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Abstract

HMMmodeller leverages the power of profile HMMs for remote homologue identifi-

cation while being easily customizable by non-technical researchers. We give a method

for the efficient estimation of p-values using simulated protein sequences for the profile

general distribution and a Pareto distribution fit to the tail of the empirical cumulative

distribution function. The biological sequence general distributions are also analyzed

and the distribution statistics are correlated with profile HMM properties and other

distribution statistics.



1 Introduction

HMMmodeller is a profile HMM tool for remote homologue identification [1–3]. It was

created with molecular biologists in mind, such that advanced, customizable query searches

on protein databases can be carried out by the simple alteration of the HMM profile with

little to no technical expertise. The current version of the software is written as an extension

of Chimera [4] in both Java and Python and is the joint effort of the Salzburg University of

Applied Sciences with Salzburg University.

Categorizing proteins into families is an ongoing problem [5]. A general assumption

is that by accurately assigning protein family membership (or that of superfamily), the

function and characteristics of new homologues can be more easily identified. In scanning

protein databases for good profile matches, the score value alone may not be sufficient to tell

the researcher if the protein is likely to be a new member. It is therefore necessary to put

score values in the statistical context of significance. In this study, we analyze 77 protein

families and provide a method for the efficient estimation of p-values based on simulated

protein general distributions.

The p-value, in this context, is the measure of the number sequences that should score

at least as extreme as the query protein sequence given that the null hypothesis is true, i.e.,

that the query sequence does not belong to the protein family or superfamily. Statistical

significance is often ascribed to values of p < 0.05 for the rejection of the null hypothesis,

hence our research focusses on the 95% exceedance tail of the general distributions. We

generate simulated protein sequences for the general distribution tail and compare their

p-value estimations to general distributions constructed from biological protein sequences.

In addition to evaluating the empirical cumulative distribution functions, we follow in the

footsteps of [6] by fitting a Pareto distribution to the tail of the general distribution at

various sample sizes and testing the power of their p-value estimation. Finally, biological

sequence general distributions are analyzed and their statistics correlated with profile HMM

properties as well.
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2 Methods

HMM profiles for 77 SCOP protein families were provided by the research group of Dr. Peter

Lackner1 and evaluated using HMM Modeller version 5 with default parameters [1]. The

R statistical program was used to evaluate normality, kurtosis, skewness, mean, and the

standard deviation of scores for various models [7]. For each family, the “plain score” is for

the standard Viterbi algorithm while the “reverse score” is the score of the same profile in

reverse order (or, equivalently, the reverse of the input query sequence). The reverse score

was first implemented for use in SAM [8], another profile HMM tool. In order to correct for

the length differences in the input query sequences, a “simple score” consisting of a one state

null model, was used to divide the plain score and produce the “simple corrected score.”

Similarly, the “reverse corrected score” of the query sequences were produced by dividing

the plain score by the reverse score null model.

The ASTRAL SCOP compendium, version 1.73, was obtained2 and reduced to sequences

with less than 40% identity [9–11]. The null or general distributions for each of the selected

77 profile HMMs were created by scoring all protein sequences in the reduced version of the

ASTRAL database minus proteins within the same SCOP class relative to the profile HMM

model used for scoring. For example, suppose we were to create a general distribution for

the reverse corrected scores of the SCOP family a.1.1.2, then we would score all ASTRAL

database proteins not in class a, such as proteins in families b.1.1.2, c.1.11.2, et cetera.

The general distribution shows the distribution of scores one would expect to see given

that the null hypothesis is true, i.e., that a query protein does not match the profile HMM’s

family (or super family as the case may be). This means that each profile HMM has a

different number of total ASTRAL samples relative to its SCOP class. Table 1 shows the

number of samples used for the general distribution of any profile HMM model with respect

to its class. We only include classes for the 77 profile HMM models being used in the

analysis. Moreover, all general distribution have at least 7,000 protein sequences, which is

the down-sample size of the Markov model order analysis as shown in Table 6.

1Department of Molecular Biology, University of Salzburg, electronic correspondence
2ASTRAL Home Page: astral.berkeley.edu
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Table 1: The number of ASTRAL database protein sequence samples is given relative to all SCOP

classes for each of the 77 studied profile HMMs. All general distribution sample sizes are therefore

at maximum limited to the number listed with respect to the profile HMM’s SCOP class.

profile HMM

SCOP class

ASTRAL

samples

a 7753

b 7503

c 7013

d 7248

e 9362

g 8960

2.1 Computation of statistics

The Lilliefors, Anderson-Darling, and Cramer-von Mises normality tests were performed

using the nortest plug-in (version 1.0) by Juergen Gross for the R statistical program (version

2.11.1). Similarly, the kurtosis and skewness were computed using the moments plug-in

(version 0.11) by Lukasz Komsta within R. Meta analysis of the results over all sample

sizes and families was performed using a custom MySQL database (version 5.1.46) with

PhpMyAdmin (version 3.3.7). Additionally, the slopes from Table 2 for the sequence length

analysis were computed using a user-defined function (UDF) from SourceForge’s MySQL

UDF page3 (version 0.3) with the patch to make it compatible with MySQL 5 applied as

well. The UDF used a linear regression of two MySQL variables to create the slopes and

y-intercepts. The discrepancy computations, mentioned in detail below, were carried out

in MATLAB Release 2010b4. All MATLAB, R, unix shell, MySQL query, as well as Perl

scripts used to process data are available upon request.

2.1.1 Discrepancy

The discrepancy or Kolmogorov-Smirnov statistic between two distribution functions is the

supremum of the distance between their cumulative distribution functions. In Table 7 we

take the discrepancies of two empirical cumulative distribution functions as well as the dis-

3MySQL extension functions: sourceforge.net/projects/mysql-udf
4The Mathworks, Inc.: www.mathworks.com
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crepancies between an e.c.d.f. and a fitted Pareto distribution (using MATLAB’s paretotails

function)—each distribution being compared only with respect to the 95% exceedance values

of the reference distribution tail. The discrepancy versus the Pareto tail is easy to compute.

Let P be the fitted Pareto distribution and let F be some empirical cumulative distribution

function over N samples with respect to distribution X. Moreover, let z0 be the index for

the first exceedance value in X at the 95% threshold. Thus, see that:

discrepancy =
N

max
z=z0

{max {|F (Xz)− P (Xz)|, |F (Xz)−
1

N
− P (Xz)|}}. (1)

Our method to compute the discrepancy between two empirical distribution functions is

presented in the pseudo-code for Algorithm 1. The ECDFdiscrepancy function takes arrays

X and Y with dimensions N × 2 and M × 2 respectively. The first column of the array

contains the values of the reversed corrected scores or some other score that is being used

to build the e.c.d.f. while the second column contains a constant ID for the array, 1 for

X and 2 for Y . First the exceedencas of X and Y must be extracted using the pseudo-

code subroutine getExceedences, which takes a parameter for the array as well as for the

exceedance threshold (in this case 95%). The exceedances are concatenated into a third

array called Z and sorted by their score values. The second dimension where the array IDs

is stored is also concatenated and sorted in these operations, as specified by the pseudocode

subroutine sortRowsByColumn.

The algorithm then proceeds as follows: (1) the current x and y values are computed with

respect to the starting exceedance values for X and Y ; (2) the next value in Z is tested for

an x or y step; (3) distances are calculated based on the current step and the x or y updated;

(4) a new discrepancy D is tested based on the computed distances; and (5) the algorithm

repeats (2-4) until all values in Z have been analyzed. Our particular implementation was

in MATLAB and is available upon request.

- 4 -



Algorithm 1 ECDFdiscrepancy(X,X, N, M)

Require: Given arrays X & Y of lengths N × 2 & M × 2 respectively, return discrepancy.

1: Z ← concatenateArrays(getExceedences(X, 0.95), getExceedences(Y, 0.95))

{Take the exceedances (95% threshold) from X & Y concatenate them into Z.}

2: Z ← sortRowsByColumn(Z, 1) {Sort Z by the score values.}

3: T ← lengthOfRows(Z) {The combined length of the exceedances.}

4: D ← 0 {Initial discrepancy is zero.}

5: xcurrent ← floor(N ∗ 0.95)/N − 1/N {Initialize the current x.}

6: ycurrent = floor(M ∗ 0.95)/M − 1/M {Initialize the current y.}

{Loop over all values in Z, stepping each x and y as appropriate.}

{Determine which distribution to step and take distances.}

7: for j = 1 to T do

8: if Z(j,2) = 1 then

9: d1 ← |xcurrent − ycurrent|

10: d2 ← |xcurrent + 1/N − ycurrent|

11: xcurrent = xcurrent + 1/N {Update x with respect to the observed step in Z(j, 2).}

12: else

13: d1 = |ycurrent − xcurrent|

14: d2 ← |ycurrent + 1/M − xcurrent|

15: ycurrent = ycurrent + 1/M

16: end if

{Take the maximum of the distances.}

17: if d1 > D OR d2 > D then

18: D ← max(d1, d2)

19: end if

20: end for

21: return D
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2.2 Grid computing for model evaluation

For the high performance computing of profile HMM families, the researcher built a Rocks

Cluster version 5.3 using 14 HP compaq dc7100 compute nodes. The compute nodes utilized

2GB of RAM, 3.0Ghz Pentium 4 processors and 80GB scratch disks for processing. The

root node itself utilized an Intel Core 2 Quad at 2.83Ghz with 3.5 GB of RAM. All compute

nodes were connected via a local switch, and large files were cached prior to running large

jobs.

Using a single compute node on our cluster, it took on average roughly 33 minutes per

profile HMM family to compute and post-process the ASTRAL database (9536 sequences).

In order to score and process the data for 7000 simulated protein sequences, it took on

average about 24 minutes per family. With a dataset of 2000 simulated protein sequences

the time drops to about 6.5 minutes on average. Using a least-squares linear regression

on these data points and a y-intercept of 0, the number of minutes should on average be

t(x) = 0.0034 · x (R2 value of 0.9995). Hence, on average, 1000 sequences would take about

3.4 minutes to process, 4000 sequences about 14 minutes, and 500 sequences less than two

minutes. The implication is that if one uses sequence scores to calibrate the profile HMM—

estimating the p-value for query sequences using a general distribution of non-family (or

superfamily) sequences—then for any given profile HMM, the time to wait becomes quite

prohibitive past 4000 sequences (> 15 minutes). This is in fact the largest simulated protein

dataset we include for our discrepancy analysis (see Table 7).

2.3 Generation of simulated protein sequences

The amino acid composition of our reduced ASTRAL SCOP database (with no more than

40% identity in the sequences) was analyzed using a custom Perl program. Precisely 300

of the 9536 ASTRAL protein sequences were excluded from the analysis for containing

ambiguous amino acid residues (e.g., “x”). Using a Markov chain algorithm, 7000 simulated

protein sequences were generated for each Markov model of orders 0 through 4. The model

simulates the distribution of amino acid residues (order 0), pairs of acids (order 1), 3-mers

(order 2), and so forth—each model training their variables using the frequency information
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from our reduced version of the ASTRAL database. A total of 79 untrained transition

variable instances (∼ 0.007%) were encountered within the Markov model order 4 sequence

generation process. In these cases, for simplicity, the next residue was picked at random

with uniform probability. The Perl source code for the Markov chain algorithm is available

upon request.

3 Results and Discussion

It is well known that scoring sequences with profile HMMs admits a length bias and requires

length correction [12]. We examine the simple corrected and reverse corrected methods for

removing this bias in the general distribution of the profile HMM. From there, the study

examines the statistical properties of the profile HMM general distributions themselves and

some first attempts at predicting their shape. Finally, we show how using simulated protein

sequences can, perhaps with less computational power, be used to effectively estimate p-

values using a simulated general distribution and Pareto tail fit.

3.1 Picking the best length correcting null model

Simple corrected scores require only one state for their null model while the reverse corrected

score requires the same number of states as the HMM profile being corrected. Therefore,

from a computational standpoint, using the simple corrected score is advantageous. However,

in practice the resulting distributions given by the simple corrected score do not perform

nearly as well as the reverse corrected score in terms of actual length correction. Moreover,

we shall see in Section 3.2 that although the general distribution for the reverse corrected

score is not normal, it is more normal-like than the simple corrected score in its skewness

and mean, making it easier to study.

As discussed in Section 2.3, simulated protein sequences were generated using both pub-

lished PAM (Qas) files as well as using the protein composition found in ASTRAL SCOP

(Qastral). Therefore, in order to judge the dependence on sequence length we generated sim-

ulated proteins with fixed lengths and observed the shift in mean score in particular. Table 2

shows the general shift in mean score due to length for the plain score (without correction)
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as well as for the reverse and simple corrected scores. All 77 profile HMMs were evaluated

for simulated protein data (based on Qas) at fixed lengths of 50, 100, 150, and 200 residues.

Each fixed length dataset contained ≈ 7000 samples. For each protein family, the slope

of the line for mean score vs. fixed length was evaluated and the average, minimum, and

maximum absolute slope taken over all families within each scoring group.

In other words, for each fixed family f , we have three means (µP , µS, and µR) for the

plain, simple corrected and reverse corrected scores respectively. Furthermore, we denote

the mean of the plain score for the fixed length dataset of size 50 to be µP50 and so forth.

Let the set L = {50, 100, 150, 200} be the lengths for fixed length datasets. We can then

take the slope of the line estimated for the function F (i) = µPi,∀i ∈ L to be mP , mS for the

simple corrected score, and mR for the reverse corrected score. Now we can take the average,

maximum, and minimum absolute slope values over all families (N = 77). For example:

AvgAbsSlopeX =
1

N

N∑
f=1

|m(f)
X |, X = P, S, or R (2)

For Table 2, observe that the uncorrected score column, the plain score, has the high-

est average, maximum, or minimum slope for each distribution statistic (mean, kurto-

sis, standard deviation, or skewness) over all 77 profile HMMs. The average absolute

slope over all families for the mean statistic shows the greatest shift due to length for all

statistics measured—demonstrating the need for length correction. The general formula is

F (x) = −9.1− 2.83x. Let us examine the SCOP family a.1.1.2 for an example. For L = 50,

we expect µP50 = −150.6 = −9.1 − 2.83 · 50. The actual µP50 is -150.2, which is about

0.27% relative error. For L = 200 we see a drastic shift in the mean as well as spreading of

the distribution: F (200) = −575.1, with the measured µP200 = −574.5 and relative error at

0.10%. Figure 1 shows the shift in the general (null) distribution for this family due to the

fixed length of the dataset.

The simple corrected score uses a one-state null model to correct the plain score’s length

bias. As seen in Table 2, the correction using this method is very dramatic, but in general,

under Qas emission probabilities, the null distributions tend to fluctuate quite a bit from

family to family in terms of their distribution statistics (the standard deviation of all 77

- 8 -



Table 2: The impact of fixed sequence length on the HMM models for each scoring column.

The average, minimum, and maximum absolute slope (over all families) of the score distribution

statistics (mean, kurtosis, standard deviation or skewness) versus the fixed length of simulated

protein sequences are given for each score column (plain, simple corrected, and reverse corrected

score).

Function Plain score Simple corrected score Reverse corrected score

Means

Avg. abs. slope 2.83 0.04 0.00

Min. abs. slope 2.82 0.03 0.00

Max. abs. slope 2.83 0.04 0.00

Kurtosis

Avg. abs. slope 0.61 0.05 0.00

Min. abs. slope 0.55 0.00 0.00

Max. abs. slope 0.67 0.02 0.02

St. Dev.

Avg. abs. slope 0.03 0.00 0.00

Min. abs. slope 0.03 0.00 0.00

Max. abs. slope 0.03 0.00 0.00

Skewness

Avg. abs. slope 0.02 0.00 0.00

Min. abs. slope 0.02 0.00 0.00

Max. abs. slope 0.02 0.01 0.00

General Distribution, HMM=a.1.1.2, N=6999

Plain.Score (u=−150.2 sd=4.812 sk=−3.513 kt=107.5)
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General Distribution, HMM=a.1.1.2, N=7000

Plain.Score (u=−574.5 sd=9.569 sk=−0.672 kt=16.3)
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Figure 1: The impact of the simulated protein length on plain score. The general (null) distribu-

tions for SCOP family a.1.1.2 are shown for both the simulated protein dataset at a fixed length

of 50 residues (left panel) and at 200 residues (right panel).
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null distribution means is 3.51 for the simple corrected score versus 0.0978 for the reverse

corrected score). When it comes to length correction, the average absolute slope (see Equa-

tion 2) of the mean statistic drops from 2.83 for the plain score to 0.040 for the simple

corrected score. The kurtosis, skewness, and standard deviation also drop at least an order

of magnitude due to the simple score correction.

General Distribution, HMM=a.1.1.2, N=6999

Simple.Corrected.Score (u=−10.66 sd=1.15 sk=0.9588 kt=4.947)
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General Distribution, HMM=a.1.1.2, N=7000

Simple.Corrected.Score (u=−16.62 sd=1.15 sk=1.223 kt=5.582)
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Figure 2: The impact of the simple score correction to alleviate length-dependent bias. The general

(null) distributions for SCOP family a.1.1.2 are shown for both the simulated protein dataset at a

fixed length of 50 residues (left panel) and at 200 residues (right panel).

Continuing our example, Figure 2 shows the impact of the simple score correction for the

general (null) distributions of SCOP family a.1.1.2—using just the fixed length datasets of

50 and 200 residues on the left and right respectively. Comparing Figure 2 to Figure 1 we

notice immediately that the general distribution is not very symmetric; however, the change

in mean is greatly subdued: only about 6 score points difference between the 50 and 200

fixed length datasets when corrected versus the uncorrected difference of roughly 420 score

points.

The reverse corrected score uses the reverse HMM profile (or sequence) to correct the

length bias in the plain score. Table 2 shows negligible change in mean score over all

families due to the fixed length of the simulated protein datasets. All other changes in

null distribution statistics (kurtosis, standard deviation, and skewness) due to the fixed

length of the dataset are, in general, similar to the simple corrected score. Figure 3 reveals

the length correction impact of the reverse score on the general distribution with respect to
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our example family a.1.1.2.

General Distribution, HMM=a.1.1.2, N=6999

Reverse.Corrected.Score (u=0.01134 sd=0.9724 sk=0.1287 kt=4.939)
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General Distribution, HMM=a.1.1.2, N=7000

Reverse.Corrected.Score (u=0.009652 sd=1.134 sk=0.01314 kt=4.919)
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Figure 3: The impact of reverse score correction to alleviate length-dependent bias. The general

(null) distributions for SCOP family a.1.1.2 are shown for both the simulated protein dataset at a

fixed length of 50 residues (left panel) and at 200 residues (right panel).

Other notable features of the reverse corrected score compared to the simple score correc-

tion is that the reverse score correction produces a much more symmetric general distribu-

tion as exampled in Figure 3. Indeed, the absolute skewness over all families using biological

protein sequences from the ASTRAL database ranges from a minimum of 0.000542 to a

maximum of 0.164 score points while the simple corrected score has a range of 0.0482 to 2.07

absolute skewness. The absolute mean score over all families has a minimum of 0.000965

to 0.428 while simple score correction has a range from 0.00294 to 12.4 in terms of absolute

mean. Hence the reverse corrected score, in general, is much closer to 0 in terms of its mean

score and skewness than the simple corrected score.

The purpose of the reverse and simple scores are to correct for biases due to sequence

length within the plain score, therefore, we chose to use the reverse corrected score through-

out the rest of this manuscript after observing how well it corrects the mean score of the

general distribution. Moreover, the more symmetrical and near-zero mean with near-zero

skewness properties of the reverse corrected score general distribution make it more simple

to study. We believe, however, that the choice of emission probabilities for the simple score

correction may be improved with the selection of Qastral instead of Qas—thus we reserve

such exploration for future research.
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3.2 Analyzing the general distributions of the reverse corrected

score

A primary goal of statisticians is the characterization of observed distributions. Indeed,

many tests exist to classify them, especially normality tests. We performed normality tests

on the general distributions of the reverse corrected scoring column, in particular, the Lil-

liefors, Cramer-von Mises, and the Anderson-Darling tests. The summary results are given

in Table 3. “Control data” was computed using 500 random samples taken from a normal

distribution with the mean and standard deviation set to the values for the particular profile

HMM family’s general distribution. The general distribution was also sampled at 500 and

1000 samples for each family and the tests applied. Using the full 7000+ samples was not

practical since even very small (and practically irrelevant) deviations between the distribu-

tions will lead to a lot of false values reported. All general distribution were, of course, of

the reverse corrected score. The 0.05 significance threshold was used for all of the normality

tests.

Table 3: The number of profile HMM family general distributions that do not reject the null

hypothesis for normality. All numbers are out of a total of 77 families and with respect to the reverse

corrected score general distribution. The significance level of the normality tests is reckoned at the

0.05 threshold. The normality control use 500 samples while the profile HMM general distribution

uses both 500 and 1000 samples.

Normality test Control 500 Gen. distr. 500 Gen. distr. 1000

Anderson-Darling 76 20 5

Cramer-von Mises 75 21 4

Lilliefors (Kolmogorov-Smirnov) 73 25 12

One may observe from Table 3 that the control samples properly fail to reject the null

hypothesis for normality the majority of the time (76, 75, and 73 failed rejections for the

Anderon-Darling, Cramer-von Mises and Lilliefors tests respectively). Switching to the gen-

eral distribution 500 sequence sample yields roughly one third of the families remaining

classified as normal under the null hypothesis (or failing to reject normality, more precisely).

As the sample size is increased to 1000 sequences the number of families not rejecting nor-

mality drops to roughly one-fourth of the previous numbers under the Anderon-Darling and
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Cramer-von Mises tests (5 and 4 respectively). When one examines the 5 general distribu-

tions that did not reject the Anderson-Darling normality test (for 1000 samples) in detail,

the kurtosis of each distribution using the full 7000+ samples turns out to range from 3.42

to 3.69. Moreover, the smallest kurtosis of all 77 studied families is 3.23, which is still

more peaked than the normal distribution. Hence, we believe that once the sample size

is sufficiently large each profile HMM family general distribution should fail the normality

hypothesis, provided the test is able to accurately function for larger samples of data.

One approach to estimating the p-values of profile HMM is to characterize the general dis-

tribution with a known parameterized distribution. We have seen that the reverse corrected

score general distribution is near-zero in its mean and skewness but most likely not normally

distributed due to its peakedness. In order to calculate the standard deviation and kurtosis

of the general distribution based a priori on the profile HMM properties alone, a regression

model would have to be fitted to the available 77 profile HMM family properties versus the

statistics of their respective general distributions. First, we computed a correlation matrix

in R using the Spearman correlation (for non-normal distributions) with normal and Holm

adjusted p-values. The results are given in Table 4. Profile HMM properties included the

average and total entropy of the match column emission probabilities, the average and total

Jensen-Shannon divergence of the match columns emission probabilities from Qastral, the

number of match columns as well as the total columns in the profile, and the number of

members included in the profile alignment. The number of general distribution samples, as

observed in Table 1 was also included.

Table 4 shows that the number of match columns in the HMM profile significantly corre-

lates with both the kurtosis and standard deviation of the general distributions (ρ = 0.74 &

0.58, p < 0.01 respectively). One can also take the Jensen-Shanon divergence of the emission

probabilities for each match column or the Shanon entropy and then average them, but this

will not correlate well with the general distribution statistics because the number of match

columns is so important. If one sums the entropies of the match columns a smaller Spear-

man correlation is observed than for the match columns alone (ρ = 0.72 & 0.54, p < 0.01 for

the kurtosis and standard deviation respectively). Similarly, if one uses the total number of

profile columns the correlation is reduced even more. The reason for this is the same for both
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Table 4: Spearman correlation of profile HMM properties with general distribution statistics (stan-

dard deviation & kurtosis). The average and total entropy or JSD (Jensen-Shannon divergence)

values were with respect to the emission probabilities of the model match columns. The adjusted

Holm p-value is also shown.

profile HMM property
Kurtosis Standard Deviaion

Spearman ρ p-value adj. p Spearman ρ p-value adj. p

Avg. entropy -0.100 0.368 1.000 -0.320 0.005 0.099

Avg. JSD (Qastral) 0.090 0.450 1.000 0.290 0.011 0.181

Total entropy 0.720 0.000 0.000 0.540 0.000 0.000

Total JSD (Qastral) 0.790 0.000 0.000 0.760 0.000 0.000

# match columns 0.740 0.000 0.000 0.580 0.000 0.000

# total columns 0.330 0.003 0.067 0.460 0.000 0.001

# profile members -0.310 0.007 0.122 0.370 0.001 0.026

# gen. distr. samples -0.380 0.001 0.016 -0.330 0.003 0.067

profile HMM properties: noise in the contributing factor of the match columns. Consider

the peakedness (kurtosis) and spread (standard deviation) of the general distribution scores,

it is obvious that counting non-match columns in addition to the match ones will reduce

the positive correlations with these statistics since non-match columns do not affect what

counts as a “correct” protein nearly as much as the match columns do. In other words,

more match columns are correlated with a higher frequency of near-zero general distribution

scores—most likely via increasing the stringency of the HMM profile definition. What may

be less obvious is how summing the entropy obscures the number of match columns. Let

pi(xj) be the jth emission probability of match column i in some profile HMM with M match

columns, then:

total entropy = −
M∑
i=1

20∑
j=1

pi(xj) log2(pi(xj)). (3)

When a uniform distribution is considered for the emission probabilities, the match col-

umn is indifferent to the next amino acid and so entropy is high and information content

is low. On other hand, when a particular amino acid is very important we will get a low

entropy value. For example, under the simplified case where only two emission states are

possible, see that −[0.9 · log(0.9) + 0.1 · log(0.1)] = 0.14 < 0.30 = −2 · [0.5 · log(0.5)]. Hence,

since match column count correlates directly with the general distribution kurtosis, most
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likely by specifying a more stringent profile for a good score, then summing the entropies

of the match columns will mask this correlation effect because higher information content

columns (more stringent for a good score) will have smaller entropies and take away from

column count effect being correlated.

The Jensen-Shannon divergence has been shown to be useful in biological sequence analy-

sis [13], is symmetric, and produces non-negative reals. In our correlation analysis, summing

the JSD does not suffer problems as summing entropies did, since the more different the two

distributions being measured are, the larger their divergence value will be. The data here

shown is for the Qastral reference distribution compared to the match column emission proba-

bility distribution. The total or summed JSD has the highest observed correlation with both

the kurtosis and standard deviation of the general distributions (ρ = 0.79 & 0.76, p < 0.01

respectively). The choice of the reference distribution is indeed also important. When one

uses a uniform distribution in place of Qastral the values are reduced to ρ = 0.77 & 0.75,

p < 0.01 for the kurtosis and standard deviation respectively. Significant correlations are

also observed for the number of members in the profile HMM alignment as well as with the

general distribution sample size, albeit they are much smaller and inverse for the kurtosis.

In particular, more members in the profile alignment tends to give rise to a more flat general

distribution.

Figure 4 shows the linear regression of the total JSD with both the standard deviation

and kurtosis. Since a Spearman correlation was used in Table 4 (ranked values), it is not clear

until one examines the scatterplots that a linear model need not best fit the data. Indeed,

we have observed that a logarithmic function gives a better least-squares fit than the linear

model, especially with respect to the standard deviation (R2 of 0.58 vs. 0.42). While the

correlations we have observed in this section are very promising for using a parameterized

distribution for our general distribution p-value estimations, finding the correct distribution

and deriving those parameters a priori with great certainty will still require much future

work. Hence, we turn to a simulation approach for estimating p-values in the next section.
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Figure 4: Scatterplot of the total Jensen-Shannon divergence of the match columns versus the

kurtosis (left) and standard deviation (right) of the general distributions (over all 77 profile HMM

families). The least-squares linear regression line is shown on each scatterplot.

3.3 Markov order effect on the simulated general distribution

Markov chains can be used to generate simulated sequences based on trained frequency

tables. The larger the Markov model order k, the greater the memory of the chain—allowing

for a more sophisticated simulation of the modeled proteins observed in the ASTRAL SCOP

database. Unfortunately, the training requirements for the algorithm also go up with respect

to the Markov model order. Table 5 gives the effect of the Markov model order on the

transition variables. Since the size of the ASTRAL SCOP database is only about 9000

sequences, one cannot pick very large sizes of k or risk running out of statistical support.

Indeed, the number of transition variables goes up by 20k+1. Observe that the coverage,

or training, of all possible transitions goes down at order 3 and 4. While the number of

observation in general is fairly consistent, the number of observations per trained transition

variable goes down exponentially.

A question open to argument is the minimum number of biological sequences needed in

order to have good statistical support for one’s classification or simulation methods. Since

orders 0 and 1 have a minimum of 21943 and 273 observations per variable, one may conclude
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these are quite safe choices for use with this database. Moreover, if one includes the untrained

variables as well, the average number of observations per variable for orders 3 & 4 goes down

to 9.89 and 0.492 respectively. Therefore, while increasing the order of the Markov model

increases the sophistication of the simulation, it also increase the uncertainty of the estimated

probabilities for the transition (and initiation) variables. By observing the trend in Table 5,

the reader can see why going beyond order 4 is unwarranted for the purposes of our simulation

analysis.

Table 5: The effect of the Markov model order on transition variables. From left to right: the

number of trained variables, their percent coverage of the possible set of transitions, the number of

transition observations taken from ASTRAL in the training step; the average, minimum, maximum

and median number of observations per trained transition variable.

Order #Variables Coverage Observations
Obs. per

Variable

Min.

Obs.

Max.

Obs.
Median

0 20 100.0% 1610012 80500.60 21943 149823 85116.5

1 400 100.0% 1600776 4001.94 273 13144 3524.0

2 8000 100.0% 1591540 198.94 1 1434 149.0

3 149672 93.5% 1582304 10.57 1 406 7.0

4 986176 30.8% 1573068 1.60 1 198 1.0

Let us next compare the properties of the general distributions (reverse corrected score)

created using protein sequences from ASTRAL versus the simulated protein sequences at

various Markov orders. First, the sequences selected for the general distribution of each

profile HMM family is sampled down to 7000 random samples to be consistent with the

number of simulated protein sequences generated by the Markov model. Next, the kurtosis

and standard deviation is computed for each family’s general distribution and the biological

and simulated protein datasets compared. Since the mean and skewness of the distribution

for the reverse corrected score is expected to be near zero, we exclude them from the anal-

ysis. The relative error is calculated with respect to the simulated versus ASTRAL general

distributions with the average and maximum values being obtained for all 77 profile HMMs.

Relative errors are computed with the absolute value before the aggregate functions are

assessed. The results are given in Table 6.

One may observe that the relative errors tend to be fairly stable across all Markov model
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Table 6: Relative error of general distribution statistics for simulated protein datasets at different

Markov orders. The mean and standard deviation relative and maximum error is with respect

to general distributions calculated from the ASTRAL protein dataset versus simulated proteins

generated by Markov models at various orders. All distributions use the reverse corrected score.

Markov order Statistic Avg. relative error Max. relative error

0 Kurtosis 4.9% 16.2%

0 St. Dev. 3.3% 9.9%

1 Kurtosis 5.2% 16.8%

1 St. Dev. 3.5% 11.2%

2 Kurtosis 4.6% 19.0%

2 St. Dev. 3.2% 12.4%

3 Kurtosis 4.6% 18.0%

3 St. Dev. 3.5% 12.2%

4 Kurtosis 4.6% 16.7%

4 St. Dev. 3.7% 10.6%

General Distribution, HMM=a.1.1.2, N=7000

Reverse.Corrected.Score (u=0.02753 sd=3.98 sk=0.07586 kt=3.914)

D
en

si
ty

−10 0 10 20

0.
00

0.
04

0.
08

0.
12

General Distribution, HMM=a.1.1.2, N=7000

Reverse.Corrected.Score (u=0.02943 sd=3.966 sk=−0.04014 kt=3.878)

D
en

si
ty

−20 −10 0 10 20

0.
00

0.
04

0.
08

0.
12

General Distribution, HMM=a.1.1.2, N=7000

Reverse.Corrected.Score (u=0.05563 sd=3.92 sk=0.04252 kt=3.62)

D
en

si
ty

−15 −10 −5 0 5 10 15

0.
00

0.
04

0.
08

0.
12

General Distribution, HMM=a.1.1.2, N=7000

Reverse.Corrected.Score (u=0.06907 sd=4.024 sk=−0.0005494 kt=3.609)

D
en

si
ty

−15 −10 −5 0 5 10 15

0.
00

0.
04

0.
08

0.
12

Figure 5: General distributions for the reverse corrected score of SCOP family a.1.1.2 based on
simulated and biological datasets. The top left density plot is the general distribution based on the
ASTRAL database, the top right is constructed from 7000 Markov order 2 simulated protein se-
quences, the bottom left uses Markov order 0 while the bottom right uses Markov order 4 simulated
protein sequences.
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orders whether at maximum or on average. Moreover, the relative errors tend to be on

average only about 5% which informs us that the general distributions created from the

simulated proteins differs only a very little bit from the ones created by biological sequences

when one considers the standard deviation and kurtosis statistics. Markov model order 0

has the smallest maximum relative error at 16.2% for the kurtosis and 9.9% for the standard

deviation. Hence, for the purposes of this research we will primarily consider Markov order

0 for simulated protein sequences based on the Qastral emission probability matrix.

As an example, Figure 5 shows the density plots of general distributions for the reverse

corrected score of SCOP family a.1.1.2 based on simulated and biological datasets. All

four general distributions utilized 7000 samples. The plot of the Markov model order 2

simulated sequence general distribution (top right) most resembles the biological one (top

left) for this particular profile HMM (kurtosis of 3.87 versus 3.91), while plots for Markov

model order 0 (bottom left, kurtosis of 3.62) and order 4 (bottom right, kurtosis of 3.60) are

also quite similar. Although we have selected Markov models of order 0 for our simulated

protein dataset for reasons of simplicity and accuracy, a question for future study is if

particular Markov model orders are significantly better than others for simulating the general

distributions of particular profile HMMs.

3.4 Using simulated proteins to compute the p-value

We have already seen that simulated protein datasets appear to have similar general distri-

bution statistics compared to the general distributions derived from the ASTRAL dataset.

Next, simulated protein datasets based on a Markov model order 0 approximation of the

ASTRAL database are explored for their ability to give good p-value estimates compared to

general distribution p-value estimates derived from biological sequence scores. In order to

test this, we calculate the discrepancy of the distribution tail at the 95% threshold versus

the p-value estimate of the simulated sequence general distributions. Both a fitted Pareto

distribution (Spareto) and the e.c.d.f. (Secdf ) are used for the simulated data general distri-

bution comparisons. The algorithm for the discrepancy computations is discussed in depth

within Section 2.1.1. The number of samples used to compute the cumulative distribution

functions for the biological sequence general distribution data (Becdf ) is with respect to the
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class of the profile HMM under study and so class-specific sample sizes are shown in Table 1.

When fitting the Pareto distribution or calculating the e.c.d.f. of the general distribution

tail, different sample sizes of simulated proteins were employed. One advantage of using

simulated proteins is that one does not need to change the dataset with respect to the

SCOP class of the profile HMM. More importantly, small datasets may give good p-value

estimates. Hence, we used simulated datasets of 250, 500, 1000, 2000, and 4000 sequences.

The discrepancy results are given in Table 7.

Table 7: The discrepancy values between a reference tail distribution at the 95% threshold and

some alternative distribution. Becdf is the biological empirical cumulative distribution function,

Secdf is the one based on simualted proteins, and Spareto uses a Parto distribution fit to smooth

the Secdf tail. Sample sizes are given for the alternative distribution. The average, minimum, and

maximum discrepancy is given with respect to all 77 profile HMM families. Reverse corrected score

general distributions were alone considered in this analysis.

Reference

distribution

Alternative

distribution

Number

samples

Average

discrepancy

Minimum

discrepancy

Maximum

discrepancy

Becdf Secdf 7000 0.0067 0.0020 0.0187

Secdf Spareto 250 0.0131 0.0033 0.0321

Secdf Spareto 500 0.0097 0.0019 0.0219

Secdf Spareto 1000 0.0064 0.0011 0.0143

Secdf Spareto 2000 0.0047 0.0018 0.0107

Secdf Spareto 4000 0.0030 0.0016 0.0057

Becdf Spareto 250 0.0141 0.0032 0.0383

Becdf Spareto 500 0.0108 0.0021 0.0383

Becdf Spareto 1000 0.0084 0.0020 0.0266

Becdf Spareto 2000 0.0079 0.0018 0.0239

Becdf Spareto 4000 0.0068 0.0012 0.0189

The first section of Table 7 shows the average, minimum, and maximum discrepancy

over all 77 profile HMMs of the biological sequence e.c.d.f. versus the simulated sequence

cumulative distribution function. The Secdf always contains 7000 samples while the Becdf

contains 7000+ samples based on the class of the profile HMM family. If the discrepancy

values are high then using simulated protein sequences may be a poor choice for p-value

estimates, while if the discrepancies remain small, then the use of simulated proteins will be

similar to the use of biological sequences for the purposes of p-value estimates. On average,

the discrepancy is about 0.0067 and ranges from 0.0020 to 0.0187 across all studied profile
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HMMs. These numbers are acceptably low to warrant the use of simulated protein sequences

(less than 1% on average and less than 2% at maximum). Hence, the Pareto distribution

can capture the tail properties of the simulated sequence e.c.d.f. quite well and in a sample

size dependent manner.

In the second section of Table 7 we consider the Pareto distribution and how well it

approximates the Secdf itself. As previously stated, we test Pareto distributions fitted to

down-samples of the simulated sequence data: 250, 500, 1000, 2000, and 4000 samples. The

most obvious observation of the results is that increasing the number of total samples used in

the general distribution produces better fits with respect to the empirical cumulative distri-

bution function constructed from the full 7000 simulated sequences. The worst discrepancy

observed for 250 samples is 0.0321 falling steadily until the maximum discrepancy is 0.0057

at 4000 samples across all 77 studied families.

The last section of Table 7 shows how well the Pareto distribution approximates the tail

of the Becdf itself. The Secdf has already been shown to be quite similar to the Becdf and the

Spareto has been shown to be quite similar to the Secdf in a sample size dependent manner.

The transitive property provides the intuition that Spareto will also approximate the Becdf in

a sample size dependent manner. This is the case. In fact, the discrepancy between Becdf

and Spareto at 4000 samples is already extremely comparable to the discrepancy between the

Becdf and Secdf at 7000 samples—motivating the use of the Pareto distribution for the tail

p-value estimate instead of the empirical cumulative distribution function. In particular,

across all studied profile HMM families, the Spareto performs better at minimum discrepancy

(0.0012 vs. 0.0020) and slightly worse at maximum (0.0189 vs. 0.0187) or on average (0.0068

vs. 0.0067).

Depending on the desired level of accuracy, the researcher may choose to estimate the

p-value using a Pareto distribution fitted to the tail but constructed from fewer samples.

For example, one can construct a general distribution with only 1000 samples and still get

an average discrepancy of 0.0084 across all studied families. As previously mentioned, other

researchers have employed Pareto distributions within permutation tests to get accurate

p-value estimates with fewer permutations [6].

Scoring smaller samples for the general distribution may be quite beneficial if computation
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time is a concern (in addition to the simplicity of using one set of sequences for all profile

HMMs). As noted in Section 2.2, we estimate that it takes approximately 14 minutes to

process 4000 sequences for the average HMM profile using our cluster, while it should take

about 3.4 minutes to score 1000 simulated sequences for the general distribution p-value

calibration.

4 Conclusion

The reverse corrected score seems to behave more stably with respect to its mean score and

slightly better in terms of actually correcting for the length bias inherent in scoring sequences

with profile HMMs. Moreover, general distributions constructed from the reverse corrected

scores of biological sequences show a near-zero mean as well as near-zero skewness, which is

easier to study. Simulated protein sequences can be generated from the observed amino acid

frequencies of the ASTRAL database using Markov models of various orders. We found that

Markov model order 0 is easy to compute, has plenty of statistical support from the ASTRAL

database, and reasonably approximates the biological sequence general distributions in terms

of distribution statistic (mean, kurtosis, standard, deviation, and skewness) as well as tail

e.c.d.f. discrepancy.

We have shown that one can use linear regression on general distribution parameters

(mean, kurtosis, etc.) versus profile HMM properties. However, the distribution type to pa-

rameterize is not clear and the regression permits some uncertainty. The Pareto distribution,

however, can easily be fitted to simulated protein data and allows for p-value estimates sim-

ilar to the empirical cumulative distribution functions derived from biological sequences but

using 1000s of fewer sequence samples than either biological or simulation-based empirical

cumulative distribution functions. Scoring fewer sequences can save computation time, and

using simulated sequences provides the simplicity of having a single dataset for all profile

HMMs without respect to its SCOP classification.
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