
Quantum simulations of ultracold molecules

Brendan Abolins, b.abolins@berkeley.edu

August 31, 2010

Abstract

Ultracold molecules are at the forefront of efforts to explore novel many-body
phenomena, offering a great deal of control over the nature and strength of inter-
molecular interactions through the application of external electric and magnetic
fields. As the experimental techniques mature there becomes a need to develop
theoretical models to understand the phenomenon which are observed. One such
technique is path integral ground state Monte Carlo (PIGSMC) which is an exact
ground state method which is capable of calculating properties of interacting many-
body systems without employing uncontrolled approximations. The development of
a PIGSMC code capable of simulating a system composed fully of interacting rigid
dipoles, the first of its kind, is presented along with some preliminary results of its
application to toy systems is presented, showing excellent agreement between Monte
Carlo simulation and variational and perturbation theory results.
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1 Introduction

Ultracold molecules have a tremendous amount to offer to many fields of physics. Their
interactions, which are long ranged in nature, can be controlled through careful tuning of
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external electric and magnetic fields, making molecules at ultracold temperatures valuable
for studying novel many-body physics. This tunability can also be exploited to explore
chemical reactions at ultracold temperatures by controlling precisely the quantum state
of the reactants and products [6]. Ultracold molecules also have the potential applications
in quantum information processing, as the controllability makes it possible to manipulate
the internal state of the molecules relatively easily and the long-ranged interactions can
be exploited to entangle qubits [5]. For a review of applications of ultracold molecules see
[2].

Calculations to this point have largely been restricted to systems of dipoles in external,
aligning fields due to the difficulty of incorporating the internal (rotational) degrees of
freedom. This leaves open questions regarding the interplay of these internal degrees of
freedom and the external (translational) degrees of freedom which are coupled through the
anisotropic long-ranged dipole-dipole interaction in dipolar molecules. Answering these
questions requires a method which can treat the full many-body Hamiltonian for a system
of interacting molecules with rotational degrees of freedom; quantum Monte Carlo is such
a method.

1.1 Quantum Monte Carlo

In general, for an interacting many-body system, it is extremely difficult or even impossible
to formulate analytical solutions to the time-independent Schrödinger equation. Even if
it were possible to write down an analytical expression for the many-body wavefunction
for a system of N point particles the calculation of expectation values, 〈O〉, will involve
the evaluation of 3N dimensional integrals of the form

∫

dRΨ(R)∗O(R)Ψ(R) for some

operator Ô. This is itself incredibly challenging if Ψ(R) is not of a convenient, easy to
evaluate form.

Quantum Monte Carlo (QMC) methods aim to solve one or both of these challenges.
At their core most Monte Carlo methods simply use Monte Carlo integration to evaluate
the many dimensional integrals that arise in many-body physics. The simplest of these
QMC methods is variational Monte Carlo which is simply the variational method ap-
plied to the many-body problem where the expectation value of the energy is computed
using Monte Carlo integration. The many-body Hamiltonian for a generic system of N
interacting particles in an external potential is given by

Ĥ =
N
∑

i=1

λ∇2
i +

N
∑

i=1

Vext(r̂i) +
∑

i<j

Vint(r̂i, r̂j) (1)

where λ = −h̄2/2m and r̂i is the position operator for particle i. In variational Monte
Carlo (VMC) the goal is to minimize the expectation value of the energy given by

〈E〉 =
∫

dR |ΨT (R)|2EL(R)
∫

dR |ΨT (R)|2
(2)

EL(R) =
1

ΨT (R)
ĤΨT (R) (3)

given a trial wavefunction ΨT (R) which contains variational parameters, where R repre-
sents all 3N coordinates of the N -body system and EL(R) is known as the local energy
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of the system. Typically the trial wavefunction is of the form

ΨT (R) =
N
∏

i=1

φ(ri)
∏

i<j

f(ri, rj) (4)

which accounts for one- and two-body effects, though it is possible to add functions
involving three or more particles to capture the effects of more complicated correlations.
By minimizing the expectation value in equation (2) through the variation of parameters
in the one- and two- (or more) body functions one arrives at an upper bound to the
ground state energy.

The integral in equation (2) is evaluated by Monte Carlo integration (hence the Monte
Carlo) in which the integral is approximated by

〈E〉 = 1

M

M
∑

i=1

EL(Ri) (5)

where the M configurations Ri are chosen randomly from the distribution |ΨT (R)|2. To
do this the Metropolis algorithm described in ref. [7], a form of importance sampling, is
employed. With the Metropolis algorithm new configurations are generated from the old
through a Markov process. The probability of transitioning from a configuration Ri to a
new configuration Rj is given by

Mji = AjiTji (6)

where M is the transition matrix, A represents the probability of transitioning from
configuration Ri to configuration Rj and T is the transfer matrix which is the rule for
generating a new configuration from the old. The probability of a given state Pi is given
by

Pi =
∑

j

MijPj (7)

and that the sum
∑

j Mij = 1. If the condition of detailed balance is assumed, that is
AijTijPj = AjiTjiPi, then a common choice for the acceptance matrix connecting a state
Ri to a state Rj is given by

Aji = min

(

PjTij
PiTij

, 1

)

(8)

which is usually simplified by choosing the transfer matrix such that Tij = Tji. Then the
probability of accepting a move from one configuration to the next only depends on the
relative probabilities of each of the configurations.

Applying this algorithm to VMC is straightforward and proceeds as follows:

1. A particle i is chosen at random

2. Its position is updated as ~ri
′ = ~ri + σ~ξ where ~ξ is chosen for instance from a

symmetric distribution such as the uniform distribution over the interval −1 to 1,
U [−1, 1], or the standard normal distribution, N [0, 1].

3. the acceptance matrix element is calculated, A← min(|ΨT (R
′)|2 / |ΨT (R)|2 , 1)

4. a random number ξ is chosen from U [0, 1] and the new configuration R′ is accepted
if A > ξ and rejected otherwise.
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5. The average energy is updated and the process is repeated.

The quantities computed from VMC are, however, only approximations to true ground
state properties. In order to exactly calculate ground state properties it is necessary to
go beyond the variational method and in the present work this is done with path integral
ground state Monte Carlo. Path integral ground state Monte Carlo (PIGSMC, also known
as variational path integral Monte Carlo or VPIMC) is an exact ground state method in
which a guiding wavefunction, for instance, the optimized output from a VMC calculation,
is propagated in imaginary time. The quantum mechanical propagator for a given (time
independent) Hamiltonian Ĥ is

Ĝ(t) = e−iĤt/h̄ (9)

which describes the evolution of a quantum system from an initial time 0 to a final time
t. Imaginary time propagation is accomplished through the substitution t→ −iτ .

In general the guiding wavefunctions employed can be expressed, formally, as a linear
combination of the exact eigenstates of the Hamiltonian under investigation

|ΨT 〉 =
∑

i

ci|Φi〉 (10)

where the expansion coefficients are ci = 〈Φi|ΨT 〉. The propagator, either in real or imag-
inary time, can similarly be expanded in terms of the exact eigenstates of the Hamiltonian

Ĝ(β/2) =
∑

i

e−βEi/2h̄|Φi〉〈Φi| (11)

where Ei is the energy of state |Φi〉. When the imaginary time propagator is applied to
the guiding wavefunction

Ĝ(β/2)|ΨT 〉 =
∑

i

cie
−βEi/2h̄|Φi〉 (12)

the results is evolution of the guiding wavefunction toward the ground state of the Hamil-
tonian in the limit that β/2 → ∞ provided |ΨT 〉 has non-zero overlap with the ground
state (c0 6= 0). This can easily be seen as the contribution of state i to the guiding
wavefunction after a propagation period of ǫ in imaginary time is cie

−ǫEi/h̄, a decaying ex-
ponential with a mean lifetime of h̄/Ei which is longest for the ground state. The ground
state (aside from normalization) is thus given by

|Φ0〉 = Ĝ(β/2)|ΨT 〉 (13)

in the long imaginary time limit. Ground state expectation values can be expressed in a
similar manner. For a generic operator Ô the expectation value is given by

〈O〉 = 〈Φ0|Ô|Φ0〉
〈Φ0|Φ0〉

(14)

=
〈ΨT |Ĝ(β/2)ÔĜ(β/2)|ΨT 〉
〈ΨT |Ĝ(β/2)Ĝ(β/2)|ΨT 〉

(15)

for a sufficiently long propagation time.
However, in general the neither the expansion of the guiding state in terms of the

4



eigenstates of the Hamiltonian nor the expansion of the propagator in terms of the same
is known a priori. In order to get around this it is necessary to make some controlled
approximations. It is convenient to proceed in the coordinate representation where

G(R,R′, β/2) = 〈R|Ĝ(β/2)|R′〉 (16)

and
ΨT (R) = 〈R|ΨT 〉 (17)

are the expressions for the propagator and guiding wavefunction (and an expression for
any other wavefunction can be formulated analogously). Evaluating the exact propagator
in the coordinate representation is non-trivial and is tantamount to solving exactly the
many-body problem. It is possible, however, to write down expressions for the kinetic
energy and potential energy portions of the propagator, e−τT̂ /h̄ and e−τV̂ /h̄ respectively,
separately since the former is diagonal in k-space and the latter is diagonal in real space.
Through Taylor expansion of the propagator about the point τ = 0 one can show for
sufficiently small τ that

e−τ(T̂+V̂ )/h̄ = e−τT̂ /h̄e−τV̂ /h̄ +O(τ 2) (18)

or that
e−τ(T̂+V̂ )/h̄ = e−τV̂ /2h̄e−τT̂ /h̄e−τV̂ /2h̄ +O(τ 3) = Ĝ2(τ) (19)

which is known as the primitive approximation to the propagator. By themselves nei-
ther of these approximations is particularly useful since equation (13) is only exact for a
good approximation in the long imaginary time limit where these short imaginary time
approximations are not valid but it is exactly true that

e−βĤ/2h̄ =
(

e−τĤ/h̄
)M

(20)

where τM = β/2. In this way a long path of length β/2 can be decomposed into a
sequence of short path segments of length τ where τ is short enough for equation (19) to
hold.

The expression for the expectation value of an operator is then

〈O〉 = 〈ΨT |(Ĝ2(τ))
M Ô(Ĝ2(τ))

M |ΨT 〉
〈ΨT |(Ĝ2(τ))2M |ΨT 〉

+O(τ 2) (21)

where the error is one order less since M is on the order of 1/τ . The expression used in
PIGSMC is arrived at by inserting the identity in between each short time propagator,
breaking the path into a series of discrete time slices which are composed of beads, where
a bead is the position of a particle at a given time slice. This is given (ignoring the
normalization which is inconsequential in Monte Carlo methods) by

〈O〉 =
∫

dR0 . . . dR2MΨT (R0)G2(R0,R1, τ) . . . G2(RM−1,RM , τ)O(RM)

×G2(RM ,RM+1, τ) . . . G2(R2M−1,R2M , τ)ΨT (R2M) (22)

which can be evaluated by Monte Carlo integration in a fashion analogous to VMC. In
PIGSMC, however, instead of the probability of a configuration being given by |ΨT (R)|2,
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the probability of a path is given by

P (R0, . . . ,R2M) = ΨT (R0)G2(R0,R1, τ) . . . G2(R2M−1,R2M , τ)ΨT (R2M) (23)

and sums like the one in equation (5) are then over randomly selected paths. For most
quantities the expectation value is calculated using the configurations at the center time
slice, which, provided β/2 is long enough, are distributed according to the ground state
wavefunction. The exception to this is the energy (or any other operator which commutes
with the Hamiltonian) which is evaluated at the ends of the paths. For example, in
PIGSMC the energy expectation is still calculated through the local energy at either end
of the path.

This outlines the PIGSMC method for a system of interacting point particles. The next
step is to extend this to method to handle particles with rotational degrees of freedom.

2 PIGSMC for point dipoles

In order to study systems with rotational degrees of freedom using PIGSMC, a short
time propagator for the rotational degrees of freedom must be developed. In addition,
single- and multibead trial moves of the rotational degrees of freedom must be developed
in analogy to the methods used for translational degrees of freedom.

2.1 Sixth order short time propagator

In order to study the many-body physics of systems of molecules using the path integral
ground state Monte Carlo method a code which incorporates rotations must be developed.
The Hamiltonian describing a system of N dipoles with rotational degrees of freedom in
addition to the usual translational degrees if freedom is

Ĥ =

N
∑

i=1

(

λ∇2
i +BL̂2

i

)

+

N
∑

i=1

Vext(r̂i) +
∑

i<j

Vint(r̂i, r̂j) (24)

where B = h̄2/2I, and the r̂i’s are now the operators corresponding to all of the coordi-
nates, describing both position and orientation, of molecule i. The potential energy terms
have the effect of coupling the translational and rotational motions of the molecules in
non-trivial ways.

As described previously, an approximation to the short time propagator in imaginary
time must be formulated. Fortunately the rotational and translational kinetic energy
operators commute and so the exact imaginary time propagator for the rigid rotor free
particle is

Ĝfree = e−τ(λ∇2+BL̂2)/h̄ = e−τλ∇2/h̄e−τBL̂2/h̄ = ρ̂transρ̂rot (25)

which clearly shows that in the absence of a potential term the rotations and translations
of the molecules in the system are independent. This property makes it obvious that
the extension of the primitive approximation to the short time propagator which includes
rotational degrees of freedom is simply

Ĝ = Ĝ2 +O(τ 3) = e−τV̂ /2ρ̂transρ̂rote
−τV̂ /2 +O(τ 3) (26)
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where V̂ is the quantum mechanical total potential energy operator and h̄ = 1. This
expression will be the basis for all further approximations to the short time propagator.

In order to explore longer imaginary propagation times, β in a reasonable amount of
computer time it is beneficial to implement higher order approximations to the short time
propagator. In the present work a sixth order approximation to the short time propagator
was implemented through a multi-product expansion of the short time propagator [4].
Given a set of n whole numbers ki, the propagator of order 2n can be expressed as

Ĝ = Ĝ2n(τ) +O(τ 2n+1) =

n
∑

i=1

ci(Ĝ2(τ/ki))
ki +O(τ 2n+1) (27)

ci =
∏

j 6=i

k2i
k2i − k2j

(28)

where Ĝ2(ǫ) is the second order propagator, equation (26), with small time step ǫ. As per
the suggestion in ref. [10] the set {ki} = {1, 2, 4} was used for the implementation of the
sixth order propagator. This gives for the sixth order propagator

Ĝ6(4τ) =
1

45
Ĝ2(4τ)−

4

9
(Ĝ2(2τ))

2 +
64

45
(Ĝ2(τ))

4 (29)

=
1

45
e−2τV̂ ρ̂(4τ)e−2τV̂ − 4

9
e−τV̂ ρ̂(2τ)e−2τV̂ ρ̂(2τ)e−τV̂

+
64

45
e−τV̂ /2ρ̂(τ)e−τV̂ ρ̂(τ)e−τV̂ ρ̂(τ)e−τV̂ ρ̂(τ)e−τV̂ /2 (30)

where ρ̂ = ρ̂transρ̂rot are the free particle propagators for particles with rotational degrees
of freedom. This can be further simplified by recognizing that ρ̂(4τ) = (ρ̂(τ))4 and
inserting the resolution of the identity. In the coordinate representation this is then

〈R1|Ĝ6(4τ)|R5〉 =
∫

dR2

∫

dR3

∫

dR4 〈R1|ρ̂(τ)|R2〉〈R2|ρ̂(τ)|R3〉

× 〈R3|ρ̂(τ)|R4〉〈R4|ρ̂(τ)|R5〉F (R1,R2,R3,R4,R5, τ) (31)

F (R1,R2,R3,R4,R5, τ) =
1

45
e−2τ(V (R1)+V (R5)) − 4

9
e−τ(V (R1)+2V (R3)+V (R5))

+
64

45
e−τ(V (R1)+2V (R2)+2V (R3)+2V (R4)+V (R5))/2 (32)

with Ri representing all of the coordinates (both translational and rotational) of the
many-body system at time slice i. In this form the propagator is ready for use in a
PIGSMC code. It should be noted, however, that each time slice in imaginary time is
now made up of four time slices which are one fourth as long. When one of the “sub”
time slices is updated an evaluation of the potential on each of the other 4 time slices is
required in order to evaluate the propagator. At first this seems incredibly inefficient but
this can largely be remedied by storing the potential energy at each time slice in an array
and simply recalling these values as necessary, and only recalculating the potential energy
for slices which are actually updated. This, too, can be made less computationally costly
by only calculating interactions which have changed. If only single particles are updated
at a time this is simply an O(N) operation instead of the O(N2) operation required to
calculate the entire potential again.

Now all that remains is to calculate each of the terms in the expression above. F is
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the simplest to calculate since the potential energy, as well as it’s exponential, is diag-
onal in the coordinate representation. With ρ̂ it is easiest to consider the translational
and rotational parts separately. The translational portion, ρ̂trans, is not diagonal in the
coordinate representation, but it is diagonal in the momentum representation. Through
insertion of a complete set of states in momentum space it is possible to arrive at the
exact form of the free particle propagator

〈R1|ρ̂trans(τ)|R2〉 = (4πλτ)−3N/2e−(R2−R1)2/4λτ (33)

but it should be noted that in this expression Ri is now only the translational coordinates
of the N particle system. This just leaves the propagator for the free rotor. This propa-
gator, again, is not diagonal in the coordinate representation but is in fact diagonal in the
angular momentum representation. Derivation of a coordinate representation expression
for the free rotor propagator proceeds in the same way as for the free particle propagator,
through an insertion of a complete set of angular momentum states. This results in

〈Ω1|ρ̂rot(τ)|Ω2〉 =
N
∏

i=1

∞
∑

l=0

2l + 1

4π
Pl(ω

i
1 · ωi

2)e
−τBl(l+1) (34)

with Ωi representing the orientations of all of the N particles at time slice i and ωj
i

representing the orientation of particle j at time slice i. This expression can not be
simplified any further but since the sum converges it can be calculated to any desired
accuracy by truncating the sum at a sufficiently high l as suggested in ref. [8]. This is
then calculated once on a discrete grid in the angle between two orientations from 0 to π
at the beginning of the simulation and then values are looked up when needed.

And those are all of the elements needed to implement a higher order approximation
to the short time propagator. In the current work a sixth order propagator was imple-
mented for rotations but it doesn’t need to stop there. In principle an approximation
to any order can be formulated using these elements. for instance if one instead chooses
{ki} = {1, 2, 3, 6} then one arrives at an eighth order propagator. This could be done to
any desired accuracy; for a more complete discussion of these multi-product expansion
propagators see ref. [10].

2.2 Single bead and multibead trial moves

In order to calculate estimates of various properties of a system as well as estimates of the
error in those estimates it is necessary to generate a great many independent paths of the
system under investigation through imaginary time. This means having an efficient way
of generating new configurations which vary significantly from the old configurations.

A simple, albeit inefficient, method for generating new configurations is the single
bead move where the coordinates of a single particle at a single time slice are perturbed
randomly to generate a new configuration. Since each new path only differs from the
previous by a single coordinate many paths must be generated before memory of a previous
path has significantly decayed. It is, however, relatively easy to implement and a good
starting point as well as fallback move for more complicated move types. It was for this
reason that it was the first type of move implemented for rotations of particles in the
present work.

The heart of the single bead move algorithm is the generation of the trial move. In
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principle one can choose any type of trial move desired. For translations commonly a
random displacement is chosen from the uniform distribution centered around the current
configuration, or from a Gaussian centered around the current configuration. The choice
of distribution from which to draw random displacements affects the acceptance ratio and
as such can affect the efficiency of the sampling algorithm. If the acceptance ratio is too
high then the sampled points likely don’t vary from one another enough and configurations
are likely to be highly correlated. If the acceptance ratio is too low then the configurations
do not change very often and again they tend to be highly correlated. A good rule of
thumb is to aim for an acceptance ratio between 30% and 70% by, for example, tuning
the width of the Gaussian or uniform distribution.

Generating new translational configuration is relatively straightforward. For example,
new configurations could be generated simply by adding a random vector whose elements
are distributed according to a desired distribution. This is not the case with sampling
orientations, the key difference being that orientations of linear molecular rotors neces-
sarily reside on the surface of a sphere. It is then necessary to generate not random
displacements, but random rotations of the orientations, for example, through the use
of randomly generated rotation matrices. These rotation matrices, however, are hard to
visualize and implement and so in the current work a different method for generating
random rotations was sought.

Ultimately, random unit quaternions were the representation of choice for random
rotations. A unit quaternion which represents a rotation has the structure

q = cos(α/2) + sin(α/2)~v (35)

where ~v is a unit vector and is the axis about which the rotation is performed and α is the
angle of the rotation. For point dipoles where the orientation is completely determined
by two coordinates, θ and φ, the angle α is the angle of the rotation only when ~v is
perpendicular to the orientation of the point dipole. This is because rotation about the
axis collinear with the dipole orientation doesn’t change the orientation of the dipole. As
such, for the current work, the vector ~v is restricted to the plane perpendicular to the
dipole orientation when formulating trial moves.

The generation of a random number rotation by the generation of a random unit
quaternion requires four random numbers. These numbers are chosen from from a normal
distribution with zero mean and unit variance. This ensures that the rotational axes are
uniformly distributed on the unit sphere and provides an acceptable acceptance ratio when
the Gaussian from which the rotation angle, α, is drawn is scaled to have variance 2Bτ and
restricted to the interval 0 ≤ α ≤ π; it should be noted that because of the differential
area element on a sphere this means that the probability P (α) ∝ e−α2/4Bτ/ sin(α) for
0 ≤ α ≤ π and 0 otherwise. To ensure that the rotation axis is always perpendicular
to the dipole orientation, the orthogonal projection of the rotation axis on the dipole
orientation is subtracted from the rotation axis vector before normalization.

Once the random unit quaternion is constructed it is necessary to convert the quater-
nion into a rotation matrix. The relationship between unit quaternions and orthogonal
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matrices which represent rotations is

q = a + b ı̂+ c ̂+ d k̂ (36)

R =





a2 + b2 − c2 − d2 2bc− 2ad 2bd+ 2ac
2bc + 2ad a2 − b2 + c2 − d2 2cd− 2ab
2bd− 2ac 2cd+ 2ab a2 − b2 − c2 + d2



 (37)

which can then be multiplied with the unit vector which represents the dipole orientation
to effect a rotation of that dipole orientation.

The single bead move for rotations then proceeds as follows:

1. Pick a bead, ωj
i , at random.

2. Generate random unit quaternion, q and convert it into a rotation matrix R.

3. Generate a new orientation according to ~ω′j
i ← R · ~ωj

i .

4. Calculate the acceptance probability as A← min(1, π′/π).

5. Accept or reject the new orientation with probability A.

These single bead moves serve as an illustrative introduction to the sampling of orien-
tations but the algorithm samples paths very slowly. Moves which update multiple beads
at once are desirable as they not only result in paths which are more different from one
iteration to the next, but they also allow for larger amplitude trial displacements which
again increases the rate of diffusion through the space of possible paths. A good discus-
sion of the reasons for this as well as a description of the multilevel bisection algorithm
implemented in the current work can be found in ref. [3].

The key advantages of the multilevel bisection algorithm over other multibead type
moves is the possibility of early rejection. With this, large amplitude moves which re-
sult in unfavorable configurations are recognized and rejected early. This prevents full
calculations of the propagator for paths which are likely to be rejected anyway, saving
computational time and enabling a quicker sampling of the most important paths.

The multilevel bisection algorithm proceeds as follows. First a particle and section of
path are chose. This section of path should contain a number of intervals which is a power
of two; for the sake of further discussion this will be taken to be 8 time intervals long but
could, in general, be any length. From the beads, labeled 1 through 9, first we propose a
large trial move of the midpoint, bead 5. We calculate the acceptance probability as we
would for a single bead move but use a propagator for an interval that has a length of 4τ .
If this move is accepted we then propose moves in a similar fashion for the two midpoints
of the two sub intervals on either side of bead 5, beads 3 and 7. We proceed until we’ve
moved all of the beads 2 through 8 when we calculate a final acceptance ratio and either
accept or reject the entire trial move. If we reject at one of the earlier stages then we
start the process all over again.

Just like in the single bead case there are a variety of different types of trial moves
for the individual beads and the objective is to attain a reasonable acceptance rate for
each level of the algorithm. For translational moves it is customary to use a Gaussian
distributed where the mean coincides between the midpoint of the two ends of the sub
path R̄n = (Rn−2lmax−l +Rn+2lmax−l)/2 and a variance of 2lmax−l+1λτ where l is the “level”
of the move and lmax is the maximum level (e.g. l is 1 and lmax is 3 for the trial move of
bead 5 in the example above). It can be seen, then, that the moves proposed at the center
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of the sub path are potentially much larger than the moves proposed in the single bead
case resulting in a quicker sampling of the possible paths. In order to fulfill the condition
of detailed balance one must take care in calculating the acceptance probability. The
acceptance probability, for example, at level 2 for the move {R̄′

3, R̄
′
7} → {R′′

3,R
′′
7} is

A = min

(

1,
∆2

∆1

∏

i=3,7

T (R̄i → Ri)

T (R̄′
i → R′′

i )

)

(38)

∆1 =
G(R1,R

′
5, 4τ)G(R1,R

′
5, 4τ)

G(R1,R5, 4τ)G(R5,R9, 4τ)
(39)

∆2 =
G(R1,R

′′
3, 2τ)G(R

′′
3,R

′
5, 2τ)G(R

′
5,R

′′
7, 2τ)G(R

′′
7,R9, 2τ)

G(R1,R3, 2τ)G(R3,R5, 2τ)G(R5,R7, 2τ)G(R7,R9, 2τ)
(40)

assuming, of course, that neither slice 1 nor slice 9 are at the ends of the path in which case
∆l must be modified by multiplying by the appropriate factors of ΨT ; ∆0 is taken to be
1. In this case T is the process which generates the new configuration from the old which
is the Gaussian with mean R̄ and variance 2lmax−l+1λτ in this case, and G(R,R′, τ) =
〈R|Ĝ(τ)|R′〉 is the appropriate short time propagator. Also, to save computational time,
a lower order, and less complicated, approximation to the short time propagator (e.g.
using Ĝ2 instead of Ĝ6) can be used for all levels aside from lmax.

Just as with the single bead move this algorithm can be implemented for rotations
simply by taking the translational algorithm and making a couple of minor modifica-
tions. The new orientations are constructed through the use of random unit quaternions.
However, with rotations the concept of a configuration which is the midpoint of the two
endpoints must be considered more carefully. Since all of the orientations lie on the sur-
face of a unit sphere the midpoint is now the the midpoint of the circular arc connecting
the endpoints ωj

a and ωj
c . If these orientations are not anti-parallel to one another then

this midpoint is well defined and is ω̄j
b = (~ωj

a + ~ωj
c)/‖~ωj

a + ~ωj
c‖. If the angle between

endpoint orientations is π then this midpoint is not unique and it is possible to choose
any vector perpendicular to the two endpoint orientations as the midpoint. The width of
the distribution from which the rotational angle is drawn is varied in a way analogous to
the width of the Gaussian distribution in the case of translational moves but it should be
stressed that, as stated before, T is not a Gaussian but is ∝ e−α2/2lmax−l+1Bτ/ sin(α) for
0 ≤ α ≤ π and 0 otherwise, where α = arccos(ω̄j

b · ~ω
j
b).

The multilevel bisection algorithm for rotations is then:

1. Pick a particle label j and range of beads of length 2lmax+1 at random.

2. Begin at level 1. For each sub interval

(a) Calculate the midpoint ω̄j
b .

(b) Generate a random unit quaternion q and convert it to the equivalent rotation
matrix R.

(c) Generate the new orientation according to ~ω′j
b ← R · ω̄j

b .

3. Calculate the acceptance probability at the current level, A, in the appropriate
manner.

4. Accept or reject the new path with probability A.
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5. If the move is accepted and the current level is not lmax then return to step 2 for
the next level.

Additional move types may be desirable, such as a move in which all beads with a
given particle label are rigidly displaced (or rotated) in some uniform fashion but this is
essentially a special case of the single bead move and is just as easy to formulate.

With these elements, a short time propagator with rotational and translational con-
tributions and a variety of trial bead moves, systems of particles which interact through
some orientation dependent potential energy are accessible to study.

3 Results

In the long run the code developed in the current work will be applied to problems in
which rotational and translational degrees of freedom are coupled together. As a step in
that direction the code will initially be applied to systems which have rotational degrees
of freedom but are strongly polarized in one direction. For instance there has been some
theoretical investigation of systems of oriented dipoles in 3 dimensions in which the 1/r3

nature of the dipole-dipole interaction is truly long-ranged. Such systems exhibit novel
structure [9] but systems in which the assumption of perfect alignment is relaxed may
also exhibit interesting behavior. The PIGSMC code developed over the course of this
work will be able to do realistic calculations of such systems where the orientation is not
frozen. However, as a test of the code, systems of interest in which only rotations played
a role were sought.

3.1 Single dipole in a constant electric field

With any newly developed code it is a good idea to test it out on a problem for which it is
possible to compute an exact answer. In the current case the obvious choice, a single rigid
rotor, fixed in space, was considered too trivial. The most naïve guiding wavefunction, a
constant wavefunction ψT = const. is, in fact, the exact ground state wavefunction of the
rigid rotor, whose states are the spherical harmonics Y m

l (θ, φ). The problem which was
finally settled upon as a first test of the system was then the case of a single rigid rotor,
fixed in space, with a dipole moment under the influence of a constant electric field.

The Hamiltonian which describes this system when the direction of the electric field
is along the positive z-axis (for convenience) is

Ĥ = BL̂2 − ~E · d Ω̂ (41)

= BL̂2 − d ‖E‖ cos(θ) (42)

where B is the rotational constant of the rotor, ‖E‖ is the magnitude of the electric field,
d is the dipole moment of the rotor, and θ is the angle between the dipole orientation
and the direction of the electric field. This system has a single parameter, the ratio
of the rotational constant, B, and the interaction strength, d ‖E‖. This highlights the
competition of the kinetic energy which, through the uncertainty principle, has the effect
of delocalizing the orientation, and the potential energy which has the opposite effect.
Clearly in the limit when B/d ‖E‖ → ∞ the kinetic energy wins and we recover the free
rigid rotor again. The opposite limit, when B/d ‖E‖ → 0 corresponds to the classical
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limit in which the dipole tends to be perfectly aligned along the electric field. Non-trivial
behavior occurs in between these two extremes.

In 3 dimensions analytical solutions to the time independent Schrödinger equation
Ĥ|ψ〉 = E|ψ〉 are not forthcoming. In principle, however, this is not a problem as in this
space the rigid rotor states form a convenient basis for expanding the exact state in. The
exact state |ψ〉 in terms of the rigid rotor states is

|ψ〉 =
∞
∑

l=0

l
∑

m=−l

cl,m|l, m〉 (43)

cl,m = 〈l, m|ψ〉 (44)

Y m
l (θ, φ) = 〈Ω|l, m〉 (45)

which offers some insight into how to approach the problem. Keeping in mind that the
potential energy term tends to align the rotor with the field and the kinetic energy term
fights against this it is clear that as the potential term gets stronger the influence of states
|l, m〉 with higher kinetic energy (in other words higher l) become more important. In
other words, so long as the potential energy is low compared to B then only the first few
cl,m’s should differ significantly from 0. This means it’s reasonable to truncate the basis
of states |l, m〉 at some lmax.

The problem then becomes finding the eigenvalues and eigenvectors of the matrix H

whose elements are

〈l′, m′|Ĥ|l, m〉 =
∫ π

0

∫ 2π

0

dθ dφ Y m′

l′ (θ, φ)∗(BL̂2 + d ‖E‖ cos(θ))Y m
l (θ, φ) sin(θ) (46)

= Bl(l + 1)δl′,lδm′,m + d ‖E‖
√

(2l′ + 1)(2l + 1)(−1)m′

(

l′ 1 l
0 0 0

)(

l′ 1 l
−m′ 0 m

)

(47)

where the two by by three arrays are the Wigner 3j symbols. It can be seen that the
potential term only mixes states which differ in l but is diagonal inm because the potential
energy is independent of the angle φ. This means that in order to calculate the energy it
is only necessary to diagonalize the Hamilton in the basis |l, 0〉 which simplifies equation
(47) to

〈l′|Ĥ|l〉 = Bl(l + 1)δl′,l + d ‖E‖
√

(2l′ + 1)(2l + 1)

(

l′ 1 l
0 0 0

)2

(48)

yielding a tridiagonal matrix H.
This result primarily served as a basis for comparison. The first step in any simulation

is finding values of β and τ which are sufficiently large and small, respectively, such that
properties are sampled from a state which is “close enough” to the true ground state.
This entails running simulations at various values of β and τ and finding a region where
the calculated ground state energy is close to the extrapolated ground state energy at
β → ∞ and τ → 0. In this case it is possible to guess what the value of β should
be. Recalling that the propagation of the guiding wavefunction in imaginary time has
the effect of causing the expansion coefficients of excited state contributions to decay as
e−β(Eexcited−Eground) (where Eground is taken as the zero of energy) then it’s clear that β
should be related to the energy gap between the ground and first excited states if the
guiding wavefunction has significant excited state character. Specifically, all things being
equal, a smaller energy gap would require a longer β. In this case, finding the eigenvalues
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of H yields not only the ground state energy but the complete spectrum of the lmax + 1
lowest energy states within the truncated basis, and this first excited state energy can be
used to guide an estimate for an initial value of β.
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Figure 1: A plot of the ground state energy as a function of the small time step τ for
a single stationary dipole in a constant electric field, with V = d ‖E‖ = 10.0 Eh and a
propagation time of β = 5.0 E−1

h
. The line is fit to a function of the form E0 = a + bτ 6

meant to highlight the convergence behavior. The inset shows the convergence of the
energy with respect to the propagation time β at a time step τ = 5/56 E−1

h
where the

dashed line shows the exact result.

Finding the proper values of β and τ entails finding a balance between accuracy and
precision. Calculations can always be made more accurate by making β longer and τ
shorter but this increases the number of time slices. This increases the number of beads
that must be moved between one independent path and another, something that can be
somewhat mitigated through the use of multibead moves. Since the error bars for a given
simulation scale as 1/

√
N where N is the number of independent paths sampled, it’s clear

that there’s a trade off between a desired accuracy, or how close to the true ground state
of the system it is possible to probe, and a desired precision, the size of the error bars,
given finite computer resources. Figure 1 shows the convergence behavior of the system
with β and τ . For the current system, with B/V = 0.10, the value τ = 5/56 E−1

h
was

found to be acceptable and the value β = 2.5 E−1
h

was deemed suitably long for the given
guiding wavefunction, ψT = const.

Once a sufficiently long β and sufficiently short τ are found then various properties
and distribution functions of the ground state can be sampled. It was already shown in
Figure 1 that the agreement in the energy calculation between PIGSMC and the basis
set expansion calculation is excellent. Figure 2 shows the probability of finding the single
dipole making an angle θ with respect to the positive z-axis. In this case the probability
is

P (θ) =

∫ 2π

0

dφ |ψ0(θ, φ)|2 (49)
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Figure 2: The probability, P (θ), of finding the single stationary rotor oriented with angle
θ with respect to the electric field direction, along the positive z-axis. The dashed line is
the exact result from the basis set expansion.

where ψ0(θ, φ) is the ground state wavefunction. This can be calculated exactly from the
basis set expansion. If ν0 is the normalized eigenvector which corresponds to the smallest
eigenvalue of H then the probability is

P (θ) =

∣

∣

∣

∣

∣

lmax
∑

l=0

ν0,l

√

2l + 1

4π
Pl(cos(θ))

∣

∣

∣

∣

∣

2

(50)

where Pl(cos(θ)) are the Legendre polynomials. This function with lmax = 128 is plotted
in Figure 2 as a dashed line, showing very good agreement with the PIGSMC result.

3.2 Two dipoles fixed in space with the dipole-dipole interaction

With the good agreement between the exact result and the PIGSMC result for a single
stationary dipole in a constant electric field it is desirable to pursue a more complicated
problem. After the problem of a singled fixed dipole in an external electric field, the
problem of two identical dipoles with fixed positions interacting through the dipole-dipole
interaction in the absence of an external field was the next simplest test case considered.
The Hamiltonian describing this system is

Ĥ =
2
∑

i=1

BL̂2
i +

d2

4πǫ0r3
(Ω̂1 · Ω̂2 − 3(Ω̂1 · r̂)(Ω̂2 · r̂)) (51)

where ǫ0 is the vacuum permittivity (and 4πǫ0 will be taken to be 1), r is the distance
between the two point dipoles, and r̂ is the unit vector which joins the two point dipoles
under consideration. Just as in the case of a single dipole in a constant electric field there

15



is only a single parameter B/(d2/r3). Again the potential energy has the effect of aligning
the two dipoles along the inter-dipole axis while the kinetic energy tends to delocalize
the orientations of the two dipoles. When B is very large or d2/r3 is very small (e.g. by
making the dipole moment very small or moving the dipoles further apart) then the case
of two independent rotors is recovered and when B is very small compared to d2/r3 then
the dipoles become more or less perfectly aligned.

Like the problem of a single dipole, analytical solutions to the time independent
Schrödinger equation for this two body system are not available. Unlike that problem,
however, the same type of basis set expansion as employed in the solution of that problem
is more computationally costly since there are more degrees of freedom in this problem.
A basis set expansion of the form

|ψ〉 =
∞
∑

l1=0

l1
∑

m1=−l1

∞
∑

l2=0

l2
∑

m2=−l2

cl2,m2

l1,m1
|l1, m1; l2, m2〉 (52)

truncated at some l1,max = l2,max = lmax will contain (lmax + 1)4 states which means to

find all of the expansion coefficients cl2,m2

l1,m1
it is necessary to diagonalize a matrix with

(lmax + 1)8 entries. For just lmax = 10 this is a 14641× 14641, albeit sparse, matrix.
For smaller values of B/(d2/r3), perturbation theory can be employed to calculate

energies to compare with PIGSMC calculations. The ground state energy of the system
up to second order in perturbation theory is

E0 = E
(0)
0 + E

(1)
0 + E

(2)
0 + . . . (53)

E
(0)
0 = 〈0, 0; 0, 0|Ĥ0|0, 0; 0, 0〉 = 0 (54)

E
(1)
0 = 〈0, 0; 0, 0|V̂ |0, 0; 0, 0〉 = 0 (55)

E
(2)
0 =

∞
∑

l1=1

l1
∑

m1=−l1

∞
∑

l2=1

l2
∑

m2=−l2

|〈l1, m1; l2, m2|V̂ |0, 0; 0, 0〉|2

E
(0)
0 − E(0)(l1, m1; l2, m2)

(56)

where Ĥ0 is the kinetic energy term and V̂ is the dipole-dipole interaction potential. At
first glance this does not appear any better than the variational calculation proposed
above. However the expression 〈l′1, m′

1; l
′
2, m

′
2|V̂ |l1, m1; l2, m2〉 is only non-zero when |l′1 −

l1| = 1 and |l′2 − l2| = 1 and so in the sum in equation (56) only a single term survives.
To second order in perturbation theory the ground state energy of two stationary dipoles
interacting through the dipole-dipole interaction is

E0 ≈ −
d4

6Br6
(57)

which resembles a short range van der Waals type interaction.
As with the single dipole case, suitable values of β and τ must be found. Unlike the

single dipole case there are no excited state energies to serve as guides for an initial value
of β. An initial estimate of an appropriate β is the energy splitting in a system of two
uncoupled rigid rotors, since the interaction energy in the case considered is assumed to be
small compared to this. The exploration of appropriate values of β and τ then proceeded
in an analogous fashion to the single dipole case. This is shown in Figure 3; the settled
upon values of β and τ were 3.0 E−1

h
and 0.25 E−1

h
respectively. As with the problem of

the single dipole, a constant guiding wavefunction was employed.
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Figure 3: The energy per particle plotted as a function of the small time step τ for
B/V2 = B/(d2/r3) = 1.0. Clearly the energy has converged to within the error bars.
The energy per particle plotted as a function of β for τ = 0.25 E−1

h
is shown in the

inset with a comparison to the perturbation theory result. The disparity between the
PIGSMC and perturbation theory results is likely a consequence of the fact that the
interaction potential V̂ is comparable to the energy scale of the unperturbed states and
in this parameter regime perturbation theory begins to break down.

There are three subspaces of minima in the potential energy for two stationary, rotating
dipoles. The subspace of global minima of the potential energy occurs when two dipoles
are oriented in the same direction along the axis joining the two dipoles and there are
two such subspaces. A subspace of local minima occurs when both molecules are oriented
perpendicular to the inter-dipole axis and are oriented anti-parallel to one another. For
the rest of the discussion α will be taken as the angle between the two dipole orientations
and the angle θ will be the angle an individual dipole makes with the inter-dipole axis. In
a plot of the distribution of α and θ peaks are expected near the potential energy minima.
Specifically there ought to be two peaks of approximately equal intensity for α = 0 with
θ = 0 and π and a peak with less intensity centered around α = π with θ = π/2.

This distribution is plotted in Figure 4 where these predictions are confirmed. For this
parameter regime where the kinetic energy and potential energy are the same order of
magnitude it is not surprising that the “peaks” are smeared out, the effect of the kinetic
energy of the system.

3.3 Systems of many stationary dipoles

With the PIGSMC code proving itself on systems of one and two dipoles, the next log-
ical step is to move onto systems of many dipoles fixed on a lattice. The Hamiltonian

17



B/V2 = 1.0

 0  0.5  1  1.5  2  2.5  3

θ

 0

 0.5

 1

 1.5

 2

 2.5

 3

α

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

Figure 4: A plot of the distribution of α and θ. Notice the maxima near α = 0 with θ = 0
and π and α = π with θ = π/2, as predicted.

describing a system of N dipoles on fixed lattice points is

Ĥ =
N
∑

i=1

BL̂2
i +

∑

i<j

d2

4πǫ0r3ij
(Ω̂i · Ω̂j − 3(Ω̂i · r̂ij)(Ω̂j · r̂ij)) (58)

which is just an extension of (51) where rij = |ri − rj | is the distance between dipoles
i and j. The behavior of this system is much less straight-forward than the other two
cases considered. It is clear that if the interaction potential is weak compared to the
kinetic energy of the system, B/(d2/r3) → ∞, then the dipoles will be uncoupled and
there should be no preferred orientation for any of the dipoles. In the opposite limit it
really depends on the dimensionality of the lattice. In a one dimensional chain it seems
natural that the preferred configuration should be the one in which all of the dipoles are
aligned in the same direction along the axis of the chain. However, in two dimensions
it is not at all clear which configuration will minimize the interaction potential and the
problem of visualizing a minimum energy configuration is even more complicated in three
dimensions. This is primarily because of the 1/r3 nature of the dipole-dipole interaction.

Applications of the PIGSMC code to these systems is an ongoing project but it will
be very interesting to see what sorts of order appear in two dimensions. In addition it will
be possible to study phase transitions which occur as the quantity B/(d2/r3) is increased,
from the unordered system of decoupled dipoles to some sort of ordered phase. This
will like require the implementation of different types of non-local moves, such as cluster
updates or the Worm algorithm [1], to deal with the divergence of correlation lengths near
a hypothetical critical point. The data analysis techniques developed for these sorts of
systems will hopefully lead to insight into how to study systems with additional degrees
of freedom, such as translation in two and three dimensions.
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4 Conclusion and outlook

A new PIGSMC code, the first of its kind, dealing with systems fully composed of rigid
dipoles with rotational degrees of freedom was developed. It was shown that methods
developed for translations can be applied to rotations in a relatively straightforward way.
In order to apply the method, however, a few modifications were necessary. First, the
free rotor propagator is not of a convenient form for on-the-fly evaluation unlike the
free propagator and so it was necessary to tabulate this function at the beginning of
the simulation and recall the values as needed. Still, a true sixth-order propagator for
rotations was implemented.

The displacements of particles along the path is also slightly more complicated than
the translational case since the orientations of linear molecular rotors are restricted to lie
on the surface of the unit sphere. To alleviate these complications, unit quaternions were
the representation of rotations used due to their ease of visualization and generation. It
was then a simple matter to implement a multilevel Metropolis sampling algorithm for
rotations.

The development of a PIGSMC code capable of simulating systems of rigid dipoles
is an important step toward realistic calculations of the properties of molecular systems
at ultracold temperatures. It opens to door to the observation of non-trivial many-body
effects that arise from the coupling of translational and rotational degrees of freedom
through the dipole-dipole interaction, which are not accessible through mean fields meth-
ods.

As experiment progresses the need for tools which can interpret experimental results as
well as predict novel behavior will become more important. PIGSMC is poised to fill that
role, being able to calculate exact properties of the ground state of many-body systems.
It will also be possible to move beyond simple linear diatomic molecules as experiment
progresses. It should be possible to extend this work to systems of polyatomic molecules
in a straightforward fashion.
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