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The low temperature properties of the two-dimensional attractive Hubbard model are strongly
influenced by the fermion density. Away from half-filling, there is a finite temperature transition
to a phase with (s-wave) pairing order. However, T, is suppressed to zero at half-filling, where
long range charge density wave order also appears, degenerate with superconductivity. This paper
presents Determinant Quantum Monte Carlo simulations of the attractive Hubbard model in the
presence of a confining potential Virap which makes the density inhomogeneous across the lattice.
Pair correlations are shown to be large at low temperatures in regions of the trapped system with
incommensurate filling, and to exhibit a minimum as the local density p; passes through one fermion
per site. In this ring of p; = 1, charge order is enhanced. A comparison is made between treating
Virap within the local density approximation (LDA) and in an ab initio manner. It is argued that
certain sharp features of the LDA result at integer filling do not survive the proximity of doped
sites. The critical temperature of confined systems of fixed characteristic density is determined.

Introduction

Studies of the interplay of spatial inhomogeneity and superconductivity have a long history. A seminal early result
was Anderson’s realization! that although the breaking of translation invariance by disorder renders momentum no
longer a good quantum number, pairing still occurs between appropriately chosen (time reversed) states. Numerical
studies within the Bogliubov-de Gennes approximation,?® Quantum Monte Carlo (QMC)*®, and other approaches
have quantified the magnitude of disorder which superconductivity can withstand. In these studies, and the granular
superconducting materials they model® regions of pairing order coexist with normal, or insulating, phases. Super-
conductivity can be destroyed by various mechanisms, including phase fluctuations between the order parameter on
different islands where Cooper pairs of bosons exist,” or breaking of the Cooper pairs themselves.® Which mechanism
dominates determines the appropriate modeling, e.g. a description within the disordered boson® or fermion Hubbard
Hamiltonians, or ‘phase-only’ descriptions with the XY model and its variants.'°

Recently, experiments on ultra-cold atoms have provided a rather different realization of inhomogeneity in the form
of a smoothly varying confining potential which produces a system with maximal density at the trap center, falling
to zero at the periphery.!! Much attention has focussed on repulsively interacting bosons and fermions*4!. In this
case, a Mott insulator may coexist with superfluid or normal phases. For fermions, the Mott insulator also exhibits
antiferromagnetic correlations. At present, experimentally accessible temperatures for fermionic systems are such that
a degenerate Fermi gas has been observed'?, along with signatures of the Mott phase.'®!* The ultimate objective is
insight into the ground state physics of the repulsive Hubbard model, and, in particular, the fundamental issue of
d-wave superconducting order and its interplay with antiferromagnetism.>?

This goal for repulsive fermions awaits the attainment of lower experimental temperatures. In the interim, it
is useful to perform careful studies of attractive systems. As discussed above, this case is not only of interest its
own right, but also QMC simulations can often attain lower temperatures for attractive models, and thus can track
experiments closer, and perhaps even down to, transitions into ordered phases.

A central issue in studies of attractive fermions has been the question of superconductivity in systems where the
populations of the two species are unequal'®'® and the nature of the paired phase as originally discussed by Fulde
and Ferrell,!” Larkin and Ovchinnikov'® and Sarma.'® Theoretical?® 32 and numerical investigations®33® have looked
primarily at population imbalance, neglecting the effect of confinement.

The focus of the present paper is the description of the behavior of attractively interacting fermions in a two-
dimensional confining potential. Some of the issues are similar to the repulsive case, namely the coexistence of phases
as the density varies across the trap.3? However, the attractive case has several important distinctions, namely the
possibility of finite temperature phase transitions in two dimensions. In addition, in the repulsive case there is a broad
range of chemical potentials p which fall within the “Mott gap” and for which p = 1. That is, the compressibility
k=0p/Oun =0 at p=1. For the confined system, this implies an extended region of commensurate density, spatial
sites which have a value of the local confining potential which falls within the Mott gap. In the attractive case, the
compressibility is finite (k # 0) at commensurate density. As a consequence, the region of half-filling is much smaller
spatially, a truly one-dimensional ring as opposed to an annulus of finite thickness.



A key result of this work is that the unique features of charge density wave physics at the single value of chemical
potential which gives commensurate filling do not survive coupling to neighbors of incommensurate density. Thus the
correlations which appear in a homogeneous system with commensurate filling are never achieved in a trap, and the
LDA breaks down at that point.

This paper is organized as follows: In the next section we describe the specific Hamiltonian, the attractive Hubbard
model (AHM) and aspects of the computational methodology, determinant Quantum Monte Carlo (DQMC), which
will be used. Results are then presented for the physics within the Local Density Approximation (LDA), in which
the local behavior within a confining potential is assumed to be that of a homogeneous system with global density
matching the local filling. Direct simulations of a confined systems are next reported, and compared to those expected
from the LDA. A concluding section summarizes the results and indicates some remaining open questions.

Studies of the AHM with inhomogeneity have been performed with Variational Monte Carlo,** Bogliubov de-
Gennes,**and Gutzwiller approaches.*647 Of particular relevance here is work within dynamical mean field theory
(DMFT) and a two-site impurity solver?3, which suggested that this degeneracy is stabilized by a confining potential,
and that an extended supersolid phase of commensurate density, with simultaneous non-zero CDW and pairing order
parameters, exists in a trap.

Models and Computational Approach

The attractive Hubbard Hamiltonian, in the presence of a confining potential, is,
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Here cga(cia) are creation(destruction) operators at spatial site i for two different species of fermions o. We choose

the center of the trap to be at a plaquette center, so that i,,1%, take half integer values. In the condensed matter
context, o = :l:% is the electron spin. For cold atoms o labels two hyperfine states. We will consider the case of
square lattices of linear size L. The hopping parameter ¢ can be tuned by changing the optical lattice depth, or, in
solids, through the application of pressure. (ij) is a sum over near neighbor pairs of sites. Here ¢t = 1 is chosen to set
the scale of energy. |U| is the on-site attraction, and can be tuned through the application of a magnetic field via a
Feshbach resonance. In Eq. 1, Viap and p are the trap curvature and chemical potential respectively. The latter can
be used to get a desired particle number Niermion- A

In DQMC*84 the partition function Z = Tre #H is written as a path integral by discretizing the inverse tem-

perature § into L, intervals of size A7 = 8/L,. The Trotter approximation e 27 ~ e=A7Ke¢=ATV jsolates the
quartic terms (involving the interaction U) in H, and a discrete Hubbard-Stratonovich field®® decouples e=27V so
that only quadratic terms in the fermion operators appear. When the trace over fermion operators is done, Z is
expressed as a sum over the different field configurations with a weight which is the product of two determinants (one
for each value of o) of matrices of dimension the number of lattice sites, L. Because the two species couple to the
Hubbard-Stratonovich field with the same sign in the case of attractive U, the two determinants are identical and
there is no sign problem.This allows us to study confined systems down to arbitrarily low temperatures, unlike the
repulsive model where the largest /3 accessible is S~ 3 — 4 for t = 1 and U = 4 — 8 for confined systems.?’
The observables which will be the focus of this paper are the s-wave pairing and charge correlation functions,
Cpair(iaj) = <A1+JA:f> AT = CITCL (2)
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Notice that these depend on i and not just on the separation j. We also define the associated (‘local’) structure
factors,

F(i) = Zcpair(j)
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It is useful to review the properties of the translationally invariant case, Virap = 0. In two dimensions, it is known
that the half-filled attractive Hubbard Hamiltonian has long range CDW and s-wave pairing order in its ground



state T = 0.When doped, the symmetry between charge and pairing is broken, and a finite temperature (Kosterlitz-

Thouless) transition occurs to a superconducting phase. Numerical and analytic studies show that T rises rapidly as

1 is made non-zero and reaches a maximum value of T, ~ /10 for a wide range of fillings 0.5 < p < 0.9.
Consideration of a particle-hole (PH) transformation helps clarify these assertions. When the down spin operations

in the AHM, Eq. 1 are mapped with ¢; < (—1)%;, the kinetic energy is unchanged, as long as the lattice is bipartite.
The phase factor (—1)! is understood to take the values +1(—1) on the A(B) sublattices. The interaction term changes
sign, so that the AHM maps onto the RHM. This PH symmetry provides a simple argument that the half-filled AHM
can have long range order (LRO) only at T'= 0 in two dimensions, like the RHM.

QMC simulations have shown that the ground state of the half-filled, two-dimensional uniform RHM is ordered.?®
PH symmetry then implies that CDW and pair order occur simultaneously in the 7' = 0 half-filled AHM. To see this,
note that the z component of spin nj —n4; in the RHM maps onto the charge ni +n4; in the AHM, so that magnetic
LRO in the z direction of the RHM corresponds to CDW order of the AHM. Similarly, magnetic order in the zy plane
maps onto s-wave pairing order. The degeneracy of the z and xy magnetic order in the repulsive model implies that
CDW and pair order occur simultaneously in the half-filled attractive case.

A final consequence of PH transformation is the explanation of the occurrence of pairing order (and the absence of
CDW order) at finite 7" in the doped AHM. When doped, u is non-zero. Under the PH transformation, the chemical
potential term g (nir +nyy) in the AHM becomes a Zeeman field p(ni+ —nyy) in the RHM. Because the magnetic order
in the RHM is antiferromagnetic, a uniform field in the z direction makes it energetically favorable for spins to lie
in the zy plane, since then they can tilt out of the plane and pick up field energy without costing as much exchange
energy. This lowering of symmetry from three to two components makes possible a finite temperature Kosterlitz-
Thouless transition in two dimensions. The xy magnetic order which exists in the RHM then means s-wave pair order
occurs in the AHM.

Correlations in Confined Fermi Systems and the Local Density Approximation

The following text will be modified as we decide which way best to present the figures.

We begin by showing the density profile in Fig. 1. Results are given both in the LDA and in a trapped 30 x 30
system with g = 0.8 and Vipap = 0.0097. These two approaches yield results in very good agreement for p;. An
important point is the absence of a density plateau at p = 1. This is in accordance with results in the LDA, and
also with a particle-hole symmetry argument which identifies the compressibility k = dp/du of the AHM with the
uniform magnetic susceptibility x = dM/dB of the RHM, which is known to be nonzero. Fig. 1 shows the density as
a function of chemical potential for homogeneous systems.

As noted above, the AHM has finite compressibility at integer filling. There is no Mott plateau at half-filling.
This true one-dimensionality of the p = 1 ring makes the formation of long-range CDW order in the AHM much less
robust than the antiferromagnetic order which can occur on the quasi-2d integer filling Mott annulus that occurs in
the RHM. On the other hand, that the CDW region occupies such a limited spatial region makes the possibility of
observing a finite-temperature transition to a superconducting phase in confined systems much more likely. Indeed,
Fig. 2 illustrates the suppression of pairing which according to the LDA (solid line). Near-neighbor ceharge (i, (1,0) ) and
next-near neighbor cp,ir (i, (1,1)) dip at r/d = 1, where the local density p; = 1, as do the farthest neighbor correlators
and the local structure factor Ps(i). Fig. 3 shows the density correlators ccharge(i, (1,0)) and ceharge(i, (1,1)) which
peak as the system crosses through commensurate filling.

In Figs. 2 and 3, we also show the values for the s-wave pair and CDW correlation functions in the presence of a real
trap, ie. not within the LDA, for a 30 x 30 system with p = 0.8 and V;yap = 0.0097. While they are rather similar to the
LDA results (solid lines), the dip in the s-wave pairing when the p; = 1 ring is crossed is conspicuously absent. This
is one of the key results of this paper, and may be understood as follows: In the RHM, the physics of commensurate
filling p = 1 can be inferred correctly, for the most part, from the LDA because of the presence of an annulus of
finite thickness which “protects” the Mott region. In the AHM, in contrast, there is no such protection. The ring of
commensurate filling is truly one-dimensional, and therefore irrevocably coupled to doped regions. Apparently, the
dips in the pairing which are so evident in the LDA treatment simply cannot survive this linkage.

System-Size Dependence of Correlations and Quasi-Long-Range Order

In a translationally invariant system, lattices of different linear size L are compared at fixed density p = Ntormion/ L2,
In the presence of a trap, systems with different particle number can be compared if the “characteristic density”
Pe = Ntermion/L? is kept constant.Here L, = v/ Virap/t is the natural length scale in the problem, formed by combining
the kinetic energy t and the trap curvature Viy,p. For the comparison of different system sizes described below, we
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FIG. 1: Fermion density versus radius in a trapped 30 X 30 system with Virap = 0.0097 at |[U| = 6, 8 = 9. The solid line is the
LDA result.
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FIG. 2: S-wave pair correlation function versus radius in a trapped 30 x 30 system with Virap = 0.0097 at |U| =6, 8 = 9. The
solid line is the LDA result.

have used systems of constant p.. Note that this can be achieved by keeping the chemical potential at the edge of the
system, g — Virap(L/2)?, constant.

We now turn to the interesting question of ordering at low temperatures in these confined gases. As noted before,
the homogeneous AHM undergoes a Kosterlitz-Thouless transition to a quasi-long-range-ordered phase at finite 7.
For a detailed finite size scaling of the homogeneous model is presented in [53]. In this approach, the pair structure
factor Ps of Eq. 3 is obtained for different lattice sizes and temperatures (at fixed p.). The scaled structure factor
L~7/*P, is then plotted as a function of the ratio of lattice size to correlation length, L/¢ = L exp(—A/(T — T.) with
the expected Kosterlitz-Thouless form for the temperature dependence of £, and also the fact that the structure factor
is expected to grow with lattice size as

Ps ~ L>7 "M f(L/¢) (4)

with a scaling function f and the critical exponent 7 varying between 7(0) = 0 at zero temperature and n(7.) = 1/4
at the transition temperature.
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FIG. 3: CDW correlation function versus radius in a trapped 30 X 30 system with Virap = 0.0097 at |U| = 6, 8 = 9. The solid
line is the LDA result.
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FIG. 4: Pair structure factor as a function of linear system size for 5 = 10, 11,...16 with fits of the form of the scaling relation

(4).

A complete finite-size scaling for the trapped AHM is beyond the scope of this paper. Because of the temperature
dependence of the critical exponent 7, it is unclear whether the scaling relation (4) holds in this case. In the framework
of the LDA, the spatial variation of the density and the dependence of T, on the density would lead to a variation of
71 along the radius in the trap. Only if an “effective n” exists, for which (4) holds, can the finite-size scaling be carried
out in close analogy to the homogeneous case. We show in Fig. 4 the structure factor as a function of linear system
size for various low temperatures. If the scaling relation holds, we expect straight lines on the double-logarithmic plot
for low temperatures. Fig. 4 indeed suggests that (4) holds with 1 &~ 0.05 £ 0.15.

Finally, Fig. 5 shows the structure factor for various system sizes as a function of inverse temperature. At low
temperatures, systems of all size behave similarly, suggesting only short-range order exists; at 8 2 10, Ps saturates
to values depending on the system size, suggesting a diverging correlation length ¢ and quasi-long-range order.
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FIG. 5: Pair structure factor as a function of inverse temperature for various system sizes.

Conclusions

We have shown that the Local Density Approximation for the trapped attractive Hubbard model fails in the case of
s-wave pairing and charge-density-wave correlation functions around half-filling. This failure is due to the degeneracy
of s-wave pairing and charge-density-wave ordering at half-filling, and the fact that the half-filled ring in this model
is truly one-dimensional.

By a comparison of trapped systems of different sizes (at constant characteristic density), we have argued that the
quasi-long-range-ordered phase of the homogeneous model is preserved in the trapped case.
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