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1. SYMBOLS AND ABBREVIATIONS 

1.1. Abbreviations 

AQ   aqueous 

CF   clean fractionation 

Peq   equilibrium pressure 

Poffset   offset pressure 

VI   virtual instrument 

SG   switchgrass 

TTEP   true thermodynamic equilibrium pressure  

 

1.2. Chemicals 

MIBK   methyl isobutyl ketone 

DI H2O  deionized water 

EtOH   ethanol 190 proof 

NaCl   sodium chloride 

Et2O   diethyl ether 

 

1.3. Tradenames 

Excel   Microsoft Corporation 

LabVIEW  National Instruments Corp. 
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2. ABSTRACT 

Converting lignocellulosic biomass into biofuels is an option for improving energy indepen-

dence, increasing national security and reducing greenhouse emissions. The burning of fos-

sil fuels like coal and oil release CO2 which is a major cause of global warming. Biofuels are 

produced from plants that grow today and thus do not increase CO2 to the atmosphere. The 

use of switchgrass as feedstock is supported by the fact that it is a non-food biomass source, 

it is a versatile and adaptable plant that grows in poor soils and land conditions that don´t 

support food crops. To isolate the required cellulose from switchgrass, the solvent fractiona-

tion process, a organosolv process, has been investigated. The organosolv biomass fractio-

nation process (Clean Fractionation) separates the lignocellulosic raw material into cellulose, 

hemicellulose and lignin. The biomass is treated with a ternary mixture of methyl isobutyl 

ketone, ethanol, water and an acid promoter. The process is rapid, simple, and gives good 

separation of the individual lignocellulosic components of different feedstocks. Overall, the 

process is a simple model of initial biorefinery pretreatment steps, demonstrating the conver-

sion of a complex raw material into three simpler renewable process streams, each of which 

can be used for the production of fuels and chemicals. 

A new a proprietary method of lignin and hemicelluloses recovery from black liquor obtained 

from the solvent fractionation process has been investigated. This method offers a fast sepa-

ration of layers and thus rapid access to the lignin component and aqueous phases. This 

method is simpler, has fewer processing steps, is easier to handle, and more amenable to 

the measurement of the amount of solvent used in each step.  

 

Key words: biofuels, solvent fractionation, switchgrass, salting out method, organosolv 
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3. INTRODUCTION 

The solvent fractionation process is an organosolv process (biomass treated with 

organic solvents). The delignification process is carried out using organic solvents 

and a mineral acid as catalyst. The organosolv process breaks the internal bonds 

between lignin and hemicellulose and separates the lignin and hemicellulose frac-

tions.(Panday 2009) Advantages of the solvent fractionation process in comparison 

to more conventional pulping processes are (Bozell, O’Lenick et al.2009): 

1. The presence of organic solvents reduces the viscosity of the pretreatment 

medium, improving penetration into the biomass and facilitating a more effi-

cient removal of lignin. 

2. The presence of solvents can retard the redeposition of lignin onto the other 

biomass components after separation is complete. pH control and alkali 

washing of the cellulose have been used to address redeposition. 

3. Organsosolv cellulose is easier to purify .This is important in the paper in-

dustry as a solution for environmental issues associated with pulp bleaching, 

but also to the chemical industry, as it frequently requires starting materials 

of high purity. 

4. The cellulose shows improved bleachability and viscosity retention when 

compared to cellulose prepared using conventional processes such as kraft 

or soda. 

5. The improved properties of organosolv cellulose have been exploited in the 

production of viscose and carboxymethylcellulose. 

 

The solvent fractionation also called clean fractionation or organosolv process and is 

the ternary solvent mixture remains a single phase throughout the entire pulping 

process. 

The biomass source is treated with a ternary mixture of MIBK (methyl isobutyl ke-

tone, ethanol and water in the presence of an acid promoter. Optimized conditions 

developed at UT use a 16/34/50 mass ratio of MIBK/EtOH/H2O for a period of 56 mi-

nutes at 140°C in the presence of 0.05 H2SO4 . The lignin and hemicelluloses are 

dissolved by the solvent system and are continuously washed by the reactor in 

flowthrough mode. After separation, the reactor is drained leaving behind cellulose as 

a solid which is fiberized and washed with water. The black liquor contains the lignin 
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and hemicellulose and is then processed using a new proprietary method to cause 

phase separation to give the organic phase containing the lignin and an aqueous 

phase containing the hemicelluloses. The Clean Fractionation process can be used 

to process a wide range of biomass feedstocks. (Bozell, O’Lenick et al 2009) 

 

4. MATERIALS AND METHODS 

The feedstock used during this project is all non-food biomass sources. All feeds-

tocks were dried to a moisture content of less than 10%. 

 

4.1. Feedstock.  

 

• Switchgrass (Panicum virgatum) a versatile and adaptable summer perennial 

grass native to North America that grows in poor soils and land conditions that 

don’t support food crops. It’s a non-food biomass source. 

• White poplar (Populus alba) pulp grade chips. Dimensions of 4 by 2 cm and a 

thickness of 0.5 cm 

 

4.2. Separations.  

Figure shows the 4 phases of the CF process. The vacuum fragment, the filling 

phase, the heat-up phase and the flow fragment.

 
Figure 1shows the 4 phases of the CF process ( Buchinger, 2009) 
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A perforated Teflon basket was charged with the feedstock and put into the reactor. 

The run can be split into four phases. In the vacuum fragment, a vacuum pump pulls 

a vacuum on the entire system, causing the feedstock to degas and improve the pe-

netration of the feedstock with solvent, in the filling phase. After 20 minutes the valve 

of the feed tank is opened and the vacuum fills the reactor to the outlet of the reactor. 

The height of filling is controlled by the amount of solvent introduced into a vacuum 

trap (100ml) installed at the reactor outlet. After the filling height is reached, the valve 

to the feed tank is closed and the heating phase is initiated. The heater bands around 

the reactor are controlled by electrical controllers, which are set to the operation tem-

perature. The heating process takes approximately 40 minutes to come to a core 

temperature of 140°C. The solvent pump is switched on as soon as three of the hea-

ter bands have reached operation temperature, and the fourth heater band is 5°C 

below operation temperature. The pressure that can be reached by the heating 

process itself is called the equilibrium pressure (Peq). The flow phase is initiated as 

soon as: 

 

Peq + Poffset = Valve opening 

 

Poffset is chosen by the operator and entered into the computer. It has a control and 

stabilizing function. This extra pressure is generated by the solvent pump. 

 

The Badger valve is controlled by LabVIEW and programmed to open as soon as 

operation pressure is reached. The offset was set to 0.015 psi (before 10PSI). The 

stroke rate of the pump was set to12 s-1. The stroke rate is not changed during the 

run. As soon as the flow starts the count-down timer on the LabVIEW virtual instru-

ment, set to run for 56 minutes, is activated. During this flow phase, a flow measure-

ment is taken at the reactor outlet every 5 minutes and should be at 3.5 l/run(56 mi-

nutes of flowthrough). After the flow phase the heaters were turned off and the 

remaining black liquor is drained into the collection pot. 
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Figure 2 shows the correlation between temperature and Peq. It also shows the three 

operation temperature and the reached pressures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After the solvent fractionation process is complete there are two fractions left. The 

cellulose in the reactor and the black liquor collected in the collection pot. 

 

4.3. Cellulose 

To ease the process of fiberizing the cellulose 3 liters of deionized water are added to 

the cellulose 24 hours prior to blending it. The cellulose is then fiberized with a mixer 

for a period of 5 minutes to help release the solvent from the biomass and to reduce 

the particle size of the cellulose for easier downstream processing. 

The fiberized cellulose is then placed into a Buchner funnel that is under vacuum and 

is washed with deionized water for 1 hour. After the washing the cellulose is covered 

with a latex membrane causing the vacuum to press and dry the cellulose for 1 hour. 

The dry cellulose is then weighed and stored in a freezer for further processing. 

 

Figure 2: Shows the correlation between temperature and Peq (Buchinger, 2009) 
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Figure 3 shows the washing of the fiberized cellulose (Maraun,2010) 

 

4.4. Black Liquor 

The black liquor was separated using the a new separation method. This new sepa-

ration method was introduced by Prof. J. Bozell of the Centre for Renewable Carbon 

at University of Tennessee, Knoxville, USA. 

 

4.4.1. New lignin isolation method 

This new method is used to separate the black liquor into the organic and the 

aqueous phase. This new separation method is still in the phase of patenting and 

thus is not discussed in this paper. 

 
4.4.2. Organic Phase 

 

For lignin recovery, the organic layer is stripped via rotary evaporation at 45°C to give 

a dry gummy clay like material. This material is treated with 100ml diethyl ether 

(Et2O) and allowed to sit overnight. Following the overnight treatment, the Et2O is 

filtered with a Buchner funnel and filter paper. A second treatment with 100ml Et2O is 

performed followed by a second filtration. The filtrate is hooked to a vacuum and is 

allowed to dry overnight in the round bottomed flask. The next day, a dry, brown solid 

powdered lignin is recovered. 
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4.4.3. Aqueous phase lignin 

The aqueous phase still contains lignin and thus is collected and stripped of ethanol 

and MIBK via rotary evaporation at 50°C. The AQ is then filtered through a filter pa-

per in a medium sized Büchner funnel. The lignin is then dried by vacuum for 12 

hours and weighed. 

 

4.5. Hemicellulose  

After the separation a 500ml sample of aqueous was stored in the freezer for further 

analysis. HPLC will give a qualitative result of the composition of the hemicelluloses 

in the aqueous phase (in progress). Ash and acid soluble lignin will be found in this 

phase (Fengel and Wegener 2003). 
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6. Reactor 

Figure 5 shows the reactor schematic used at UT. The reactor used at the University 

of Tennessee is a flow-through design. The reactor is constructed from Hastelloy 

C276. This metal is resistant to many aggressive chemicals along with the sulfuric 

acid used in this study. The reactor is heated by 4 electric heater bands. The reactor 

is loaded with biomass contained in a perforated Teflon basket. The reactor is then 

filled with solvent provided by a solvent feed tank. The solvent and biomass is then 

heated to operation temperature by heater bands controlled via controllers in the 

electric enclosure. When the selected temperature is reached, the reactor is then op-

erated in a flow-through mode, solvent is pumped through the bottom of the reactor 

for about1 hour and the extract is collected in a collection tank. A small scale heat 

exchanger is used to preheat solvent entering the bottom of the reactor. Pressure is 

maintained using a pressure control valve controlled by LabVIEW. LabVIEW is a vir-

tual programming environment designed to interface with measurement and control 

instruments. 

 After completion the remaining solvent in the reactor is drained in the collection tank. 

 

Figure 6 Reactor  schematic (O’Lenick, 2009)Figure 5: Reactor schematic used at UT (CJ O’Lenick, 2009) 
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6.1. Materials 

Figure 7 shows the big reactor schematic used at UT. The reactor used for this expe-

riment is a small version of the one shown but has the same build-up. 

 

 
Figure 7 Clean fractionation reactor schematic ( Buchinger,2009) 

 

Reactor material  

The reaction chamber is constructed of Hastelloy metal and is resistant to several 

aggressive chemicals. Hasteloy consist of Ni and Mo and is a trade name of the 

Company Haynes International Ltd. ( Buchinger, 2009).  

Prior to the solvent fractionation, a vacuum is drawn on the biomass by a vacuum 

pump ( GAST DOA-P707-AA PUMP). Then the reactor is filled with solvent by open-

ing a valve. After the reactor is filled the 4 heater bands (Watlow) heat the system to 

a set temperature. When operation temperature is reached the solvent pump (Wil-

liams CR P500V225 CR TC.) starts to push solvent through the reactor. The flow 

through of solvent is then controlled by a badger valve type (766 BLRA Model 4). 

This model operates pneumatically. The badger valve itself is controlled by an ITT 

Conoflow Model GT4108EB, which converts a input signal of 4-20mA DC to a propor-

tional 3-27 PSIG output signal (ITT 2009). The signal is connected to the Field Point 

Module and controlled by LabVIEW. (Buchinger, 2009). An approximate of 3.5 L is 

used for filling the reactor and another 3 L of solvent are used for pumping through 

the system.(small reactor). All the preparation steps are documented on a reactor 

logsheet. 
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At the start of this project, the small reactor had not been used for a period of more 

than two months. The latest run’s had been problematic and it was decided to over-

haul the reactor. The solvent pump had been losing its prime with the result that flow 

stopped and quick action had to be taken to restore flow. The cause for the loss of 

prime in the solvent pump was not jet identified and thus no specific action could be 

taken. An early test run ended abruptly with the opening of an emergency release 

valve which again left more unexplained questions. 
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3. Rheostat controlled heater tape. This elastic heater tape was installed by 

wrapping it around the solvent inlet line at the bottom of the reactor. Its pur-

pose was to support and help the operator to keep and control operation 

temperature in the reactor. This had a positive impact on maintaining the 

temperature. 

 

4. Heater band:  During operation heater band No.4 at the bottom of the reac-

tor burned out and had to be replaced. 

 

5. New emergency release line: During a test run an unexpected emergency 

release occurred. Before, the emergency line, led into the same collection 

pot in front of the reactor as the extracted black liquor. Since flow measure-

ments are taken by the operator repeatedly it was considered a hazard and 

the new emergency outlet line connected to a emergency valve was laid to 

lead to the back of the reactor into a new collection pot. 
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6.3.1.1. Computer controlled parameters: 

1. Equilibrium Pressure. This pressure is chosen by the operator (Thus 

not the real equilibrium pressure at the given temperature. The word 

“equilibrium” is used as an artifact from earlier nomenclature. The true 

thermodynamic equilibrium pressure is simply the pressure of the reac-

tor at a fixed, static temperature in the closed reactor system without 

flow). Tests showed that the actual pressure during the run should not 

be less than 6 psi higher than the thermodynamic equilibrium pressure 

at the set temperature. This helped stabilize the pressure fluctuations in 

the reactor. 

Temperatures used at UT and their  true thermodynamic equilibrium 

pressure plus the additional 6 PSI gives the chosen run Pressure. (see 

Figure 1) 

• 120°C – 45 PSI TTEP plus the additional 6 PSI = 51 PSI 

• 140°C – 85 PSI TTEP plus the additional 6 PSI = 91 PSI 

• 160°C – 145 PSI TTEP plus the additional 6 PSI = 151 PSI 

 

2. Pressure offset. This Pressure is added to the above chosen equili-

brium pressure and triggers the badger valve. As soon as the pressure 

rises above the run Pressure the badger valve starts to open. The offset 

Pressure was lowered from 10 PSI to as little as 0.15 PSI, this had an 

immediate effect on the pressure fluctuations and stability throughout 

the run.  

3. Badger valve opening percent. The badger valve has an opening range 

between 0 and 100 %.  The badger valve opening percent is the crucial 

part in achieving the optimal operation conditions. The opening percen-

tage has to be corrected to the first decimal if not to cause excess or 

low pressure. The aim was to achieve the right amount of flow. This 

means to release (using the Badger valve) and at the same time feed 

(using the Williams pump) the right amount of solvent through the reac-

tor. 
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4.  “Auto valve” or” Bozell” mode switch. Before the process would be 

started in Bozell mode (manual mode) and then after some time would 

be switched into auto valve mode. The computer would then take pres-

sure readings of the reactor and calculate the opening percentage of 

the badger valve for every reading taken. During the project it was de-

cided not to use “auto valve” mode any more since there was no possi-

bility to make adjustments during operation. The “auto valve” mode re-

programming is currently in progress. 

 

6.3.1.2. External adjustable parameters and their reconfiguration 

These are parameters that are adjusted manually by the operator at differ-

ent stages. 

 

5.  The Stroke Rate control. This switch controls the stroke rate of the Wil-

liams piston pump. Before, the pump would be started with a stroke rate 

of 25 strokes then reduced to 10 strokes. This was changed to 12 

strokes throughout the run.  

6. Stroke length. The length of the stroke of the Williams pump can be 

changed to shorter or longer. Tests with different stoke lengths were 

done, but no changes decided. 

7. Temperature controllers. These were used to power and regulate the 

heater bands on the reactor.  On the lower heater band we added an 

additional 2.5°C to every chosen run temperature. This proved to help 

keep the temperatures more stable. We encountered less temperature 

fluctuations.  

8. Rheostat. This was used to control the temperature of the newly in-

stalled heater tape. The heater tape proved to be effective in keeping 

temperatures stable. 
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7. RESULTS  

7.1. Reactor repair, enhancements and optimization 

The optimization and enhancements made, improved and simplified manual opera-

tion of the reactor and had a significant impact on the operation sequence of the 

reactor. These changes led to a more stable run with less pressure fluctuations make 

it easier to reproduce. 

7.1.1. Process Parameter reconfiguration 

Table 1 shows the process parameter reconfiguration that were tested and decided 

during this project. 

 

Parameters Prior Optimized 

1, heater bands 120/140/160 °C heater 4 inc.by 2.5°C 

2. Pump stroke rate (pre 

set) 

25/10 12 

3. Pump stroke length pre set to 1.5 no change 

 

4.VI Equilibrium pressure 85 PSI at 140°C optimized to 91 PSI 

5. Pressure offset 10 PSI 

Bozell  then Auto valve 

Bozell mode 

 

6.Valve factor (%) starting value25 at 140 °C 33.2 at 140 °C 

7.Heater tape not available 150 °C 

 
Table 1 shows the process parameter reconfiguration (Maraun. H. 2010) 

 

Changes to the process parameters were tested and implemented to further improve 

the solvent fractionation process and to reduce operation changes that influence the 

performance of the process.  

1. The heater band 4 was set 2.5°C higher than the rest of the heater bands. 

This helped stabilize the core temperature of the reactor, it was observed that 

both temperature fluctuations and their occurrence were in a lesser extent. 

2. The solvent pump stroke rate was fixed to 12 stokes. 
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3. There were no changes observed when adjusting the stoke length of the Wil-

liams pump. Thus no changes were made. 

4. The VI equilibrium pressure  was set to 91 PSI ((140°C – 85 PSI TTEP plus 

the additional 6 PSI = 91 PSI)) after it was observed that a lower pressure had 

an impact on the Badger valve behavior causing pressure fluctuations. 

5. Pressure offset: The pressure build-up of 10 PSI added to the true thermody-

namic equilibrium pressure is built up by the solvent pump. This value was re-

duced to 0.15 PSI. Due to this reduction the pressure, to activate the Badger 

valve, is reached with every pump stroke. Before this it would take several 

strokes. The badger valve is now constantly working, making the run go 

smooth, with very low fluctuation of about 0.2 PSI. 

6. The valve factor is essential for the amount of flow and for pressure balance 

and stability during operation.  

7. The installed heater tape helped stabilize the temperature in the reactor. 

7.1.2. Mixed feedstock campaign   

These results summarize the analysis performed on the lignin. 

7.1.3. Lignin  

Table 1 shows the distribution of both SG and Poplar from RUN# 76 - # 80. The dis-

tribution was calculated out of the knowledge that 270g of SG and 500g of Poplar will 

fill the perforated Teflon basket to the top.  

 

 
Table 2 shows the total mass of feedstock at equal volume. (Maraun, 2010) 
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Table 3 shows the amount of Lignin recovered from the pulp in percent (Maraun, 2010) 

 

Table 2 shows the amount of lignin recovered from RUN #76 – #80. The lignin yield 

of switchgrass found in literature is 17.2% (Mosier, Qin). Run #76, which had a 90% 

fraction of switchgrass came to lignin yield of 15, 8%to the figure found in the litera-

ture.  

It turned out that the higher the poplar fraction the more incomplete the break down. 

A number of unreacted poplar wood chips were observed. There a few alternatives 

that should be tested to complete the organosolv process in this case. Higher opera-

tion temperatures as well as higher acid concentration are possible solutions. 

Further experiment should be carried out to figure out how time affects the yield. 
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