module (see section 3.3.2).

3.1.3 Implementing JMonkeyEngine Primitives

In this section the already available Java3D source code is analysed first.
Subsequently, the implementation of the JMonkeyEngine primitives which
have to build 3D objects looking exactly as their Java3D equivalents is de-
scribed.

The graphic library specific scene graph objects have to be implemented
to be returned by the factory described in section 3.1.2. In the package
teal .render.j3d primitives as BoxNode, FieldLineNode or ImageNode were

12

already defined. The most important class is the one all other primitives
are derived from, called Node3D. It implements the TNode3D interface and
is derived from the Java3D BranchGroup. It contains several methods to
change scale, rotation, transform, visibility and so on. Figure 4 shows the
components of Node3D.

mSwitch:Switch

mTransform:TransformGroup

mContents:TransformGroup

Node3D

mShape:Shape3D Geometry

Appearance

contains1 *

contains
1

1

ShapeNode

in
he

ri
ts

teal.render.j3d

Figure 4: Java3D Scene Graph with Class hierarchy

The class holds references to three descendent scene graph nodes. The
mSwitch node is added directly as a child of the Node3D object. It is used
for a change of the node’s visibility. The mTransform node is attached to
the mSwitch node. It is responsible most of the transforms. E.g. whenever
the setScale method is called, the scale is applied to that node. However,
on some nodes two different transform operations are applied. Among oth-
ers the setModelOffsetTransform method transforms the mContents node.
Whenever an instance of Node3D is created the three nodes are added ac-
cordingly.

The leaves of the scene graph are added by inheriting from Node3D.
The most generic subclass is ShapeNode. It contains a member mShape
containing the leaf of the scene graph. In Java3D such leafs usually hold the

13

geometry with all the vertices as well as appearance data. In the appearance
colors, transparency and so on are defined. With Java3D one single geometry
object can be shared among many different scene graph leaves. This is not
possible with JMonkeyEngine because the relation of leaf node to geometry
is an “is a” as opposed to a “has a” relation in Java3D.

Another main difference with the scene graphs of the two graphic libraries
is how the transforms are applied. In Java3D TransformGroup objects are
used to transform the graph with all the descending scene graph objects. In
JMonkeyEngine scale, translation and rotation can be applied to all the scene
graph objects including the leaves. Thus, the scene graph can be kept flatter.
In our case the JMonkeyEngine’s Node3D class does not contain a reference
to any descendent nodes. The class is derived from a JMonkeyEngine Node
class which is the most abstract version of an inner scene graph node. Visi-
bility and transforms can directly be applied to that node at the same time.
Therefore it takes the role of the mSwitch and the mTransform node in the
Java3D version.

com.jme.scene.Node

Node3D

TNode3D

ShapeNode

ShapeNode3D

FieldLineNode

ImageNodeLineNode HelixNode

implements

implements

teal.render.jme

teal.render.scene

Figure 5: Node Class hierarchy in JMonkeyEngine Part (incomplete)

As with Java3D’s Node3D, the class is extended by inheritance. A part
of the class hierarchy is shown in figure 5. Because the class hierarchy is as
shallow as the scene graph hierarchy the SceneFactory (see section 3.1.2) can
use it as an ordinary JMonkeyEngine Node class:

14

TNode3D sphereNode = new t e a l . render . jme . Node3D () ;
((com . jme . scene . Node) sphereNode) . at tachChi ld (new Sphere ()) ;

This way classes as the SphereNode in the teal .render.j3d package do not
need to be defined for JMonkeyEngine. Although many of the 3D objects
could be created within the SceneFactory, most of them are put into their own
class. One reason for that is the better code structure with this approach.
If more code is put into the SceneFactoryJME class it becomes larger and is
not as readable any more. The code is split by shape type as well.

Another reason why separate classes are defined for many shapes is that
the TNode3D interface is not powerful enough with some of the 3D-objects.
Thus, some more interfaces have to be defined for some of the primitives. This
gives the code outside the low-level Java3D or JMonkeyEngine packages the
ability to change some other shape-specific parameters. Figure 5 shows the
additional ShapeNode3D interface which is implemented by ShapeNode and
therefore by all derived classes. Previously the objects were sometimes casted
directly to the actual Java3D class. With a second 3D output library this
is not possible any more so some additional interfaces as TFieldLineNode or
TArrayNode were introduced for that reason as well. Such interfaces are only
implemented by two classes, namely a JMonkeyEngine and a Java3D specific
class. Basically, the code should work without such additional sub-interfaces.
For ideas how this could work see section 5.1. In the following paragraphs
some of the nodes requireing special treatment are described.

FieldLineNode

The FieldLineNode class is the 3D representation of a field line. In TealSim
field lines are always symmetric around some axis (mostly the y axis). Be-
cause of this characteristic one single line can be referenced by many others.
Figure 6 shows a simulation with only 3 field lines, but each of them is shown
25 times.

The main advantage of referencing a line is the lower memory consump-
tion and the higher performance. The vertices of the line are stored and
the referencing nodes change only their rotation around the rotation axis.
Without making use of this feature the computationally intensive drawing of
the field lines would take too much time.

Both Java3D and JMonkeyEngine contain a mechanism for sharing nodes.
With Java3D the prototype is a SharedGroup node. With a Link node this
SharedGroup is referred. The Link object is then put into the scene graph.
There can be many links to one shared group. In JMonkeyEngine there
is a SharedNode derived from Node as well as a SharedMesh derived from

15

Figure 6: Field Lines with Clones

TriMesh. When instantiating one of those shared objects the target is given
to the constructor. Unfortunately, only inner nodes and triangle meshes are
supported by JMonkeyEngine for sharing. The line nodes are not derived
of any of those. To solve this problem a SharedLine class was implemented.
With every render cycle the draw method of every scene graph object is
called. With that call the SharedLine sets its properties to the target and
causes the target to be drawn instead of itself.

Some additional method calls from outside are to be made on the field line
primitive. Thus, an interface TFieldLineNode is introduced. This interface
is implemented by both, the Java3D and the JMonkeyEngine FieldLineNode.
The most important methods of this interface are:

public void setLineGeometry (int len1 , f loat [] l i n e1 ,
int len2 , f loat [] l i n e 2) ;

public void setLineGeometry (int len1 , f loat [] l i n e1 ,
f loat [] c o l o r s1 ,
int len2 , f loat [] l i n e2 ,
f loat [] c o l o r s 2) ;

public void setSymmetry (int count , Vector3d ax i s) ;

The first two methods set the line geometry. The float arrays contain all

16

vertices for two lines belonging to a single field line. With most experiments
the number of coordinates for each lines is 100. Since there are two lines and
each vertex consists of three numbers (in 3D-space) this leads to 600 floats.
The second method takes a float array with one three-dimensional color by
vertex. These two methods are called every time the field changes. During
the simulation this usually happens with every new frame meaning that the
methods are called 20 times a second. For that reason it is very important
to keep the runtime of the methods low. The third method is to change
the symmetry axis and the number of field line copies. Symmetry axis are
rarely changed in the simulations. The symmetry count changes mostly on
user interaction. Thus, performance issues will occur in the setLineGeometry
methods rather than in setSymmetry.

To keep the execution time of the methods stated above low some con-
siderations have to be made. As opposed to Java3D which takes the line
vertices as float [] , JMonkeyEngine uses java.nio-buffers. For floats the class
java.nio.FloatBuffer is used. The advantage of such buffers is the increased
performance on the access operations. This is due to the fact that such a
buffer allows bulks of data to be written or read. With ordinary arrays an
index bounds check is done with every single array access operation. With
java.nio-buffers a whole bulk of data can be read or written with one single
bounds check.

Since the setLineGeometry methods are getting the data in float arrays
a FloatBuffer has to be created and filled with the data. The vertices can
be written as a whole bulk. With the colors it is more difficult. The given
arrays colors1 and colors2 contain the data for three dimensional colors, i.e.
index 0 to 2 contain the red, green and blue value for the first vertex. Index
3 contains a red value again, in this case for the second vertex and so on.
Since JMonkeyEngine uses four dimensional colors only three values can be
written as a bulk. Then a 1 is added as forth value for each vertex. This
way, as many bulk writes as vertices are necessary. In Java3D the parameters
can be used directly and be passed to the low level objects. Java3D uses
tree dimensional colors and float arrays. The setLineGeometry methods are
obviously designed for Java3D output. This way the JMonkeyEngine code
can not be made as performant as the Java3D code as soon as the interface
is keep as it is now.

All three discussed methods are synchronized in the Java3D version.
This is done to be thread safe. Adding the synchronized keyword to a
method is the quickest way to keep a class thread safe. However, with this
approach performance is given away. For all members the same lock, namely
“this” is used. This often locks a thread which would not need to be locked.
In JMonkeyEngine the Line scene graph nodes are the only members of the

17

FieldLineNode class to be read by another thread, namely the MTGame
renderer thread. Since the changes of a node should always occur in the
renderer thread they are simply passed to that thread. This way no additional
synchronization is needed. Because the renderer thread has to render the
whole scene many times a second it should get as little additional jobs taking
as little time as possible. For that reason the java.nio.FloatBuffers are local
variables filled by the method-calling thread. This buffers are then passed to
the renderer thread which only has to update the line geometries.

mSwitch:Switch

mTransform:
TransformGroup

mContents:
TransformGroup

mPick:Shape3D

mLines:Group

clone:CloneNodeclone:CloneNode

clone.mContents:
TransformGroup

:Link

mShare:SharedGroup

mShape:Shape3D
lineGeo:LineStripArray

clone.mContents:
TransformGroup

:Link

Node3D

links to

Figure 7: FieldLineNode Scene Graph in Java3D

Since the scene graphs of Java3D and JMonkeyEngine are different a
new graph for JMonkeyEngine was designed. In figure 7 the scene graph of
the Java3D FieldLineNode is shown. The part of the scene graph which is
specified in Node3D is used to show pick marks. The actual field line part
of the scene graph is attached to mSwitch. This way all transform methods
defined in the TNode3D interface only affect the pick shapes but not the
field lines. Those can only be influenced by the methods defined in the
TFieldLineNode interface. All the clones needed are attached to the mLine

18

node. The dashed path to the left in figure 7 would create a second field line.
An arbitrary number of clones can be attached to mLines without increasing
the memory usage significantly. This is done with the setSymmetry method.
The Link node at the bottom of the scene graph links to a SharedGroup;
every single Link node of each clone links to it. Thus the FieldLineNode has
got only one shared node. Its child is the shape of the field line. It contains
the geometry of the field line, in this case a Java3D LineStripArray. When
changing the shape of a field line, only the lineGeo needs to be changed. This
is done by the setLineGeometry methods.

:Node3D

NonLines:NodeLines:Node

clone:Node

:SharedLine :SharedLine

clone:Node

:SharedLine :SharedLine

lineGeo1:Line lineGeo2:Line
links to links tolinks to

links to

Figure 8: FieldLineNode Scene Graph in JMonkeyEngine

In figure 8 the scene graph of a JMonkeyEngine FieldLineNode is shown.
One difference is that the Node3D does not contain several sub-nodes. It is
the whole Node3D. As stated previously in this section the transforms applied
on Java3D’s mContents node are applied on all the childs of JMonkeyEngine’s
Node3D by default. In order to be consistent with the Java3D code this
behavior needs to be overwritten in the FieldLineNode. Otherwise all the
transforms are also applied to the lines. Furthermore all other transform
methods declared in TNode3D are to be overwritten because they should
only apply to the NonLines node.

The clones are attached to the Lines node. This is again done by the
setSymmetry method. Because the line geometry can most easily be repre-
sented in JMonkeyEngine as two Line nodes a clone node has two SharedLine
nodes as children. That way each node refers to lineGeo1 as well as to
lineGeo2. Similarly to the Java3D version as many copies can be added as
needed. The dashed path to the right in figure 8 shows an additional clone.

19

ArrayNode

An array node handles a matrix of Node3D nodes. In TealSim this is mostly
used for field direction grids. They contain an array of Arrows. All the arrows
shown in figure 9 are held by a single ArrayNode. Such a field direction grid
is a bottleneck concerning the performance of the simulation. All the arrows
are calculated according to the field and it is possible to have dozens of
arrows. When drawing the arrows the rotation and scale of every single
arrow is changed.

Figure 9: Field Direction Grid

Similarly to the field line node an interface TArrayNode has to be declared
to allow both, Java3D and JMonkeyEngine graphic output. This interface
consists of the following methods:

public void s e tV i s i b l e (int fromIdx , int toIdx , boolean s t a t e) ;
public void addNode (TNode3D node) ;

public TNode3D get (int idx) ;
public int getNodeCount () ;

20

public I t e r a t o r i t e r a t o r () ;

public void removeNode (TNode3D node) ;
public void removeNode (int idx) ;
public void removeAll () ;

Those methods enable the calling code to access the single nodes inside
the array. An iterator to step through the nodes is also provided. In Java3D
the ArrayNode contains a Vector holding a reference to all the shapes inside
the array. This way it is simple to provide the required functionality. All
the methods that require indices can get the elements from the Vector. The
Iterator can also be obtained this way. However, with this approach the
vector and the scene graph must always kept synchronous. If e.g. a node
should be added it has to be added to both, the scene graph and the array.
Such code-parts are usually to be avoided.

In JMonkeyEngine indexed child access is already provided by the Node
class. Thus, Node3D inherits this functionality and there is no need for
another member list, storing the same objects. However, because MTGame’s
renderer thread accesses all the nodes the methods have to be synchronized.
E.g. removing a node while the renderer thread processes it would leat to a
runtime error.

In order to provide the iterator functionality a new iterator class was
defined as an inner class of ArrayNode. Node’s can now be added to the scene
graph without using the TArrayNode interface. The getChildren method of
the Node class returns a List. The defined iterator takes the one obtained
from this list as back end. It also stores the number of elements added by the
TArrayNode method calls. This way the iterator does not access the wrong
elements in the scene graph.

3.1.4 Colors and Materials

Colors can be coded in different ways. In TealSim the RGB model where
colors are written as an additive mixture of a defined red, a green and a blue
color is used. To store the values there are different approaches. Java awt
e.g. uses a single 32 bit integer, 8 bits for each color. The remaining 8 bits
are used to store the transparency of the color. Since this are four values,
the java.awt.Color class stores four dimensional colors. As mentioned in
section 3.1.3 Java3D uses three dimensional colors. The transparency is
stored as a separate value. Java3D uses the class javax.vecmath.Color3f
which stores the values as three floats ranging from 0.0 to 1.0. Each float
has a precision of 32 bit. This way the values can be defined more precisely

21

than with the awt colors using 8 bits per color channel. JMonkeyEngine uses
its com.jme.renderer.ColorRGBA color class. The colors are stored as floats,
one for each channel. As with the awt colors the transparency is the fourth
value. A value of 1.0 means opaque, 0.0 means totally transparent.

Another difference of JMonkeyEngine compared to Java3D is how differ-
ent colors are applied. As shown in figure 4, the leave nodes of the Java3D
scene graph reference to a so-called appearance. Such an Appearance object
holds all kinds of render state informations. This can be colors, textures,
materials, line attributes and so on. In JMonkeyEngine the render states are
attached to the scene graph nodes directly without a containing appearance
class. Furthermore the states are different and the interface to such states is
not very similar to Java3D. E.g. a colored material can be set directly to the
appearance in Java3D:

// app l y ing co l o r to appearance
app . s e tMat e r i a l (new Mater ia l (new Color3 f (Color .BLUE) ,

new Color3 f (Color .BLUE) ,
new Color3 f () ,
new Color3 f ())) ;

Note, that the four parameters for the Material constructor are the ambient,
diffuse, specular and emissive color. In JMonkeyEngine they have to be
added to the MaterialState:

// ob t a in ing s t a t e frome scene graph node (s p a t i a l)
Mater i a lS ta te ms = (Mate r i a lS ta te) s p a t i a l .

getRenderState (RenderState . StateType . Mater ia l) ;

// c r ea t i n g mater ia l s t a t e , i f not a l r eady the r e
i f (ms == null) {

ms = DisplaySystem . getDisplaySystem () . getRenderer ()
. c r e a t eMat e r i a l S t a t e () ;

s p a t i a l . setRenderState (ms) ;
}
ms . setEnabled (true) ;

// s e t t i n g c o l o r s
ms . setAmbient (ColorRGBA .BLUE) ;
ms . s e tD i f f u s e (ColorRGBA .BLUE) ;

Since there was only Java3D previously some interfaces contained meth-
ods with a Java3D Appearance as parameter. Such a specific code can obvi-
ously not be used with different graphic libraries. To overcome that problem
a container with material information namely the TealMaterial class was in-
troduced. All material information needed in TealSim can be stored in an
object of this container class. This information contains

22

• colors (ambient, diffuse, specular and emissive),

• transparency,

• shininess,

• culling

• and face mode.

The first decision to be made was about the dimensions of the colors. Since
JMonkeyEngine uses four dimensional colors a different transparency value
can be specified for each of the four colors. With Java3D there are only three
dimensional colors and one transparency value for all four colors. In order
to support the feature of having different transparency values for each color
four dimensional colors are used in TealMaterial. For that purpose the class
javax.vecmath.Color4f was chosen. With Java3D the transparency would
be the same for all four colors. In order to make it possible to specify the
transparency first and the colors later, the transparency must be stored in
a separate value as well. This way it is also possible to give information
about the transparency only without specifying any colors. This is useful if
the class is used for changing single values. The interface TMaterial declares
all the methods defined in TealMaterial. The ones for the colors and the
transparency are as follows:

public void setTransparency (f loat t rans) ;
public f loat getTransparency () ;

public Color4 f getAmbient () ;
public Color4 f g e tD i f f u s e () ;
public Color4 f ge tSpecu la r () ;
public Color4 f getEmiss ive () ;

public void setAmbient (Co lor3 f c o l) ;
public void setAmbient (Co lor4 f c o l) ;
public void s e tD i f f u s e (Co lor3 f c o l) ;
public void s e tD i f f u s e (Co lor4 f c o l) ;
public void s e tSpecu l a r (Co lor3 f c o l) ;
public void s e tSpecu l a r (Co lor4 f c o l) ;
public void s e tEmis s ive (Co lor4 f c o l) ;
public void s e tEmis s ive (Co lor3 f c o l) ;

The Java3D specific code will mostly use the set methods with the Color3f
parameters and the transparency methods. JMonkeyEngine specific code
will use the set methods with the four dimensional colors containing the
transparency value. Since the transparency and the four dimensional colors

23

need to be stored in the TealMaterial class the fourth dimension of the colors
and the transparency value needs to be kept synchronous. Every time one of
the set methods stated above is called the value has to be kept consistent.
Within a data model it is always a disadvantage to store data redundantly.
To overcome that problem the colors would have to be stored in only three
dimensions. The feature of giving different transparency values for each of
the four colors would have been removed with this approach.

The range of the values given by the methods has to be specified. The
red, green and blue color channel of the colors contain values between 0.0 and
1.0. This is because Java3D as well as JMonkeyEngine use them in the same
range. The getTransparency and the setTransparency methods work with
floats of the same range where a value of 0.0 means opaque. As mentioned
before, these two methods are mostly used by Java3D specific code. This
library uses a value of 0.0 for “opaque”. However, the fourth dimension of
the colors has to be set to the inverse value, where 0.0 is transparent and 1.0
is opaque. With JMonkeyEngine the BlendState has to be enabled to turn
on transparency.

The value range definitions had to be made for the shininess as well.
There are two methods regarding the shininess in the TMaterial interface:

public void s e t Sh i n i n e s s (f loat sh ine) ;
public f loat g e tSh in i n e s s () ;

Those methods work with values ranging from 0.0 to 1.0. However, JMon-
keyEngine uses float values between 0 and 128. This means that the value
stored in the TealMaterial object has to be multiplied by 128 in the JMon-
keyEngine specific code parts. The value is then set on the MaterialState as
it is done with the colors.

With culling a either the front, the back or both faces can be culled,i.e.
they are not shown. With culling performance can be gained when rendering,
because there are less things to be rendered. A getter and a setter method
are defined for culling:

public void setCullMode (int mode) ;
public int getCullMode () ;

This integer value is a bit mask. 0 means no culling, 1 means backface culling
and 2 means frontface culling. If both faces are to be culled the value can
be set to the bitwise or value of frontface and backface culling namely 3. To
enable culling in JMonkeyEngine, the CullState has to be set up accordingly.

The last material attribute contained within the TealMaterial class is the
face mode. Most 3D shapes are built up with triangles, but they may also
be built with quads. The face mode defines whether the triangles or quads

24

filled wireframe points

Figure 10: Different Face Modes

should be drawn filled, in wire-frame mode or in point mode. In figure 10 a
cube built of quads is shown in those three modes. There is again a getter
and a setter method for the face mode in TMaterial:

public int getFaceMode () ;
public void setFaceMode (int mode) ;

As with culling a bit mask is used for the three different face modes. JMon-
keyEngine provides a WireframeState which can be enabled to show the scene
graph node as wire-frame. There is no native support for the point mode in
JMonkeyEngine. This state can only be realized by replacing the object with
one point per vertex, i.e., another scene graph node would be used instead.
Since this is currently not used by any simulation it is not implemented.

A big advantage of having an own material class is that it can be used
easily with both graphic libraries. Two new methods can now be added to
the TNode3D interface:

public TMaterial g e tMate r i a l () ;
public void s e tMat e r i a l (TMaterial mate r i a l) ;

Both, the Java3D and the JMonkeyEngine version of Node3D have to im-
plement those methods. Every time some of the properties the TealMaterial
class contains should be changed the setMaterial can be called. If e.g. only
the ambient color should be set, all other colors can be set to null. This
means that they remain as they are. In JMonkeyEngine the following pro-
tected static methods were defined in Node3D:

protected stat ic TMaterial g e tMate r i a l (Spa t i a l shape) ;
protected stat ic void s e tMat e r i a l (f ina l TMaterial mater ia l ,

Spa t i a l shape) ;

Those methods can be called by every subclass of Node3D. The setter and
getter methods for the materials inherited from TNode3D simply call this
static methods with this as parameter. The static methods are also very
useful for setting materials on objects located lower in the scene graph.

By default JMonkeyEngine applies the material state only to one material
face namely the front face. This does not affect closed shapes visibly because

25

Figure 11: Capacitor Simulation with different Material Faces

the inner part of them can never be seen. Applying the material on only
one side effects the rendering performance positively. However with surfaces
which can be seen from both sides the material has to be applied on the whole
surface. In TealSim the walls for example are two dimensional with thickness
zero. Figure 11 shows the capacitor simulation. The charges (displayed as
spheres) are surrounded by walls. In the left image the material is only
applied on the front faces. On the faces showing the back the transparency
is not applied, i.e. the walls are opaque. The right image shows the material
applied on both faces. To specify the material faces the setMaterialFace
method on the material state is provided. It can be set to front, which is
the default, back or both. In order to keep the performance high the value
both is only used when needed (e.g. on walls).

3.1.5 Specifying Interface Data-Types

In section 3.1.4 the data type for colors used for the interface between lower
level graphic shapes and the other code was chosen to be Color4f. Whenever
there are different classes used for the same purpose one has to be chosen
to be used in the interfaces. Subsequently, conversion methods have to be
provided for use in lower level classes like the Java3D and JMonkeyEngine
specific code parts. This section gives an overview of the decisions made.

Transforms

Transforms are used for rotating, scaling and translating objects, or whole
scene graph branches. As already mentioned in section 3.1.3, Java3D uses
an own scene graph object of type TransformGroup only for the purpose of
transforming the branch. The actual transform information is stored in its

26

own class; for three dimensional transforms it is the Transform3D class (see
figure 12). The transforms can be set by different set methods and obtained

TransformGroup

+setTransform(Transform3D trans):void
+getTransform(Transform3D trans):void

Transform3D
−mat:double[]

+get(Matrix4d matrix):void
+get(Matrix3d rotation):void
+get(Quat4d rotation):void
+get(Vector3d translation):void
+getScale(Vector3d):void

+set(Matrix4d matrix):void
...

+setScale(Vector3d):void
. . .

1

1

Figure 12: Class diagram of Java3D’s Transforms

by get methods. To distinguish what kind of transform is addressed the
parameter type is used. A Matrix3d is a 3×3 matrix and represents a rotation
Matrix with double precision values. Since rotations can also be defined with
quaternions the get and the set method with the Quat4d parameter also
effects the rotation only. Translations can be defined with three dimensional
vector, one dimension for translations of each of the three axis. In Java3D
the class Vector3d is used for that. The d at the end of the class name stands
for “double”. It indicates the use of double values internally. There is also
a Vector3f class using floats. The Transform3D class also defines get and
set methods for float using classes. All those vector, matrix and quaternion
classes are found in the “vecmath” library in package javax.vecmath.

Only if a type can be used for different types of transforms other meth-
ods are defined. This is the case with translation and scale. Both can be ex-
pressed by three dimensional vectors. Since the set method with the Vector3d
was chosen to set the translation, the setScale method was defined. With a
three dimensional vector different scales can be applied for every axis. Since
all the transform operations can be expressed by a single 3 × 4 matrix the
Transform3D class uses a matrix internally. With a Matrix4d parameter to
the set and the get method the whole matrix can be set or obtained. The

27

transform class is also capable of other special operations like multiplying
transforms with each others. Problems like matrix singularity are addressed
as well. The transform is applied to the TransformGroup scene graph object
with the setTransform method and can be obtained with the getTransform
method.

With JMonkeyEngine the transforms are applied directly to any node of
the scene graph. As shown in figure 13, the base class of all scene graph
classes Spatial contains the methods for setting transforms. These methods
are inherited to all derived classes and thus, to all scene graph objects. As
opposed to Java3D the different transform types translation, rotation and
scale are not stored in a single matrix, but in one member variable each.
This way some problems like singular matrices are avoided. The additional
layer of a container for the transforms (as it is with the Transform3D class in
Java3D) is skipped. This has the advantage of less lines of code. If the scale
vector should be obtained in Java3D from a scene graph node would look as
follows:

public Vector3d ge tSca l e () {
Vector3d s = new Vector3d () ;
Transform3D trans = new Transform3D () ;
mTransform . getTransform (t rans) ;
t rans . g e tSca l e (s) ;
return s ;

}

In JMonkeyEngine the same method requires much less code:

public Vector3d ge tSca l e () {
Vector3 f s c a l e = this . g e tLoca lSca l e () ;
return new Vector3d (s c a l e . x , s c a l e . y , s c a l e . z) ;

}

The above code is from the two Node3D classes. In the implemented interface
TNode3D it was decided to used the vecmath classes for the interface. Since
JMonkeyEngine works with its own vector classes and entirely with floats,
those classes have to be converted to the according vecmath class. In the case
of a vector this is rather simple. The “return” line in the code above shows
the conversion. A new object is created with the values in the constructor.
This also works for quaternions, i.e. the classes Quat4d and Quaternion.

For backward compatibility reasons with the Java3D code some methods
of the TNode3D interface are using the Transform3D as well:

public void setModelOffsetTransform (Transform3D t) ;
public Transform3D getModelOffsetTransform () ;

28

Spatial

−localTranslation:Vector3f
−localRotation:Quaternion
−localScale:Vector3f
. . .
+getLocalTranslation():Vector3f
+getLocalRotation():Quaternion
+getLocalScale():Vector3f

+setLocalTranslation(Vector3f trans):void
+setLocalRotation(Quaternion rot):void
+setLocalRotation(Matrix3f rot):void
+setLocalScale(Vector3f scale):void
. . .

Node Geometry

Figure 13: Class diagram of JMonkeyEngine’s Transforms

With Java3D the transforms can be passed directly to the underlying scene
graph object. With JMonkeyEngine the translation, rotation and scale has
to be obtained from the Transform3D object. Then the obtained vecmath
elements can be casted to JMonkeyEngine objects. Those are then applied to
the scene graph object. For the getModelOffsetTransform method, the three
values are to be obtained from the scene graph objects. Then a Transform3D
object is created with those values and returned. For performance reasons
the two methods should be removed in future versions of TealSim. This
would also make the design cleaner, since interface parameter types should
be rather simple classes or primitive types.

Bounding volumes

An objects bounding volume contains the object completely. Bounding vol-
umes are always simple shapes. They are e.g. used to determine if the
belonging object is still in the field of view. If not it does no need to be ren-
dered. Bounding volumes usually build class hierarchies (see figure 14). The
single specific bounding volumes are derived from an abstract class. With
Java3D the specific bounding volume classes provided are

29

Bounds

AxisAlignedBoundingBoxBoundingSphere OtherBoundingVolume

Figure 14: Class hierarchy of Bounding Volumes

• BoundingSphere

• BoundingBox and

• BoundingPolytope

l

u

c

-z

y

x

Figure 15: Bounding Box Coordinates

The sphere is defined by a center point and a radius, the box by two tree
dimensional points. In figure 15, the point l marks the lower point and u the
upper point. Since the box is axis aligned, those points are enough. With
a bounding polytope a bounding volume can be build up with at least four
half-spaces. This way potentially arbitrary shapes are supported. JMon-
keyEngine defines the following bounding volumes:

• BoundingSphere

30

• BoundingBox

• BoundingCapsule

• OrientedBoundingBox

The sphere is defined the same as with Java3D. For axis aligned box the
center point and the extends to each of the three axis define the volume. The
capsule is defined by a line segment forming the capsules cylinder part, by a
center point and by the caps radius. With the oriented bounding box, a box
that is not axis aligned can be specified as a bounding volume. Additionally
to the extends in each directions the three axis can be defined.

Fortunately there are only bounding spheres and boxes used in TealSim.
Those are the two supported by both graphic engines. For the interface
newly defined bounding volume classes were used. The TNode3D interface
contains a getBoundingArea method. This requires the implementing code in
the two Node3D classes to construct a proper bounding volume out of their
native one. The newly implemented bounding volumes are defined similarly
to the ones in Java3D; the bounding box is defined by a lower and an upper
point. This way it is very simple to convert the volumes from Java3D, as the
following code fragment shows:

// bounding sphere :
i f (j3dBounds instanceof BoundingSphere) {

double rad iu s = ((BoundingSphere) j3dBounds) . getRadius () ;
Point3d cente r = new Point3d () ;
((BoundingSphere) j3dBounds) . getCenter (c en t e r) ;
returnValue = new t e a l . render . BoundingSphere (center , r ad iu s) ;

// bounding box :
} else i f (j3dBounds instanceof BoundingBox) {

Point3d lower = new Point3d () ;
Point3d upper = new Point3d () ;
((BoundingBox) j3dBounds) . getLower (lower) ;
((BoundingBox) j3dBounds) . getUpper (upper) ;
returnValue = new t e a l . render . BoundingBox (lower , upper) ;

}

To obtain if the bounding volume is a sphere or a axis aligned box the
instanceof operator has to be used. This call is rather slow, but the
getBoundingArea is not called very often.

Since the JMonkeyEngine bounding box is defined differently, the code is
a bit more complicated:

Vector3 f c ent e r = bounds . getCenter () ;
switch (bounds . getType ()) {

31

case Sphere : // bounding sphere
javax . vecmath . Point3d vecMathCenter = new Point3d (cente r . x ,
c en t e r . y , c en t e r . z) ;
f loat rad iu s = ((BoundingSphere) bounds) . r ad iu s ;
r e tu rn va lu e = new t e a l . render . BoundingSphere (vecMathCenter ,

r ad iu s) ;
break ;

case AABB: // ax i s a l i gn ed bounding box
r e tu rn va lu e = new t e a l . render . BoundingBox () ;
Vector3 f extend = new Vector3 f () ;
((BoundingBox) bounds) . getExtent (extend) ;
((t e a l . render . BoundingBox) r e tu rn va lu e) . setLower (

new Point3d (cente r . x−extend . x ,
c en t e r . y−extend . y ,
c en t e r . z−extend . z)) ;

((t e a l . render . BoundingBox) r e tu rn va lu e) . setUpper (
new Point3d (cente r . x+extend . x ,

c en t e r . y+extend . y ,
c en t e r . z+extend . z)) ;

break ;
case OBB: // or i en t ed bounding box

// t h i s i s cas t ed to an enc l o s i n g j3d bounding sphere .
OrientedBoundingBox obb = (OrientedBoundingBox) bounds ;
obb . computeCorners () ;
BoundingSphere sphere = new BoundingSphere () ;
sphere . averagePoints (obb . ve c to rS to r e) ;
Vector3 f sphereCenter = sphere . getCenter () ;
Point3d vmCenter = new Point3d (sphereCenter . x ,

sphereCenter . y , sphereCenter . z) ;
r e tu rn va lu e = new t e a l . render . BoundingSphere (

vmCenter , sphere . getRadius ()) ;
default :

TDebug . p r i n t l n (1 , ”Bounding volume not supported ! ”) ;
}

As opposed to Java3D the instanceof operator is not necessary here because
the JMonkeyEngine bounding volumes define a getType method returning
an enum value for the specific type. Because JMonkeyEngine defines all its
bounding volumes with a center point the base class BoundingVolume already
contains a getCenter method. The conversion of the bounding volume is
straight forward because it is defined in the same way as with the interface
bounding type. With the axis aligned bounding box the lower and the upper
point have to be calculated with the center point and the extends:

~l = ~c− ~e

~u = ~c + ~e

32

The vector ~e indicates the extends to each axis. The JMonkeyEngine oriented
bounding box volume is converted into a bounding sphere. This is currently
not needed because the oriented bounding box is not used. However if this
volume is necessary in the future the code is prepared for that.

3.1.6 3D Models

As mentioned in section 2.2, external 3D models can be used in simulations.
Those are mostly 3DStudio-max14 files with .3DS file endings. This is an open
file format, but Java3D does not come with an importer. For that reason
the class teal .render.j3d. loaders .Loader3DS was implemented previously by
TealSim developers. It converts a 3DS model to a Java3D scene graph. In
JMonkeyEngine such a functionality is already implemented in the subclasses
of the FormatConverter class. In order to convert the data of a .3DS file into
a JMonkeyEngine scene graph, only a few lines of code are needed:

ByteArrayOutputStream byteOutput = new ByteArrayOutputStream () ;
InputStream in = modelUrl . openStream () ;
FormatConverter conve r t e r = new MaxToJme () ;
conve r t e r . convert (in , byteOutput) ;
f ina l byte [] out = byteOutput . toByteArray () ;
Node nd = (Node) BinaryImporter . g e t In s tance () . load (

new ByteArrayInputStream (out)) ;

The FormatConverter’s convert method reads a byte stream with 3DS data
and writes the JMonkeyEngine’s binary format into an output stream. This
output stream is then converted to a scene graph using the BinaryImporter
class. Textures are not stored directly inside 3DS files; links to images are
used. To access the textures the texture file path has to be set prior to the
importing code:

ResourceLocatorTool . addResourceLocator (
ResourceLocatorTool .TYPE TEXTURE,
new SimpleResourceLocator (modelUrl)) ;

Using JMonkeyEngine’s native importer works well. Code for different
file formats can be added quickly in the same way. However, the importer
reads the 3DS file differently than the written importer for Java3D. The
models have to be rotated by 270 degrees around the x-axis. There is also
an offset to be applied to the y axis. The Java3D version also applies this
offset.

There is a scene factory’s makeNode method with a TRendered type
as parameter (see also figure 3). This method is similar to the one with

14http://www.3dstudio-max.com/

33

http://www.3dstudio-max.com/

the NodeType as parameter, but it obtains the type by a getNodeType call
on the rendered object. As explained in section 2.2.1, the rendered objects
represent the Model in the MVC pattern. If a rendered objects is represented
by an external 3d model, the rendered’s getModel method returns an object
of class Model. This object contains all needed data to load the model:

• the path to the model,

• a position offset vector,

• a scaling vector,

• and optionally a path to the textures.

If no path to textures is given the model path is assumed to be the texture
path as well. With the given data the model can be loaded and the required
transforms (scale and translation) can be applied.

3.1.7 The Viewer

The GUI of TealSim consists of come control panels and a 3D panel. This 3D
panel is filled by the viewer. A three dimensional viewer is embedded into the
GUI which is a javax.swing.JPanel object. That viewer also holds the whole
scene graph and the lights as well as the canvas drawn on. As it was done with
the Java3D version of the viewer ViewerJ3D, the JMonkeyEngine version
ViewerJME was also derived from the AbstractViewer3D class. To assure
that the right type of viewer is created accordingly to the graphic output
system (Java3D or JMonkeyEngine), a makeViewer method was added to
the scene factories (see also figure 3).

rootEntity:Entity rc:RenderComponent

sceneRoot:Node zbuf:ZBufferState

mFog:FogState

shader:
GLSLShaderObjectsState

Figure 16: Object diagram of Viewer’s Root Entity

In MTGame a scene is based on entities and their components. In our
case we will need a root entity containing a render component and its scene

34

graph and a camera entity holding the camera scene graph and the required
components for changing the camera perspective. The light can be directly
added to the render manager. In figure 16 the entity rootEntity is shown. It
contains a render component holding the top node of the scene graph. Global
states like the z-buffer, fog and shade are added to this scene root node. The
fog is disabled per default and can be influenced by the following methods:

public void setFogFrontDistance (double f r on t) ;
public double getFogFrontDistance () ;
public void setFogBackDistance (double back) ;
public double getFogBackDistance () ;

public void setFogTransformFrontScale (double percent) ;
public double getFogTransformFrontScale () ;
public void setFogTransformBackScale (double percent) ;
public double getFogTransformBackScale () ;

public void setFogInf luenc ingBounds (Bounds bounds) ;
public Bounds getFogInf luenc ingBounds () ;

public void setFogEnabled (boolean enabled) ;
public boolean isFogEnabled () ;

All those methods are declared in the interface TViewer3D which has to
be implemented. Most methods names are self describing. The influence
bounds of the fog take a bounding volume in which the fog is applied. The
z-buffer is used by JMonkeyEngine to get information about the depth of the
three dimensional image. This way it is determined if some object has to be
rendered or not (possibly because it is behind an other object). The shader
is added to the scene root to add some shade. The states applied to the top
node are inherited to all descending nodes. Because it is the top node every
single node in the scene graph inherits the states. All the Node3D objects
of a simulation are also added as a child to the root node. To do so the
following methods had to be implemented:

public void addDrawable (TAbstractRendered draw) ;
public void addDrawableBulk (Co l l e c t i on <TAbstractRendered> bulk) ;

public void removeDrawable (TAbstractRendered draw) ;
public void removeDrawableBulk (

Co l l e c t i on <TAbstractRendered> bulk) ;

With the getNode3D method the scene graph object can be obtained from
the rendered object. These methods can be called whenever an object should
be added or removed from the scene graph. This happens mostly at the
initialization phase of a simulation.

35

defaultCam:Entity :ProcessorCollectionComponent

eventProcessor:
OrbitCameraProcessor

cameraListener:
AWTInputComponent

mCanvas:Canvas

cc:CameraComponent

cameraSG:Node

cameraNode:
CameraNode

scene graph

Figure 17: Relations of the Camera Entity

The second entity needed it the camera entity (see figure 17). First
a camera component is added to the entity. It is created by MTGame’s
render manager which can be obtained from the world manager using the
getRenderManager method. At creation time the camera component needs
to know some data:

• the scene graph node cameraSG which is the top node of the camera
scene graph,

• the actual camera node representing the camera in the scene graph,

• the resolution in both, x and y direction,

• the cameras field of view in degrees,

• the front an back clipping distance which specify the closest and the
furthest distance captured by the camera,

• and if the camera is the main camera, which is true in our case.

The field of view and the clip distances can be changed later by the according
methods declared in the TViewer3D interface. Those methods are used to
put the elements of a simulation into the field of view. The sizes of the
different simulations varies between values under 10 and some hundreds. In

36

TealSim’s desktop version this is compensated by the camera angle and the
camera distance. This way the viewed simulation sizes are roughly the same
for all simulations. The algorithm applied to find the according field of view
to a simulation was already implemented for Java3D and could be used in
the same way for JMonkeyEngine.

In order to process the mouse input another component can be added
to the camera entity. A ProcessorCollectionComponent which can hold a
list of processors is used for that purpose. A MTGame processor is used
to perform some tasks. It is armed with some arming condition. The the
condition is fulfilled the processor event is done in two phases. First the
processors compute method is called. It can do everything but changing
live displayed object. The second phase is done with calling the processors
commit method. The implementation of this method is allowed to change
the scene graph, because it is executed in the renderer thread (see section
3.1.8). For now only one processor is added to the processor collection namely
an OrbitCameraProcessor. This processor is implemented in the MTGame
library and is used to orbit a camera around a specified point. It needs
references to several objects:

• an AWTInputComponent object which provides the input data from
mouse and/or keyboard. In our case we only process the mouse input

• the top node of the camera scene graph cameraSG

• the camera entity itself

In order to process the mouse input the camera listener needs a reference
to the canvas. This canvas has to be created prior to the camera listener.
Creating and setting up the canvas is done in a few steps:

1. A render buffer is created by the render manager. This implicitly cre-
ates the canvas.

2. The render buffer is added to the render manager.

3. The canvas is obtained from the render buffer using the getCanvas
method.

4. The canvas’ visibility is set to true.

5. X and y coordinate bounds of the canvas’ are set.

The canvas as well as the render buffer should never be created “by hand”
using the constructor and not the render manager, because MTGame relies

37

on that. Since the render buffer is also needed at the camera creation pro-
cess, the canvas is created and set up prior to camera creation. The camera
component needs to be set on the render buffer.

The TViewer3D interface defines some more methods the ViewerJME
class has to implement. E.g. the mouse and keyboard controls could be set,
gizmos can be turned on and off, or zooming can be enabled and disabled.
However, since the goal of the whole work is to let TealSim run in Wonderland
this additional functionality was not implemented. It is left for future work
(see also section 5.1). The viewer contains all the functionality needed to
show the experiment and to be able to change the view. It reacts slightly
differently to mouse input than the Java3D version.

3.1.8 Threading Issues

Because JMonkeyEngine comes without a threading model, MTGame adds
such a model to JMonkeyEngine. The threads are build around so-called
“entities”. Basically one thread is responsible for one entity. However, for
simplicity reasons only the two entities mentioned in section 3.1.7 are used.
Those are one main entity holding a render component with the scene graph
and the camera entity. Since there are only few objects in the simulations
it does not make sense to have more entities. Of the components that could
be held by an entity the render component is the most important one for
TealSim.

MTGame works with a global world manager. In Open Wonderland this
world manager can be accessed as a singleton. Because it makes it easy
to use in Wonderland later this system is used with TealSim as well. The
TealWorldManager singleton class is defined in the JMonkeyEngine/MTGame
specific package teal .render.jme. The class provides a getWorldManager
method returning the single world manager. There is also a setWorldManager
method which will be used in conjunction with Wonderland to set Wonder-
land’s world manager to TealSim’s. The world manager is used for accessing
the managers and has got some other globally effective methods described
later in this section.

Because MTGame always wants to keep the frame rate constant, one
thread is dedicated for rendering the scene, namely the “renderer thread”.
In order to avoid concurrency errors all changes on the scene graph and its
objects have to be done in the renderer thread. To give a job to the renderer
thread the world manager contains an addRenderUpdater method which has
two parameters. The first one is of interface type RenderUpdater, the second
is an arbitrary parameter of type Object. The RenderUpdater interface de-
fines a call-back method update with an Object as single parameter. Adding

38

such an render updater to the queue triggers the renderer thread to call the
update method with the second parameter as update method parameter. To
give a task to the render updater code similar to the following can be used:

Node node1 = new Node (” t e s t node”) ;
f ina l Vector3 f o f f s e t = new Vector3 f (0 . 5 f , 2 f , 0) ;

// p l a c i n g update in t o the renderer thread
TealWorldManager . getWorldManager () . addRenderUpdater (

new RenderUpdater () {
public void update (Object obj) {

// ca s t because I need i t as Node
Node elem = (Node) obj ;
elem . s e tLoca lTran s l a t i on (o f f s e t) ;

// a l e r t i n g update
TealWorldManager . getWorldManager () . addToUpdateList (elem) ;

}
} , node1) ;

All final variables can ne used in the call-back code as well. It must be
remembered that the code inside the update method is executed later than
the code around. The world manager’s addToUpdateList method is to be
called on every change of a scene graph node or the scene graph hierarchy
itself. Because the renderer code has a lot to do with drawing the scene, all
the code which can be put into other threads should never be given to the
renderer thread. Otherwise the frame rate may break down.

3.2 Preparing TealSim for Client-Server Architecture

Since Open Wonderland consists of client side code and server side code,
TealSim will have to run on Wonderland as client-server software. Although
the Wonderland specific code will be put into the Wonderland module (see
section 3.3), some code-parts of TealSim might have to change. This section
describes the ideas how the splitting into client and server parts can be
made and what parts of TealSim were actually changed because of this. The
synchronization of client and server is also a big issue which is addressed in
this section. The Open Wonderland module should eventually scale up well
and use as little bandwidth as possible. On the other hand all the shared
data should be perfectly synchronous among all clients.

3.2.1 Synchronizing the 3D Objects

A part of TealSim which has obviously to be synchronized among all clients
the server are the three dimensional objects. There are several possible ap-

39

proaches which level the 3D object can be synchronized at. Those different
approaches are explained and then discussed with their advantages and dis-
advantages. Finally the decision for one of the approaches is pointed out. All
the discussed approaches assume at least some code running on the server.
If the whole simulation is run on the client the 3D objects will be there at all
levels naturally and no synchronization would be needed. See section 3.2.2
for more details.

Synchronizing at Scene Graph Level

The lowest possible level to synchronize the 3D scene objects is the scene
graph level. This means the whole scene graph would be serialized and
transferred to the clients every time the graph changes. This assumes that
the greatest part of TealSim runs on the server. Having the scene graph
objects there would imply to have the whole engine, the rendered objects
and the TNode3D objects at the server side. This restricts the possibilities
discussed in section 3.2.2. A positive effect would be that not much of the
code would have to be adopted. The scene graph would be copied, sent to the
clients and displayed there. Since the viewer has a reference to the top scene
graph node, it can either do the job of sending the scene graph or provide
functionality to obtain the scene graph from it.

JMonkeyEngine provides a way to serialize the scene graph elements in
different formats. The scene graph objects implement the following methods
specified in the Savable interface:

void wr i t e (JMEExporter ex) throws IOException ;
void read (JMEImporter im) throws IOException ;
Class getClassTag () ;

The last method stated above simply replies the class of the object in most
cases. The subclass of JMEExporter or JMEImporter defines weather it
is worked with XML data or with binary data. With the BinaryExporter
class the Savable object can be exported to binary format on the server,
transferred to the client and imported to the client side scene graph with the
help of a BinaryImporter. There would also be no problem if a newer version
of Wonderland uses another graphics system. As soon as the graphic library
uses scene graphs (which is to be expected from a graphic library) and the
nodes can be serialized they could be handled as the JMonkeyEngine nodes
now.

Perhaps the biggest problem with this approach is the high bandwidth
usage. With JMonkeyEngine’s importer/exporter system the traffic might be
kept lower because the read and write methods are implemented such that

40

the object is saved with as little data usage as possible. A sphere primitive
e.g. only stores its position, its radius and how many samples should be
created in axial and radial direction. The simplest way would be to store all
the vertices and normals of the object which would require a lot of data and
therefore a lot of bandwidth when is has to be transferred. However, this
leads to the utilization of computational power on the client sides, because
such objects need to be reconstructed there with every frame. This leads
to another question, namely “How often does the scene change?”. A closer
look at the code shows how often the new positions are calculated, namely
20 times a second. This number makes the whole approach impossible as
soon as the network bandwidth is not much bigger than today. There would
simply be too much traffic.

A way to overcome this problem is to transfer only the changes on the
scene graph objects. For this purpose a protocol would need to be specified.
The method called could be used. E.g. “setLocalTransform with parameter
vector 4,7,2 called on object xy” could be transferred. The objects would
need some kind of identification. It would not be enough any more to be
informed that something in the scene graph has changed, but exactly what
has changed. This is quite tricky and requires changes throughout TealSim’s
JMonkeyEngine specific classes. The independency of the graphic library
would be lost because the messages for the updates would have to contain
library specific data. If the next Wonderland version would use another
graphic system or even another version of JMonkeyEngine the whole module
would have to be rewritten and the communication between server and client
would be very different.

All in all this method fails because of the high bandwidth usage and/or
with the mentioned possible improvements because of the lack of flexibility.

Synchronizing at TNode3D Interface Level

The idea with this method is to have the scene graph on the client side.
On the server there are only place holders. They are proxies telling the
client side if they have to adopt something. If something happens on the
client side (due to user interaction), the information will have to flow in the
opposite direction. A sequence diagram of the creation of a 3D object and
about setting parameters while the simulation is running is shown in figure
18. The arrow indicates method calls between the objects whereas the
arrow indicates a message from the server to the client or vice versa. With
the latter calls there must be some messaging objects in between, i.e. the
objects shown in figure 18 do not send the message but tell another object
to sent the data to the client. On the client side there is another object to

41

receive the message and to tell the objects about it. This objects could also
buffer data and send bigger packets to lower the network traffic.

:TRendered

makeNode()

makeNode(this)

serverFactory
:TSceneFactory

getType()
new serverNode

:TNode3D

create sphere

clientFactory
:SceneFactoryJME

makeNode(Sphere)

new clientNode
:TNode3D

setScale(s)

set scale to ssetScale(s)
getScale()

setPosition(p) set position to p

setPosition(p)

getScale()

Server Side Client Side

Figure 18: Sequence Diagram for creating 3D Objects and transferring
changes at TNode3D synchronizing Level

Whenever a TNode3D object should be created the makeNode method of
the rendered object is called. The Rendered class defines this method with
protected scope. This method can be overwritten by the subclasses, but
this is not necessary in most cases. The method makes a call to the makeNode
method of the server side scene factory. There is one indirection step which
for simplicity reasons is not shown in figure 18. As described in section 3.1.2,
the specific factory is called by the general SceneFactory class. The server side
factory would be defined inside the Wonderland module since it has nothing
to do with the desktop version. After obtaining the type of the 3D object,this

42

factory creates the right proxy objects implementing the TNode3D interface
as well as required additional ones (e.g. the TFieldLineNode for the field
lines). The proxy objects are storing the current state of the objects, but
they do not need to create any scene graph objects. Instead they (or some
network communication object) send a message to the client saying that an
object of the specified type should be created. On the client side the same
factory as used in the desktop version, namely the SceneFactoryJME class
could be used to create the scene graph object. The makeNode method
with the specified type is called and a JMonkeyEngine scene graph node is
created. Directly after creating the objects, the server side factory has to
start to initialize them. The TNode3D object should exactly represent the
rendered object. For that reason the server side factory has to obtain all
the needed values. As an example, the scale value is obtained in figure 18.
Several other values will usually be obtained in the same way. When the
factory knows about the scale value, it calls the according method of the
TNode3D interface on the proxy node. The proxy nodes stores the value
internally and sends a message to the client. The scale is then applied to the
actual JMonkeyEngine scene graph node on the client side.

After the creation face the setting of properties to the objects are per-
formed in the same way. Since the server side node implements the sam
interface as the client side node, the setter calls can be forwarded. The rest
of the server side recognizes the server side node as if it was the actual node
to be displayed. This would allow to keep the desktop version code pretty
much as it is. As the synchronizing at scene graph objects level method the
whole simulation would have to run on the server side. Only the graphic
output is on the client.

The server-client communication can be reduced by storing informations
about the scene graph node on the server side proxies. At the bottom of
figure 18 the procession of a get method is shown. Since the proxy class
stores the data of the client representation, the scale can be obtained from
the proxy class directly. The rendered object does not need to know if it
talks with a proxy class or with the “real” one. Since the getter methods are
mostly processed on the server and the setter methods do not need any reply,
the traffic will be mostly from server to client. Most clients are connected
to the internet via asynchronous connection with higher download speed.
Exactly this is what is required.

As soon as the system with the TNode3D interface is kept, synchronizing
at that level would allow the change of other graphic libraries. The desktop
version of TealSim would have to be provided with new implementations of
the Node3D classes. Those could again be used with the Wonderland version
on the client side. The viewer can be implemented as a proxy object in the

43

same way as the nodes.
The problem with the TNode3D synchronization approach is still the

amount of data transferred. This is significant with only a view types of
nodes. The node requiring perhaps the most traffic is the field line node. In
most simulations a single field line consists of 200 data points and possibly as
many color specifications. One point requires three floats. This sums up to
1600 bytes needed for a single field line. While a simulation is running, the
field line data has to be calculated with every frame, i.e. 20 times a second.
This leads to more than 31 kilobytes per second needed to be transferred
during the simulation to each client for one single field line. Some simulations
contain more than five field lines and if there are several users logged in the
traffic on the server increases to an intractable amount. A field direction grid
also produces a lot of data since the length and rotation have to be transferred
for every single arrow. With the discussed approach only simulations which
are not using field lines or field direction grids can be realized in Wonderland.

This problem could possibly be fixed by putting the FieldLine rendered
objects to the client and let it calculate the field lines there. The same could
be done with the field direction grid. However calculating fields is done with
the objects of classes implementing the GeneratesE interface. All those ob-
jects will have to be on the client side if a field line or a field direction grid
should be calculated there. For many simulations this leads to a situation
where almost all of the rendered objects need to be on the client side as well
as on the server side. It is also not a sign of good design if the synchro-
nization is done on different abstraction levels for the same types of objects.
This would be the case since the field lines and the field direction grid were
to be synchronized at the rendered level whereas all the others were th be
synchronized at the TNode3D level. The rendered objects needed for the
field line calculation are to be synchronized at the rendered objects level as
well. Subsequently, this leads to another approach.

Synchronization at Rendered Objects Level

With this approach no TNode3D objects are needed at all on the server side.
Instead the rendered objects are kept synchronous on the server and on the
client. Since the rendered objects represent the Model within the Model-
View-Control (MVC) design pattern, the View, i.e. the TNode3D objects,
can always be produced out of the model. The rendered objects in TealSim
do not only contain data for the graphic representation but may also contain
a lot of additional information. E.g. the PointCharge class contains a charge
value and a radius additionally. Since it is a PhysicalObject it also inherits
a mass, a velocity and many other properties. This makes the rendered

44

objects not only being the model for the graphic output, but representing an
object as a whole. The simulation engine uses these objects as well for its
calculations. Having all of the rendered objects on both the server and the
client side would therefore also mean to be able to do parts of the calculations
on the client and parts on the server. This requires synchronization between
server and client. Since all the objects can be found on the client side, the
field lines and the field direction grid can be calculated and displayed on the
client side only. This overcomes the problem of the need to transfer all the
data points of a field line. The needed computational power is also divided
since the client and the server can do different tasks.

The approach would require to serialize the rendered objects in order to
send them to the client. If calculations are to be on the server they have to be
serializable anyway. Darkstar needs this behavior. However, transferring and
distributing the serialized rendered objects with every change is not possible
due to the big bandwidth utilization. Instead the objects can be transferred
this way after they are created and be synchronized with update messages.

The dependence on the underlying graphic output primitive classes would
completely vanish with this solution. The actual TNode3D objects only need
to be created on the client side. If an other graphic library is used the
TNode3D objects could be implemented for the desktop version of TealSim.
Those objects could be used on the client side with the client-server version.
However, there need to be much more code changes on TealSim than with
the other approaches. Since the field line calculation have to be on the client
side, TealSim’s physics engine has to be split anyway (unless all the whole
application is run on the client). The currently discussed solution seems to
be the only one possible.

3.2.2 Splitting the Simulation Engine

This section describes the changes made on the simulation engine part of
TealSim to prepare it for working as client-server version. First the engine
as it was prior to the changes is described. After that the changes made are
discussed. Alternative approaches are also stated and discussed.

Engine functionality

The simulation engine is capable and responsible for the simulation calcula-
tions. It is given a list with all TSimRendered elements from the simulation.
When the simulation is running the internal data of the TSimRendered el-
ements is calculated 20 times a second. Several types of forces are taken
into account for that. The simulation runs in four steps with the according

45

methods implemented:

• doReorder,

• doDynamic,

• update,

• and doRefresh.

The doReorder step resolves all the collisions occurring between the ob-
jects at the beginning of the step. The objects rearranged are those who
have implemented the HasCollisionController interface. With the help of
the collision controller those elements are repeatedly reordered until there
is no collision any more. Some of the elements need to be told if the posi-
tions have changed after the collision resolving step. Those can implement
the TUpdatable interface. The only method declared in this interface is the
update method, which will be called on each TUpdatable object at the end
of the doReorder step. Usually the update call is used to set internal prop-
erties, e.g. the position, to a previously calculated shadow value. Further
information about this values are given in the doDynamic step paragraph.

In the doDynamic step the actual integration of the objects occurs follow-
ing the laws of physics. Only objects implementing the Integratable interface
are touched during this step. The mentioned interface declares the following
methods:

public void getDependentValues (double [] depValues , int o f f s e t) ;
public void getDependentDer ivat ives (double [] depDer ivat ives ,

int o f f s e t , double indepValue) ;
public int getNumberDependentValues () ;
public void setDependentValues (double [] depValues , int o f f s e t) ;
public boolean i s I n t e g r a t i n g () ;
public void s e t I n t e g r a t i n g (boolean b) ;

All the descriptive data about an object needed in the integration step can be
obtained by calling the getDependentValues method. Those values are e.g.
x, y and z coordinate of the position, charge values, the velocity and so on.
All of this values put into the depValues array. The offset parameter speci-
fies where the integratable object should start to put the data into the array.
The engine uses a single double array to store the dependent values of all
the integratable objects. The getDependentDerivatives method returns the
derivatives of the dependent values. They are needed in the engine for the in-
tegration. Since the engine stores all the dependent values into a single array
it needs to know how much space to reserve within the array. This value can
be obtained by using the getNumberDependentValues method. After each

46

loop within the integration the engine calls the setDependentValues method
of the integratables. Finally, the object can be informed by the engine if
it currently integrating using the setIntegrating method. This state can be
obtained with the isIntegrating method. Internally the values obtained and
written back to the integratable objects are not directly applied, but stored
in so-called “shadow values”. Before the integration step those values are the
same as the actual values. Within the integratable class, shadow values are
indicated with a d or sometimes with a c for shadow value prior to collision.
As an example, the actual mass value of the class PhysicalObject is stored
in the member variable mass whereas the shadow value is stored in mass d.
This way the whole integration process with several setDependentValues calls
can happen without influencing the actual values.

To tell the integratables to apply the shadow values to the actual ones,
the update phase calls the update method of each TUpdatable object. All
the integratable objects should also implement that interface. The objects
should always check if the dependent value is different from the actual before
setting it. This can safe runtime.

The last step is the doRefresh step. In that phase the nextSpatial method
of all objects implementing IsSpatial is called. The field line e.g. is such
a spatial. On the nextSpatial call the field lines with all its data points is
calculated. After that the rendering is triggered by calling the render method
on the objects implementing the TRenderEngine interface. Currently this is
only one object namely the viewer. It then causes the rendered objects to be
rendered.

A part of the class hierarchy of TealSim prior to the changes is shown in
figure 19. There is a class hierarchy of two engine types. The SimEngine is
the base class and the EMEngine extends the functionality for electromag-
netic simulations. One of those two engines is created when the simulation
is loaded by the SimPlayer (see section 2.2.1). The simulation itself contains
the information which engine it will need. The getEngineType method de-
clared in the TSimulation interface returns an integer. The value responds
to constant integers defined in the TEngine interface. If the integer indicates
an electromagnetic engine (with value TEngine.EM ENGINE an EMEngine
class object is created; an SimEngine object otherwise. The created engine
is set on the engine control. This engine control represents the user interface
to the engine. It is a swing component showing buttons like “play”, “stop”
or “pause” on the user interface. When the user clicks on such a button the
according method declared in the TEngineControl is called on the engine
control which forwards the call to the engine. On the first call the simulation
is started. Since the engine implements the Runnable interface, it can be run
in its own thread. The engine control starts this thread and stores the thread

47

SimEngine

#renderedObjs:List<TRendered>
#integratableObjs:List<Integratable>
. . .
−doReorder():void
#doDynamic():void
#update():void
+doRefresh():void

+syncAddSimElement(TSimElement e):void
+syncRemoveSimElement(TSimElement e):void
. . .

EMEngine

#eField:EField
#gField:GField
#bField:BField
#pField:PField
. . .
+syncAddSimElement(TSimElement e):void
+syncRemoveSimElement(TSimElement e):void
+getEField():EField
. . .

EngineControl

#worldThread:Thread

+setEngine(TEngine model):void
+getEngine():TEngine
. . .

TEngine

+UNKNOWN ENGINE:int=0
+BIOCHEM ENGINE:int=1
+KINETIC ENGINE:int=2
+EM ENGINE:int=3
. . .

Runnable

+run():void

TEngineControl

+getSimState():int
+setSimState(int s):void
+not():void
+init():void
+start():void
+step():void
+resume():void
+stop():void

1 1

implements

implements

implements

Figure 19: Previous Simulation Engine Class Diagram

object as the member worldThread. With the threads isAlive method the
engine control can always check whether the engine is still running.

When the new thread is started the run method of the simulation engine
is called. Within this method, there is a loop doing different things depending

48

on the simulation state. When the simulation should run the methods for the
four steps are called one after the other. As shown in figure 19 the visibility
for those four methods are different. The doReorder method is private, the
doDynamic and update methods are protected and the doRefresh method
is public. This indicates workaround changes on the code. With a clearly
defined interface the modifiers would not be that different.

Every step should take around about the same amount of time. This
time can be specified by the simulation. By default it is 50 milliseconds. It
there is still time left after the four simulation steps the rest of the time is
waited with a sleep call on the thread. The engine contains methods to add
new elements. Those can be called while the simulation step is executed. In
this case the elements are stored in a temporary list and are then added or
removed after the calculations. This avoids concurrency problems with the
element lists. If the engine is not in the running state only the doReorder
step and the doRefresh step is executed. The different states are defined as
constant integer flags in the TEngineControl interface.

The electromagnetic simulation engine adds functionality to the simula-
tion engine top class. It stores some data in its members so they can be
accessed with additional methods. E.g., there are four additional members
for different fields:

• the eField for the electric field,

• the gField for the gravity field,

• the bField for the magnetic flux field and

• the pField for the Pauli field.

All those members have the according getter methods (e.g. getGField for get-
ting the gravity field) which are called by the simulation elements if they need
them. The field classes contain all elements generating the fields. Those are
for example GeneratesE elements for the electric fields. The calls for adding
and removing elements to the engine are overwritten in the electromagnetic
engine. If the element is of interest for the electromagnetic engine, it is pro-
cessed. E.g. if the element added is an object implementing GeneratesB it
is added to the magnetic field. The add method has to call the implementa-
tion in the superclass so the general simulation engine can process it. When
an element is added, it has to be put into the corresponding lists. A point
charge e.g. is put into the list with the integratables, the rendered objects,
the updatables and so on. Referencing the objects in different lists by type
increases the performance of the engine. This is because with most opera-
tions all elements of a specific type are needed. If they are all in the same list

49

it can be stepped through this list and the operations can be performed with
every single element of the list. If all elements were only stored in one single
list the engine would have to step through all elements for each operation
and check whether the element is of the required type. Instead the checking
is done only once for each element when it is added.

Design of a new class hierarchy

The design allows to add new types or subtypes of engines by inheriting
from the existing ones. However, if it should be used on a client-server
system this becomes tricky. If some parts of the engine should run on the
server it would run on darkstar. This requires some restrictions for the code
(see also section 3.2.3). Synchronization among darkstar managed objects is
done exclusively by darkstar. If the engine contains synchronization mech-
anisms, e.g. synchronized blocks, deadlocks will occur. Figure 20 shows
a possible class hierarchy if the client-server functionality should be added

AbstractSimEngine

SimEngineAbstractEMEngine ServerSimEngine

ServerEMEngineEMEngine

Figure 20: Extending Desktop Version by Inheritance

with additional inheritance classes. The AbstractSimEngine class represents
the most abstract engine class. It contains the code needed in all the sub-
classes. The class must not contain any synchronized blocks since the
server side engine classes which are inherited will run on darkstar. Simi-
larly to the previously used model the AbstractEMEngine class is inherited
from the AbstractSimEngine. Those two classes represent the simulation
engine and the electromagnetic simulation engine. To extend the functional-
ity the desktop versions and the server side versions of the engines are now

50

added. The SimEngine class is basically the same as the AbstractSimEngine
but with the synchronization functionality. It is the simulation engine for
the desktop version of TealSim. Similarly, the ServerSimEngine is inherited
from the base class. It contains the code for the simulation engine on the
Wonderland server. In order to add the electromagnetic versions of the en-
gines the EMEngine and the ServerEMEngine class are inherited from the
AbstractEMEngine. The two server engines can be implemented within the
Wonderland module. This way the Wonderland part would remain inside
the module and outside of TealSim.

However, this approach comes with many disadvantages. First of all it is
not easily extendible. If a client engine would be needed two different classes
would have to be added. One for the general simulation engine and one for
the electromagnetic simulation engine. This code is very likely to be very
similar if not identical. Thus, the code would be copied from one class to the
other, which is very bad for the maintainability. If changes are to be made
on that code the changes would have to be applied to both added classes.
E.g. the SimEngine class and the EMEngine class in this model would likely
already have duplicated code. If a new engine type, e.g. a kinetic engine
should be added those problems occur again.

AbstractEngine

#impl:AbstractEngineImpl
. . .
+AbstractEngine(int engineType)
. . .

ServerEngineSimEngine ClientEngine

AbstractEngineImpl

EMEngineImpl

1 1

Abstraction Implementation

Figure 21: Engine class hierarchy using Bridge Pattern

Having a closer look on the problem it can be seen that there are two ab-
straction levels in the code hierarchy. The engine type (general and electro-
magnetic) and the application type (desktop version and Wonderland server
side version). In [5] exactly this problem is addressed. The solution given
is to make two hierarchies out of the single one and define one of them as
the abstraction and one as implementation. Figure 21 shows the resulting

51

class hierarchy when the bridge design pattern is used. There are two class
hierarchies now. On the left there are the different application types, on the
right the engine types. Having two hierarchies makes extending easy. If a
client engine is needed it is added to the left class tree. If a new engine
type is needed the right class hierarchy is extended by inheriting from the
AbstractEngineImpl class, or it is a specialized electromagnetic engine from
the EMEngineImpl class. This does not only make the code extendible but
also avoids duplicated code as with the hierarchy shown in figure 20. The
Wonderland specific parts which are ServerEngine and ClientEngine can be
put into the Wonderland module. The rest belongs to TealSim and will be
implemented there.

From a logic point of view it makes more sense for the engine type being
the abstraction and for the type of application being the implementation.
This way there would be a desktop implementation, a server implementation
and so on. In our case this is hardly possible because of the synchroniz-
ing behavior. Since the server parts of the code should not contain any
synchronized blocks those blocks would only be possible in the implemen-
tation. A lot of the methods in the desktop version of the engine need to
be synchronized. That’s why there would not be much code in the engine
specific hierarchy. For that reason the decision was made pro the solution
shown in figure 21.

The AbstractEngine class provides a constructor with the engine type as
parameter. According to this type the right implementation is instantiated.
E.g. a desktop version of an electromagnetic engine can be created with:

TEngine eng ine = new SimEngine (TEngine .EM ENGINE) ;

Of course the abstraction has to implement all the interfaces the previous
version of the engine was implementing. TEngine is one of them. The only
exception for this is the Runnable interface. The TEngine interface was
derived from this interface (see also figure 19). This is rather desktop version
specific. Is was used for running the engine’s main loop inside a new thread.
This can be very different with the server engine or the client engine. Inside
the constructor the engine instantiates the implementation according to the
type:

switch (engineType) {
case TEngine .BIOCHEM ENGINE:
case TEngine .KINETIC ENGINE:
impl = new AbstractEngineImpl () ;
break ;
case TEngine .EM ENGINE:
impl = new EMEngineImpl () ;
break ;

52

default :
impl = new AbstractEngineImpl () ;
break ;

}

This can be implemented in the base class of the abstraction. To assure
the creation of the implementation the impl member must be instantiated in
every defined constructor.

The implementation needs to have one interface which is used by the
abstraction. This interface is defined by the AbstractEngineImpl class itself.
Since there is only one specific implementation type only this type needs
to be taken into account so far. If there should be more that the electro-
magnetic implementation supported in the future some code has possibly to
be moved from the abstraction to the implementation. The original elec-
tromagnetic engine supports retrieving some additional objects compared to
the simulation engine base class. This is the only functionality specific to
the electromagnetic engine. There will have to be a method for adding and
removing objects to the implementation. This methods are called by the
abstraction when an object is added to or removed from the engine. The ab-
straction will handle the adding specifically to the application types and the
forward the call to the implementation. In case of an electromagnetic engine
implementation the field generating objects will be added to the according
field. A list of objects implementing the PhysicalObject class also needs to
be held by the EMEngineImpl class. The AbstractEngineImpl class does not
need to do anything on the add and remove objects call since the implemen-
tation only handles the differences between an electromagnetic engine and
an other engine.

The additional getter methods of the previous EMEngine are:

public CompositeField getEFie ld () ;
public CompositeField getGField () ;
public CompositeField getBFie ld () ;
public CompositeField getPFie ld () ;
public Co l l e c t i on <Physica lObject> getPhys i ca lObjs () ;

The CompositeField class is the common base class of the four field types.
Since this methods are specific for the electromagnetic engine only they
should not be provided any more by the abstraction but should be replaced
by more general methods. In this case getting elements by their type is in-
troduced. With such an approach the electromagnetic engine specific types
can be obtained as well as many others. One way of defining such a method
is to have the getter method with a Java Class as parameter. The method
declaration in this case looks like this:

53

public <T> T getElementByType (Class<T> type) ;

This way Java’s generics are used for returning an object of correct type. Here
is an example how the call for the electromagnetic field getEField, previously
located in the EMEngine class would be replaced:

EField f i e l d = theEngine . getElementByType (EField . class) ;

Since the call returns the same type as specified as parameter a cast to EField
is not needed for this assignment. The implementation knows what element
to return on a specific type request in this case. Whenever the abstraction
asks the electromagnetic engine implementation for an element of type EField
the eField member variable of the implementation will be returned. For all
variables located in the abstraction, the AbstractEngine object can directly
return the desired object. For object lists another interface method is defined
for the engine abstraction:

public <T> Co l l e c t i on <T> getCol lect ionByType (Class<T> type) ;

This works similarly to the getter method for single objects. The method
returns a collection with objects of the class type specified in the parameter.
This way the last method specific to the electromagnetic engine, the getter
method for the physical objects is covered. However, this approach has lim-
itations. If there is more than one objects of the same type they can not be
obtained this way. This is likely to occur with the primitive types and with
others which can be used for several purposes. The Vector3d class as it is
used for storing the gravity is such an example. To overcome that problem
a method for getting elements per type with an enum as parameter can be
used:

public Object getElementByType (EngineElementType type) ;

This has the additional advantage of being faster than the other approach.
When choosing to return of the right object a switch statement can be used.
One and the same method can be used for single objects and collections. The
disadvantage of this method is that it can not make use of Java’s generics.
Thus, the return type has to be of class Object and the calling method needs
to cast it to the actual object type. This makes the calling code longer and
it is not as readable any more. Since both approaches have advantages and
disadvantages, both of them were added to the AbstractEngine class.

The interface of the implementation is still to define. It could be defined
with exactly the same method as the abstraction, namely getElementByType.
First, the abstractions method would check whether it has got the requested

54

object on its own. If not, it would forward the call directly to the implemen-
tation:

public <T> T getElementByType (Class<T> type){
i f (type == Vector2 f . class)

return (T) g rav i ty ;
else i f (type == double . class)

return (T) damping ;
// . . .
// s e v e r a l o ther e l s e i f ’ s to be added here . . .
// . . .
else

return (T) impl . getElementByType (type) ;
}

The according implementation’s method would look the same without the
forwarding call of course. For simplicity reasons the code above contains no
error handling e.g. if the type is unknown. A problem with this approach
can be found when it comes to performance measures. This getter methods
are called very often during a simulation step. For that reason they must
be as efficient as possible. With the currently discussed approach the if -
else if clauses are evaluated one after the other until the needed return value
is found. If it is the last one it will take a while to evaluate all the if clauses.
This can be improved by putting the if clauses questioning for more often
used types first. However this method is limited because it often depends
on the simulation how often a specific type is requested and the simulations
should be supported as equally as possible. With enum’s the performance
can be optimized better because the switch statement which is much faster
can be used. However, there have to be two switch statements, one in the
abstraction and one in the implementation.

Another approach is to use maps for getting the requested object by a key
value. This key would be the class type or the enum value, respectively. Java
provides a HashMap class returning elements in logarithmic (O(log n)) time
and an EnumMap class especially for enums returning elements in constant
(O(n)) time. The implementation can now provide getter methods returning
such maps. Those maps can be merged with the type maps of the abstrac-
tion. This way only one enum map and two hash maps with classes as key
(for single elements and collections, respectively) would be stored within the
abstraction. Every call for a type on the abstraction would be one lookup
in the according map. The maps can only change whenever an object is
removed or added to the engine. Such updates are processed prior to every
step, which means that type map updates can not occur within the calcula-
tion step. This enables the engine abstraction to cache the implementation’s
list for the whole period of a calculation step. The implementation has to

55

provide a method for obtaining the maps which is then called by the ab-
straction, possibly at the first call of a step. However, due to lack of usage
of the getting of typed objects specific to the abstraction so far, this speed
improvement is not implemented yet. The abstraction provides the by-type
getter functionality only with a few object. For that reason it still works with
the if - else if clauses and the select statement, respectively. The engine
implementations though provide the interface using maps. The complete
interface of the implementation looks as follows:

// g e t t e r methods by c l a s s type
public HashMap<Class <? extends Object > ,? extends Object>

getTypedElements () ;
public HashMap<Class <? extends Object >,

Co l l e c t i on <? extends Object>>
getTypedCol l ec t ions () ;

// g e t t e r methods by enum type
public EnumMap<AbstractEngine . EngineElementType , Object>

getTypedElementsEnum () ;

// adding and removing e lements
public void addSimElement (TSimElement obj) ;
public void removeSimElement (TSimElement obj) ;

With this simple interface all engine type specific functionality is covered and
the design can be kept as it is. After checking if the type belongs to itself
the engine abstraction can return the requested element by obtaining the
according map from the implementation and the obtaining the element from
the map. Here as an example the getter code by class type for collections:

public <T> Co l l e c t i on <T> getCol lect ionByType (Class<T> type) {
i f (type == TRenderEngine . class) {

return (Co l l e c t i on <T>) renderEngines ;
} else {

// ask implementat ion f o r the type
return (Co l l e c t i on <T>) impl . ge tTypedCol l ec t ions () . get (type) ;

}
}

To change the code towards using one merged map for the performance im-
provements mentioned earlier only minor changes in the code are necessary.

Separating Server and Client engine

The next question is how much of the functionality of the engine to put on
the client and server side, respectively. If the whole simulation is done by the
client, not much simulation data has to be transferred, because it is generated

56

on each client. But the more happens on the client, the harder it gets to
synchronize among the clients. The engine state with all the objects needs to
be the same on each client. The user interactions would have to go through
the server to be applied on all clients synchronously. This would require
some adoption to the engine code. If the whole simulation is calculated on
the server the synchronization among the client is reduced to a minimum.
Only the results have to be sent to the clients. As it is discussed in section
3.2.1 this is not possible because of the high network bandwidth utilization
with the field lines and the field direction grid. Those elements have to be
computed on the client side anyway. When they are computed on the client
side they do not need to be perfectly synchronous among all clients. The
field lines (as well as the field direction grid) is only a representation of the
field. If that field is kept synchronous (this must be the case since all the
charge values, positions and so on are) the field lines and the field direction
grid will be synchronous as well automatically. Calculating things on the
client also splits up the computational power between the client and the
server. This saves CPU utilization on the server. All the code running on
the server side has to run on darkstar and therefore be adopted as described
in section 3.2.3. There is also the possibility of writing a Darkstar service
which would overcome that problem. However this approach comes with
many disadvantages. Running a service enables to run code “parallel” to
the tasks in Darkstar. In this case the thread synchronization must be done
by hand. The scalability provided by Darkstar is also in danger because the
service may not be restricted in the use of computational power on the server.
In case of Wonderland the whole virtual world could be slowed down. For
that reason this approach was not followed, so all the engine code running
on the server has to be made compatible with darkstar. One calculation
step of the server side engine can be processed as a Darkstar task. If the
engine is in the running state the task can be scheduled repeatedly. Darkstar
provides a functionality to schedule tasks in such a way. The time between
the executions as well as the waiting time until the task is executed for the
first time can be specified. The server side engine class could implement the
Task interface which similarly to Java’s Runnable interface declares a single
run method. This method is then run when a scheduled task is started.

To estimate the degree of how much engine code needs to be run on the
server a closer look on some specific simulations is necessary. Unfortunately
some of them are not deterministic. The “Capacitor” simulation (see also
figure 11) for example starts with randomly distributed charges. During
the simulation charges can be added or removed. The less deterministic
simulations are the harder is it to synchronize them among clients. To avoid
that problem as much of the engine as possible has to run on the server.

57

As mentioned above it is no problem to put the field line and direction
grid calculation to the client. It is even possible to not calculate these field
depending shapes synchronously to the other calculations if the client is too
slow for such frequent calculations. This is because no other calculations
are dependent on field lines of field direction grids since they are only a
visualization of the field produced by the other elements of the simulation.

It turns out that the calculations which have to be done on the client hap-
pen inside the doRefresh step. This is the last phase of the engine calculation
and calls the nextStep method of all the objects implementing isSpatial in-
terface first. Those objects are mainly the field directions grid and the field
lines. Secondly the doRefresh step calls the render method on the viewer
indicating that the scene can be rendered. The whole doRefresh step has to
be put into the client engine.

As mentioned earlier the doDynamic step does the integration which is the
main calculation phase of a whole engine step. For synchronization reasons
mentioned above, this will have to happen on the server. The doReorder step
can be seen as a preparation step for the integration and will therefore happen
where the doDynamic step happens; on the server. The update step is to write
back the shadow values into the real value member variables. This has to
happen prior to the doRefresh step since this phase may need the values.
Because the doRefresh phase does not need to be executed on the server the
update phase can also be skipped here. After the integration the clients have
to receive the values and can then perform the update and doReorder step.
Fortunately, the data needed to be sent to the client is already there and used
in the doDynamics step. All the changed data is contained by the dependent
values. A simple getDependentValues call on the engine can retrieve all the
shadow values as a single array of doubles, this array will be sent to the
clients. The client can then call setDependentValues on the client engine to
set all the shadow values on the client side to the ones just calculated on the
server. The order of the Integratable elements in the according list in the
engine plays a role in this case. Since this order is the same as in the array
with all the dependent values, the order on the clients Integratable list must
be the same as on the server. This can be achieved by sending the order to
the client. It is only necessary to synchronize that order whenever an object
is added to the engine. After setting the shadow values of the client engine
the update step can be performed to set the actual property values of the
elements to the shadow values. Subsequently, the client engine is ready to
perform the doRefresh step in order to calculate the field lines or perform
other actions defined in the nextStep method. As a last step the client engine
can trigger the rendering.

The whole process of a simulation step is shown in figure 22. The net-

58

:TaskManager serverEngine:ServerEngine

clientEngine:ClientEngine

1.schedulePeriodicTask(
serverEngine, 0.05, 0.05)

2.run()

2.1.doReorder()
2.2.doDynamic()
3.1.getDependentValues(...)

3.2.setDependentValues(...)

4.1.update()
4.2.doRefresh()

Figure 22: Communication Diagram for Engine execution step

work communication is simplified and replaced by a line. First the task
manager is called and told about the Task object (which in this case is the
server side engine), when to start the the first execution and the time be-
tween the executions. The task manager triggers the run method of the Task
objects periodically. Within the server side engine a call on run triggers the
doReorder and the doDynamic step. When those steps are finished the data
is sent to the client by obtaining it with a getDependentValues call on the
server engine and transferring this data to the client engine. This engine is
now updated with the setDependentValues call. Subsequently, the update
and the doRefresh phase are performed on the client by calling the according
methods of the client side engine.

With the discussed method all dependent values are transferred to each
client every simulation step. This can lead to a high bandwidth utilization at
the server. E.g. for the capacitor simulation there are 24 point charges added
per default. Each charge has got three dependent values for the position and
the velocity, respectively, and one for the charge. Since all of these seven
values are 64 bit doubles the transferred data is more than 10 kilobits per
step per client. With 20 steps per second this value multiplies up to more
than 200kbps, which is quite a lot. In order to reduce this amount some
methods are possible:

• Using floats instead of doubles for the dependent values. This would
reduce the amount of data needed to be transferred to 50%. If the

59

engine still uses doubles internally the double array would have to be
converted into a float array which would take too much time. Another
possibility is to use floats in the engine instead of double. This can
possibly lead to rounding errors.

• Transferring only the changed data. Unfortunately it is not easy to
determine the values which have changed. This can possibly only be
done with comparing each value to the previous one. Another problem
would be that additional information would be needed about what
values are skipped for transfer. A simple setDependentValues on the
client side would not ne possible any more since some of the values are
in the array and some are not.

• Leaving out values which are not needed on the client side. There are
several dependent values which are not needed on the client. With
the point charges for example those are the velocities. The position
is needed for rendering and the charges are needed if field lines have
to be calculated. It is not easily to determine if a value is needed on
the client. This is sometimes simulation specific and would therefore
need specific adoptions for single simulations. As it is with the trans-
ferring of only changed data it would not be possible to simply call the
setDependentValues method.

The three methods could be combined arbitrarily. Because of their drawbacks
in terms of performance and the increased complexity none of these methods
were implemented. A test with several clients and different applications to
test the bandwidth was successful.

3.2.3 Preparing TealSim for the Project Darkstar Server

All the code running on the server needs to be ready for darkstar execution.
In order to run on darkstar the code must fulfill some requirements. Dark-
star’s first priority is to make client-server applications scalable. For this
purpose the execution is split up into tasks. Every task has got a certain
amount of time to be executed. If it has not finished after that time it is
interrupted and rescheduled. Splitting the execution into tasks avoids hav-
ing a single task blocking the whole execution. A task is always run as an
atomic state change. If it is interrupted the state prior to the task execution
is reestablished. That functionality is implemented in darkstar using serial-
ization. The objects are arranged to logic groups, each of them represented
by a ManagedObject class object. ManagedObject is a marker interface.
Classes implementing this interface are serialized and de-serialized at once

60

with all of their members. Darkstar holds all managed objects in their se-
rialized form. If a task needs data of managed objects this objects will be
de-serialized. Synchronization between the managed objects is done by dark-
star. If a task tries to write to a managed object while another task accesses
it the task is thrown away and rescheduled for later execution. Reading one
managed object by more than one task is allowed of course. After a task
has successfully processed to its end the used managed objects are stored
and are replacing the previous versions of the objects. If a task can not be
completed the previous versions of the managed objects are kept and can be
de-serialized again if another task (or the same rescheduled task) require it.
Code run on Darkstar has to follow several guidelines:

• All objects must implement the interface Serializable . Without that
the mentioned atomicity of a task can not be provided. Darkstar throws
an exception if an object not being serializable.

• A single managed object must not contain too much data. Otherwise
the de-serialization and re-serialization process would take too much
time and the task will be thrown away very often.

• All inner classes should be static since the time taken for the serial-
ization increases significantly if they are not static.

• Synchronization blocks must not be used among managed objects and
their members. Since Darkstar uses it’s own locks those can conflict
with the ones the user defined code uses. This can easily lead to a
deadlock.

• Static fields which are not constant vanish on re-serialization. Although
this problem can be solved with Java semantics another problem with
this fields appear. Such fields are specific to a single Java virtual ma-
chine. This behavior undergoes the feature of Darkstar to run on more
than one virtual machine.

• No java.lang.Exception should be caught. This is because Darkstar
uses its own exceptions which would be caught by the user code. This is
especially important for debugging and testing new functionality since
the exception base class is often used together with such approaches.

• No objects except those implementing Darkstar’s ManagedObject in-
terface should be referenced by more than one managed object. After
the first serialization process they will not be identical any more since
a new object is created on re-serialization.

61

Most of the problems are relatively easy to overcome in TealSim. The
Java’s exception base class should be called very rarely in Java code anyway.
Non-constant static fields are sometimes used for singleton objects. For such
purposes darkstar provides functionality to bind an object to a name, i.e.
a Java String. However, Darkstar code should not be put into TealSim.
Such code parts could be replaced in Wonderland with classes defined in
the Wonderland module. Fortunately this was not necessary since all the
non-constant static fields used in the server side could be removed anyway.

To pull synchronized blocks out of the code is rather difficult with exist-
ing software. Most of the synchronized blocks needed on the server side occur
in the original engine. With the new engine class design explained in section
3.2.2 those synchronized blocks needed for the desktop implementation are
put into the desktop version of the engine. The base class which the server
side engine is derived from does not contain any synchronized code.

Non-static inner classes can access the members of the parent class. This
works because they hold a reference to them internally. They can be re-
placed by static inner classes where these reference to the parent object is
set manually. This makes the code a little more complicated but makes the
serialization which is needed on the Darkstar server much quicker. All the
non-static inner classes on the server side were replaced by static ones for
that reason.

Since darkstar must not be put into TealSim, the ManagedObject inter-
face must not be used there. “Normal” objects may later be wrapped by
Darkstar’s ManagedSerializable class within the Wonderland module. As all
the other objects on the server side those must implement the Serializable
interface as well.

To make all the needed code serializable usually forces a lot of code
changes. However, this is not too bad with TealSim because most of the
classes were actually designed to be Serializable . A reason for that is that
the functionality to save the current simulation state needs the elements to
be serialized. The swing components for the user interface are Serializable
anyway. One problem with serializability occurs with the bounding volumes.
Those are not only needed in the low level graphics but also within the simula-
tions and at several other parts of the code. Originally the Java3D bounding
volumes were used, but those do not implement the Serializable interface.
For that reason manually implemented bounding volumes are replacing the
Java3D ones outside the low level graphic packages.

With another class of Java3D used in TealSim the same problem was ad-
dressed differently. The Transform3D class occurs only two times in TealSim
outside the Java3D specific package. Therefore it was kept and the serializa-
tion was done by Java’s object serialization customization. Normally Java

62

stores all non-transient member objects of an object recursively on serializa-
tion. This default behavior can be overwritten by implementing the following
two methods in the class which should be serialized manually[6]:

private void wri teObject (java . i o . ObjectOutputStream s) ;
private void readObject (java . i o . ObjectInputStream s) ;

Those methods can be made private because they are called by the vir-
tual machine directly. Upon serialization the writeObject method is called.
It usually calls the object stream’s defaultWriteObject method first. This
method does everything which would be done without defining a writeObject
method. After that some extra information needed to restore the object
properly is added to the output stream. On de-serialization the readObject
method usually calls the input stream’s defaultReadObject to restore all
non-transient members. Subsequently the additional informations stored by
the writeObject method are retrieved and used. With the classes holding a
Transform3D object which is not serializable, this member is made transient
first. This tells the default reader and writer methods to ignore that mem-
ber. A Java3D transform can be represented by a transform matrix with
16 double values. The writeObject method of the containing class obtains
these 16 values and writes them into the object stream. Those values can
be read by the readObject method on de-serialization. With the 16 doubles
a new Transform3D object can be created after that in order to restore the
containing object with the transform. If the transform object can be null
this information has to be stored within the stream additionally.

In some cases members of an object do not need to be serialized at all.
This happens e.g. if a member is only used as cache. TealSim’s Route class
contains a target object as well as a string with the target property. With
a Java PropertyDescriptor getter and setter methods can be obtained. If
not stated otherwise the property descriptor assumes the setter method to
be setPropertyName and the getter method to be getPropertyName. E.g. if
the property is “mass” the getter method should be getMass and the setter
method should be setMass. Using a property descriptor’s getWriteMethod
method the right Method object according to the target property and the
target class is created. This Method object is saved into a member variable
of the Route object. Upon request the method is invoked on the target ob-
ject. Because the target object and the name of the property is enough of
information the method does not need to be stored permanently. However
it is cached for performance reasons as long as the Route object is not being
serialized. On serialization it is thrown away by declaring the member vari-
able transient. When the Method object is needed for the first time after
re-serialization it is recreated. At other parts of the code where a Method

63

object was used as a member variable to point to a method of its own class
it was replaced by storing the method as a string.

3.3 Wonderland Module

After having the desktop version of TealSim run with JMonkeyEngine and
MTGame a Wonderland module was implemented. As mentioned in sec-
tion 2.1.1, pluggable modules can be constructed and implemented for Open
Wonderland. The goal was to put all the code needed with a jar file including
TealSim into a single Wonderland module. In general a module consists of
the following components:

• Server side code put into a server package,

• client side code put into a client package,

• code to be distributed to both, client and server put into a common
package

• and artwork put into the “art” directory.

The whole module is zipped into a single jar file consisting of a server side
jar and a client side jar. The server side archive contains all classes in the
server package and in the common package, whereas the client side archive
contains the client and the common package as well as the artwork. For
the TealSim module the needed TealSim classes and their dependencies are
needed as well. To add them a new folder “lib” is added to the module.
TealSim is added to this directory as a jar file including all needed classes.
The subsequent sections explain the implementation of the module.

3.3.1 Preparing the Module’s Environment

Wonderland modules are usually built with an ant15 file called build.xml.
In order to pack the TealSim jar file into the module this build file has to be
adopted. First the path to the needed jar files is given using the pathconvert
option:

< !−− Cl i en t s i d e j a r s −−>
<pathconvert property=”module−c l i e n t . c l a s spa th ”>

<path location=”${module . l i b d i r }/${module . c l i e n t . j a r }”/>
<path location=

”${ appbase . d i r }/ bu i ld / c l i e n t /appbase−c l i e n t . j a r ”/>
<path location=

15http://ant.apache.org/

64

http://ant.apache.org/

”${ appbase . d i r }/ bu i ld / c l i e n t /appbase−c l i e n t−c e l l . j a r ”/>
<path location=”${modules . d i r }/ t o o l s / sha r ed s ta t e / bu i ld /

c l i e n t / shareds tate−c l i e n t . j a r ”/>
</pathconvert>

< !−− common j a r s −−>
<pathconvert property=”module−common . c l a s spa th ”>

<path location=”${module . l i b d i r }/${module . common . j a r }”/>
<path location=

”${ appbase . d i r }/ bu i ld / c l i e n t /appbase−c l i e n t . j a r ”/>
<path location=

”${ appbase . d i r }/ bu i ld / c l i e n t /appbase−c l i e n t−c e l l . j a r ”/>
</pathconvert>

< !−− Server s i d e j a r s −−>
<pathconvert property=”module−s e r v e r . c l a s spa th ”>

<path location=”${module . l i b d i r }/${module . s e r v e r . j a r }”/>
<path location=

”${ appbase . d i r }/ bu i ld / s e r v e r /appbase−s e r v e r . j a r ”/>
<path location=”${modules . d i r }/ t o o l s / sha r ed s ta t e / bu i ld /

s e r v e r / shareds tate−s e r v e r . j a r ”/>
</pathconvert>

Each, the client, the server and the common code are told about their de-
pendency jar files. The first entry for each of them specifies the TealSim jar.
The environment variables module.libdir is specified directly in the proper-
ties file for the module and points to the “lib” directory. The names of the
jar files for server, client and common are also specified within the module
properties file. In this case all classes of TealSim with the exception of the
teal .render.j3d package are specified for all three jars. The other needed
dependency files for the module are also stated here. Those are the appbase
module later used to show swing components in Wonderland and the stared
state component used to maintain a shared state between the clients. In or-
der to add the TealSim jar file to the client and server jar the “lib” directory
has to be added to the client and the server tag, respectively:

<c l i e n t d i r=”${ cur rent . d i r }/${module . l i b d i r }”>
< !−− sk ipped code −−>

</ c l i e n t>
<s e r v e r d i r=”${ cur rent . d i r }/${module . l i b d i r }”>

< !−− sk ipped code −−>
</ s e r v e r>

In order to react more quickly on changes in the TealSim code a new target
pack tealsim was introduced to the build.xml file. It packs all the needed
.class files of TealSim into a jar file called tealsim.jar whenever there
were some changes in the TealSim code. The directory of the .class files is

65

set in the module’s properties file. The jar file is then copied into the “lib”
directory. By adding the newly introduced pack tealsim target as dependency
to the build target it is assured that the new version of TealSim is used if
any code was changed in TealSim.

3.3.2 The Artwork

The artwork will obviously be TealSim’s 3D-Studio Max models used in the
simulations. They are copied into the module’s “art” directory. When the
module is uploaded to a Wonderland server the contents of the art direc-
tory are stored in the Wonderland file system. In order to access that data
Wonderland’s resource locator must be used:

Asse tUt i l . getAssetURL (”wla :// module−name/path−to−element ”) ;

The module−name is to be replaced by tealsim−module in our case and
the path−to−element by the needed element which in most cases is a .3ds

file. Within TealSim a path to such a model is resolved with TealSim’s own
resource locator. This call has to be replaced with the call stated above.
The resolver is only used by the scene factory when creating a TNode3D ele-
ment. TealSim’s factory for creating JMonkeyEngine specific nodes uses it’s
protected getURL method which takes a name of a 3D Model element and
returns the right URL class using TealSim’s resolver URLGenerator. In order
to override this behavior and use Wonderlands resource locator code a class
ClientSceneFactory is created and derived from TealSim’s SceneFactoryJME
class. The getURL method is the only one which needs to be overridden.
When a simulation is loaded the SceneFactory’s setFactory method has to
be used to set the right factory version, namely a ClientSceneFactory object.

3.3.3 Simulation Selection Functionality

Since one module should be capable of showing different simulations (but
only one at time) in world a mechanism was chosen to select simulations.
The functionality can be supported by the module properties. The user
can simply right-click on the module’s graphics and select the according
properties window. With a module such a functionality can be added by
implementing the PropertiesFactorySPI interface with a class. The interface
declares the following methods:

public St r ing getDisplayName () ;
public void s e tCe l lP r op e r t i e sEd i t o r (Ce l lP r ope r t i e sEd i t o r ed i t o r) ;
public JPanel ge tProper t i e sJPane l () ;
public void open () ;
public void c l o s e () ;

66

public void r e s t o r e () ;
public void apply () ;

The getDisplayName method simply return the name of the property which
can then be selected by the user in the properties menu. Wonderland provides
a way to work with different languages. For that purpose a bundle file can
be added to the module. This file consist of keys with a string value:

TealS im Cel l=TealSim Ce l l
TealSim Component=TealSim Component
Save=Save
%some more ass ignments . . .

A value can be obtained with the following code:

ResourceBundle . getBundle (”path−to−bundle− f i l e ”) . g e tS t r i ng (”key”) ;

The path to the bundle file must be the full path consisting of the Java
package and the bundle filename. Since the bundle is needed on the client
side, the path to be stated with the getBundle method will in out case be
org/jdesktop/wonderland/modules/tealsim/client/resources/Bundle.
Within the filesystem the bundle file with the default language is named
Bundle.properties. If other language files should be supported this name
will differ. E.g. the name for the file with the german translations is
Bundle_de.properties. Wonderland uses the client system’s language per
default. If there is no bundle file for that language the default bundle file will
be used. For the getDisplayName the bundle key TealSim_cell was used,
i.e. on english systems “TealSim Cell” and on german systems “TealSim
Zelle” is returned. This can be adopted later by using a key dedicated to the
property.

With the setCellPropertiesEditor method a properties editor is set to the
properties factory class. Such an editor can be used to obtain the server cell
state or the client cell object. Changes on the server state can be made as
well. They will be applied whenever the user clicks on the “Apply” button.
The editors getServerState method is used to obtain the name of the current
simulation which can then be changed within the properties dialog. When the
user changes the simulation to another one the editor’s addToUpdateList is
used to set the new server state which will be applied later on the server side.
Another editor’s method used is the setPanelDirty method which influences
whether the buttons as “Apply”, “Cancel” and so on are enabled or not. If
the simulation in the properties panel is set to the one currently used, the
panel’s dirty value is set to false.

Wonderland’s properties dialog is a swing panel. This user interface can
be fully costumized. In order to obtain the GUI the property factory’s

67

:TealSimCellProperties

:JPanel
:PropertiesFactorySPI:ActionListener

:JLabel simulationSelection
:ComboBox

implements implements

Figure 23: Object relations of the Properties Dialog

getPropertiesJPanel method is called. As shown in figure 23, the proper-
ties class itself represents the GUI as it is derived from the JPanel class. For
that reason the getPropertiesJPanel method simply returns the properties
class itself. The swing children of the panel are a label and a combo box.
The label states the string “Choose Simulation” and next to it the combo
box lists the implemented simulations. The TealSimCellProperties object is
used as ActionListener for the combo box. Thus, it has to implement the
actionPerformed method which the combo box object calls whenever the user
chooses a simulation.

The additional methods within the PropertiesFactorySPI interface are
called when the user opens or closes the dialog, or whenever the button ac-
cording to the method is clicked. On open the default simulation shown in
the combo box is set to the current one. On apply the simulation is set to
the choosen one using the editors addToUpdateList method. The close and
restore method are currently not in use. The properties dialog is very simple
at the moment and does only fit the functional requirements. The possi-
ble simulations are stored within a String [] member of the properties class.
Whenever another simulation of TealSim is ready to run in Wonderland, it
can simply be added to that array.

3.3.4 Creating a Simulation

As shown in figure 24, the process of loading the simulation is rather com-
plicated. The according components of TealSim need to be informed about
the other elements. Most of them hold references to each of the others.
The SimPlayerApp class represents the whole user interface in the desktop

68

:SimPlayerApp

:SimPlayer sim:
TSimulation

viewer
:AbstractViewer3D

eng:
SimEngine

1.new
3.load(sim)

2.creates

3.9.setGUI(...)
3.11.addElements(guiElms)

3.3.creates

3.1.getEngineType()
3.6.setEngine(eng)
3.7.setFramework(this)
3.8.getGUI()
3.10.getGuiElements()
3.12.getEngineControl()
3.13.initialize()

3.2.creates by engine type
3.4.addRenderEngine(viewer)
3.5.setSimulation(sim) 3.5.1.getEngineControl()

3.5.2.getDeltaTime()
3.5.4.getSimElements()

3.5.3.setDeltaTime(time)
3.5.5.addSimElements(elms)

3.5.6.setSimulation(sim)

Figure 24: Communication Diagram of the creation of a Simulation with
TealSim’s Desktop version (slightly simplified)

version. First it creates the framework, in this case the SimPlayer class. Sub-
sequently, the simulation is created. This happens whenever the user chooses
a simulation. It is then given by a string which directly corresponds to the
package and class name of the simulation. This way the simulation class can
be loaded with Java’s reflection functionality:

TSimulation sim =
(TSimulation) Class . forName (nameString) . newInstance () ;

The created simulation contains all the elements and parameters needed. It
is passed to the player’s init method which does the actual initialization. For
the Wonderland version both, the client and the server side have their own

69

player. First the engine is created. For that purpose the necessary engine
type is obtained from the simulation object. As stated in section 3.2.2, the
engine is instantiated with the type as construction parameter. The last
component needed is the viewer. With the desktop version, the proper scene
factory class instantiates the viewer, on the client side a client specific viewer
is created directly by the player. Since the server does not display anything all
the steps including the viewer are skipped on Wonderland’s server side. With
the desktop version the viewer is added to the engine. With the Wonderland
version this obviously happens only on the client side. In principle an engine
supports more than one viewer, although this functionality is not needed at
the moment.

The next step is to tell the engine about the simulation. The engine can
obtain all the needed values for the simulation step from the simulation. The
delta time for example is the time a step should require. Most importantly
the engine obtains all the TSimElement object which are needed for the
simulation. All this elements are added to the engine itself. After that
step the engine sets the simulation on the viewer. Of course the server side
engine for the Wonderland version skips this step since there is no server
side viewer. At this step the viewer obtains all the information it needs from
the simulation as well. This information is mainly the elements it needs
to display. The fact that it is the engine which tells the viewer about the
simulation unnecessarily makes the code more complicated. In the future the
player should be responsible for that.

After the engine and the viewer are aware of the simulation this simulation
is told about the engine and the player. This is necessary because some
simulations are not only containers for all the elements, but do also contain
functionality influencing the actual simualtion. On the desktop version the
player then obtains the GUI object which specifies how the user interface
looks like. With the desktop version of TealSim most simulations use the
SimGui class. Figure 25 shows how the frames are arranged with this gui.
To the left there is the view pane displaying the three dimensional output
and the engine control buttons. On the right the control pane where the user
influences parameters is displayed. This control pane is wrapped by a scroll
pane in order to put a scroll bar to the left side of the pane if the frames
are too high. Since the player is a JPanel it simply adds the GUI object as
its own child. Because the 3D window on the client side is not part of the
swing panel a ClientGUI class implementing the TGUI interface is defined
within the client package of the Wonderland module. It works similar to
the SimGui class in TealSim but instead of having a viewPane it has got
an ecPane which holds the engine control. This panel is placed beneath the
controlPane. With the next simulation initialization step the gui elements are

70

scrollPane
(with controlPane)

viewPane

TGui

TFramework

Figure 25: Frame parts of the Player (TFramework)

obtained from the simulation object by the player using the getGuiElements
method. After that they are added to the GUI. The engine control is then
set to the init state by obtaining it from the simulation and calling the init
method on it. On the desktop version, this implicitly starts the engine thread
and thus the main loop. However, there are no calculations made yet since
the engine is in init state. The engine control basically represents the user
interface with the “play”, “resume”, “pause” buttons and so on and also
starts and stops the engine. On Wonderland’s server side no engine control
is needed since the engine’s states are set mainly by the user interactions on
the client side. Whenever an according message from the client arrives the
engine’s state is changed directly. On the client side an engine control is used
similarly to the desktop version. However, it does not start the engine thread
on initialization, but has additional responsibilities as sending informations
about user clicks on its buttons to the server. The enabling and disabling of
the buttons are also synchronized by the client’s engine control (see section
3.3.6). Because the functionality is very similar but extended to the desktop
versions engine control the ClientEngineControl is derived from TealSim’s
EngineControl class.

The last step of the simulation loading is to call the initialize method
on the simulation. Some elements need the engine to be instantiated to
be initialized properly. Previously the engine was created directly within
the simulation’s constructor. For flexibility reasons (this would have been a
problem with different engines for the desktop version and the Wonderland
version) the simulation does only contain information what type of engine
(currently electromagnetic or other) is needed for the simulation and the

71

engine is created by the player. In order to keep most of the simulation code
the parts which need the engine to be instantiated (e.g. flux field lines) are
initialized by the newly introduced initialize method.

Instantiating a simulation can take a lot of time. Not only the main
components have to be created but also all simulation objects and all the
swing components. For the Wonderland module there are three possible
ways to instantiate the simulation:

1. The simulation can be created on each client when it logs on. However,
many simulations contain code where object are placed randomly into
space. The clients must therefore synchronize the simulation objects
after creation. Since there are many different simulations decisions
would have to be made which simulation overrules the others. It seems
to make more sense to create only one simulation object.

2. If the simulation is instantiated on the server the randomized parts of
the simulation constructor do not matter any more. Once the simu-
lation is created it can be distributed to the clients. Both, the server
player and the client player can then do the initialization in their own
way. The main problem with this approach is the long time it takes
to create all the objects. Some tests made clear that for some simula-
tions darkstar is not able to create the objects within the time a task
can run. Increasing this time on the Wonderland server would break
the requirement of being able to run the module on every Wonderland
server without code changes.

3. To overcome the darkstar problem the simulation can be instantiated
on a client and then be sent to the server. The server then distributes
the simulation to all the clients. The server can not tell a single client
to create a simulation because this single client possibly disconnects
before sending the simulation to the server. For that reason the server
tells all the clients to create the simulation as long as it does not receive
a simulation from a client. The first simulation received is then used
and sent to all clients.

In figure 26 the instantiation process of a simulation is shown. When the
second client logs on the first one has not yet instantiated the simulation. For
that reason the server tells the second client as well to create the simulation.
This situation is similar to the one when the simulation is changed while more
than one client is logged on. In that case the server will tell all the clients
to create a simulation. When the server has received the simulation for the
first time from a client it throws created simulations it receives afterwards

72

away, saves the simulation and distributes it to all clients. Whenever a new
client logs on the current copy on the server is sent to it. After the client
receives the simulation data its client player can initialize it as described
previously. The described behavior requires some extra code and makes the
module a bit more complicated. However, for previously mentioned reasons
some simulations could not be created purely on the server. In future versions
more of the creation code probably happens on the client (see also section
5.1). In this case the module is already prepared and there would be less
changes to the code.

Server Client 1 Client 2 Client 3

log on

create simulation

log on

create simulation

ready, simulation data

simulation data

simulation data

log on

simulation data

Figure 26: Sequence Diagram of Simulation instantiation and distribution

One issue with the client-server version is the creation of object ID’s.
Later such identification numbers will be used for synchronization. For that
reason all the elements to be synchronized must have an unique identifier. It
is assumed that only objects implementing the HasID interface will have to be
synchronized since simulations should never use elements declared outside of
TealSim. All the elements added to the simulation with the methods declared
within the TealSim classes can simply be checked for an ID when they are
added. With most swing elements in the simulations only the top container
element in the swing hierarchy is added in such a way. The subcomponents
implementing the HasID interface also have to be checked for an ID. For
that reason all the elements derived from Java’s java.awt.Component class

73

are asked for their children recursively using the getComponents method. If
a HasID element has no id yet a random identifier is assigned:

((HasID) cmp) . setID (UUID. randomUUID () . t oS t r i ng ()) ;

Since the HasID interface works with Java strings the ID created with the
UUID class has to be converted to such a string. As the awt components
are parsed through all the single HasID elements are added to a list which is
later used for synchronization.

After last step which has to occur in addition to the initialization as with
the desktop version is to remove the references to all the server-specific ele-
ments. In the first place this is the simulation object which defines the whole
simulation. This object implements the ActionListener interface. Some sim-
ulations use that behavior to add some execution code within the simulation.
This code often has to be only executed once for the whole simulation, i.e. on
the server side. For that reason the simulation is removed as action listener
and the client side simulation is added instead to only transfer informations
about the user interaction to the server side where the changes can be ap-
plied. Since the simulation’s actionPerformed method is very heterogeneous
among the different simulations the simulation as ActionListener is not sup-
ported yet. The simulation is only removed from all the elements it listens
to. For that purpose the swing component tree has to be parsed again in
order to remove the simulation as action listener.

3.3.5 The Control Panel

Most of the user interaction in TealSim happens with the swing user in-
terface. Parameters within a simulation can be changed, the view can be
changed (e.g. whether field lines show up or not) or the simulation can be
started or stopped using this interface. Wonderland provides functionality as
a module called App Base for that purpose. It can render light weight swing
components onto a two-dimensional pane in world. User interactions are also
possible quite as simply as with actual swing programming. However there is
no synchronizing among clients implemented in the App Base module. This
would break the modularity of Wonderland since synchronization should al-
ways be customized with knowledge of the actual application and therefore
has to be implemented specifically.

Figure 27 shows the class hierarchy of a cell using the App Base module.
Normally the implemented client cell class is directly inherited from Wonder-
land’s Cell class, but when using the swing components it will be derived from
the App2DCell. Similar things happen with the renderer and with the server
side cell. The latter is usually derived from the CellMO class. This changes

74

:BasicRenderer :Cell

:App2DCellRenderer :App2DCell :App2D :Window2D

:App2DCellRendererJME :WindowSwing

:TealSimRenderer :TealSimCell :TealSimApp :TealSwingWindow

Teal Module

AppBase Module

Wonderland

Figure 27: Simplified client side swing Components class hierarchy of the
Module

to the App2DCellMO class (this is not shown in the class diagram). The 2D-
App’s renderer is usually not overwritten. But to extend the functionality
of the 2D application to additionally render 3D graphics a TealSimRenderer
derived from the normal JMonkeyEngine 2D application renderer is imple-
mented. In order to instantiate this renderer the cell’s createCellRenderer
method which is called by the Cell base class itself is overwritten. It instan-
tiates the TealSim version of a renderer. Within this renderer an additional
branch of the scenegraph is added which holds the 3D output of TealSim.
The viewer has to be given a reference in order to tell the renderer what
elements to add to or remove from the scene graph.

A 2D application as well as the window holding the swing elements need
to be created. This is done whenever the cell turns into the “active” state,
meaning it is within a client’s field of view. To react on such cell state changes
the Cell’s setStatus method is overwritten and for the case of becoming
“active” the following code is being added to the method:

// c r ea t i n g and s e t t i n g up the 2D app l i c a t i o n
TealSimApp stApp = new TealSimApp (”Test ” , this . g e tP i x e l S c a l e ()) ;
setApp (stApp) ;
stApp . addDisplayer (this) ;

// c r ea t i n g the swing window
window = new TealSwingWindow (stApp , 500 , 600 , true ,

this . g e tP i x e l S c a l e ()) ;

75

// adding the c l i e n t p l aye r as a pane l
i f (thePlayer != null) {

window . addPanel (thePlayer) ;
window . se tVi s ib l eApp (true) ;

}

When construction the application the name and the pixel scale has to be
given to the constructor of the TealSimApp class. The pixel scale states the
with of a single pixel in meters. Within the constructor of TealSimApp the
superclass’ constructor is called with an additional parameter: the control
arbiter. Wonderland provides a class hierarchy of such arbiters with the
base class ControlArb. The arbiter specifies the user interaction policy of
the panel. In case of the TealSimApp the ControlArbMulti class is used
as arbiter. This class specifies that many users can manipulate the swing
window concurrently and that they need to “take control” first in order to
do so. The arbiter instantiation and setup is done within the TealSimApp
constructor. After the 2D application is created the cell has to be told about
it by calling the setApp method located in the App2DCell class.

The next step is to create the swing window of a specified width and
height. Both values are given in pixels. The pixel scale has again to be
given. The fourth constructor parameter states whether the window is the
main window which is true in our case. As with the desktop version’s player,
the client player is a swing panel as well. For that reason it can be added
to the swing window using the implemented addPanel method. When the
graphics of the module are not needed any more in Wonderland (e.g. if no
client is logged in) the swing window is made invisible. As with the creation
this can be done within the setStatus method of the cell when the “disk”
status is reached. When the cell becomes “active” again the visibility only
has to be set to true instead of again creating the 2D application and the
swing window. In order to use the App Base module the according jar files
of this module have to be added to the TealSim module’s build.xml file (see
section 3.3.1):

3.3.6 Starting the Simulation and synchronizing Engine States

With the previously explained functionality the cell is capable of showing up
a simulation with the 3D objects and the swing elements on the clients. The
next functionality to implement is to actually run a simulation. To achieve
that a lot of synchronizing among the clients and the server is necessary. The
user will start the simulation by clicking on the engine control’s play button.
After a simulation shows up some buttons are not enabled, i.e. they are not

76

clickable, because this would not make any sense. The pause button e.g.
can not be pressen when the simulation is not started yet. However, as soon
as the user clicks on “play” the pause button has to be enabled. In order
to synchronize the button’s ability to be clicked this information has to be
sent to the server and from there to all the other clients whenever a click
event occurs on the engine control’s button list. The server does not need to
know anything about which buttons are enabled and which are not. Some
synchronization code would have to be added to the server side, though. For-
tunately, a Wonderland module exists to maintain states among the clients
without adding additional server side code, the Shared State module. It
encapsulates the server side code. Whenever an additional module is used
additional parameters have to be added to the TealSim module’s build.xml
file. This is shown in section 3.3.1. The Shared State module is implemented
as a so-called “Component”. From a logic point of view a Wonderland com-
ponent is something to be attached to a cell. Usually components are added
to cells using Wonderland’s client user interface. In our case the Shared State
component needs to be added to the cell permanently and as soon as it is
needed. To achieve this behavior the following code lines are added to the
server side cell class:

@SuppressWarnings (”unused”)
@UsesCellComponentMO(SharedStateComponentMO . class)
private ManagedReference<SharedStateComponentMO> sharedStateRef ;

This is only a declaration telling Wonderland that a shared state component
has to be attached to the cell. The member variable itself is never used
within the class.

The Shared State consists mainly of a map SharedMapCli mapping Java
strings to SharedData objects. This objects are the ones shared among all
client. Currently there are three shared data classes implemented:

• SharedBoolean

• SharedInteger

• SharedString

For the enabled buttons in the TealSim module a SharedInteger is used to
represent the buttons as bitmask. With a specific string key this value can
be obtained from the map. Additionally a listener can be defined and added
to the map. This listener is implemented as an inner class of the client
engine control. It has to implement the SharedMapListenerCli interface and
therefore have a callback method propertyChanged. This method is called
whenever the map is changed on one of the clients. This way it can react

77

and change the enable mask of the buttons on the current client. The client
cell has to tell the client engine control about the map immediately after it is
created. Whenever a new client logs on and an existing simulation is already
in world the enabled state of the engine control can be obtained from the
shared map. The different keys of the map can be used for different values.
Within the TealSim module the map is not only used for the engine control
buttons, but also for another swing component explained in section 3.3.7.

Clicking a button at the client’s engine control user interface must not
only effect the button enabled mask, but obviously also the state of the
engine. If the user clicks on the “step” button one simulation step should
be executed. For that purpose the call is forwarded to the client engine
which fires a property change event. The client cell which is capable of com-
municating with the server is a property change listener to the engine and
sends the message about the pressed button to the server. For this pur-
pose the EngineMessage class is implemented. It holds engine state changes
as well as all the other communication regarding the engine. Since it is
derived from Wonderland’s CellMessage class every arbitrary objects can
be placed inside the class and can be transferred by Wonderland. On the
server side a message receiver to such message classes can be defined. For
the engine messages the message receiver is a static inner class of the en-
gine. This is helpful because it is within the same scope as the server
side engine itself and can therefore access even the private members of
the ServerEngine class. As the receiver class is derived from Wonderland’s
AbstractComponentMessageReceiver class it can be used with Wonderland’s
messaging mechanism. When the simulation is initialzed the engine’s mes-
sage receiver is instantiated and registered:

c e l l . getComponent (ChannelComponentMO . class)
. addMessageReceiver (EngineMessage . class ,

new ServerEngine . EngineMessageReceiver (c e l l)) ;

Registering the engine message receiver as a listener to the EngineMessage
class causes a callback method (messageReceived) to be called whenever the
according message is received.

The server side engine defines a method called handleClientStateChange
responsible for handling state changes triggered by a user on the client side.
This method can be called by the engine message receiver. The single param-
eter of the method is the new state which can be obtained from the engine
message. The handleClientStateChange method does some pre-actions as
stopping a running simulation if the simulation is in progress and forwards
the state to the according methods like start for the “running” state. So far
the engine states defined within the TEngine interface are used. The prob-

78

lem with that is that these states describe states and not state changes. E.g.
there is no state saying that the “step” button was just pressed. Whenever
this happens the pause state is transferred. For the server side it does not
make a difference whether the “pause” button or the “step” button is pressed.
In both cases a simulation already running is stopped and one additional step
is calculated before the server side calculations stop. On the client side it is
not possible to click the “pause” button twice in a row since the button will
be disabled after the first call. With this approach the pause state have to
be transferred multiple times if the user clicks on the according button. This
behavior lacks intuitiveness since declaring “pause” several times in a row
usually do not have any effect after the first call. Although not recognized
by the user the additional step after the click on “pause” is also not intuitive.
To solve that states saying “the user clicked on the pause button” and so on
should be defined. With the “reset” button the same problem occurs. The
init method is called on such a user interaction.

It is very important to not cache the engine within the simulation object.
If it contains a reference to a ServerEngine class the object will be part of the
managed object accessing the message receiver. Because of the serialization
process in Darkstar a cached object would be re-serialized as an own object
in its state previous to serialization. The managed object in the TealSim
module holding the engine as well would implicitly have its own object and
those two engine objects would not be synchronized.

The ServerEngine defines a doStep method performing a server-side en-
gine step. After the calculation of the step the dependent values are sent
to the client. Since the engine’s getDependentValues method asks all the
simulation elements for their values this call should not be called too often.
Instead the server side engine caches the dependent values within a member
variable which can be obtained in order to send it to the client. The value
array is sent using the EngineMessage class. The clients receive this message
and can then update their elements and do the client specific calculations as
explained in section 3.2.2. Whenever the “start” button is clicked the doStep
method has to be called repeatedly. Since the server-side engine implements
Darkstar’s Task interface, the engine calculation can be scheduled repeat-
edly. On scheduling such a task a PeriodicTaskHandle object is returned
implementing a cancel callback method. The handle is stored as a member
within the engine and is used to cancel the running task whenever necessary.
The last functionality regarding the engine control buttons on the server is
to reset the simulation. Every simulation knows what to do on reset and
implements a reset method. Since the simulation is on the server it has to
be called there. After calling the dependent values are sent to the client in
the same way as after a simulation step.

79

3.3.7 Synchronizing the Swing User Interface

Similarly to the simulation elements some of the swing elements have to be
synchronized among the clients as well. This is a rather complicated task
since those elements are heterogeneous. Elements not influencing the server
engine can be synchronized using the Shared State module. However, some
of them are connected with TealSim Route’s to simulation elements. The
server has to be told about everything influencing the simulation. Some of
the swing elements do not have to be synchronized among clients at all.
Those are e.g. check boxes indicating whether field lines are shown or not.
Every client can select whether the field lines are shown or not on its own.

Visualization Control

Figure 28: Visualization Control in GUI

TealSim’s VisualizationControl class is responsible for any visualization
of fields. It is a swing panel and added to the user interface in most of the
electromagnetic simulations. In figure 28 the panel is shown. The simulation
chooses which of the elements are needed within the simulation. Those not
needed are set to be invisible. The first three entries concern the field direc-
tion grid and the field lines. The user can choose whether those are shown
and how many of them are shown. For the field lines the vertex coloring can
be enabled showing different colors for different strengths of the field along a
field line. All those elements do not need to be synchronized since every user

80

chooses this part of the view independently. The mechanisms to influence
the view (e.g. for hiding the field lines when the user disables the check box)
on the client side work exactly the same way as with the desktop version
of TealSim. Therefore they do not need to be adopted for the Wonderland
version at all.

Figure 29: Display of electric potential in the “Charge by Induction” Simu-
lation

If any of the buttons below are clicked the simulation is paused and the
requested representation of the field is calculated. During the calculation the
progress bar in the swing window indicates the current progress. When the
calculation is completed a 2D panel as shown in figure 29 with the requested
visual representation shows up. This process needs communication to the
server because the engine needs to be stopped whenever a user clicks on
such a button. The other clients need to know they should calculate and
display the requested view. With the desktop version the engine’s state is
changed after a click on one of the buttons. In the Wonderland version the
ClientEngine object replaces the engine in the desktop version. The client-
side cell class TealSimCell is registered as a property change listener to the
client-side engine listening for a change of the simulation state. With this
mechanism the server is informed whenever the engine state should change.

81

This causes the server to stop the simulation when the user clicks on one of
the buttons on the visualization control.

In order to tell the other clients that they should show up the panel
with the field representation the Shared State component is used. For every
VisualizationControl object an entry is put into the shared map. The value is
an integer with the flag indicating what button was pressed. The integer keys
for the buttons are already defined in TealSim’s DLIC class. On every client
a listener class called VisualizationControlSynchronizer is registered to the
map entry. This class is also used for the rest of the functionality regarding
button clicks on a visualization control. The user clicks are emulated on the
other clients by calling the visualization controls actionPerformed method
with the same parameter object as it would be called on the event of a
user click. This parameter object is an ActionEvent object triggered by a
TealAction with the value of the button mask as command.

The last issue with the synchronization of the visualization control is how
to get the information within the module when the user has clicked a button.
For that purpose the VisualizationControl is changed slightly. As stated
above a TealAction is triggered on every user click. The VisualizationControl
object itself is the listener to all those actions. Its code is adapted to store a
list of all these actions where the visualization control is an action listener. A
new method to add an external listener to all of those actions is introduced
as well. This way the VisualizationControlSynchronizer in the Wonderland
module is able to listen to all events the VisualizationControl is listening
to. If the user clicks on the button the VisualizationControlSynchronizer can
now trigger the event on all the other clients by changing the integer value
within the shared map to the integer belonging to the clicked button.

Routes to simulation elements

Most of the other swing components influencing parameters of the simula-
tion are connected to the simulation elements by routes. Most of TealSim’s
classes implement the TElement interface which declares some methods for
establishing such routes:

public void addRoute (Route r) ;
public void addRoute (S t r ing a t t r i bu t e ,

TElement l i s t e n e r , S t r ing targetName) ;
public void removeRoute (S t r ing a t t r i bu t e ,

TElement l i s t e n e r , S t r ing targetName) ;

Whenever a route should be added to a swing component within the user in-
terface the simulation calls the component’s addRoute method. The attribute
parameter is the name of the parameter to be addressed. With the listener

82

parameter the route target object is given. The targetName is the property
the route effects. If e.g. a slider value is coupled with the charge value
of a PointCharge object the target name will be “charge”. This causes the
setCharge method of the point charge to be called whenever the slider value is
changed by the user. The call is performed by a Route object which contains
the three parameters of the addRoute method. It is added to the element
(in this case the slider) as a property change listener. A route can also be
directly added to a listener using the appropriate addRoute method with the
Route object as parameter. Routes can also be removed from an TElement
object by calling the removeRoute method.

With the desktop version of TealSim the according target method of the
simulation element can be called directly by the Route object. With the
slider example this happens whenever the user moves the slider. The changed
values of the charge are recognized by the engine immediately and taken
into account while running an engine step. With the Wonderland version of
TealSim the slider values will have to be transferred to the server because
the charges effect the server side engine calculations. The sliders also need
to be synchronized among the clients. This is done by sending the values
back to the clients. The server also has to store the new values in order to
be able to send them to newly logged on clients. The slider values of the
simulation stored on the server side must be kept up to date. After creation
of the simulation the server only keeps a copy of the simulation in order to
distribute it to new clients.

In order to detect user interactions on swing components a property
change listener called GuiPropertyChangeListener is introduced to the client
side of the Wonderland module. It is an inner class of the client side player.
On initialization of the simulation it is instantiated and registered to all
needed swing components. If a processed swing component has subcom-
ponents they are also parsed recursively. Since all swing components are
derived from the java.awt.Component class the GuiPropertyChangeListener
can call the addPropertyChangeListener method on the components with
this as parameter.

Whenever a user clicks on a GUI component or changes any value the
GuiPropertyChangeListener’s propertyChange method will be called with
the fired event. In this case an EventContainer is constructed and packed
into an EventMessage object which will later be sent to the server. The event
container contains the property change event and the ID of the source object
which will be a simulation element. Within the PropertyChangeEvent class
the source object is transient and will therefore not be transferred to the
server. The ID is used instead and the server will resolve this identifier to the
corresponding object on the server side. This is done by the server player’s

83

handleClientPCE method which is called by a message receiver. With a
propertyChange call on the server side swing object the server is updated.
After that the message previously received by the server is sent to all the
clients. They process the message in a simlar way to the server. The identifier
will be resolved to an object and the property change event will be applied
to this object.

A problem with this approach is that the network between client and
server is not synchronized. If serveral property changes happen with the
same object within a short time they can become mixed up. This is very
likely to happen with the sliders. When a user drags on a slider the value
changes very frequently. What can happen is that one value is transmitted
to the server and then sent back to the clients. In the mean time the client
value has changed because the user drags the slider further. While the new
value is about to reach the server the old one comes back to the client (where
the slider already shows the new value). The old value is applied again which
causes the slider to jump back to the old value. Every value change triggers
a new sending event. This is usually stopped by the server since it does
neither process nor forward a message to the client if the property value has
not changed. However, this mechanism does not work when the values change
quickly since the property value will alternate between two or more values.
This causes a slider to continously jump between different values. The effect
is even worse if two different clients change the same GUI element. To reduce
the effect the number how often one and the same value is sent to the server
is limited. The less frequently a client is allowed to send such data to the
server the more unlikely are the synchronization problems to occur. However,
if the network speed to a user is lower and therefore the latency is higher the
problem occurs again. The transmission frequency of the synchronization
messages can not be made arbitrarily long since the user interaction would
be delayed too long. Additional synchronization mechanisms are still to be
implemented.

3.4 Implementation of a Multi-player Simulation

In order to make use of the virtual world a new simulation was implemented.
Games are an interesting way to learn physics. In TealSim several games
are already implemented for that reason. One of those was extended to be
played by three clients at the same time. The players of the game have to
communicate with each other during the game with respect to the physics.

Figure 30 shows the implemented game. There are three charges. Their
charge values can be changed using the three sliders in the swing window.
According to the charge values the three charges attract or repulse each

84

Figure 30: 3-Player Video Game in Wonderland

others. The two blue charges above can not change their position but the
third charge can. The goal of the game is to navigate the movable charge
through the horseshoe shaped body until it reaches the exit on the bottom
right hand side. This can only be done by changing the charge values properly
while the charge is moving. The colors of the charges change with their charge
value. Every user can switch on or switch of the field lines.

The simulation was added to TealSim and can therefore also be used with
the desktop version. In that case it is not easy to play though since one user
will have to change the values of the three sliders during the game. The
implementation of the team game was rather simple since an other game
used and adopted for three players. In the original game there was only one
slider which was used to change the charge value of the moving charge. The
values of the other two charges remained the same. To adopt the simulation

85

to a three player game two sliders were added. Their values were coupled
with the charge values of the other charges using routes.

86

4 Installation and Usage of the Module

This section explains how to use the implemented module together with a
wonderland server. For better understanding several screen shots are added.
All the explained details require a running Wonderland server with access to
the server administration. The module will be compiled using the ant com-
mand. The resulting jar file represents the module and has to be uploaded
to the wonderland server. Wonderland comes with a Glassfish application
server and a corresponding web interface. This interface can be started with
a web browser. On the main page a user can click on the “Server Admin”
button in order to administrate the server. Figure 31 shows how to upload a
module. On the top image the server administration page as it appears first
is shown. To the right the different servers running are shown. They can
also be started or stopped here. On the left hand side of the page the page
menu is shown. In order to upload the TealSim module the “Manage Mod-
ules” section has to be selected (marked orange in the image). The “Manage
Modules” page is shown at the bottom of figure 31. All the installed modules
are shown here and can be removed as well. On top of the page the module
jar file can be uploaded. After the upload the Darkstar has to be restarted
by clicking the “restart” link in the “Manage Modules” page shown at the
top of image 31.

Now the module can be loaded in world. The wonderland client is started
by a click on the “Launch” button at the home page of the web interface. The
login window appears where a username can be chosen. A TealSim cell can
be loaded by selecting “TealSim Cell” at the dialog shown after clicking the
“Insert” and “Object...” item at the task bar. Figure 32 shows the cell after
it is loaded. The “Capacitor” simulation is loaded by default. In Wonderland
TealSim looks very much like it’s desktop version. On the right hand side
a control panel is shown to the user and the simulation can be started or
stopped. The main visual difference is the 3D part of the simulation which
is constructed in world and not within a window next to the control panel.

To prevent from unintended clicks the user has to take control of the
panel before accessing the panel. This is done by right-clicking on the panel.
The menu shown at the right bottom of figure 32 having a “Take Control”
item appears. This menu can also be used to open the properties of the cell.
As shown in figure 33 some “Capabilities” of the selected cell can be changed
within the object editor showing up after clicking on “Properties...”. The
frame on the right hand side changes according to the selected capability. In
order to switch to another simulation the “TealSim Cell” capability has to
be selected. The “Properties” frame now shows a drop-down menu where
the desired simulation can be selected. After selection the “Apply” button

87

Figure 31: Uploading a Module

can be pressed and the selected simulation will show up in world.
Of course more than one simulation can be placed in-world at once. The

user can add an arbitrary number of TealSim cells and change every instance

88

Figure 32: Cell after it is loaded

Figure 33: Properties Window of the TealSim Cell

89

to a different simulation. The quickes way to do so is to right-click on the
GUI and select the “Duplicate” item. This way the simulation object is
duplicated and can be placed somewhere else within the virtual world.

90

5 Conclusion and Outlook

This work aimed at providing several physics simulations within Open Won-
derland. In order to enable as many different simulations as possible an ex-
isting simulation software was adopted to run in the virtual 3D world. With
the implemented functionality many users can meet in-world and study the
physics behind the experiments supported by the simulation software. Built-
in features of the virtual world enable communication methods as stereo
sound or blackboards to increase the learning effect.

In order to point out the advantage of the simulation software within a
3D virtual world compared to the desktop version a multi-player e-learning
game was implemented. Tests were pointing out the software’s capability to
manage several avatars playing at the same time. The work showed that the
two environments (TealSim and Open Wonderland) can be coupled in order
to enable the benefits of both environments. Since some stableness issues with
both environments were detected a lot of effort was taken to overcome such
shortcomings. The fact that both used environments are open source software
decreased this effort. Although there are documentation shortcomings with
the two environments a powerful learning environment was created.

5.1 Future Work suggestions

Since the focus lied on providing the functionality little attention was payed
to the world around the users. Open Wonderland provides many features
to build a world around the simulations that supports learning. There is
also the positive social effect when groups of people meet [3] which can be
increased by a virtual world closer to real world. There is also a potential in
enhancing the usability. In figure 34 a simulation where the two dimensional
swing windows are replaced by three dimensional knobs is shown. Compared
to the current implementation with the swing windows this approach seems
to be closer to real world.

Another issue occuring because of the focus on the functionality is the
lack of usability in some cases. The following minor changes regarding that
topic are recommended:

• The distance between the 2D swing window and the three dimensional
simulation can not be changed by the user at the moment. Especially
when the simulation should be placed within small 3D-spaces as build-
ings this functionality is essential. For better usability the mechanism
to change the distance should be similar to the position change mech-
anisms built in in Open Wonderland.

91

Figure 34: Simulation with 3D User Interface

• At the moment the 3D elements of the simulations are scaled to a
diagonal width of three meters. This size can not be changed without
editing the Java source code. An additional dialog for changing the size
of the 3D and the 2D parts seperately is needed. Again, the interface for
that should be similar to the ones already used in Open Wonderland.

• The simulation change dialog is just a simple drop-down menu at the
moment. Since well-designed user interfaces increase the acceptance
and satisfaction of the users [11] this user interface should be refactored.

In order to achieve the functionality for the first two points the cell could
be split into two cells, one for the 3D components and one for the swing
components. This way Open Wonderland’s mechanism to resize, move and
scale cells could be applied to both parts separately.

One major issue with the implementation is performance. The imple-
mented module scales up well for more than a dozen users depending on the
simulation. However, some speed improvements can still be made by pulling
elements out of the server and by optimizing the server to client network
traffic.

Although many different simulations are supported not all of them work
out of the box within the Open Wonderland module. A lot of the simulations
are not implemented fulfilling the specifications. In order to use them with
the module they have to be refactored. So far only electromagnetic simula-

92

tions were tested. With the other simulations in TealSim a broad spectrum
of different physics simulations could be used within Open Wonderland.

93

References

[1] John W. Belcher, Studio Physics at MIT, MIT Physics Annual 2001,
http://web.mit.edu/physics/news/physicsatmit/physicsatmit_

01_teal.pdf

[2] Jonathan Bishop, Enhancing the understanding of genres of web-based
communities: the role of the ecological cognition framework, Int. J. Web
Based Communities, Vol. 5, No. 1, Pages 4-17.

[3] Callaghan, M.J.; McCusker, K.; Losada, J.L.; Harkin, J.G.; Wilson,
S.; , Teaching Engineering Education Using Virtual Worlds and Virtual
Learning Environments, Advances in Computing, Control, & Telecom-
munication Technologies, 2009. ACT ’09. International Conference on,
Pages 295-299, 28-29 Dec. 2009 DOI: 10.1109/ACT.2009.80

[4] Yehudit Judy Dori, John Belcher, Effect of Visualizations and Ac-
tive Learning on Students Understanding of Electromagnetism Concepts,
Proceedings of the Annual Meeting of the National Association for Re-
search in Science Teaching (NARST 2003), http://icampus.mit.edu/
projects/Publications/TEAL/EffectOfVisualizations.pdf

[5] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, Design
Patterns - Elements of Reusable Object-Oriented Software, Addison-
Wesley Professional; 1 edition, November 10, 1994

[6] Todd Greanier, Discover the secrets of the Java Serialization API, Java
tutorial, http://java.sun.com/developer/technicalArticles/

Programming/serialization/

[7] Bernard Horan, Michael Gardner, and John Scott. MiRTLE: A Mixed
Reality Teaching & Learning Environment. Technical Report. Sun Mi-
crosystems, Inc., Mountain View, CA, USA

[8] Masound, F.A.; Halabi, D.H.; ASP.NET and JSP Frameworks in
Model View Controller Implementation, Information and Communica-
tion Technologies, 2006. ICTTA ’06. 2nd , vol.2, Pages 3593-3598, DOI:
10.1109/ICTTA.2006.1684998

[9] Paul R. Messinger, Eleni Stroulia, Kelly Lyons, Michael Bone, Run H.
Niu, Kristen Smirnov, Stephen Perelgut, Virtual worlds – past, present,
and future: New directions in social computing, Decision Support Sys-
tems, Volume 47, Issue 3, Online Communities and Social Network, June
2009, Pages 204-228, ISSN 0167-9236, DOI: 10.1016/j.dss.2009.02.014.

94

http://web.mit.edu/physics/news/physicsatmit/physicsatmit_01_teal.pdf
http://web.mit.edu/physics/news/physicsatmit/physicsatmit_01_teal.pdf
http://icampus.mit.edu/projects/Publications/TEAL/EffectOfVisualizations.pdf
http://icampus.mit.edu/projects/Publications/TEAL/EffectOfVisualizations.pdf
http://java.sun.com/developer/technicalArticles/Programming/serialization/
http://java.sun.com/developer/technicalArticles/Programming/serialization/

[10] Norhayati Abd. Mukti, Dayana Razali, Mohd. Fadzil Ramli, Halimah
Badioze Zaman, Azlina Ahmad, Hybrid Learning and Online Collabora-
tive Enhance Students Performance, Advanced Learning Technologies,
IEEE International Conference on, Pages 481-483, Fifth IEEE Inter-
national Conference on Advanced Learning Technologies (ICALT’05),
2005

[11] Rodriguez, N.J.; Borges, J.A.; Murillo, V.; Ortiz, J.; Sands, D.Z.; , A
study of physicians’ interaction with text-based and graphical-based elec-
tronic patient record systems, Computer-Based Medical Systems, 2002.
(CBMS 2002). Proceedings of the 15th IEEE Symposium on, Pages 357-
360, 2002 DOI: 10.1109/CBMS.2002.1011405

[12] Scheucher, B., Bailey, P., Gütl, C., Harward, V. Collaborative virtual
3d environment for internet-accessible physics experiments Pages 65-71,
International Association of Online Engineering Vol5, 2009

[13] Jordan Slott, Project Wonderland (v0.5): Importing 3D Models,
Java Tutorial, 2010 http://wiki.java.net/bin/view/Javadesktop/

ProjectWonderlandArtImport05

[14] Jordan Slott, Project Wonderland v0.5: Working with Modules,
Java Tutorial, 2010 http://wiki.java.net/bin/view/Javadesktop/

ProjectWonderlandWorkingWithModules05

[15] V. Vani and S. Mohan. Interactive 3D class room: a frame-
work for Web3D using J3D and JMF, In Proceedings of the 1st
Amrita ACM-W Celebration on Women in Computing in India
(A2CWiC ’10). ACM, New York, NY, USA, , Article 24 , 7 pages.
DOI:10.1145/1858378.1858402

[16] Zhenlong Li and Xiaoming Zhao. The Design of Web-Based Per-
sonal Collaborative Learning System (WBPCLS) for Computer Science
Courses, In Proceedings of the 7th international conference on Advances
in Web Based Learning (ICWL ’08), Springer-Verlag, Berlin, Heidelberg,
Pages 434-445. DOI: 10.1007/978-3-540-85033-5 43

95

http://wiki.java.net/bin/view/Javadesktop/ProjectWonderlandArtImport05
http://wiki.java.net/bin/view/Javadesktop/ProjectWonderlandArtImport05
http://wiki.java.net/bin/view/Javadesktop/ProjectWonderlandWorkingWithModules05
http://wiki.java.net/bin/view/Javadesktop/ProjectWonderlandWorkingWithModules05

	Introduction
	Frameworks
	Open Wonderland
	Software Architecture of Open Wonderland

	TealSim
	Software Design

	Implementation of the required Components
	Porting TealSim's 3D Output
	Preparing TealSim for JMonkeyEngine/MTGame
	Keeping Java3D Output
	Implementing JMonkeyEngine Primitives
	Colors and Materials
	Specifying Interface Data-Types
	3D Models
	The Viewer
	Threading Issues

	Preparing TealSim for Client-Server Architecture
	Synchronizing the 3D Objects
	Splitting the Simulation Engine
	Preparing TealSim for the Project Darkstar Server

	Wonderland Module
	Preparing the Module's Environment
	The Artwork
	Simulation Selection Functionality
	Creating a Simulation
	The Control Panel
	Starting the Simulation and synchronizing Engine States
	Synchronizing the Swing User Interface

	Implementation of a Multi-player Simulation

	Installation and Usage of the Module
	Conclusion and Outlook
	Future Work suggestions

