The Dataflow Schedule Graph and Applications to
Heterogeneous Computing Systems

Hsiang-Huang Wu
Department of Electrical & Computer Engineering, and
Institute for Advanced Computer Studies
University of Maryland
College Park, Maryland, USA

Marshall Plan Scholarship Final Report on Research Coeduct
at the Salzburg University of Applied Sciences, Austria

March 8, 2011

Abstract

Dataflow-based application specifications are widely usadadel-based de-
sign methodologies for signal processing systems. In #yep we develop a new
model called thelataflow schedule grap{bSG) for representing a broad class of
dataflow graph schedules. The DSG provides a graphicalseptaion of sched-
ules based on dataflow semantics. In conventional appreacmpplications are
represented using dataflow graphs, whereas schedulesefaraiphs are repre-
sented using specialized notations, such as various Kinsisgoiences or looping
constructs. In contrast, the DSG approach employs dataftaphg for represent-
ing both application modeksndschedules that are derived from them.

Our DSG approach provides a precise, formal framework famlriguously
representing, analyzing, manipulating, and interchapgichedules. We develop
detailed formulations of the DSG representation, and ptesemples and experi-
mental results that demonstrate the utility of DSGs in theed of heterogeneous
signal processing system design.

. Introduction

Dataflow models of computation are widely used for expressie functional-
ity of digital signal processing (DSP) applications (esge [1]). In DSP-oriented
dataflow models of computation, applications are modelelirasted graphs, where
vertices éctorg represent computational modules for executingfifang) tasks,
and edges represent first-in-first-out channels for statatg valuestoken$, and
imposing data dependencies between actors. Wheneverarfiegs, it consumes
and produces tokens from its input and output edges, regpigct

Scheduling has been studied extensively in the contexttaflde-based mod-
eling of DSP systems. Dataflow graph scheduling involveasgy actors to pro-
cessors, and sequencing subsets of actors that share cqmnoeessing resources.
For dataflow scheduling of DSP systems, a “processor” indbigext is typically
taken to be a hardware resource on which execution is tinléptexed by actors
that are assigned to it. In addition to ensuring that datafiaph dependencies are
respected, scheduling is often geared towards exploitmglielism (performance
improvement) and efficient memory utilization (buffer mgament). Given the
fundamental role of scheduling in dataflow-based designsfl@md its heavy im-
pact on key implementation metrics, a wide variety of teghas has evolved over
the years and continues to evolve for scheduling DSP dataftaphs. Such tech-
nigues target objectives such as buffer optimization [@htjcode and data mini-
mization [3], quasi-static scheduling [4], adaptive salieg) [5, 6], and throughput
optimization [7].

As the range of dataflow graph scheduling techniques caegiria expand,
based on the heterogeneity of application modeling stylesrmaplementation ob-
jectives, and the increasing degree of dynamics in appitstit becomes increas-
ingly important to develop a common representation for rfingeand working
with dataflow schedules. Such a representation is desitabnable system-
atic reuse of design tool code, analysis techniques, anddrad implementation
methodologies across various scheduling strategies.hé&mnbre, a formal rep-
resentation helps to integrate different scheduling tegles so that they can be
mixed and matched across different subsystems of a desggdlmn characteris-
tics and objectives associated with those subsystems.

In this paper, we address this problem by introducing a forfinzenework,
called thedataflow schedule graptbDSG), for precisely representing, analyzing,
manipulating, and interchanging schedules. We have degditire DSG represen-
tation with two major objectives — 1) it should be rooted imnf@l dataflow se-
mantics, and 2) it should accommodate a wide range of sobethgses, including
static, quasi-static, and dynamic schedules, as well dsdamjuential and parallel
schedule formats. Furthermore, because they are base@ @arte dataflow se-
mantic framework as the application representations frdnchkvthe schedules are
derived, DSGs can naturally represent structures in whitledules are adapted
dynamically (e.g., in response to changes in input dataachenistics). This work
is to be published in the HCW 2011 Conference [8].

[I. Related Work

A number of dataflow schedule representations have beearexigbreviously. The
generalized schedule tr&ST) representation provides a tree-based representa-
tion of arbitrary looped schedules [9]. A novel schedulerfat based on dynamic
loop counts that is geared towards SDF buffer memory mirdtion is developed
in [10]. Theinterprocessor communication grapimdsynchronization grapmod-
els provide dataflow-based schedule representations falglaschedules of ho-
mogeneous SDF (HSDF) graphs [11]. HSDF is a restricted fdr8Dd- in which
the dataflow rate on each input and output port is always equia[12].

A distinguishing characteristic of our proposed DSG repnéation is that it
is both dataflow based, and capable of handling dynamic séhedructures as
well as dynamic dataflow application models. This is in casitrto execution-
sequence based representations, which can usually becthvared formally but
lack dataflow semantics and are often restricted to statiedides.

The most closely related modeling technique is the synénation graph model.
In this model, self-timed multiprocessor schedules areessmted as interacting
dataflow graph cycles, where each cycle corresponds to timdeexecution of
the actors that are assigned to a given processor [11]. Afisamt body of the-
ory and algorithms has been developed for this model. Weharefore motivated
to generalize the synchronization graph concept beyoridiseld schedules, and
HSDF graphs.

The DSG can be viewed as such a generalization. The DSG madekp-
resent dynamic schedules, which can be applied to statigrwandic application
models to improve flexibility (e.g., load balancing robwests or data dependent
control structures). Furthermore, the model is fully bagedlataflow principles,
which together with its accommodation of dynamic dataflomaetics, allows for
integration with dynamic parameter control methods foaflatv graphs, such as
those provided by parameterized dataflow [5] and scenavareadataflow [6].

The DSG representation can be used in conjunction withiegisask graph
scheduling techniques, such as those developed in [13,51416] 17]. For ex-
ample, the DSG can be used to model the sequencing structerised by the
scheduling techniques (e.g., as a standard interface dergeneration) or to bridge
subsystems that are scheduled using different techniqueeieed, exploring the
optimized integration of DSG based schedule control witlv aed existing task
graph scheduling techniques is an interesting directiofufther investigation, and
one that is especially relevant in the area of heterogenemmputing systems.

1. Core Functional Dataflow

For concreteness, we develop the DSG in the context of afgpkeeim of dataflow
— the core functional dataflon(CFDF) model of computation, which can be
viewed as a deterministic sub-classenfable-invoke dataflow grapli$8]. CFDF

is a highly expressive (Turing complete), dynamic datafloadei. In Section XI.,
we discuss how the DSG model can be adapted to other formgadfaya (beyond
CFDF).

In CFDF, actors are specified as setsraides where each mode has a fixed
production and consumption rate associated with each mpaditoutput port, re-
spectively. Each actor has an associatedent modewhich is maintained as part
of its state. When an actor is invoked, it executes its ctinmesde, produces and
consumes data (as in other dataflow models), and updatasrientmode. Since
different modes of an actor can have different productioth @msumption rates,
dynamic dataflow can be modeled flexibly in CFDF.

A distinguishing aspect of CFDF (and the non-deterministiperset EIDF) is
that separationof enable and invoke functionality for actors is defined ags fi
class characteristic of the model. Specifically, each dotar an associateeh-
ablefunction, which can be called at any time between firings.(&ya run-time
scheduler), and returns a Boolean value indicating whetheot there is sufficient
data available on the actor input ports to fire (invoke) therda its current mode.
Since such an isolated enable check is available, the inftoletion of an actor
assumes that sufficient data is present, and reads its iapaitwdthout blocking
reads.

In the implementation of dataflow tools, functionalitiesrresponding to the
enable and invoke methods are often interleaved — for ex@ngul actor firing
may have computations that are interleaved with blockiregiseof data that pro-
vide successive inputs to those computations. In contitzste is a clean separa-
tion of enable and invoke capabilities in EIDF. This separahelps to improve the
predictability of an actor invocation (since availabiliy the required data can be
guaranteed in advance by the enable method), and in praigtefficient schedul-
ing and synthesis techniques (since enable and invokeidumadity can be called
separately by the scheduler). This separation also leadsaitig to a concept of
guarded executigrwhereby an actor firing is conditionally executed depegdin
whether or not it is enabled.

IV. The Dataflow Schedule Graph Representation

Given a CFDF representatiofi 4 of an application, alataflow schedule graph
(DSQ is a dataflow graph that satisfies certain technical canssrgdescribed
later in this section), and represents the time-multiples®ecution ofG 4 across
a set of hardware resources. Here, a hardware resourceseafgean arbitrary
computational resource, such as a processor core, datlimetelerator or FPGA
subsystem, that executes actors sequentially. Constrimmgosed on the DSG
ensure that each hardware resource can execute at mostton&@un G 4 at any
given time. Tokens that flow along edges of the DSG serve tbleractors for
execution (as it becomes their turn to execute). DSG tokansiso contain values
that are manipulated and queried during execution of the BS&&hieve various

forms of data- or parameter-dependent schedule control.

In DSGs, special actors, callethedule control actor6SCA3 andreference
actors(RA9, are selected or developed as an integral part of the stshethdeling
framework. In contrast to conventional dataflow actors,clvhiepresent functional
components from the original application specificatiapglication actory, SCAs
are dataflow actors that are dedicated to coordinating aididwv in derived sched-
ules. On the other handRAscan be viewed as “pointers” to application actors.
These pointers are equipped with optional auxiliary coragons. Intuitively, an
RA represents a scheduling “wrapper” that specifies the ctatipn that is exe-
cuted when the corresponding actor is “visited” during sicihe execution. The
simplest form of RA is one that simply performs a guarded atien of the actor
that it points to. However, more capabilities can be incaaped into RAs using
the optional auxiliary computations mentioned above.

V. Reference Actors

An RA has a single input port and a single output port. An RA l®eogeneous
synchronous dataflow actor in the enclosing DSG — that igrisames a single
token on each firing from its input, and produces a singlertakeits output.

Given an RAA, we represent the application graph actor pointed tal lwyith
the symbolref (A), and we refer taef (A) as thereferenced actoof A.

As illustrated in Figure 1, an RAl consists of two functiongre 4 and post 4,
which are executed, respectively, before and aftegtierded executiophase of
A. This guarded execution phase, represented by the bloelethtguarded firing”
in Figure 1, represents the guarded executioA of terms of CFDF semantics (see

Section Ill.).
L e g <pos
/ firing N
buffer

' AN AN ,’l \

1 PN S '
r’ ///’ \\\ 0 \\\ \\\
/ Y ’ \

state of actor buffer

Figure 1: The internal structure of an RA.

We refer to the functiongre 4, andpost 4, assubfunction®f the enclosing RA.
Intuitively, the RA subfunctions provide a mechanism togess and manipulate

4

data that is used throughout the graph to control execufiaators (e.g., to facili-

tate conditional execution or data dependent iteratiomiious parts of the graph).
The data manipulated by RA subfunctions is encapsulateuntite DSG tokens
that are produced and consumed by the enclosing RA.

To clarify the operational structure of DSGs, it is usefuetaphasize that the
tokens flowing on a DSG are strictly for schedule control pggs. Furthermore,
because actors in the application graph are allowed to &xecly when they have
sufficient data (as specified by the CFDF enabling condiljoasd CFDF is a
deterministic dataflow model, schedule control by DSGs datviolate determi-
nacy — such control only dictates how actors are time malkigtl when they are
mapped to the same hardware resource.

RAs can contain internal state. Such local (actor-spedfatg is widely known
to be compatible with dataflow representations since infldatagraphs, state can
be modeled as self loops with delays (initial tokens) [12, IBhus, the use of
state in RAs does not violate our ability to interpret DSGgaruine dataflow
representations.

The following categories of data can be used as inputs in RAusigtions:

e The value represented by the current DSG token —i.e., the OB that is
consumed by the enclosing RA firingre 4 only). This value can be of any
type. The type is a design issue of the particular DSG costratture that
is being developed for a specific schedule or the particuéssoof control
structures that is being targeted by a particular schegldial.

e The state of the enclosing RA.

e The state of the referenced actor.

The following categories of data serve as outputs for @an, be modified by)
RA subfunctions:

e The state of the enclosing RA.
e The value of the token that is produced by the Rbst 4 only).
Firing of an RA involves the following sequence of steps:

1. The RA consumes a token from its input edge. This tokendsezhas input
to pre 4, which executes, and updates the state of RA.

2. A guarded execution okf 4 is carried out. That isef 4 is fired once if it is
enabled.

3. An execution ofpost 4 is carried out. This execution operates on the state

of the RA. The output value from this execution is producethasoutput of
the RA firing.

The general purpose gfre 4 and post 4 is to manipulate DSG tokens. The
values of DSG tokens, in conjunction with SCAs, contribeverall schedule
control. Computations ipre 4 and post 4, are optional. For example, an RA can
simply execute the referenced actor unconditionally, ta@&inno internal (RA)
state, and pass input DSG values from input to output withoadification. Such
“lightweight” RAs are typical in the construction of staticheduling structures,
as well as in dynamic structures where dynamic scheduleadstmanaged by
SCAs. When code is generated from DSGs, such lightweight é&seasily be
detected and “optimized away” so that they do not result imtione overhead.

An example of a non-lightweight RA is one that updates DSGskwith
estimates of the amount of energy or execution time takehdgssociated firings.
Such information can then be used by the enclosing DSG ta asapall schedule
control —e.g., when the DSG is embedded within a parametdataflow system
or other kind of reconfigurable dataflow graph framework.(esge [5, 6]).

VI. Schedule Control Actors

To model dynamic scheduling structures, SCAs generally aeimportant role in
conjunction with RAs. An SCA is an actor that can have anytpesnumber of
input ports and any positive number of output ports. In otherds, an SCA must
have at least one input port and output port, and may havewmnper of additional
input or output ports. The dataflow behavior of an SCA exahiltlite following
lumped homogeneous synchronous dataflddSDF) condition: for every firingf

of an SCAC, we have that, = n, = 1, wheren, represents the total number of
tokens consumed b§' across all input ports during, andn,, represents the total
number of tokens produced across all output ports dufing

Note that an SCA” can have internal state, and if we model that state as a self-
loop edge forC, then this edge is treated independently of the LHSDF cimmdit
— i.e., such a self-loop edge is a standard HSDF edge whoa#iafatdoes not
“count towards” the values of. andn,,.

Atokenin a DSG can be interpreted loosely as an “actor lewgiam counter”
for a given target processor. The LHSDF condition for SCAsglwith the HSDF
semantics of RAs guarantee that there is only one such progpanter (thread of
control) that is “demanded of” each target processor. Timsiges that the schedule
execution modeled by the DSG conforms to the assumptioniritiatidual target
processors execute actors sequentially.

Note that while our proposed DSG model is used to model sé¢bgdor CFDF
graphs, SCAs and hence DSGs do not necessarily conform tda-GEDantics.
The primary requirement for SCAs in the context of the asgedi actor level pro-
gram counter concept is most naturally captured by LHSDFasgios as opposed
to CFDF.

We introduce several types of SCA actors that will be useligytaper. Table 1
summarizes properties of these actors. Tda@ actor has two pairs of inputs and

outputs. One pair is used to perform computations withindbp repeatedly, while
the other pair is used for conditionally branching into ardimg the loop based
on certain control conditions. Since there is only one D@oexecution always
proceeds unambiguously either inside or outside the loop.

SCA actors can be paired with other SCA actors to provideiapeontrol
functions that involve their coordination. For exampig,and fi provide DSGs
with the capability of selecting computations conditidpalhe number of outputs
for a givenif actor must match the number of inputs to the correspongdiactor to
provide conditional selection of the computations thaem@osed by the matching
if andfi pair.

The pairsnd andrec is used for interprocessor communication and synchro-
nization in concurrent DSGs (CDSGs), which are discusselduin Section VIII..

Table 1: Examples of SCAs.

SCA | # of inputs | # of outputs
loop 2 2

if 1 >2

fi >2 1

snd 1 2

rec 2 1

VII. Sequential Dataflow Schedule Graphs

A DSG for a single-processor schedule represents the tioigpiexed (sequen-
tial) execution of a set of actors on a single processingureso Execution of the
DSG models the evolution of actor firings in the associatepisetial schedule.
To preserve this sequential execution properseguential DSGSDSG) imposes
the restriction thaat most one tokenan be present in the entire DSG at any given
time. This requirement formally captures the interpretatf DSG tokens as actor
level program counters in the context of single-processbedules. Just as the
program counter in a conventional processor “points tohglsiinstruction at any
given time, the unique SDSG token points to a single SDSGr,aetuich is the
next actor to execute.

For example, consider the class of single appearance deksdduSDF graphs [3].
These schedules are represented in terrmeaged schedulesuch that each ac-
tor appears exactly once, implying, for example, minimalegize under inline
implementation. For example, the looped sched@(ab)c), involving 3 actors
a, b, c, and2 loops represented by the two nested, parenthesized tezpresents
the firing sequencebabcababcababe.

To demonstrate SDSGs for single appearance schedules, phethp loop

SCA that was introduced in Section VI.. Figure 2(a) shows Bt §raph (G 4)
and an associated single appearance schédux3)C'). A simple SDSGGg) is
shown in Figure 2(b). In this examplpp,, which is an instance of theop actor,
implements an outer loop that models a fidilecking factor.J. This blocking
factor value gives the number of times that the schedule Ietoepeated. If the
schedule is to be repeated indefinitelyy £ oo), thenloop, should be removed,
and the output oR¢ should be connected directly B,.

The actorloop,, which is also an instance of theop SCA defined in Sec-
tion V1., implements control for an inner loop that corresgs to the nested sub-
schedulg2B). A token in this SDSG does not carry any values; it simply {sin
to the next actor in the SDSG that is to be executed.

The “D” symbols on the graph in Figure 2 correspondiétays and are imple-
mented as initial tokens in the graph. Functionally, a detayesponds to the~!
operator in signal processing.

Execution of the SDSG shown in Figure 2(b) proceeds as fsliolhe delay
(initial token) on the edgé€R, loop,) causes execution to begin with a firing of
loop,. This actorloop, has one input port, one output port, and an internal state tha
maintains a loop iteration count,, which corresponds to the number of remaining
schedule iterations, and is initialized to the blockingtdacsalue .J. Each time
loop, fires, it first checks the value of,. If n, = 0, then the firing completes
with an output token produced on the output edge that is aiedgéo END. On
the other hand, if,, > 0, then the value o, is decremented, and the firing
completes with a token produced on the output edge that iseated toR 4.

This token has the effect of passing processor contré tpwhich then fires
the referenced actot once and passes control (through its output tokem)do,.

The actorloop, has two input portgn ! andin2 and two output portsut! and
out2, as shown in Figure 2(bYoop, also has a state variabtg, which maintains
the number of iterations remaining in the current inner lompcation.

Whenloop, consumes a DSG token froim1, it resetsy; to 2, and produces an
output token orvut! to enableR . On the other hand, whelop, consumes its
input fromin2, it first decrements the value of. If after this decrement operation
n; > 0, then it again produces an output tokenairt? ; otherwise, it produces an
output token orvut2, which effectively exits the inner loop, and passes coritol
Re.

Actors Rp and R¢, like R 4, operate by consuming a single token each from
their unique input edges, firing their associated refergrazgors, and producing
a single output token on their unique output edges. In the o0&, the output
token produced has the effect of passing control to the megtation of the outer
loop iteration control.

We emphasize that under correct operation, an SDSG corahingst one
token. Thus, for an enabled SCA that has multiple input edtiese is never
ambiguity about which input edge the next firing will consudaa from — the
SCA will simply consume the input token from the unique edgs has a nonzero
buffer population.

Ga
schedule: (A(2B)C)

OO

@)

Ioop1

Figure 2: (a) An SDF graph (b) A design example of an SDSG ferdimgle
appearance scheduld(2B)C).

VIIl. Concurrent Dataflow Schedule Graphs

Efficient parallel computation is an important motivatian fise of dataflow graphs
in many implementation contexts. For this purpose, the ephof the DSG can
be naturally extended to handle concurrent execution ofiphellSDSG “threads”.
Multiple SDSGs can be integrated to execute concurrentiguih the use of a
special kind of actor called amter-SDSG coordination actoflCA). We refer
to the resulting class of communicating, concurrent SDS&acurrent DSGs
(CDSG3.

Two specific ICAs arend andrec, which perform communication and associ-
ated synchronization of data that is passed between diffprecessors. As shown
in Figure 3,snd and rec both have one pair of input and output ports each —
IN pc and OUT pc — for the execution-enabling SDSG token (i.e., the tokeh tha
is analogous to a program counter or “PC”, as described itiche¥ll.). Addi-
tionally, thesnd actor has a second output port that is used to send data toeainot
processor, and similarly, thec actor has a second input port that is used to receive
interprocessor communication (IPC) data. We refer to thegeut and input ports
asOUT pc andIN jpc, respectively.

Every instance of and actor is paired with a correspondingc actor in the
sense that th& UT ;pc port of eachsnd actor is connected to theV ;p- port of
the correspondingec actor. Thesnd represents the communication of a single
token, including any necessary synchronization functignée.g., checking for

available buffer space) from the sending processor to thegssor on which the
correspondingec actor resides. Similarly, theec represents receipt of a single to-
ken, including any associated synchronization functiboné.g., to check whether
the corresponding interprocessor communication buffabisempty before read-
ing).

In general, the synchronization and data communicaticiifes of therec and
snd actors can be decoupled into more specialized ICAs thataegha perform
communication and synchronization. Such decoupling oflssanization and IPC
operations can lead to opportunities for significantly mstlisynchronization over-
head (e.g., see [11]). Design and application of ICAs fohsiecoupled synchro-
nization and IPC is a useful direction for further work.

snd: sender rec: receiver
IN . IN
Pe l IN IPC l i
. OUT,
OUTPCl S l OUTpc

Figure 3: Thesnd andrec actors.

Figure 4 illustrates an HSDF application graph, and a jpamtitg of this graph
across four processors. Figure 5 illustrates a CDSG reqasean of a multipro-
cessor schedule that is based on this partitioning resulEigure 5, the schedule
for each processor is embedded within an infinite loop toeaehan iterative execu-
tion of indefinite duration, which is a common execution fatrfor DSP dataflow
graph applications. Such infinite loops can easily be regldy finite-iteration
loops if needed by appropriate reconfiguration of the foapl8CAs.

Recall that the “D” symbols in our dataflow graph drawingsrespond to de-
lays, which are equivalent to initial tokens. Note also #eth of the four concur-
rent SDSGs in Figure 5 has an edge directed from the last extbe associated
actor chain back to the first actor, which is a loop actor. Tféedback edge”
represents the transfer of execution from the end of a giwep Iteration on the
processor back to the beginning of the next iteration. ThHayden each of these
feedback edges indicates that the execution on the givaxegsor starts with the
loop actor.

Each edge in Figure 4 that crosses the boundary of two pracesan be
viewed as arinterprocessor communication ed@C edge, and is mapped to
a corresponding pair afnd andrec actors in the CDSG of Figure 5. For example,
the edge E, I) in Figure 4 represents an IPC edge between Processor 1 and Pro
cessor 4. In the CDSG, this IPC edge is implementedrly andrecs, which are

10

connected, respectively to the output of the reference &mtd~ and the input of
the reference actor far.

. Processor 4

Processor 1~ .

Processor 2. Processor

Figure 4: An application graph and a partitioning of the grapross four proces-
sors.

In summary, the CDSG provides a formal, dataflow-based septation for
modeling multiprocessor schedules of dataflow applicagi@phs. Although other
representations exist for managing schedules, the CDS@dpsa novel combi-
nation of features — in particular, 1) full adherence to flata semantics, which
helps to unify the model with the associated applicatiomeggntation, and 2) flex-
ible integration of control constructs (through SCASs), gthallows for modeling
of a wide range of static, quasi-static and dynamic schedule

IX. Adaptive Dataflow Schedule Graphs

A major benefit of the SDSG model is that in addition to accomating static
schedules, it provides a common, formal framework for repnéng a wide va-
riety of dynamic dataflow schedules — i.e., schedules in Wiiting sequences
are adapted dynamically, based on characteristics of {h itkata or operating
environment.

We refer to an SDSG model of a dynamic dataflow schedule adaptive
dataflow schedule grapfADSQG. Since ADSGs form a subclass of SDSGs, an
ADSG can contain at most one token across all of its edgesyajiaen time.

As a simple example, consider the dataflow-baskedt hen- el se construct
illustrated in Figure 6(a). All actors in Figure 6(a) produand consume one to-

11

SDSG 1 D SDSG 4

[e) o

)))

Figure 5: A CDSG representation of a multiprocessor scteetthalt corresponds to
the partitioning result shown in Figure 4.

ken each except for thewi t ch (Sy) andsel ect (Sg) actors. Although the
swi t ch andsel ect actors are commonly associated with the Boolean dataflow
model [20], they can be mapped conveniently into CFDF seicsa[R1].

Both Sy andSy consume the Boolean token produced by ag&tdo determine
whether Path 1 or Path 2 will be followed subsequently. Altito the path is
determined at run time, a schedule for each path can be det&trat compile
time —(AESw BSgD) and(AE Sy CSgD) are schedules corresponding to Path
1 and Path 2, respectively.

SWITCH
| SELECT
@»

(@) (b)

Figure 6: (a) A dataflow-based -t hen- el se construct. (b) An adaptive DSG
for this construct.

Figure 6(b) shows a design example of an ADSG for the appmitagraph
shown in Figure 6(a). In other words, Figure 6(b) shows an &D8odel of a
specific quasi-static schedule for the application gragdfiguire 6(a).

Intuitively, the cycle in Figure 6 that encapsulates thewc({with feedback
edge fromRp to R4) models an infinite, quasi-periodic schedule.

In this ADSG, the output token that is produced Ry encapsulates the data
value that is produced by the corresponding firingEbf This is different from
the DSG tokens in our earlier examples, where the tokengedaonly control

12

(enabling) information and had no values associated wigmthThe data encap-
sulation at the output ok can be ensured by th&st function associated with
Rg.

Theswi t ch actor, modeled by the SC#, examines the output valuefrom
E (through the DSG token that encapsulates its value), andupes a token on
one of its output edges depending on whethé t r ue or f al se. This output
token, like all other tokens in this DSG except for those atdhtput of R, does
not have any associated data value.

The RAsRp and R¢ are “minimal” RAs that simply perform guarded execu-
tions of their associated referenced actors. By designeofjttasi-static schedule
that is modeled by the enclosing DSG, the enabling conditfon these guarded
executions will be satisfied whenever the correspondingreetce actors are fired.

On each firing, the SCAi consumes the token from its unique, non-empty
input edge (which is determined by the “output path” takerihgypreceding invo-
cation ofif), and passes control to the R#,.

X. Experimental Results

Heterogeneous computing systems integrate differenskafidhardware and soft-
ware to work together based on the given application remerdgs. Benefits of
heterogeneous computing are often achieved at the expéadehoc, error prone
integration processes due to diverse code bases and theflacifying formal
models. The DSG representation developed in this papes helplleviate this
integration problem, leading to more systematic designiapdementation of so-
lutions that leverage heterogeneous computing platforms.

In this section, we demonstrate through design exampleéghbaDSG is an
efficient schedule representation, which provides rolasstrand flexibility to the
back-end of dataflow-based design processes. Our expéasimeamine the appli-
cation of DSGs to improving simulation performance of daiafgraphs, as well
as to improving the processes of hardware mapping and seftwegplementation
from dataflow graphs. Overall, the experiments show thetyiif DSG-based
design and implementation across a heterogeneous vafiplgtimrms.

X..1 Simulation Time Improvement

High level system simulation is a useful application of flata graphs in DSP
system design. Simulation time for complex dataflow modeisfien dominated
by the computation time of the schedule [22]. For some agfitins, this overhead
can be reduced with well-designed quasi-static schedut@sh trade off relatively
large amounts of static schedule computations with relgtigmall amounts of
run-time schedule adjustments [11].

In this section, we apply the DSG representation to modebaiegtatic sched-
ule, and demonstrate improvement in simulation time adudyy this schedule.

13

Figure 7(a) demonstrates a Boolean-parameterized dovphsiafh, which can
be used to achieve dynamic changes in sampling rate fordiffeoarts of a data
stream. The actoH consumesy tokens and then sends one of the consumed to-
kens to either actoB or C, as determined by the value of the act@& ecti on
parameter. The values of parameteand the selection parameter are generated
by actor and S, which are enclosed within the subsystems labéladt and
subi ni t. The operation of these subsystems as well as the perioderajgon
and updating of new parameter values are based on pararedtdataflow seman-
tics [5]. For more details on parameterized dataflow, wer e reader to [5].

To accommodate dynamic changestand dynamic selections between actors
B or C based on theel ect i on parameter, we construct the ADSG representa-
tion shown in Figure 7(b). Here, we utilize the ability to exdlontrol information
within DSG tokens to achieve the dynamic reconfiguratioruireg by the given
application.

The RAR; determines the updated value of the parametevhich we denote
(with a minor abuse of notation) hy(¢), and embeds this value in the DSG token
that is output byR;. This value is then used to control the number of iterations i
the nested loop SCA labeled &sp,. Theif andfi SCAs perform conditional ex-
ecution of actorB or C based on the current value of thel ect i on parameter.
The current value of this parameter is embedded in the DS@atdoken that is
output by Rg so that it can be queried by the subsequent execution af tBEA.

H init subinit
(A)- ol|C

~(8)
downsampler H @ /

body

(@)

D n
@@@&@0&%

(b)

Figure 7. (a) A PSDF model for a reconfigurable phase shiftrigegpplication;
(b) an ADSG representation for implementing this applaati

14

Experimental results with different numbers of applicatigraph iterations
(processed blocks of data samples) are given in Table 8fd)aacorresponding
chart is shown in Figure 8(b). The experiments are perforasuy the PSDFSim
simulation environment, which can be adapted to implemedtexperiment with
different types of schedules for PSDF graphs [22].

The quasi-static schedule provided by the DSG is comparddetstandard
PSDF scheduling approach, which can be viewed dgremic scheduling ap-
proach of recomputing the schedule dynamically every time graprameters
change. The dynamic scheduling approach is more generaasidr to apply,
while a quasi-static approach has the potential for sigaitigoerformance im-
provements by exploiting application-specific structurghie schedule. The DSG
representation helps to capture this structure in a stdndataflow-based format
that is easily integrated into the PSDFSim environment.

The performance of the quasi-static schedule is consigtestter than the
performance of the dynamic schedule. The degree of perfaxenanprovement
generally increases with increasing numbers of iteratiafisch correspond to in-
creasing numbers of input samples that are processed irintlidation. This is
due to overhead in construction of the DSG representatianigshmore effectively
amortized across the input data set as the size of the datacsedses. Thus,
for larger numbers of iterations, the DSG-based quascstahedule significantly
outperforms the dynamic schedule.

X..2 Hardware Architecture Mapping from a DSG

In this section, we experiment with reconfigurable phase-shift keyif@PSHK
modulator application, which can be configured as binary PEIRSK), quadra-
ture PSK (QPSK) or 8PSK based on the desired trade-off baeta@@munication
quality and performance. As in the previous section, weyafi@ parameterized
synchronous dataflow (PSDF) model of computation for appbic modeling and
scheduling.

Figure 9 shows our PSDF-based model of the RPSK modulatar. phsame-
ters are employed for dynamic reconfigurationg-analogous to the: parameter
in Section X..1) provides the consumption rate of adforandy, a parameter of
actor X, provides the modulation frequency. Sincdoes not affect the dataflow
(production and consumption) rate of its associated aittdges not show up in
the dataflow rate annotations of Figure 9.

In a previous study with this RPSK application, we defined r@egal method-
ology for mapping PSDF graphs into hardware, and demoaestsinthesis results
for the RPSK application using this methodology [22]. Argdas to the dynamic
scheduling approach described in Section X..1, this metlogy is easy to apply
due to its generality, and is also useful as it provides adstahmethod to realize
hardware implementations of PSDF graphs. The DSG providesmgplementary
method, which can be used (e.g., in later stages of the desigess) to special-
ize the hardware mapping for a specific application, anducaphe structure of

15

Dynamic schedule (Sec.)

Iteration 1 10 | 10* | 10° | 10* | 10° 10°
CPUTime | 1.00 | 1.06 | 0.97 | 0.97 | 1.16 | 1.19 | 320.70
Total Time | 2.29 | 2.35| 2.60 | 3.21 | 8.65 | 62.08 | 585.97
Quasi-static schedule (DSG) (Sec.)
CPUTime | 0.60 | 0.59 | 0.59 | 0.59 | 0.59 | 0.61 0.64
Total Time | 1.86 | 1.87 | 1.93 | 1.95| 2.28 | 5.67 | 47.45

(a) Simulation results for DSG-based quasi-static scheglul

600 T T T T
Dynamic schedule —+—
500 | Quasi-static schedule a

400 -

300 |

Time (Sec)

200

100

Qb v
1 10 100 1000 10000 100000 1e+006

Iteration

(b) Performance chart from simulation.

Figure 8: Performance comparison between DSG-based siadisi-scheduling,
and dynamic scheduling.

16

such specialized mappings in an abstract form that can getéa subsequently to
platform-specific, hardware control structures.

H1

@ subinit
it (s,)
B
SILCaEaERES

Figure 9: RPSK modulator.

From its formal, dataflow-based structure, the DSG is wdllesl for transfor-
mation into optimized finite state machine (FSM) structutest provide control
logic for hardware implementation of the associated sclesdirigure 10(b) illus-
trates a DSG representation for the RPSK targeted applicationg with an FSM
that is derived from the DSG. Most of the states map to disfR#&s, and execute
the functionality associated with the associated RAs. &ihe loop iteration count
of loop, is fixed, the statd?g, is designed to implement loop control as well as
firing the actorsS,.

In our experiments with hardware mapping, we targeted AgtBlémenta-
tion using the Cadence Encounter RTL Compiler for back-gmdhesis. The re-
sults reported here are synthesis results only (the desigrtested thoroughly but
not actually fabricated). Table 2 shows the improvementé@adhat is achieved
by the streamlined DSG representation compared to the gemenpose PSDF-
to-hardware mapping approach of [22]. This improvementciompanied by a
formal, dataflow based representation of schedule logiéctwtan be retargeted
systematically to other types of platforms for rapid prgpimg and experimenta-
tion with platform-specific implementation trade-offs.

Table 2: Area comparison for RPSK modulator under consiaerd (100 MHz).

DSG | General-purpose Reduction
mapping
Area (cell) | 18949 20004 5.27%

X..3 Application to Software Implementation

We use the core functional dataflow (CFDF) model of componsisee Section Ill.),
and the lightweight dataflow (LWDF) programming method [&8] software de-
sign and implementation of the RPSK application descrile8dction X..2, and

17

o) <R, <Ry <Ry) Ry R,

(@) A DSG for the RPSK modulator of Figure 9.

1. fire the actor,|
2. query the parameter

1. get response from qut
2. fire the actor S

if counter = 2
go to state R

else
go to state R,

fire the actor S
counter++

(b) An FSM for the DSG in Figure 10(a).

Figure 10: Hardware architecture mapping for a DSG.

18

for DSG-based experimentation with alternative scheduléss software context.
LWDF can be viewed as a “minimalistic” approach for integrgtcoarse grain
dataflow programming structures into arbitrary simulation platform-oriented
languages, such as C, C++, CUDA, Java, Verilog, and VHDL rfore details on
LWDF programming, we refer the reader to [23].

Figure 11(a) illustrates a C language implementation uSRBF and LWDF.
In Figure 11(a), actor$ andT are CFDF actors with three modes each. The
variable M is set tol, 2 or 3 depending on whether the current communication
mode is is BPSK, QPSK or 8PSK, respectively. Depending omthees ofS and
T, data is routed to one of the actard, C2 or C'3. The consumption rates of
these actors are different, as the annotations in Figurg) Ehow. In Figure 12,
the functionguar ded_execut i on carries out a CFDF guarded execution of the
given actor, and returntsr ue if the associated actor firing was carried out (i.e., if
the actor was enabled to begin with).

C1: one-bit consumer

C2: two—bit consumer
2 @1 T o C3: three—bit consumer
U U T: table for phase value

F: duplicate phase
X1 and X2: multiplier
A: adder

(a) Application graph for RPSK system.

/ @ S: binary Sequence Gener:

D

- B-B-P-R-E-E-®

(b) Canonical schedule represented by an SDSG.

5
(oY= a« OECEO R

(c) A more efficient schedule represented by an ADSG.

D

Figure 11: RPSK system and alternative DSGs.

A DSG representation of eanonical schedulés shown in Figure 11(b). A
canonical schedule for a CFDF graph can be viewed as a sibrple, force way to
schedule the graph [21]. Canonical schedules usually Hghein-time overhead,

19

but can be useful for rapid prototyping purposes becausedée be constructed
very easily and quickly.

Compared to the canonical schedule, the schedule modeledebRPSG in
Figure 11(c) is more efficient. This schedule model emplagAsto direct control
flow based on the active communication mode, and minimizetime overhead
due to fireability (enable condition) checking.

do {
progress— 0
M = query(S)
for 1 to M{progress— progress OR guardeexecution(S)
switch(M){
case 1: progress- progress OR guardegkecution(C1) break
case 2. progress- progress OR guardeexecution(C2) break
case 3: progress- progress OR guardegecution(C3) break
¥
progress— progress OR guardeeecution(T)
progress— progress OR guardeeecution(F)
progress— progress OR guardeexecution(X1)
progress— progress OR guardeexecution(X2)
progress— progress OR guardeexecution(A)
} while (progress)

Figure 12: Outline of software implementation structure tftte DSG shown in
Figure 11(c).

Experiments with these schedules were carried out on a Wisith@sed desk-
top computer with a 2.8 GHz CPU and 1GB RAM. Thec version 3. 4.4
compiler was used in the back end of the implementation gce

Table 3 compares the performance of the canonical scheds(@ (denoted
by C.Sched), and the DSG of the more efficient schedule (denoted lfyched).
The overall performance measurement is performed ysiag andpost 4, which
record the starting and stopping time for execution, rebgyg. Such implemen-
tation of performance measurement functionality reprssamiseful application of
RA subfunctions, which in this case help to modularize, igaeparate, and for-
mally connect performance instrumentation code with reiSjoeapplication (actor)
and schedule code. The difference in performance betweetwih schedules is
largely due to the higher frequency of guarded executidarks (i.e., calls to the
guar ded_execut i on function that returrf al se) that result from the canoni-
cal schedule.

This experiment helps to demonstrate how the DSG reprdsantan be used
as a common framework for experimenting with alternativeesitiles for software
implementation. In this case, the DSG representation id faanitial functional
validation using the canonical schedule, followed by a ratprogression to a

20

Table 3: Performance comparison between alternative stdwdased on DSG
modeling. The units of time in this table are seconds.

#ofbits | 3x10° [3x 10" | 3x10° [3x10° | 3x 107
M =1 (BPSK)
C.Sched] 0.64 0.89 349 | 28.05 | 275.96
E.Sched| 0.63 0.83 321 | 2569 | 251.72
Improv. | 1.56% | 6.74% | 8.02% | 8.41% | 8.78%
M = 2 (QPSK)
C.Sched] 0.64 0.83 310 [25.16 | 264.46
E.Sched| 0.63 0.73 2.05 | 1479 | 142.26
Improv. | 1.56% | 12.05% | 33.87% | 41.22% | 46.21%
M = 3 (8PSK)
C.Sched] 0.62 0.81 291 | 2382 | 234.18
E.Sched| 0.62 0.71 1.60 | 10.83 | 103.88
Improv. | 0.00% | 12.35% | 45.02% | 54.53% | 55.64%

more sophisticated schedule, which provides opportuniiie performance op-
timization once initial functional validation has been i@eled. Recall from the
formal semantics of dataflow graphs that for all valid schesli.e., schedules
that respect the dataflow properties of the applicatiomctional correctness is
independent of the schedule. Thus, such a progressive @niental approach
to schedule exploration is attractive from the viewpointseparating concerns,
structuring the design process, and improving overall petdity. These are all
useful viewpoints to help designers leverage the power wrbgeneous comput-
ing platforms.

XI. Extensions

For concreteness, we have presented the DSG model in thextaftCFDF se-
mantics. However, the DSG model can be adapted to other aataibdels or
environments that can support a notiongofarded executior— i.e., a check for
fireability followed by execution of the associated actat i$ found to be fireable.

In contrast, models in which fireability checking and actwoication are inter-
leaved (with blocking reads) cannot be integrated direictly the proposed DSG
framework. However, a more restricted form of DSG can be eyga in which
RAs fire their associated actors unconditionally. Such D&@sire more care in
their construction (to avoid run-time deadlock), and carubeful for modeling
static or quasi-static scheduling structures where sagmifi information is avail-
able at compile time for DSG derivation.

21

XIl. Conclusions

In this paper, we have introduced tdataflow schedule grap{DSQ as a for-
mal, dataflow-based model for representing and intergyetbmedules for dataflow
graphs. We have shown that both sequential and paralledsigsecan be ac-
commodated in the DSG framework. The DSG is not restrictednto specific
dataflow model, and provides for a wide range of static, gsiadic, and dynamic
scheduling structures. Furthermore, the model is eastignebed with new types
of schedule control actors and reference actor subfuresonhat the structures of
the represented schedules can be flexibly customized byraesi tool developers,
and adaptive scheduling strategies. We have demonstiaeadtility of the DSG
representation through various examples with emphasigorodstrating the util-
ity across a heterogeneous variety of computing platforbhseful directions for
future work include the application of DSGs as a substrateptimized integra-
tion of hybrid scheduling techniques.

22

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

S. S. Bhattacharyya, E. Deprettere, R. Leupers, andkdldaEds.Handbook
of Signal Processing SystemsSpringer, 2010.

M. Ade, R. Lauwereins, and J. Peperstraete, “Data memomnymisation for
synchronous data flow graphs emulated on DSP-FPGA targetSfbceed-
ings of the Design Automation Conferendane 1997, pp. 64—69.

S. S. Bhattacharyya, R. Leupers, and P. Marwedel, “So#vwsynthesis and
code generation for DSPIEEE Transactions on Circuits and Systems — I
Analog and Digital Signal Processingol. 47, no. 9, pp. 849-875, September
2000.

S. Ha and E. A. Lee, “Compile-time scheduling of dynamanstructs in
dataflow program graphslEEE Transactions on Computergol. 46, no. 7,
July 1997.

B. Bhattacharya and S. S. Bhattacharyya, “Parametédza¢aflow modeling
for DSP systems,JEEE Transactions on Signal Processingl. 49, no. 10,
pp. 2408-2421, October 2001.

B. D. Theelen, M. C. W. Geilen, T. Basten, J. P. M. VoetenySsheorghita,
and S. Stuijk, “A scenario-aware data flow model for combiloed)-run av-
erage and worst-case performance analysisPrivceedings of the Interna-
tional Conference on Formal Methods and Models for Codeslgty 2006.

[7] A. H. Ghamarian, M. C. W. Geilen, S. Stuijk, T. Basten, AM. Moonen,

[8]

[9]

M. J. G. Bekooij, B. D. Theelen, and M. R. Mousavi, “Throughpnalysis
of synchronous data flow graphs,” Rroceedings of the International Con-
ference on Application of Concurrency to System Deslgne 2006.

H. Wu, C. Shen, N. Sane, W. Plishker, and S. S. BhattagiaaryA
model-based schedule representation for heterogenequsngaf dataflow
graphs,” inProceedings of the International Heterogeneity in Conmuti
Workshop Anchorage, Alaska, May 2011, to appeatr.

M. Ko, C. Zissulescu, S. Puthenpurayil, S. S. BhattagyarB. Kienhuis, and
E. Deprettere, “Parameterized looped schedules for camgaesentation of

23

execution sequences in DSP hardware and software implatiwent IEEE
Transactions on Signal Processingl. 55, no. 6, pp. 3126-3138, June 2007.

[10] H. Oh, N. Dutt, and S. Ha, “Memory optimal single appeem@schedule with
dynamic loop count for synchronous dataflow graphsPiaceedings of the
Asia South Pacific Design Automation Conferer@06, pp. 497-502.

[11] S. Sriram and S. S. Bhattacharyyamnbedded Multiprocessors: Scheduling
and Synchronizatigr2nd ed. CRC Press, 2009.

[12] E. A. Lee and D. G. Messerschmitt, “Synchronous datgfl®soceedings of
the IEEE vol. 75, no. 9, pp. 1235-1245, September 1987.

[13] A. Gerasoulis and T. Yang, “On the granularity and cusig of directed
acyclic task graphsJEEE Transactions on Parallel and Distributed Systems
pp. 686—701, June 1993.

[14] V. Kianzad and S. S. Bhattacharyya, “Efficient techmigjdior clustering and
scheduling onto embedded multiprocessoliSEE Transactions on Parallel
and Distributed Systemsol. 17, no. 7, pp. 667—680, July 2006.

[15] Y. Kwok and I. Ahmad, “Static scheduling algorithms falfocating directed
task graphs to multiprocessorslburnal of the Association for Computing
Machinery vol. 31, no. 4, pp. 406-471, December 1999.

[16] H. J. Siegel, J. K. Antonio, R. C. Metzger, M. Tan, and Y.lA “Heteroge-
neous computing,” ifParallel and Distributed Computing HandbgoK. Y.
Zomaya, Ed. McGraw-Hill, 1996.

[17] L. Wang, H. J. Siegel, and V. Roychowdhury, “A genetigeaithm-based
approach for task matching and scheduling in heterogenemisonments,”
in Proceedings of the Hetergeneous Computing WorksAppil 1996, pp.
72-85.

[18] W. Plishker, N. Sane, M. Kiemb, K. Anand, and S. S. Bhditayya, “Func-
tional DIF for rapid prototyping,” inProceedings of the International Sym-
posium on Rapid System Prototypirigonterey, California, June 2008, pp.
17-23.

[19] B. Kienhuis and E. F. Deprettere, “Modeling streamdshapplications using
the SBF model of computation,” iRroceedings of the IEEE Workshop on
Signal Processing Systen&eptember 2001, pp. 385-394.

[20] J. T. Buck and E. A. Lee, “Scheduling dynamic dataflowpips using the
token flow model,” inProceedings of the International Conference on Acous-
tics, Speech, and Signal ProcessiAgril 1993.

24

[21]

[22]

[23]

W. Plishker, N. Sane, M. Kiemb, and S. S. Bhattacharyiketerogeneous
design in functional DIF,” irProceedings of the International Workshop on
Systems, Architectures, Modeling, and Simulati®emos, Greece, July 2008,
pp. 157-166.

H. Wu, H. Kee, N. Sane, W. Plishker, and S. S. BhattagkariRapid proto-
typing for digital signal processing systems using paraniedd synchronous
dataflow graphs,” irProceedings of the International Symposium on Rapid
System Prototypingdrairfax, Virginia, June 2010.

C. Shen, W. Plishker, H. Wu, and S. S. Bhattacharyya, ithtiveight
dataflow approach for design and implementation of sdr systein Pro-
ceedings of the Wireless Innovation Conference and Pro&ixgiosition
Washington DC, USA, November 2010, to appear.

25

