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Abstract

Profile Hidden Markov Models (HMMs) are often used in the field of bioinformatics.
They allow for the comparison of different proteins in order to determine similar char-
acteristics and functions. Proteins can be represented by a chain of characters and each
of these characters symbolizes one of the twenty natural occurring Amino Acids (AAs).
The purpose of Profile HMMs is that such a model is generated for a specific protein
family and then any protein sequence can be aligned to this model in order to determine
the degree of the similarity. The main focus of this report is on the implementation
of a visual display of the 9-state Profile Hidden Markov Model (HMM) and on the
rendering of transition and emission probabilities in user friendly ways. Furthermore,
this visual display will be integrated in the HMModeler protein modelling software
developed at Salzburg University of Applied Sciences and Salzburg University.
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1

Introduction

1.1 Preview

Nowadays, information technologies are indispensable in supporting molecular biology.

The amount of data to be processed in this field is enormous and can only be treated

effectively with the help of computers.

There are a lot of different software products and tools available for bioinformatics.

This thesis deals with some of these tools, especially with the UCSF Chimera [8] add-

on HMModeler [12] protein modelling software developed at Salzburg University of

Applied Sciences and Salzburg University. The goal is to extend the current software

by a visual display. This visual display will illustrate the 9-state Profile HMM which is a

prominent tool in the field of bioinformatics and allows for the comparision of different

proteins in order to determine similar characteristics and functions. Furthermore,

transition and emission probabilities will be rendered in user friendly ways.

First of all, fundamentals about proteins and Profile HMM will be explained in the

first chapter. Second, the programming language Python and relevant bioinformatic

software will be presented. Furthermore, Chapter 3 is the main part which deals with

the implementation of the visual display itself and Chapter 4 consists of the future

outlook, including facts about the integration in the HMMModeler and information on

sequence logos, which are another way of comparing different proteins.
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1. Introduction 2

1.2 Macromolecules

Macromolecules like Deoxyribonucleic Acids (DNAs) or proteins play a major role in

biology. The number of different macromolecules is enormous and molecular biology

analyzes the different characteristics and functions of such molecules.

Macromolecules consist of a sequence of certain components. Proteins, which are the

main focus of this paper, consist of a sequence out of the twenty naturally occurring

AAs. Table 1.1 lists the twenty naturally occuring AAs under specification of the one

letter code and the three letter code. Especially the one letter code is relevant for

protein sequences.

one letter code three letter code name of the Amino Acid (AA)

A Ala Alanine
C Cys Cysteine
D Asp Aspartic Acid
E Glu Glutamic Acid
F Phe Phenylalanine
G Gly Glycine
H His Histidine
I Ile Isoleucine
K Lys Lysine
L Leu Leucine
M Met Methionine
N Asn Asparagine
P Pro Proline
Q Gln Glutamine
R Arg Arginine
S Ser Serine
T Thr Threonine
V Val Valine
W Trp Tryptophan
Y Tyr Tyrosine

Table 1.1: Alphabet for protein sequences [6, p.31]

In general, the most suitable method to determine the characteristics and functions

of proteins is analyzing their topology or physical structure. However, this technique

involves a lot of work and equipment. Furthermore, as described in [6] its sequence

entirely determines the 3D-structure of a protein. Therefore, bioinformatics work with
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sequences instead of structures wherever possible because they are much easier and

more cost-efficient to determine. These sequences are a chain of characters with a fi-

nite length and every character represent a certain AA.

A common technique to determine specific protein characteristics, especially to deter-

mine the similarity of proteins, is sequence alignment.

1.3 Sequence Alignment

Sequence alignment is a method to align a certain sequence to other sequences to

determine their similarity. However, sequence alignment is not trivial to perform.

Sequences usually do not have the same length and it is also expensive to find out

which AA or character of the sequence matches with another AA. Sequences have

changed their composition through evolution. Therefore, there might be some new

characters in the sequences and there might have been also some deletions of AAs.

Although the difference in terms of character composition and single deletions and

insertions might be significant, tertiary (3D) structure and function as such are often

highly preservered.

Basically, there are two distintive alignment methods: The pairwise sequence alignment

and the Multiple Sequence Alignment (MSA). As the name suggests, the MSA works

with three or more protein sequences. This alignment method is very cost-intensive

and complex algorithm are necessary. However, to accurately describe protein families,

which normally consists of a great deal of different sequences, MSA is essential. Profile

HMMs, which are the focus in the next chapter, work with such Multiple Sequence

Alignments (MSAs).

1.4 Profile Hidden Markov Models

A method to align sequences and to numerically determine similarities in the form of

similarity measures is provided through HMMs. In bioinformatics, so-called Profile

HMMs are of particular importance [4].

The basic idea of a so-called Profile HMM is that such a model is created for a specific
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Figure 1.1: Profile HMM, [6, Chapter 16]

protein family and then any given query sequence can be aligned to this specific Profile

HMM. The result of this process is a score which describes the similarity of the query

sequence to the protein family. A high score usually relates to a high similarity.

Basically, the core of a Profile HMM as described in [4] consists of three types of states:

match states, insert states and delete states. These states are connected with arrows

representing possible transitions between the states.

Generally, insert and match states emit symbols of the query sequence, whereas delete

states are silent states used for shortcuts in the model.

As an example Figure 1.1 shows a Profile HMM with the match states m1,...,mn, insert

states i0,...,in and delete states d1,...,dn.

Match states are symbolized as squares, insert states as rhombuses and delete states

as circles. Therefore, the first square in Figure 1.1, which acts as the starting point of

the model, is equivalent to the match state m0 and the last square, which acts as the

end point of the model, represents the match state m∞. What is not shown in Figure

1.1 are the flanking states at the beginning and the end of the Profile HMM. These

states are responsible for the initialization and the termination of the process and will

be part of the visual display as shown in Chapter 3.

If, during the alignment of the query sequence, the model is in the match state mi,

this means that the AA or current character xj of the query sequence is generated

with respect to the emission frequencies of the respective state. This distribution is

derived from proteins that are known to belong to the protein family modeled by the

HMM. By this, AAs that occur with a high frequency in those sample proteins will
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produce a higher local score if emitted by the match state. In insert states, a so-called

background distribution is used instead and no position specific scores are generated

by emissions in such states. A high global score is thus achieved if many match states

can reproduce parts of the query sequence with high local scores. The degree of the

matching is defined through the emission frequency of the match state.

The insert state ii describes the insertion of an AA in the query sequence through

evolution. If a new AA was inserted in the query sequence, that does not mean that

the function of this particular protein has necessarily changed or that this protein is

not part of the protein family anymore. Therefore, the process goes into the insert

state and a character, according to the emission frequencies of this state, is emitted.

The following example in Table 1.2 should clarify this process.

query sequence: S E A
MSA: S - A
HMM: match insert match

Table 1.2: Example of an insert state

Let us suppose that the sequence ”SA” is part of the MSA and the part of the query

sequence, which is aligned to the model, is ”SEA” like in Table 1.2. The letters and AAs

”S” and ”A” of the query sequence are matching well with the MSA at this position.

However, the letter ”E” is new and was inserted through evolution. Therefore, the

process goes from the match state mi (letter ”S”) in the insert state ii, where the letter

”E” is emitted. Finally, from the insert state ii the process goes into the match state

mi+1, where the letter ”A” is emitted.

The third state of the Profile HMM is the delete state. This state is relevant if, through

evolution again, an AA was deleted in the query sequence, but still occurs in the MSA.

To demonstrate this situation, consider the following example in Table 1.3.

query sequence: P - F
MSA: P T F
HMM: match delete match

Table 1.3: Example of an delete state
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Let us suppose that the sequence ”PF” of the query sequence is aligned to the sequence

”PTF”. So, the letter and AA ”T” is missing in the query sequence, e.g. by having

been deleted through evolutionary processes. Therefore, the Profile HMM goes from

the match state mi (letter ”P”) into the delete state di+1, where no AA but a gap

(letter ”-”) is emitted. Furthermore, the process goes into the match state mi+2 and

”F” is emitted.
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Python and Bioinformatics

2.1 Why Python?

Mitchell L. Model describes the programming language Python in his book [7] as a

”beautiful language”. Python is effective and easy to learn for new programmers,

but it is also practical in the advanced computer science field. On the one hand,

simple scripts can be written effortlessly and, on the other hand, also sophisticated

advanced applications are feasible. However, for programmers with experience in other

programming languages like C++ or Java, the transition to work with Python might

be confusing and curious at the beginning. The main reason for this is based on the

different and the uncommon syntax of the language. In Python the end of statements

is not marked by a semicolon or any other similar character. Only the end of the line

signalizes the end of a statement. Furthermore, there are no braces used for grouping

statements into functions or methods like in other languages. This functionality is

given through the indention of compound statements relative to the lines of code that

introduce them. Also classes are only defined through such indentions. [7]

Listing 2.1 shows a typical Python class with the indented expressions for defining the

class and the two functions.

7
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1 class Dog :

2 def run ( s e l f ) :

3 print ( ’ I am running ! ’ )

4 def bark ( s e l f ) :

5 print ( ’ I am barking ! ’ )

Listing 2.1: Simple Python Class

Through this indention and the abandonment of semicolons, terminal keywords and

braces, which primarily are for the benefit of the compiler, Python code is easier to

read to the human eye. Mitchell L. Model describes this fact like this: ”Python frees

the programmer from the drudgery of serving as a compiler assistant.” [7, p.XVII]

This makes it easier for new programmers like biologists without any programming

skills to work with Python. Python is a powerful language. ”Its skeleton is procedural,

and it has been significantly influenced by functional programming, but it has evolved

into a fundamentally object-oriented language.” [7, p.XVII]

Another important aspect, why Python is often used in bioinformatics, is the fact that

Python is free to use, even for commercial products.

An example for a bioinformatics related software written in Python is shown in the

next chapter with the extensible molecular modeling system Chimera, developed at

University of California, San Francisco (UCSF).

2.2 UCSF Chimera

UCSF Chimera1 is an extensible visualization system, developed by the Computer

Graphics Laboratory at UCSF. In comparison to their first molecular visualization

system called MMS/MIDS in 1976, the primary goal while implementing Chimera was

extensibility. Furthermore, Chimera is portable to a wide variety of platforms, it in-

cludes state-of-the-art graphics capabilities and it provides both, a graphical menu and

a command-line interface.

To ensure the extensibility, the software is divided into a core, which provides basic

1http://www.cgl.ucsf.edu/chimera



2. Python and Bioinformatics 9

services and molecular graphics capabilities, and extensions, which provide higher level

functionality.

This design of using extensions as a main part of Chimera makes sure ”that the exten-

sion mechanism is robust enough to handle the needs of outside researchers wanting to

extend Chimera in novel ways.” [8, p.2]

Additional to the Python layer, the Chimera core also consists of a C++ layer for time-

critical operations like graphics rendering. However, all C++ functions are accessible

also from the Python layer. Extensions for Chimera either have to be written entirely

in Python or in a combination of Python and C/C++. [8]

The main focus of this thesis is on the HMModeler extension for Chimera developed

at Salzburg University of Applied Sciences and Salzburg University.

2.3 HMModeler

HMModeler is part of a toolset for UCSF Chimera, which was developed in a com-

mon effort by Salzburg University of Applied Sciences and Salzburg University, that

allows an efficient computing of multiple structure alignments for protein families and

includes also corresponding Profile HMMs. Whereas PSC++, the second part of the

toolset, is responsible for building multiple structure alignments from alternative pair-

wise solutions, HMModeler provides a comfortable GUI for editing the alignments.

Furthermore, the user is also able to add supplementary biological information to the

model. First, predetermined breaking points, specified through the acceptance of in-

sertions and deletions, the degree of conservation and AA sets are getting fine-tuned

column-wisely. This ensures that it is possible to determine the skeleton of the HMM

without observing the stochastic nature and the numerous transition and emission

probabilities of the model itself. Finally, HMModeler then generates a 9-state Profile

HMM for the protein family. [12]

What was not included so far in the HMModeler extension is a user-friendly visual

display of the model. This was the aim of this work and is presented in the following

chapter.
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Visual display of the 9-state Profile

Hidden Markov Model

This chapter deals with the implementation of the visual display of the 9-state Profile

HMM. First of all, the implementation with all states including start, end and flanking

states will be explained. Furthermore, the application itself including class diagrams

will be outlined.

3.1 Implementation

As mentioned in 1.4 the implemented visual display, which will be integrated into the

HMModeler, also includes start, end and flanking states which are all silent. Silent

means that this states do not emit symbols, whereas non silent states like all match

and insert states emit symbols. Figure 3.1 shows a customized screenshot of the visual

display with all the start, end and flanking states. Also the emission frequencies of the

match states are shown.

As described in [10] and [11] the Profile HMM consists of the following states, which

are significant if the query sequence s is aligned to the HMM of a protein family:

• Begin State (B):

This is the starting state for each alignment process of s to the HMM.

• Q-state Begin (QB):

This Q-state represents possible initial parts of s that are not aligned to the

10
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match or insert states in the core of the HMM.

• Flanking Begin (FB):

This silent state is essential in order that a transition is possible to any of the

match states. The probabilities of these transitions, the so-called Introtransitions,

are shown below every match state in red, e.g. ”-> 0.7” in the first column of

Figure 3.1.

• Match State (M):

Every column has its match state, which is non silent and therefore emit a symbol.

If the model is in the match state while s is aligned to the HMM, this means that

the AA is generated with respect to the emission frequencies of the respective

state.

• Insert State (I):

Every column except the last column has its insert state, which is non silent and

therefore emit a symbol. The insert states represent evolutionary insertions of

AAs in the query sequence s.

• Delete State (D):

Every column except the first and the last column has its delete state, which is

silent and therefore do not emit a symbol. The delete states represent evolution-

ary deletions of AAs in the query sequence s.

• Flanking End (FE):

This is a silent state which acts as a collecting point for a transition from any

match state to the final Insert and End state. The probability of these transitions

is shown below every match state in red, e.g. ”-> 0.00316” in the first column of

Figure 3.1.

• Q-state End (QE):

This Q-state represents possible end parts of s that are not aligned to the match

or insert states in the core of the HMM.

• End State (E):

This is the end state for each alignment process of s.
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Figure 3.1: Customized screenshot of the visual display

Also included in the visual display are histograms which show the emission frequencies

of the match states. This distribution is derived from the MSA. If the HMM is in the

match state during the alignment process, AAs that occur with a high frequency in the

MSA will produce a higher local score. High local scores result in a high global score

and this again means that the degree of the matching between the query sequence and

the MSA is higher. Therefore, the probability is higher that the aligned protein is part

of the from the HMM represented protein family.

3.2 Coding

The UCSF Chimera extension HMModeler was written in Python 2.5 and therefore

also the visual display was programmed in Python 2.5 to ensure that the visual display
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can be integrated into the current software. Furthermore, to make the integration

easier, the visual display was programmed with the use of the design pattern Model-

View-Controller (MVC).

3.3 Model-View-Controller

The MVC design pattern consists of three main parts. The model is the application

object and contains the necessary data, the view is responsible for the presentation of

the data on the output device like the screen and the controller defines the way how the

application reacts to user inputs. This design pattern ensures that the applications is

divided in reasonable sections. Every software engineer who might have to work with

an application which was developed with the use of MVC, knows where he or she can

change the data model (Model), the screen presentation (View) or the interaction with

the user (Controller). [3]

What is different in the current version of the application to the MVC is that currently,

the controller just initializes the model and then calls the view as shown in Listing 3.1.

So the view also handles the user inputs. The reason for that is that just the view works

with the standard library module Tkinter, which is a portable library for constructing

a Graphical User Interface (GUI) [5]. Furthermore, through the later integration into

the HMModeler the user interface of the visual display will be changed and adapted

to the requirements of the HMModeler anyway.

1 import model

2 import view

3

4 hmm = model . Model ( )

5 window = view . View ( hmm)

Listing 3.1: controller.py
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The model manages and contains all the data which is necessary for producing the

visual display. This includes, among other data, the emission frequencies of all match

states, the transition frequencies between the states, the Intro- and Outrotransitions

and information on which columns of the MSA are used for creating the HMM. This

information is essential, because not all MSA columns are significant for the HMM.

MSA columns which will not be included in the HMM are often columns with gaps

resulting from insertions or deletions in the sequences. These columns are not really

representative for the protein family and will therefore not be included in the HMM.

Which columns of the MSA are used in the HMM are apparent on the top of the

visual display shown in Figure 3.1. Column 1 represents column 5 of the MSA, column

2 represents column 6 of the MSA and so forth. Usually, there are a lot of columns

which are not used to model the protein family and therefore not relevant for the MSA,

e.g. in Figure 3.1 column 96 represents column 237 of the MSA.

Besides the storage of the data, the model is also responsible for reading the data from

a file. At the moment, the stand-alone application reads all the necessary data from

a .hmm-File. Later on, in the HMModeler this should happen automatically and no

extra saving and reading operations of a .hmm-File should be necessary to create the

visual display.

Figure 3.2 shows the class diagram of the model. All attributes are private and are

only accessible through the respective get method. All attributes of the model class

are being read from a .hmm-File and this assignment is completed by the method

readHMMFile(in filename: String). For being more flexible in the reading process

regarding to the structure of the input file, every section in the file relates to a specific

state in the reading process, e.g. the state ”EF” means that currently the emission

frequencies are being read. This ensures that also a random arrangement of the different

sections in the file is supported and does not result in an error. This functionality is

given through the private method checkState(in line: String, in previous state: String),

which searches for the section keywords like ”EF” or ”Introtransitions” in every line

and changes the current reading state if necessary.
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Figure 3.2: Class diagram of the model

Figure 3.3 shows the class diagram of the view. The view is responsible for creating

and drawing the visual display itself including all graphical elements like the squares,

arrows and histograms. Furthermore, the view also handles the interaction with the

user through the menu bar. The menu bar consists of three menu items: File, View and

Help. The 〈file〉 menu item is used for reading a file and for terminating the applica-

tion. Through the 〈view〉 menu item it is possible to set the focus to a specific column

or alternatively to a specific MSA value. This option can be used as an alternative to

the scrollbar and is helpful if the HMM consists of a large number of columns. The

〈help〉 menu item just displays an about box with information on the visual display.

As shown in Figure 3.3, the canvas is the drawing page of the visual display. The

method plotHMM() is the main method and draws all the graphical elements includ-

ing the histograms for the emission frequencies.
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3.4 Environment

The algorithm was tested on the operating system Microsoft Windows 7 Professional.

For source code development the software Eclipse SDK 3.6.01 and the Python Integrated

Development Environment (IDE) Pydev2 was used. The whole setup was tested on a

Toshiba Satellite A100-733 laptop with an Intel Core 2 CPU with 1.83GHz and 3GB

RAM.

1http://www.eclipse.org
2http://pydev.org
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Figure 3.3: Class diagram of the view
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Outlook

4.1 Integration in HMModeler

The visual display of the Profile HMM will be integrated in the UCSF Chimera exten-

sion HMModeler later on. Currently, a research group of the Information Technology

and Systems Management Masters program at Salzburg University of Applied Sciences

works on upgrading the HMModeler. They will use the visual display developed for

this paper and will integrate it into the current software.

As described in [9], UCSF Chimera is a highly extensible program for interactive vi-

sualization and analysis of molecular structures and related data. High-quality images

and animations can be generated. Furthermore, Chimera includes complete documen-

tation and can be used for free in an academic manner. These are only a few reasons

why this software was chosen for developing the HMModeler.

One major requirement on the visual display was that the application reacts to changes

on the Profile HMM at run time with good performance. HMModeler itself allows that

the model can be edited and fine adjusted easily by adding supplementary biological

information. Therefore, also the visual display has to support this feature in order to

avoid performance problems. It could be necessary that single values, but also larger

arrangements like entire columns or histograms have to be updated, added or even

deleted. It would be undesirable that the entire visual display has to be redrawn with

each change. Therefore, specific methods in the application have to ensure that all

objects in the visual display can be updated, added and deleted after the entire Profile

18
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HMM was drawn for the first time. One example for such a necessary method is shown

in Figure 3.3. The method clearHistogram(in col : int) allows, under specification of

the column number, the erasing of a entire histogram. If, for example, the distribution

of the emission frequencies of a specific match state was changed by the user in the

HMModeler, this method can be used to both erase the old histogram and draw a new

and updated histogram by calling the method drawHistogram(in x : int, in y : int, in

width : int, in height : int, in col : int).

4.2 Sequence Logos

Another way for illustrating MSAs is provided by sequence logos. As described in

[2], sequence logos were developed by Tom Schneider and Mike Stephens and are a

graphical representation of a MSA. Such a logo consists of stacks of symbols and

each stack represents a specific position in the sequence. Each stack includes two

significant magnitudes. On the one hand, the sequence conservation, which is indicated

by the overall height of each stack and measured in bits, and on the other hand, the

relative frequency of each AA, which is indicated by the height of the corresponding

symbol. The sequence conservation at a particular position, Rseq, is defined as the

difference between the maximum possible entropy and the entropy of the observed

symbol distribution:

Rseq = Smax − Sobs = log2N − (−
N∑

n=1

pn log2 pn)

Figure 4.1: Sequence conservation formula [2]

Here, as described in [2], pn is the observed frequency of symbol n at a specific sequence

position and N is the number of different symbols for the sequence type. N = 20

and the maximum sequence conservation per stack is log2 20 ≈ 4.32bits for protein

sequences, because the alphabet for these sequences are the 20 naturally occuring AAs.

Alternatively, sequence logos are also often used for Deoxyribonucleic Acid (DNA) and

then the maximum sequence conservation per stack would be log2 4 ≈ 2bits.

Figure 4.2 shows an example of such a sequence logo for protein sequences. Here, the
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length of the MSA is 20. As it can be seen in Figure 4.2, G is highly conserved at

position 9 and occurs with a high frequency at this position. Furthermore, also T and

R at positions 14 and 17, occur respectively, with a high frequency. On the other hand,

at position 6, for example, the sequence conservation is relatively small. This means

that at this position there are a lot of different almost equiprobable AAs in the MSA.

Figure 4.2: Sequence logo of the Catobolite Activator Protein (CAP) [1]

4.3 Conclusion

The development and implementation of the visual display was successful and meets

the defined requirements. Also, the emission and transition probabilities were rendered

in user friendly ways. The display is now ready to be integrated into the current version

of the HMModeler by the research group of the Information Technology and Systems

Management Masters program at Salzburg University of Applied Sciences.

This paper will also be used as a basis for writing a bachelor thesis about visualization

methods for Profile HMMs.
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