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Including natural hazard risk analysis in an
optimization model for evacuation planning

A spatial multi-objective memetic algorithm

Grant W. Fraley

Abstract Decision-making in the public and private sector is often supported by
geographic information systems (GIS); an implied acknowledgement of the impor-
tance of geographic information in decision support for an array of application
domains. Spatial optimization methods, when integrated with a GIS, can pro-
vide facilities for providing optimal solutions to decision-making problems with
explicit representation of geography. Multiple objectives are commonly present
when decision tasks involve a collaboration of stakeholders. Linear programming
and game programming techniques have been proposed to find exact solutions
to multi-objective decision problems. However, applications in domains such as
natural hazard mitigation must consider several factors that combine to form a
decision problem that may be too complex for exact solution methods. This re-
search extends work on multi-objective genetic algorithms in spatial optimization
and introduces the integration of a memetic algorithm with a geographic informa-
tion system for evacuation planning. An evacuation planning optimization model
for Dellach, Carinthia, Austria is formulated to minimize evacuee shelter costs and
risks, minimize the travel cost for evacuees, and to minimize the risk of evacuation
routes. Risks in the model come from a previous multi-disciplinary risk analysis
study in the federal state of Carinthia. Spatial analysis methods are incorporated
to ensure a diverse set of spatial patterns in the population of decision alternatives
generated by the memetic algorithm. Results of the model show the utility of the
memetic algorithm to generate distinct and varying evacuation plans that can be
further evaluated for emergency evacuation planning.

Keywords Evacuation - Emergency management - Spatial optimization - Risk
analysis - geodesign - genetic algorithm
1 Introduction

Wildfires are a reoccurring event in Mediterranean type ecosystems around the
world, and often have significant impacts on both the natural environment and
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the human population. Evacuating populations that are threatened by wildfire is
a particularly difficult and time sensitive task for emergency management deci-
sion makers. When deciding on an evacuation plan, Office of Emergency Services
(OES) managers must consider the dynamic complexities of wildfire progression
and population distribution. Decisions must be made concerning what individuals
to evacuate, when to evacuate these individuals, where to locate safe shelters, and
transportation routes to shelters based on proximity. Facilities provided by a GIS
can be utilized to alleviate some of the difficulty in providing reliable evacuation
plans in complex events such as wildfires (Cova 1999, Dunn and Newton 1992,
de Silva and Eglese 2000). A GIS may be used to compile a map of shelter lo-
cations and recommended evacuation routes as a reference for both evacuees and
emergency managers. An optimal evacuation plan map is dependent on the situa-
tional context and is difficult to generate when considering the objectives of many
stake-holders within the context of the hazard. Incorporating geographic results of
a comprehensive hazard risk analysis into a model of evacuation routing and shel-
tering may lead to evacuation plans that are robust to varying hazard scenarios.
Providing more detailed and up to date information to emergency management
personnel can enhance their ability to make a decision on which evacuation routes
and which shelter configuration to deploy.

County of San Diego, California emergency managers use GIS technology for
generating evacuation maps for emergencies that involve more than one municipal-
ity. However, these maps are created based mostly on previously defined primary
evacuation roads, such as highways and primary arterial roads, and no quantitative
methods are used to ensure that capacities of the road network and shelters are
not overwhelmed. Further, time constraints can effect whether a map is even gen-
erated at all. Cartographic products are created in response to evacuation orders
for specific communities issued by the Incident Commander, typically a mem-
ber of CalFire. The proposed wildfire evacuation model will provide a means of
generating evacuation plans based on evacuation orders, which respect the opera-
tional constraints of transportation routes and evacuation points. The model will
also extend the current emergency management practice by providing maps of the
shortest path feasible routes, which in turn may inform the affected population.

A simplified process of decision making was presented by Simon (1977) to
include four major steps:

1. intelligence,

2. design,

3. choice,
and,

4. review.

These steps do not imply a linear decision making process, and may overlap or be
iteratively visited(Malczewski 1999). The phase of intelligence involves a definition
of the decision problem. In this study of evacuation planning, we are interested in
answering the question: “What are the most efficient options for evacuation plans
that minimize risk to the population?”. Intelligence also involves designing and
compiling a geographic information database of attributes related to potential or
known decision making objectives.

There is complexity in representing all of the influential facets of an evacua-
tion decision problem, even when considering only the decision objectives related
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Fig. 1 An example solution set for a two-objective decision problem of mini-
mization is shown with solutions ranked according to the Pareto-front in which
they fall. Front 1 contains all Pareto-efficient solutions. For example, solution
A has a lower (more optimal) value for Objective 1 than solution B, yet solu-
tion B has a lower (more optimal) value for Objective 2 than solution A. Such
a Pareto-efficient trade-off exists for all other solutions in Front I for solution
A. Solution C' however is clearly dominated (in the Pareto sense) by solutions
in Front 1, but is Pareto-efficient compared to all other solutions in Front 2.

to sheltering and routing. In effort to produce evacuation plans in reasonable com-
putation times, we adopt a heuristic solution method based on multi-objective
genetic algorithms. In the design phase of the decision process we are concerned
with generating decision options. In multi-objective optimization we desire to find
a set of mostly Pareto-efficient decision alternatives (Deb 2001). A solution is
Pareto efficient if it performs higher in any one objective when compared to all
other solutions found, or if it performs at least as well in all objectives when com-
pared to all other solutions found (Coello 1999, Lotov et al 2005, Huang et al
2008). This concept of Pareto-efficient, or non-dominated, solutions is illustrated
further in figure 1.

GIS allow databases of spatial attributes related to decision problems to be
stored and analyzed. This research integrates a multi-objective algorithm for opti-
mization with a GIS so that the algorithm may include explicitly spatial analytical
functions. In doing so, we expect to improve computational performance and qual-
ity of generated solutions by leveraging geographic structure for major classes of
topology representation in GIS databases:
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Fig. 2 An example of a two-objective decision problem where both objectives are to
be maximized. Colors range in a spectral symbology from red (100) to purple (600)
where each color represents the solution set at every 100 iterations. The final solution
set at 800 iterations is in black, and at 700 iterations in gray. As the execution of
the memetic algorithm proceeds the solution set converges and increases in diversity.
Previous work (Fraley et al 2010) has achieved convergence in far fewer iterations when
including problem-specific knowledge about the geographic structure of solutions.

— point,

— line or network,
and,

— polygon or areal.

Initial studies into the use of geographic problem specific knowledge have shown
promising results (Fraley et al 2010, Tong et al 2009); see figure 2 . In this study, we
develop a concept of spatial diversity as a feedback mechanism in multi-objective
search and optimization algorithms.

While this research focuses on the design phase of the decision process, the
choice phase requires substantial focus in decision support methodologies and en-
tails the evaluation and selection of decision alternatives. See Jankowski and Fraley
(2009), Xiao et al (2007), Armstrong, Marc P, Bennett, David A, Wang, Shaowen,
Xiao (2008), Bennett et al (2004) for initial work on the topic of choice among
geographic alternatives generated by multi-objective algorithms. Finally a review
phase would commence after the design and choice of alternatives and would ex-
amine the option for implementation and potentially revisiting the previous phases
of the decision process.
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This research adopts the framework of (Simon 1977) and uses a multi-objective
memetic algorithm in the design phase. The algorithm will be tested on a problem
of natural hazard evacuation routing in Dellach, Austria.

2 Evacuation planning in GIScience

This research considers the decision-making tasks of allocating wildfire evacuation
shelters, and routing evacuees to appropriate shelters. Objectives in this problem
are related to routing, sheltering, or both.

2.1 Sheltering

A variety of sheltering objectives have been considered in the literature. The lo-
cation set covering problem (LSCP) minimizes the number facilities required to
provide a certain quality of service, which is a threshold on distance from a facility
(Church and ReVelle 1974). Evacuation modeling may benefit from an objective
derived from the LSCP that aims to locate the minimal number of evacuation
shelters to provide sufficient shelter for the evacuated population.

It is logical that locating shelters close to a hazardous area is not attractive
(Kar and Hodgson 2008). When allocating shelters during planning or response to
a hazard, it is useful to include objectives related to the varying risk of a future
disaster occurring within a study area (Doerner et al 2008) or the current hazard
extent. One may wish to place shelters close to demographics such as elderly or
low-income citizens that are less mobile and in greater need of shelter, or in areas
of higher population density (Kar and Hodgson 2008). Placing shelters close to
highways can increase their utility and usage (Kar and Hodgson 2008, Cova and
Johnson 2002, Cova and Church 1997, Chen et al 2006, Dow and Cutter 2002),
and locating them near health facilities can improve the quality of care available
for evacuees (Kar and Hodgson 2008). Costs related to operating or constructing a
facility may be included in an evacuation model, and have been utilized by Doerner
et al (2008) in an optimization model for locating public facilities with respect to
potential tsunami disasters.

2.2 Routing

Routing objectives in the literature tend to include a functional relationship to the
location of shelters. The maximal covering location problem (MCLP) is a class of
spatial optimization problems which maximize the population of humans within
a specified service distance from a fixed number of facilities (Church and ReVelle
1974). An objective rooted in the MCLP is used by Huang et al (2004) to ensure a
maximum amount of evacuees will be able to reach a shelter within an acceptable
travel distance or time. Evacuees may wish to be far away from a hazard, but
it would be prudent for decision-makers to recommend routes and shelters that
do not require long travel distances (Dow and Cutter 2002). Minimizing the sum
of travel time or distance for the evacuated population is a common objective in
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evacuation modeling (Doerner et al 2008, Cova and Johnson 2002, Kongsomsak-
sakul et al 2005, Lu et al 2005, Cova and Johnson 2003), and is called a mini-sum
criterion (Doerner et al 2008). Cova and Johnson (2003) present a network based
model to route evacuees over the road network such that merging and intersection
cross traffic is minimized. In this road lane based model, a longer distance may
represent a favorable mini-sum of time with a trade-off in the mini-sum of distance
criterion.

Some hazard mitigation models in the literature are formulated with routing
objectives that are independent of shelter locations. Huang et al (2004) address a
problem of routing hazardous materials and include consideration of route proxim-
ity to hospitals and health care. Chiu (2004) minimizes the exposure to a hazard
of routed individuals during transit.

Constraints for evacuation optimization models are primarily the capacities of
roads and shelters (Cova and Johnson 2003, Kongsomsaksakul et al 2005, Lu et al
2005). An analyst can also specify constraints for the number of shelters to locate,
or the quality of service threshold in a MCLP or LSCP.

Once the evacuation sheltering and routing model is formulated mathemati-
cally, it can be solved using a heuristic algorithm or MCDM decision rule. Kar and
Hodgson (2008) use a weighted linear sum of evacuation sheltering model objec-
tives, which is solved directly in a GIS. However, the complexity of optimization
problems that present themselves in real world scenarios typically prevent them
from being solved through integer programming, or exact solution approaches
(Doerner et al 2008). Simplex heuristics can be used to solve MCLP and LSCP
problems, and are used by Cova and Johnson (2003) to solve an evacuation routing
problem. Doerner et al (2008) note significant computational costs when solving
a facility location model with a simplex solver in comparison to a genetic algo-
rithm solver. Chen et al (2006) utilize agent-based models of evacuee behavior in
response to evacuation orders to simulate evacuation processes to inform disas-
ter planning. In other cases, problem specific heuristic software have been used
for evacuation model simulation and solution (Chiu 2004, Lu et al 2005, Cova
and Johnson 2002). Genetic algorithms are applied in a small number of cases in
the literature on evacuation optimization models (Huang et al 2004, Kongsomsak-
sakul et al 2005). However, Doerner et al (2008) recently employed a MOGA, the
NSGA-II, for the solution of a facility location problem of hazard mitigation.

3 Spatial multi-objective optimization

Spatial optimization problems contain a geographic structure by definition. There
are several ways that genetic algorithms can be modified to integrate geographic
knowledge during the search for optimal trade-off solutions (Xiao 2008, Tong et al
2009), however little research has focused on this topic. To illustrate how geo-
graphic knowledge will be integrated with a MOGA in the proposed research, the
following paragraph describes the main features of how genetic algorithms search
for optimal solutions to a decision problem.

Genetic algorithms contain a population, a set, of alternative solutions dur-
ing their execution. Each solution alternative in the population is represented
in the same manner. The solution representation is called a chromosome, and is
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commonly simply a list of values, each corresponding to some attribute of the so-
lution. The primary reproductive operator of a genetic algorithm is the crossover
operation, which takes pairs of parent solutions from the population and swaps a
portion (for example, half) of the chromosome contents between them to create
a pair of child solutions (Deb 2001). By crossing genes between high performing
solutions we hope that high performing children solutions will result, and we aim
for a diverse range of options among the population.

3.1 Memetic algorithms

Multiple-objective genetic algorithms (MOGA) are capable of generating a popu-
lation of solutions where each solution represents a trade-off in optimality between
the multiple objectives. In the nomenclature of MOGA, the algorithms decisions
towards optimality are driven by natural selection, which prunes solutions towards
specific objectives. This can be thought of as a global search heuristic that applies
to all problems. Recent research in computer science has explored the design of
memetic algorithms, which add cultural learning components into genetic algo-
rithms (GAs) to exploit problem-specific knowledge (Knowles and Corne 2005).
The notion of culture, or local social rules and norms, can adapt global search
heuristics to produce specific solutions that are pertinent for the problem at hand.
It is suggested that incorporating problem-specific knowledge can improve the per-
formance of a MOGA (Corne and Knowles 2004). Specifically, geographic problems
can be characterized by spatial patterns and topology, which are rarely included
in MOGAs, but could be leveraged as part of a memetic algorithm for generat-
ing efficient solutions that incorporate spatial characteristics. Yet, little research
has been presented which explicitly includes geographic constructs in genetic algo-
rithms. Memetic algorithms are an extension of GAs. In a memetic algorithm, after
the genetic operators are applied to the population, each solution in the population
undergoes a refinement step that seeks to improve objective performance.
Spatial optimization methods belong to a class of techniques that aim at gener-
ating solutions representing a location or geographic arrangement of locations that
perform well on the problem objectives. Upon formulating an optimization problem
an analyst must decide how to generate a solution or even multiple alternative solu-
tions to the problem. It is proven by No Free Lunch (NFL) theorems that all search
and optimization algorithms are equal in average performance over all problems
(Corne and Knowles 2004, Wolpert and Macready 1997). What follows from the
NFL theorems is the supposition that incorporating problem-specific knowledge
to guide the search for optimal solutions can make one algorithm perform better
than another (Wolpert and Macready 1997, Corne and Knowles 2004). MOGA
heuristics may require a large number of computations because many solutions
are evaluated at each generation. The geographic information science literature
has devoted little attention to the design of MOGAs that incorporate problem
specific knowledge to improve convergence towards a Pareto set, and also reduce
computation time. Xiao (2008) presents a framework to exploit spatial structure
in GAs, and strives to avoid approaches that are too specific to individual prob-
lems. Tong et al (2009) introduce in their single objective genetic algorithm a
crossover operation that is specific to facility location problems and incorporates
the geographic arrangement of facilities to promote dispersion. In this research
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we introduce a memetic algorithm that leverages geographic knowledge of the
diversity in the population of individuals during algorithm execution.

3.2 Diversity

A diverse solution set will facilitate more efficient inquiry of options for implemen-
tation, and cover a broader range of possibilities that can even satisfy stakeholder
preferences that were not explicitly identified in the original decision problem
(Xiao 2008). A large body of research exists on spatial autocorrelation statistics,
which describe the global or local geographic patterns of points and polygons (ge-
ographic regions). These statistics describe the homogeneity and heterogeneity of
a geographic pattern. For our purposes, the mean and standard deviation of these
statistics across the entire population of decision alternatives will be used as a
quality indicator of geographic diversity.

This research introduces initial results from the development of a common
framework for evaluation and application of geographic operators in genetic algo-
rithms. The evaluation framework and operators will be divided into the categories
of point, line, polygon, network, and multi-structured representations.

These categories are based on the geographic structure, and thus the chro-
mosome, of possible spatial optimization problems. Within each category, genetic
operators can be designed to leverage specific geographic relations that are com-
mon to spatial optimization problems. Point representations can have locations
that range from a pattern more dispersed than expected under complete spatial
randomness (CSR) to a pattern that is more clustered than expected under CSR.
When locations are evenly distributed throughout space, the pattern is that of
CSR. For some problems, we may desire a certain level of spatial clustering, dis-
persion, or randomness in our solutions (Tong et al 2009). Also, it is possible to
desire a range of spatial patterns where some solutions are clustered, some dis-
persed, and some random.

There are strong parallels between point and area representations if we consider
the distribution of values across a set of polygons. For such a case, the clustering
or dispersion of a polygon attribute value can be evaluated as if we are speaking
of the centroid points of area polygons. However, we may also need to consider the
distribution of area among polygons. If polygons have a static area size between all
solutions, but their values can differ, it is important to consider the homogeneity
(clustering) with respect to area coverage as well.

When the chromosome represents a network its structure is described by the
degree of connectivity among locations, the network distance among locations, or
the flow capacity among locations. Again, different optimization problems seek
specific desired outcomes with respect to how connected or disconnected the net-
work is, the average distance or nearest neighbor properties of locations in the
network, and the distribution of flow capacities across the network.

Multi-structured representations have more than one type of chromosome rep-
resentation in the problem. As multi-structured problems are simply some com-
bination of point, area, or network spatial representations, the types of spatial
patterns that are desired are composites of the aforementioned patterns.

Diversity in the solutions generated by a multi-objective algorithm can be
evaluated using global measures of spatial autocorrelation for point and area rep-
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resentations, and global metrics from graph theory for network representations.
Measures of spatial autocorrelation can describe clustering or dispersion of features
and this is often done on the basis of some attribute value for area representations.
Ripleys K, a measure of clustering or dispersion of point patterns, can describe
the diversity of patterns in the solution set (Levine 2010). Similarly, Morans I is
a statistic that indicates clustering or dispersion of point or area data with con-
sideration of an attribute value. Because the global Morans I measure does not
consider whether locations have clusters of low values or clusters of high values, the
Getis-Ord G statistic can be used when it is a requirement to know the direction
of magnitude of values in addition to their degree of clustering (Levine 2010). The
G statistic is useful in evaluating solution sets when a decision-analyst desires hot
or cold spots in the solution, or clusters of high or low values respectively.

Network diversity can be evaluated using well-developed metrics in graph the-
ory. A network is represented as a graph by considering intersections as point
locations, or nodes, that are connected by line paths, or edges. A measure of con-
nectivity of nodes is the degree of a node, which is simply the number of edges
it has to other nodes. The average degree of nodes in the networks graph is the
overall connectivity of the network. The distance between two node locations in
the network is the shortest path of edges between the two nodes. Thus, the aver-
age shortest path distance is a metric of closeness centrality of the network. Flow
problems (for example problems involving traffic) can be evaluated based on the
maximum or minimum cost flow that a network can support, or the average flow.
Flow capacities are an attribute of edges in the graph. A minimum spanning tree
is the set of edges in a graph that connects all nodes with the minimum flow when
its edges flow capacities are summed. A maximum spanning tree is likewise the
sub-graph such that the sum of flow capacities are the maximum capacity. Min-
imum and maximum cost spanning trees can be used to construct average flow
capacities of minimum or maximum cost paths in the solution set.

4 Evacuation planning optimization

A database compiled with geographic coverage of the federal state of Carinthia,
Austria was used as the basis of this research. Results from a multi-disciplinary
natural hazards risk analysis were included in the database (Ward, S., Leitner, M.,
Paulus 2009). Geographic zones of high and medium risk to flooding, torrential
currents, and landslides are outlined in figure 4. From viewing the map in figure
4 we see that roads (pink) follow the Drau river which runs west to east through
the city of Dellach, centered in the map. Normally, these federal roads along the
river are the primary transportation veins. Yet, they are in the highest risk zones
for flooding (blue). The local roads must be used if we are to minimize the risk of
transportation, however mountainous terrain, the risk of torrential currents coming
from the mountains, and landslide hazards make it difficult to establish quick and
direct evacuation routes.

In preparation of optimization model formulation, a network topology was
constructed using the road network and building locations. Demographics and
risk assessments associated with the buildings and residences become attributes
of the leaf nodes of the network, and a (distance based) network travel cost was
assigned to intersection nodes in the network graph (figure 6).
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Fig. 3 The study are of this research encompasses Dellach, Austria. Federal
and local roads are depicted in pink, buildings in black, and schools (potential
evacuation shelters) in green. The blue areas are at high risk of flooding and
torrential currents, and the brown areas are at high risk of landslide and rock-
fall events.
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Fig. 4 Dellach, Austria lies in the center of the study area. This map is zoomed
to Dellach and displays buildings (black), roads (pink), and the census enumer-
ation grid (cyan). High risk areas are in red and moderate risk in yellow. Areas
in orange are at significant risk to multiple hazards (both flooding and land-
slide), and areas in dark red are at high risk to both hazards. Note that some
schools, which are potential shelter locations, are located within significant risk
zones.

A mathematical optimization model was formulated to minimize the operation
cost and risk for sheltering facilities, minimize the travel distance to shelters, and
minimize the risk of routes to shelters. A linear programming model is formulated
with the objectives to:

n  ns
Minimize(ZZsij *75) (1)
i=0 j=0
where n is the size of the algorithm population, ¢ is an individual in the population,
ns is the number of shelters in the study area, s;; is a binary integer decision
variable equal to 1 if shelter j is included in solution ¢ or 0 otherwise, and r; is
the risk of natural hazard impact associated with the location of shelter j, to:

n ns ng

Minimize(z Z Zpijk * Cijk) (2)

i=0 j=0 k=0

where ny, is the number of buildings in the study area, & is a single building, p;; is
a binary integer decision variable equal to 1 if there exists a path between building
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Fig. 5 A simplified version of the memetic algorithm chromosome where each
gene is an index to a particular source (gray nodes) on the transportation
network graph and contains a path between that source and one of the possible
shelters (orange nodes).

k and shelter j in solution ¢ and 0 otherwise, c;;x is the cost of traveling along the
path generated by the algorithm between k and j for solution 4, and to:

n mns ng

Mim'mize(z Z Zpijk * Tijk) (3)

i=0 j=0 k=0

where 7;;1, is the risk to hazard associated with traveling along the path between
building k£ and shelter j in solution %.

The evacuation planning optimization model consists of binary decision vari-
ables for shelters (s;;) and paths (p;;x), but it should be noted that we are not
selecting from a predetermined set of paths and certainly not from all possible
paths between each source and destination. A heuristic path initialization strat-
egy is utilized in the memetic algorithm described below in order to detail with
the combinatorial nature of the evacuation planning optmization model. Further,
sij is a function of whether shelter s; appears in any of the paths, p; for solution
i.

5 Spatial multi-objective algorithm

We incorporate the notion of spatial diversity in addition to objective diversity
to allow the probabilities of our algorithm to adapt during algorithm execution
(Tarokh 2008). Further, integration with a GIS environment gives the ability to
leverage topology in our algorithm operations. These two features are initial efforts
towards a spatial multi-objective memetic algorithm (spatial MO-MA), which is
based on the (Deb et al 2002) NSGA-II MOGA but includes problem-specific
knowledge.

Chromosomes for decision problem solutions in the algorithm are represented
as arrays with the source location (building or residence) as the index to the
assigned route for the source to the assigned destination shelter (figure 5). Routes
are initialized using a random walk along the network graph starting at the source
location and continuing until a destination shelter is reached.
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Fig. 6 A two-point crossover is implemented in the memetic algorithm. For
simplicity, this figure demonstrates a single point crossover. A random splitting
location (yellow line) is chosen by the genetic operator, and the genes from
two parent chromosomes selected from the population are swapped about the
splitting location to produce two new children.
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Fig. 7 Mutation in the memetic algorithm is achieved by creating a new trans-
portation path from the starting location of a gene. While the crossover prob-
ability is applied to pairs of chromosomes, the mutation probability is applied
at the scale of genes. For each gene of an individual solution in the algorithm
population, if a randomly generated number, 7, from a uniform distribution
between 0 and 1 is less than the probability of mutation, P, mutation is
applied.

Crossover is implemented using a two-point crossover operator (Deb 2001).
Figure 5 shows a simplified version of the procedure with a chromosome of three
buildings and a single-point crossover. In execution of the spatial MO-MA, a longer
chromosome is used to represent all buildings, and two crossover points are utilized.

Mutation is applied on the level of genes within the chromosome. That is,
each source location’s route has a probability of mutation. Application of the
mutation operator generates a new route for the source location to follow using

the aforementioned random walk initialization strategy.
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6 Results

This research demonstrates the utility of an evacuation planning optimization
model and a multi-objective algorithm for generating evacuation plan designs.
Trade-offs in sheltering costs, travel distance, and risk of the routes are revealed by
generating a Pareto-efficient solution set. Incorporating risk analysis from expert
assessment of natural hazard risk potential is a novel approach that is expected to
allow more robust decision options to be considered in the choice phase of the de-
cision process. Integrating the solution method with a GIS to explicitly represent
geography in the memetic algorithm provides the ability to perform geographic
processing in the algorithm operators and affords the monitoring of spatial diver-
sity during algorithm execution. The algorithm discussed in the previous section
was applied to the evacuation routing problem for Dellach, Austria. A population
size of ten individual solutions was chosen, and the algorithm was run for 100
generations.

A scatterplot of results is displayed in Figure 6 illustrates the relationship
between the travel cost objective and the travel risk objective for the solutions
obtained by the algorithm. Results indicate that a larger population than 10 so-
lutions may be required to more accurately represent the trad-off curve between
travel time and travel risk. Yet, the computer random access memory required
to represent the solutions prohibits much larger solution sets. Continuing work
will investigate a more efficient data structure to store the evacuation paths. Fur-
thermore, the random walk approach to initializing paths creates many turns and
diversions in the paths. While this helps simulate a person’s avoidance of haz-
ardous areas, the paths are very complex and indirect, which requires a much
larger amount of random access memory to store the path during algorithm exe-
cution. Alternative initialization strategies will be investigated in continuation of
the research presented here, and should also allow a much larger population of
solutions. The obtained solutions are however spread well across the range of cost
and risk values, so the trade-offs between the cost and risk objectives are diverse
as desired.

An optimal solution with high travel distance, but low risk to the hazard of
flooding and torrential currents, is show in Figure 6. The most frequently traveled
roads (green intersections) are in the northern reaches of the study area and there
is little traffic in the hazardous area. All shelters are used in this solution, and the
school within the center of Dellach, Austria is utilized heavily. An optimal solution
with low travel distance, yet higher risk is displayed in Figure 6. In contrast to the
lower risk solution, there is a large amount of traffic within the zone of flooding risk
to reach shelters, particularly in the vicinity of the western-most shelter. There
is however less traffic in general across the study area in the high risk solution
example, specifically in the southern and eastern stretches (Figure 6).

7 Conclusion

Moving forward, constraints on shelter and road capacity will be included in the
evacuation optimization model. Generated evacuation plans will also be evaluated
using visual multi-criteria decision analysis techniques as in Jankowski and Fraley
(2009). An alternative optimization model can be formulated to evaluate Pareto-



14 Grant W. Fraley

1lad
4.3 T T T T T

4.2

4.1

4.0+ L

Risk

3.9+ 1

38+ 1

rr 1

3BSE 330 235 240 245 250 255 260 265
Cost @

Fig. 8 Solutions obtained by applying the geographic multi-objective memetic
algorithm to the Dellach evacuation optimization problem. Trade-offs in the
travel distance in meters (Cost) and travel risk (Risk) objectives are evident
when comparing solution points to each other.

efficient trade-offs between optimality for different types of hazards. That is, a
plan that considers only the hazards of flooding may not perform well in a wildfire
scenario, yet there may be compromise solutions that perform well under multi-
ple hazard scenarios. Initial results are being computed for the Dellach, Austria
study area, but other case studies in the state of Carinthia will be processed using
the same model and algorithm. The work will then be extended to a scenario in
southern California using HAZUS as a tool for risk analysis data.

Further work will explore the theory of memetic algorithms in Computer Sci-
ence will in the context of GIScience to determine algorithm design considerations
for spatial multi-objective optimization problems. This will require a sensitivity
analysis and quantitative comparison of techniques for including geographic con-
structs in algorithm design. Possible techniques include parameter adaptation,
operator spatialization, and local improvement operators. In many cases, the use
of computational grid or cloud computing could be valuable to efficiently solve
large geographic optimization problems.

To ensure the utility of the modeling approach, a user-centered design (UCD)
approach to usability engineering will be used to integrate the model into a spatial
decision support system for hazard planning and mitigation. Potential users will
influence the spatial decision support system design. Inclusion of domain experts,
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Fig. 9 A map of a high cost, low risk solution. Road segments that are most
frequently traveled are show with green intersections, and the least frequently
traveled road intersections are in black. The red area represents the geographic
areas of high risk to flooding and torrential current. Yellow areas are the loca-
tions of evacuated populations. Green squares show the shelter locations.

Fig. 10 A map of a high risk, low cost solution. Road segments that are
most frequently traveled are in green, and the least frequently traveled road
segments are in black. The red area represents the geographic areas of high risk
to flooding and torrential current. Yellow areas are the locations of evacuated
populations. Green squares show the shelter locations.
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an initial needs and evacuation planning task assessment survey, and iterative
usability study will determine the SDSS functionality and interface design.

This research has illuminated the ability of a geographic multi-objective memetic
algorithm to generate trade-off alternatives for emergency evacuation planning.
Results of the study are critical for consideration during the design of a compu-
tational model for evacuation simulation and planning. Through ongoing collabo-
ration between the Carinthia University of Applied Sciences and San Diego State
University, the computer model will be developed further into a decision support
system that will be evaluated in both Carinthia, Austria and southern California,
United States.
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